Btrfs: fix max chunk size on raid5/6
[deliverable/linux.git] / fs / btrfs / tree-log.c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/list_sort.h>
22 #include "ctree.h"
23 #include "transaction.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "compat.h"
29 #include "tree-log.h"
30 #include "hash.h"
31
32 /* magic values for the inode_only field in btrfs_log_inode:
33 *
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
37 */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40
41 /*
42 * directory trouble cases
43 *
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
48 *
49 * mkdir foo/some_dir
50 * normal commit
51 * rename foo/some_dir foo2/some_dir
52 * mkdir foo/some_dir
53 * fsync foo/some_dir/some_file
54 *
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
58 *
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
61 *
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
65 *
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
68 *
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
71 *
72 * mkdir f1/foo
73 * normal commit
74 * rm -rf f1/foo
75 * fsync(f1)
76 *
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
81 * ugly details.
82 */
83
84 /*
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
89 *
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
92 */
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_ALL 2
96
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode,
99 int inode_only);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
108
109 /*
110 * tree logging is a special write ahead log used to make sure that
111 * fsyncs and O_SYNCs can happen without doing full tree commits.
112 *
113 * Full tree commits are expensive because they require commonly
114 * modified blocks to be recowed, creating many dirty pages in the
115 * extent tree an 4x-6x higher write load than ext3.
116 *
117 * Instead of doing a tree commit on every fsync, we use the
118 * key ranges and transaction ids to find items for a given file or directory
119 * that have changed in this transaction. Those items are copied into
120 * a special tree (one per subvolume root), that tree is written to disk
121 * and then the fsync is considered complete.
122 *
123 * After a crash, items are copied out of the log-tree back into the
124 * subvolume tree. Any file data extents found are recorded in the extent
125 * allocation tree, and the log-tree freed.
126 *
127 * The log tree is read three times, once to pin down all the extents it is
128 * using in ram and once, once to create all the inodes logged in the tree
129 * and once to do all the other items.
130 */
131
132 /*
133 * start a sub transaction and setup the log tree
134 * this increments the log tree writer count to make the people
135 * syncing the tree wait for us to finish
136 */
137 static int start_log_trans(struct btrfs_trans_handle *trans,
138 struct btrfs_root *root)
139 {
140 int ret;
141 int err = 0;
142
143 mutex_lock(&root->log_mutex);
144 if (root->log_root) {
145 if (!root->log_start_pid) {
146 root->log_start_pid = current->pid;
147 root->log_multiple_pids = false;
148 } else if (root->log_start_pid != current->pid) {
149 root->log_multiple_pids = true;
150 }
151
152 atomic_inc(&root->log_batch);
153 atomic_inc(&root->log_writers);
154 mutex_unlock(&root->log_mutex);
155 return 0;
156 }
157 root->log_multiple_pids = false;
158 root->log_start_pid = current->pid;
159 mutex_lock(&root->fs_info->tree_log_mutex);
160 if (!root->fs_info->log_root_tree) {
161 ret = btrfs_init_log_root_tree(trans, root->fs_info);
162 if (ret)
163 err = ret;
164 }
165 if (err == 0 && !root->log_root) {
166 ret = btrfs_add_log_tree(trans, root);
167 if (ret)
168 err = ret;
169 }
170 mutex_unlock(&root->fs_info->tree_log_mutex);
171 atomic_inc(&root->log_batch);
172 atomic_inc(&root->log_writers);
173 mutex_unlock(&root->log_mutex);
174 return err;
175 }
176
177 /*
178 * returns 0 if there was a log transaction running and we were able
179 * to join, or returns -ENOENT if there were not transactions
180 * in progress
181 */
182 static int join_running_log_trans(struct btrfs_root *root)
183 {
184 int ret = -ENOENT;
185
186 smp_mb();
187 if (!root->log_root)
188 return -ENOENT;
189
190 mutex_lock(&root->log_mutex);
191 if (root->log_root) {
192 ret = 0;
193 atomic_inc(&root->log_writers);
194 }
195 mutex_unlock(&root->log_mutex);
196 return ret;
197 }
198
199 /*
200 * This either makes the current running log transaction wait
201 * until you call btrfs_end_log_trans() or it makes any future
202 * log transactions wait until you call btrfs_end_log_trans()
203 */
204 int btrfs_pin_log_trans(struct btrfs_root *root)
205 {
206 int ret = -ENOENT;
207
208 mutex_lock(&root->log_mutex);
209 atomic_inc(&root->log_writers);
210 mutex_unlock(&root->log_mutex);
211 return ret;
212 }
213
214 /*
215 * indicate we're done making changes to the log tree
216 * and wake up anyone waiting to do a sync
217 */
218 void btrfs_end_log_trans(struct btrfs_root *root)
219 {
220 if (atomic_dec_and_test(&root->log_writers)) {
221 smp_mb();
222 if (waitqueue_active(&root->log_writer_wait))
223 wake_up(&root->log_writer_wait);
224 }
225 }
226
227
228 /*
229 * the walk control struct is used to pass state down the chain when
230 * processing the log tree. The stage field tells us which part
231 * of the log tree processing we are currently doing. The others
232 * are state fields used for that specific part
233 */
234 struct walk_control {
235 /* should we free the extent on disk when done? This is used
236 * at transaction commit time while freeing a log tree
237 */
238 int free;
239
240 /* should we write out the extent buffer? This is used
241 * while flushing the log tree to disk during a sync
242 */
243 int write;
244
245 /* should we wait for the extent buffer io to finish? Also used
246 * while flushing the log tree to disk for a sync
247 */
248 int wait;
249
250 /* pin only walk, we record which extents on disk belong to the
251 * log trees
252 */
253 int pin;
254
255 /* what stage of the replay code we're currently in */
256 int stage;
257
258 /* the root we are currently replaying */
259 struct btrfs_root *replay_dest;
260
261 /* the trans handle for the current replay */
262 struct btrfs_trans_handle *trans;
263
264 /* the function that gets used to process blocks we find in the
265 * tree. Note the extent_buffer might not be up to date when it is
266 * passed in, and it must be checked or read if you need the data
267 * inside it
268 */
269 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
270 struct walk_control *wc, u64 gen);
271 };
272
273 /*
274 * process_func used to pin down extents, write them or wait on them
275 */
276 static int process_one_buffer(struct btrfs_root *log,
277 struct extent_buffer *eb,
278 struct walk_control *wc, u64 gen)
279 {
280 if (wc->pin)
281 btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
282 eb->start, eb->len);
283
284 if (btrfs_buffer_uptodate(eb, gen, 0)) {
285 if (wc->write)
286 btrfs_write_tree_block(eb);
287 if (wc->wait)
288 btrfs_wait_tree_block_writeback(eb);
289 }
290 return 0;
291 }
292
293 /*
294 * Item overwrite used by replay and tree logging. eb, slot and key all refer
295 * to the src data we are copying out.
