Btrfs: if we aren't committing just end the transaction if we error out
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 void put_transaction(struct btrfs_transaction *transaction)
38 {
39 WARN_ON(atomic_read(&transaction->use_count) == 0);
40 if (atomic_dec_and_test(&transaction->use_count)) {
41 BUG_ON(!list_empty(&transaction->list));
42 WARN_ON(transaction->delayed_refs.root.rb_node);
43 kmem_cache_free(btrfs_transaction_cachep, transaction);
44 }
45 }
46
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 free_extent_buffer(root->commit_root);
50 root->commit_root = btrfs_root_node(root);
51 }
52
53 /*
54 * either allocate a new transaction or hop into the existing one
55 */
56 static noinline int join_transaction(struct btrfs_root *root, int type)
57 {
58 struct btrfs_transaction *cur_trans;
59 struct btrfs_fs_info *fs_info = root->fs_info;
60
61 spin_lock(&fs_info->trans_lock);
62 loop:
63 /* The file system has been taken offline. No new transactions. */
64 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
65 spin_unlock(&fs_info->trans_lock);
66 return -EROFS;
67 }
68
69 if (fs_info->trans_no_join) {
70 /*
71 * If we are JOIN_NOLOCK we're already committing a current
72 * transaction, we just need a handle to deal with something
73 * when committing the transaction, such as inode cache and
74 * space cache. It is a special case.
75 */
76 if (type != TRANS_JOIN_NOLOCK) {
77 spin_unlock(&fs_info->trans_lock);
78 return -EBUSY;
79 }
80 }
81
82 cur_trans = fs_info->running_transaction;
83 if (cur_trans) {
84 if (cur_trans->aborted) {
85 spin_unlock(&fs_info->trans_lock);
86 return cur_trans->aborted;
87 }
88 atomic_inc(&cur_trans->use_count);
89 atomic_inc(&cur_trans->num_writers);
90 cur_trans->num_joined++;
91 spin_unlock(&fs_info->trans_lock);
92 return 0;
93 }
94 spin_unlock(&fs_info->trans_lock);
95
96 /*
97 * If we are ATTACH, we just want to catch the current transaction,
98 * and commit it. If there is no transaction, just return ENOENT.
99 */
100 if (type == TRANS_ATTACH)
101 return -ENOENT;
102
103 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
104 if (!cur_trans)
105 return -ENOMEM;
106
107 spin_lock(&fs_info->trans_lock);
108 if (fs_info->running_transaction) {
109 /*
110 * someone started a transaction after we unlocked. Make sure
111 * to redo the trans_no_join checks above
112 */
113 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
114 cur_trans = fs_info->running_transaction;
115 goto loop;
116 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
117 spin_unlock(&fs_info->trans_lock);
118 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
119 return -EROFS;
120 }
121
122 atomic_set(&cur_trans->num_writers, 1);
123 cur_trans->num_joined = 0;
124 init_waitqueue_head(&cur_trans->writer_wait);
125 init_waitqueue_head(&cur_trans->commit_wait);
126 cur_trans->in_commit = 0;
127 cur_trans->blocked = 0;
128 /*
129 * One for this trans handle, one so it will live on until we
130 * commit the transaction.
131 */
132 atomic_set(&cur_trans->use_count, 2);
133 cur_trans->commit_done = 0;
134 cur_trans->start_time = get_seconds();
135
136 cur_trans->delayed_refs.root = RB_ROOT;
137 cur_trans->delayed_refs.num_entries = 0;
138 cur_trans->delayed_refs.num_heads_ready = 0;
139 cur_trans->delayed_refs.num_heads = 0;
140 cur_trans->delayed_refs.flushing = 0;
141 cur_trans->delayed_refs.run_delayed_start = 0;
142
143 /*
144 * although the tree mod log is per file system and not per transaction,
145 * the log must never go across transaction boundaries.
146 */
147 smp_mb();
148 if (!list_empty(&fs_info->tree_mod_seq_list))
149 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
150 "creating a fresh transaction\n");
151 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
152 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
153 "creating a fresh transaction\n");
154 atomic_set(&fs_info->tree_mod_seq, 0);
155
156 spin_lock_init(&cur_trans->commit_lock);
157 spin_lock_init(&cur_trans->delayed_refs.lock);
158
159 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
160 list_add_tail(&cur_trans->list, &fs_info->trans_list);
161 extent_io_tree_init(&cur_trans->dirty_pages,
162 fs_info->btree_inode->i_mapping);
163 fs_info->generation++;
164 cur_trans->transid = fs_info->generation;
165 fs_info->running_transaction = cur_trans;
166 cur_trans->aborted = 0;
167 spin_unlock(&fs_info->trans_lock);
168
169 return 0;
170 }
171
172 /*
173 * this does all the record keeping required to make sure that a reference
174 * counted root is properly recorded in a given transaction. This is required
175 * to make sure the old root from before we joined the transaction is deleted
176 * when the transaction commits
177 */
178 static int record_root_in_trans(struct btrfs_trans_handle *trans,
179 struct btrfs_root *root)
180 {
181 if (root->ref_cows && root->last_trans < trans->transid) {
182 WARN_ON(root == root->fs_info->extent_root);
183 WARN_ON(root->commit_root != root->node);
184
185 /*
186 * see below for in_trans_setup usage rules
187 * we have the reloc mutex held now, so there
188 * is only one writer in this function
189 */
190 root->in_trans_setup = 1;
191
192 /* make sure readers find in_trans_setup before
193 * they find our root->last_trans update
194 */
195 smp_wmb();
196
197 spin_lock(&root->fs_info->fs_roots_radix_lock);
198 if (root->last_trans == trans->transid) {
199 spin_unlock(&root->fs_info->fs_roots_radix_lock);
200 return 0;
201 }
202 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
203 (unsigned long)root->root_key.objectid,
204 BTRFS_ROOT_TRANS_TAG);
205 spin_unlock(&root->fs_info->fs_roots_radix_lock);
206 root->last_trans = trans->transid;
207
208 /* this is pretty tricky. We don't want to
209 * take the relocation lock in btrfs_record_root_in_trans
210 * unless we're really doing the first setup for this root in
211 * this transaction.
212 *
213 * Normally we'd use root->last_trans as a flag to decide
214 * if we want to take the expensive mutex.
215 *
216 * But, we have to set root->last_trans before we
217 * init the relocation root, otherwise, we trip over warnings
218 * in ctree.c. The solution used here is to flag ourselves
219 * with root->in_trans_setup. When this is 1, we're still
220 * fixing up the reloc trees and everyone must wait.
