Btrfs: qgroup implementation and prototypes
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31 #include "volumes.h"
32
33 #define BTRFS_ROOT_TRANS_TAG 0
34
35 void put_transaction(struct btrfs_transaction *transaction)
36 {
37 WARN_ON(atomic_read(&transaction->use_count) == 0);
38 if (atomic_dec_and_test(&transaction->use_count)) {
39 BUG_ON(!list_empty(&transaction->list));
40 WARN_ON(transaction->delayed_refs.root.rb_node);
41 memset(transaction, 0, sizeof(*transaction));
42 kmem_cache_free(btrfs_transaction_cachep, transaction);
43 }
44 }
45
46 static noinline void switch_commit_root(struct btrfs_root *root)
47 {
48 free_extent_buffer(root->commit_root);
49 root->commit_root = btrfs_root_node(root);
50 }
51
52 /*
53 * either allocate a new transaction or hop into the existing one
54 */
55 static noinline int join_transaction(struct btrfs_root *root, int nofail)
56 {
57 struct btrfs_transaction *cur_trans;
58 struct btrfs_fs_info *fs_info = root->fs_info;
59
60 spin_lock(&fs_info->trans_lock);
61 loop:
62 /* The file system has been taken offline. No new transactions. */
63 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
64 spin_unlock(&fs_info->trans_lock);
65 return -EROFS;
66 }
67
68 if (fs_info->trans_no_join) {
69 if (!nofail) {
70 spin_unlock(&fs_info->trans_lock);
71 return -EBUSY;
72 }
73 }
74
75 cur_trans = fs_info->running_transaction;
76 if (cur_trans) {
77 if (cur_trans->aborted) {
78 spin_unlock(&fs_info->trans_lock);
79 return cur_trans->aborted;
80 }
81 atomic_inc(&cur_trans->use_count);
82 atomic_inc(&cur_trans->num_writers);
83 cur_trans->num_joined++;
84 spin_unlock(&fs_info->trans_lock);
85 return 0;
86 }
87 spin_unlock(&fs_info->trans_lock);
88
89 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
90 if (!cur_trans)
91 return -ENOMEM;
92
93 spin_lock(&fs_info->trans_lock);
94 if (fs_info->running_transaction) {
95 /*
96 * someone started a transaction after we unlocked. Make sure
97 * to redo the trans_no_join checks above
98 */
99 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
100 cur_trans = fs_info->running_transaction;
101 goto loop;
102 } else if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
103 spin_unlock(&root->fs_info->trans_lock);
104 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
105 return -EROFS;
106 }
107
108 atomic_set(&cur_trans->num_writers, 1);
109 cur_trans->num_joined = 0;
110 init_waitqueue_head(&cur_trans->writer_wait);
111 init_waitqueue_head(&cur_trans->commit_wait);
112 cur_trans->in_commit = 0;
113 cur_trans->blocked = 0;
114 /*
115 * One for this trans handle, one so it will live on until we
116 * commit the transaction.
117 */
118 atomic_set(&cur_trans->use_count, 2);
119 cur_trans->commit_done = 0;
120 cur_trans->start_time = get_seconds();
121
122 cur_trans->delayed_refs.root = RB_ROOT;
123 cur_trans->delayed_refs.num_entries = 0;
124 cur_trans->delayed_refs.num_heads_ready = 0;
125 cur_trans->delayed_refs.num_heads = 0;
126 cur_trans->delayed_refs.flushing = 0;
127 cur_trans->delayed_refs.run_delayed_start = 0;
128
129 /*
130 * although the tree mod log is per file system and not per transaction,
131 * the log must never go across transaction boundaries.
132 */
133 smp_mb();
134 if (!list_empty(&fs_info->tree_mod_seq_list)) {
135 printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when "
136 "creating a fresh transaction\n");
137 WARN_ON(1);
138 }
139 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) {
140 printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
141 "creating a fresh transaction\n");
142 WARN_ON(1);
143 }
144 atomic_set(&fs_info->tree_mod_seq, 0);
145
146 spin_lock_init(&cur_trans->commit_lock);
147 spin_lock_init(&cur_trans->delayed_refs.lock);
148
149 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
150 list_add_tail(&cur_trans->list, &fs_info->trans_list);
151 extent_io_tree_init(&cur_trans->dirty_pages,
152 fs_info->btree_inode->i_mapping);
153 fs_info->generation++;
154 cur_trans->transid = fs_info->generation;
155 fs_info->running_transaction = cur_trans;
156 cur_trans->aborted = 0;
157 spin_unlock(&fs_info->trans_lock);
158
159 return 0;
160 }
161
162 /*
163 * this does all the record keeping required to make sure that a reference
164 * counted root is properly recorded in a given transaction. This is required
165 * to make sure the old root from before we joined the transaction is deleted
166 * when the transaction commits
167 */
168 static int record_root_in_trans(struct btrfs_trans_handle *trans,
169 struct btrfs_root *root)
170 {
171 if (root->ref_cows && root->last_trans < trans->transid) {
172 WARN_ON(root == root->fs_info->extent_root);
173 WARN_ON(root->commit_root != root->node);
174
175 /*
176 * see below for in_trans_setup usage rules
177 * we have the reloc mutex held now, so there
178 * is only one writer in this function
179 */
180 root->in_trans_setup = 1;
181
182 /* make sure readers find in_trans_setup before
183 * they find our root->last_trans update
184 */
185 smp_wmb();
186
187 spin_lock(&root->fs_info->fs_roots_radix_lock);
188 if (root->last_trans == trans->transid) {
189 spin_unlock(&root->fs_info->fs_roots_radix_lock);
190 return 0;
191 }
192 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
193 (unsigned long)root->root_key.objectid,
194 BTRFS_ROOT_TRANS_TAG);
195 spin_unlock(&root->fs_info->fs_roots_radix_lock);
196 root->last_trans = trans->transid;
197
198 /* this is pretty tricky. We don't want to
199 * take the relocation lock in btrfs_record_root_in_trans
200 * unless we're really doing the first setup for this root in
201 * this transaction.
