Merge branch 'raid56-experimental' into for-linus-3.9
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 void put_transaction(struct btrfs_transaction *transaction)
38 {
39 WARN_ON(atomic_read(&transaction->use_count) == 0);
40 if (atomic_dec_and_test(&transaction->use_count)) {
41 BUG_ON(!list_empty(&transaction->list));
42 WARN_ON(transaction->delayed_refs.root.rb_node);
43 kmem_cache_free(btrfs_transaction_cachep, transaction);
44 }
45 }
46
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 free_extent_buffer(root->commit_root);
50 root->commit_root = btrfs_root_node(root);
51 }
52
53 static inline int can_join_transaction(struct btrfs_transaction *trans,
54 int type)
55 {
56 return !(trans->in_commit &&
57 type != TRANS_JOIN &&
58 type != TRANS_JOIN_NOLOCK);
59 }
60
61 /*
62 * either allocate a new transaction or hop into the existing one
63 */
64 static noinline int join_transaction(struct btrfs_root *root, int type)
65 {
66 struct btrfs_transaction *cur_trans;
67 struct btrfs_fs_info *fs_info = root->fs_info;
68
69 spin_lock(&fs_info->trans_lock);
70 loop:
71 /* The file system has been taken offline. No new transactions. */
72 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
73 spin_unlock(&fs_info->trans_lock);
74 return -EROFS;
75 }
76
77 if (fs_info->trans_no_join) {
78 /*
79 * If we are JOIN_NOLOCK we're already committing a current
80 * transaction, we just need a handle to deal with something
81 * when committing the transaction, such as inode cache and
82 * space cache. It is a special case.
83 */
84 if (type != TRANS_JOIN_NOLOCK) {
85 spin_unlock(&fs_info->trans_lock);
86 return -EBUSY;
87 }
88 }
89
90 cur_trans = fs_info->running_transaction;
91 if (cur_trans) {
92 if (cur_trans->aborted) {
93 spin_unlock(&fs_info->trans_lock);
94 return cur_trans->aborted;
95 }
96 if (!can_join_transaction(cur_trans, type)) {
97 spin_unlock(&fs_info->trans_lock);
98 return -EBUSY;
99 }
100 atomic_inc(&cur_trans->use_count);
101 atomic_inc(&cur_trans->num_writers);
102 cur_trans->num_joined++;
103 spin_unlock(&fs_info->trans_lock);
104 return 0;
105 }
106 spin_unlock(&fs_info->trans_lock);
107
108 /*
109 * If we are ATTACH, we just want to catch the current transaction,
110 * and commit it. If there is no transaction, just return ENOENT.
111 */
112 if (type == TRANS_ATTACH)
113 return -ENOENT;
114
115 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
116 if (!cur_trans)
117 return -ENOMEM;
118
119 spin_lock(&fs_info->trans_lock);
120 if (fs_info->running_transaction) {
121 /*
122 * someone started a transaction after we unlocked. Make sure
123 * to redo the trans_no_join checks above
124 */
125 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
126 cur_trans = fs_info->running_transaction;
127 goto loop;
128 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
129 spin_unlock(&fs_info->trans_lock);
130 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
131 return -EROFS;
132 }
133
134 atomic_set(&cur_trans->num_writers, 1);
135 cur_trans->num_joined = 0;
136 init_waitqueue_head(&cur_trans->writer_wait);
137 init_waitqueue_head(&cur_trans->commit_wait);
138 cur_trans->in_commit = 0;
139 cur_trans->blocked = 0;
140 /*
141 * One for this trans handle, one so it will live on until we
142 * commit the transaction.
143 */
144 atomic_set(&cur_trans->use_count, 2);
145 cur_trans->commit_done = 0;
146 cur_trans->start_time = get_seconds();
147
148 cur_trans->delayed_refs.root = RB_ROOT;
149 cur_trans->delayed_refs.num_entries = 0;
150 cur_trans->delayed_refs.num_heads_ready = 0;
151 cur_trans->delayed_refs.num_heads = 0;
152 cur_trans->delayed_refs.flushing = 0;
153 cur_trans->delayed_refs.run_delayed_start = 0;
154
155 /*
156 * although the tree mod log is per file system and not per transaction,
157 * the log must never go across transaction boundaries.
158 */
159 smp_mb();
160 if (!list_empty(&fs_info->tree_mod_seq_list))
161 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
162 "creating a fresh transaction\n");
163 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
164 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
165 "creating a fresh transaction\n");
166 atomic_set(&fs_info->tree_mod_seq, 0);
167
168 spin_lock_init(&cur_trans->commit_lock);
169 spin_lock_init(&cur_trans->delayed_refs.lock);
170 atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
171 atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
172 init_waitqueue_head(&cur_trans->delayed_refs.wait);
173
174 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
175 INIT_LIST_HEAD(&cur_trans->ordered_operations);
176 list_add_tail(&cur_trans->list, &fs_info->trans_list);
177 extent_io_tree_init(&cur_trans->dirty_pages,
178 fs_info->btree_inode->i_mapping);
179 fs_info->generation++;
180 cur_trans->transid = fs_info->generation;
181 fs_info->running_transaction = cur_trans;
182 cur_trans->aborted = 0;
183 spin_unlock(&fs_info->trans_lock);
184
185 return 0;
186 }
187
188 /*
189 * this does all the record keeping required to make sure that a reference
190 * counted root is properly recorded in a given transaction. This is required
191 * to make sure the old root from before we joined the transaction is deleted
192 * when the transaction commits
193 */
194 static int record_root_in_trans(struct btrfs_trans_handle *trans,
195 struct btrfs_root *root)
196 {
197 if (root->ref_cows && root->last_trans < trans->transid) {
198 WARN_ON(root == root->fs_info->extent_root);
199 WARN_ON(root->commit_root != root->node);
200
201 /*
202 * see below for in_trans_setup usage rules
203 * we have the reloc mutex held now, so there
204 * is only one writer in this function
205 */
206 root->in_trans_setup = 1;
207
208 /* make sure readers find in_trans_setup before
209 * they find our root->last_trans update
210 */
211 smp_wmb();
212
213 spin_lock(&root->fs_info->fs_roots_radix_lock);
214 if (root->last_trans == trans->transid) {
215 spin_unlock(&root->fs_info->fs_roots_radix_lock);
216 return 0;
217 }
218 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
219 (unsigned long)root->root_key.objectid,
220 BTRFS_ROOT_TRANS_TAG);
221 spin_unlock(&root->fs_info->fs_roots_radix_lock);
222 root->last_trans = trans->transid;
223
224 /* this is pretty tricky. We don't want to
225 * take the relocation lock in btrfs_record_root_in_trans
226 * unless we're really doing the first setup for this root in
227 * this transaction.
228 *
229 * Normally we'd use root->last_trans as a flag to decide
230 * if we want to take the expensive mutex.
231 *
232 * But, we have to set root->last_trans before we
233 * init the relocation root, otherwise, we trip over warnings
234 * in ctree.c. The solution used here is to flag ourselves
235 * with root->in_trans_setup. When this is 1, we're still
236 * fixing up the reloc trees and everyone must wait.