221 *
222 * When this is zero, they can trust root->last_trans and fly
223 * through btrfs_record_root_in_trans without having to take the
224 * lock. smp_wmb() makes sure that all the writes above are
225 * done before we pop in the zero below
226 */
227 btrfs_init_reloc_root(trans, root);
228 smp_wmb();
229 root->in_trans_setup = 0;
230 }
231 return 0;
232 }
233
234
235 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
236 struct btrfs_root *root)
237 {
238 if (!root->ref_cows)
239 return 0;
240
241 /*
242 * see record_root_in_trans for comments about in_trans_setup usage
243 * and barriers
244 */
245 smp_rmb();
246 if (root->last_trans == trans->transid &&
247 !root->in_trans_setup)
248 return 0;
249
250 mutex_lock(&root->fs_info->reloc_mutex);
251 record_root_in_trans(trans, root);
252 mutex_unlock(&root->fs_info->reloc_mutex);
253
254 return 0;
255 }
256
257 /* wait for commit against the current transaction to become unblocked
258 * when this is done, it is safe to start a new transaction, but the current
259 * transaction might not be fully on disk.
260 */
261 static void wait_current_trans(struct btrfs_root *root)
262 {
263 struct btrfs_transaction *cur_trans;
264
265 spin_lock(&root->fs_info->trans_lock);
266 cur_trans = root->fs_info->running_transaction;
267 if (cur_trans && cur_trans->blocked) {
268 atomic_inc(&cur_trans->use_count);
269 spin_unlock(&root->fs_info->trans_lock);
270
271 wait_event(root->fs_info->transaction_wait,
272 !cur_trans->blocked);
273 put_transaction(cur_trans);
274 } else {
275 spin_unlock(&root->fs_info->trans_lock);
276 }
277 }
278
279 static int may_wait_transaction(struct btrfs_root *root, int type)
280 {
281 if (root->fs_info->log_root_recovering)
282 return 0;
283
284 if (type == TRANS_USERSPACE)
285 return 1;
286
287 if (type == TRANS_START &&
288 !atomic_read(&root->fs_info->open_ioctl_trans))
289 return 1;
290
291 return 0;
292 }
293
294 static struct btrfs_trans_handle *
295 start_transaction(struct btrfs_root *root, u64 num_items, int type,
296 enum btrfs_reserve_flush_enum flush)
297 {
298 struct btrfs_trans_handle *h;
299 struct btrfs_transaction *cur_trans;
300 u64 num_bytes = 0;
301 int ret;
302 u64 qgroup_reserved = 0;
303
304 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
305 return ERR_PTR(-EROFS);
306
307 if (current->journal_info) {
308 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
309 h = current->journal_info;
310 h->use_count++;
311 WARN_ON(h->use_count > 2);
312 h->orig_rsv = h->block_rsv;
313 h->block_rsv = NULL;
314 goto got_it;
315 }
316
317 /*
318 * Do the reservation before we join the transaction so we can do all
319 * the appropriate flushing if need be.
320 */
321 if (num_items > 0 && root != root->fs_info->chunk_root) {
322 if (root->fs_info->quota_enabled &&
323 is_fstree(root->root_key.objectid)) {
324 qgroup_reserved = num_items * root->leafsize;
325 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
326 if (ret)
327 return ERR_PTR(ret);
328 }
329
330 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
331 ret = btrfs_block_rsv_add(root,
332 &root->fs_info->trans_block_rsv,
333 num_bytes, flush);
334 if (ret)
335 goto reserve_fail;
336 }
337 again:
338 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
339 if (!h) {
340 ret = -ENOMEM;
341 goto alloc_fail;
342 }
343
344 /*
345 * If we are JOIN_NOLOCK we're already committing a transaction and
346 * waiting on this guy, so we don't need to do the sb_start_intwrite
347 * because we're already holding a ref. We need this because we could
348 * have raced in and did an fsync() on a file which can kick a commit
349 * and then we deadlock with somebody doing a freeze.
350 *
351 * If we are ATTACH, it means we just want to catch the current
352 * transaction and commit it, so we needn't do sb_start_intwrite().
353 */
354 if (type < TRANS_JOIN_NOLOCK)
355 sb_start_intwrite(root->fs_info->sb);
356
357 if (may_wait_transaction(root, type))
358 wait_current_trans(root);
359
360 do {
361 ret = join_transaction(root, type);
362 if (ret == -EBUSY)
363 wait_current_trans(root);
364 } while (ret == -EBUSY);
365
366 if (ret < 0) {
367 /* We must get the transaction if we are JOIN_NOLOCK. */
368 BUG_ON(type == TRANS_JOIN_NOLOCK);
369 goto join_fail;
370 }
371
372 cur_trans = root->fs_info->running_transaction;
373
374 h->transid = cur_trans->transid;
375 h->transaction = cur_trans;
376 h->blocks_used = 0;
377 h->bytes_reserved = 0;
378 h->root = root;
379 h->delayed_ref_updates = 0;
380 h->use_count = 1;
381 h->adding_csums = 0;
382 h->block_rsv = NULL;
383 h->orig_rsv = NULL;
384 h->aborted = 0;
385 h->qgroup_reserved = qgroup_reserved;
386 h->delayed_ref_elem.seq = 0;
387 h->type = type;
388 h->allocating_chunk = false;
389 INIT_LIST_HEAD(&h->qgroup_ref_list);
390 INIT_LIST_HEAD(&h->new_bgs);
391
392 smp_mb();
393 if (cur_trans->blocked && may_wait_transaction(root, type)) {
394 btrfs_commit_transaction(h, root);
395 goto again;
396 }
397
398 if (num_bytes) {
399 trace_btrfs_space_reservation(root->fs_info, "transaction",
400 h->transid, num_bytes, 1);
401 h->block_rsv = &root->fs_info->trans_block_rsv;
402 h->bytes_reserved = num_bytes;
403 }
404
405 got_it:
406 btrfs_record_root_in_trans(h, root);
407
408 if (!current->journal_info && type != TRANS_USERSPACE)
409 current->journal_info = h;
410 return h;
411
412 join_fail:
413 if (type < TRANS_JOIN_NOLOCK)
414 sb_end_intwrite(root->fs_info->sb);
415 kmem_cache_free(btrfs_trans_handle_cachep, h);
416 alloc_fail:
417 if (num_bytes)
418 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
419 num_bytes);
420 reserve_fail:
421 if (qgroup_reserved)
422 btrfs_qgroup_free(root, qgroup_reserved);
423 return ERR_PTR(ret);
424 }
425
426 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
427 int num_items)
428 {
429 return start_transaction(root, num_items, TRANS_START,
430 BTRFS_RESERVE_FLUSH_ALL);
431 }
432
433 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
434 struct btrfs_root *root, int num_items)
435 {
436 return start_transaction(root, num_items, TRANS_START,
437 BTRFS_RESERVE_FLUSH_LIMIT);
438 }
439
440 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
441 {
442 return start_transaction(root, 0, TRANS_JOIN, 0);
443 }
444
445 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
446 {
447 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
448 }
449
450 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
451 {
452 return start_transaction(root, 0, TRANS_USERSPACE, 0);
453 }
454
455 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
456 {
457 return start_transaction(root, 0, TRANS_ATTACH, 0);
458 }
459
460 /* wait for a transaction commit to be fully complete */
461 static noinline void wait_for_commit(struct btrfs_root *root,
462 struct btrfs_transaction *commit)
463 {
464 wait_event(commit->commit_wait, commit->commit_done);
465 }
466
467 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
468 {
469 struct btrfs_transaction *cur_trans = NULL, *t;
470 int ret = 0;
471
472 if (transid) {
473 if (transid <= root->fs_info->last_trans_committed)
474 goto out;
475
476 ret = -EINVAL;
477 /* find specified transaction */
478 spin_lock(&root->fs_info->trans_lock);
479 list_for_each_entry(t, &root->fs_info->trans_list, list) {
480 if (t->transid == transid) {
481 cur_trans = t;
482 atomic_inc(&cur_trans->use_count);
483 ret = 0;
484 break;
485 }
486 if (t->transid > transid) {
487 ret = 0;
488 break;
489 }
490 }
491 spin_unlock(&root->fs_info->trans_lock);
492 /* The specified transaction doesn't exist */
493 if (!cur_trans)
494 goto out;
495 } else {
496 /* find newest transaction that is committing | committed */
497 spin_lock(&root->fs_info->trans_lock);
