Merge tag 'pinctrl-fixes-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 void put_transaction(struct btrfs_transaction *transaction)
38 {
39 WARN_ON(atomic_read(&transaction->use_count) == 0);
40 if (atomic_dec_and_test(&transaction->use_count)) {
41 BUG_ON(!list_empty(&transaction->list));
42 WARN_ON(transaction->delayed_refs.root.rb_node);
43 memset(transaction, 0, sizeof(*transaction));
44 kmem_cache_free(btrfs_transaction_cachep, transaction);
45 }
46 }
47
48 static noinline void switch_commit_root(struct btrfs_root *root)
49 {
50 free_extent_buffer(root->commit_root);
51 root->commit_root = btrfs_root_node(root);
52 }
53
54 /*
55 * either allocate a new transaction or hop into the existing one
56 */
57 static noinline int join_transaction(struct btrfs_root *root, int type)
58 {
59 struct btrfs_transaction *cur_trans;
60 struct btrfs_fs_info *fs_info = root->fs_info;
61
62 spin_lock(&fs_info->trans_lock);
63 loop:
64 /* The file system has been taken offline. No new transactions. */
65 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
66 spin_unlock(&fs_info->trans_lock);
67 return -EROFS;
68 }
69
70 if (fs_info->trans_no_join) {
71 /*
72 * If we are JOIN_NOLOCK we're already committing a current
73 * transaction, we just need a handle to deal with something
74 * when committing the transaction, such as inode cache and
75 * space cache. It is a special case.
76 */
77 if (type != TRANS_JOIN_NOLOCK) {
78 spin_unlock(&fs_info->trans_lock);
79 return -EBUSY;
80 }
81 }
82
83 cur_trans = fs_info->running_transaction;
84 if (cur_trans) {
85 if (cur_trans->aborted) {
86 spin_unlock(&fs_info->trans_lock);
87 return cur_trans->aborted;
88 }
89 atomic_inc(&cur_trans->use_count);
90 atomic_inc(&cur_trans->num_writers);
91 cur_trans->num_joined++;
92 spin_unlock(&fs_info->trans_lock);
93 return 0;
94 }
95 spin_unlock(&fs_info->trans_lock);
96
97 /*
98 * If we are ATTACH, we just want to catch the current transaction,
99 * and commit it. If there is no transaction, just return ENOENT.
100 */
101 if (type == TRANS_ATTACH)
102 return -ENOENT;
103
104 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
105 if (!cur_trans)
106 return -ENOMEM;
107
108 spin_lock(&fs_info->trans_lock);
109 if (fs_info->running_transaction) {
110 /*
111 * someone started a transaction after we unlocked. Make sure
112 * to redo the trans_no_join checks above
113 */
114 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
115 cur_trans = fs_info->running_transaction;
116 goto loop;
117 } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
118 spin_unlock(&fs_info->trans_lock);
119 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
120 return -EROFS;
121 }
122
123 atomic_set(&cur_trans->num_writers, 1);
124 cur_trans->num_joined = 0;
125 init_waitqueue_head(&cur_trans->writer_wait);
126 init_waitqueue_head(&cur_trans->commit_wait);
127 cur_trans->in_commit = 0;
128 cur_trans->blocked = 0;
129 /*
130 * One for this trans handle, one so it will live on until we
131 * commit the transaction.
132 */
133 atomic_set(&cur_trans->use_count, 2);
134 cur_trans->commit_done = 0;
135 cur_trans->start_time = get_seconds();
136
137 cur_trans->delayed_refs.root = RB_ROOT;
138 cur_trans->delayed_refs.num_entries = 0;
139 cur_trans->delayed_refs.num_heads_ready = 0;
140 cur_trans->delayed_refs.num_heads = 0;
141 cur_trans->delayed_refs.flushing = 0;
142 cur_trans->delayed_refs.run_delayed_start = 0;
143
144 /*
145 * although the tree mod log is per file system and not per transaction,
146 * the log must never go across transaction boundaries.
147 */
148 smp_mb();
149 if (!list_empty(&fs_info->tree_mod_seq_list))
150 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
151 "creating a fresh transaction\n");
152 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
153 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
154 "creating a fresh transaction\n");
155 atomic_set(&fs_info->tree_mod_seq, 0);
156
157 spin_lock_init(&cur_trans->commit_lock);
158 spin_lock_init(&cur_trans->delayed_refs.lock);
159
160 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
161 list_add_tail(&cur_trans->list, &fs_info->trans_list);
162 extent_io_tree_init(&cur_trans->dirty_pages,
163 fs_info->btree_inode->i_mapping);
164 fs_info->generation++;
165 cur_trans->transid = fs_info->generation;
166 fs_info->running_transaction = cur_trans;
167 cur_trans->aborted = 0;
168 spin_unlock(&fs_info->trans_lock);
169
170 return 0;
171 }
172
173 /*
174 * this does all the record keeping required to make sure that a reference
175 * counted root is properly recorded in a given transaction. This is required
176 * to make sure the old root from before we joined the transaction is deleted
177 * when the transaction commits
178 */
179 static int record_root_in_trans(struct btrfs_trans_handle *trans,
180 struct btrfs_root *root)
181 {
182 if (root->ref_cows && root->last_trans < trans->transid) {
183 WARN_ON(root == root->fs_info->extent_root);
184 WARN_ON(root->commit_root != root->node);
185
186 /*
187 * see below for in_trans_setup usage rules
188 * we have the reloc mutex held now, so there
189 * is only one writer in this function
190 */
191 root->in_trans_setup = 1;
192
193 /* make sure readers find in_trans_setup before
194 * they find our root->last_trans update
195 */
196 smp_wmb();
197
198 spin_lock(&root->fs_info->fs_roots_radix_lock);
199 if (root->last_trans == trans->transid) {
200 spin_unlock(&root->fs_info->fs_roots_radix_lock);
201 return 0;
202 }
203 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
204 (unsigned long)root->root_key.objectid,
205 BTRFS_ROOT_TRANS_TAG);
206 spin_unlock(&root->fs_info->fs_roots_radix_lock);
207 root->last_trans = trans->transid;
208
209 /* this is pretty tricky. We don't want to
210 * take the relocation lock in btrfs_record_root_in_trans
211 * unless we're really doing the first setup for this root in
212 * this transaction.
213 *
214 * Normally we'd use root->last_trans as a flag to decide
215 * if we want to take the expensive mutex.
216 *
217 * But, we have to set root->last_trans before we
218 * init the relocation root, otherwise, we trip over warnings
219 * in ctree.c. The solution used here is to flag ourselves
220 * with root->in_trans_setup. When this is 1, we're still
221 * fixing up the reloc trees and everyone must wait.
