Btrfs: abort the transaction if the commit fails
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31 #include "volumes.h"
32
33 #define BTRFS_ROOT_TRANS_TAG 0
34
35 void put_transaction(struct btrfs_transaction *transaction)
36 {
37 WARN_ON(atomic_read(&transaction->use_count) == 0);
38 if (atomic_dec_and_test(&transaction->use_count)) {
39 BUG_ON(!list_empty(&transaction->list));
40 WARN_ON(transaction->delayed_refs.root.rb_node);
41 WARN_ON(!list_empty(&transaction->delayed_refs.seq_head));
42 memset(transaction, 0, sizeof(*transaction));
43 kmem_cache_free(btrfs_transaction_cachep, transaction);
44 }
45 }
46
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 free_extent_buffer(root->commit_root);
50 root->commit_root = btrfs_root_node(root);
51 }
52
53 /*
54 * either allocate a new transaction or hop into the existing one
55 */
56 static noinline int join_transaction(struct btrfs_root *root, int nofail)
57 {
58 struct btrfs_transaction *cur_trans;
59 struct btrfs_fs_info *fs_info = root->fs_info;
60
61 spin_lock(&fs_info->trans_lock);
62 loop:
63 /* The file system has been taken offline. No new transactions. */
64 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
65 spin_unlock(&fs_info->trans_lock);
66 return -EROFS;
67 }
68
69 if (fs_info->trans_no_join) {
70 if (!nofail) {
71 spin_unlock(&fs_info->trans_lock);
72 return -EBUSY;
73 }
74 }
75
76 cur_trans = fs_info->running_transaction;
77 if (cur_trans) {
78 if (cur_trans->aborted) {
79 spin_unlock(&fs_info->trans_lock);
80 return cur_trans->aborted;
81 }
82 atomic_inc(&cur_trans->use_count);
83 atomic_inc(&cur_trans->num_writers);
84 cur_trans->num_joined++;
85 spin_unlock(&fs_info->trans_lock);
86 return 0;
87 }
88 spin_unlock(&fs_info->trans_lock);
89
90 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
91 if (!cur_trans)
92 return -ENOMEM;
93
94 spin_lock(&fs_info->trans_lock);
95 if (fs_info->running_transaction) {
96 /*
97 * someone started a transaction after we unlocked. Make sure
98 * to redo the trans_no_join checks above
99 */
100 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
101 cur_trans = fs_info->running_transaction;
102 goto loop;
103 } else if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
104 spin_unlock(&root->fs_info->trans_lock);
105 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
106 return -EROFS;
107 }
108
109 atomic_set(&cur_trans->num_writers, 1);
110 cur_trans->num_joined = 0;
111 init_waitqueue_head(&cur_trans->writer_wait);
112 init_waitqueue_head(&cur_trans->commit_wait);
113 cur_trans->in_commit = 0;
114 cur_trans->blocked = 0;
115 /*
116 * One for this trans handle, one so it will live on until we
117 * commit the transaction.
118 */
119 atomic_set(&cur_trans->use_count, 2);
120 cur_trans->commit_done = 0;
121 cur_trans->start_time = get_seconds();
122
123 cur_trans->delayed_refs.root = RB_ROOT;
124 cur_trans->delayed_refs.num_entries = 0;
125 cur_trans->delayed_refs.num_heads_ready = 0;
126 cur_trans->delayed_refs.num_heads = 0;
127 cur_trans->delayed_refs.flushing = 0;
128 cur_trans->delayed_refs.run_delayed_start = 0;
129 cur_trans->delayed_refs.seq = 1;
130
131 /*
132 * although the tree mod log is per file system and not per transaction,
133 * the log must never go across transaction boundaries.
134 */
135 smp_mb();
136 if (!list_empty(&fs_info->tree_mod_seq_list)) {
137 printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when "
138 "creating a fresh transaction\n");
139 WARN_ON(1);
140 }
141 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) {
142 printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
143 "creating a fresh transaction\n");
144 WARN_ON(1);
145 }
146 atomic_set(&fs_info->tree_mod_seq, 0);
147
148 init_waitqueue_head(&cur_trans->delayed_refs.seq_wait);
149 spin_lock_init(&cur_trans->commit_lock);
150 spin_lock_init(&cur_trans->delayed_refs.lock);
151 INIT_LIST_HEAD(&cur_trans->delayed_refs.seq_head);
152
153 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
154 list_add_tail(&cur_trans->list, &fs_info->trans_list);
155 extent_io_tree_init(&cur_trans->dirty_pages,
156 fs_info->btree_inode->i_mapping);
157 fs_info->generation++;
158 cur_trans->transid = fs_info->generation;
159 fs_info->running_transaction = cur_trans;
160 cur_trans->aborted = 0;
161 spin_unlock(&fs_info->trans_lock);
162
163 return 0;
164 }
165
166 /*
167 * this does all the record keeping required to make sure that a reference
168 * counted root is properly recorded in a given transaction. This is required
169 * to make sure the old root from before we joined the transaction is deleted
170 * when the transaction commits
171 */
172 static int record_root_in_trans(struct btrfs_trans_handle *trans,
173 struct btrfs_root *root)
174 {
175 if (root->ref_cows && root->last_trans < trans->transid) {
176 WARN_ON(root == root->fs_info->extent_root);
177 WARN_ON(root->commit_root != root->node);
178
179 /*
180 * see below for in_trans_setup usage rules
181 * we have the reloc mutex held now, so there
182 * is only one writer in this function
183 */
184 root->in_trans_setup = 1;
185
186 /* make sure readers find in_trans_setup before
187 * they find our root->last_trans update
188 */
189 smp_wmb();
190
191 spin_lock(&root->fs_info->fs_roots_radix_lock);
192 if (root->last_trans == trans->transid) {
193 spin_unlock(&root->fs_info->fs_roots_radix_lock);
194 return 0;
195 }
196 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
197 (unsigned long)root->root_key.objectid,
198 BTRFS_ROOT_TRANS_TAG);
199 spin_unlock(&root->fs_info->fs_roots_radix_lock);
200 root->last_trans = trans->transid;
201
202 /* this is pretty tricky. We don't want to
203 * take the relocation lock in btrfs_record_root_in_trans
204 * unless we're really doing the first setup for this root in
205 * this transaction.