296 *
297 * root is the tree we are copying into, and path is a scratch
298 * path for use in this function (it should be released on entry and
299 * will be released on exit).
300 *
301 * If the key is already in the destination tree the existing item is
302 * overwritten. If the existing item isn't big enough, it is extended.
303 * If it is too large, it is truncated.
304 *
305 * If the key isn't in the destination yet, a new item is inserted.
306 */
307 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
308 struct btrfs_root *root,
309 struct btrfs_path *path,
310 struct extent_buffer *eb, int slot,
311 struct btrfs_key *key)
312 {
313 int ret;
314 u32 item_size;
315 u64 saved_i_size = 0;
316 int save_old_i_size = 0;
317 unsigned long src_ptr;
318 unsigned long dst_ptr;
319 int overwrite_root = 0;
320
321 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
322 overwrite_root = 1;
323
324 item_size = btrfs_item_size_nr(eb, slot);
325 src_ptr = btrfs_item_ptr_offset(eb, slot);
326
327 /* look for the key in the destination tree */
328 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
329 if (ret == 0) {
330 char *src_copy;
331 char *dst_copy;
332 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
333 path->slots[0]);
334 if (dst_size != item_size)
335 goto insert;
336
337 if (item_size == 0) {
338 btrfs_release_path(path);
339 return 0;
340 }
341 dst_copy = kmalloc(item_size, GFP_NOFS);
342 src_copy = kmalloc(item_size, GFP_NOFS);
343 if (!dst_copy || !src_copy) {
344 btrfs_release_path(path);
345 kfree(dst_copy);
346 kfree(src_copy);
347 return -ENOMEM;
348 }
349
350 read_extent_buffer(eb, src_copy, src_ptr, item_size);
351
352 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
353 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
354 item_size);
355 ret = memcmp(dst_copy, src_copy, item_size);
356
357 kfree(dst_copy);
358 kfree(src_copy);
359 /*
360 * they have the same contents, just return, this saves
361 * us from cowing blocks in the destination tree and doing
362 * extra writes that may not have been done by a previous
363 * sync
364 */
365 if (ret == 0) {
366 btrfs_release_path(path);
367 return 0;
368 }
369
370 }
371 insert:
372 btrfs_release_path(path);
373 /* try to insert the key into the destination tree */
374 ret = btrfs_insert_empty_item(trans, root, path,
375 key, item_size);
376
377 /* make sure any existing item is the correct size */
378 if (ret == -EEXIST) {
379 u32 found_size;
380 found_size = btrfs_item_size_nr(path->nodes[0],
381 path->slots[0]);
382 if (found_size > item_size)
383 btrfs_truncate_item(trans, root, path, item_size, 1);
384 else if (found_size < item_size)
385 btrfs_extend_item(trans, root, path,
386 item_size - found_size);
387 } else if (ret) {
388 return ret;
389 }
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
391 path->slots[0]);
392
393 /* don't overwrite an existing inode if the generation number
394 * was logged as zero. This is done when the tree logging code
395 * is just logging an inode to make sure it exists after recovery.
396 *
397 * Also, don't overwrite i_size on directories during replay.
398 * log replay inserts and removes directory items based on the
399 * state of the tree found in the subvolume, and i_size is modified
400 * as it goes
401 */
402 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
403 struct btrfs_inode_item *src_item;
404 struct btrfs_inode_item *dst_item;
405
406 src_item = (struct btrfs_inode_item *)src_ptr;
407 dst_item = (struct btrfs_inode_item *)dst_ptr;
408
409 if (btrfs_inode_generation(eb, src_item) == 0)
410 goto no_copy;
411
412 if (overwrite_root &&
413 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
414 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
415 save_old_i_size = 1;
416 saved_i_size = btrfs_inode_size(path->nodes[0],
417 dst_item);
418 }
419 }
420
421 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
422 src_ptr, item_size);
423
424 if (save_old_i_size) {
425 struct btrfs_inode_item *dst_item;
426 dst_item = (struct btrfs_inode_item *)dst_ptr;
427 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
428 }
429
430 /* make sure the generation is filled in */
431 if (key->type == BTRFS_INODE_ITEM_KEY) {
432 struct btrfs_inode_item *dst_item;
433 dst_item = (struct btrfs_inode_item *)dst_ptr;
434 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
435 btrfs_set_inode_generation(path->nodes[0], dst_item,
436 trans->transid);
437 }
438 }
439 no_copy:
440 btrfs_mark_buffer_dirty(path->nodes[0]);
441 btrfs_release_path(path);
442 return 0;
443 }
444
445 /*
446 * simple helper to read an inode off the disk from a given root
447 * This can only be called for subvolume roots and not for the log
448 */
449 static noinline struct inode *read_one_inode(struct btrfs_root *root,
450 u64 objectid)
451 {
452 struct btrfs_key key;
453 struct inode *inode;
454
455 key.objectid = objectid;
456 key.type = BTRFS_INODE_ITEM_KEY;
457 key.offset = 0;
458 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
459 if (IS_ERR(inode)) {
460 inode = NULL;
461 } else if (is_bad_inode(inode)) {
462 iput(inode);
463 inode = NULL;
464 }
465 return inode;
466 }
467
468 /* replays a single extent in 'eb' at 'slot' with 'key' into the
469 * subvolume 'root'. path is released on entry and should be released
470 * on exit.
471 *
472 * extents in the log tree have not been allocated out of the extent
473 * tree yet. So, this completes the allocation, taking a reference
474 * as required if the extent already exists or creating a new extent
475 * if it isn't in the extent allocation tree yet.
476 *
477 * The extent is inserted into the file, dropping any existing extents
478 * from the file that overlap the new one.