202 *
203 * Normally we'd use root->last_trans as a flag to decide
204 * if we want to take the expensive mutex.
205 *
206 * But, we have to set root->last_trans before we
207 * init the relocation root, otherwise, we trip over warnings
208 * in ctree.c. The solution used here is to flag ourselves
209 * with root->in_trans_setup. When this is 1, we're still
210 * fixing up the reloc trees and everyone must wait.
211 *
212 * When this is zero, they can trust root->last_trans and fly
213 * through btrfs_record_root_in_trans without having to take the
214 * lock. smp_wmb() makes sure that all the writes above are
215 * done before we pop in the zero below
216 */
217 btrfs_init_reloc_root(trans, root);
218 smp_wmb();
219 root->in_trans_setup = 0;
220 }
221 return 0;
222 }
223
224
225 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
226 struct btrfs_root *root)
227 {
228 if (!root->ref_cows)
229 return 0;
230
231 /*
232 * see record_root_in_trans for comments about in_trans_setup usage
233 * and barriers
234 */
235 smp_rmb();
236 if (root->last_trans == trans->transid &&
237 !root->in_trans_setup)
238 return 0;
239
240 mutex_lock(&root->fs_info->reloc_mutex);
241 record_root_in_trans(trans, root);
242 mutex_unlock(&root->fs_info->reloc_mutex);
243
244 return 0;
245 }
246
247 /* wait for commit against the current transaction to become unblocked
248 * when this is done, it is safe to start a new transaction, but the current
249 * transaction might not be fully on disk.
250 */
251 static void wait_current_trans(struct btrfs_root *root)
252 {
253 struct btrfs_transaction *cur_trans;
254
255 spin_lock(&root->fs_info->trans_lock);
256 cur_trans = root->fs_info->running_transaction;
257 if (cur_trans && cur_trans->blocked) {
258 atomic_inc(&cur_trans->use_count);
259 spin_unlock(&root->fs_info->trans_lock);
260
261 wait_event(root->fs_info->transaction_wait,
262 !cur_trans->blocked);
263 put_transaction(cur_trans);
264 } else {
265 spin_unlock(&root->fs_info->trans_lock);
266 }
267 }
268
269 enum btrfs_trans_type {
270 TRANS_START,
271 TRANS_JOIN,
272 TRANS_USERSPACE,
273 TRANS_JOIN_NOLOCK,
274 };
275
276 static int may_wait_transaction(struct btrfs_root *root, int type)
277 {
278 if (root->fs_info->log_root_recovering)
279 return 0;
280
281 if (type == TRANS_USERSPACE)
282 return 1;
283
284 if (type == TRANS_START &&
285 !atomic_read(&root->fs_info->open_ioctl_trans))
286 return 1;
287
288 return 0;
289 }
290
291 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
292 u64 num_items, int type)
293 {
294 struct btrfs_trans_handle *h;
295 struct btrfs_transaction *cur_trans;
296 u64 num_bytes = 0;
297 int ret;
298
299 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
300 return ERR_PTR(-EROFS);
301
302 if (current->journal_info) {
303 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
304 h = current->journal_info;
305 h->use_count++;
306 h->orig_rsv = h->block_rsv;
307 h->block_rsv = NULL;
308 goto got_it;
309 }
310
311 /*
312 * Do the reservation before we join the transaction so we can do all
313 * the appropriate flushing if need be.
314 */
315 if (num_items > 0 && root != root->fs_info->chunk_root) {
316 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
317 ret = btrfs_block_rsv_add(root,
318 &root->fs_info->trans_block_rsv,
319 num_bytes);
320 if (ret)
321 return ERR_PTR(ret);
322 }
323 again:
324 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
325 if (!h)
326 return ERR_PTR(-ENOMEM);
327
328 if (may_wait_transaction(root, type))
329 wait_current_trans(root);
330
331 do {
332 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
333 if (ret == -EBUSY)
334 wait_current_trans(root);
335 } while (ret == -EBUSY);
336
337 if (ret < 0) {
338 kmem_cache_free(btrfs_trans_handle_cachep, h);
339 return ERR_PTR(ret);
340 }
341
342 cur_trans = root->fs_info->running_transaction;
343
344 h->transid = cur_trans->transid;
345 h->transaction = cur_trans;
346 h->blocks_used = 0;
347 h->bytes_reserved = 0;
348 h->root = root;
349 h->delayed_ref_updates = 0;
350 h->use_count = 1;
351 h->block_rsv = NULL;
352 h->orig_rsv = NULL;
353 h->aborted = 0;
354 h->delayed_ref_elem.seq = 0;
355 INIT_LIST_HEAD(&h->qgroup_ref_list);
356
357 smp_mb();
358 if (cur_trans->blocked && may_wait_transaction(root, type)) {
359 btrfs_commit_transaction(h, root);
360 goto again;
361 }
362
363 if (num_bytes) {
364 trace_btrfs_space_reservation(root->fs_info, "transaction",
365 h->transid, num_bytes, 1);
366 h->block_rsv = &root->fs_info->trans_block_rsv;
367 h->bytes_reserved = num_bytes;
368 }
369
370 got_it:
371 btrfs_record_root_in_trans(h, root);
372
373 if (!current->journal_info && type != TRANS_USERSPACE)
374 current->journal_info = h;
375 return h;
376 }
377
378 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
379 int num_items)
380 {
381 return start_transaction(root, num_items, TRANS_START);
382 }
383 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
384 {
385 return start_transaction(root, 0, TRANS_JOIN);
386 }
387
388 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
389 {
390 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
391 }
392
393 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
394 {
395 return start_transaction(root, 0, TRANS_USERSPACE);
396 }
397
398 /* wait for a transaction commit to be fully complete */
399 static noinline void wait_for_commit(struct btrfs_root *root,
400 struct btrfs_transaction *commit)
401 {
402 wait_event(commit->commit_wait, commit->commit_done);
403 }
404
405 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
406 {
407 struct btrfs_transaction *cur_trans = NULL, *t;
408 int ret;
409
410 ret = 0;
411 if (transid) {
412 if (transid <= root->fs_info->last_trans_committed)
413 goto out;
414
415 /* find specified transaction */
416 spin_lock(&root->fs_info->trans_lock);
417 list_for_each_entry(t, &root->fs_info->trans_list, list) {
418 if (t->transid == transid) {
419 cur_trans = t;
420 atomic_inc(&cur_trans->use_count);
421 break;
422 }
423 if (t->transid > transid)
424 break;
425 }
426 spin_unlock(&root->fs_info->trans_lock);
427 ret = -EINVAL;