222 *
223 * When this is zero, they can trust root->last_trans and fly
224 * through btrfs_record_root_in_trans without having to take the
225 * lock. smp_wmb() makes sure that all the writes above are
226 * done before we pop in the zero below
227 */
228 btrfs_init_reloc_root(trans, root);
229 smp_wmb();
230 root->in_trans_setup = 0;
231 }
232 return 0;
233 }
234
235
236 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
237 struct btrfs_root *root)
238 {
239 if (!root->ref_cows)
240 return 0;
241
242 /*
243 * see record_root_in_trans for comments about in_trans_setup usage
244 * and barriers
245 */
246 smp_rmb();
247 if (root->last_trans == trans->transid &&
248 !root->in_trans_setup)
249 return 0;
250
251 mutex_lock(&root->fs_info->reloc_mutex);
252 record_root_in_trans(trans, root);
253 mutex_unlock(&root->fs_info->reloc_mutex);
254
255 return 0;
256 }
257
258 /* wait for commit against the current transaction to become unblocked
259 * when this is done, it is safe to start a new transaction, but the current
260 * transaction might not be fully on disk.
261 */
262 static void wait_current_trans(struct btrfs_root *root)
263 {
264 struct btrfs_transaction *cur_trans;
265
266 spin_lock(&root->fs_info->trans_lock);
267 cur_trans = root->fs_info->running_transaction;
268 if (cur_trans && cur_trans->blocked) {
269 atomic_inc(&cur_trans->use_count);
270 spin_unlock(&root->fs_info->trans_lock);
271
272 wait_event(root->fs_info->transaction_wait,
273 !cur_trans->blocked);
274 put_transaction(cur_trans);
275 } else {
276 spin_unlock(&root->fs_info->trans_lock);
277 }
278 }
279
280 static int may_wait_transaction(struct btrfs_root *root, int type)
281 {
282 if (root->fs_info->log_root_recovering)
283 return 0;
284
285 if (type == TRANS_USERSPACE)
286 return 1;
287
288 if (type == TRANS_START &&
289 !atomic_read(&root->fs_info->open_ioctl_trans))
290 return 1;
291
292 return 0;
293 }
294
295 static struct btrfs_trans_handle *
296 start_transaction(struct btrfs_root *root, u64 num_items, int type,
297 enum btrfs_reserve_flush_enum flush)
298 {
299 struct btrfs_trans_handle *h;
300 struct btrfs_transaction *cur_trans;
301 u64 num_bytes = 0;
302 int ret;
303 u64 qgroup_reserved = 0;
304
305 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
306 return ERR_PTR(-EROFS);
307
308 if (current->journal_info) {
309 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
310 h = current->journal_info;
311 h->use_count++;
312 WARN_ON(h->use_count > 2);
313 h->orig_rsv = h->block_rsv;
314 h->block_rsv = NULL;
315 goto got_it;
316 }
317
318 /*
319 * Do the reservation before we join the transaction so we can do all
320 * the appropriate flushing if need be.
321 */
322 if (num_items > 0 && root != root->fs_info->chunk_root) {
323 if (root->fs_info->quota_enabled &&
324 is_fstree(root->root_key.objectid)) {
325 qgroup_reserved = num_items * root->leafsize;
326 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
327 if (ret)
328 return ERR_PTR(ret);
329 }
330
331 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
332 ret = btrfs_block_rsv_add(root,
333 &root->fs_info->trans_block_rsv,
334 num_bytes, flush);
335 if (ret)
336 return ERR_PTR(ret);
337 }
338 again:
339 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
340 if (!h)
341 return ERR_PTR(-ENOMEM);
342
343 /*
344 * If we are JOIN_NOLOCK we're already committing a transaction and
345 * waiting on this guy, so we don't need to do the sb_start_intwrite
346 * because we're already holding a ref. We need this because we could
347 * have raced in and did an fsync() on a file which can kick a commit
348 * and then we deadlock with somebody doing a freeze.
349 *
350 * If we are ATTACH, it means we just want to catch the current
351 * transaction and commit it, so we needn't do sb_start_intwrite().
352 */
353 if (type < TRANS_JOIN_NOLOCK)
354 sb_start_intwrite(root->fs_info->sb);
355
356 if (may_wait_transaction(root, type))
357 wait_current_trans(root);
358
359 do {
360 ret = join_transaction(root, type);
361 if (ret == -EBUSY)
362 wait_current_trans(root);
363 } while (ret == -EBUSY);
364
365 if (ret < 0) {
366 /* We must get the transaction if we are JOIN_NOLOCK. */
367 BUG_ON(type == TRANS_JOIN_NOLOCK);
368
369 if (type < TRANS_JOIN_NOLOCK)
370 sb_end_intwrite(root->fs_info->sb);
371 kmem_cache_free(btrfs_trans_handle_cachep, h);
372 return ERR_PTR(ret);
373 }
374
375 cur_trans = root->fs_info->running_transaction;
376
377 h->transid = cur_trans->transid;
378 h->transaction = cur_trans;
379 h->blocks_used = 0;
380 h->bytes_reserved = 0;
381 h->root = root;
382 h->delayed_ref_updates = 0;
383 h->use_count = 1;
384 h->adding_csums = 0;
385 h->block_rsv = NULL;
386 h->orig_rsv = NULL;
387 h->aborted = 0;
388 h->qgroup_reserved = qgroup_reserved;
389 h->delayed_ref_elem.seq = 0;
390 h->type = type;
391 INIT_LIST_HEAD(&h->qgroup_ref_list);
392 INIT_LIST_HEAD(&h->new_bgs);
393
394 smp_mb();
395 if (cur_trans->blocked && may_wait_transaction(root, type)) {
396 btrfs_commit_transaction(h, root);
397 goto again;
398 }
399
400 if (num_bytes) {
401 trace_btrfs_space_reservation(root->fs_info, "transaction",
402 h->transid, num_bytes, 1);
403 h->block_rsv = &root->fs_info->trans_block_rsv;
404 h->bytes_reserved = num_bytes;
405 }
406
407 got_it:
408 btrfs_record_root_in_trans(h, root);
409
410 if (!current->journal_info && type != TRANS_USERSPACE)
411 current->journal_info = h;
412 return h;
413 }
414
415 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
416 int num_items)
417 {
418 return start_transaction(root, num_items, TRANS_START,
419 BTRFS_RESERVE_FLUSH_ALL);
420 }
421
422 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
423 struct btrfs_root *root, int num_items)
424 {
425 return start_transaction(root, num_items, TRANS_START,
426 BTRFS_RESERVE_FLUSH_LIMIT);
427 }
428
429 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
430 {
431 return start_transaction(root, 0, TRANS_JOIN, 0);
432 }
433
434 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
435 {
436 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
437 }
438
439 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
440 {
441 return start_transaction(root, 0, TRANS_USERSPACE, 0);
442 }
443
444 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
445 {
446 return start_transaction(root, 0, TRANS_ATTACH, 0);
447 }
448
449 /* wait for a transaction commit to be fully complete */
450 static noinline void wait_for_commit(struct btrfs_root *root,
451 struct btrfs_transaction *commit)
452 {
453 wait_event(commit->commit_wait, commit->commit_done);
454 }
455
456 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
457 {
458 struct btrfs_transaction *cur_trans = NULL, *t;
459 int ret = 0;
460
461 if (transid) {
462 if (transid <= root->fs_info->last_trans_committed)
463 goto out;
464
465 ret = -EINVAL;
466 /* find specified transaction */
467 spin_lock(&root->fs_info->trans_lock);
468 list_for_each_entry(t, &root->fs_info->trans_list, list) {
469 if (t->transid == transid) {
470 cur_trans = t;
471 atomic_inc(&cur_trans->use_count);
472 ret = 0;
473 break;
474 }
475 if (t->transid > transid) {
476 ret = 0;
477 break;
478 }
479 }
480 spin_unlock(&root->fs_info->trans_lock);
481 /* The specified transaction doesn't exist */
482 if (!cur_trans)
483 goto out;
484 } else {
485 /* find newest transaction that is committing | committed */
486 spin_lock(&root->fs_info->trans_lock);
487 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
488 list) {
489 if (t->in_commit) {
490 if (t->commit_done)
491 break;
492 cur_trans = t;