479 */
480 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
481 struct btrfs_root *root,
482 struct btrfs_path *path,
483 struct extent_buffer *eb, int slot,
484 struct btrfs_key *key)
485 {
486 int found_type;
487 u64 mask = root->sectorsize - 1;
488 u64 extent_end;
489 u64 start = key->offset;
490 u64 saved_nbytes;
491 struct btrfs_file_extent_item *item;
492 struct inode *inode = NULL;
493 unsigned long size;
494 int ret = 0;
495
496 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
497 found_type = btrfs_file_extent_type(eb, item);
498
499 if (found_type == BTRFS_FILE_EXTENT_REG ||
500 found_type == BTRFS_FILE_EXTENT_PREALLOC)
501 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
502 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
503 size = btrfs_file_extent_inline_len(eb, item);
504 extent_end = (start + size + mask) & ~mask;
505 } else {
506 ret = 0;
507 goto out;
508 }
509
510 inode = read_one_inode(root, key->objectid);
511 if (!inode) {
512 ret = -EIO;
513 goto out;
514 }
515
516 /*
517 * first check to see if we already have this extent in the
518 * file. This must be done before the btrfs_drop_extents run
519 * so we don't try to drop this extent.
520 */
521 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
522 start, 0);
523
524 if (ret == 0 &&
525 (found_type == BTRFS_FILE_EXTENT_REG ||
526 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
527 struct btrfs_file_extent_item cmp1;
528 struct btrfs_file_extent_item cmp2;
529 struct btrfs_file_extent_item *existing;
530 struct extent_buffer *leaf;
531
532 leaf = path->nodes[0];
533 existing = btrfs_item_ptr(leaf, path->slots[0],
534 struct btrfs_file_extent_item);
535
536 read_extent_buffer(eb, &cmp1, (unsigned long)item,
537 sizeof(cmp1));
538 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
539 sizeof(cmp2));
540
541 /*
542 * we already have a pointer to this exact extent,
543 * we don't have to do anything
544 */
545 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
546 btrfs_release_path(path);
547 goto out;
548 }
549 }
550 btrfs_release_path(path);
551
552 saved_nbytes = inode_get_bytes(inode);
553 /* drop any overlapping extents */
554 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
555 BUG_ON(ret);
556
557 if (found_type == BTRFS_FILE_EXTENT_REG ||
558 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
559 u64 offset;
560 unsigned long dest_offset;
561 struct btrfs_key ins;
562
563 ret = btrfs_insert_empty_item(trans, root, path, key,
564 sizeof(*item));
565 BUG_ON(ret);
566 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
567 path->slots[0]);
568 copy_extent_buffer(path->nodes[0], eb, dest_offset,
569 (unsigned long)item, sizeof(*item));
570
571 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
572 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
573 ins.type = BTRFS_EXTENT_ITEM_KEY;
574 offset = key->offset - btrfs_file_extent_offset(eb, item);
575
576 if (ins.objectid > 0) {
577 u64 csum_start;
578 u64 csum_end;
579 LIST_HEAD(ordered_sums);
580 /*
581 * is this extent already allocated in the extent
582 * allocation tree? If so, just add a reference
583 */
584 ret = btrfs_lookup_extent(root, ins.objectid,
585 ins.offset);
586 if (ret == 0) {
587 ret = btrfs_inc_extent_ref(trans, root,
588 ins.objectid, ins.offset,
589 0, root->root_key.objectid,
590 key->objectid, offset, 0);
591 BUG_ON(ret);
592 } else {
593 /*
594 * insert the extent pointer in the extent
595 * allocation tree
596 */
597 ret = btrfs_alloc_logged_file_extent(trans,
598 root, root->root_key.objectid,
599 key->objectid, offset, &ins);
600 BUG_ON(ret);
601 }
602 btrfs_release_path(path);
603
604 if (btrfs_file_extent_compression(eb, item)) {
605 csum_start = ins.objectid;
606 csum_end = csum_start + ins.offset;
607 } else {
608 csum_start = ins.objectid +
609 btrfs_file_extent_offset(eb, item);
610 csum_end = csum_start +
611 btrfs_file_extent_num_bytes(eb, item);
612 }
613
614 ret = btrfs_lookup_csums_range(root->log_root,
615 csum_start, csum_end - 1,
616 &ordered_sums, 0);
617 BUG_ON(ret);
618 while (!list_empty(&ordered_sums)) {
619 struct btrfs_ordered_sum *sums;
620 sums = list_entry(ordered_sums.next,
621 struct btrfs_ordered_sum,
622 list);
623 ret = btrfs_csum_file_blocks(trans,
624 root->fs_info->csum_root,
625 sums);
626 BUG_ON(ret);
627 list_del(&sums->list);
628 kfree(sums);
629 }
630 } else {
631 btrfs_release_path(path);
632 }
633 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
634 /* inline extents are easy, we just overwrite them */
635 ret = overwrite_item(trans, root, path, eb, slot, key);
636 BUG_ON(ret);
637 }
638
639 inode_set_bytes(inode, saved_nbytes);
640 ret = btrfs_update_inode(trans, root, inode);
641 out:
642 if (inode)
643 iput(inode);
644 return ret;
645 }
646
647 /*
648 * when cleaning up conflicts between the directory names in the
649 * subvolume, directory names in the log and directory names in the
650 * inode back references, we may have to unlink inodes from directories.