498 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
499 list) {
500 if (t->in_commit) {
501 if (t->commit_done)
502 break;
503 cur_trans = t;
504 atomic_inc(&cur_trans->use_count);
505 break;
506 }
507 }
508 spin_unlock(&root->fs_info->trans_lock);
509 if (!cur_trans)
510 goto out; /* nothing committing|committed */
511 }
512
513 wait_for_commit(root, cur_trans);
514 put_transaction(cur_trans);
515 out:
516 return ret;
517 }
518
519 void btrfs_throttle(struct btrfs_root *root)
520 {
521 if (!atomic_read(&root->fs_info->open_ioctl_trans))
522 wait_current_trans(root);
523 }
524
525 static int should_end_transaction(struct btrfs_trans_handle *trans,
526 struct btrfs_root *root)
527 {
528 int ret;
529
530 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
531 return ret ? 1 : 0;
532 }
533
534 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
535 struct btrfs_root *root)
536 {
537 struct btrfs_transaction *cur_trans = trans->transaction;
538 int updates;
539 int err;
540
541 smp_mb();
542 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
543 return 1;
544
545 updates = trans->delayed_ref_updates;
546 trans->delayed_ref_updates = 0;
547 if (updates) {
548 err = btrfs_run_delayed_refs(trans, root, updates);
549 if (err) /* Error code will also eval true */
550 return err;
551 }
552
553 return should_end_transaction(trans, root);
554 }
555
556 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
557 struct btrfs_root *root, int throttle)
558 {
559 struct btrfs_transaction *cur_trans = trans->transaction;
560 struct btrfs_fs_info *info = root->fs_info;
561 int count = 0;
562 int lock = (trans->type != TRANS_JOIN_NOLOCK);
563 int err = 0;
564
565 if (--trans->use_count) {
566 trans->block_rsv = trans->orig_rsv;
567 return 0;
568 }
569
570 /*
571 * do the qgroup accounting as early as possible
572 */
573 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
574
575 btrfs_trans_release_metadata(trans, root);
576 trans->block_rsv = NULL;
577 /*
578 * the same root has to be passed to start_transaction and
579 * end_transaction. Subvolume quota depends on this.
580 */
581 WARN_ON(trans->root != root);
582
583 if (trans->qgroup_reserved) {
584 btrfs_qgroup_free(root, trans->qgroup_reserved);
585 trans->qgroup_reserved = 0;
586 }
587
588 if (!list_empty(&trans->new_bgs))
589 btrfs_create_pending_block_groups(trans, root);
590
591 while (count < 2) {
592 unsigned long cur = trans->delayed_ref_updates;
593 trans->delayed_ref_updates = 0;
594 if (cur &&
595 trans->transaction->delayed_refs.num_heads_ready > 64) {
596 trans->delayed_ref_updates = 0;
597 btrfs_run_delayed_refs(trans, root, cur);
598 } else {
599 break;
600 }
601 count++;
602 }
603 btrfs_trans_release_metadata(trans, root);
604 trans->block_rsv = NULL;
605
606 if (!list_empty(&trans->new_bgs))
607 btrfs_create_pending_block_groups(trans, root);
608
609 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
610 should_end_transaction(trans, root)) {
611 trans->transaction->blocked = 1;
612 smp_wmb();
613 }
614
615 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
616 if (throttle) {
617 /*
618 * We may race with somebody else here so end up having
619 * to call end_transaction on ourselves again, so inc
620 * our use_count.
621 */
622 trans->use_count++;
623 return btrfs_commit_transaction(trans, root);
624 } else {
625 wake_up_process(info->transaction_kthread);
626 }
627 }
628
629 if (trans->type < TRANS_JOIN_NOLOCK)
630 sb_end_intwrite(root->fs_info->sb);
631
632 WARN_ON(cur_trans != info->running_transaction);
633 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
634 atomic_dec(&cur_trans->num_writers);
635
636 smp_mb();
637 if (waitqueue_active(&cur_trans->writer_wait))
638 wake_up(&cur_trans->writer_wait);
639 put_transaction(cur_trans);
640
641 if (current->journal_info == trans)
642 current->journal_info = NULL;
643
644 if (throttle)
645 btrfs_run_delayed_iputs(root);
646
647 if (trans->aborted ||
648 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
649 err = -EIO;
650 assert_qgroups_uptodate(trans);
651
652 kmem_cache_free(btrfs_trans_handle_cachep, trans);
653 return err;
654 }
655
656 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root)
658 {
659 int ret;
660
661 ret = __btrfs_end_transaction(trans, root, 0);
662 if (ret)
663 return ret;
664 return 0;
665 }
666
667 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
668 struct btrfs_root *root)
669 {
670 int ret;
671
672 ret = __btrfs_end_transaction(trans, root, 1);
673 if (ret)
674 return ret;
675 return 0;
676 }
677
678 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
679 struct btrfs_root *root)
680 {
681 return __btrfs_end_transaction(trans, root, 1);
682 }
683
684 /*
685 * when btree blocks are allocated, they have some corresponding bits set for
686 * them in one of two extent_io trees. This is used to make sure all of
687 * those extents are sent to disk but does not wait on them
688 */
689 int btrfs_write_marked_extents(struct btrfs_root *root,
690 struct extent_io_tree *dirty_pages, int mark)
691 {
692 int err = 0;
693 int werr = 0;
694 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
695 struct extent_state *cached_state = NULL;
696 u64 start = 0;
697 u64 end;
698
699 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
700 mark, &cached_state)) {
701 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
702 mark, &cached_state, GFP_NOFS);
703 cached_state = NULL;
704 err = filemap_fdatawrite_range(mapping, start, end);
705 if (err)
706 werr = err;
707 cond_resched();
708 start = end + 1;
709 }
710 if (err)
711 werr = err;
712 return werr;
713 }
714
715 /*
716 * when btree blocks are allocated, they have some corresponding bits set for
717 * them in one of two extent_io trees. This is used to make sure all of
718 * those extents are on disk for transaction or log commit. We wait
719 * on all the pages and clear them from the dirty pages state tree
720 */
721 int btrfs_wait_marked_extents(struct btrfs_root *root,
722 struct extent_io_tree *dirty_pages, int mark)
723 {
724 int err = 0;
725 int werr = 0;
726 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
727 struct extent_state *cached_state = NULL;
728 u64 start = 0;
729 u64 end;
730
731 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
732 EXTENT_NEED_WAIT, &cached_state)) {
733 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
734 0, 0, &cached_state, GFP_NOFS);
735 err = filemap_fdatawait_range(mapping, start, end);
736 if (err)
737 werr = err;
738 cond_resched();
739 start = end + 1;
740 }
741 if (err)
742 werr = err;
743 return werr;
744 }
745
746 /*
747 * when btree blocks are allocated, they have some corresponding bits set for
748 * them in one of two extent_io trees. This is used to make sure all of
749 * those extents are on disk for transaction or log commit
750 */
751 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
752 struct extent_io_tree *dirty_pages, int mark)
753 {
754 int ret;
755 int ret2;
756
757 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
758 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
759
760 if (ret)
761 return ret;
762 if (ret2)
763 return ret2;
764 return 0;
765 }
766
767 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
768 struct btrfs_root *root)
769 {
770 if (!trans || !trans->transaction) {
771 struct inode *btree_inode;
772 btree_inode = root->fs_info->btree_inode;
773 return filemap_write_and_wait(btree_inode->i_mapping);
774 }
775 return btrfs_write_and_wait_marked_extents(root,
776 &trans->transaction->dirty_pages,
777 EXTENT_DIRTY);
778 }
779
780 /*
781 * this is used to update the root pointer in the tree of tree roots.