237 *
238 * When this is zero, they can trust root->last_trans and fly
239 * through btrfs_record_root_in_trans without having to take the
240 * lock. smp_wmb() makes sure that all the writes above are
241 * done before we pop in the zero below
242 */
243 btrfs_init_reloc_root(trans, root);
244 smp_wmb();
245 root->in_trans_setup = 0;
246 }
247 return 0;
248 }
249
250
251 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
252 struct btrfs_root *root)
253 {
254 if (!root->ref_cows)
255 return 0;
256
257 /*
258 * see record_root_in_trans for comments about in_trans_setup usage
259 * and barriers
260 */
261 smp_rmb();
262 if (root->last_trans == trans->transid &&
263 !root->in_trans_setup)
264 return 0;
265
266 mutex_lock(&root->fs_info->reloc_mutex);
267 record_root_in_trans(trans, root);
268 mutex_unlock(&root->fs_info->reloc_mutex);
269
270 return 0;
271 }
272
273 /* wait for commit against the current transaction to become unblocked
274 * when this is done, it is safe to start a new transaction, but the current
275 * transaction might not be fully on disk.
276 */
277 static void wait_current_trans(struct btrfs_root *root)
278 {
279 struct btrfs_transaction *cur_trans;
280
281 spin_lock(&root->fs_info->trans_lock);
282 cur_trans = root->fs_info->running_transaction;
283 if (cur_trans && cur_trans->blocked) {
284 atomic_inc(&cur_trans->use_count);
285 spin_unlock(&root->fs_info->trans_lock);
286
287 wait_event(root->fs_info->transaction_wait,
288 !cur_trans->blocked);
289 put_transaction(cur_trans);
290 } else {
291 spin_unlock(&root->fs_info->trans_lock);
292 }
293 }
294
295 static int may_wait_transaction(struct btrfs_root *root, int type)
296 {
297 if (root->fs_info->log_root_recovering)
298 return 0;
299
300 if (type == TRANS_USERSPACE)
301 return 1;
302
303 if (type == TRANS_START &&
304 !atomic_read(&root->fs_info->open_ioctl_trans))
305 return 1;
306
307 return 0;
308 }
309
310 static struct btrfs_trans_handle *
311 start_transaction(struct btrfs_root *root, u64 num_items, int type,
312 enum btrfs_reserve_flush_enum flush)
313 {
314 struct btrfs_trans_handle *h;
315 struct btrfs_transaction *cur_trans;
316 u64 num_bytes = 0;
317 int ret;
318 u64 qgroup_reserved = 0;
319
320 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
321 return ERR_PTR(-EROFS);
322
323 if (current->journal_info) {
324 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
325 h = current->journal_info;
326 h->use_count++;
327 WARN_ON(h->use_count > 2);
328 h->orig_rsv = h->block_rsv;
329 h->block_rsv = NULL;
330 goto got_it;
331 }
332
333 /*
334 * Do the reservation before we join the transaction so we can do all
335 * the appropriate flushing if need be.
336 */
337 if (num_items > 0 && root != root->fs_info->chunk_root) {
338 if (root->fs_info->quota_enabled &&
339 is_fstree(root->root_key.objectid)) {
340 qgroup_reserved = num_items * root->leafsize;
341 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
342 if (ret)
343 return ERR_PTR(ret);
344 }
345
346 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
347 ret = btrfs_block_rsv_add(root,
348 &root->fs_info->trans_block_rsv,
349 num_bytes, flush);
350 if (ret)
351 goto reserve_fail;
352 }
353 again:
354 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
355 if (!h) {
356 ret = -ENOMEM;
357 goto alloc_fail;
358 }
359
360 /*
361 * If we are JOIN_NOLOCK we're already committing a transaction and
362 * waiting on this guy, so we don't need to do the sb_start_intwrite
363 * because we're already holding a ref. We need this because we could
364 * have raced in and did an fsync() on a file which can kick a commit
365 * and then we deadlock with somebody doing a freeze.
366 *
367 * If we are ATTACH, it means we just want to catch the current
368 * transaction and commit it, so we needn't do sb_start_intwrite().
369 */
370 if (type < TRANS_JOIN_NOLOCK)
371 sb_start_intwrite(root->fs_info->sb);
372
373 if (may_wait_transaction(root, type))
374 wait_current_trans(root);
375
376 do {
377 ret = join_transaction(root, type);
378 if (ret == -EBUSY) {
379 wait_current_trans(root);
380 if (unlikely(type == TRANS_ATTACH))
381 ret = -ENOENT;
382 }
383 } while (ret == -EBUSY);
384
385 if (ret < 0) {
386 /* We must get the transaction if we are JOIN_NOLOCK. */
387 BUG_ON(type == TRANS_JOIN_NOLOCK);
388 goto join_fail;
389 }
390
391 cur_trans = root->fs_info->running_transaction;
392
393 h->transid = cur_trans->transid;
394 h->transaction = cur_trans;
395 h->blocks_used = 0;
396 h->bytes_reserved = 0;
397 h->root = root;
398 h->delayed_ref_updates = 0;
399 h->use_count = 1;
400 h->adding_csums = 0;
401 h->block_rsv = NULL;
402 h->orig_rsv = NULL;
403 h->aborted = 0;
404 h->qgroup_reserved = 0;
405 h->delayed_ref_elem.seq = 0;
406 h->type = type;
407 h->allocating_chunk = false;
408 INIT_LIST_HEAD(&h->qgroup_ref_list);
409 INIT_LIST_HEAD(&h->new_bgs);
410
411 smp_mb();
412 if (cur_trans->blocked && may_wait_transaction(root, type)) {
413 btrfs_commit_transaction(h, root);
414 goto again;
415 }
416
417 if (num_bytes) {
418 trace_btrfs_space_reservation(root->fs_info, "transaction",
419 h->transid, num_bytes, 1);
420 h->block_rsv = &root->fs_info->trans_block_rsv;
421 h->bytes_reserved = num_bytes;
422 }
423 h->qgroup_reserved = qgroup_reserved;
424
425 got_it:
426 btrfs_record_root_in_trans(h, root);
427
428 if (!current->journal_info && type != TRANS_USERSPACE)
429 current->journal_info = h;
430 return h;
431
432 join_fail:
433 if (type < TRANS_JOIN_NOLOCK)
434 sb_end_intwrite(root->fs_info->sb);
435 kmem_cache_free(btrfs_trans_handle_cachep, h);
436 alloc_fail:
437 if (num_bytes)
438 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
439 num_bytes);
440 reserve_fail:
441 if (qgroup_reserved)
442 btrfs_qgroup_free(root, qgroup_reserved);
443 return ERR_PTR(ret);
444 }
445
446 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
447 int num_items)
448 {
449 return start_transaction(root, num_items, TRANS_START,
450 BTRFS_RESERVE_FLUSH_ALL);
451 }
452
453 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
454 struct btrfs_root *root, int num_items)
455 {
456 return start_transaction(root, num_items, TRANS_START,
457 BTRFS_RESERVE_FLUSH_LIMIT);
458 }
459
460 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
461 {
462 return start_transaction(root, 0, TRANS_JOIN, 0);
463 }
464
465 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
466 {
467 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
468 }
469
470 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
471 {
472 return start_transaction(root, 0, TRANS_USERSPACE, 0);
473 }
474
475 /*
476 * btrfs_attach_transaction() - catch the running transaction
477 *
478 * It is used when we want to commit the current the transaction, but
479 * don't want to start a new one.