206 *
207 * Normally we'd use root->last_trans as a flag to decide
208 * if we want to take the expensive mutex.
209 *
210 * But, we have to set root->last_trans before we
211 * init the relocation root, otherwise, we trip over warnings
212 * in ctree.c. The solution used here is to flag ourselves
213 * with root->in_trans_setup. When this is 1, we're still
214 * fixing up the reloc trees and everyone must wait.
215 *
216 * When this is zero, they can trust root->last_trans and fly
217 * through btrfs_record_root_in_trans without having to take the
218 * lock. smp_wmb() makes sure that all the writes above are
219 * done before we pop in the zero below
220 */
221 btrfs_init_reloc_root(trans, root);
222 smp_wmb();
223 root->in_trans_setup = 0;
224 }
225 return 0;
226 }
227
228
229 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
230 struct btrfs_root *root)
231 {
232 if (!root->ref_cows)
233 return 0;
234
235 /*
236 * see record_root_in_trans for comments about in_trans_setup usage
237 * and barriers
238 */
239 smp_rmb();
240 if (root->last_trans == trans->transid &&
241 !root->in_trans_setup)
242 return 0;
243
244 mutex_lock(&root->fs_info->reloc_mutex);
245 record_root_in_trans(trans, root);
246 mutex_unlock(&root->fs_info->reloc_mutex);
247
248 return 0;
249 }
250
251 /* wait for commit against the current transaction to become unblocked
252 * when this is done, it is safe to start a new transaction, but the current
253 * transaction might not be fully on disk.
254 */
255 static void wait_current_trans(struct btrfs_root *root)
256 {
257 struct btrfs_transaction *cur_trans;
258
259 spin_lock(&root->fs_info->trans_lock);
260 cur_trans = root->fs_info->running_transaction;
261 if (cur_trans && cur_trans->blocked) {
262 atomic_inc(&cur_trans->use_count);
263 spin_unlock(&root->fs_info->trans_lock);
264
265 wait_event(root->fs_info->transaction_wait,
266 !cur_trans->blocked);
267 put_transaction(cur_trans);
268 } else {
269 spin_unlock(&root->fs_info->trans_lock);
270 }
271 }
272
273 enum btrfs_trans_type {
274 TRANS_START,
275 TRANS_JOIN,
276 TRANS_USERSPACE,
277 TRANS_JOIN_NOLOCK,
278 };
279
280 static int may_wait_transaction(struct btrfs_root *root, int type)
281 {
282 if (root->fs_info->log_root_recovering)
283 return 0;
284
285 if (type == TRANS_USERSPACE)
286 return 1;
287
288 if (type == TRANS_START &&
289 !atomic_read(&root->fs_info->open_ioctl_trans))
290 return 1;
291
292 return 0;
293 }
294
295 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
296 u64 num_items, int type)
297 {
298 struct btrfs_trans_handle *h;
299 struct btrfs_transaction *cur_trans;
300 u64 num_bytes = 0;
301 int ret;
302
303 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
304 return ERR_PTR(-EROFS);
305
306 if (current->journal_info) {
307 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
308 h = current->journal_info;
309 h->use_count++;
310 h->orig_rsv = h->block_rsv;
311 h->block_rsv = NULL;
312 goto got_it;
313 }
314
315 /*
316 * Do the reservation before we join the transaction so we can do all
317 * the appropriate flushing if need be.
318 */
319 if (num_items > 0 && root != root->fs_info->chunk_root) {
320 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
321 ret = btrfs_block_rsv_add(root,
322 &root->fs_info->trans_block_rsv,
323 num_bytes);
324 if (ret)
325 return ERR_PTR(ret);
326 }
327 again:
328 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
329 if (!h)
330 return ERR_PTR(-ENOMEM);
331
332 if (may_wait_transaction(root, type))
333 wait_current_trans(root);
334
335 do {
336 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
337 if (ret == -EBUSY)
338 wait_current_trans(root);
339 } while (ret == -EBUSY);
340
341 if (ret < 0) {
342 kmem_cache_free(btrfs_trans_handle_cachep, h);
343 return ERR_PTR(ret);
344 }
345
346 cur_trans = root->fs_info->running_transaction;
347
348 h->transid = cur_trans->transid;
349 h->transaction = cur_trans;
350 h->blocks_used = 0;
351 h->bytes_reserved = 0;
352 h->delayed_ref_updates = 0;
353 h->use_count = 1;
354 h->block_rsv = NULL;
355 h->orig_rsv = NULL;
356 h->aborted = 0;
357
358 smp_mb();
359 if (cur_trans->blocked && may_wait_transaction(root, type)) {
360 btrfs_commit_transaction(h, root);
361 goto again;
362 }
363
364 if (num_bytes) {
365 trace_btrfs_space_reservation(root->fs_info, "transaction",
366 h->transid, num_bytes, 1);
367 h->block_rsv = &root->fs_info->trans_block_rsv;
368 h->bytes_reserved = num_bytes;
369 }
370
371 got_it:
372 btrfs_record_root_in_trans(h, root);
373
374 if (!current->journal_info && type != TRANS_USERSPACE)
375 current->journal_info = h;
376 return h;
377 }
378
379 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
380 int num_items)
381 {
382 return start_transaction(root, num_items, TRANS_START);
383 }
384 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
385 {
386 return start_transaction(root, 0, TRANS_JOIN);
387 }
388
389 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
390 {
391 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
392 }
393
394 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
395 {
396 return start_transaction(root, 0, TRANS_USERSPACE);
397 }
398
399 /* wait for a transaction commit to be fully complete */
400 static noinline void wait_for_commit(struct btrfs_root *root,
401 struct btrfs_transaction *commit)
402 {
403 wait_event(commit->commit_wait, commit->commit_done);
404 }
405
406 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
407 {
408 struct btrfs_transaction *cur_trans = NULL, *t;
409 int ret;
410
411 ret = 0;
412 if (transid) {
413 if (transid <= root->fs_info->last_trans_committed)
414 goto out;
415
416 /* find specified transaction */
417 spin_lock(&root->fs_info->trans_lock);
418 list_for_each_entry(t, &root->fs_info->trans_list, list) {
419 if (t->transid == transid) {
420 cur_trans = t;
421 atomic_inc(&cur_trans->use_count);
422 break;
423 }
424 if (t->transid > transid)
425 break;
426 }
427 spin_unlock(&root->fs_info->trans_lock);
428 ret = -EINVAL;