782 *
783 * But, in the case of the extent allocation tree, updating the root
784 * pointer may allocate blocks which may change the root of the extent
785 * allocation tree.
786 *
787 * So, this loops and repeats and makes sure the cowonly root didn't
788 * change while the root pointer was being updated in the metadata.
789 */
790 static int update_cowonly_root(struct btrfs_trans_handle *trans,
791 struct btrfs_root *root)
792 {
793 int ret;
794 u64 old_root_bytenr;
795 u64 old_root_used;
796 struct btrfs_root *tree_root = root->fs_info->tree_root;
797
798 old_root_used = btrfs_root_used(&root->root_item);
799 btrfs_write_dirty_block_groups(trans, root);
800
801 while (1) {
802 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
803 if (old_root_bytenr == root->node->start &&
804 old_root_used == btrfs_root_used(&root->root_item))
805 break;
806
807 btrfs_set_root_node(&root->root_item, root->node);
808 ret = btrfs_update_root(trans, tree_root,
809 &root->root_key,
810 &root->root_item);
811 if (ret)
812 return ret;
813
814 old_root_used = btrfs_root_used(&root->root_item);
815 ret = btrfs_write_dirty_block_groups(trans, root);
816 if (ret)
817 return ret;
818 }
819
820 if (root != root->fs_info->extent_root)
821 switch_commit_root(root);
822
823 return 0;
824 }
825
826 /*
827 * update all the cowonly tree roots on disk
828 *
829 * The error handling in this function may not be obvious. Any of the
830 * failures will cause the file system to go offline. We still need
831 * to clean up the delayed refs.
832 */
833 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
834 struct btrfs_root *root)
835 {
836 struct btrfs_fs_info *fs_info = root->fs_info;
837 struct list_head *next;
838 struct extent_buffer *eb;
839 int ret;
840
841 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
842 if (ret)
843 return ret;
844
845 eb = btrfs_lock_root_node(fs_info->tree_root);
846 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
847 0, &eb);
848 btrfs_tree_unlock(eb);
849 free_extent_buffer(eb);
850
851 if (ret)
852 return ret;
853
854 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
855 if (ret)
856 return ret;
857
858 ret = btrfs_run_dev_stats(trans, root->fs_info);
859 WARN_ON(ret);
860 ret = btrfs_run_dev_replace(trans, root->fs_info);
861 WARN_ON(ret);
862
863 ret = btrfs_run_qgroups(trans, root->fs_info);
864 BUG_ON(ret);
865
866 /* run_qgroups might have added some more refs */
867 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
868 BUG_ON(ret);
869
870 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
871 next = fs_info->dirty_cowonly_roots.next;
872 list_del_init(next);
873 root = list_entry(next, struct btrfs_root, dirty_list);
874
875 ret = update_cowonly_root(trans, root);
876 if (ret)
877 return ret;
878 }
879
880 down_write(&fs_info->extent_commit_sem);
881 switch_commit_root(fs_info->extent_root);
882 up_write(&fs_info->extent_commit_sem);
883
884 btrfs_after_dev_replace_commit(fs_info);
885
886 return 0;
887 }
888
889 /*
890 * dead roots are old snapshots that need to be deleted. This allocates
891 * a dirty root struct and adds it into the list of dead roots that need to
892 * be deleted
893 */
894 int btrfs_add_dead_root(struct btrfs_root *root)
895 {
896 spin_lock(&root->fs_info->trans_lock);
897 list_add(&root->root_list, &root->fs_info->dead_roots);
898 spin_unlock(&root->fs_info->trans_lock);
899 return 0;
900 }
901
902 /*
903 * update all the cowonly tree roots on disk
904 */
905 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
906 struct btrfs_root *root)
907 {
908 struct btrfs_root *gang[8];
909 struct btrfs_fs_info *fs_info = root->fs_info;
910 int i;
911 int ret;
912 int err = 0;
913
914 spin_lock(&fs_info->fs_roots_radix_lock);
915 while (1) {
916 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
917 (void **)gang, 0,
918 ARRAY_SIZE(gang),
919 BTRFS_ROOT_TRANS_TAG);
920 if (ret == 0)
921 break;
922 for (i = 0; i < ret; i++) {
923 root = gang[i];
924 radix_tree_tag_clear(&fs_info->fs_roots_radix,
925 (unsigned long)root->root_key.objectid,
926 BTRFS_ROOT_TRANS_TAG);
927 spin_unlock(&fs_info->fs_roots_radix_lock);
928
929 btrfs_free_log(trans, root);
930 btrfs_update_reloc_root(trans, root);
931 btrfs_orphan_commit_root(trans, root);
932
933 btrfs_save_ino_cache(root, trans);
934
935 /* see comments in should_cow_block() */
936 root->force_cow = 0;
937 smp_wmb();
938
939 if (root->commit_root != root->node) {
940 mutex_lock(&root->fs_commit_mutex);
941 switch_commit_root(root);
942 btrfs_unpin_free_ino(root);
943 mutex_unlock(&root->fs_commit_mutex);
944
945 btrfs_set_root_node(&root->root_item,
946 root->node);
947 }
948
949 err = btrfs_update_root(trans, fs_info->tree_root,
950 &root->root_key,
951 &root->root_item);
952 spin_lock(&fs_info->fs_roots_radix_lock);
953 if (err)
954 break;
955 }
956 }
957 spin_unlock(&fs_info->fs_roots_radix_lock);
958 return err;
959 }
960
961 /*
962 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
963 * otherwise every leaf in the btree is read and defragged.