480 *
481 * Note: If this function return -ENOENT, it just means there is no
482 * running transaction. But it is possible that the inactive transaction
483 * is still in the memory, not fully on disk. If you hope there is no
484 * inactive transaction in the fs when -ENOENT is returned, you should
485 * invoke
486 * btrfs_attach_transaction_barrier()
487 */
488 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
489 {
490 return start_transaction(root, 0, TRANS_ATTACH, 0);
491 }
492
493 /*
494 * btrfs_attach_transaction() - catch the running transaction
495 *
496 * It is similar to the above function, the differentia is this one
497 * will wait for all the inactive transactions until they fully
498 * complete.
499 */
500 struct btrfs_trans_handle *
501 btrfs_attach_transaction_barrier(struct btrfs_root *root)
502 {
503 struct btrfs_trans_handle *trans;
504
505 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
506 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
507 btrfs_wait_for_commit(root, 0);
508
509 return trans;
510 }
511
512 /* wait for a transaction commit to be fully complete */
513 static noinline void wait_for_commit(struct btrfs_root *root,
514 struct btrfs_transaction *commit)
515 {
516 wait_event(commit->commit_wait, commit->commit_done);
517 }
518
519 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
520 {
521 struct btrfs_transaction *cur_trans = NULL, *t;
522 int ret = 0;
523
524 if (transid) {
525 if (transid <= root->fs_info->last_trans_committed)
526 goto out;
527
528 ret = -EINVAL;
529 /* find specified transaction */
530 spin_lock(&root->fs_info->trans_lock);
531 list_for_each_entry(t, &root->fs_info->trans_list, list) {
532 if (t->transid == transid) {
533 cur_trans = t;
534 atomic_inc(&cur_trans->use_count);
535 ret = 0;
536 break;
537 }
538 if (t->transid > transid) {
539 ret = 0;
540 break;
541 }
542 }
543 spin_unlock(&root->fs_info->trans_lock);
544 /* The specified transaction doesn't exist */
545 if (!cur_trans)
546 goto out;
547 } else {
548 /* find newest transaction that is committing | committed */
549 spin_lock(&root->fs_info->trans_lock);
550 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
551 list) {
552 if (t->in_commit) {
553 if (t->commit_done)
554 break;
555 cur_trans = t;
556 atomic_inc(&cur_trans->use_count);
557 break;
558 }
559 }
560 spin_unlock(&root->fs_info->trans_lock);
561 if (!cur_trans)
562 goto out; /* nothing committing|committed */
563 }
564
565 wait_for_commit(root, cur_trans);
566 put_transaction(cur_trans);
567 out:
568 return ret;
569 }
570
571 void btrfs_throttle(struct btrfs_root *root)
572 {
573 if (!atomic_read(&root->fs_info->open_ioctl_trans))
574 wait_current_trans(root);
575 }
576
577 static int should_end_transaction(struct btrfs_trans_handle *trans,
578 struct btrfs_root *root)
579 {
580 int ret;
581
582 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
583 return ret ? 1 : 0;
584 }
585
586 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
587 struct btrfs_root *root)
588 {
589 struct btrfs_transaction *cur_trans = trans->transaction;
590 int updates;
591 int err;
592
593 smp_mb();
594 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
595 return 1;
596
597 updates = trans->delayed_ref_updates;
598 trans->delayed_ref_updates = 0;
599 if (updates) {
600 err = btrfs_run_delayed_refs(trans, root, updates);
601 if (err) /* Error code will also eval true */
602 return err;
603 }
604
605 return should_end_transaction(trans, root);
606 }
607
608 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
609 struct btrfs_root *root, int throttle)
610 {
611 struct btrfs_transaction *cur_trans = trans->transaction;
612 struct btrfs_fs_info *info = root->fs_info;
613 int count = 0;
614 int lock = (trans->type != TRANS_JOIN_NOLOCK);
615 int err = 0;
616
617 if (--trans->use_count) {
618 trans->block_rsv = trans->orig_rsv;
619 return 0;
620 }
621
622 /*
623 * do the qgroup accounting as early as possible
624 */
625 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
626
627 btrfs_trans_release_metadata(trans, root);
628 trans->block_rsv = NULL;
629 /*
630 * the same root has to be passed to start_transaction and
631 * end_transaction. Subvolume quota depends on this.
632 */
633 WARN_ON(trans->root != root);
634
635 if (trans->qgroup_reserved) {
636 btrfs_qgroup_free(root, trans->qgroup_reserved);
637 trans->qgroup_reserved = 0;
638 }
639
640 if (!list_empty(&trans->new_bgs))
641 btrfs_create_pending_block_groups(trans, root);
642
643 while (count < 1) {
644 unsigned long cur = trans->delayed_ref_updates;
645 trans->delayed_ref_updates = 0;
646 if (cur &&
647 trans->transaction->delayed_refs.num_heads_ready > 64) {
648 trans->delayed_ref_updates = 0;
649 btrfs_run_delayed_refs(trans, root, cur);
650 } else {
651 break;
652 }
653 count++;
654 }
655
656 btrfs_trans_release_metadata(trans, root);
657 trans->block_rsv = NULL;
658
659 if (!list_empty(&trans->new_bgs))
660 btrfs_create_pending_block_groups(trans, root);
661
662 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
663 should_end_transaction(trans, root)) {
664 trans->transaction->blocked = 1;
665 smp_wmb();
666 }
667
668 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
669 if (throttle) {
670 /*
671 * We may race with somebody else here so end up having
672 * to call end_transaction on ourselves again, so inc
673 * our use_count.