429 if (!cur_trans)
430 goto out; /* bad transid */
431 } else {
432 /* find newest transaction that is committing | committed */
433 spin_lock(&root->fs_info->trans_lock);
434 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
435 list) {
436 if (t->in_commit) {
437 if (t->commit_done)
438 break;
439 cur_trans = t;
440 atomic_inc(&cur_trans->use_count);
441 break;
442 }
443 }
444 spin_unlock(&root->fs_info->trans_lock);
445 if (!cur_trans)
446 goto out; /* nothing committing|committed */
447 }
448
449 wait_for_commit(root, cur_trans);
450
451 put_transaction(cur_trans);
452 ret = 0;
453 out:
454 return ret;
455 }
456
457 void btrfs_throttle(struct btrfs_root *root)
458 {
459 if (!atomic_read(&root->fs_info->open_ioctl_trans))
460 wait_current_trans(root);
461 }
462
463 static int should_end_transaction(struct btrfs_trans_handle *trans,
464 struct btrfs_root *root)
465 {
466 int ret;
467
468 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
469 return ret ? 1 : 0;
470 }
471
472 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
473 struct btrfs_root *root)
474 {
475 struct btrfs_transaction *cur_trans = trans->transaction;
476 struct btrfs_block_rsv *rsv = trans->block_rsv;
477 int updates;
478 int err;
479
480 smp_mb();
481 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
482 return 1;
483
484 /*
485 * We need to do this in case we're deleting csums so the global block
486 * rsv get's used instead of the csum block rsv.
487 */
488 trans->block_rsv = NULL;
489
490 updates = trans->delayed_ref_updates;
491 trans->delayed_ref_updates = 0;
492 if (updates) {
493 err = btrfs_run_delayed_refs(trans, root, updates);
494 if (err) /* Error code will also eval true */
495 return err;
496 }
497
498 trans->block_rsv = rsv;
499
500 return should_end_transaction(trans, root);
501 }
502
503 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
504 struct btrfs_root *root, int throttle, int lock)
505 {
506 struct btrfs_transaction *cur_trans = trans->transaction;
507 struct btrfs_fs_info *info = root->fs_info;
508 int count = 0;
509 int err = 0;
510
511 if (--trans->use_count) {
512 trans->block_rsv = trans->orig_rsv;
513 return 0;
514 }
515
516 btrfs_trans_release_metadata(trans, root);
517 trans->block_rsv = NULL;
518 while (count < 2) {
519 unsigned long cur = trans->delayed_ref_updates;
520 trans->delayed_ref_updates = 0;
521 if (cur &&
522 trans->transaction->delayed_refs.num_heads_ready > 64) {
523 trans->delayed_ref_updates = 0;
524 btrfs_run_delayed_refs(trans, root, cur);
525 } else {
526 break;
527 }
528 count++;
529 }
530
531 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
532 should_end_transaction(trans, root)) {
533 trans->transaction->blocked = 1;
534 smp_wmb();
535 }
536
537 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
538 if (throttle) {
539 /*
540 * We may race with somebody else here so end up having
541 * to call end_transaction on ourselves again, so inc
542 * our use_count.
543 */
544 trans->use_count++;
545 return btrfs_commit_transaction(trans, root);
546 } else {
547 wake_up_process(info->transaction_kthread);
548 }
549 }
550
551 WARN_ON(cur_trans != info->running_transaction);
552 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
553 atomic_dec(&cur_trans->num_writers);
554
555 smp_mb();
556 if (waitqueue_active(&cur_trans->writer_wait))
557 wake_up(&cur_trans->writer_wait);
558 put_transaction(cur_trans);
559
560 if (current->journal_info == trans)
561 current->journal_info = NULL;
562
563 if (throttle)
564 btrfs_run_delayed_iputs(root);
565
566 if (trans->aborted ||
567 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
568 err = -EIO;
569 }
570
571 memset(trans, 0, sizeof(*trans));
572 kmem_cache_free(btrfs_trans_handle_cachep, trans);
573 return err;
574 }
575
576 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
577 struct btrfs_root *root)
578 {
579 int ret;
580
581 ret = __btrfs_end_transaction(trans, root, 0, 1);
582 if (ret)
583 return ret;
584 return 0;
585 }
586
587 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
588 struct btrfs_root *root)
589 {
590 int ret;
591
592 ret = __btrfs_end_transaction(trans, root, 1, 1);
593 if (ret)
594 return ret;
595 return 0;
596 }
597
598 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
599 struct btrfs_root *root)
600 {
601 int ret;
602
603 ret = __btrfs_end_transaction(trans, root, 0, 0);
604 if (ret)
605 return ret;
606 return 0;
607 }
608
609 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
610 struct btrfs_root *root)
611 {
612 return __btrfs_end_transaction(trans, root, 1, 1);
613 }
614
615 /*
616 * when btree blocks are allocated, they have some corresponding bits set for
617 * them in one of two extent_io trees. This is used to make sure all of
618 * those extents are sent to disk but does not wait on them
619 */
620 int btrfs_write_marked_extents(struct btrfs_root *root,
621 struct extent_io_tree *dirty_pages, int mark)
622 {
623 int err = 0;
624 int werr = 0;
625 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
626 u64 start = 0;
627 u64 end;
628
629 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
630 mark)) {
631 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
632 GFP_NOFS);
633 err = filemap_fdatawrite_range(mapping, start, end);
634 if (err)
635 werr = err;
636 cond_resched();
637 start = end + 1;
638 }
639 if (err)
640 werr = err;
641 return werr;
642 }
643
644 /*
645 * when btree blocks are allocated, they have some corresponding bits set for
646 * them in one of two extent_io trees. This is used to make sure all of
647 * those extents are on disk for transaction or log commit. We wait
648 * on all the pages and clear them from the dirty pages state tree
649 */
650 int btrfs_wait_marked_extents(struct btrfs_root *root,
651 struct extent_io_tree *dirty_pages, int mark)
652 {
653 int err = 0;
654 int werr = 0;
655 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
656 u64 start = 0;
657 u64 end;
658
659 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
660 EXTENT_NEED_WAIT)) {