964 */
965 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
966 {
967 struct btrfs_fs_info *info = root->fs_info;
968 struct btrfs_trans_handle *trans;
969 int ret;
970
971 if (xchg(&root->defrag_running, 1))
972 return 0;
973
974 while (1) {
975 trans = btrfs_start_transaction(root, 0);
976 if (IS_ERR(trans))
977 return PTR_ERR(trans);
978
979 ret = btrfs_defrag_leaves(trans, root, cacheonly);
980
981 btrfs_end_transaction(trans, root);
982 btrfs_btree_balance_dirty(info->tree_root);
983 cond_resched();
984
985 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
986 break;
987 }
988 root->defrag_running = 0;
989 return ret;
990 }
991
992 /*
993 * new snapshots need to be created at a very specific time in the
994 * transaction commit. This does the actual creation
995 */
996 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
997 struct btrfs_fs_info *fs_info,
998 struct btrfs_pending_snapshot *pending)
999 {
1000 struct btrfs_key key;
1001 struct btrfs_root_item *new_root_item;
1002 struct btrfs_root *tree_root = fs_info->tree_root;
1003 struct btrfs_root *root = pending->root;
1004 struct btrfs_root *parent_root;
1005 struct btrfs_block_rsv *rsv;
1006 struct inode *parent_inode;
1007 struct btrfs_path *path;
1008 struct btrfs_dir_item *dir_item;
1009 struct dentry *parent;
1010 struct dentry *dentry;
1011 struct extent_buffer *tmp;
1012 struct extent_buffer *old;
1013 struct timespec cur_time = CURRENT_TIME;
1014 int ret;
1015 u64 to_reserve = 0;
1016 u64 index = 0;
1017 u64 objectid;
1018 u64 root_flags;
1019 uuid_le new_uuid;
1020
1021 path = btrfs_alloc_path();
1022 if (!path) {
1023 ret = pending->error = -ENOMEM;
1024 goto path_alloc_fail;
1025 }
1026
1027 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1028 if (!new_root_item) {
1029 ret = pending->error = -ENOMEM;
1030 goto root_item_alloc_fail;
1031 }
1032
1033 ret = btrfs_find_free_objectid(tree_root, &objectid);
1034 if (ret) {
1035 pending->error = ret;
1036 goto no_free_objectid;
1037 }
1038
1039 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1040
1041 if (to_reserve > 0) {
1042 ret = btrfs_block_rsv_add(root, &pending->block_rsv,
1043 to_reserve,
1044 BTRFS_RESERVE_NO_FLUSH);
1045 if (ret) {
1046 pending->error = ret;
1047 goto no_free_objectid;
1048 }
1049 }
1050
1051 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1052 objectid, pending->inherit);
1053 if (ret) {
1054 pending->error = ret;
1055 goto no_free_objectid;
1056 }
1057
1058 key.objectid = objectid;
1059 key.offset = (u64)-1;
1060 key.type = BTRFS_ROOT_ITEM_KEY;
1061
1062 rsv = trans->block_rsv;
1063 trans->block_rsv = &pending->block_rsv;
1064
1065 dentry = pending->dentry;
1066 parent = dget_parent(dentry);
1067 parent_inode = parent->d_inode;
1068 parent_root = BTRFS_I(parent_inode)->root;
1069 record_root_in_trans(trans, parent_root);
1070
1071 /*
1072 * insert the directory item
1073 */
1074 ret = btrfs_set_inode_index(parent_inode, &index);
1075 BUG_ON(ret); /* -ENOMEM */
1076
1077 /* check if there is a file/dir which has the same name. */
1078 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1079 btrfs_ino(parent_inode),
1080 dentry->d_name.name,
1081 dentry->d_name.len, 0);
1082 if (dir_item != NULL && !IS_ERR(dir_item)) {
1083 pending->error = -EEXIST;
1084 goto fail;
1085 } else if (IS_ERR(dir_item)) {
1086 ret = PTR_ERR(dir_item);
1087 btrfs_abort_transaction(trans, root, ret);
1088 goto fail;
1089 }
1090 btrfs_release_path(path);
1091
1092 /*
1093 * pull in the delayed directory update
1094 * and the delayed inode item
1095 * otherwise we corrupt the FS during
1096 * snapshot
1097 */
1098 ret = btrfs_run_delayed_items(trans, root);
1099 if (ret) { /* Transaction aborted */
1100 btrfs_abort_transaction(trans, root, ret);
1101 goto fail;
1102 }
1103
1104 record_root_in_trans(trans, root);
1105 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1106 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1107 btrfs_check_and_init_root_item(new_root_item);
1108
1109 root_flags = btrfs_root_flags(new_root_item);
1110 if (pending->readonly)
1111 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1112 else
1113 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1114 btrfs_set_root_flags(new_root_item, root_flags);
1115
1116 btrfs_set_root_generation_v2(new_root_item,
1117 trans->transid);
1118 uuid_le_gen(&new_uuid);
1119 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1120 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1121 BTRFS_UUID_SIZE);
1122 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1123 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1124 btrfs_set_root_otransid(new_root_item, trans->transid);
1125 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1126 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1127 btrfs_set_root_stransid(new_root_item, 0);
1128 btrfs_set_root_rtransid(new_root_item, 0);
1129
1130 old = btrfs_lock_root_node(root);
1131 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1132 if (ret) {
1133 btrfs_tree_unlock(old);
1134 free_extent_buffer(old);
1135 btrfs_abort_transaction(trans, root, ret);
1136 goto fail;
1137 }
1138
1139 btrfs_set_lock_blocking(old);
1140
1141 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1142 /* clean up in any case */
1143 btrfs_tree_unlock(old);
1144 free_extent_buffer(old);
1145 if (ret) {
1146 btrfs_abort_transaction(trans, root, ret);
1147 goto fail;
1148 }
1149
1150 /* see comments in should_cow_block() */
1151 root->force_cow = 1;
1152 smp_wmb();
1153
1154 btrfs_set_root_node(new_root_item, tmp);
1155 /* record when the snapshot was created in key.offset */
1156 key.offset = trans->transid;
1157 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1158 btrfs_tree_unlock(tmp);
1159 free_extent_buffer(tmp);
1160 if (ret) {
1161 btrfs_abort_transaction(trans, root, ret);
1162 goto fail;
1163 }
1164
1165 /*
1166 * insert root back/forward references
1167 */
1168 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1169 parent_root->root_key.objectid,
1170 btrfs_ino(parent_inode), index,
1171 dentry->d_name.name, dentry->d_name.len);
1172 if (ret) {
1173 btrfs_abort_transaction(trans, root, ret);
1174 goto fail;
1175 }
1176
1177 key.offset = (u64)-1;
1178 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1179 if (IS_ERR(pending->snap)) {
1180 ret = PTR_ERR(pending->snap);
1181 btrfs_abort_transaction(trans, root, ret);
1182 goto fail;
1183 }
1184
1185 ret = btrfs_reloc_post_snapshot(trans, pending);
1186 if (ret) {
1187 btrfs_abort_transaction(trans, root, ret);
1188 goto fail;
1189 }
1190
1191 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1192 if (ret) {
1193 btrfs_abort_transaction(trans, root, ret);
1194 goto fail;
1195 }
1196
1197 ret = btrfs_insert_dir_item(trans, parent_root,
1198 dentry->d_name.name, dentry->d_name.len,
1199 parent_inode, &key,
1200 BTRFS_FT_DIR, index);
1201 /* We have check then name at the beginning, so it is impossible. */
1202 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1203 if (ret) {