428 if (!cur_trans)
429 goto out; /* bad transid */
430 } else {
431 /* find newest transaction that is committing | committed */
432 spin_lock(&root->fs_info->trans_lock);
433 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
434 list) {
435 if (t->in_commit) {
436 if (t->commit_done)
437 break;
438 cur_trans = t;
439 atomic_inc(&cur_trans->use_count);
440 break;
441 }
442 }
443 spin_unlock(&root->fs_info->trans_lock);
444 if (!cur_trans)
445 goto out; /* nothing committing|committed */
446 }
447
448 wait_for_commit(root, cur_trans);
449
450 put_transaction(cur_trans);
451 ret = 0;
452 out:
453 return ret;
454 }
455
456 void btrfs_throttle(struct btrfs_root *root)
457 {
458 if (!atomic_read(&root->fs_info->open_ioctl_trans))
459 wait_current_trans(root);
460 }
461
462 static int should_end_transaction(struct btrfs_trans_handle *trans,
463 struct btrfs_root *root)
464 {
465 int ret;
466
467 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
468 return ret ? 1 : 0;
469 }
470
471 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
472 struct btrfs_root *root)
473 {
474 struct btrfs_transaction *cur_trans = trans->transaction;
475 struct btrfs_block_rsv *rsv = trans->block_rsv;
476 int updates;
477 int err;
478
479 smp_mb();
480 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
481 return 1;
482
483 /*
484 * We need to do this in case we're deleting csums so the global block
485 * rsv get's used instead of the csum block rsv.
486 */
487 trans->block_rsv = NULL;
488
489 updates = trans->delayed_ref_updates;
490 trans->delayed_ref_updates = 0;
491 if (updates) {
492 err = btrfs_run_delayed_refs(trans, root, updates);
493 if (err) /* Error code will also eval true */
494 return err;
495 }
496
497 trans->block_rsv = rsv;
498
499 return should_end_transaction(trans, root);
500 }
501
502 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
503 struct btrfs_root *root, int throttle, int lock)
504 {
505 struct btrfs_transaction *cur_trans = trans->transaction;
506 struct btrfs_fs_info *info = root->fs_info;
507 int count = 0;
508 int err = 0;
509
510 if (--trans->use_count) {
511 trans->block_rsv = trans->orig_rsv;
512 return 0;
513 }
514
515 btrfs_trans_release_metadata(trans, root);
516 trans->block_rsv = NULL;
517 /*
518 * the same root has to be passed to start_transaction and
519 * end_transaction. Subvolume quota depends on this.
520 */
521 WARN_ON(trans->root != root);
522 while (count < 2) {
523 unsigned long cur = trans->delayed_ref_updates;
524 trans->delayed_ref_updates = 0;
525 if (cur &&
526 trans->transaction->delayed_refs.num_heads_ready > 64) {
527 trans->delayed_ref_updates = 0;
528 btrfs_run_delayed_refs(trans, root, cur);
529 } else {
530 break;
531 }
532 count++;
533 }
534
535 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
536 should_end_transaction(trans, root)) {
537 trans->transaction->blocked = 1;
538 smp_wmb();
539 }
540
541 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
542 if (throttle) {
543 /*
544 * We may race with somebody else here so end up having
545 * to call end_transaction on ourselves again, so inc
546 * our use_count.
547 */
548 trans->use_count++;
549 return btrfs_commit_transaction(trans, root);
550 } else {
551 wake_up_process(info->transaction_kthread);
552 }
553 }
554
555 WARN_ON(cur_trans != info->running_transaction);
556 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
557 atomic_dec(&cur_trans->num_writers);
558
559 smp_mb();
560 if (waitqueue_active(&cur_trans->writer_wait))
561 wake_up(&cur_trans->writer_wait);
562 put_transaction(cur_trans);
563
564 if (current->journal_info == trans)
565 current->journal_info = NULL;
566
567 if (throttle)
568 btrfs_run_delayed_iputs(root);
569
570 if (trans->aborted ||
571 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
572 err = -EIO;
573 }
574
575 memset(trans, 0, sizeof(*trans));
576 kmem_cache_free(btrfs_trans_handle_cachep, trans);
577 return err;
578 }
579
580 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
581 struct btrfs_root *root)
582 {
583 int ret;
584
585 ret = __btrfs_end_transaction(trans, root, 0, 1);
586 if (ret)
587 return ret;
588 return 0;
589 }
590
591 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
592 struct btrfs_root *root)
593 {
594 int ret;
595
596 ret = __btrfs_end_transaction(trans, root, 1, 1);
597 if (ret)
598 return ret;
599 return 0;
600 }
601
602 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
603 struct btrfs_root *root)
604 {
605 int ret;
606
607 ret = __btrfs_end_transaction(trans, root, 0, 0);
608 if (ret)
609 return ret;
610 return 0;
611 }
612
613 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
614 struct btrfs_root *root)
615 {
616 return __btrfs_end_transaction(trans, root, 1, 1);
617 }
618
619 /*
620 * when btree blocks are allocated, they have some corresponding bits set for
621 * them in one of two extent_io trees. This is used to make sure all of
622 * those extents are sent to disk but does not wait on them
623 */
624 int btrfs_write_marked_extents(struct btrfs_root *root,
625 struct extent_io_tree *dirty_pages, int mark)
626 {
627 int err = 0;
628 int werr = 0;
629 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
630 u64 start = 0;
631 u64 end;
632
633 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
634 mark)) {
635 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
636 GFP_NOFS);
637 err = filemap_fdatawrite_range(mapping, start, end);
638 if (err)
639 werr = err;
640 cond_resched();
641 start = end + 1;
642 }
643 if (err)
644 werr = err;
645 return werr;
646 }
647
648 /*
649 * when btree blocks are allocated, they have some corresponding bits set for
650 * them in one of two extent_io trees. This is used to make sure all of
651 * those extents are on disk for transaction or log commit. We wait
652 * on all the pages and clear them from the dirty pages state tree
653 */
654 int btrfs_wait_marked_extents(struct btrfs_root *root,
655 struct extent_io_tree *dirty_pages, int mark)
656 {
657 int err = 0;
658 int werr = 0;
659 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
660 u64 start = 0;