661 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
662 err = filemap_fdatawait_range(mapping, start, end);
663 if (err)
664 werr = err;
665 cond_resched();
666 start = end + 1;
667 }
668 if (err)
669 werr = err;
670 return werr;
671 }
672
673 /*
674 * when btree blocks are allocated, they have some corresponding bits set for
675 * them in one of two extent_io trees. This is used to make sure all of
676 * those extents are on disk for transaction or log commit
677 */
678 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
679 struct extent_io_tree *dirty_pages, int mark)
680 {
681 int ret;
682 int ret2;
683
684 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
685 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
686
687 if (ret)
688 return ret;
689 if (ret2)
690 return ret2;
691 return 0;
692 }
693
694 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
695 struct btrfs_root *root)
696 {
697 if (!trans || !trans->transaction) {
698 struct inode *btree_inode;
699 btree_inode = root->fs_info->btree_inode;
700 return filemap_write_and_wait(btree_inode->i_mapping);
701 }
702 return btrfs_write_and_wait_marked_extents(root,
703 &trans->transaction->dirty_pages,
704 EXTENT_DIRTY);
705 }
706
707 /*
708 * this is used to update the root pointer in the tree of tree roots.
709 *
710 * But, in the case of the extent allocation tree, updating the root
711 * pointer may allocate blocks which may change the root of the extent
712 * allocation tree.
713 *
714 * So, this loops and repeats and makes sure the cowonly root didn't
715 * change while the root pointer was being updated in the metadata.
716 */
717 static int update_cowonly_root(struct btrfs_trans_handle *trans,
718 struct btrfs_root *root)
719 {
720 int ret;
721 u64 old_root_bytenr;
722 u64 old_root_used;
723 struct btrfs_root *tree_root = root->fs_info->tree_root;
724
725 old_root_used = btrfs_root_used(&root->root_item);
726 btrfs_write_dirty_block_groups(trans, root);
727
728 while (1) {
729 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
730 if (old_root_bytenr == root->node->start &&
731 old_root_used == btrfs_root_used(&root->root_item))
732 break;
733
734 btrfs_set_root_node(&root->root_item, root->node);
735 ret = btrfs_update_root(trans, tree_root,
736 &root->root_key,
737 &root->root_item);
738 if (ret)
739 return ret;
740
741 old_root_used = btrfs_root_used(&root->root_item);
742 ret = btrfs_write_dirty_block_groups(trans, root);
743 if (ret)
744 return ret;
745 }
746
747 if (root != root->fs_info->extent_root)
748 switch_commit_root(root);
749
750 return 0;
751 }
752
753 /*
754 * update all the cowonly tree roots on disk
755 *
756 * The error handling in this function may not be obvious. Any of the
757 * failures will cause the file system to go offline. We still need
758 * to clean up the delayed refs.
759 */
760 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
761 struct btrfs_root *root)
762 {
763 struct btrfs_fs_info *fs_info = root->fs_info;
764 struct list_head *next;
765 struct extent_buffer *eb;
766 int ret;
767
768 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
769 if (ret)
770 return ret;
771
772 eb = btrfs_lock_root_node(fs_info->tree_root);
773 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
774 0, &eb);
775 btrfs_tree_unlock(eb);
776 free_extent_buffer(eb);
777
778 if (ret)
779 return ret;
780
781 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
782 if (ret)
783 return ret;
784
785 ret = btrfs_run_dev_stats(trans, root->fs_info);
786 BUG_ON(ret);
787
788 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
789 next = fs_info->dirty_cowonly_roots.next;
790 list_del_init(next);
791 root = list_entry(next, struct btrfs_root, dirty_list);
792
793 ret = update_cowonly_root(trans, root);
794 if (ret)
795 return ret;
796 }
797
798 down_write(&fs_info->extent_commit_sem);
799 switch_commit_root(fs_info->extent_root);
800 up_write(&fs_info->extent_commit_sem);
801
802 return 0;
803 }
804
805 /*
806 * dead roots are old snapshots that need to be deleted. This allocates
807 * a dirty root struct and adds it into the list of dead roots that need to
808 * be deleted
809 */
810 int btrfs_add_dead_root(struct btrfs_root *root)
811 {
812 spin_lock(&root->fs_info->trans_lock);
813 list_add(&root->root_list, &root->fs_info->dead_roots);
814 spin_unlock(&root->fs_info->trans_lock);
815 return 0;
816 }
817
818 /*
819 * update all the cowonly tree roots on disk
820 */
821 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
822 struct btrfs_root *root)
823 {
824 struct btrfs_root *gang[8];
825 struct btrfs_fs_info *fs_info = root->fs_info;
826 int i;
827 int ret;
828 int err = 0;
829
830 spin_lock(&fs_info->fs_roots_radix_lock);
831 while (1) {
832 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
833 (void **)gang, 0,
834 ARRAY_SIZE(gang),
835 BTRFS_ROOT_TRANS_TAG);
836 if (ret == 0)
837 break;
838 for (i = 0; i < ret; i++) {
839 root = gang[i];
840 radix_tree_tag_clear(&fs_info->fs_roots_radix,
841 (unsigned long)root->root_key.objectid,
842 BTRFS_ROOT_TRANS_TAG);
843 spin_unlock(&fs_info->fs_roots_radix_lock);
844
845 btrfs_free_log(trans, root);
846 btrfs_update_reloc_root(trans, root);
847 btrfs_orphan_commit_root(trans, root);
848
849 btrfs_save_ino_cache(root, trans);
850
851 /* see comments in should_cow_block() */
852 root->force_cow = 0;
853 smp_wmb();
854
855 if (root->commit_root != root->node) {
856 mutex_lock(&root->fs_commit_mutex);
857 switch_commit_root(root);
858 btrfs_unpin_free_ino(root);
859 mutex_unlock(&root->fs_commit_mutex);
860
861 btrfs_set_root_node(&root->root_item,
862 root->node);
863 }
864
865 err = btrfs_update_root(trans, fs_info->tree_root,
866 &root->root_key,
867 &root->root_item);
868 spin_lock(&fs_info->fs_roots_radix_lock);
869 if (err)
870 break;
871 }
872 }
873 spin_unlock(&fs_info->fs_roots_radix_lock);
874 return err;
875 }
876
877 /*
878 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
879 * otherwise every leaf in the btree is read and defragged.