1204 btrfs_abort_transaction(trans, root, ret);
1205 goto fail;
1206 }
1207
1208 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1209 dentry->d_name.len * 2);
1210 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1211 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1212 if (ret)
1213 btrfs_abort_transaction(trans, root, ret);
1214 fail:
1215 dput(parent);
1216 trans->block_rsv = rsv;
1217 no_free_objectid:
1218 kfree(new_root_item);
1219 root_item_alloc_fail:
1220 btrfs_free_path(path);
1221 path_alloc_fail:
1222 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1223 return ret;
1224 }
1225
1226 /*
1227 * create all the snapshots we've scheduled for creation
1228 */
1229 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1230 struct btrfs_fs_info *fs_info)
1231 {
1232 struct btrfs_pending_snapshot *pending;
1233 struct list_head *head = &trans->transaction->pending_snapshots;
1234
1235 list_for_each_entry(pending, head, list)
1236 create_pending_snapshot(trans, fs_info, pending);
1237 return 0;
1238 }
1239
1240 static void update_super_roots(struct btrfs_root *root)
1241 {
1242 struct btrfs_root_item *root_item;
1243 struct btrfs_super_block *super;
1244
1245 super = root->fs_info->super_copy;
1246
1247 root_item = &root->fs_info->chunk_root->root_item;
1248 super->chunk_root = root_item->bytenr;
1249 super->chunk_root_generation = root_item->generation;
1250 super->chunk_root_level = root_item->level;
1251
1252 root_item = &root->fs_info->tree_root->root_item;
1253 super->root = root_item->bytenr;
1254 super->generation = root_item->generation;
1255 super->root_level = root_item->level;
1256 if (btrfs_test_opt(root, SPACE_CACHE))
1257 super->cache_generation = root_item->generation;
1258 }
1259
1260 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1261 {
1262 int ret = 0;
1263 spin_lock(&info->trans_lock);
1264 if (info->running_transaction)
1265 ret = info->running_transaction->in_commit;
1266 spin_unlock(&info->trans_lock);
1267 return ret;
1268 }
1269
1270 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1271 {
1272 int ret = 0;
1273 spin_lock(&info->trans_lock);
1274 if (info->running_transaction)
1275 ret = info->running_transaction->blocked;
1276 spin_unlock(&info->trans_lock);
1277 return ret;
1278 }
1279
1280 /*
1281 * wait for the current transaction commit to start and block subsequent
1282 * transaction joins
1283 */
1284 static void wait_current_trans_commit_start(struct btrfs_root *root,
1285 struct btrfs_transaction *trans)
1286 {
1287 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1288 }
1289
1290 /*
1291 * wait for the current transaction to start and then become unblocked.
1292 * caller holds ref.
1293 */
1294 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1295 struct btrfs_transaction *trans)
1296 {
1297 wait_event(root->fs_info->transaction_wait,
1298 trans->commit_done || (trans->in_commit && !trans->blocked));
1299 }
1300
1301 /*
1302 * commit transactions asynchronously. once btrfs_commit_transaction_async
1303 * returns, any subsequent transaction will not be allowed to join.
1304 */
1305 struct btrfs_async_commit {
1306 struct btrfs_trans_handle *newtrans;
1307 struct btrfs_root *root;
1308 struct work_struct work;
1309 };
1310
1311 static void do_async_commit(struct work_struct *work)
1312 {
1313 struct btrfs_async_commit *ac =
1314 container_of(work, struct btrfs_async_commit, work);
1315
1316 /*
1317 * We've got freeze protection passed with the transaction.
1318 * Tell lockdep about it.
1319 */
1320 if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1321 rwsem_acquire_read(
1322 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1323 0, 1, _THIS_IP_);
1324
1325 current->journal_info = ac->newtrans;
1326
1327 btrfs_commit_transaction(ac->newtrans, ac->root);
1328 kfree(ac);
1329 }
1330
1331 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1332 struct btrfs_root *root,
1333 int wait_for_unblock)
1334 {
1335 struct btrfs_async_commit *ac;
1336 struct btrfs_transaction *cur_trans;
1337
1338 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1339 if (!ac)
1340 return -ENOMEM;
1341
1342 INIT_WORK(&ac->work, do_async_commit);
1343 ac->root = root;
1344 ac->newtrans = btrfs_join_transaction(root);
1345 if (IS_ERR(ac->newtrans)) {
1346 int err = PTR_ERR(ac->newtrans);
1347 kfree(ac);
1348 return err;
1349 }
1350
1351 /* take transaction reference */
1352 cur_trans = trans->transaction;
1353 atomic_inc(&cur_trans->use_count);
1354
1355 btrfs_end_transaction(trans, root);
1356
1357 /*
1358 * Tell lockdep we've released the freeze rwsem, since the
1359 * async commit thread will be the one to unlock it.
1360 */
1361 if (trans->type < TRANS_JOIN_NOLOCK)
1362 rwsem_release(
1363 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1364 1, _THIS_IP_);
1365
1366 schedule_work(&ac->work);
1367
1368 /* wait for transaction to start and unblock */
1369 if (wait_for_unblock)
1370 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1371 else
1372 wait_current_trans_commit_start(root, cur_trans);
1373
1374 if (current->journal_info == trans)
1375 current->journal_info = NULL;
1376
1377 put_transaction(cur_trans);
1378 return 0;
1379 }
1380
1381
1382 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1383 struct btrfs_root *root, int err)
1384 {
1385 struct btrfs_transaction *cur_trans = trans->transaction;
1386
1387 WARN_ON(trans->use_count > 1);
1388
1389 btrfs_abort_transaction(trans, root, err);
1390
1391 spin_lock(&root->fs_info->trans_lock);
1392 list_del_init(&cur_trans->list);
1393 if (cur_trans == root->fs_info->running_transaction) {
1394 root->fs_info->running_transaction = NULL;
1395 root->fs_info->trans_no_join = 0;
1396 }
1397 spin_unlock(&root->fs_info->trans_lock);
1398
1399 btrfs_cleanup_one_transaction(trans->transaction, root);
1400
1401 put_transaction(cur_trans);
1402 put_transaction(cur_trans);
1403
1404 trace_btrfs_transaction_commit(root);
1405
1406 btrfs_scrub_continue(root);
1407
1408 if (current->journal_info == trans)
1409 current->journal_info = NULL;
1410
1411 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1412 }
1413
1414 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1415 struct btrfs_root *root)
1416 {
1417 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1418 int snap_pending = 0;
1419 int ret;
1420
1421 if (!flush_on_commit) {
1422 spin_lock(&root->fs_info->trans_lock);
1423 if (!list_empty(&trans->transaction->pending_snapshots))
1424 snap_pending = 1;
1425 spin_unlock(&root->fs_info->trans_lock);
1426 }
1427
1428 if (flush_on_commit || snap_pending) {
1429 ret = btrfs_start_delalloc_inodes(root, 1);
1430 if (ret)
1431 return ret;
1432 btrfs_wait_ordered_extents(root, 1);
1433 }
1434
1435 ret = btrfs_run_delayed_items(trans, root);
1436 if (ret)
1437 return ret;
1438
1439 /*
1440 * running the delayed items may have added new refs. account
1441 * them now so that they hinder processing of more delayed refs
1442 * as little as possible.