661 u64 end;
662
663 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
664 EXTENT_NEED_WAIT)) {
665 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
666 err = filemap_fdatawait_range(mapping, start, end);
667 if (err)
668 werr = err;
669 cond_resched();
670 start = end + 1;
671 }
672 if (err)
673 werr = err;
674 return werr;
675 }
676
677 /*
678 * when btree blocks are allocated, they have some corresponding bits set for
679 * them in one of two extent_io trees. This is used to make sure all of
680 * those extents are on disk for transaction or log commit
681 */
682 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
683 struct extent_io_tree *dirty_pages, int mark)
684 {
685 int ret;
686 int ret2;
687
688 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
689 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
690
691 if (ret)
692 return ret;
693 if (ret2)
694 return ret2;
695 return 0;
696 }
697
698 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
699 struct btrfs_root *root)
700 {
701 if (!trans || !trans->transaction) {
702 struct inode *btree_inode;
703 btree_inode = root->fs_info->btree_inode;
704 return filemap_write_and_wait(btree_inode->i_mapping);
705 }
706 return btrfs_write_and_wait_marked_extents(root,
707 &trans->transaction->dirty_pages,
708 EXTENT_DIRTY);
709 }
710
711 /*
712 * this is used to update the root pointer in the tree of tree roots.
713 *
714 * But, in the case of the extent allocation tree, updating the root
715 * pointer may allocate blocks which may change the root of the extent
716 * allocation tree.
717 *
718 * So, this loops and repeats and makes sure the cowonly root didn't
719 * change while the root pointer was being updated in the metadata.
720 */
721 static int update_cowonly_root(struct btrfs_trans_handle *trans,
722 struct btrfs_root *root)
723 {
724 int ret;
725 u64 old_root_bytenr;
726 u64 old_root_used;
727 struct btrfs_root *tree_root = root->fs_info->tree_root;
728
729 old_root_used = btrfs_root_used(&root->root_item);
730 btrfs_write_dirty_block_groups(trans, root);
731
732 while (1) {
733 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
734 if (old_root_bytenr == root->node->start &&
735 old_root_used == btrfs_root_used(&root->root_item))
736 break;
737
738 btrfs_set_root_node(&root->root_item, root->node);
739 ret = btrfs_update_root(trans, tree_root,
740 &root->root_key,
741 &root->root_item);
742 if (ret)
743 return ret;
744
745 old_root_used = btrfs_root_used(&root->root_item);
746 ret = btrfs_write_dirty_block_groups(trans, root);
747 if (ret)
748 return ret;
749 }
750
751 if (root != root->fs_info->extent_root)
752 switch_commit_root(root);
753
754 return 0;
755 }
756
757 /*
758 * update all the cowonly tree roots on disk
759 *
760 * The error handling in this function may not be obvious. Any of the
761 * failures will cause the file system to go offline. We still need
762 * to clean up the delayed refs.
763 */
764 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
765 struct btrfs_root *root)
766 {
767 struct btrfs_fs_info *fs_info = root->fs_info;
768 struct list_head *next;
769 struct extent_buffer *eb;
770 int ret;
771
772 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
773 if (ret)
774 return ret;
775
776 eb = btrfs_lock_root_node(fs_info->tree_root);
777 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
778 0, &eb);
779 btrfs_tree_unlock(eb);
780 free_extent_buffer(eb);
781
782 if (ret)
783 return ret;
784
785 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
786 if (ret)
787 return ret;
788
789 ret = btrfs_run_dev_stats(trans, root->fs_info);
790 BUG_ON(ret);
791
792 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
793 next = fs_info->dirty_cowonly_roots.next;
794 list_del_init(next);
795 root = list_entry(next, struct btrfs_root, dirty_list);
796
797 ret = update_cowonly_root(trans, root);
798 if (ret)
799 return ret;
800 }
801
802 down_write(&fs_info->extent_commit_sem);
803 switch_commit_root(fs_info->extent_root);
804 up_write(&fs_info->extent_commit_sem);
805
806 return 0;
807 }
808
809 /*
810 * dead roots are old snapshots that need to be deleted. This allocates
811 * a dirty root struct and adds it into the list of dead roots that need to
812 * be deleted
813 */
814 int btrfs_add_dead_root(struct btrfs_root *root)
815 {
816 spin_lock(&root->fs_info->trans_lock);
817 list_add(&root->root_list, &root->fs_info->dead_roots);
818 spin_unlock(&root->fs_info->trans_lock);
819 return 0;
820 }
821
822 /*
823 * update all the cowonly tree roots on disk
824 */
825 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
826 struct btrfs_root *root)
827 {
828 struct btrfs_root *gang[8];
829 struct btrfs_fs_info *fs_info = root->fs_info;
830 int i;
831 int ret;
832 int err = 0;
833
834 spin_lock(&fs_info->fs_roots_radix_lock);
835 while (1) {
836 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
837 (void **)gang, 0,
838 ARRAY_SIZE(gang),
839 BTRFS_ROOT_TRANS_TAG);
840 if (ret == 0)
841 break;
842 for (i = 0; i < ret; i++) {
843 root = gang[i];
844 radix_tree_tag_clear(&fs_info->fs_roots_radix,
845 (unsigned long)root->root_key.objectid,
846 BTRFS_ROOT_TRANS_TAG);
847 spin_unlock(&fs_info->fs_roots_radix_lock);
848
849 btrfs_free_log(trans, root);
850 btrfs_update_reloc_root(trans, root);
851 btrfs_orphan_commit_root(trans, root);
852
853 btrfs_save_ino_cache(root, trans);
854
855 /* see comments in should_cow_block() */
856 root->force_cow = 0;
857 smp_wmb();
858
859 if (root->commit_root != root->node) {
860 mutex_lock(&root->fs_commit_mutex);
861 switch_commit_root(root);
862 btrfs_unpin_free_ino(root);
863 mutex_unlock(&root->fs_commit_mutex);
864
865 btrfs_set_root_node(&root->root_item,
866 root->node);
867 }
868
869 err = btrfs_update_root(trans, fs_info->tree_root,
870 &root->root_key,
871 &root->root_item);
872 spin_lock(&fs_info->fs_roots_radix_lock);
873 if (err)
874 break;
875 }
876 }
877 spin_unlock(&fs_info->fs_roots_radix_lock);
878 return err;
879 }
880
881 /*
882 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
883 * otherwise every leaf in the btree is read and defragged.