493 atomic_inc(&cur_trans->use_count);
494 break;
495 }
496 }
497 spin_unlock(&root->fs_info->trans_lock);
498 if (!cur_trans)
499 goto out; /* nothing committing|committed */
500 }
501
502 wait_for_commit(root, cur_trans);
503 put_transaction(cur_trans);
504 out:
505 return ret;
506 }
507
508 void btrfs_throttle(struct btrfs_root *root)
509 {
510 if (!atomic_read(&root->fs_info->open_ioctl_trans))
511 wait_current_trans(root);
512 }
513
514 static int should_end_transaction(struct btrfs_trans_handle *trans,
515 struct btrfs_root *root)
516 {
517 int ret;
518
519 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
520 return ret ? 1 : 0;
521 }
522
523 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
524 struct btrfs_root *root)
525 {
526 struct btrfs_transaction *cur_trans = trans->transaction;
527 int updates;
528 int err;
529
530 smp_mb();
531 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
532 return 1;
533
534 updates = trans->delayed_ref_updates;
535 trans->delayed_ref_updates = 0;
536 if (updates) {
537 err = btrfs_run_delayed_refs(trans, root, updates);
538 if (err) /* Error code will also eval true */
539 return err;
540 }
541
542 return should_end_transaction(trans, root);
543 }
544
545 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
546 struct btrfs_root *root, int throttle)
547 {
548 struct btrfs_transaction *cur_trans = trans->transaction;
549 struct btrfs_fs_info *info = root->fs_info;
550 int count = 0;
551 int lock = (trans->type != TRANS_JOIN_NOLOCK);
552 int err = 0;
553
554 if (--trans->use_count) {
555 trans->block_rsv = trans->orig_rsv;
556 return 0;
557 }
558
559 /*
560 * do the qgroup accounting as early as possible
561 */
562 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
563
564 btrfs_trans_release_metadata(trans, root);
565 trans->block_rsv = NULL;
566 /*
567 * the same root has to be passed to start_transaction and
568 * end_transaction. Subvolume quota depends on this.
569 */
570 WARN_ON(trans->root != root);
571
572 if (trans->qgroup_reserved) {
573 btrfs_qgroup_free(root, trans->qgroup_reserved);
574 trans->qgroup_reserved = 0;
575 }
576
577 if (!list_empty(&trans->new_bgs))
578 btrfs_create_pending_block_groups(trans, root);
579
580 while (count < 2) {
581 unsigned long cur = trans->delayed_ref_updates;
582 trans->delayed_ref_updates = 0;
583 if (cur &&
584 trans->transaction->delayed_refs.num_heads_ready > 64) {
585 trans->delayed_ref_updates = 0;
586 btrfs_run_delayed_refs(trans, root, cur);
587 } else {
588 break;
589 }
590 count++;
591 }
592 btrfs_trans_release_metadata(trans, root);
593 trans->block_rsv = NULL;
594
595 if (!list_empty(&trans->new_bgs))
596 btrfs_create_pending_block_groups(trans, root);
597
598 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
599 should_end_transaction(trans, root)) {
600 trans->transaction->blocked = 1;
601 smp_wmb();
602 }
603
604 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
605 if (throttle) {
606 /*
607 * We may race with somebody else here so end up having
608 * to call end_transaction on ourselves again, so inc
609 * our use_count.
610 */
611 trans->use_count++;
612 return btrfs_commit_transaction(trans, root);
613 } else {
614 wake_up_process(info->transaction_kthread);
615 }
616 }
617
618 if (trans->type < TRANS_JOIN_NOLOCK)
619 sb_end_intwrite(root->fs_info->sb);
620
621 WARN_ON(cur_trans != info->running_transaction);
622 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
623 atomic_dec(&cur_trans->num_writers);
624
625 smp_mb();
626 if (waitqueue_active(&cur_trans->writer_wait))
627 wake_up(&cur_trans->writer_wait);
628 put_transaction(cur_trans);
629
630 if (current->journal_info == trans)
631 current->journal_info = NULL;
632
633 if (throttle)
634 btrfs_run_delayed_iputs(root);
635
636 if (trans->aborted ||
637 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
638 err = -EIO;
639 }
640 assert_qgroups_uptodate(trans);
641
642 memset(trans, 0, sizeof(*trans));
643 kmem_cache_free(btrfs_trans_handle_cachep, trans);
644 return err;
645 }
646
647 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
648 struct btrfs_root *root)
649 {
650 int ret;
651
652 ret = __btrfs_end_transaction(trans, root, 0);
653 if (ret)
654 return ret;
655 return 0;
656 }
657
658 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
659 struct btrfs_root *root)
660 {
661 int ret;
662
663 ret = __btrfs_end_transaction(trans, root, 1);
664 if (ret)
665 return ret;
666 return 0;
667 }
668
669 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
670 struct btrfs_root *root)
671 {
672 return __btrfs_end_transaction(trans, root, 1);
673 }
674
675 /*
676 * when btree blocks are allocated, they have some corresponding bits set for
677 * them in one of two extent_io trees. This is used to make sure all of
678 * those extents are sent to disk but does not wait on them
679 */
680 int btrfs_write_marked_extents(struct btrfs_root *root,
681 struct extent_io_tree *dirty_pages, int mark)
682 {
683 int err = 0;
684 int werr = 0;
685 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
686 struct extent_state *cached_state = NULL;
687 u64 start = 0;
688 u64 end;
689
690 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
691 mark, &cached_state)) {
692 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
693 mark, &cached_state, GFP_NOFS);
694 cached_state = NULL;
695 err = filemap_fdatawrite_range(mapping, start, end);
696 if (err)
697 werr = err;
698 cond_resched();
699 start = end + 1;
700 }
701 if (err)
702 werr = err;
703 return werr;
704 }
705
706 /*
707 * when btree blocks are allocated, they have some corresponding bits set for
708 * them in one of two extent_io trees. This is used to make sure all of
709 * those extents are on disk for transaction or log commit. We wait
710 * on all the pages and clear them from the dirty pages state tree
711 */
712 int btrfs_wait_marked_extents(struct btrfs_root *root,
713 struct extent_io_tree *dirty_pages, int mark)
714 {
715 int err = 0;
716 int werr = 0;
717 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
718 struct extent_state *cached_state = NULL;
719 u64 start = 0;
720 u64 end;
721
722 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
723 EXTENT_NEED_WAIT, &cached_state)) {
724 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
725 0, 0, &cached_state, GFP_NOFS);
726 err = filemap_fdatawait_range(mapping, start, end);
727 if (err)
728 werr = err;
729 cond_resched();
730 start = end + 1;
731 }
732 if (err)
733 werr = err;
734 return werr;
735 }
736
737 /*
738 * when btree blocks are allocated, they have some corresponding bits set for
739 * them in one of two extent_io trees. This is used to make sure all of
740 * those extents are on disk for transaction or log commit
741 */
742 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
743 struct extent_io_tree *dirty_pages, int mark)
744 {
745 int ret;
746 int ret2;
747
748 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
749 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
750
751 if (ret)
752 return ret;
753 if (ret2)
754 return ret2;
755 return 0;
756 }
757
758 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
759 struct btrfs_root *root)
760 {
761 if (!trans || !trans->transaction) {
762 struct inode *btree_inode;
763 btree_inode = root->fs_info->btree_inode;
764 return filemap_write_and_wait(btree_inode->i_mapping);
765 }
766 return btrfs_write_and_wait_marked_extents(root,
767 &trans->transaction->dirty_pages,
768 EXTENT_DIRTY);
769 }
770
771 /*
772 * this is used to update the root pointer in the tree of tree roots.
