Btrfs: reduce CPU contention while waiting for delayed extent operations
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 void put_transaction(struct btrfs_transaction *transaction)
38 {
39 WARN_ON(atomic_read(&transaction->use_count) == 0);
40 if (atomic_dec_and_test(&transaction->use_count)) {
41 BUG_ON(!list_empty(&transaction->list));
42 WARN_ON(transaction->delayed_refs.root.rb_node);
43 memset(transaction, 0, sizeof(*transaction));
44 kmem_cache_free(btrfs_transaction_cachep, transaction);
45 }
46 }
47
48 static noinline void switch_commit_root(struct btrfs_root *root)
49 {
50 free_extent_buffer(root->commit_root);
51 root->commit_root = btrfs_root_node(root);
52 }
53
54 /*
55 * either allocate a new transaction or hop into the existing one
56 */
57 static noinline int join_transaction(struct btrfs_root *root, int type)
58 {
59 struct btrfs_transaction *cur_trans;
60 struct btrfs_fs_info *fs_info = root->fs_info;
61
62 spin_lock(&fs_info->trans_lock);
63 loop:
64 /* The file system has been taken offline. No new transactions. */
65 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
66 spin_unlock(&fs_info->trans_lock);
67 return -EROFS;
68 }
69
70 if (fs_info->trans_no_join) {
71 /*
72 * If we are JOIN_NOLOCK we're already committing a current
73 * transaction, we just need a handle to deal with something
74 * when committing the transaction, such as inode cache and
75 * space cache. It is a special case.
76 */
77 if (type != TRANS_JOIN_NOLOCK) {
78 spin_unlock(&fs_info->trans_lock);
79 return -EBUSY;
80 }
81 }
82
83 cur_trans = fs_info->running_transaction;
84 if (cur_trans) {
85 if (cur_trans->aborted) {
86 spin_unlock(&fs_info->trans_lock);
87 return cur_trans->aborted;
88 }
89 atomic_inc(&cur_trans->use_count);
90 atomic_inc(&cur_trans->num_writers);
91 cur_trans->num_joined++;
92 spin_unlock(&fs_info->trans_lock);
93 return 0;
94 }
95 spin_unlock(&fs_info->trans_lock);
96
97 /*
98 * If we are ATTACH, we just want to catch the current transaction,
99 * and commit it. If there is no transaction, just return ENOENT.
100 */
101 if (type == TRANS_ATTACH)
102 return -ENOENT;
103
104 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
105 if (!cur_trans)
106 return -ENOMEM;
107
108 spin_lock(&fs_info->trans_lock);
109 if (fs_info->running_transaction) {
110 /*
111 * someone started a transaction after we unlocked. Make sure
112 * to redo the trans_no_join checks above
113 */
114 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
115 cur_trans = fs_info->running_transaction;
116 goto loop;
117 } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
118 spin_unlock(&fs_info->trans_lock);
119 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
120 return -EROFS;
121 }
122
123 atomic_set(&cur_trans->num_writers, 1);
124 cur_trans->num_joined = 0;
125 init_waitqueue_head(&cur_trans->writer_wait);
126 init_waitqueue_head(&cur_trans->commit_wait);
127 cur_trans->in_commit = 0;
128 cur_trans->blocked = 0;
129 /*
130 * One for this trans handle, one so it will live on until we
131 * commit the transaction.
132 */
133 atomic_set(&cur_trans->use_count, 2);
134 cur_trans->commit_done = 0;
135 cur_trans->start_time = get_seconds();
136
137 cur_trans->delayed_refs.root = RB_ROOT;
138 cur_trans->delayed_refs.num_entries = 0;
139 cur_trans->delayed_refs.num_heads_ready = 0;
140 cur_trans->delayed_refs.num_heads = 0;
141 cur_trans->delayed_refs.flushing = 0;
142 cur_trans->delayed_refs.run_delayed_start = 0;
143
144 /*
145 * although the tree mod log is per file system and not per transaction,
146 * the log must never go across transaction boundaries.
147 */
148 smp_mb();
149 if (!list_empty(&fs_info->tree_mod_seq_list))
150 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
151 "creating a fresh transaction\n");
152 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
153 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
154 "creating a fresh transaction\n");
155 atomic_set(&fs_info->tree_mod_seq, 0);
156
157 spin_lock_init(&cur_trans->commit_lock);
158 spin_lock_init(&cur_trans->delayed_refs.lock);
159 atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
160 atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
161 init_waitqueue_head(&cur_trans->delayed_refs.wait);
162
163 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
164 list_add_tail(&cur_trans->list, &fs_info->trans_list);
165 extent_io_tree_init(&cur_trans->dirty_pages,
166 fs_info->btree_inode->i_mapping);
167 fs_info->generation++;
168 cur_trans->transid = fs_info->generation;
169 fs_info->running_transaction = cur_trans;
170 cur_trans->aborted = 0;
171 spin_unlock(&fs_info->trans_lock);
172
173 return 0;
174 }
175
176 /*
177 * this does all the record keeping required to make sure that a reference
178 * counted root is properly recorded in a given transaction. This is required
179 * to make sure the old root from before we joined the transaction is deleted
180 * when the transaction commits
181 */
182 static int record_root_in_trans(struct btrfs_trans_handle *trans,
183 struct btrfs_root *root)
184 {
185 if (root->ref_cows && root->last_trans < trans->transid) {
186 WARN_ON(root == root->fs_info->extent_root);
187 WARN_ON(root->commit_root != root->node);
188
189 /*
190 * see below for in_trans_setup usage rules
191 * we have the reloc mutex held now, so there
192 * is only one writer in this function
193 */
194 root->in_trans_setup = 1;
195
196 /* make sure readers find in_trans_setup before
197 * they find our root->last_trans update
198 */
199 smp_wmb();
200
201 spin_lock(&root->fs_info->fs_roots_radix_lock);
202 if (root->last_trans == trans->transid) {
203 spin_unlock(&root->fs_info->fs_roots_radix_lock);
204 return 0;
205 }
206 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
207 (unsigned long)root->root_key.objectid,
208 BTRFS_ROOT_TRANS_TAG);
209 spin_unlock(&root->fs_info->fs_roots_radix_lock);
210 root->last_trans = trans->transid;
211
212 /* this is pretty tricky. We don't want to
213 * take the relocation lock in btrfs_record_root_in_trans
214 * unless we're really doing the first setup for this root in
215 * this transaction.
216 *
217 * Normally we'd use root->last_trans as a flag to decide
218 * if we want to take the expensive mutex.
219 *
220 * But, we have to set root->last_trans before we
221 * init the relocation root, otherwise, we trip over warnings
222 * in ctree.c. The solution used here is to flag ourselves
223 * with root->in_trans_setup. When this is 1, we're still
224 * fixing up the reloc trees and everyone must wait.