1443 */
1444 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1445
1446 /*
1447 * rename don't use btrfs_join_transaction, so, once we
1448 * set the transaction to blocked above, we aren't going
1449 * to get any new ordered operations. We can safely run
1450 * it here and no for sure that nothing new will be added
1451 * to the list
1452 */
1453 ret = btrfs_run_ordered_operations(root, 1);
1454
1455 return ret;
1456 }
1457
1458 /*
1459 * btrfs_transaction state sequence:
1460 * in_commit = 0, blocked = 0 (initial)
1461 * in_commit = 1, blocked = 1
1462 * blocked = 0
1463 * commit_done = 1
1464 */
1465 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1466 struct btrfs_root *root)
1467 {
1468 unsigned long joined = 0;
1469 struct btrfs_transaction *cur_trans = trans->transaction;
1470 struct btrfs_transaction *prev_trans = NULL;
1471 DEFINE_WAIT(wait);
1472 int ret;
1473 int should_grow = 0;
1474 unsigned long now = get_seconds();
1475
1476 ret = btrfs_run_ordered_operations(root, 0);
1477 if (ret) {
1478 btrfs_abort_transaction(trans, root, ret);
1479 btrfs_end_transaction(trans, root);
1480 return ret;
1481 }
1482
1483 /* Stop the commit early if ->aborted is set */
1484 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1485 ret = cur_trans->aborted;
1486 btrfs_end_transaction(trans, root);
1487 return ret;
1488 }
1489
1490 /* make a pass through all the delayed refs we have so far
1491 * any runnings procs may add more while we are here
1492 */
1493 ret = btrfs_run_delayed_refs(trans, root, 0);
1494 if (ret) {
1495 btrfs_end_transaction(trans, root);
1496 return ret;
1497 }
1498
1499 btrfs_trans_release_metadata(trans, root);
1500 trans->block_rsv = NULL;
1501
1502 cur_trans = trans->transaction;
1503
1504 /*
1505 * set the flushing flag so procs in this transaction have to
1506 * start sending their work down.
1507 */
1508 cur_trans->delayed_refs.flushing = 1;
1509
1510 if (!list_empty(&trans->new_bgs))
1511 btrfs_create_pending_block_groups(trans, root);
1512
1513 ret = btrfs_run_delayed_refs(trans, root, 0);
1514 if (ret) {
1515 btrfs_end_transaction(trans, root);
1516 return ret;
1517 }
1518
1519 spin_lock(&cur_trans->commit_lock);
1520 if (cur_trans->in_commit) {
1521 spin_unlock(&cur_trans->commit_lock);
1522 atomic_inc(&cur_trans->use_count);
1523 ret = btrfs_end_transaction(trans, root);
1524
1525 wait_for_commit(root, cur_trans);
1526
1527 put_transaction(cur_trans);
1528
1529 return ret;
1530 }
1531
1532 trans->transaction->in_commit = 1;
1533 trans->transaction->blocked = 1;
1534 spin_unlock(&cur_trans->commit_lock);
1535 wake_up(&root->fs_info->transaction_blocked_wait);
1536
1537 spin_lock(&root->fs_info->trans_lock);
1538 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1539 prev_trans = list_entry(cur_trans->list.prev,
1540 struct btrfs_transaction, list);
1541 if (!prev_trans->commit_done) {
1542 atomic_inc(&prev_trans->use_count);
1543 spin_unlock(&root->fs_info->trans_lock);
1544
1545 wait_for_commit(root, prev_trans);
1546
1547 put_transaction(prev_trans);
1548 } else {
1549 spin_unlock(&root->fs_info->trans_lock);
1550 }
1551 } else {
1552 spin_unlock(&root->fs_info->trans_lock);
1553 }
1554
1555 if (!btrfs_test_opt(root, SSD) &&
1556 (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1557 should_grow = 1;
1558
1559 do {
1560 joined = cur_trans->num_joined;
1561
1562 WARN_ON(cur_trans != trans->transaction);
1563
1564 ret = btrfs_flush_all_pending_stuffs(trans, root);
1565 if (ret)
1566 goto cleanup_transaction;
1567
1568 prepare_to_wait(&cur_trans->writer_wait, &wait,
1569 TASK_UNINTERRUPTIBLE);
1570
1571 if (atomic_read(&cur_trans->num_writers) > 1)
1572 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1573 else if (should_grow)
1574 schedule_timeout(1);
1575
1576 finish_wait(&cur_trans->writer_wait, &wait);
1577 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1578 (should_grow && cur_trans->num_joined != joined));
1579
1580 ret = btrfs_flush_all_pending_stuffs(trans, root);
1581 if (ret)
1582 goto cleanup_transaction;
1583
1584 /*
1585 * Ok now we need to make sure to block out any other joins while we
1586 * commit the transaction. We could have started a join before setting
1587 * no_join so make sure to wait for num_writers to == 1 again.
1588 */
1589 spin_lock(&root->fs_info->trans_lock);
1590 root->fs_info->trans_no_join = 1;
1591 spin_unlock(&root->fs_info->trans_lock);
1592 wait_event(cur_trans->writer_wait,
1593 atomic_read(&cur_trans->num_writers) == 1);
1594
1595 /* ->aborted might be set after the previous check, so check it */
1596 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1597 ret = cur_trans->aborted;
1598 goto cleanup_transaction;
1599 }
1600 /*
1601 * the reloc mutex makes sure that we stop
1602 * the balancing code from coming in and moving
1603 * extents around in the middle of the commit
1604 */
1605 mutex_lock(&root->fs_info->reloc_mutex);
1606
1607 /*
1608 * We needn't worry about the delayed items because we will
1609 * deal with them in create_pending_snapshot(), which is the
1610 * core function of the snapshot creation.