773 *
774 * But, in the case of the extent allocation tree, updating the root
775 * pointer may allocate blocks which may change the root of the extent
776 * allocation tree.
777 *
778 * So, this loops and repeats and makes sure the cowonly root didn't
779 * change while the root pointer was being updated in the metadata.
780 */
781 static int update_cowonly_root(struct btrfs_trans_handle *trans,
782 struct btrfs_root *root)
783 {
784 int ret;
785 u64 old_root_bytenr;
786 u64 old_root_used;
787 struct btrfs_root *tree_root = root->fs_info->tree_root;
788
789 old_root_used = btrfs_root_used(&root->root_item);
790 btrfs_write_dirty_block_groups(trans, root);
791
792 while (1) {
793 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
794 if (old_root_bytenr == root->node->start &&
795 old_root_used == btrfs_root_used(&root->root_item))
796 break;
797
798 btrfs_set_root_node(&root->root_item, root->node);
799 ret = btrfs_update_root(trans, tree_root,
800 &root->root_key,
801 &root->root_item);
802 if (ret)
803 return ret;
804
805 old_root_used = btrfs_root_used(&root->root_item);
806 ret = btrfs_write_dirty_block_groups(trans, root);
807 if (ret)
808 return ret;
809 }
810
811 if (root != root->fs_info->extent_root)
812 switch_commit_root(root);
813
814 return 0;
815 }
816
817 /*
818 * update all the cowonly tree roots on disk
819 *
820 * The error handling in this function may not be obvious. Any of the
821 * failures will cause the file system to go offline. We still need
822 * to clean up the delayed refs.
823 */
824 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
825 struct btrfs_root *root)
826 {
827 struct btrfs_fs_info *fs_info = root->fs_info;
828 struct list_head *next;
829 struct extent_buffer *eb;
830 int ret;
831
832 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
833 if (ret)
834 return ret;
835
836 eb = btrfs_lock_root_node(fs_info->tree_root);
837 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
838 0, &eb);
839 btrfs_tree_unlock(eb);
840 free_extent_buffer(eb);
841
842 if (ret)
843 return ret;
844
845 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
846 if (ret)
847 return ret;
848
849 ret = btrfs_run_dev_stats(trans, root->fs_info);
850 WARN_ON(ret);
851 ret = btrfs_run_dev_replace(trans, root->fs_info);
852 WARN_ON(ret);
853
854 ret = btrfs_run_qgroups(trans, root->fs_info);
855 BUG_ON(ret);
856
857 /* run_qgroups might have added some more refs */
858 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
859 BUG_ON(ret);
860
861 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
862 next = fs_info->dirty_cowonly_roots.next;
863 list_del_init(next);
864 root = list_entry(next, struct btrfs_root, dirty_list);
865
866 ret = update_cowonly_root(trans, root);
867 if (ret)
868 return ret;
869 }
870
871 down_write(&fs_info->extent_commit_sem);
872 switch_commit_root(fs_info->extent_root);
873 up_write(&fs_info->extent_commit_sem);
874
875 btrfs_after_dev_replace_commit(fs_info);
876
877 return 0;
878 }
879
880 /*
881 * dead roots are old snapshots that need to be deleted. This allocates
882 * a dirty root struct and adds it into the list of dead roots that need to
883 * be deleted
884 */
885 int btrfs_add_dead_root(struct btrfs_root *root)
886 {
887 spin_lock(&root->fs_info->trans_lock);
888 list_add(&root->root_list, &root->fs_info->dead_roots);
889 spin_unlock(&root->fs_info->trans_lock);
890 return 0;
891 }
892
893 /*
894 * update all the cowonly tree roots on disk
895 */
896 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
897 struct btrfs_root *root)
898 {
899 struct btrfs_root *gang[8];
900 struct btrfs_fs_info *fs_info = root->fs_info;
901 int i;
902 int ret;
903 int err = 0;
904
905 spin_lock(&fs_info->fs_roots_radix_lock);
906 while (1) {
907 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
908 (void **)gang, 0,
909 ARRAY_SIZE(gang),
910 BTRFS_ROOT_TRANS_TAG);
911 if (ret == 0)
912 break;
913 for (i = 0; i < ret; i++) {
914 root = gang[i];
915 radix_tree_tag_clear(&fs_info->fs_roots_radix,
916 (unsigned long)root->root_key.objectid,
917 BTRFS_ROOT_TRANS_TAG);
918 spin_unlock(&fs_info->fs_roots_radix_lock);
919
920 btrfs_free_log(trans, root);
921 btrfs_update_reloc_root(trans, root);
922 btrfs_orphan_commit_root(trans, root);
923
924 btrfs_save_ino_cache(root, trans);
925
926 /* see comments in should_cow_block() */
927 root->force_cow = 0;
928 smp_wmb();
929
930 if (root->commit_root != root->node) {
931 mutex_lock(&root->fs_commit_mutex);
932 switch_commit_root(root);
933 btrfs_unpin_free_ino(root);
934 mutex_unlock(&root->fs_commit_mutex);
935
936 btrfs_set_root_node(&root->root_item,
937 root->node);
938 }
939
940 err = btrfs_update_root(trans, fs_info->tree_root,
941 &root->root_key,
942 &root->root_item);
943 spin_lock(&fs_info->fs_roots_radix_lock);
944 if (err)
945 break;
946 }
947 }
948 spin_unlock(&fs_info->fs_roots_radix_lock);
949 return err;
950 }
951
952 /*
953 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
954 * otherwise every leaf in the btree is read and defragged.