225 *
226 * When this is zero, they can trust root->last_trans and fly
227 * through btrfs_record_root_in_trans without having to take the
228 * lock. smp_wmb() makes sure that all the writes above are
229 * done before we pop in the zero below
230 */
231 btrfs_init_reloc_root(trans, root);
232 smp_wmb();
233 root->in_trans_setup = 0;
234 }
235 return 0;
236 }
237
238
239 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
240 struct btrfs_root *root)
241 {
242 if (!root->ref_cows)
243 return 0;
244
245 /*
246 * see record_root_in_trans for comments about in_trans_setup usage
247 * and barriers
248 */
249 smp_rmb();
250 if (root->last_trans == trans->transid &&
251 !root->in_trans_setup)
252 return 0;
253
254 mutex_lock(&root->fs_info->reloc_mutex);
255 record_root_in_trans(trans, root);
256 mutex_unlock(&root->fs_info->reloc_mutex);
257
258 return 0;
259 }
260
261 /* wait for commit against the current transaction to become unblocked
262 * when this is done, it is safe to start a new transaction, but the current
263 * transaction might not be fully on disk.
264 */
265 static void wait_current_trans(struct btrfs_root *root)
266 {
267 struct btrfs_transaction *cur_trans;
268
269 spin_lock(&root->fs_info->trans_lock);
270 cur_trans = root->fs_info->running_transaction;
271 if (cur_trans && cur_trans->blocked) {
272 atomic_inc(&cur_trans->use_count);
273 spin_unlock(&root->fs_info->trans_lock);
274
275 wait_event(root->fs_info->transaction_wait,
276 !cur_trans->blocked);
277 put_transaction(cur_trans);
278 } else {
279 spin_unlock(&root->fs_info->trans_lock);
280 }
281 }
282
283 static int may_wait_transaction(struct btrfs_root *root, int type)
284 {
285 if (root->fs_info->log_root_recovering)
286 return 0;
287
288 if (type == TRANS_USERSPACE)
289 return 1;
290
291 if (type == TRANS_START &&
292 !atomic_read(&root->fs_info->open_ioctl_trans))
293 return 1;
294
295 return 0;
296 }
297
298 static struct btrfs_trans_handle *
299 start_transaction(struct btrfs_root *root, u64 num_items, int type,
300 enum btrfs_reserve_flush_enum flush)
301 {
302 struct btrfs_trans_handle *h;
303 struct btrfs_transaction *cur_trans;
304 u64 num_bytes = 0;
305 int ret;
306 u64 qgroup_reserved = 0;
307
308 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
309 return ERR_PTR(-EROFS);
310
311 if (current->journal_info) {
312 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
313 h = current->journal_info;
314 h->use_count++;
315 WARN_ON(h->use_count > 2);
316 h->orig_rsv = h->block_rsv;
317 h->block_rsv = NULL;
318 goto got_it;
319 }
320
321 /*
322 * Do the reservation before we join the transaction so we can do all
323 * the appropriate flushing if need be.
324 */
325 if (num_items > 0 && root != root->fs_info->chunk_root) {
326 if (root->fs_info->quota_enabled &&
327 is_fstree(root->root_key.objectid)) {
328 qgroup_reserved = num_items * root->leafsize;
329 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
330 if (ret)
331 return ERR_PTR(ret);
332 }
333
334 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
335 ret = btrfs_block_rsv_add(root,
336 &root->fs_info->trans_block_rsv,
337 num_bytes, flush);
338 if (ret)
339 return ERR_PTR(ret);
340 }
341 again:
342 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
343 if (!h)
344 return ERR_PTR(-ENOMEM);
345
346 /*
347 * If we are JOIN_NOLOCK we're already committing a transaction and
348 * waiting on this guy, so we don't need to do the sb_start_intwrite
349 * because we're already holding a ref. We need this because we could
350 * have raced in and did an fsync() on a file which can kick a commit
351 * and then we deadlock with somebody doing a freeze.
352 *
353 * If we are ATTACH, it means we just want to catch the current
354 * transaction and commit it, so we needn't do sb_start_intwrite().
355 */
356 if (type < TRANS_JOIN_NOLOCK)
357 sb_start_intwrite(root->fs_info->sb);
358
359 if (may_wait_transaction(root, type))
360 wait_current_trans(root);
361
362 do {
363 ret = join_transaction(root, type);
364 if (ret == -EBUSY)
365 wait_current_trans(root);
366 } while (ret == -EBUSY);
367
368 if (ret < 0) {
369 /* We must get the transaction if we are JOIN_NOLOCK. */
370 BUG_ON(type == TRANS_JOIN_NOLOCK);
371
372 if (type < TRANS_JOIN_NOLOCK)
373 sb_end_intwrite(root->fs_info->sb);
374 kmem_cache_free(btrfs_trans_handle_cachep, h);
375 return ERR_PTR(ret);
376 }
377
378 cur_trans = root->fs_info->running_transaction;
379
380 h->transid = cur_trans->transid;
381 h->transaction = cur_trans;
382 h->blocks_used = 0;
383 h->bytes_reserved = 0;
384 h->root = root;
385 h->delayed_ref_updates = 0;
386 h->use_count = 1;
387 h->adding_csums = 0;
388 h->block_rsv = NULL;
389 h->orig_rsv = NULL;
390 h->aborted = 0;
391 h->qgroup_reserved = qgroup_reserved;
392 h->delayed_ref_elem.seq = 0;
393 h->type = type;
394 INIT_LIST_HEAD(&h->qgroup_ref_list);
395 INIT_LIST_HEAD(&h->new_bgs);
396
397 smp_mb();
398 if (cur_trans->blocked && may_wait_transaction(root, type)) {
399 btrfs_commit_transaction(h, root);
400 goto again;
401 }
402
403 if (num_bytes) {
404 trace_btrfs_space_reservation(root->fs_info, "transaction",
405 h->transid, num_bytes, 1);
406 h->block_rsv = &root->fs_info->trans_block_rsv;
407 h->bytes_reserved = num_bytes;
408 }
409
410 got_it:
411 btrfs_record_root_in_trans(h, root);
412
413 if (!current->journal_info && type != TRANS_USERSPACE)
414 current->journal_info = h;
415 return h;
416 }
417
418 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
419 int num_items)
420 {
421 return start_transaction(root, num_items, TRANS_START,
422 BTRFS_RESERVE_FLUSH_ALL);
423 }
424
425 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
426 struct btrfs_root *root, int num_items)
427 {
428 return start_transaction(root, num_items, TRANS_START,
429 BTRFS_RESERVE_FLUSH_LIMIT);
430 }
431
432 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
433 {
434 return start_transaction(root, 0, TRANS_JOIN, 0);
435 }
436
437 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
438 {
439 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
440 }
441
442 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
443 {
444 return start_transaction(root, 0, TRANS_USERSPACE, 0);
445 }
446
447 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
448 {
449 return start_transaction(root, 0, TRANS_ATTACH, 0);
450 }
451
452 /* wait for a transaction commit to be fully complete */
453 static noinline void wait_for_commit(struct btrfs_root *root,
454 struct btrfs_transaction *commit)
455 {
456 wait_event(commit->commit_wait, commit->commit_done);
457 }
458
459 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
460 {
461 struct btrfs_transaction *cur_trans = NULL, *t;
462 int ret = 0;
463
464 if (transid) {