880 */
881 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
882 {
883 struct btrfs_fs_info *info = root->fs_info;
884 struct btrfs_trans_handle *trans;
885 int ret;
886 unsigned long nr;
887
888 if (xchg(&root->defrag_running, 1))
889 return 0;
890
891 while (1) {
892 trans = btrfs_start_transaction(root, 0);
893 if (IS_ERR(trans))
894 return PTR_ERR(trans);
895
896 ret = btrfs_defrag_leaves(trans, root, cacheonly);
897
898 nr = trans->blocks_used;
899 btrfs_end_transaction(trans, root);
900 btrfs_btree_balance_dirty(info->tree_root, nr);
901 cond_resched();
902
903 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
904 break;
905 }
906 root->defrag_running = 0;
907 return ret;
908 }
909
910 /*
911 * new snapshots need to be created at a very specific time in the
912 * transaction commit. This does the actual creation
913 */
914 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
915 struct btrfs_fs_info *fs_info,
916 struct btrfs_pending_snapshot *pending)
917 {
918 struct btrfs_key key;
919 struct btrfs_root_item *new_root_item;
920 struct btrfs_root *tree_root = fs_info->tree_root;
921 struct btrfs_root *root = pending->root;
922 struct btrfs_root *parent_root;
923 struct btrfs_block_rsv *rsv;
924 struct inode *parent_inode;
925 struct dentry *parent;
926 struct dentry *dentry;
927 struct extent_buffer *tmp;
928 struct extent_buffer *old;
929 int ret;
930 u64 to_reserve = 0;
931 u64 index = 0;
932 u64 objectid;
933 u64 root_flags;
934
935 rsv = trans->block_rsv;
936
937 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
938 if (!new_root_item) {
939 ret = pending->error = -ENOMEM;
940 goto fail;
941 }
942
943 ret = btrfs_find_free_objectid(tree_root, &objectid);
944 if (ret) {
945 pending->error = ret;
946 goto fail;
947 }
948
949 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
950
951 if (to_reserve > 0) {
952 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
953 to_reserve);
954 if (ret) {
955 pending->error = ret;
956 goto fail;
957 }
958 }
959
960 key.objectid = objectid;
961 key.offset = (u64)-1;
962 key.type = BTRFS_ROOT_ITEM_KEY;
963
964 trans->block_rsv = &pending->block_rsv;
965
966 dentry = pending->dentry;
967 parent = dget_parent(dentry);
968 parent_inode = parent->d_inode;
969 parent_root = BTRFS_I(parent_inode)->root;
970 record_root_in_trans(trans, parent_root);
971
972 /*
973 * insert the directory item
974 */
975 ret = btrfs_set_inode_index(parent_inode, &index);
976 BUG_ON(ret); /* -ENOMEM */
977 ret = btrfs_insert_dir_item(trans, parent_root,
978 dentry->d_name.name, dentry->d_name.len,
979 parent_inode, &key,
980 BTRFS_FT_DIR, index);
981 if (ret == -EEXIST) {
982 pending->error = -EEXIST;
983 dput(parent);
984 goto fail;
985 } else if (ret) {
986 goto abort_trans_dput;
987 }
988
989 btrfs_i_size_write(parent_inode, parent_inode->i_size +
990 dentry->d_name.len * 2);
991 ret = btrfs_update_inode(trans, parent_root, parent_inode);
992 if (ret)
993 goto abort_trans_dput;
994
995 /*
996 * pull in the delayed directory update
997 * and the delayed inode item
998 * otherwise we corrupt the FS during
999 * snapshot
1000 */
1001 ret = btrfs_run_delayed_items(trans, root);
1002 if (ret) { /* Transaction aborted */
1003 dput(parent);
1004 goto fail;
1005 }
1006
1007 record_root_in_trans(trans, root);
1008 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1009 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1010 btrfs_check_and_init_root_item(new_root_item);
1011
1012 root_flags = btrfs_root_flags(new_root_item);
1013 if (pending->readonly)
1014 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1015 else
1016 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1017 btrfs_set_root_flags(new_root_item, root_flags);
1018
1019 old = btrfs_lock_root_node(root);
1020 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1021 if (ret) {
1022 btrfs_tree_unlock(old);
1023 free_extent_buffer(old);
1024 goto abort_trans_dput;
1025 }
1026
1027 btrfs_set_lock_blocking(old);
1028
1029 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1030 /* clean up in any case */
1031 btrfs_tree_unlock(old);
1032 free_extent_buffer(old);
1033 if (ret)
1034 goto abort_trans_dput;
1035
1036 /* see comments in should_cow_block() */
1037 root->force_cow = 1;
1038 smp_wmb();
1039
1040 btrfs_set_root_node(new_root_item, tmp);
1041 /* record when the snapshot was created in key.offset */
1042 key.offset = trans->transid;
1043 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1044 btrfs_tree_unlock(tmp);
1045 free_extent_buffer(tmp);
1046 if (ret)
1047 goto abort_trans_dput;
1048
1049 /*
1050 * insert root back/forward references
1051 */
1052 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1053 parent_root->root_key.objectid,
1054 btrfs_ino(parent_inode), index,