651 *
652 * This is a helper function to do the unlink of a specific directory
653 * item
654 */
655 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
656 struct btrfs_root *root,
657 struct btrfs_path *path,
658 struct inode *dir,
659 struct btrfs_dir_item *di)
660 {
661 struct inode *inode;
662 char *name;
663 int name_len;
664 struct extent_buffer *leaf;
665 struct btrfs_key location;
666 int ret;
667
668 leaf = path->nodes[0];
669
670 btrfs_dir_item_key_to_cpu(leaf, di, &location);
671 name_len = btrfs_dir_name_len(leaf, di);
672 name = kmalloc(name_len, GFP_NOFS);
673 if (!name)
674 return -ENOMEM;
675
676 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
677 btrfs_release_path(path);
678
679 inode = read_one_inode(root, location.objectid);
680 if (!inode) {
681 kfree(name);
682 return -EIO;
683 }
684
685 ret = link_to_fixup_dir(trans, root, path, location.objectid);
686 BUG_ON(ret);
687
688 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
689 BUG_ON(ret);
690 kfree(name);
691
692 iput(inode);
693
694 btrfs_run_delayed_items(trans, root);
695 return ret;
696 }
697
698 /*
699 * helper function to see if a given name and sequence number found
700 * in an inode back reference are already in a directory and correctly
701 * point to this inode
702 */
703 static noinline int inode_in_dir(struct btrfs_root *root,
704 struct btrfs_path *path,
705 u64 dirid, u64 objectid, u64 index,
706 const char *name, int name_len)
707 {
708 struct btrfs_dir_item *di;
709 struct btrfs_key location;
710 int match = 0;
711
712 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
713 index, name, name_len, 0);
714 if (di && !IS_ERR(di)) {
715 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
716 if (location.objectid != objectid)
717 goto out;
718 } else
719 goto out;
720 btrfs_release_path(path);
721
722 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
723 if (di && !IS_ERR(di)) {
724 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
725 if (location.objectid != objectid)
726 goto out;
727 } else
728 goto out;
729 match = 1;
730 out:
731 btrfs_release_path(path);
732 return match;
733 }
734
735 /*
736 * helper function to check a log tree for a named back reference in
737 * an inode. This is used to decide if a back reference that is
738 * found in the subvolume conflicts with what we find in the log.
739 *
740 * inode backreferences may have multiple refs in a single item,
741 * during replay we process one reference at a time, and we don't
742 * want to delete valid links to a file from the subvolume if that
743 * link is also in the log.
744 */
745 static noinline int backref_in_log(struct btrfs_root *log,
746 struct btrfs_key *key,
747 u64 ref_objectid,
748 char *name, int namelen)
749 {
750 struct btrfs_path *path;
751 struct btrfs_inode_ref *ref;
752 unsigned long ptr;
753 unsigned long ptr_end;
754 unsigned long name_ptr;
755 int found_name_len;
756 int item_size;
757 int ret;
758 int match = 0;
759
760 path = btrfs_alloc_path();
761 if (!path)
762 return -ENOMEM;
763
764 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
765 if (ret != 0)
766 goto out;
767
768 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
769
770 if (key->type == BTRFS_INODE_EXTREF_KEY) {
771 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
772 name, namelen, NULL))
773 match = 1;
774
775 goto out;
776 }
777
778 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
779 ptr_end = ptr + item_size;
780 while (ptr < ptr_end) {
781 ref = (struct btrfs_inode_ref *)ptr;
782 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
783 if (found_name_len == namelen) {
784 name_ptr = (unsigned long)(ref + 1);
785 ret = memcmp_extent_buffer(path->nodes[0], name,
786 name_ptr, namelen);
787 if (ret == 0) {
788 match = 1;
789 goto out;
790 }
791 }
792 ptr = (unsigned long)(ref + 1) + found_name_len;
793 }
794 out:
795 btrfs_free_path(path);
796 return match;
797 }
798
799 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
800 struct btrfs_root *root,
801 struct btrfs_path *path,
802 struct btrfs_root *log_root,
803 struct inode *dir, struct inode *inode,
804 struct extent_buffer *eb,
805 u64 inode_objectid, u64 parent_objectid,
806 u64 ref_index, char *name, int namelen,
807 int *search_done)
808 {
809 int ret;
810 char *victim_name;
811 int victim_name_len;
812 struct extent_buffer *leaf;
813 struct btrfs_dir_item *di;
814 struct btrfs_key search_key;
815 struct btrfs_inode_extref *extref;
816
817 again:
818 /* Search old style refs */
819 search_key.objectid = inode_objectid;
820 search_key.type = BTRFS_INODE_REF_KEY;
821 search_key.offset = parent_objectid;
822 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
823 if (ret == 0) {
824 struct btrfs_inode_ref *victim_ref;
825 unsigned long ptr;
826 unsigned long ptr_end;
827
828 leaf = path->nodes[0];
829
830 /* are we trying to overwrite a back ref for the root directory
831 * if so, just jump out, we're done
832 */
833 if (search_key.objectid == search_key.offset)
834 return 1;
835
836 /* check all the names in this back reference to see
837 * if they are in the log. if so, we allow them to stay
838 * otherwise they must be unlinked as a conflict
839 */
840 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
841 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
842 while (ptr < ptr_end) {
843 victim_ref = (struct btrfs_inode_ref *)ptr;
844 victim_name_len = btrfs_inode_ref_name_len(leaf,
845 victim_ref);
846 victim_name = kmalloc(victim_name_len, GFP_NOFS);
847 BUG_ON(!victim_name);
848
849 read_extent_buffer(leaf, victim_name,
850 (unsigned long)(victim_ref + 1),
851 victim_name_len);
852
853 if (!backref_in_log(log_root, &search_key,
854 parent_objectid,
855 victim_name,
856 victim_name_len)) {
857 btrfs_inc_nlink(inode);
858 btrfs_release_path(path);
859
860 ret = btrfs_unlink_inode(trans, root, dir,
861 inode, victim_name,
862 victim_name_len);
863 BUG_ON(ret);
864 btrfs_run_delayed_items(trans, root);
865 kfree(victim_name);
866 *search_done = 1;
867 goto again;
868 }
869 kfree(victim_name);
870
871 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
872 }
873 BUG_ON(ret);
874
875 /*
876 * NOTE: we have searched root tree and checked the
877 * coresponding ref, it does not need to check again.