465 if (transid <= root->fs_info->last_trans_committed)
466 goto out;
467
468 ret = -EINVAL;
469 /* find specified transaction */
470 spin_lock(&root->fs_info->trans_lock);
471 list_for_each_entry(t, &root->fs_info->trans_list, list) {
472 if (t->transid == transid) {
473 cur_trans = t;
474 atomic_inc(&cur_trans->use_count);
475 ret = 0;
476 break;
477 }
478 if (t->transid > transid) {
479 ret = 0;
480 break;
481 }
482 }
483 spin_unlock(&root->fs_info->trans_lock);
484 /* The specified transaction doesn't exist */
485 if (!cur_trans)
486 goto out;
487 } else {
488 /* find newest transaction that is committing | committed */
489 spin_lock(&root->fs_info->trans_lock);
490 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
491 list) {
492 if (t->in_commit) {
493 if (t->commit_done)
494 break;
495 cur_trans = t;
496 atomic_inc(&cur_trans->use_count);
497 break;
498 }
499 }
500 spin_unlock(&root->fs_info->trans_lock);
501 if (!cur_trans)
502 goto out; /* nothing committing|committed */
503 }
504
505 wait_for_commit(root, cur_trans);
506 put_transaction(cur_trans);
507 out:
508 return ret;
509 }
510
511 void btrfs_throttle(struct btrfs_root *root)
512 {
513 if (!atomic_read(&root->fs_info->open_ioctl_trans))
514 wait_current_trans(root);
515 }
516
517 static int should_end_transaction(struct btrfs_trans_handle *trans,
518 struct btrfs_root *root)
519 {
520 int ret;
521
522 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
523 return ret ? 1 : 0;
524 }
525
526 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
527 struct btrfs_root *root)
528 {
529 struct btrfs_transaction *cur_trans = trans->transaction;
530 int updates;
531 int err;
532
533 smp_mb();
534 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
535 return 1;
536
537 updates = trans->delayed_ref_updates;
538 trans->delayed_ref_updates = 0;
539 if (updates) {
540 err = btrfs_run_delayed_refs(trans, root, updates);
541 if (err) /* Error code will also eval true */
542 return err;
543 }
544
545 return should_end_transaction(trans, root);
546 }
547
548 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
549 struct btrfs_root *root, int throttle)
550 {
551 struct btrfs_transaction *cur_trans = trans->transaction;
552 struct btrfs_fs_info *info = root->fs_info;
553 int count = 0;
554 int lock = (trans->type != TRANS_JOIN_NOLOCK);
555 int err = 0;
556
557 if (--trans->use_count) {
558 trans->block_rsv = trans->orig_rsv;
559 return 0;
560 }
561
562 /*
563 * do the qgroup accounting as early as possible
564 */
565 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
566
567 btrfs_trans_release_metadata(trans, root);
568 trans->block_rsv = NULL;
569 /*
570 * the same root has to be passed to start_transaction and
571 * end_transaction. Subvolume quota depends on this.
572 */
573 WARN_ON(trans->root != root);
574
575 if (trans->qgroup_reserved) {
576 btrfs_qgroup_free(root, trans->qgroup_reserved);
577 trans->qgroup_reserved = 0;
578 }
579
580 if (!list_empty(&trans->new_bgs))
581 btrfs_create_pending_block_groups(trans, root);
582
583 while (count < 1) {
584 unsigned long cur = trans->delayed_ref_updates;
585 trans->delayed_ref_updates = 0;
586 if (cur &&
587 trans->transaction->delayed_refs.num_heads_ready > 64) {
588 trans->delayed_ref_updates = 0;
589 btrfs_run_delayed_refs(trans, root, cur);
590 } else {
591 break;
592 }
593 count++;
594 }
595
596 btrfs_trans_release_metadata(trans, root);
597 trans->block_rsv = NULL;
598
599 if (!list_empty(&trans->new_bgs))
600 btrfs_create_pending_block_groups(trans, root);
601
602 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
603 should_end_transaction(trans, root)) {
604 trans->transaction->blocked = 1;
605 smp_wmb();
606 }
607
608 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
609 if (throttle) {
610 /*
611 * We may race with somebody else here so end up having
612 * to call end_transaction on ourselves again, so inc
613 * our use_count.
614 */
615 trans->use_count++;
616 return btrfs_commit_transaction(trans, root);
617 } else {
618 wake_up_process(info->transaction_kthread);
619 }
620 }
621
622 if (trans->type < TRANS_JOIN_NOLOCK)
623 sb_end_intwrite(root->fs_info->sb);
624
625 WARN_ON(cur_trans != info->running_transaction);
626 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
627 atomic_dec(&cur_trans->num_writers);
628
629 smp_mb();
630 if (waitqueue_active(&cur_trans->writer_wait))
631 wake_up(&cur_trans->writer_wait);
632 put_transaction(cur_trans);
633
634 if (current->journal_info == trans)
635 current->journal_info = NULL;
636
637 if (throttle)
638 btrfs_run_delayed_iputs(root);
639
640 if (trans->aborted ||
641 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
642 err = -EIO;
643 }
644 assert_qgroups_uptodate(trans);
645
646 memset(trans, 0, sizeof(*trans));
647 kmem_cache_free(btrfs_trans_handle_cachep, trans);
648 return err;
649 }
650
651 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
652 struct btrfs_root *root)
653 {
654 int ret;
655
656 ret = __btrfs_end_transaction(trans, root, 0);
657 if (ret)
658 return ret;
659 return 0;
660 }
661
662 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
663 struct btrfs_root *root)
664 {
665 int ret;
666
667 ret = __btrfs_end_transaction(trans, root, 1);
668 if (ret)
669 return ret;
670 return 0;
671 }
672
673 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
674 struct btrfs_root *root)
675 {
676 return __btrfs_end_transaction(trans, root, 1);
677 }
678
679 /*
680 * when btree blocks are allocated, they have some corresponding bits set for
681 * them in one of two extent_io trees. This is used to make sure all of
682 * those extents are sent to disk but does not wait on them
683 */
684 int btrfs_write_marked_extents(struct btrfs_root *root,
685 struct extent_io_tree *dirty_pages, int mark)
686 {
687 int err = 0;
688 int werr = 0;
689 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
690 struct extent_state *cached_state = NULL;
691 u64 start = 0;
692 u64 end;
693 struct blk_plug plug;
694
695 blk_start_plug(&plug);
696 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
697 mark, &cached_state)) {
698 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
699 mark, &cached_state, GFP_NOFS);
700 cached_state = NULL;
701 err = filemap_fdatawrite_range(mapping, start, end);
702 if (err)
703 werr = err;
704 cond_resched();
705 start = end + 1;
706 }
707 if (err)
708 werr = err;
709 blk_finish_plug(&plug);
710 return werr;
711 }
712
713 /*
714 * when btree blocks are allocated, they have some corresponding bits set for
715 * them in one of two extent_io trees. This is used to make sure all of
716 * those extents are on disk for transaction or log commit. We wait
717 * on all the pages and clear them from the dirty pages state tree
718 */