955 */
956 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
957 {
958 struct btrfs_fs_info *info = root->fs_info;
959 struct btrfs_trans_handle *trans;
960 int ret;
961
962 if (xchg(&root->defrag_running, 1))
963 return 0;
964
965 while (1) {
966 trans = btrfs_start_transaction(root, 0);
967 if (IS_ERR(trans))
968 return PTR_ERR(trans);
969
970 ret = btrfs_defrag_leaves(trans, root, cacheonly);
971
972 btrfs_end_transaction(trans, root);
973 btrfs_btree_balance_dirty(info->tree_root);
974 cond_resched();
975
976 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
977 break;
978 }
979 root->defrag_running = 0;
980 return ret;
981 }
982
983 /*
984 * new snapshots need to be created at a very specific time in the
985 * transaction commit. This does the actual creation
986 */
987 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
988 struct btrfs_fs_info *fs_info,
989 struct btrfs_pending_snapshot *pending)
990 {
991 struct btrfs_key key;
992 struct btrfs_root_item *new_root_item;
993 struct btrfs_root *tree_root = fs_info->tree_root;
994 struct btrfs_root *root = pending->root;
995 struct btrfs_root *parent_root;
996 struct btrfs_block_rsv *rsv;
997 struct inode *parent_inode;
998 struct btrfs_path *path;
999 struct btrfs_dir_item *dir_item;
1000 struct dentry *parent;
1001 struct dentry *dentry;
1002 struct extent_buffer *tmp;
1003 struct extent_buffer *old;
1004 struct timespec cur_time = CURRENT_TIME;
1005 int ret;
1006 u64 to_reserve = 0;
1007 u64 index = 0;
1008 u64 objectid;
1009 u64 root_flags;
1010 uuid_le new_uuid;
1011
1012 path = btrfs_alloc_path();
1013 if (!path) {
1014 ret = pending->error = -ENOMEM;
1015 goto path_alloc_fail;
1016 }
1017
1018 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1019 if (!new_root_item) {
1020 ret = pending->error = -ENOMEM;
1021 goto root_item_alloc_fail;
1022 }
1023
1024 ret = btrfs_find_free_objectid(tree_root, &objectid);
1025 if (ret) {
1026 pending->error = ret;
1027 goto no_free_objectid;
1028 }
1029
1030 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1031
1032 if (to_reserve > 0) {
1033 ret = btrfs_block_rsv_add(root, &pending->block_rsv,
1034 to_reserve,
1035 BTRFS_RESERVE_NO_FLUSH);
1036 if (ret) {
1037 pending->error = ret;
1038 goto no_free_objectid;
1039 }
1040 }
1041
1042 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1043 objectid, pending->inherit);
1044 if (ret) {
1045 pending->error = ret;
1046 goto no_free_objectid;
1047 }
1048
1049 key.objectid = objectid;
1050 key.offset = (u64)-1;
1051 key.type = BTRFS_ROOT_ITEM_KEY;
1052
1053 rsv = trans->block_rsv;
1054 trans->block_rsv = &pending->block_rsv;
1055
1056 dentry = pending->dentry;
1057 parent = dget_parent(dentry);
1058 parent_inode = parent->d_inode;
1059 parent_root = BTRFS_I(parent_inode)->root;
1060 record_root_in_trans(trans, parent_root);
1061
1062 /*
1063 * insert the directory item
1064 */
1065 ret = btrfs_set_inode_index(parent_inode, &index);
1066 BUG_ON(ret); /* -ENOMEM */
1067
1068 /* check if there is a file/dir which has the same name. */
1069 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1070 btrfs_ino(parent_inode),
1071 dentry->d_name.name,
1072 dentry->d_name.len, 0);
1073 if (dir_item != NULL && !IS_ERR(dir_item)) {
1074 pending->error = -EEXIST;
1075 goto fail;
1076 } else if (IS_ERR(dir_item)) {
1077 ret = PTR_ERR(dir_item);
1078 btrfs_abort_transaction(trans, root, ret);
1079 goto fail;
1080 }
1081 btrfs_release_path(path);
1082
1083 /*
1084 * pull in the delayed directory update
1085 * and the delayed inode item
1086 * otherwise we corrupt the FS during
1087 * snapshot
1088 */
1089 ret = btrfs_run_delayed_items(trans, root);
1090 if (ret) { /* Transaction aborted */
1091 btrfs_abort_transaction(trans, root, ret);
1092 goto fail;
1093 }
1094
1095 record_root_in_trans(trans, root);
1096 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1097 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1098 btrfs_check_and_init_root_item(new_root_item);
1099
1100 root_flags = btrfs_root_flags(new_root_item);
1101 if (pending->readonly)
1102 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1103 else
1104 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1105 btrfs_set_root_flags(new_root_item, root_flags);
1106
1107 btrfs_set_root_generation_v2(new_root_item,
1108 trans->transid);
1109 uuid_le_gen(&new_uuid);
1110 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1111 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1112 BTRFS_UUID_SIZE);
1113 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1114 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1115 btrfs_set_root_otransid(new_root_item, trans->transid);
1116 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1117 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1118 btrfs_set_root_stransid(new_root_item, 0);
1119 btrfs_set_root_rtransid(new_root_item, 0);
1120
1121 old = btrfs_lock_root_node(root);
1122 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1123 if (ret) {
1124 btrfs_tree_unlock(old);
1125 free_extent_buffer(old);
1126 btrfs_abort_transaction(trans, root, ret);
1127 goto fail;
1128 }
1129
1130 btrfs_set_lock_blocking(old);
1131
1132 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1133 /* clean up in any case */
1134 btrfs_tree_unlock(old);
1135 free_extent_buffer(old);
1136 if (ret) {
1137 btrfs_abort_transaction(trans, root, ret);
1138 goto fail;
1139 }
1140
1141 /* see comments in should_cow_block() */
1142 root->force_cow = 1;
1143 smp_wmb();
1144
1145 btrfs_set_root_node(new_root_item, tmp);
1146 /* record when the snapshot was created in key.offset */
1147 key.offset = trans->transid;
1148 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1149 btrfs_tree_unlock(tmp);
1150 free_extent_buffer(tmp);
1151 if (ret) {
1152 btrfs_abort_transaction(trans, root, ret);
1153 goto fail;
1154 }
1155
1156 /*
1157 * insert root back/forward references
1158 */
1159 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1160 parent_root->root_key.objectid,
1161 btrfs_ino(parent_inode), index,
1162 dentry->d_name.name, dentry->d_name.len);
1163 if (ret) {
1164 btrfs_abort_transaction(trans, root, ret);
1165 goto fail;
1166 }
1167
1168 key.offset = (u64)-1;
1169 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1170 if (IS_ERR(pending->snap)) {
1171 ret = PTR_ERR(pending->snap);
1172 btrfs_abort_transaction(trans, root, ret);
1173 goto fail;
1174 }
1175
1176 ret = btrfs_reloc_post_snapshot(trans, pending);
1177 if (ret) {
1178 btrfs_abort_transaction(trans, root, ret);
1179 goto fail;
1180 }
1181
1182 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1183 if (ret) {
1184 btrfs_abort_transaction(trans, root, ret);
1185 goto fail;
1186 }
1187
1188 ret = btrfs_insert_dir_item(trans, parent_root,
1189 dentry->d_name.name, dentry->d_name.len,
1190 parent_inode, &key,
1191 BTRFS_FT_DIR, index);
1192 /* We have check then name at the beginning, so it is impossible. */
1193 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1194 if (ret) {