878 */
879 *search_done = 1;
880 }
881 btrfs_release_path(path);
882
883 /* Same search but for extended refs */
884 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
885 inode_objectid, parent_objectid, 0,
886 0);
887 if (!IS_ERR_OR_NULL(extref)) {
888 u32 item_size;
889 u32 cur_offset = 0;
890 unsigned long base;
891 struct inode *victim_parent;
892
893 leaf = path->nodes[0];
894
895 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
896 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
897
898 while (cur_offset < item_size) {
899 extref = (struct btrfs_inode_extref *)base + cur_offset;
900
901 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
902
903 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
904 goto next;
905
906 victim_name = kmalloc(victim_name_len, GFP_NOFS);
907 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
908 victim_name_len);
909
910 search_key.objectid = inode_objectid;
911 search_key.type = BTRFS_INODE_EXTREF_KEY;
912 search_key.offset = btrfs_extref_hash(parent_objectid,
913 victim_name,
914 victim_name_len);
915 ret = 0;
916 if (!backref_in_log(log_root, &search_key,
917 parent_objectid, victim_name,
918 victim_name_len)) {
919 ret = -ENOENT;
920 victim_parent = read_one_inode(root,
921 parent_objectid);
922 if (victim_parent) {
923 btrfs_inc_nlink(inode);
924 btrfs_release_path(path);
925
926 ret = btrfs_unlink_inode(trans, root,
927 victim_parent,
928 inode,
929 victim_name,
930 victim_name_len);
931 btrfs_run_delayed_items(trans, root);
932 }
933 BUG_ON(ret);
934 iput(victim_parent);
935 kfree(victim_name);
936 *search_done = 1;
937 goto again;
938 }
939 kfree(victim_name);
940 BUG_ON(ret);
941 next:
942 cur_offset += victim_name_len + sizeof(*extref);
943 }
944 *search_done = 1;
945 }
946 btrfs_release_path(path);
947
948 /* look for a conflicting sequence number */
949 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
950 ref_index, name, namelen, 0);
951 if (di && !IS_ERR(di)) {
952 ret = drop_one_dir_item(trans, root, path, dir, di);
953 BUG_ON(ret);
954 }
955 btrfs_release_path(path);
956
957 /* look for a conflicing name */
958 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
959 name, namelen, 0);
960 if (di && !IS_ERR(di)) {
961 ret = drop_one_dir_item(trans, root, path, dir, di);
962 BUG_ON(ret);
963 }
964 btrfs_release_path(path);
965
966 return 0;
967 }
968
969 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
970 u32 *namelen, char **name, u64 *index,
971 u64 *parent_objectid)
972 {
973 struct btrfs_inode_extref *extref;
974
975 extref = (struct btrfs_inode_extref *)ref_ptr;
976
977 *namelen = btrfs_inode_extref_name_len(eb, extref);
978 *name = kmalloc(*namelen, GFP_NOFS);
979 if (*name == NULL)
980 return -ENOMEM;
981
982 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
983 *namelen);
984
985 *index = btrfs_inode_extref_index(eb, extref);
986 if (parent_objectid)
987 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
988
989 return 0;
990 }
991
992 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
993 u32 *namelen, char **name, u64 *index)
994 {
995 struct btrfs_inode_ref *ref;
996
997 ref = (struct btrfs_inode_ref *)ref_ptr;
998
999 *namelen = btrfs_inode_ref_name_len(eb, ref);
1000 *name = kmalloc(*namelen, GFP_NOFS);
1001 if (*name == NULL)
1002 return -ENOMEM;
1003
1004 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1005
1006 *index = btrfs_inode_ref_index(eb, ref);
1007
1008 return 0;
1009 }
1010
1011 /*
1012 * replay one inode back reference item found in the log tree.
1013 * eb, slot and key refer to the buffer and key found in the log tree.
1014 * root is the destination we are replaying into, and path is for temp
1015 * use by this function. (it should be released on return).
1016 */
1017 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1018 struct btrfs_root *root,
1019 struct btrfs_root *log,
1020 struct btrfs_path *path,
1021 struct extent_buffer *eb, int slot,
1022 struct btrfs_key *key)
1023 {
1024 struct inode *dir;
1025 struct inode *inode;
1026 unsigned long ref_ptr;
1027 unsigned long ref_end;
1028 char *name;
1029 int namelen;
1030 int ret;
1031 int search_done = 0;
1032 int log_ref_ver = 0;
1033 u64 parent_objectid;
1034 u64 inode_objectid;
1035 u64 ref_index = 0;
1036 int ref_struct_size;
1037
1038 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1039 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1040
1041 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1042 struct btrfs_inode_extref *r;
1043
1044 ref_struct_size = sizeof(struct btrfs_inode_extref);
1045 log_ref_ver = 1;
1046 r = (struct btrfs_inode_extref *)ref_ptr;
1047 parent_objectid = btrfs_inode_extref_parent(eb, r);
1048 } else {
1049 ref_struct_size = sizeof(struct btrfs_inode_ref);
1050 parent_objectid = key->offset;
1051 }
1052 inode_objectid = key->objectid;
1053
1054 /*
1055 * it is possible that we didn't log all the parent directories
1056 * for a given inode. If we don't find the dir, just don't
1057 * copy the back ref in. The link count fixup code will take
1058 * care of the rest
1059 */
1060 dir = read_one_inode(root, parent_objectid);
1061 if (!dir)
1062 return -ENOENT;
1063
1064 inode = read_one_inode(root, inode_objectid);
1065 if (!inode) {
1066 iput(dir);
1067 return -EIO;
1068 }
1069
1070 while (ref_ptr < ref_end) {
1071 if (log_ref_ver) {
1072 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1073 &ref_index, &parent_objectid);
1074 /*
1075 * parent object can change from one array
1076 * item to another.
1077 */
1078 if (!dir)
1079 dir = read_one_inode(root, parent_objectid);
1080 if (!dir)
1081 return -ENOENT;
1082 } else {
1083 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1084 &ref_index);
1085 }
1086 if (ret)
1087 return ret;
1088
1089 /* if we already have a perfect match, we're done */
1090 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1091 ref_index, name, namelen)) {
1092 /*
1093 * look for a conflicting back reference in the
1094 * metadata. if we find one we have to unlink that name
1095 * of the file before we add our new link. Later on, we
1096 * overwrite any existing back reference, and we don't
1097 * want to create dangling pointers in the directory.