1611 */
1612 ret = create_pending_snapshots(trans, root->fs_info);
1613 if (ret) {
1614 mutex_unlock(&root->fs_info->reloc_mutex);
1615 goto cleanup_transaction;
1616 }
1617
1618 /*
1619 * We insert the dir indexes of the snapshots and update the inode
1620 * of the snapshots' parents after the snapshot creation, so there
1621 * are some delayed items which are not dealt with. Now deal with
1622 * them.
1623 *
1624 * We needn't worry that this operation will corrupt the snapshots,
1625 * because all the tree which are snapshoted will be forced to COW
1626 * the nodes and leaves.
1627 */
1628 ret = btrfs_run_delayed_items(trans, root);
1629 if (ret) {
1630 mutex_unlock(&root->fs_info->reloc_mutex);
1631 goto cleanup_transaction;
1632 }
1633
1634 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1635 if (ret) {
1636 mutex_unlock(&root->fs_info->reloc_mutex);
1637 goto cleanup_transaction;
1638 }
1639
1640 /*
1641 * make sure none of the code above managed to slip in a
1642 * delayed item
1643 */
1644 btrfs_assert_delayed_root_empty(root);
1645
1646 WARN_ON(cur_trans != trans->transaction);
1647
1648 btrfs_scrub_pause(root);
1649 /* btrfs_commit_tree_roots is responsible for getting the
1650 * various roots consistent with each other. Every pointer
1651 * in the tree of tree roots has to point to the most up to date
1652 * root for every subvolume and other tree. So, we have to keep
1653 * the tree logging code from jumping in and changing any
1654 * of the trees.
1655 *
1656 * At this point in the commit, there can't be any tree-log
1657 * writers, but a little lower down we drop the trans mutex
1658 * and let new people in. By holding the tree_log_mutex
1659 * from now until after the super is written, we avoid races
1660 * with the tree-log code.
1661 */
1662 mutex_lock(&root->fs_info->tree_log_mutex);
1663
1664 ret = commit_fs_roots(trans, root);
1665 if (ret) {
1666 mutex_unlock(&root->fs_info->tree_log_mutex);
1667 mutex_unlock(&root->fs_info->reloc_mutex);
1668 goto cleanup_transaction;
1669 }
1670
1671 /* commit_fs_roots gets rid of all the tree log roots, it is now
1672 * safe to free the root of tree log roots
1673 */
1674 btrfs_free_log_root_tree(trans, root->fs_info);
1675
1676 ret = commit_cowonly_roots(trans, root);
1677 if (ret) {
1678 mutex_unlock(&root->fs_info->tree_log_mutex);
1679 mutex_unlock(&root->fs_info->reloc_mutex);
1680 goto cleanup_transaction;
1681 }
1682
1683 /*
1684 * The tasks which save the space cache and inode cache may also
1685 * update ->aborted, check it.
1686 */
1687 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1688 ret = cur_trans->aborted;
1689 mutex_unlock(&root->fs_info->tree_log_mutex);
1690 mutex_unlock(&root->fs_info->reloc_mutex);
1691 goto cleanup_transaction;
1692 }
1693
1694 btrfs_prepare_extent_commit(trans, root);
1695
1696 cur_trans = root->fs_info->running_transaction;
1697
1698 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1699 root->fs_info->tree_root->node);
1700 switch_commit_root(root->fs_info->tree_root);
1701
1702 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1703 root->fs_info->chunk_root->node);
1704 switch_commit_root(root->fs_info->chunk_root);
1705
1706 assert_qgroups_uptodate(trans);
1707 update_super_roots(root);
1708
1709 if (!root->fs_info->log_root_recovering) {
1710 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1711 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1712 }
1713
1714 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1715 sizeof(*root->fs_info->super_copy));
1716
1717 trans->transaction->blocked = 0;
1718 spin_lock(&root->fs_info->trans_lock);
1719 root->fs_info->running_transaction = NULL;
1720 root->fs_info->trans_no_join = 0;
1721 spin_unlock(&root->fs_info->trans_lock);
1722 mutex_unlock(&root->fs_info->reloc_mutex);
1723
1724 wake_up(&root->fs_info->transaction_wait);
1725
1726 ret = btrfs_write_and_wait_transaction(trans, root);
1727 if (ret) {
1728 btrfs_error(root->fs_info, ret,
1729 "Error while writing out transaction.");
1730 mutex_unlock(&root->fs_info->tree_log_mutex);
1731 goto cleanup_transaction;
1732 }
1733
1734 ret = write_ctree_super(trans, root, 0);
1735 if (ret) {
1736 mutex_unlock(&root->fs_info->tree_log_mutex);
1737 goto cleanup_transaction;
1738 }
1739
1740 /*
1741 * the super is written, we can safely allow the tree-loggers
1742 * to go about their business
1743 */
1744 mutex_unlock(&root->fs_info->tree_log_mutex);
1745
1746 btrfs_finish_extent_commit(trans, root);
1747
1748 cur_trans->commit_done = 1;
1749
1750 root->fs_info->last_trans_committed = cur_trans->transid;
1751
1752 wake_up(&cur_trans->commit_wait);
1753
1754 spin_lock(&root->fs_info->trans_lock);
1755 list_del_init(&cur_trans->list);
1756 spin_unlock(&root->fs_info->trans_lock);
1757
1758 put_transaction(cur_trans);
1759 put_transaction(cur_trans);
1760
1761 if (trans->type < TRANS_JOIN_NOLOCK)
1762 sb_end_intwrite(root->fs_info->sb);
1763
1764 trace_btrfs_transaction_commit(root);
1765
1766 btrfs_scrub_continue(root);
1767
1768 if (current->journal_info == trans)
1769 current->journal_info = NULL;
1770
1771 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1772
1773 if (current != root->fs_info->transaction_kthread)
1774 btrfs_run_delayed_iputs(root);
1775
1776 return ret;
1777
1778 cleanup_transaction:
1779 btrfs_trans_release_metadata(trans, root);
1780 trans->block_rsv = NULL;
1781 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1782 // WARN_ON(1);
1783 if (current->journal_info == trans)
1784 current->journal_info = NULL;
1785 cleanup_transaction(trans, root, ret);
1786
1787 return ret;
1788 }
1789
1790 /*
1791 * interface function to delete all the snapshots we have scheduled for deletion
1792 */
1793 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1794 {
1795 LIST_HEAD(list);
1796 struct btrfs_fs_info *fs_info = root->fs_info;
1797
1798 spin_lock(&fs_info->trans_lock);
1799 list_splice_init(&fs_info->dead_roots, &list);
1800 spin_unlock(&fs_info->trans_lock);
1801
1802 while (!list_empty(&list)) {
1803 int ret;
1804
1805 root = list_entry(list.next, struct btrfs_root, root_list);
1806 list_del(&root->root_list);
1807
1808 btrfs_kill_all_delayed_nodes(root);
1809
1810 if (btrfs_header_backref_rev(root->node) <
1811 BTRFS_MIXED_BACKREF_REV)
1812 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1813 else
1814 ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1815 BUG_ON(ret < 0);
1816 }
1817 return 0;
1818 }
This page took 0.075159 seconds and 6 git commands to generate.