1195 btrfs_abort_transaction(trans, root, ret);
1196 goto fail;
1197 }
1198
1199 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1200 dentry->d_name.len * 2);
1201 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1202 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1203 if (ret)
1204 btrfs_abort_transaction(trans, root, ret);
1205 fail:
1206 dput(parent);
1207 trans->block_rsv = rsv;
1208 no_free_objectid:
1209 kfree(new_root_item);
1210 root_item_alloc_fail:
1211 btrfs_free_path(path);
1212 path_alloc_fail:
1213 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1214 return ret;
1215 }
1216
1217 /*
1218 * create all the snapshots we've scheduled for creation
1219 */
1220 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1221 struct btrfs_fs_info *fs_info)
1222 {
1223 struct btrfs_pending_snapshot *pending;
1224 struct list_head *head = &trans->transaction->pending_snapshots;
1225
1226 list_for_each_entry(pending, head, list)
1227 create_pending_snapshot(trans, fs_info, pending);
1228 return 0;
1229 }
1230
1231 static void update_super_roots(struct btrfs_root *root)
1232 {
1233 struct btrfs_root_item *root_item;
1234 struct btrfs_super_block *super;
1235
1236 super = root->fs_info->super_copy;
1237
1238 root_item = &root->fs_info->chunk_root->root_item;
1239 super->chunk_root = root_item->bytenr;
1240 super->chunk_root_generation = root_item->generation;
1241 super->chunk_root_level = root_item->level;
1242
1243 root_item = &root->fs_info->tree_root->root_item;
1244 super->root = root_item->bytenr;
1245 super->generation = root_item->generation;
1246 super->root_level = root_item->level;
1247 if (btrfs_test_opt(root, SPACE_CACHE))
1248 super->cache_generation = root_item->generation;
1249 }
1250
1251 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1252 {
1253 int ret = 0;
1254 spin_lock(&info->trans_lock);
1255 if (info->running_transaction)
1256 ret = info->running_transaction->in_commit;
1257 spin_unlock(&info->trans_lock);
1258 return ret;
1259 }
1260
1261 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1262 {
1263 int ret = 0;
1264 spin_lock(&info->trans_lock);
1265 if (info->running_transaction)
1266 ret = info->running_transaction->blocked;
1267 spin_unlock(&info->trans_lock);
1268 return ret;
1269 }
1270
1271 /*
1272 * wait for the current transaction commit to start and block subsequent
1273 * transaction joins
1274 */
1275 static void wait_current_trans_commit_start(struct btrfs_root *root,
1276 struct btrfs_transaction *trans)
1277 {
1278 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1279 }
1280
1281 /*
1282 * wait for the current transaction to start and then become unblocked.
1283 * caller holds ref.
1284 */
1285 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1286 struct btrfs_transaction *trans)
1287 {
1288 wait_event(root->fs_info->transaction_wait,
1289 trans->commit_done || (trans->in_commit && !trans->blocked));
1290 }
1291
1292 /*
1293 * commit transactions asynchronously. once btrfs_commit_transaction_async
1294 * returns, any subsequent transaction will not be allowed to join.
1295 */
1296 struct btrfs_async_commit {
1297 struct btrfs_trans_handle *newtrans;
1298 struct btrfs_root *root;
1299 struct delayed_work work;
1300 };
1301
1302 static void do_async_commit(struct work_struct *work)
1303 {
1304 struct btrfs_async_commit *ac =
1305 container_of(work, struct btrfs_async_commit, work.work);
1306
1307 /*
1308 * We've got freeze protection passed with the transaction.
1309 * Tell lockdep about it.
1310 */
1311 if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1312 rwsem_acquire_read(
1313 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1314 0, 1, _THIS_IP_);
1315
1316 current->journal_info = ac->newtrans;
1317
1318 btrfs_commit_transaction(ac->newtrans, ac->root);
1319 kfree(ac);
1320 }
1321
1322 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1323 struct btrfs_root *root,
1324 int wait_for_unblock)
1325 {
1326 struct btrfs_async_commit *ac;
1327 struct btrfs_transaction *cur_trans;
1328
1329 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1330 if (!ac)
1331 return -ENOMEM;
1332
1333 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1334 ac->root = root;
1335 ac->newtrans = btrfs_join_transaction(root);
1336 if (IS_ERR(ac->newtrans)) {
1337 int err = PTR_ERR(ac->newtrans);
1338 kfree(ac);
1339 return err;
1340 }
1341
1342 /* take transaction reference */
1343 cur_trans = trans->transaction;
1344 atomic_inc(&cur_trans->use_count);
1345
1346 btrfs_end_transaction(trans, root);
1347
1348 /*
1349 * Tell lockdep we've released the freeze rwsem, since the
1350 * async commit thread will be the one to unlock it.
1351 */
1352 if (trans->type < TRANS_JOIN_NOLOCK)
1353 rwsem_release(
1354 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1355 1, _THIS_IP_);
1356
1357 schedule_delayed_work(&ac->work, 0);
1358
1359 /* wait for transaction to start and unblock */
1360 if (wait_for_unblock)
1361 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1362 else
1363 wait_current_trans_commit_start(root, cur_trans);
1364
1365 if (current->journal_info == trans)
1366 current->journal_info = NULL;
1367
1368 put_transaction(cur_trans);
1369 return 0;
1370 }
1371
1372
1373 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1374 struct btrfs_root *root, int err)
1375 {
1376 struct btrfs_transaction *cur_trans = trans->transaction;
1377
1378 WARN_ON(trans->use_count > 1);
1379
1380 btrfs_abort_transaction(trans, root, err);
1381
1382 spin_lock(&root->fs_info->trans_lock);
1383 list_del_init(&cur_trans->list);
1384 if (cur_trans == root->fs_info->running_transaction) {
1385 root->fs_info->running_transaction = NULL;
1386 root->fs_info->trans_no_join = 0;
1387 }
1388 spin_unlock(&root->fs_info->trans_lock);
1389
1390 btrfs_cleanup_one_transaction(trans->transaction, root);
1391
1392 put_transaction(cur_trans);
1393 put_transaction(cur_trans);
1394
1395 trace_btrfs_transaction_commit(root);
1396
1397 btrfs_scrub_continue(root);
1398
1399 if (current->journal_info == trans)
1400 current->journal_info = NULL;
1401
1402 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1403 }
1404
1405 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1406 struct btrfs_root *root)
1407 {
1408 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1409 int snap_pending = 0;
1410 int ret;
1411
1412 if (!flush_on_commit) {
1413 spin_lock(&root->fs_info->trans_lock);
1414 if (!list_empty(&trans->transaction->pending_snapshots))
1415 snap_pending = 1;
1416 spin_unlock(&root->fs_info->trans_lock);
1417 }
1418
1419 if (flush_on_commit || snap_pending) {
1420 btrfs_start_delalloc_inodes(root, 1);
1421 btrfs_wait_ordered_extents(root, 1);
1422 }
1423
1424 ret = btrfs_run_delayed_items(trans, root);
1425 if (ret)
1426 return ret;
1427
1428 /*
1429 * running the delayed items may have added new refs. account
1430 * them now so that they hinder processing of more delayed refs
1431 * as little as possible.