1055 dentry->d_name.name, dentry->d_name.len);
1056 dput(parent);
1057 if (ret)
1058 goto fail;
1059
1060 key.offset = (u64)-1;
1061 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1062 if (IS_ERR(pending->snap)) {
1063 ret = PTR_ERR(pending->snap);
1064 goto abort_trans;
1065 }
1066
1067 ret = btrfs_reloc_post_snapshot(trans, pending);
1068 if (ret)
1069 goto abort_trans;
1070 ret = 0;
1071 fail:
1072 kfree(new_root_item);
1073 trans->block_rsv = rsv;
1074 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1075 return ret;
1076
1077 abort_trans_dput:
1078 dput(parent);
1079 abort_trans:
1080 btrfs_abort_transaction(trans, root, ret);
1081 goto fail;
1082 }
1083
1084 /*
1085 * create all the snapshots we've scheduled for creation
1086 */
1087 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1088 struct btrfs_fs_info *fs_info)
1089 {
1090 struct btrfs_pending_snapshot *pending;
1091 struct list_head *head = &trans->transaction->pending_snapshots;
1092
1093 list_for_each_entry(pending, head, list)
1094 create_pending_snapshot(trans, fs_info, pending);
1095 return 0;
1096 }
1097
1098 static void update_super_roots(struct btrfs_root *root)
1099 {
1100 struct btrfs_root_item *root_item;
1101 struct btrfs_super_block *super;
1102
1103 super = root->fs_info->super_copy;
1104
1105 root_item = &root->fs_info->chunk_root->root_item;
1106 super->chunk_root = root_item->bytenr;
1107 super->chunk_root_generation = root_item->generation;
1108 super->chunk_root_level = root_item->level;
1109
1110 root_item = &root->fs_info->tree_root->root_item;
1111 super->root = root_item->bytenr;
1112 super->generation = root_item->generation;
1113 super->root_level = root_item->level;
1114 if (btrfs_test_opt(root, SPACE_CACHE))
1115 super->cache_generation = root_item->generation;
1116 }
1117
1118 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1119 {
1120 int ret = 0;
1121 spin_lock(&info->trans_lock);
1122 if (info->running_transaction)
1123 ret = info->running_transaction->in_commit;
1124 spin_unlock(&info->trans_lock);
1125 return ret;
1126 }
1127
1128 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1129 {
1130 int ret = 0;
1131 spin_lock(&info->trans_lock);
1132 if (info->running_transaction)
1133 ret = info->running_transaction->blocked;
1134 spin_unlock(&info->trans_lock);
1135 return ret;
1136 }
1137
1138 /*
1139 * wait for the current transaction commit to start and block subsequent
1140 * transaction joins
1141 */
1142 static void wait_current_trans_commit_start(struct btrfs_root *root,
1143 struct btrfs_transaction *trans)
1144 {
1145 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1146 }
1147
1148 /*
1149 * wait for the current transaction to start and then become unblocked.
1150 * caller holds ref.
1151 */
1152 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1153 struct btrfs_transaction *trans)
1154 {
1155 wait_event(root->fs_info->transaction_wait,
1156 trans->commit_done || (trans->in_commit && !trans->blocked));
1157 }
1158
1159 /*
1160 * commit transactions asynchronously. once btrfs_commit_transaction_async
1161 * returns, any subsequent transaction will not be allowed to join.
1162 */
1163 struct btrfs_async_commit {
1164 struct btrfs_trans_handle *newtrans;
1165 struct btrfs_root *root;
1166 struct delayed_work work;
1167 };
1168
1169 static void do_async_commit(struct work_struct *work)
1170 {
1171 struct btrfs_async_commit *ac =
1172 container_of(work, struct btrfs_async_commit, work.work);
1173
1174 btrfs_commit_transaction(ac->newtrans, ac->root);
1175 kfree(ac);
1176 }
1177
1178 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1179 struct btrfs_root *root,
1180 int wait_for_unblock)
1181 {
1182 struct btrfs_async_commit *ac;
1183 struct btrfs_transaction *cur_trans;
1184
1185 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1186 if (!ac)
1187 return -ENOMEM;
1188
1189 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1190 ac->root = root;
1191 ac->newtrans = btrfs_join_transaction(root);
1192 if (IS_ERR(ac->newtrans)) {
1193 int err = PTR_ERR(ac->newtrans);
1194 kfree(ac);
1195 return err;
1196 }
1197
1198 /* take transaction reference */
1199 cur_trans = trans->transaction;
1200 atomic_inc(&cur_trans->use_count);
1201
1202 btrfs_end_transaction(trans, root);
1203 schedule_delayed_work(&ac->work, 0);
1204
1205 /* wait for transaction to start and unblock */
1206 if (wait_for_unblock)
1207 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1208 else
1209 wait_current_trans_commit_start(root, cur_trans);
1210
1211 if (current->journal_info == trans)
1212 current->journal_info = NULL;
1213
1214 put_transaction(cur_trans);
1215 return 0;
1216 }
1217
1218
1219 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1220 struct btrfs_root *root, int err)