674 */
675 trans->use_count++;
676 return btrfs_commit_transaction(trans, root);
677 } else {
678 wake_up_process(info->transaction_kthread);
679 }
680 }
681
682 if (trans->type < TRANS_JOIN_NOLOCK)
683 sb_end_intwrite(root->fs_info->sb);
684
685 WARN_ON(cur_trans != info->running_transaction);
686 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
687 atomic_dec(&cur_trans->num_writers);
688
689 smp_mb();
690 if (waitqueue_active(&cur_trans->writer_wait))
691 wake_up(&cur_trans->writer_wait);
692 put_transaction(cur_trans);
693
694 if (current->journal_info == trans)
695 current->journal_info = NULL;
696
697 if (throttle)
698 btrfs_run_delayed_iputs(root);
699
700 if (trans->aborted ||
701 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
702 err = -EIO;
703 assert_qgroups_uptodate(trans);
704
705 kmem_cache_free(btrfs_trans_handle_cachep, trans);
706 return err;
707 }
708
709 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
710 struct btrfs_root *root)
711 {
712 int ret;
713
714 ret = __btrfs_end_transaction(trans, root, 0);
715 if (ret)
716 return ret;
717 return 0;
718 }
719
720 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
721 struct btrfs_root *root)
722 {
723 int ret;
724
725 ret = __btrfs_end_transaction(trans, root, 1);
726 if (ret)
727 return ret;
728 return 0;
729 }
730
731 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
732 struct btrfs_root *root)
733 {
734 return __btrfs_end_transaction(trans, root, 1);
735 }
736
737 /*
738 * when btree blocks are allocated, they have some corresponding bits set for
739 * them in one of two extent_io trees. This is used to make sure all of
740 * those extents are sent to disk but does not wait on them
741 */
742 int btrfs_write_marked_extents(struct btrfs_root *root,
743 struct extent_io_tree *dirty_pages, int mark)
744 {
745 int err = 0;
746 int werr = 0;
747 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
748 struct extent_state *cached_state = NULL;
749 u64 start = 0;
750 u64 end;
751 struct blk_plug plug;
752
753 blk_start_plug(&plug);
754 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
755 mark, &cached_state)) {
756 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
757 mark, &cached_state, GFP_NOFS);
758 cached_state = NULL;
759 err = filemap_fdatawrite_range(mapping, start, end);
760 if (err)
761 werr = err;
762 cond_resched();
763 start = end + 1;
764 }
765 if (err)
766 werr = err;
767 blk_finish_plug(&plug);
768 return werr;
769 }
770
771 /*
772 * when btree blocks are allocated, they have some corresponding bits set for
773 * them in one of two extent_io trees. This is used to make sure all of
774 * those extents are on disk for transaction or log commit. We wait
775 * on all the pages and clear them from the dirty pages state tree
776 */
777 int btrfs_wait_marked_extents(struct btrfs_root *root,
778 struct extent_io_tree *dirty_pages, int mark)
779 {
780 int err = 0;
781 int werr = 0;
782 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
783 struct extent_state *cached_state = NULL;
784 u64 start = 0;
785 u64 end;
786
787 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
788 EXTENT_NEED_WAIT, &cached_state)) {
789 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
790 0, 0, &cached_state, GFP_NOFS);
791 err = filemap_fdatawait_range(mapping, start, end);
792 if (err)
793 werr = err;
794 cond_resched();
795 start = end + 1;
796 }
797 if (err)
798 werr = err;
799 return werr;
800 }
801
802 /*
803 * when btree blocks are allocated, they have some corresponding bits set for
804 * them in one of two extent_io trees. This is used to make sure all of
805 * those extents are on disk for transaction or log commit
806 */
807 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
808 struct extent_io_tree *dirty_pages, int mark)
809 {
810 int ret;
811 int ret2;
812
813 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
814 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
815
816 if (ret)
817 return ret;
818 if (ret2)
819 return ret2;
820 return 0;
821 }
822
823 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
824 struct btrfs_root *root)
825 {
826 if (!trans || !trans->transaction) {
827 struct inode *btree_inode;
828 btree_inode = root->fs_info->btree_inode;
829 return filemap_write_and_wait(btree_inode->i_mapping);
830 }
831 return btrfs_write_and_wait_marked_extents(root,
832 &trans->transaction->dirty_pages,
833 EXTENT_DIRTY);
834 }
835
836 /*
837 * this is used to update the root pointer in the tree of tree roots.
838 *
839 * But, in the case of the extent allocation tree, updating the root
840 * pointer may allocate blocks which may change the root of the extent
841 * allocation tree.
842 *
843 * So, this loops and repeats and makes sure the cowonly root didn't
844 * change while the root pointer was being updated in the metadata.
845 */
846 static int update_cowonly_root(struct btrfs_trans_handle *trans,
847 struct btrfs_root *root)
848 {
849 int ret;
850 u64 old_root_bytenr;
851 u64 old_root_used;
852 struct btrfs_root *tree_root = root->fs_info->tree_root;
853
854 old_root_used = btrfs_root_used(&root->root_item);
855 btrfs_write_dirty_block_groups(trans, root);
856
857 while (1) {
858 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
859 if (old_root_bytenr == root->node->start &&
860 old_root_used == btrfs_root_used(&root->root_item))
861 break;
862
863 btrfs_set_root_node(&root->root_item, root->node);
864 ret = btrfs_update_root(trans, tree_root,
865 &root->root_key,
866 &root->root_item);
867 if (ret)
868 return ret;
869
870 old_root_used = btrfs_root_used(&root->root_item);
871 ret = btrfs_write_dirty_block_groups(trans, root);
872 if (ret)
873 return ret;
874 }
875
876 if (root != root->fs_info->extent_root)
877 switch_commit_root(root);
878
879 return 0;
880 }
881
882 /*
883 * update all the cowonly tree roots on disk
884 *
885 * The error handling in this function may not be obvious. Any of the
886 * failures will cause the file system to go offline. We still need
887 * to clean up the delayed refs.
888 */
889 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
890 struct btrfs_root *root)
891 {
892 struct btrfs_fs_info *fs_info = root->fs_info;
893 struct list_head *next;
894 struct extent_buffer *eb;
895 int ret;
896
897 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
898 if (ret)
899 return ret;
900
901 eb = btrfs_lock_root_node(fs_info->tree_root);
902 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
903 0, &eb);
904 btrfs_tree_unlock(eb);
905 free_extent_buffer(eb);
906
907 if (ret)
908 return ret;
909
910 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
911 if (ret)
912 return ret;
913
914 ret = btrfs_run_dev_stats(trans, root->fs_info);
915 WARN_ON(ret);
916 ret = btrfs_run_dev_replace(trans, root->fs_info);
917 WARN_ON(ret);
918
919 ret = btrfs_run_qgroups(trans, root->fs_info);
920 BUG_ON(ret);
921
922 /* run_qgroups might have added some more refs */
923 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
924 BUG_ON(ret);
925
926 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
927 next = fs_info->dirty_cowonly_roots.next;
928 list_del_init(next);
929 root = list_entry(next, struct btrfs_root, dirty_list);
930
931 ret = update_cowonly_root(trans, root);
932 if (ret)
933 return ret;
934 }
935
936 down_write(&fs_info->extent_commit_sem);
937 switch_commit_root(fs_info->extent_root);
938 up_write(&fs_info->extent_commit_sem);
939
940 btrfs_after_dev_replace_commit(fs_info);
941
942 return 0;
943 }
944
945 /*
946 * dead roots are old snapshots that need to be deleted. This allocates
947 * a dirty root struct and adds it into the list of dead roots that need to
948 * be deleted
949 */
950 int btrfs_add_dead_root(struct btrfs_root *root)
951 {
952 spin_lock(&root->fs_info->trans_lock);
953 list_add(&root->root_list, &root->fs_info->dead_roots);
954 spin_unlock(&root->fs_info->trans_lock);
955 return 0;
956 }
957
958 /*
959 * update all the cowonly tree roots on disk
960 */
961 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
962 struct btrfs_root *root)
963 {
964 struct btrfs_root *gang[8];
965 struct btrfs_fs_info *fs_info = root->fs_info;
966 int i;
967 int ret;
968 int err = 0;
969
970 spin_lock(&fs_info->fs_roots_radix_lock);
971 while (1) {
972 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
973 (void **)gang, 0,
974 ARRAY_SIZE(gang),
975 BTRFS_ROOT_TRANS_TAG);
976 if (ret == 0)
977 break;
978 for (i = 0; i < ret; i++) {
979 root = gang[i];
980 radix_tree_tag_clear(&fs_info->fs_roots_radix,
981 (unsigned long)root->root_key.objectid,
982 BTRFS_ROOT_TRANS_TAG);
983 spin_unlock(&fs_info->fs_roots_radix_lock);
984
985 btrfs_free_log(trans, root);
986 btrfs_update_reloc_root(trans, root);
987 btrfs_orphan_commit_root(trans, root);
988
989 btrfs_save_ino_cache(root, trans);
990
991 /* see comments in should_cow_block() */
992 root->force_cow = 0;
993 smp_wmb();
994
995 if (root->commit_root != root->node) {
996 mutex_lock(&root->fs_commit_mutex);
997 switch_commit_root(root);
998 btrfs_unpin_free_ino(root);
999 mutex_unlock(&root->fs_commit_mutex);
1000
1001 btrfs_set_root_node(&root->root_item,
1002 root->node);
1003 }
1004
1005 err = btrfs_update_root(trans, fs_info->tree_root,
1006 &root->root_key,
1007 &root->root_item);
1008 spin_lock(&fs_info->fs_roots_radix_lock);
1009 if (err)
1010 break;
1011 }
1012 }
1013 spin_unlock(&fs_info->fs_roots_radix_lock);
1014 return err;
1015 }
1016
1017 /*
1018 * defrag a given btree.