1432 */
1433 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1434
1435 /*
1436 * rename don't use btrfs_join_transaction, so, once we
1437 * set the transaction to blocked above, we aren't going
1438 * to get any new ordered operations. We can safely run
1439 * it here and no for sure that nothing new will be added
1440 * to the list
1441 */
1442 btrfs_run_ordered_operations(root, 1);
1443
1444 return 0;
1445 }
1446
1447 /*
1448 * btrfs_transaction state sequence:
1449 * in_commit = 0, blocked = 0 (initial)
1450 * in_commit = 1, blocked = 1
1451 * blocked = 0
1452 * commit_done = 1
1453 */
1454 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1455 struct btrfs_root *root)
1456 {
1457 unsigned long joined = 0;
1458 struct btrfs_transaction *cur_trans = trans->transaction;
1459 struct btrfs_transaction *prev_trans = NULL;
1460 DEFINE_WAIT(wait);
1461 int ret;
1462 int should_grow = 0;
1463 unsigned long now = get_seconds();
1464
1465 ret = btrfs_run_ordered_operations(root, 0);
1466 if (ret) {
1467 btrfs_abort_transaction(trans, root, ret);
1468 goto cleanup_transaction;
1469 }
1470
1471 /* Stop the commit early if ->aborted is set */
1472 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1473 ret = cur_trans->aborted;
1474 goto cleanup_transaction;
1475 }
1476
1477 /* make a pass through all the delayed refs we have so far
1478 * any runnings procs may add more while we are here
1479 */
1480 ret = btrfs_run_delayed_refs(trans, root, 0);
1481 if (ret)
1482 goto cleanup_transaction;
1483
1484 btrfs_trans_release_metadata(trans, root);
1485 trans->block_rsv = NULL;
1486
1487 cur_trans = trans->transaction;
1488
1489 /*
1490 * set the flushing flag so procs in this transaction have to
1491 * start sending their work down.
1492 */
1493 cur_trans->delayed_refs.flushing = 1;
1494
1495 if (!list_empty(&trans->new_bgs))
1496 btrfs_create_pending_block_groups(trans, root);
1497
1498 ret = btrfs_run_delayed_refs(trans, root, 0);
1499 if (ret)
1500 goto cleanup_transaction;
1501
1502 spin_lock(&cur_trans->commit_lock);
1503 if (cur_trans->in_commit) {
1504 spin_unlock(&cur_trans->commit_lock);
1505 atomic_inc(&cur_trans->use_count);
1506 ret = btrfs_end_transaction(trans, root);
1507
1508 wait_for_commit(root, cur_trans);
1509
1510 put_transaction(cur_trans);
1511
1512 return ret;
1513 }
1514
1515 trans->transaction->in_commit = 1;
1516 trans->transaction->blocked = 1;
1517 spin_unlock(&cur_trans->commit_lock);
1518 wake_up(&root->fs_info->transaction_blocked_wait);
1519
1520 spin_lock(&root->fs_info->trans_lock);
1521 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1522 prev_trans = list_entry(cur_trans->list.prev,
1523 struct btrfs_transaction, list);
1524 if (!prev_trans->commit_done) {
1525 atomic_inc(&prev_trans->use_count);
1526 spin_unlock(&root->fs_info->trans_lock);
1527
1528 wait_for_commit(root, prev_trans);
1529
1530 put_transaction(prev_trans);
1531 } else {
1532 spin_unlock(&root->fs_info->trans_lock);
1533 }
1534 } else {
1535 spin_unlock(&root->fs_info->trans_lock);
1536 }
1537
1538 if (!btrfs_test_opt(root, SSD) &&
1539 (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1540 should_grow = 1;
1541
1542 do {
1543 joined = cur_trans->num_joined;
1544
1545 WARN_ON(cur_trans != trans->transaction);
1546
1547 ret = btrfs_flush_all_pending_stuffs(trans, root);
1548 if (ret)
1549 goto cleanup_transaction;
1550
1551 prepare_to_wait(&cur_trans->writer_wait, &wait,
1552 TASK_UNINTERRUPTIBLE);
1553
1554 if (atomic_read(&cur_trans->num_writers) > 1)
1555 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1556 else if (should_grow)
1557 schedule_timeout(1);
1558
1559 finish_wait(&cur_trans->writer_wait, &wait);
1560 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1561 (should_grow && cur_trans->num_joined != joined));
1562
1563 ret = btrfs_flush_all_pending_stuffs(trans, root);
1564 if (ret)
1565 goto cleanup_transaction;
1566
1567 /*
1568 * Ok now we need to make sure to block out any other joins while we
1569 * commit the transaction. We could have started a join before setting
1570 * no_join so make sure to wait for num_writers to == 1 again.
1571 */
1572 spin_lock(&root->fs_info->trans_lock);
1573 root->fs_info->trans_no_join = 1;
1574 spin_unlock(&root->fs_info->trans_lock);
1575 wait_event(cur_trans->writer_wait,
1576 atomic_read(&cur_trans->num_writers) == 1);
1577
1578 /* ->aborted might be set after the previous check, so check it */
1579 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1580 ret = cur_trans->aborted;
1581 goto cleanup_transaction;
1582 }
1583 /*
1584 * the reloc mutex makes sure that we stop
1585 * the balancing code from coming in and moving
1586 * extents around in the middle of the commit
1587 */
1588 mutex_lock(&root->fs_info->reloc_mutex);
1589
1590 /*
1591 * We needn't worry about the delayed items because we will
1592 * deal with them in create_pending_snapshot(), which is the
1593 * core function of the snapshot creation.
1594 */
1595 ret = create_pending_snapshots(trans, root->fs_info);
1596 if (ret) {
1597 mutex_unlock(&root->fs_info->reloc_mutex);
1598 goto cleanup_transaction;
1599 }
1600
1601 /*
1602 * We insert the dir indexes of the snapshots and update the inode
1603 * of the snapshots' parents after the snapshot creation, so there
1604 * are some delayed items which are not dealt with. Now deal with
1605 * them.