1221 {
1222 struct btrfs_transaction *cur_trans = trans->transaction;
1223
1224 WARN_ON(trans->use_count > 1);
1225
1226 btrfs_abort_transaction(trans, root, err);
1227
1228 spin_lock(&root->fs_info->trans_lock);
1229 list_del_init(&cur_trans->list);
1230 if (cur_trans == root->fs_info->running_transaction) {
1231 root->fs_info->running_transaction = NULL;
1232 root->fs_info->trans_no_join = 0;
1233 }
1234 spin_unlock(&root->fs_info->trans_lock);
1235
1236 btrfs_cleanup_one_transaction(trans->transaction, root);
1237
1238 put_transaction(cur_trans);
1239 put_transaction(cur_trans);
1240
1241 trace_btrfs_transaction_commit(root);
1242
1243 btrfs_scrub_continue(root);
1244
1245 if (current->journal_info == trans)
1246 current->journal_info = NULL;
1247
1248 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1249 }
1250
1251 /*
1252 * btrfs_transaction state sequence:
1253 * in_commit = 0, blocked = 0 (initial)
1254 * in_commit = 1, blocked = 1
1255 * blocked = 0
1256 * commit_done = 1
1257 */
1258 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1259 struct btrfs_root *root)
1260 {
1261 unsigned long joined = 0;
1262 struct btrfs_transaction *cur_trans = trans->transaction;
1263 struct btrfs_transaction *prev_trans = NULL;
1264 DEFINE_WAIT(wait);
1265 int ret = -EIO;
1266 int should_grow = 0;
1267 unsigned long now = get_seconds();
1268 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1269
1270 btrfs_run_ordered_operations(root, 0);
1271
1272 btrfs_trans_release_metadata(trans, root);
1273 trans->block_rsv = NULL;
1274
1275 if (cur_trans->aborted)
1276 goto cleanup_transaction;
1277
1278 /* make a pass through all the delayed refs we have so far
1279 * any runnings procs may add more while we are here
1280 */
1281 ret = btrfs_run_delayed_refs(trans, root, 0);
1282 if (ret)
1283 goto cleanup_transaction;
1284
1285 cur_trans = trans->transaction;
1286
1287 /*
1288 * set the flushing flag so procs in this transaction have to
1289 * start sending their work down.
1290 */
1291 cur_trans->delayed_refs.flushing = 1;
1292
1293 ret = btrfs_run_delayed_refs(trans, root, 0);
1294 if (ret)
1295 goto cleanup_transaction;
1296
1297 spin_lock(&cur_trans->commit_lock);
1298 if (cur_trans->in_commit) {
1299 spin_unlock(&cur_trans->commit_lock);
1300 atomic_inc(&cur_trans->use_count);
1301 ret = btrfs_end_transaction(trans, root);
1302
1303 wait_for_commit(root, cur_trans);
1304
1305 put_transaction(cur_trans);
1306
1307 return ret;
1308 }
1309
1310 trans->transaction->in_commit = 1;
1311 trans->transaction->blocked = 1;
1312 spin_unlock(&cur_trans->commit_lock);
1313 wake_up(&root->fs_info->transaction_blocked_wait);
1314
1315 spin_lock(&root->fs_info->trans_lock);
1316 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1317 prev_trans = list_entry(cur_trans->list.prev,
1318 struct btrfs_transaction, list);
1319 if (!prev_trans->commit_done) {
1320 atomic_inc(&prev_trans->use_count);
1321 spin_unlock(&root->fs_info->trans_lock);
1322
1323 wait_for_commit(root, prev_trans);
1324
1325 put_transaction(prev_trans);
1326 } else {
1327 spin_unlock(&root->fs_info->trans_lock);
1328 }
1329 } else {
1330 spin_unlock(&root->fs_info->trans_lock);
1331 }
1332
1333 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1334 should_grow = 1;
1335
1336 do {
1337 int snap_pending = 0;
1338
1339 joined = cur_trans->num_joined;
1340 if (!list_empty(&trans->transaction->pending_snapshots))
1341 snap_pending = 1;
1342
1343 WARN_ON(cur_trans != trans->transaction);
1344
1345 if (flush_on_commit || snap_pending) {
1346 btrfs_start_delalloc_inodes(root, 1);
1347 btrfs_wait_ordered_extents(root, 0, 1);
1348 }
1349
1350 ret = btrfs_run_delayed_items(trans, root);
1351 if (ret)
1352 goto cleanup_transaction;
1353
1354 /*
1355 * rename don't use btrfs_join_transaction, so, once we
1356 * set the transaction to blocked above, we aren't going
1357 * to get any new ordered operations. We can safely run
1358 * it here and no for sure that nothing new will be added
1359 * to the list
1360 */
1361 btrfs_run_ordered_operations(root, 1);
1362
1363 prepare_to_wait(&cur_trans->writer_wait, &wait,
1364 TASK_UNINTERRUPTIBLE);
1365
1366 if (atomic_read(&cur_trans->num_writers) > 1)
1367 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1368 else if (should_grow)
1369 schedule_timeout(1);
1370
1371 finish_wait(&cur_trans->writer_wait, &wait);
1372 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1373 (should_grow && cur_trans->num_joined != joined));
1374
1375 /*
1376 * Ok now we need to make sure to block out any other joins while we
1377 * commit the transaction. We could have started a join before setting
1378 * no_join so make sure to wait for num_writers to == 1 again.