1019 * Every leaf in the btree is read and defragged.
1020 */
1021 int btrfs_defrag_root(struct btrfs_root *root)
1022 {
1023 struct btrfs_fs_info *info = root->fs_info;
1024 struct btrfs_trans_handle *trans;
1025 int ret;
1026
1027 if (xchg(&root->defrag_running, 1))
1028 return 0;
1029
1030 while (1) {
1031 trans = btrfs_start_transaction(root, 0);
1032 if (IS_ERR(trans))
1033 return PTR_ERR(trans);
1034
1035 ret = btrfs_defrag_leaves(trans, root);
1036
1037 btrfs_end_transaction(trans, root);
1038 btrfs_btree_balance_dirty(info->tree_root);
1039 cond_resched();
1040
1041 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1042 break;
1043
1044 if (btrfs_defrag_cancelled(root->fs_info)) {
1045 printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1046 ret = -EAGAIN;
1047 break;
1048 }
1049 }
1050 root->defrag_running = 0;
1051 return ret;
1052 }
1053
1054 /*
1055 * new snapshots need to be created at a very specific time in the
1056 * transaction commit. This does the actual creation
1057 */
1058 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1059 struct btrfs_fs_info *fs_info,
1060 struct btrfs_pending_snapshot *pending)
1061 {
1062 struct btrfs_key key;
1063 struct btrfs_root_item *new_root_item;
1064 struct btrfs_root *tree_root = fs_info->tree_root;
1065 struct btrfs_root *root = pending->root;
1066 struct btrfs_root *parent_root;
1067 struct btrfs_block_rsv *rsv;
1068 struct inode *parent_inode;
1069 struct btrfs_path *path;
1070 struct btrfs_dir_item *dir_item;
1071 struct dentry *parent;
1072 struct dentry *dentry;
1073 struct extent_buffer *tmp;
1074 struct extent_buffer *old;
1075 struct timespec cur_time = CURRENT_TIME;
1076 int ret;
1077 u64 to_reserve = 0;
1078 u64 index = 0;
1079 u64 objectid;
1080 u64 root_flags;
1081 uuid_le new_uuid;
1082
1083 path = btrfs_alloc_path();
1084 if (!path) {
1085 ret = pending->error = -ENOMEM;
1086 goto path_alloc_fail;
1087 }
1088
1089 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1090 if (!new_root_item) {
1091 ret = pending->error = -ENOMEM;
1092 goto root_item_alloc_fail;
1093 }
1094
1095 ret = btrfs_find_free_objectid(tree_root, &objectid);
1096 if (ret) {
1097 pending->error = ret;
1098 goto no_free_objectid;
1099 }
1100
1101 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1102
1103 if (to_reserve > 0) {
1104 ret = btrfs_block_rsv_add(root, &pending->block_rsv,
1105 to_reserve,
1106 BTRFS_RESERVE_NO_FLUSH);
1107 if (ret) {
1108 pending->error = ret;
1109 goto no_free_objectid;
1110 }
1111 }
1112
1113 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1114 objectid, pending->inherit);
1115 if (ret) {
1116 pending->error = ret;
1117 goto no_free_objectid;
1118 }
1119
1120 key.objectid = objectid;
1121 key.offset = (u64)-1;
1122 key.type = BTRFS_ROOT_ITEM_KEY;
1123
1124 rsv = trans->block_rsv;
1125 trans->block_rsv = &pending->block_rsv;
1126
1127 dentry = pending->dentry;
1128 parent = dget_parent(dentry);
1129 parent_inode = parent->d_inode;
1130 parent_root = BTRFS_I(parent_inode)->root;
1131 record_root_in_trans(trans, parent_root);
1132
1133 /*
1134 * insert the directory item
1135 */
1136 ret = btrfs_set_inode_index(parent_inode, &index);
1137 BUG_ON(ret); /* -ENOMEM */
1138
1139 /* check if there is a file/dir which has the same name. */
1140 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1141 btrfs_ino(parent_inode),
1142 dentry->d_name.name,
1143 dentry->d_name.len, 0);
1144 if (dir_item != NULL && !IS_ERR(dir_item)) {
1145 pending->error = -EEXIST;
1146 goto fail;
1147 } else if (IS_ERR(dir_item)) {
1148 ret = PTR_ERR(dir_item);
1149 btrfs_abort_transaction(trans, root, ret);
1150 goto fail;
1151 }
1152 btrfs_release_path(path);
1153
1154 /*
1155 * pull in the delayed directory update
1156 * and the delayed inode item
1157 * otherwise we corrupt the FS during
1158 * snapshot
1159 */
1160 ret = btrfs_run_delayed_items(trans, root);
1161 if (ret) { /* Transaction aborted */
1162 btrfs_abort_transaction(trans, root, ret);
1163 goto fail;
1164 }
1165
1166 record_root_in_trans(trans, root);
1167 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1168 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1169 btrfs_check_and_init_root_item(new_root_item);
1170
1171 root_flags = btrfs_root_flags(new_root_item);
1172 if (pending->readonly)
1173 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1174 else
1175 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1176 btrfs_set_root_flags(new_root_item, root_flags);
1177
1178 btrfs_set_root_generation_v2(new_root_item,
1179 trans->transid);
1180 uuid_le_gen(&new_uuid);
1181 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1182 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1183 BTRFS_UUID_SIZE);
1184 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1185 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1186 btrfs_set_root_otransid(new_root_item, trans->transid);
1187 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1188 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1189 btrfs_set_root_stransid(new_root_item, 0);
1190 btrfs_set_root_rtransid(new_root_item, 0);
1191
1192 old = btrfs_lock_root_node(root);
1193 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1194 if (ret) {
1195 btrfs_tree_unlock(old);
1196 free_extent_buffer(old);
1197 btrfs_abort_transaction(trans, root, ret);
1198 goto fail;
1199 }
1200
1201 btrfs_set_lock_blocking(old);
1202
1203 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1204 /* clean up in any case */
1205 btrfs_tree_unlock(old);
1206 free_extent_buffer(old);
1207 if (ret) {
1208 btrfs_abort_transaction(trans, root, ret);
1209 goto fail;
1210 }
1211
1212 /* see comments in should_cow_block() */
1213 root->force_cow = 1;
1214 smp_wmb();
1215
1216 btrfs_set_root_node(new_root_item, tmp);
1217 /* record when the snapshot was created in key.offset */
1218 key.offset = trans->transid;
1219 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1220 btrfs_tree_unlock(tmp);