719 int btrfs_wait_marked_extents(struct btrfs_root *root,
720 struct extent_io_tree *dirty_pages, int mark)
721 {
722 int err = 0;
723 int werr = 0;
724 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
725 struct extent_state *cached_state = NULL;
726 u64 start = 0;
727 u64 end;
728
729 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
730 EXTENT_NEED_WAIT, &cached_state)) {
731 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
732 0, 0, &cached_state, GFP_NOFS);
733 err = filemap_fdatawait_range(mapping, start, end);
734 if (err)
735 werr = err;
736 cond_resched();
737 start = end + 1;
738 }
739 if (err)
740 werr = err;
741 return werr;
742 }
743
744 /*
745 * when btree blocks are allocated, they have some corresponding bits set for
746 * them in one of two extent_io trees. This is used to make sure all of
747 * those extents are on disk for transaction or log commit
748 */
749 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
750 struct extent_io_tree *dirty_pages, int mark)
751 {
752 int ret;
753 int ret2;
754
755 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
756 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
757
758 if (ret)
759 return ret;
760 if (ret2)
761 return ret2;
762 return 0;
763 }
764
765 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
766 struct btrfs_root *root)
767 {
768 if (!trans || !trans->transaction) {
769 struct inode *btree_inode;
770 btree_inode = root->fs_info->btree_inode;
771 return filemap_write_and_wait(btree_inode->i_mapping);
772 }
773 return btrfs_write_and_wait_marked_extents(root,
774 &trans->transaction->dirty_pages,
775 EXTENT_DIRTY);
776 }
777
778 /*
779 * this is used to update the root pointer in the tree of tree roots.
780 *
781 * But, in the case of the extent allocation tree, updating the root
782 * pointer may allocate blocks which may change the root of the extent
783 * allocation tree.
784 *
785 * So, this loops and repeats and makes sure the cowonly root didn't
786 * change while the root pointer was being updated in the metadata.
787 */
788 static int update_cowonly_root(struct btrfs_trans_handle *trans,
789 struct btrfs_root *root)
790 {
791 int ret;
792 u64 old_root_bytenr;
793 u64 old_root_used;
794 struct btrfs_root *tree_root = root->fs_info->tree_root;
795
796 old_root_used = btrfs_root_used(&root->root_item);
797 btrfs_write_dirty_block_groups(trans, root);
798
799 while (1) {
800 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
801 if (old_root_bytenr == root->node->start &&
802 old_root_used == btrfs_root_used(&root->root_item))
803 break;
804
805 btrfs_set_root_node(&root->root_item, root->node);
806 ret = btrfs_update_root(trans, tree_root,
807 &root->root_key,
808 &root->root_item);
809 if (ret)
810 return ret;
811
812 old_root_used = btrfs_root_used(&root->root_item);
813 ret = btrfs_write_dirty_block_groups(trans, root);
814 if (ret)
815 return ret;
816 }
817
818 if (root != root->fs_info->extent_root)
819 switch_commit_root(root);
820
821 return 0;
822 }
823
824 /*
825 * update all the cowonly tree roots on disk
826 *
827 * The error handling in this function may not be obvious. Any of the
828 * failures will cause the file system to go offline. We still need
829 * to clean up the delayed refs.
830 */
831 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
832 struct btrfs_root *root)
833 {
834 struct btrfs_fs_info *fs_info = root->fs_info;
835 struct list_head *next;
836 struct extent_buffer *eb;
837 int ret;
838
839 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
840 if (ret)
841 return ret;
842
843 eb = btrfs_lock_root_node(fs_info->tree_root);
844 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
845 0, &eb);
846 btrfs_tree_unlock(eb);
847 free_extent_buffer(eb);
848
849 if (ret)
850 return ret;
851
852 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
853 if (ret)
854 return ret;
855
856 ret = btrfs_run_dev_stats(trans, root->fs_info);
857 WARN_ON(ret);
858 ret = btrfs_run_dev_replace(trans, root->fs_info);
859 WARN_ON(ret);
860
861 ret = btrfs_run_qgroups(trans, root->fs_info);
862 BUG_ON(ret);
863
864 /* run_qgroups might have added some more refs */
865 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
866 BUG_ON(ret);
867
868 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
869 next = fs_info->dirty_cowonly_roots.next;
870 list_del_init(next);
871 root = list_entry(next, struct btrfs_root, dirty_list);
872
873 ret = update_cowonly_root(trans, root);
874 if (ret)
875 return ret;
876 }
877
878 down_write(&fs_info->extent_commit_sem);
879 switch_commit_root(fs_info->extent_root);
880 up_write(&fs_info->extent_commit_sem);
881
882 btrfs_after_dev_replace_commit(fs_info);
883
884 return 0;
885 }
886
887 /*
888 * dead roots are old snapshots that need to be deleted. This allocates
889 * a dirty root struct and adds it into the list of dead roots that need to
890 * be deleted
891 */
892 int btrfs_add_dead_root(struct btrfs_root *root)
893 {
894 spin_lock(&root->fs_info->trans_lock);
895 list_add(&root->root_list, &root->fs_info->dead_roots);
896 spin_unlock(&root->fs_info->trans_lock);
897 return 0;
898 }
899
900 /*
901 * update all the cowonly tree roots on disk
902 */
903 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
904 struct btrfs_root *root)
905 {
906 struct btrfs_root *gang[8];
907 struct btrfs_fs_info *fs_info = root->fs_info;
908 int i;
909 int ret;
910 int err = 0;
911
912 spin_lock(&fs_info->fs_roots_radix_lock);
913 while (1) {
914 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
915 (void **)gang, 0,
916 ARRAY_SIZE(gang),
917 BTRFS_ROOT_TRANS_TAG);
918 if (ret == 0)
919 break;
920 for (i = 0; i < ret; i++) {
921 root = gang[i];
922 radix_tree_tag_clear(&fs_info->fs_roots_radix,
923 (unsigned long)root->root_key.objectid,
924 BTRFS_ROOT_TRANS_TAG);
925 spin_unlock(&fs_info->fs_roots_radix_lock);
926
927 btrfs_free_log(trans, root);
928 btrfs_update_reloc_root(trans, root);
929 btrfs_orphan_commit_root(trans, root);
930
931 btrfs_save_ino_cache(root, trans);
932
933 /* see comments in should_cow_block() */
934 root->force_cow = 0;
935 smp_wmb();
936
937 if (root->commit_root != root->node) {
938 mutex_lock(&root->fs_commit_mutex);
939 switch_commit_root(root);
940 btrfs_unpin_free_ino(root);
941 mutex_unlock(&root->fs_commit_mutex);
942
943 btrfs_set_root_node(&root->root_item,
944 root->node);
945 }
946
947 err = btrfs_update_root(trans, fs_info->tree_root,
948 &root->root_key,
949 &root->root_item);
950 spin_lock(&fs_info->fs_roots_radix_lock);
951 if (err)
952 break;
953 }
954 }
955 spin_unlock(&fs_info->fs_roots_radix_lock);
956 return err;
957 }
958
959 /*
960 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
961 * otherwise every leaf in the btree is read and defragged.