884 */
885 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
886 {
887 struct btrfs_fs_info *info = root->fs_info;
888 struct btrfs_trans_handle *trans;
889 int ret;
890 unsigned long nr;
891
892 if (xchg(&root->defrag_running, 1))
893 return 0;
894
895 while (1) {
896 trans = btrfs_start_transaction(root, 0);
897 if (IS_ERR(trans))
898 return PTR_ERR(trans);
899
900 ret = btrfs_defrag_leaves(trans, root, cacheonly);
901
902 nr = trans->blocks_used;
903 btrfs_end_transaction(trans, root);
904 btrfs_btree_balance_dirty(info->tree_root, nr);
905 cond_resched();
906
907 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
908 break;
909 }
910 root->defrag_running = 0;
911 return ret;
912 }
913
914 /*
915 * new snapshots need to be created at a very specific time in the
916 * transaction commit. This does the actual creation
917 */
918 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
919 struct btrfs_fs_info *fs_info,
920 struct btrfs_pending_snapshot *pending)
921 {
922 struct btrfs_key key;
923 struct btrfs_root_item *new_root_item;
924 struct btrfs_root *tree_root = fs_info->tree_root;
925 struct btrfs_root *root = pending->root;
926 struct btrfs_root *parent_root;
927 struct btrfs_block_rsv *rsv;
928 struct inode *parent_inode;
929 struct dentry *parent;
930 struct dentry *dentry;
931 struct extent_buffer *tmp;
932 struct extent_buffer *old;
933 int ret;
934 u64 to_reserve = 0;
935 u64 index = 0;
936 u64 objectid;
937 u64 root_flags;
938
939 rsv = trans->block_rsv;
940
941 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
942 if (!new_root_item) {
943 ret = pending->error = -ENOMEM;
944 goto fail;
945 }
946
947 ret = btrfs_find_free_objectid(tree_root, &objectid);
948 if (ret) {
949 pending->error = ret;
950 goto fail;
951 }
952
953 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
954
955 if (to_reserve > 0) {
956 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
957 to_reserve);
958 if (ret) {
959 pending->error = ret;
960 goto fail;
961 }
962 }
963
964 key.objectid = objectid;
965 key.offset = (u64)-1;
966 key.type = BTRFS_ROOT_ITEM_KEY;
967
968 trans->block_rsv = &pending->block_rsv;
969
970 dentry = pending->dentry;
971 parent = dget_parent(dentry);
972 parent_inode = parent->d_inode;
973 parent_root = BTRFS_I(parent_inode)->root;
974 record_root_in_trans(trans, parent_root);
975
976 /*
977 * insert the directory item
978 */
979 ret = btrfs_set_inode_index(parent_inode, &index);
980 BUG_ON(ret); /* -ENOMEM */
981 ret = btrfs_insert_dir_item(trans, parent_root,
982 dentry->d_name.name, dentry->d_name.len,
983 parent_inode, &key,
984 BTRFS_FT_DIR, index);
985 if (ret == -EEXIST) {
986 pending->error = -EEXIST;
987 dput(parent);
988 goto fail;
989 } else if (ret) {
990 goto abort_trans_dput;
991 }
992
993 btrfs_i_size_write(parent_inode, parent_inode->i_size +
994 dentry->d_name.len * 2);
995 ret = btrfs_update_inode(trans, parent_root, parent_inode);
996 if (ret)
997 goto abort_trans_dput;
998
999 /*
1000 * pull in the delayed directory update
1001 * and the delayed inode item
1002 * otherwise we corrupt the FS during
1003 * snapshot
1004 */
1005 ret = btrfs_run_delayed_items(trans, root);
1006 if (ret) { /* Transaction aborted */
1007 dput(parent);
1008 goto fail;
1009 }
1010
1011 record_root_in_trans(trans, root);
1012 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1013 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1014 btrfs_check_and_init_root_item(new_root_item);
1015
1016 root_flags = btrfs_root_flags(new_root_item);
1017 if (pending->readonly)
1018 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1019 else
1020 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1021 btrfs_set_root_flags(new_root_item, root_flags);
1022
1023 old = btrfs_lock_root_node(root);
1024 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1025 if (ret) {
1026 btrfs_tree_unlock(old);
1027 free_extent_buffer(old);
1028 goto abort_trans_dput;
1029 }
1030
1031 btrfs_set_lock_blocking(old);
1032
1033 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1034 /* clean up in any case */
1035 btrfs_tree_unlock(old);
1036 free_extent_buffer(old);
1037 if (ret)
1038 goto abort_trans_dput;
1039
1040 /* see comments in should_cow_block() */
1041 root->force_cow = 1;
1042 smp_wmb();
1043
1044 btrfs_set_root_node(new_root_item, tmp);
1045 /* record when the snapshot was created in key.offset */
1046 key.offset = trans->transid;
1047 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1048 btrfs_tree_unlock(tmp);
1049 free_extent_buffer(tmp);
1050 if (ret)
1051 goto abort_trans_dput;
1052
1053 /*
1054 * insert root back/forward references
1055 */
1056 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1057 parent_root->root_key.objectid,