1221 free_extent_buffer(tmp);
1222 if (ret) {
1223 btrfs_abort_transaction(trans, root, ret);
1224 goto fail;
1225 }
1226
1227 /*
1228 * insert root back/forward references
1229 */
1230 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1231 parent_root->root_key.objectid,
1232 btrfs_ino(parent_inode), index,
1233 dentry->d_name.name, dentry->d_name.len);
1234 if (ret) {
1235 btrfs_abort_transaction(trans, root, ret);
1236 goto fail;
1237 }
1238
1239 key.offset = (u64)-1;
1240 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1241 if (IS_ERR(pending->snap)) {
1242 ret = PTR_ERR(pending->snap);
1243 btrfs_abort_transaction(trans, root, ret);
1244 goto fail;
1245 }
1246
1247 ret = btrfs_reloc_post_snapshot(trans, pending);
1248 if (ret) {
1249 btrfs_abort_transaction(trans, root, ret);
1250 goto fail;
1251 }
1252
1253 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1254 if (ret) {
1255 btrfs_abort_transaction(trans, root, ret);
1256 goto fail;
1257 }
1258
1259 ret = btrfs_insert_dir_item(trans, parent_root,
1260 dentry->d_name.name, dentry->d_name.len,
1261 parent_inode, &key,
1262 BTRFS_FT_DIR, index);
1263 /* We have check then name at the beginning, so it is impossible. */
1264 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1265 if (ret) {
1266 btrfs_abort_transaction(trans, root, ret);
1267 goto fail;
1268 }
1269
1270 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1271 dentry->d_name.len * 2);
1272 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1273 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1274 if (ret)
1275 btrfs_abort_transaction(trans, root, ret);
1276 fail:
1277 dput(parent);
1278 trans->block_rsv = rsv;
1279 no_free_objectid:
1280 kfree(new_root_item);
1281 root_item_alloc_fail:
1282 btrfs_free_path(path);
1283 path_alloc_fail:
1284 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1285 return ret;
1286 }
1287
1288 /*
1289 * create all the snapshots we've scheduled for creation
1290 */
1291 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1292 struct btrfs_fs_info *fs_info)
1293 {
1294 struct btrfs_pending_snapshot *pending;
1295 struct list_head *head = &trans->transaction->pending_snapshots;
1296
1297 list_for_each_entry(pending, head, list)
1298 create_pending_snapshot(trans, fs_info, pending);
1299 return 0;
1300 }
1301
1302 static void update_super_roots(struct btrfs_root *root)
1303 {
1304 struct btrfs_root_item *root_item;
1305 struct btrfs_super_block *super;
1306
1307 super = root->fs_info->super_copy;
1308
1309 root_item = &root->fs_info->chunk_root->root_item;
1310 super->chunk_root = root_item->bytenr;
1311 super->chunk_root_generation = root_item->generation;
1312 super->chunk_root_level = root_item->level;
1313
1314 root_item = &root->fs_info->tree_root->root_item;
1315 super->root = root_item->bytenr;
1316 super->generation = root_item->generation;
1317 super->root_level = root_item->level;
1318 if (btrfs_test_opt(root, SPACE_CACHE))
1319 super->cache_generation = root_item->generation;
1320 }
1321
1322 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1323 {
1324 int ret = 0;
1325 spin_lock(&info->trans_lock);
1326 if (info->running_transaction)
1327 ret = info->running_transaction->in_commit;
1328 spin_unlock(&info->trans_lock);
1329 return ret;
1330 }
1331
1332 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1333 {
1334 int ret = 0;
1335 spin_lock(&info->trans_lock);
1336 if (info->running_transaction)
1337 ret = info->running_transaction->blocked;
1338 spin_unlock(&info->trans_lock);
1339 return ret;
1340 }
1341
1342 /*
1343 * wait for the current transaction commit to start and block subsequent
1344 * transaction joins
1345 */
1346 static void wait_current_trans_commit_start(struct btrfs_root *root,
1347 struct btrfs_transaction *trans)
1348 {
1349 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1350 }
1351
1352 /*
1353 * wait for the current transaction to start and then become unblocked.
1354 * caller holds ref.
1355 */
1356 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1357 struct btrfs_transaction *trans)
1358 {
1359 wait_event(root->fs_info->transaction_wait,
1360 trans->commit_done || (trans->in_commit && !trans->blocked));
1361 }
1362
1363 /*
1364 * commit transactions asynchronously. once btrfs_commit_transaction_async
1365 * returns, any subsequent transaction will not be allowed to join.
1366 */
1367 struct btrfs_async_commit {
1368 struct btrfs_trans_handle *newtrans;
1369 struct btrfs_root *root;
1370 struct work_struct work;
1371 };
1372
1373 static void do_async_commit(struct work_struct *work)
1374 {
1375 struct btrfs_async_commit *ac =
1376 container_of(work, struct btrfs_async_commit, work);
1377
1378 /*
1379 * We've got freeze protection passed with the transaction.
1380 * Tell lockdep about it.
1381 */
1382 if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1383 rwsem_acquire_read(
1384 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1385 0, 1, _THIS_IP_);
1386
1387 current->journal_info = ac->newtrans;
1388
1389 btrfs_commit_transaction(ac->newtrans, ac->root);
1390 kfree(ac);
1391 }
1392
1393 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1394 struct btrfs_root *root,
1395 int wait_for_unblock)
1396 {
1397 struct btrfs_async_commit *ac;
1398 struct btrfs_transaction *cur_trans;
1399
1400 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1401 if (!ac)
1402 return -ENOMEM;
1403
1404 INIT_WORK(&ac->work, do_async_commit);
1405 ac->root = root;
1406 ac->newtrans = btrfs_join_transaction(root);
1407 if (IS_ERR(ac->newtrans)) {
1408 int err = PTR_ERR(ac->newtrans);
1409 kfree(ac);
1410 return err;
1411 }
1412
1413 /* take transaction reference */
1414 cur_trans = trans->transaction;
1415 atomic_inc(&cur_trans->use_count);
1416
1417 btrfs_end_transaction(trans, root);
1418
1419 /*
1420 * Tell lockdep we've released the freeze rwsem, since the
1421 * async commit thread will be the one to unlock it.