962 */
963 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
964 {
965 struct btrfs_fs_info *info = root->fs_info;
966 struct btrfs_trans_handle *trans;
967 int ret;
968
969 if (xchg(&root->defrag_running, 1))
970 return 0;
971
972 while (1) {
973 trans = btrfs_start_transaction(root, 0);
974 if (IS_ERR(trans))
975 return PTR_ERR(trans);
976
977 ret = btrfs_defrag_leaves(trans, root, cacheonly);
978
979 btrfs_end_transaction(trans, root);
980 btrfs_btree_balance_dirty(info->tree_root);
981 cond_resched();
982
983 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
984 break;
985 }
986 root->defrag_running = 0;
987 return ret;
988 }
989
990 /*
991 * new snapshots need to be created at a very specific time in the
992 * transaction commit. This does the actual creation
993 */
994 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
995 struct btrfs_fs_info *fs_info,
996 struct btrfs_pending_snapshot *pending)
997 {
998 struct btrfs_key key;
999 struct btrfs_root_item *new_root_item;
1000 struct btrfs_root *tree_root = fs_info->tree_root;
1001 struct btrfs_root *root = pending->root;
1002 struct btrfs_root *parent_root;
1003 struct btrfs_block_rsv *rsv;
1004 struct inode *parent_inode;
1005 struct btrfs_path *path;
1006 struct btrfs_dir_item *dir_item;
1007 struct dentry *parent;
1008 struct dentry *dentry;
1009 struct extent_buffer *tmp;
1010 struct extent_buffer *old;
1011 struct timespec cur_time = CURRENT_TIME;
1012 int ret;
1013 u64 to_reserve = 0;
1014 u64 index = 0;
1015 u64 objectid;
1016 u64 root_flags;
1017 uuid_le new_uuid;
1018
1019 path = btrfs_alloc_path();
1020 if (!path) {
1021 ret = pending->error = -ENOMEM;
1022 goto path_alloc_fail;
1023 }
1024
1025 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1026 if (!new_root_item) {
1027 ret = pending->error = -ENOMEM;
1028 goto root_item_alloc_fail;
1029 }
1030
1031 ret = btrfs_find_free_objectid(tree_root, &objectid);
1032 if (ret) {
1033 pending->error = ret;
1034 goto no_free_objectid;
1035 }
1036
1037 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1038
1039 if (to_reserve > 0) {
1040 ret = btrfs_block_rsv_add(root, &pending->block_rsv,
1041 to_reserve,
1042 BTRFS_RESERVE_NO_FLUSH);
1043 if (ret) {
1044 pending->error = ret;
1045 goto no_free_objectid;
1046 }
1047 }
1048
1049 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1050 objectid, pending->inherit);
1051 if (ret) {
1052 pending->error = ret;
1053 goto no_free_objectid;
1054 }
1055
1056 key.objectid = objectid;
1057 key.offset = (u64)-1;
1058 key.type = BTRFS_ROOT_ITEM_KEY;
1059
1060 rsv = trans->block_rsv;
1061 trans->block_rsv = &pending->block_rsv;
1062
1063 dentry = pending->dentry;
1064 parent = dget_parent(dentry);
1065 parent_inode = parent->d_inode;
1066 parent_root = BTRFS_I(parent_inode)->root;
1067 record_root_in_trans(trans, parent_root);
1068
1069 /*
1070 * insert the directory item
1071 */
1072 ret = btrfs_set_inode_index(parent_inode, &index);
1073 BUG_ON(ret); /* -ENOMEM */
1074
1075 /* check if there is a file/dir which has the same name. */
1076 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1077 btrfs_ino(parent_inode),
1078 dentry->d_name.name,
1079 dentry->d_name.len, 0);
1080 if (dir_item != NULL && !IS_ERR(dir_item)) {
1081 pending->error = -EEXIST;
1082 goto fail;
1083 } else if (IS_ERR(dir_item)) {
1084 ret = PTR_ERR(dir_item);
1085 btrfs_abort_transaction(trans, root, ret);
1086 goto fail;
1087 }
1088 btrfs_release_path(path);
1089
1090 /*
1091 * pull in the delayed directory update
1092 * and the delayed inode item
1093 * otherwise we corrupt the FS during
1094 * snapshot
1095 */
1096 ret = btrfs_run_delayed_items(trans, root);
1097 if (ret) { /* Transaction aborted */
1098 btrfs_abort_transaction(trans, root, ret);
1099 goto fail;
1100 }
1101
1102 record_root_in_trans(trans, root);
1103 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1104 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1105 btrfs_check_and_init_root_item(new_root_item);
1106
1107 root_flags = btrfs_root_flags(new_root_item);
1108 if (pending->readonly)
1109 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1110 else
1111 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1112 btrfs_set_root_flags(new_root_item, root_flags);
1113
1114 btrfs_set_root_generation_v2(new_root_item,
1115 trans->transid);
1116 uuid_le_gen(&new_uuid);
1117 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1118 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1119 BTRFS_UUID_SIZE);
1120 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1121 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1122 btrfs_set_root_otransid(new_root_item, trans->transid);
1123 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1124 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1125 btrfs_set_root_stransid(new_root_item, 0);
1126 btrfs_set_root_rtransid(new_root_item, 0);
1127
1128 old = btrfs_lock_root_node(root);
1129 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1130 if (ret) {
1131 btrfs_tree_unlock(old);
1132 free_extent_buffer(old);
1133 btrfs_abort_transaction(trans, root, ret);
1134 goto fail;
1135 }
1136
1137 btrfs_set_lock_blocking(old);
1138
1139 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1140 /* clean up in any case */
1141 btrfs_tree_unlock(old);
1142 free_extent_buffer(old);
1143 if (ret) {
1144 btrfs_abort_transaction(trans, root, ret);
1145 goto fail;
1146 }
1147
1148 /* see comments in should_cow_block() */
1149 root->force_cow = 1;
1150 smp_wmb();
1151
1152 btrfs_set_root_node(new_root_item, tmp);
1153 /* record when the snapshot was created in key.offset */
1154 key.offset = trans->transid;
1155 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1156 btrfs_tree_unlock(tmp);
1157 free_extent_buffer(tmp);
1158 if (ret) {
1159 btrfs_abort_transaction(trans, root, ret);
1160 goto fail;