1606 *
1607 * We needn't worry that this operation will corrupt the snapshots,
1608 * because all the tree which are snapshoted will be forced to COW
1609 * the nodes and leaves.
1610 */
1611 ret = btrfs_run_delayed_items(trans, root);
1612 if (ret) {
1613 mutex_unlock(&root->fs_info->reloc_mutex);
1614 goto cleanup_transaction;
1615 }
1616
1617 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1618 if (ret) {
1619 mutex_unlock(&root->fs_info->reloc_mutex);
1620 goto cleanup_transaction;
1621 }
1622
1623 /*
1624 * make sure none of the code above managed to slip in a
1625 * delayed item
1626 */
1627 btrfs_assert_delayed_root_empty(root);
1628
1629 WARN_ON(cur_trans != trans->transaction);
1630
1631 btrfs_scrub_pause(root);
1632 /* btrfs_commit_tree_roots is responsible for getting the
1633 * various roots consistent with each other. Every pointer
1634 * in the tree of tree roots has to point to the most up to date
1635 * root for every subvolume and other tree. So, we have to keep
1636 * the tree logging code from jumping in and changing any
1637 * of the trees.
1638 *
1639 * At this point in the commit, there can't be any tree-log
1640 * writers, but a little lower down we drop the trans mutex
1641 * and let new people in. By holding the tree_log_mutex
1642 * from now until after the super is written, we avoid races
1643 * with the tree-log code.
1644 */
1645 mutex_lock(&root->fs_info->tree_log_mutex);
1646
1647 ret = commit_fs_roots(trans, root);
1648 if (ret) {
1649 mutex_unlock(&root->fs_info->tree_log_mutex);
1650 mutex_unlock(&root->fs_info->reloc_mutex);
1651 goto cleanup_transaction;
1652 }
1653
1654 /* commit_fs_roots gets rid of all the tree log roots, it is now
1655 * safe to free the root of tree log roots
1656 */
1657 btrfs_free_log_root_tree(trans, root->fs_info);
1658
1659 ret = commit_cowonly_roots(trans, root);
1660 if (ret) {
1661 mutex_unlock(&root->fs_info->tree_log_mutex);
1662 mutex_unlock(&root->fs_info->reloc_mutex);
1663 goto cleanup_transaction;
1664 }
1665
1666 /*
1667 * The tasks which save the space cache and inode cache may also
1668 * update ->aborted, check it.
1669 */
1670 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1671 ret = cur_trans->aborted;
1672 mutex_unlock(&root->fs_info->tree_log_mutex);
1673 mutex_unlock(&root->fs_info->reloc_mutex);
1674 goto cleanup_transaction;
1675 }
1676
1677 btrfs_prepare_extent_commit(trans, root);
1678
1679 cur_trans = root->fs_info->running_transaction;
1680
1681 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1682 root->fs_info->tree_root->node);
1683 switch_commit_root(root->fs_info->tree_root);
1684
1685 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1686 root->fs_info->chunk_root->node);
1687 switch_commit_root(root->fs_info->chunk_root);
1688
1689 assert_qgroups_uptodate(trans);
1690 update_super_roots(root);
1691
1692 if (!root->fs_info->log_root_recovering) {
1693 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1694 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1695 }
1696
1697 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1698 sizeof(*root->fs_info->super_copy));
1699
1700 trans->transaction->blocked = 0;
1701 spin_lock(&root->fs_info->trans_lock);
1702 root->fs_info->running_transaction = NULL;
1703 root->fs_info->trans_no_join = 0;
1704 spin_unlock(&root->fs_info->trans_lock);
1705 mutex_unlock(&root->fs_info->reloc_mutex);
1706
1707 wake_up(&root->fs_info->transaction_wait);
1708
1709 ret = btrfs_write_and_wait_transaction(trans, root);
1710 if (ret) {
1711 btrfs_error(root->fs_info, ret,
1712 "Error while writing out transaction.");
1713 mutex_unlock(&root->fs_info->tree_log_mutex);
1714 goto cleanup_transaction;
1715 }
1716
1717 ret = write_ctree_super(trans, root, 0);
1718 if (ret) {
1719 mutex_unlock(&root->fs_info->tree_log_mutex);
1720 goto cleanup_transaction;
1721 }
1722
1723 /*
1724 * the super is written, we can safely allow the tree-loggers
1725 * to go about their business
1726 */
1727 mutex_unlock(&root->fs_info->tree_log_mutex);
1728
1729 btrfs_finish_extent_commit(trans, root);
1730
1731 cur_trans->commit_done = 1;
1732
1733 root->fs_info->last_trans_committed = cur_trans->transid;
1734
1735 wake_up(&cur_trans->commit_wait);
1736
1737 spin_lock(&root->fs_info->trans_lock);
1738 list_del_init(&cur_trans->list);
1739 spin_unlock(&root->fs_info->trans_lock);
1740
1741 put_transaction(cur_trans);
1742 put_transaction(cur_trans);
1743
1744 if (trans->type < TRANS_JOIN_NOLOCK)
1745 sb_end_intwrite(root->fs_info->sb);
1746
1747 trace_btrfs_transaction_commit(root);
1748
1749 btrfs_scrub_continue(root);
1750
1751 if (current->journal_info == trans)
1752 current->journal_info = NULL;
1753
1754 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1755
1756 if (current != root->fs_info->transaction_kthread)
1757 btrfs_run_delayed_iputs(root);
1758
1759 return ret;
1760
1761 cleanup_transaction:
1762 btrfs_trans_release_metadata(trans, root);
1763 trans->block_rsv = NULL;
1764 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1765 // WARN_ON(1);
1766 if (current->journal_info == trans)
1767 current->journal_info = NULL;
1768 cleanup_transaction(trans, root, ret);
1769
1770 return ret;
1771 }
1772
1773 /*
1774 * interface function to delete all the snapshots we have scheduled for deletion
1775 */
1776 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1777 {
1778 LIST_HEAD(list);
1779 struct btrfs_fs_info *fs_info = root->fs_info;
1780
1781 spin_lock(&fs_info->trans_lock);
1782 list_splice_init(&fs_info->dead_roots, &list);
1783 spin_unlock(&fs_info->trans_lock);
1784
1785 while (!list_empty(&list)) {
1786 int ret;
1787
1788 root = list_entry(list.next, struct btrfs_root, root_list);
1789 list_del(&root->root_list);
1790
1791 btrfs_kill_all_delayed_nodes(root);
1792
1793 if (btrfs_header_backref_rev(root->node) <
1794 BTRFS_MIXED_BACKREF_REV)
1795 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1796 else
1797 ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1798 BUG_ON(ret < 0);
1799 }
1800 return 0;
1801 }
This page took 0.064936 seconds and 6 git commands to generate.