1058 btrfs_ino(parent_inode), index,
1059 dentry->d_name.name, dentry->d_name.len);
1060 dput(parent);
1061 if (ret)
1062 goto fail;
1063
1064 key.offset = (u64)-1;
1065 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1066 if (IS_ERR(pending->snap)) {
1067 ret = PTR_ERR(pending->snap);
1068 goto abort_trans;
1069 }
1070
1071 ret = btrfs_reloc_post_snapshot(trans, pending);
1072 if (ret)
1073 goto abort_trans;
1074 ret = 0;
1075 fail:
1076 kfree(new_root_item);
1077 trans->block_rsv = rsv;
1078 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1079 return ret;
1080
1081 abort_trans_dput:
1082 dput(parent);
1083 abort_trans:
1084 btrfs_abort_transaction(trans, root, ret);
1085 goto fail;
1086 }
1087
1088 /*
1089 * create all the snapshots we've scheduled for creation
1090 */
1091 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1092 struct btrfs_fs_info *fs_info)
1093 {
1094 struct btrfs_pending_snapshot *pending;
1095 struct list_head *head = &trans->transaction->pending_snapshots;
1096
1097 list_for_each_entry(pending, head, list)
1098 create_pending_snapshot(trans, fs_info, pending);
1099 return 0;
1100 }
1101
1102 static void update_super_roots(struct btrfs_root *root)
1103 {
1104 struct btrfs_root_item *root_item;
1105 struct btrfs_super_block *super;
1106
1107 super = root->fs_info->super_copy;
1108
1109 root_item = &root->fs_info->chunk_root->root_item;
1110 super->chunk_root = root_item->bytenr;
1111 super->chunk_root_generation = root_item->generation;
1112 super->chunk_root_level = root_item->level;
1113
1114 root_item = &root->fs_info->tree_root->root_item;
1115 super->root = root_item->bytenr;
1116 super->generation = root_item->generation;
1117 super->root_level = root_item->level;
1118 if (btrfs_test_opt(root, SPACE_CACHE))
1119 super->cache_generation = root_item->generation;
1120 }
1121
1122 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1123 {
1124 int ret = 0;
1125 spin_lock(&info->trans_lock);
1126 if (info->running_transaction)
1127 ret = info->running_transaction->in_commit;
1128 spin_unlock(&info->trans_lock);
1129 return ret;
1130 }
1131
1132 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1133 {
1134 int ret = 0;
1135 spin_lock(&info->trans_lock);
1136 if (info->running_transaction)
1137 ret = info->running_transaction->blocked;
1138 spin_unlock(&info->trans_lock);
1139 return ret;
1140 }
1141
1142 /*
1143 * wait for the current transaction commit to start and block subsequent
1144 * transaction joins
1145 */
1146 static void wait_current_trans_commit_start(struct btrfs_root *root,
1147 struct btrfs_transaction *trans)
1148 {
1149 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1150 }
1151
1152 /*
1153 * wait for the current transaction to start and then become unblocked.
1154 * caller holds ref.
1155 */
1156 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1157 struct btrfs_transaction *trans)
1158 {
1159 wait_event(root->fs_info->transaction_wait,
1160 trans->commit_done || (trans->in_commit && !trans->blocked));
1161 }
1162
1163 /*
1164 * commit transactions asynchronously. once btrfs_commit_transaction_async
1165 * returns, any subsequent transaction will not be allowed to join.
1166 */
1167 struct btrfs_async_commit {
1168 struct btrfs_trans_handle *newtrans;
1169 struct btrfs_root *root;
1170 struct delayed_work work;
1171 };
1172
1173 static void do_async_commit(struct work_struct *work)
1174 {
1175 struct btrfs_async_commit *ac =
1176 container_of(work, struct btrfs_async_commit, work.work);
1177
1178 btrfs_commit_transaction(ac->newtrans, ac->root);
1179 kfree(ac);
1180 }
1181
1182 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 int wait_for_unblock)
1185 {
1186 struct btrfs_async_commit *ac;
1187 struct btrfs_transaction *cur_trans;
1188
1189 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1190 if (!ac)
1191 return -ENOMEM;
1192
1193 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1194 ac->root = root;
1195 ac->newtrans = btrfs_join_transaction(root);
1196 if (IS_ERR(ac->newtrans)) {
1197 int err = PTR_ERR(ac->newtrans);
1198 kfree(ac);
1199 return err;
1200 }
1201
1202 /* take transaction reference */
1203 cur_trans = trans->transaction;
1204 atomic_inc(&cur_trans->use_count);
1205
1206 btrfs_end_transaction(trans, root);
1207 schedule_delayed_work(&ac->work, 0);
1208
1209 /* wait for transaction to start and unblock */
1210 if (wait_for_unblock)
1211 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1212 else
1213 wait_current_trans_commit_start(root, cur_trans);
1214
1215 if (current->journal_info == trans)
1216 current->journal_info = NULL;
1217
1218 put_transaction(cur_trans);
1219 return 0;
1220 }
1221
1222
1223 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1224 struct btrfs_root *root, int err)