1161 }
1162
1163 /*
1164 * insert root back/forward references
1165 */
1166 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1167 parent_root->root_key.objectid,
1168 btrfs_ino(parent_inode), index,
1169 dentry->d_name.name, dentry->d_name.len);
1170 if (ret) {
1171 btrfs_abort_transaction(trans, root, ret);
1172 goto fail;
1173 }
1174
1175 key.offset = (u64)-1;
1176 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1177 if (IS_ERR(pending->snap)) {
1178 ret = PTR_ERR(pending->snap);
1179 btrfs_abort_transaction(trans, root, ret);
1180 goto fail;
1181 }
1182
1183 ret = btrfs_reloc_post_snapshot(trans, pending);
1184 if (ret) {
1185 btrfs_abort_transaction(trans, root, ret);
1186 goto fail;
1187 }
1188
1189 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1190 if (ret) {
1191 btrfs_abort_transaction(trans, root, ret);
1192 goto fail;
1193 }
1194
1195 ret = btrfs_insert_dir_item(trans, parent_root,
1196 dentry->d_name.name, dentry->d_name.len,
1197 parent_inode, &key,
1198 BTRFS_FT_DIR, index);
1199 /* We have check then name at the beginning, so it is impossible. */
1200 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1201 if (ret) {
1202 btrfs_abort_transaction(trans, root, ret);
1203 goto fail;
1204 }
1205
1206 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1207 dentry->d_name.len * 2);
1208 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1209 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1210 if (ret)
1211 btrfs_abort_transaction(trans, root, ret);
1212 fail:
1213 dput(parent);
1214 trans->block_rsv = rsv;
1215 no_free_objectid:
1216 kfree(new_root_item);
1217 root_item_alloc_fail:
1218 btrfs_free_path(path);
1219 path_alloc_fail:
1220 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1221 return ret;
1222 }
1223
1224 /*
1225 * create all the snapshots we've scheduled for creation
1226 */
1227 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1228 struct btrfs_fs_info *fs_info)
1229 {
1230 struct btrfs_pending_snapshot *pending;
1231 struct list_head *head = &trans->transaction->pending_snapshots;
1232
1233 list_for_each_entry(pending, head, list)
1234 create_pending_snapshot(trans, fs_info, pending);
1235 return 0;
1236 }
1237
1238 static void update_super_roots(struct btrfs_root *root)
1239 {
1240 struct btrfs_root_item *root_item;
1241 struct btrfs_super_block *super;
1242
1243 super = root->fs_info->super_copy;
1244
1245 root_item = &root->fs_info->chunk_root->root_item;
1246 super->chunk_root = root_item->bytenr;
1247 super->chunk_root_generation = root_item->generation;
1248 super->chunk_root_level = root_item->level;
1249
1250 root_item = &root->fs_info->tree_root->root_item;
1251 super->root = root_item->bytenr;
1252 super->generation = root_item->generation;
1253 super->root_level = root_item->level;
1254 if (btrfs_test_opt(root, SPACE_CACHE))
1255 super->cache_generation = root_item->generation;
1256 }
1257
1258 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1259 {
1260 int ret = 0;
1261 spin_lock(&info->trans_lock);
1262 if (info->running_transaction)
1263 ret = info->running_transaction->in_commit;
1264 spin_unlock(&info->trans_lock);
1265 return ret;
1266 }
1267
1268 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1269 {
1270 int ret = 0;
1271 spin_lock(&info->trans_lock);
1272 if (info->running_transaction)
1273 ret = info->running_transaction->blocked;
1274 spin_unlock(&info->trans_lock);
1275 return ret;
1276 }
1277
1278 /*
1279 * wait for the current transaction commit to start and block subsequent
1280 * transaction joins
1281 */
1282 static void wait_current_trans_commit_start(struct btrfs_root *root,
1283 struct btrfs_transaction *trans)
1284 {
1285 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1286 }
1287
1288 /*
1289 * wait for the current transaction to start and then become unblocked.
1290 * caller holds ref.
1291 */
1292 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1293 struct btrfs_transaction *trans)
1294 {
1295 wait_event(root->fs_info->transaction_wait,
1296 trans->commit_done || (trans->in_commit && !trans->blocked));
1297 }
1298
1299 /*
1300 * commit transactions asynchronously. once btrfs_commit_transaction_async
1301 * returns, any subsequent transaction will not be allowed to join.
1302 */
1303 struct btrfs_async_commit {
1304 struct btrfs_trans_handle *newtrans;
1305 struct btrfs_root *root;
1306 struct delayed_work work;
1307 };
1308
1309 static void do_async_commit(struct work_struct *work)
1310 {
1311 struct btrfs_async_commit *ac =
1312 container_of(work, struct btrfs_async_commit, work.work);
1313
1314 /*
1315 * We've got freeze protection passed with the transaction.
1316 * Tell lockdep about it.
1317 */
1318 if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1319 rwsem_acquire_read(
1320 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1321 0, 1, _THIS_IP_);
1322
1323 current->journal_info = ac->newtrans;
1324
1325 btrfs_commit_transaction(ac->newtrans, ac->root);
1326 kfree(ac);
1327 }
1328
1329 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1330 struct btrfs_root *root,
1331 int wait_for_unblock)
1332 {
1333 struct btrfs_async_commit *ac;
1334 struct btrfs_transaction *cur_trans;
1335
1336 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1337 if (!ac)
1338 return -ENOMEM;
1339
1340 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1341 ac->root = root;
1342 ac->newtrans = btrfs_join_transaction(root);
1343 if (IS_ERR(ac->newtrans)) {
1344 int err = PTR_ERR(ac->newtrans);
1345 kfree(ac);
1346 return err;
1347 }
1348
1349 /* take transaction reference */
1350 cur_trans = trans->transaction;
1351 atomic_inc(&cur_trans->use_count);
1352
1353 btrfs_end_transaction(trans, root);
1354
1355 /*
1356 * Tell lockdep we've released the freeze rwsem, since the
1357 * async commit thread will be the one to unlock it.