1379 */
1380 spin_lock(&root->fs_info->trans_lock);
1381 root->fs_info->trans_no_join = 1;
1382 spin_unlock(&root->fs_info->trans_lock);
1383 wait_event(cur_trans->writer_wait,
1384 atomic_read(&cur_trans->num_writers) == 1);
1385
1386 /*
1387 * the reloc mutex makes sure that we stop
1388 * the balancing code from coming in and moving
1389 * extents around in the middle of the commit
1390 */
1391 mutex_lock(&root->fs_info->reloc_mutex);
1392
1393 ret = btrfs_run_delayed_items(trans, root);
1394 if (ret) {
1395 mutex_unlock(&root->fs_info->reloc_mutex);
1396 goto cleanup_transaction;
1397 }
1398
1399 ret = create_pending_snapshots(trans, root->fs_info);
1400 if (ret) {
1401 mutex_unlock(&root->fs_info->reloc_mutex);
1402 goto cleanup_transaction;
1403 }
1404
1405 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1406 if (ret) {
1407 mutex_unlock(&root->fs_info->reloc_mutex);
1408 goto cleanup_transaction;
1409 }
1410
1411 /*
1412 * make sure none of the code above managed to slip in a
1413 * delayed item
1414 */
1415 btrfs_assert_delayed_root_empty(root);
1416
1417 WARN_ON(cur_trans != trans->transaction);
1418
1419 btrfs_scrub_pause(root);
1420 /* btrfs_commit_tree_roots is responsible for getting the
1421 * various roots consistent with each other. Every pointer
1422 * in the tree of tree roots has to point to the most up to date
1423 * root for every subvolume and other tree. So, we have to keep
1424 * the tree logging code from jumping in and changing any
1425 * of the trees.
1426 *
1427 * At this point in the commit, there can't be any tree-log
1428 * writers, but a little lower down we drop the trans mutex
1429 * and let new people in. By holding the tree_log_mutex
1430 * from now until after the super is written, we avoid races
1431 * with the tree-log code.
1432 */
1433 mutex_lock(&root->fs_info->tree_log_mutex);
1434
1435 ret = commit_fs_roots(trans, root);
1436 if (ret) {
1437 mutex_unlock(&root->fs_info->tree_log_mutex);
1438 mutex_unlock(&root->fs_info->reloc_mutex);
1439 goto cleanup_transaction;
1440 }
1441
1442 /* commit_fs_roots gets rid of all the tree log roots, it is now
1443 * safe to free the root of tree log roots
1444 */
1445 btrfs_free_log_root_tree(trans, root->fs_info);
1446
1447 ret = commit_cowonly_roots(trans, root);
1448 if (ret) {
1449 mutex_unlock(&root->fs_info->tree_log_mutex);
1450 mutex_unlock(&root->fs_info->reloc_mutex);
1451 goto cleanup_transaction;
1452 }
1453
1454 btrfs_prepare_extent_commit(trans, root);
1455
1456 cur_trans = root->fs_info->running_transaction;
1457
1458 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1459 root->fs_info->tree_root->node);
1460 switch_commit_root(root->fs_info->tree_root);
1461
1462 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1463 root->fs_info->chunk_root->node);
1464 switch_commit_root(root->fs_info->chunk_root);
1465
1466 update_super_roots(root);
1467
1468 if (!root->fs_info->log_root_recovering) {
1469 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1470 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1471 }
1472
1473 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1474 sizeof(*root->fs_info->super_copy));
1475
1476 trans->transaction->blocked = 0;
1477 spin_lock(&root->fs_info->trans_lock);
1478 root->fs_info->running_transaction = NULL;
1479 root->fs_info->trans_no_join = 0;
1480 spin_unlock(&root->fs_info->trans_lock);
1481 mutex_unlock(&root->fs_info->reloc_mutex);
1482
1483 wake_up(&root->fs_info->transaction_wait);
1484
1485 ret = btrfs_write_and_wait_transaction(trans, root);
1486 if (ret) {
1487 btrfs_error(root->fs_info, ret,
1488 "Error while writing out transaction.");
1489 mutex_unlock(&root->fs_info->tree_log_mutex);
1490 goto cleanup_transaction;
1491 }
1492
1493 ret = write_ctree_super(trans, root, 0);
1494 if (ret) {
1495 mutex_unlock(&root->fs_info->tree_log_mutex);
1496 goto cleanup_transaction;
1497 }
1498
1499 /*
1500 * the super is written, we can safely allow the tree-loggers
1501 * to go about their business
1502 */
1503 mutex_unlock(&root->fs_info->tree_log_mutex);
1504
1505 btrfs_finish_extent_commit(trans, root);
1506
1507 cur_trans->commit_done = 1;
1508
1509 root->fs_info->last_trans_committed = cur_trans->transid;
1510
1511 wake_up(&cur_trans->commit_wait);
1512
1513 spin_lock(&root->fs_info->trans_lock);
1514 list_del_init(&cur_trans->list);
1515 spin_unlock(&root->fs_info->trans_lock);
1516
1517 put_transaction(cur_trans);
1518 put_transaction(cur_trans);
1519
1520 trace_btrfs_transaction_commit(root);
1521
1522 btrfs_scrub_continue(root);
1523
1524 if (current->journal_info == trans)
1525 current->journal_info = NULL;
1526
1527 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1528
1529 if (current != root->fs_info->transaction_kthread)
1530 btrfs_run_delayed_iputs(root);
1531
1532 return ret;
1533
1534 cleanup_transaction:
1535 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1536 // WARN_ON(1);
1537 if (current->journal_info == trans)
1538 current->journal_info = NULL;
1539 cleanup_transaction(trans, root, ret);
1540
1541 return ret;
1542 }
1543
1544 /*
1545 * interface function to delete all the snapshots we have scheduled for deletion
1546 */
1547 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1548 {
1549 LIST_HEAD(list);
1550 struct btrfs_fs_info *fs_info = root->fs_info;
1551
1552 spin_lock(&fs_info->trans_lock);
1553 list_splice_init(&fs_info->dead_roots, &list);
1554 spin_unlock(&fs_info->trans_lock);
1555
1556 while (!list_empty(&list)) {
1557 int ret;
1558
1559 root = list_entry(list.next, struct btrfs_root, root_list);
1560 list_del(&root->root_list);
1561
1562 btrfs_kill_all_delayed_nodes(root);
1563
1564 if (btrfs_header_backref_rev(root->node) <
1565 BTRFS_MIXED_BACKREF_REV)
1566 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1567 else
1568 ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1569 BUG_ON(ret < 0);
1570 }
1571 return 0;
1572 }
This page took 0.060764 seconds and 6 git commands to generate.