1098 */
1099
1100 if (!search_done) {
1101 ret = __add_inode_ref(trans, root, path, log,
1102 dir, inode, eb,
1103 inode_objectid,
1104 parent_objectid,
1105 ref_index, name, namelen,
1106 &search_done);
1107 if (ret == 1)
1108 goto out;
1109 BUG_ON(ret);
1110 }
1111
1112 /* insert our name */
1113 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1114 0, ref_index);
1115 BUG_ON(ret);
1116
1117 btrfs_update_inode(trans, root, inode);
1118 }
1119
1120 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1121 kfree(name);
1122 if (log_ref_ver) {
1123 iput(dir);
1124 dir = NULL;
1125 }
1126 }
1127
1128 /* finally write the back reference in the inode */
1129 ret = overwrite_item(trans, root, path, eb, slot, key);
1130 BUG_ON(ret);
1131
1132 out:
1133 btrfs_release_path(path);
1134 iput(dir);
1135 iput(inode);
1136 return 0;
1137 }
1138
1139 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1140 struct btrfs_root *root, u64 offset)
1141 {
1142 int ret;
1143 ret = btrfs_find_orphan_item(root, offset);
1144 if (ret > 0)
1145 ret = btrfs_insert_orphan_item(trans, root, offset);
1146 return ret;
1147 }
1148
1149 static int count_inode_extrefs(struct btrfs_root *root,
1150 struct inode *inode, struct btrfs_path *path)
1151 {
1152 int ret = 0;
1153 int name_len;
1154 unsigned int nlink = 0;
1155 u32 item_size;
1156 u32 cur_offset = 0;
1157 u64 inode_objectid = btrfs_ino(inode);
1158 u64 offset = 0;
1159 unsigned long ptr;
1160 struct btrfs_inode_extref *extref;
1161 struct extent_buffer *leaf;
1162
1163 while (1) {
1164 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1165 &extref, &offset);
1166 if (ret)
1167 break;
1168
1169 leaf = path->nodes[0];
1170 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1171 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1172
1173 while (cur_offset < item_size) {
1174 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1175 name_len = btrfs_inode_extref_name_len(leaf, extref);
1176
1177 nlink++;
1178
1179 cur_offset += name_len + sizeof(*extref);
1180 }
1181
1182 offset++;
1183 btrfs_release_path(path);
1184 }
1185 btrfs_release_path(path);
1186
1187 if (ret < 0)
1188 return ret;
1189 return nlink;
1190 }
1191
1192 static int count_inode_refs(struct btrfs_root *root,
1193 struct inode *inode, struct btrfs_path *path)
1194 {
1195 int ret;
1196 struct btrfs_key key;
1197 unsigned int nlink = 0;
1198 unsigned long ptr;
1199 unsigned long ptr_end;
1200 int name_len;
1201 u64 ino = btrfs_ino(inode);
1202
1203 key.objectid = ino;
1204 key.type = BTRFS_INODE_REF_KEY;
1205 key.offset = (u64)-1;
1206
1207 while (1) {
1208 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1209 if (ret < 0)
1210 break;
1211 if (ret > 0) {
1212 if (path->slots[0] == 0)
1213 break;
1214 path->slots[0]--;
1215 }
1216 btrfs_item_key_to_cpu(path->nodes[0], &key,
1217 path->slots[0]);
1218 if (key.objectid != ino ||
1219 key.type != BTRFS_INODE_REF_KEY)
1220 break;
1221 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1222 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1223 path->slots[0]);
1224 while (ptr < ptr_end) {
1225 struct btrfs_inode_ref *ref;
1226
1227 ref = (struct btrfs_inode_ref *)ptr;
1228 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1229 ref);
1230 ptr = (unsigned long)(ref + 1) + name_len;
1231 nlink++;
1232 }
1233
1234 if (key.offset == 0)
1235 break;
1236 key.offset--;
1237 btrfs_release_path(path);
1238 }
1239 btrfs_release_path(path);
1240
1241 return nlink;
1242 }
1243
1244 /*
1245 * There are a few corners where the link count of the file can't
1246 * be properly maintained during replay. So, instead of adding
1247 * lots of complexity to the log code, we just scan the backrefs
1248 * for any file that has been through replay.
1249 *
1250 * The scan will update the link count on the inode to reflect the
1251 * number of back refs found. If it goes down to zero, the iput
1252 * will free the inode.
1253 */
1254 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1255 struct btrfs_root *root,
1256 struct inode *inode)
1257 {
1258 struct btrfs_path *path;
1259 int ret;
1260 u64 nlink = 0;
1261 u64 ino = btrfs_ino(inode);
1262
1263 path = btrfs_alloc_path();
1264 if (!path)
1265 return -ENOMEM;
1266
1267 ret = count_inode_refs(root, inode, path);
1268 if (ret < 0)
1269 goto out;
1270
1271 nlink = ret;
1272
1273 ret = count_inode_extrefs(root, inode, path);
1274 if (ret == -ENOENT)
1275 ret = 0;
1276
1277 if (ret < 0)
1278 goto out;
1279
1280 nlink += ret;
1281
1282 ret = 0;
1283
1284 if (nlink != inode->i_nlink) {
1285 set_nlink(inode, nlink);
1286 btrfs_update_inode(trans, root, inode);
1287 }
1288 BTRFS_I(inode)->index_cnt = (u64)-1;
1289
1290 if (inode->i_nlink == 0) {
1291 if (S_ISDIR(inode->i_mode)) {
1292 ret = replay_dir_deletes(trans, root, NULL, path,
1293 ino, 1);
1294 BUG_ON(ret);
1295 }
1296 ret = insert_orphan_item(trans, root, ino);
1297 BUG_ON(ret);
1298 }
1299
1300 out:
1301 btrfs_free_path(path);
1302 return ret;
1303 }
1304
1305 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1306 struct btrfs_root *root,
1307 struct btrfs_path *path)
1308 {
1309 int ret;
1310 struct btrfs_key key;
1311 struct inode *inode;
1312
1313 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1314 key.type = BTRFS_ORPHAN_ITEM_KEY;
1315 key.offset = (u64)-1;
1316 while (1) {
1317 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1318 if (ret < 0)
1319 break;
1320
1321 if (ret == 1) {
1322 if (path->slots[0] == 0)
1323 break;
1324 path->slots[0]--;
1325 }
1326
1327 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1328 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1329 key.type != BTRFS_ORPHAN_ITEM_KEY)
1330 break;
1331
1332 ret = btrfs_del_item(trans, root, path);
1333 if (ret)
1334 goto out;
1335
1336 btrfs_release_path(path);
1337 inode = read_one_inode(root, key.offset);
1338 if (!inode)
1339 return -EIO;
1340
1341 ret = fixup_inode_link_count(trans, root, inode);
1342 BUG_ON(ret);
1343
1344 iput(inode);
1345
1346 /*
1347 * fixup on a directory may create new entries,
1348 * make sure we always look for the highset possible
1349 * offset
1350 */
1351 key.offset = (u64)-1;
1352 }
1353 ret = 0;
1354 out:
1355 btrfs_release_path(path);
1356 return ret;
1357 }
1358
1359
1360 /*
1361 * record a given inode in the fixup dir so we can check its link
1362 * count when replay is done. The link count is incremented here
1363 * so the inode won't go away until we check it
1364 */
1365 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1366 struct btrfs_root *root,
1367 struct btrfs_path *path,
1368 u64 objectid)
1369 {
1370 struct btrfs_key key;
1371 int ret = 0;
1372 struct inode *inode;
1373
1374 inode = read_one_inode(root, objectid);
1375 if (!inode)
1376 return -EIO;
1377
1378 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1379 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1380 key.offset = objectid;
1381
1382 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1383
1384 btrfs_release_path(path);
1385 if (ret == 0) {
1386 btrfs_inc_nlink(inode);
1387 ret = btrfs_update_inode(trans, root, inode);
1388 } else if (ret == -EEXIST) {
1389 ret = 0;
1390 } else {
1391 BUG();
1392 }
1393 iput(inode);
1394
1395 return ret;
1396 }
1397
1398 /*
1399 * when replaying the log for a directory, we only insert names
1400 * for inodes that actually exist. This means an fsync on a directory
1401 * does not implicitly fsync all the new files in it
1402 */
1403 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1404 struct btrfs_root *root,
1405 struct btrfs_path *path,
1406 u64 dirid, u64 index,
1407 char *name, int name_len, u8 type,
1408 struct btrfs_key *location)
1409 {
1410 struct inode *inode;
1411 struct inode *dir;
1412 int ret;
1413
1414 inode = read_one_inode(root, location->objectid);
1415 if (!inode)
1416 return -ENOENT;
1417
1418 dir = read_one_inode(root, dirid);
1419 if (!dir) {
1420 iput(inode);
1421 return -EIO;
1422 }
1423 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1424
1425 /* FIXME, put inode into FIXUP list */
1426
1427 iput(inode);
1428 iput(dir);
1429 return ret;
1430 }
1431
1432 /*
1433 * take a single entry in a log directory item and replay it into
1434 * the subvolume.
1435 *
1436 * if a conflicting item exists in the subdirectory already,
1437 * the inode it points to is unlinked and put into the link count
1438 * fix up tree.
1439 *
1440 * If a name from the log points to a file or directory that does
1441 * not exist in the FS, it is skipped. fsyncs on directories
1442 * do not force down inodes inside that directory, just changes to the
1443 * names or unlinks in a directory.
1444 */
1445 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1446 struct btrfs_root *root,
1447 struct btrfs_path *path,
1448 struct extent_buffer *eb,
1449 struct btrfs_dir_item *di,
1450 struct btrfs_key *key)
1451 {
1452 char *name;
1453 int name_len;
1454 struct btrfs_dir_item *dst_di;
1455 struct btrfs_key found_key;
1456 struct btrfs_key log_key;
1457 struct inode *dir;
1458 u8 log_type;
1459 int exists;
1460 int ret;
1461
1462 dir = read_one_inode(root, key->objectid);
1463 if (!dir)
1464 return -EIO;
1465
1466 name_len = btrfs_dir_name_len(eb, di);
1467 name = kmalloc(name_len, GFP_NOFS);
1468 if (!name)
1469 return -ENOMEM;
1470
1471 log_type = btrfs_dir_type(eb, di);
1472 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1473 name_len);
1474
1475 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1476 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1477 if (exists == 0)
1478 exists = 1;
1479 else
1480 exists = 0;
1481 btrfs_release_path(path);
1482
1483 if (key->type == BTRFS_DIR_ITEM_KEY) {
1484 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1485 name, name_len, 1);
1486 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1487 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1488 key->objectid,
1489 key->offset, name,
1490 name_len, 1);
1491 } else {
1492 BUG();
1493 }
1494 if (IS_ERR_OR_NULL(dst_di)) {
1495 /* we need a sequence number to insert, so we only
1496 * do inserts for the BTRFS_DIR_INDEX_KEY types
1497 */
1498 if (key->type != BTRFS_DIR_INDEX_KEY)
1499 goto out;
1500 goto insert;
1501 }
1502
1503 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1504 /* the existing item matches the logged item */
1505 if (found_key.objectid == log_key.objectid &&
1506 found_key.type == log_key.type &&
1507 found_key.offset == log_key.offset &&
1508 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1509 goto out;
1510 }
1511
1512 /*
1513 * don't drop the conflicting directory entry if the inode
1514 * for the new entry doesn't exist
1515 */
1516 if (!exists)
1517 goto out;
1518
1519 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1520 BUG_ON(ret);
1521
1522 if (key->type == BTRFS_DIR_INDEX_KEY)
1523 goto insert;
1524 out:
1525 btrfs_release_path(path);
1526 kfree(name);
1527 iput(dir);
1528 return 0;
1529
1530 insert:
1531 btrfs_release_path(path);
1532 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1533 name, name_len, log_type, &log_key);
1534
1535 BUG_ON(ret && ret != -ENOENT);
1536 goto out;
1537 }
1538
1539 /*
1540 * find all the names in a directory item and reconcile them into
1541 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1542 * one name in a directory item, but the same code gets used for
1543 * both directory index types
1544 */
1545 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1546 struct btrfs_root *root,
1547 struct btrfs_path *path,
1548 struct extent_buffer *eb, int slot,
1549 struct btrfs_key *key)
1550 {
1551 int ret;
1552 u32 item_size = btrfs_item_size_nr(eb, slot);
1553 struct btrfs_dir_item *di;
1554 int name_len;
1555 unsigned long ptr;
1556 unsigned long ptr_end;
1557
1558 ptr = btrfs_item_ptr_offset(eb, slot);
1559 ptr_end = ptr + item_size;
1560 while (ptr < ptr_end) {
1561 di = (struct btrfs_dir_item *)ptr;
1562 if (verify_dir_item(root, eb, di))
1563 return -EIO;
1564 name_len = btrfs_dir_name_len(eb, di);
1565 ret = replay_one_name(trans, root, path, eb, di, key);
1566 BUG_ON(ret);
1567 ptr = (unsigned long)(di + 1);
1568 ptr += name_len;
1569 }
1570 return 0;
1571 }
1572
1573 /*
1574 * directory replay has two parts. There are the standard directory
1575 * items in the log copied from the subvolume, and range items
1576 * created in the log while the subvolume was logged.