1422 */
1423 if (trans->type < TRANS_JOIN_NOLOCK)
1424 rwsem_release(
1425 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1426 1, _THIS_IP_);
1427
1428 schedule_work(&ac->work);
1429
1430 /* wait for transaction to start and unblock */
1431 if (wait_for_unblock)
1432 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1433 else
1434 wait_current_trans_commit_start(root, cur_trans);
1435
1436 if (current->journal_info == trans)
1437 current->journal_info = NULL;
1438
1439 put_transaction(cur_trans);
1440 return 0;
1441 }
1442
1443
1444 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1445 struct btrfs_root *root, int err)
1446 {
1447 struct btrfs_transaction *cur_trans = trans->transaction;
1448
1449 WARN_ON(trans->use_count > 1);
1450
1451 btrfs_abort_transaction(trans, root, err);
1452
1453 spin_lock(&root->fs_info->trans_lock);
1454 list_del_init(&cur_trans->list);
1455 if (cur_trans == root->fs_info->running_transaction) {
1456 root->fs_info->running_transaction = NULL;
1457 root->fs_info->trans_no_join = 0;
1458 }
1459 spin_unlock(&root->fs_info->trans_lock);
1460
1461 btrfs_cleanup_one_transaction(trans->transaction, root);
1462
1463 put_transaction(cur_trans);
1464 put_transaction(cur_trans);
1465
1466 trace_btrfs_transaction_commit(root);
1467
1468 btrfs_scrub_continue(root);
1469
1470 if (current->journal_info == trans)
1471 current->journal_info = NULL;
1472
1473 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1474 }
1475
1476 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1477 struct btrfs_root *root)
1478 {
1479 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1480 int snap_pending = 0;
1481 int ret;
1482
1483 if (!flush_on_commit) {
1484 spin_lock(&root->fs_info->trans_lock);
1485 if (!list_empty(&trans->transaction->pending_snapshots))
1486 snap_pending = 1;
1487 spin_unlock(&root->fs_info->trans_lock);
1488 }
1489
1490 if (flush_on_commit || snap_pending) {
1491 ret = btrfs_start_delalloc_inodes(root, 1);
1492 if (ret)
1493 return ret;
1494 btrfs_wait_ordered_extents(root, 1);
1495 }
1496
1497 ret = btrfs_run_delayed_items(trans, root);
1498 if (ret)
1499 return ret;
1500
1501 /*
1502 * running the delayed items may have added new refs. account
1503 * them now so that they hinder processing of more delayed refs
1504 * as little as possible.
1505 */
1506 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1507
1508 /*
1509 * rename don't use btrfs_join_transaction, so, once we
1510 * set the transaction to blocked above, we aren't going
1511 * to get any new ordered operations. We can safely run
1512 * it here and no for sure that nothing new will be added
1513 * to the list
1514 */
1515 ret = btrfs_run_ordered_operations(trans, root, 1);
1516
1517 return ret;
1518 }
1519
1520 /*
1521 * btrfs_transaction state sequence:
1522 * in_commit = 0, blocked = 0 (initial)
1523 * in_commit = 1, blocked = 1
1524 * blocked = 0
1525 * commit_done = 1
1526 */
1527 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1528 struct btrfs_root *root)
1529 {
1530 unsigned long joined = 0;
1531 struct btrfs_transaction *cur_trans = trans->transaction;
1532 struct btrfs_transaction *prev_trans = NULL;
1533 DEFINE_WAIT(wait);
1534 int ret;
1535 int should_grow = 0;
1536 unsigned long now = get_seconds();
1537
1538 ret = btrfs_run_ordered_operations(trans, root, 0);
1539 if (ret) {
1540 btrfs_abort_transaction(trans, root, ret);
1541 btrfs_end_transaction(trans, root);
1542 return ret;
1543 }
1544
1545 /* Stop the commit early if ->aborted is set */
1546 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1547 ret = cur_trans->aborted;
1548 btrfs_end_transaction(trans, root);
1549 return ret;
1550 }
1551
1552 /* make a pass through all the delayed refs we have so far
1553 * any runnings procs may add more while we are here
1554 */
1555 ret = btrfs_run_delayed_refs(trans, root, 0);
1556 if (ret) {
1557 btrfs_end_transaction(trans, root);
1558 return ret;
1559 }
1560
1561 btrfs_trans_release_metadata(trans, root);
1562 trans->block_rsv = NULL;
1563 if (trans->qgroup_reserved) {
1564 btrfs_qgroup_free(root, trans->qgroup_reserved);
1565 trans->qgroup_reserved = 0;
1566 }
1567
1568 cur_trans = trans->transaction;
1569
1570 /*
1571 * set the flushing flag so procs in this transaction have to
1572 * start sending their work down.
1573 */
1574 cur_trans->delayed_refs.flushing = 1;
1575
1576 if (!list_empty(&trans->new_bgs))
1577 btrfs_create_pending_block_groups(trans, root);
1578
1579 ret = btrfs_run_delayed_refs(trans, root, 0);
1580 if (ret) {
1581 btrfs_end_transaction(trans, root);
1582 return ret;
1583 }
1584
1585 spin_lock(&cur_trans->commit_lock);
1586 if (cur_trans->in_commit) {
1587 spin_unlock(&cur_trans->commit_lock);
1588 atomic_inc(&cur_trans->use_count);
1589 ret = btrfs_end_transaction(trans, root);
1590
1591 wait_for_commit(root, cur_trans);
1592
1593 put_transaction(cur_trans);
1594
1595 return ret;
1596 }
1597
1598 trans->transaction->in_commit = 1;
1599 trans->transaction->blocked = 1;
1600 spin_unlock(&cur_trans->commit_lock);
1601 wake_up(&root->fs_info->transaction_blocked_wait);
1602
1603 spin_lock(&root->fs_info->trans_lock);
1604 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1605 prev_trans = list_entry(cur_trans->list.prev,
1606 struct btrfs_transaction, list);
1607 if (!prev_trans->commit_done) {
1608 atomic_inc(&prev_trans->use_count);
1609 spin_unlock(&root->fs_info->trans_lock);
1610
1611 wait_for_commit(root, prev_trans);
1612
1613 put_transaction(prev_trans);
1614 } else {
1615 spin_unlock(&root->fs_info->trans_lock);
1616 }
1617 } else {
1618 spin_unlock(&root->fs_info->trans_lock);
1619 }
1620
1621 if (!btrfs_test_opt(root, SSD) &&
1622 (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1623 should_grow = 1;
1624
1625 do {
1626 joined = cur_trans->num_joined;
1627
1628 WARN_ON(cur_trans != trans->transaction);
1629
1630 ret = btrfs_flush_all_pending_stuffs(trans, root);
1631 if (ret)
1632 goto cleanup_transaction;
1633
1634 prepare_to_wait(&cur_trans->writer_wait, &wait,
1635 TASK_UNINTERRUPTIBLE);
1636
1637 if (atomic_read(&cur_trans->num_writers) > 1)
1638 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1639 else if (should_grow)
1640 schedule_timeout(1);
1641
1642 finish_wait(&cur_trans->writer_wait, &wait);
1643 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1644 (should_grow && cur_trans->num_joined != joined));
1645
1646 ret = btrfs_flush_all_pending_stuffs(trans, root);
1647 if (ret)
1648 goto cleanup_transaction;
1649
1650 /*
1651 * Ok now we need to make sure to block out any other joins while we
1652 * commit the transaction. We could have started a join before setting
1653 * no_join so make sure to wait for num_writers to == 1 again.
1654 */
1655 spin_lock(&root->fs_info->trans_lock);
1656 root->fs_info->trans_no_join = 1;
1657 spin_unlock(&root->fs_info->trans_lock);
1658 wait_event(cur_trans->writer_wait,
1659 atomic_read(&cur_trans->num_writers) == 1);
1660
1661 /* ->aborted might be set after the previous check, so check it */
1662 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1663 ret = cur_trans->aborted;
1664 goto cleanup_transaction;
1665 }
1666 /*
1667 * the reloc mutex makes sure that we stop
1668 * the balancing code from coming in and moving
1669 * extents around in the middle of the commit
1670 */
1671 mutex_lock(&root->fs_info->reloc_mutex);
1672
1673 /*
1674 * We needn't worry about the delayed items because we will
1675 * deal with them in create_pending_snapshot(), which is the
1676 * core function of the snapshot creation.