1358 */
1359 if (trans->type < TRANS_JOIN_NOLOCK)
1360 rwsem_release(
1361 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1362 1, _THIS_IP_);
1363
1364 schedule_delayed_work(&ac->work, 0);
1365
1366 /* wait for transaction to start and unblock */
1367 if (wait_for_unblock)
1368 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1369 else
1370 wait_current_trans_commit_start(root, cur_trans);
1371
1372 if (current->journal_info == trans)
1373 current->journal_info = NULL;
1374
1375 put_transaction(cur_trans);
1376 return 0;
1377 }
1378
1379
1380 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1381 struct btrfs_root *root, int err)
1382 {
1383 struct btrfs_transaction *cur_trans = trans->transaction;
1384
1385 WARN_ON(trans->use_count > 1);
1386
1387 btrfs_abort_transaction(trans, root, err);
1388
1389 spin_lock(&root->fs_info->trans_lock);
1390 list_del_init(&cur_trans->list);
1391 if (cur_trans == root->fs_info->running_transaction) {
1392 root->fs_info->running_transaction = NULL;
1393 root->fs_info->trans_no_join = 0;
1394 }
1395 spin_unlock(&root->fs_info->trans_lock);
1396
1397 btrfs_cleanup_one_transaction(trans->transaction, root);
1398
1399 put_transaction(cur_trans);
1400 put_transaction(cur_trans);
1401
1402 trace_btrfs_transaction_commit(root);
1403
1404 btrfs_scrub_continue(root);
1405
1406 if (current->journal_info == trans)
1407 current->journal_info = NULL;
1408
1409 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1410 }
1411
1412 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1413 struct btrfs_root *root)
1414 {
1415 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1416 int snap_pending = 0;
1417 int ret;
1418
1419 if (!flush_on_commit) {
1420 spin_lock(&root->fs_info->trans_lock);
1421 if (!list_empty(&trans->transaction->pending_snapshots))
1422 snap_pending = 1;
1423 spin_unlock(&root->fs_info->trans_lock);
1424 }
1425
1426 if (flush_on_commit || snap_pending) {
1427 btrfs_start_delalloc_inodes(root, 1);
1428 btrfs_wait_ordered_extents(root, 1);
1429 }
1430
1431 ret = btrfs_run_delayed_items(trans, root);
1432 if (ret)
1433 return ret;
1434
1435 /*
1436 * running the delayed items may have added new refs. account
1437 * them now so that they hinder processing of more delayed refs
1438 * as little as possible.
1439 */
1440 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1441
1442 /*
1443 * rename don't use btrfs_join_transaction, so, once we
1444 * set the transaction to blocked above, we aren't going
1445 * to get any new ordered operations. We can safely run
1446 * it here and no for sure that nothing new will be added
1447 * to the list
1448 */
1449 btrfs_run_ordered_operations(root, 1);
1450
1451 return 0;
1452 }
1453
1454 /*
1455 * btrfs_transaction state sequence:
1456 * in_commit = 0, blocked = 0 (initial)
1457 * in_commit = 1, blocked = 1
1458 * blocked = 0
1459 * commit_done = 1
1460 */
1461 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1462 struct btrfs_root *root)
1463 {
1464 unsigned long joined = 0;
1465 struct btrfs_transaction *cur_trans = trans->transaction;
1466 struct btrfs_transaction *prev_trans = NULL;
1467 DEFINE_WAIT(wait);
1468 int ret;
1469 int should_grow = 0;
1470 unsigned long now = get_seconds();
1471
1472 ret = btrfs_run_ordered_operations(root, 0);
1473 if (ret) {
1474 btrfs_abort_transaction(trans, root, ret);
1475 goto cleanup_transaction;
1476 }
1477
1478 if (cur_trans->aborted) {
1479 ret = cur_trans->aborted;
1480 goto cleanup_transaction;
1481 }
1482
1483 /* make a pass through all the delayed refs we have so far
1484 * any runnings procs may add more while we are here
1485 */
1486 ret = btrfs_run_delayed_refs(trans, root, 0);
1487 if (ret)
1488 goto cleanup_transaction;
1489
1490 btrfs_trans_release_metadata(trans, root);
1491 trans->block_rsv = NULL;
1492
1493 cur_trans = trans->transaction;
1494
1495 /*
1496 * set the flushing flag so procs in this transaction have to
1497 * start sending their work down.
1498 */
1499 cur_trans->delayed_refs.flushing = 1;
1500
1501 if (!list_empty(&trans->new_bgs))
1502 btrfs_create_pending_block_groups(trans, root);
1503
1504 ret = btrfs_run_delayed_refs(trans, root, 0);
1505 if (ret)
1506 goto cleanup_transaction;
1507
1508 spin_lock(&cur_trans->commit_lock);
1509 if (cur_trans->in_commit) {
1510 spin_unlock(&cur_trans->commit_lock);
1511 atomic_inc(&cur_trans->use_count);
1512 ret = btrfs_end_transaction(trans, root);
1513
1514 wait_for_commit(root, cur_trans);
1515
1516 put_transaction(cur_trans);
1517
1518 return ret;
1519 }
1520
1521 trans->transaction->in_commit = 1;
1522 trans->transaction->blocked = 1;
1523 spin_unlock(&cur_trans->commit_lock);
1524 wake_up(&root->fs_info->transaction_blocked_wait);
1525
1526 spin_lock(&root->fs_info->trans_lock);
1527 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1528 prev_trans = list_entry(cur_trans->list.prev,
1529 struct btrfs_transaction, list);
1530 if (!prev_trans->commit_done) {
1531 atomic_inc(&prev_trans->use_count);
1532 spin_unlock(&root->fs_info->trans_lock);
1533
1534 wait_for_commit(root, prev_trans);
1535
1536 put_transaction(prev_trans);
1537 } else {
1538 spin_unlock(&root->fs_info->trans_lock);
1539 }
1540 } else {
1541 spin_unlock(&root->fs_info->trans_lock);
1542 }
1543
1544 if (!btrfs_test_opt(root, SSD) &&
1545 (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1546 should_grow = 1;
1547
1548 do {
1549 joined = cur_trans->num_joined;
1550
1551 WARN_ON(cur_trans != trans->transaction);
1552
1553 ret = btrfs_flush_all_pending_stuffs(trans, root);
1554 if (ret)
1555 goto cleanup_transaction;
1556
1557 prepare_to_wait(&cur_trans->writer_wait, &wait,
1558 TASK_UNINTERRUPTIBLE);
1559
1560 if (atomic_read(&cur_trans->num_writers) > 1)
1561 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1562 else if (should_grow)
1563 schedule_timeout(1);
1564
1565 finish_wait(&cur_trans->writer_wait, &wait);
1566 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1567 (should_grow && cur_trans->num_joined != joined));
1568
1569 ret = btrfs_flush_all_pending_stuffs(trans, root);
1570 if (ret)
1571 goto cleanup_transaction;
1572
1573 /*
1574 * Ok now we need to make sure to block out any other joins while we
1575 * commit the transaction. We could have started a join before setting
1576 * no_join so make sure to wait for num_writers to == 1 again.
1577 */
1578 spin_lock(&root->fs_info->trans_lock);
1579 root->fs_info->trans_no_join = 1;
1580 spin_unlock(&root->fs_info->trans_lock);
1581 wait_event(cur_trans->writer_wait,
1582 atomic_read(&cur_trans->num_writers) == 1);
1583
1584 /*
1585 * the reloc mutex makes sure that we stop
1586 * the balancing code from coming in and moving
1587 * extents around in the middle of the commit
1588 */
1589 mutex_lock(&root->fs_info->reloc_mutex);
1590
1591 /*
1592 * We needn't worry about the delayed items because we will
1593 * deal with them in create_pending_snapshot(), which is the
1594 * core function of the snapshot creation.