1225 {
1226 struct btrfs_transaction *cur_trans = trans->transaction;
1227
1228 WARN_ON(trans->use_count > 1);
1229
1230 btrfs_abort_transaction(trans, root, err);
1231
1232 spin_lock(&root->fs_info->trans_lock);
1233 list_del_init(&cur_trans->list);
1234 if (cur_trans == root->fs_info->running_transaction) {
1235 root->fs_info->running_transaction = NULL;
1236 root->fs_info->trans_no_join = 0;
1237 }
1238 spin_unlock(&root->fs_info->trans_lock);
1239
1240 btrfs_cleanup_one_transaction(trans->transaction, root);
1241
1242 put_transaction(cur_trans);
1243 put_transaction(cur_trans);
1244
1245 trace_btrfs_transaction_commit(root);
1246
1247 btrfs_scrub_continue(root);
1248
1249 if (current->journal_info == trans)
1250 current->journal_info = NULL;
1251
1252 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1253 }
1254
1255 /*
1256 * btrfs_transaction state sequence:
1257 * in_commit = 0, blocked = 0 (initial)
1258 * in_commit = 1, blocked = 1
1259 * blocked = 0
1260 * commit_done = 1
1261 */
1262 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root)
1264 {
1265 unsigned long joined = 0;
1266 struct btrfs_transaction *cur_trans = trans->transaction;
1267 struct btrfs_transaction *prev_trans = NULL;
1268 DEFINE_WAIT(wait);
1269 int ret = -EIO;
1270 int should_grow = 0;
1271 unsigned long now = get_seconds();
1272 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1273
1274 btrfs_run_ordered_operations(root, 0);
1275
1276 btrfs_trans_release_metadata(trans, root);
1277 trans->block_rsv = NULL;
1278
1279 if (cur_trans->aborted)
1280 goto cleanup_transaction;
1281
1282 /* make a pass through all the delayed refs we have so far
1283 * any runnings procs may add more while we are here
1284 */
1285 ret = btrfs_run_delayed_refs(trans, root, 0);
1286 if (ret)
1287 goto cleanup_transaction;
1288
1289 cur_trans = trans->transaction;
1290
1291 /*
1292 * set the flushing flag so procs in this transaction have to
1293 * start sending their work down.
1294 */
1295 cur_trans->delayed_refs.flushing = 1;
1296
1297 ret = btrfs_run_delayed_refs(trans, root, 0);
1298 if (ret)
1299 goto cleanup_transaction;
1300
1301 spin_lock(&cur_trans->commit_lock);
1302 if (cur_trans->in_commit) {
1303 spin_unlock(&cur_trans->commit_lock);
1304 atomic_inc(&cur_trans->use_count);
1305 ret = btrfs_end_transaction(trans, root);
1306
1307 wait_for_commit(root, cur_trans);
1308
1309 put_transaction(cur_trans);
1310
1311 return ret;
1312 }
1313
1314 trans->transaction->in_commit = 1;
1315 trans->transaction->blocked = 1;
1316 spin_unlock(&cur_trans->commit_lock);
1317 wake_up(&root->fs_info->transaction_blocked_wait);
1318
1319 spin_lock(&root->fs_info->trans_lock);
1320 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1321 prev_trans = list_entry(cur_trans->list.prev,
1322 struct btrfs_transaction, list);
1323 if (!prev_trans->commit_done) {
1324 atomic_inc(&prev_trans->use_count);
1325 spin_unlock(&root->fs_info->trans_lock);
1326
1327 wait_for_commit(root, prev_trans);
1328
1329 put_transaction(prev_trans);
1330 } else {
1331 spin_unlock(&root->fs_info->trans_lock);
1332 }
1333 } else {
1334 spin_unlock(&root->fs_info->trans_lock);
1335 }
1336
1337 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1338 should_grow = 1;
1339
1340 do {
1341 int snap_pending = 0;
1342
1343 joined = cur_trans->num_joined;
1344 if (!list_empty(&trans->transaction->pending_snapshots))
1345 snap_pending = 1;
1346
1347 WARN_ON(cur_trans != trans->transaction);
1348
1349 if (flush_on_commit || snap_pending) {
1350 btrfs_start_delalloc_inodes(root, 1);
1351 btrfs_wait_ordered_extents(root, 0, 1);
1352 }
1353
1354 ret = btrfs_run_delayed_items(trans, root);
1355 if (ret)
1356 goto cleanup_transaction;
1357
1358 /*
1359 * rename don't use btrfs_join_transaction, so, once we
1360 * set the transaction to blocked above, we aren't going
1361 * to get any new ordered operations. We can safely run
1362 * it here and no for sure that nothing new will be added
1363 * to the list
1364 */
1365 btrfs_run_ordered_operations(root, 1);
1366
1367 prepare_to_wait(&cur_trans->writer_wait, &wait,
1368 TASK_UNINTERRUPTIBLE);
1369
1370 if (atomic_read(&cur_trans->num_writers) > 1)
1371 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1372 else if (should_grow)
1373 schedule_timeout(1);
1374
1375 finish_wait(&cur_trans->writer_wait, &wait);
1376 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1377 (should_grow && cur_trans->num_joined != joined));
1378
1379 /*
1380 * Ok now we need to make sure to block out any other joins while we
1381 * commit the transaction. We could have started a join before setting
1382 * no_join so make sure to wait for num_writers to == 1 again.