1677 */
1678 ret = create_pending_snapshots(trans, root->fs_info);
1679 if (ret) {
1680 mutex_unlock(&root->fs_info->reloc_mutex);
1681 goto cleanup_transaction;
1682 }
1683
1684 /*
1685 * We insert the dir indexes of the snapshots and update the inode
1686 * of the snapshots' parents after the snapshot creation, so there
1687 * are some delayed items which are not dealt with. Now deal with
1688 * them.
1689 *
1690 * We needn't worry that this operation will corrupt the snapshots,
1691 * because all the tree which are snapshoted will be forced to COW
1692 * the nodes and leaves.
1693 */
1694 ret = btrfs_run_delayed_items(trans, root);
1695 if (ret) {
1696 mutex_unlock(&root->fs_info->reloc_mutex);
1697 goto cleanup_transaction;
1698 }
1699
1700 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1701 if (ret) {
1702 mutex_unlock(&root->fs_info->reloc_mutex);
1703 goto cleanup_transaction;
1704 }
1705
1706 /*
1707 * make sure none of the code above managed to slip in a
1708 * delayed item
1709 */
1710 btrfs_assert_delayed_root_empty(root);
1711
1712 WARN_ON(cur_trans != trans->transaction);
1713
1714 btrfs_scrub_pause(root);
1715 /* btrfs_commit_tree_roots is responsible for getting the
1716 * various roots consistent with each other. Every pointer
1717 * in the tree of tree roots has to point to the most up to date
1718 * root for every subvolume and other tree. So, we have to keep
1719 * the tree logging code from jumping in and changing any
1720 * of the trees.
1721 *
1722 * At this point in the commit, there can't be any tree-log
1723 * writers, but a little lower down we drop the trans mutex
1724 * and let new people in. By holding the tree_log_mutex
1725 * from now until after the super is written, we avoid races
1726 * with the tree-log code.
1727 */
1728 mutex_lock(&root->fs_info->tree_log_mutex);
1729
1730 ret = commit_fs_roots(trans, root);
1731 if (ret) {
1732 mutex_unlock(&root->fs_info->tree_log_mutex);
1733 mutex_unlock(&root->fs_info->reloc_mutex);
1734 goto cleanup_transaction;
1735 }
1736
1737 /* commit_fs_roots gets rid of all the tree log roots, it is now
1738 * safe to free the root of tree log roots
1739 */
1740 btrfs_free_log_root_tree(trans, root->fs_info);
1741
1742 ret = commit_cowonly_roots(trans, root);
1743 if (ret) {
1744 mutex_unlock(&root->fs_info->tree_log_mutex);
1745 mutex_unlock(&root->fs_info->reloc_mutex);
1746 goto cleanup_transaction;
1747 }
1748
1749 /*
1750 * The tasks which save the space cache and inode cache may also
1751 * update ->aborted, check it.
1752 */
1753 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1754 ret = cur_trans->aborted;
1755 mutex_unlock(&root->fs_info->tree_log_mutex);
1756 mutex_unlock(&root->fs_info->reloc_mutex);
1757 goto cleanup_transaction;
1758 }
1759
1760 btrfs_prepare_extent_commit(trans, root);
1761
1762 cur_trans = root->fs_info->running_transaction;
1763
1764 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1765 root->fs_info->tree_root->node);
1766 switch_commit_root(root->fs_info->tree_root);
1767
1768 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1769 root->fs_info->chunk_root->node);
1770 switch_commit_root(root->fs_info->chunk_root);
1771
1772 assert_qgroups_uptodate(trans);
1773 update_super_roots(root);
1774
1775 if (!root->fs_info->log_root_recovering) {
1776 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1777 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1778 }
1779
1780 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1781 sizeof(*root->fs_info->super_copy));
1782
1783 trans->transaction->blocked = 0;
1784 spin_lock(&root->fs_info->trans_lock);
1785 root->fs_info->running_transaction = NULL;
1786 root->fs_info->trans_no_join = 0;
1787 spin_unlock(&root->fs_info->trans_lock);
1788 mutex_unlock(&root->fs_info->reloc_mutex);
1789
1790 wake_up(&root->fs_info->transaction_wait);
1791
1792 ret = btrfs_write_and_wait_transaction(trans, root);
1793 if (ret) {
1794 btrfs_error(root->fs_info, ret,
1795 "Error while writing out transaction.");
1796 mutex_unlock(&root->fs_info->tree_log_mutex);
1797 goto cleanup_transaction;
1798 }
1799
1800 ret = write_ctree_super(trans, root, 0);
1801 if (ret) {
1802 mutex_unlock(&root->fs_info->tree_log_mutex);
1803 goto cleanup_transaction;
1804 }
1805
1806 /*
1807 * the super is written, we can safely allow the tree-loggers
1808 * to go about their business
1809 */
1810 mutex_unlock(&root->fs_info->tree_log_mutex);
1811
1812 btrfs_finish_extent_commit(trans, root);
1813
1814 cur_trans->commit_done = 1;
1815
1816 root->fs_info->last_trans_committed = cur_trans->transid;
1817
1818 wake_up(&cur_trans->commit_wait);
1819
1820 spin_lock(&root->fs_info->trans_lock);
1821 list_del_init(&cur_trans->list);
1822 spin_unlock(&root->fs_info->trans_lock);
1823
1824 put_transaction(cur_trans);
1825 put_transaction(cur_trans);
1826
1827 if (trans->type < TRANS_JOIN_NOLOCK)
1828 sb_end_intwrite(root->fs_info->sb);
1829
1830 trace_btrfs_transaction_commit(root);
1831
1832 btrfs_scrub_continue(root);
1833
1834 if (current->journal_info == trans)
1835 current->journal_info = NULL;
1836
1837 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1838
1839 if (current != root->fs_info->transaction_kthread)
1840 btrfs_run_delayed_iputs(root);
1841
1842 return ret;
1843
1844 cleanup_transaction:
1845 btrfs_trans_release_metadata(trans, root);
1846 trans->block_rsv = NULL;
1847 if (trans->qgroup_reserved) {
1848 btrfs_qgroup_free(root, trans->qgroup_reserved);
1849 trans->qgroup_reserved = 0;
1850 }
1851 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1852 // WARN_ON(1);
1853 if (current->journal_info == trans)
1854 current->journal_info = NULL;
1855 cleanup_transaction(trans, root, ret);
1856
1857 return ret;
1858 }
1859
1860 /*
1861 * interface function to delete all the snapshots we have scheduled for deletion
1862 */
1863 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1864 {
1865 LIST_HEAD(list);
1866 struct btrfs_fs_info *fs_info = root->fs_info;
1867
1868 spin_lock(&fs_info->trans_lock);
1869 list_splice_init(&fs_info->dead_roots, &list);
1870 spin_unlock(&fs_info->trans_lock);
1871
1872 while (!list_empty(&list)) {
1873 int ret;
1874
1875 root = list_entry(list.next, struct btrfs_root, root_list);
1876 list_del(&root->root_list);
1877
1878 btrfs_kill_all_delayed_nodes(root);
1879
1880 if (btrfs_header_backref_rev(root->node) <
1881 BTRFS_MIXED_BACKREF_REV)
1882 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1883 else
1884 ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1885 BUG_ON(ret < 0);
1886 }
1887 return 0;
1888 }
This page took 0.072796 seconds and 6 git commands to generate.