1595 */
1596 ret = create_pending_snapshots(trans, root->fs_info);
1597 if (ret) {
1598 mutex_unlock(&root->fs_info->reloc_mutex);
1599 goto cleanup_transaction;
1600 }
1601
1602 /*
1603 * We insert the dir indexes of the snapshots and update the inode
1604 * of the snapshots' parents after the snapshot creation, so there
1605 * are some delayed items which are not dealt with. Now deal with
1606 * them.
1607 *
1608 * We needn't worry that this operation will corrupt the snapshots,
1609 * because all the tree which are snapshoted will be forced to COW
1610 * the nodes and leaves.
1611 */
1612 ret = btrfs_run_delayed_items(trans, root);
1613 if (ret) {
1614 mutex_unlock(&root->fs_info->reloc_mutex);
1615 goto cleanup_transaction;
1616 }
1617
1618 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1619 if (ret) {
1620 mutex_unlock(&root->fs_info->reloc_mutex);
1621 goto cleanup_transaction;
1622 }
1623
1624 /*
1625 * make sure none of the code above managed to slip in a
1626 * delayed item
1627 */
1628 btrfs_assert_delayed_root_empty(root);
1629
1630 WARN_ON(cur_trans != trans->transaction);
1631
1632 btrfs_scrub_pause(root);
1633 /* btrfs_commit_tree_roots is responsible for getting the
1634 * various roots consistent with each other. Every pointer
1635 * in the tree of tree roots has to point to the most up to date
1636 * root for every subvolume and other tree. So, we have to keep
1637 * the tree logging code from jumping in and changing any
1638 * of the trees.
1639 *
1640 * At this point in the commit, there can't be any tree-log
1641 * writers, but a little lower down we drop the trans mutex
1642 * and let new people in. By holding the tree_log_mutex
1643 * from now until after the super is written, we avoid races
1644 * with the tree-log code.
1645 */
1646 mutex_lock(&root->fs_info->tree_log_mutex);
1647
1648 ret = commit_fs_roots(trans, root);
1649 if (ret) {
1650 mutex_unlock(&root->fs_info->tree_log_mutex);
1651 mutex_unlock(&root->fs_info->reloc_mutex);
1652 goto cleanup_transaction;
1653 }
1654
1655 /* commit_fs_roots gets rid of all the tree log roots, it is now
1656 * safe to free the root of tree log roots
1657 */
1658 btrfs_free_log_root_tree(trans, root->fs_info);
1659
1660 ret = commit_cowonly_roots(trans, root);
1661 if (ret) {
1662 mutex_unlock(&root->fs_info->tree_log_mutex);
1663 mutex_unlock(&root->fs_info->reloc_mutex);
1664 goto cleanup_transaction;
1665 }
1666
1667 btrfs_prepare_extent_commit(trans, root);
1668
1669 cur_trans = root->fs_info->running_transaction;
1670
1671 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1672 root->fs_info->tree_root->node);
1673 switch_commit_root(root->fs_info->tree_root);
1674
1675 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1676 root->fs_info->chunk_root->node);
1677 switch_commit_root(root->fs_info->chunk_root);
1678
1679 assert_qgroups_uptodate(trans);
1680 update_super_roots(root);
1681
1682 if (!root->fs_info->log_root_recovering) {
1683 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1684 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1685 }
1686
1687 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1688 sizeof(*root->fs_info->super_copy));
1689
1690 trans->transaction->blocked = 0;
1691 spin_lock(&root->fs_info->trans_lock);
1692 root->fs_info->running_transaction = NULL;
1693 root->fs_info->trans_no_join = 0;
1694 spin_unlock(&root->fs_info->trans_lock);
1695 mutex_unlock(&root->fs_info->reloc_mutex);
1696
1697 wake_up(&root->fs_info->transaction_wait);
1698
1699 ret = btrfs_write_and_wait_transaction(trans, root);
1700 if (ret) {
1701 btrfs_error(root->fs_info, ret,
1702 "Error while writing out transaction.");
1703 mutex_unlock(&root->fs_info->tree_log_mutex);
1704 goto cleanup_transaction;
1705 }
1706
1707 ret = write_ctree_super(trans, root, 0);
1708 if (ret) {
1709 mutex_unlock(&root->fs_info->tree_log_mutex);
1710 goto cleanup_transaction;
1711 }
1712
1713 /*
1714 * the super is written, we can safely allow the tree-loggers
1715 * to go about their business
1716 */
1717 mutex_unlock(&root->fs_info->tree_log_mutex);
1718
1719 btrfs_finish_extent_commit(trans, root);
1720
1721 cur_trans->commit_done = 1;
1722
1723 root->fs_info->last_trans_committed = cur_trans->transid;
1724
1725 wake_up(&cur_trans->commit_wait);
1726
1727 spin_lock(&root->fs_info->trans_lock);
1728 list_del_init(&cur_trans->list);
1729 spin_unlock(&root->fs_info->trans_lock);
1730
1731 put_transaction(cur_trans);
1732 put_transaction(cur_trans);
1733
1734 if (trans->type < TRANS_JOIN_NOLOCK)
1735 sb_end_intwrite(root->fs_info->sb);
1736
1737 trace_btrfs_transaction_commit(root);
1738
1739 btrfs_scrub_continue(root);
1740
1741 if (current->journal_info == trans)
1742 current->journal_info = NULL;
1743
1744 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1745
1746 if (current != root->fs_info->transaction_kthread)
1747 btrfs_run_delayed_iputs(root);
1748
1749 return ret;
1750
1751 cleanup_transaction:
1752 btrfs_trans_release_metadata(trans, root);
1753 trans->block_rsv = NULL;
1754 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1755 // WARN_ON(1);
1756 if (current->journal_info == trans)
1757 current->journal_info = NULL;
1758 cleanup_transaction(trans, root, ret);
1759
1760 return ret;
1761 }
1762
1763 /*
1764 * interface function to delete all the snapshots we have scheduled for deletion
1765 */
1766 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1767 {
1768 LIST_HEAD(list);
1769 struct btrfs_fs_info *fs_info = root->fs_info;
1770
1771 spin_lock(&fs_info->trans_lock);
1772 list_splice_init(&fs_info->dead_roots, &list);
1773 spin_unlock(&fs_info->trans_lock);
1774
1775 while (!list_empty(&list)) {
1776 int ret;
1777
1778 root = list_entry(list.next, struct btrfs_root, root_list);
1779 list_del(&root->root_list);
1780
1781 btrfs_kill_all_delayed_nodes(root);
1782
1783 if (btrfs_header_backref_rev(root->node) <
1784 BTRFS_MIXED_BACKREF_REV)
1785 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1786 else
1787 ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1788 BUG_ON(ret < 0);
1789 }
1790 return 0;
1791 }
This page took 0.107753 seconds and 6 git commands to generate.