1383 */
1384 spin_lock(&root->fs_info->trans_lock);
1385 root->fs_info->trans_no_join = 1;
1386 spin_unlock(&root->fs_info->trans_lock);
1387 wait_event(cur_trans->writer_wait,
1388 atomic_read(&cur_trans->num_writers) == 1);
1389
1390 /*
1391 * the reloc mutex makes sure that we stop
1392 * the balancing code from coming in and moving
1393 * extents around in the middle of the commit
1394 */
1395 mutex_lock(&root->fs_info->reloc_mutex);
1396
1397 ret = btrfs_run_delayed_items(trans, root);
1398 if (ret) {
1399 mutex_unlock(&root->fs_info->reloc_mutex);
1400 goto cleanup_transaction;
1401 }
1402
1403 ret = create_pending_snapshots(trans, root->fs_info);
1404 if (ret) {
1405 mutex_unlock(&root->fs_info->reloc_mutex);
1406 goto cleanup_transaction;
1407 }
1408
1409 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1410 if (ret) {
1411 mutex_unlock(&root->fs_info->reloc_mutex);
1412 goto cleanup_transaction;
1413 }
1414
1415 /*
1416 * make sure none of the code above managed to slip in a
1417 * delayed item
1418 */
1419 btrfs_assert_delayed_root_empty(root);
1420
1421 WARN_ON(cur_trans != trans->transaction);
1422
1423 btrfs_scrub_pause(root);
1424 /* btrfs_commit_tree_roots is responsible for getting the
1425 * various roots consistent with each other. Every pointer
1426 * in the tree of tree roots has to point to the most up to date
1427 * root for every subvolume and other tree. So, we have to keep
1428 * the tree logging code from jumping in and changing any
1429 * of the trees.
1430 *
1431 * At this point in the commit, there can't be any tree-log
1432 * writers, but a little lower down we drop the trans mutex
1433 * and let new people in. By holding the tree_log_mutex
1434 * from now until after the super is written, we avoid races
1435 * with the tree-log code.
1436 */
1437 mutex_lock(&root->fs_info->tree_log_mutex);
1438
1439 ret = commit_fs_roots(trans, root);
1440 if (ret) {
1441 mutex_unlock(&root->fs_info->tree_log_mutex);
1442 mutex_unlock(&root->fs_info->reloc_mutex);
1443 goto cleanup_transaction;
1444 }
1445
1446 /* commit_fs_roots gets rid of all the tree log roots, it is now
1447 * safe to free the root of tree log roots
1448 */
1449 btrfs_free_log_root_tree(trans, root->fs_info);
1450
1451 ret = commit_cowonly_roots(trans, root);
1452 if (ret) {
1453 mutex_unlock(&root->fs_info->tree_log_mutex);
1454 mutex_unlock(&root->fs_info->reloc_mutex);
1455 goto cleanup_transaction;
1456 }
1457
1458 btrfs_prepare_extent_commit(trans, root);
1459
1460 cur_trans = root->fs_info->running_transaction;
1461
1462 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1463 root->fs_info->tree_root->node);
1464 switch_commit_root(root->fs_info->tree_root);
1465
1466 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1467 root->fs_info->chunk_root->node);
1468 switch_commit_root(root->fs_info->chunk_root);
1469
1470 update_super_roots(root);
1471
1472 if (!root->fs_info->log_root_recovering) {
1473 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1474 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1475 }
1476
1477 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1478 sizeof(*root->fs_info->super_copy));
1479
1480 trans->transaction->blocked = 0;
1481 spin_lock(&root->fs_info->trans_lock);
1482 root->fs_info->running_transaction = NULL;
1483 root->fs_info->trans_no_join = 0;
1484 spin_unlock(&root->fs_info->trans_lock);
1485 mutex_unlock(&root->fs_info->reloc_mutex);
1486
1487 wake_up(&root->fs_info->transaction_wait);
1488
1489 ret = btrfs_write_and_wait_transaction(trans, root);
1490 if (ret) {
1491 btrfs_error(root->fs_info, ret,
1492 "Error while writing out transaction.");
1493 mutex_unlock(&root->fs_info->tree_log_mutex);
1494 goto cleanup_transaction;
1495 }
1496
1497 ret = write_ctree_super(trans, root, 0);
1498 if (ret) {
1499 mutex_unlock(&root->fs_info->tree_log_mutex);
1500 goto cleanup_transaction;
1501 }
1502
1503 /*
1504 * the super is written, we can safely allow the tree-loggers
1505 * to go about their business
1506 */
1507 mutex_unlock(&root->fs_info->tree_log_mutex);
1508
1509 btrfs_finish_extent_commit(trans, root);
1510
1511 cur_trans->commit_done = 1;
1512
1513 root->fs_info->last_trans_committed = cur_trans->transid;
1514
1515 wake_up(&cur_trans->commit_wait);
1516
1517 spin_lock(&root->fs_info->trans_lock);
1518 list_del_init(&cur_trans->list);
1519 spin_unlock(&root->fs_info->trans_lock);
1520
1521 put_transaction(cur_trans);
1522 put_transaction(cur_trans);
1523
1524 trace_btrfs_transaction_commit(root);
1525
1526 btrfs_scrub_continue(root);
1527
1528 if (current->journal_info == trans)
1529 current->journal_info = NULL;
1530
1531 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1532
1533 if (current != root->fs_info->transaction_kthread)
1534 btrfs_run_delayed_iputs(root);
1535
1536 return ret;
1537
1538 cleanup_transaction:
1539 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1540 // WARN_ON(1);
1541 if (current->journal_info == trans)
1542 current->journal_info = NULL;
1543 cleanup_transaction(trans, root, ret);
1544
1545 return ret;
1546 }
1547
1548 /*
1549 * interface function to delete all the snapshots we have scheduled for deletion
1550 */
1551 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1552 {
1553 LIST_HEAD(list);
1554 struct btrfs_fs_info *fs_info = root->fs_info;
1555
1556 spin_lock(&fs_info->trans_lock);
1557 list_splice_init(&fs_info->dead_roots, &list);
1558 spin_unlock(&fs_info->trans_lock);
1559
1560 while (!list_empty(&list)) {
1561 int ret;
1562
1563 root = list_entry(list.next, struct btrfs_root, root_list);
1564 list_del(&root->root_list);
1565
1566 btrfs_kill_all_delayed_nodes(root);
1567
1568 if (btrfs_header_backref_rev(root->node) <
1569 BTRFS_MIXED_BACKREF_REV)
1570 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1571 else
1572 ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1573 BUG_ON(ret < 0);
1574 }
1575 return 0;
1576 }
This page took 0.082622 seconds and 6 git commands to generate.