1577 *
1578 * The range items tell us which parts of the key space the log
1579 * is authoritative for. During replay, if a key in the subvolume
1580 * directory is in a logged range item, but not actually in the log
1581 * that means it was deleted from the directory before the fsync
1582 * and should be removed.
1583 */
1584 static noinline int find_dir_range(struct btrfs_root *root,
1585 struct btrfs_path *path,
1586 u64 dirid, int key_type,
1587 u64 *start_ret, u64 *end_ret)
1588 {
1589 struct btrfs_key key;
1590 u64 found_end;
1591 struct btrfs_dir_log_item *item;
1592 int ret;
1593 int nritems;
1594
1595 if (*start_ret == (u64)-1)
1596 return 1;
1597
1598 key.objectid = dirid;
1599 key.type = key_type;
1600 key.offset = *start_ret;
1601
1602 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1603 if (ret < 0)
1604 goto out;
1605 if (ret > 0) {
1606 if (path->slots[0] == 0)
1607 goto out;
1608 path->slots[0]--;
1609 }
1610 if (ret != 0)
1611 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1612
1613 if (key.type != key_type || key.objectid != dirid) {
1614 ret = 1;
1615 goto next;
1616 }
1617 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1618 struct btrfs_dir_log_item);
1619 found_end = btrfs_dir_log_end(path->nodes[0], item);
1620
1621 if (*start_ret >= key.offset && *start_ret <= found_end) {
1622 ret = 0;
1623 *start_ret = key.offset;
1624 *end_ret = found_end;
1625 goto out;
1626 }
1627 ret = 1;
1628 next:
1629 /* check the next slot in the tree to see if it is a valid item */
1630 nritems = btrfs_header_nritems(path->nodes[0]);
1631 if (path->slots[0] >= nritems) {
1632 ret = btrfs_next_leaf(root, path);
1633 if (ret)
1634 goto out;
1635 } else {
1636 path->slots[0]++;
1637 }
1638
1639 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1640
1641 if (key.type != key_type || key.objectid != dirid) {
1642 ret = 1;
1643 goto out;
1644 }
1645 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1646 struct btrfs_dir_log_item);
1647 found_end = btrfs_dir_log_end(path->nodes[0], item);
1648 *start_ret = key.offset;
1649 *end_ret = found_end;
1650 ret = 0;
1651 out:
1652 btrfs_release_path(path);
1653 return ret;
1654 }
1655
1656 /*
1657 * this looks for a given directory item in the log. If the directory
1658 * item is not in the log, the item is removed and the inode it points
1659 * to is unlinked
1660 */
1661 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1662 struct btrfs_root *root,
1663 struct btrfs_root *log,
1664 struct btrfs_path *path,
1665 struct btrfs_path *log_path,
1666 struct inode *dir,
1667 struct btrfs_key *dir_key)
1668 {
1669 int ret;
1670 struct extent_buffer *eb;
1671 int slot;
1672 u32 item_size;
1673 struct btrfs_dir_item *di;
1674 struct btrfs_dir_item *log_di;
1675 int name_len;
1676 unsigned long ptr;
1677 unsigned long ptr_end;
1678 char *name;
1679 struct inode *inode;
1680 struct btrfs_key location;
1681
1682 again:
1683 eb = path->nodes[0];
1684 slot = path->slots[0];
1685 item_size = btrfs_item_size_nr(eb, slot);
1686 ptr = btrfs_item_ptr_offset(eb, slot);
1687 ptr_end = ptr + item_size;
1688 while (ptr < ptr_end) {
1689 di = (struct btrfs_dir_item *)ptr;
1690 if (verify_dir_item(root, eb, di)) {
1691 ret = -EIO;
1692 goto out;
1693 }
1694
1695 name_len = btrfs_dir_name_len(eb, di);
1696 name = kmalloc(name_len, GFP_NOFS);
1697 if (!name) {
1698 ret = -ENOMEM;
1699 goto out;
1700 }
1701 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1702 name_len);
1703 log_di = NULL;
1704 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1705 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1706 dir_key->objectid,
1707 name, name_len, 0);
1708 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1709 log_di = btrfs_lookup_dir_index_item(trans, log,
1710 log_path,
1711 dir_key->objectid,
1712 dir_key->offset,
1713 name, name_len, 0);
1714 }
1715 if (IS_ERR_OR_NULL(log_di)) {
1716 btrfs_dir_item_key_to_cpu(eb, di, &location);
1717 btrfs_release_path(path);
1718 btrfs_release_path(log_path);
1719 inode = read_one_inode(root, location.objectid);
1720 if (!inode) {
1721 kfree(name);
1722 return -EIO;
1723 }
1724
1725 ret = link_to_fixup_dir(trans, root,
1726 path, location.objectid);
1727 BUG_ON(ret);
1728 btrfs_inc_nlink(inode);
1729 ret = btrfs_unlink_inode(trans, root, dir, inode,
1730 name, name_len);
1731 BUG_ON(ret);
1732
1733 btrfs_run_delayed_items(trans, root);
1734
1735 kfree(name);
1736 iput(inode);
1737
1738 /* there might still be more names under this key
1739 * check and repeat if required
1740 */
1741 ret = btrfs_search_slot(NULL, root, dir_key, path,
1742 0, 0);
1743 if (ret == 0)
1744 goto again;
1745 ret = 0;
1746 goto out;
1747 }
1748 btrfs_release_path(log_path);
1749 kfree(name);
1750
1751 ptr = (unsigned long)(di + 1);
1752 ptr += name_len;
1753 }
1754 ret = 0;
1755 out:
1756 btrfs_release_path(path);
1757 btrfs_release_path(log_path);
1758 return ret;
1759 }
1760
1761 /*
1762 * deletion replay happens before we copy any new directory items
1763 * out of the log or out of backreferences from inodes. It
1764 * scans the log to find ranges of keys that log is authoritative for,
1765 * and then scans the directory to find items in those ranges that are
1766 * not present in the log.
1767 *
1768 * Anything we don't find in the log is unlinked and removed from the
1769 * directory.
1770 */
1771 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1772 struct btrfs_root *root,
1773 struct btrfs_root *log,
1774 struct btrfs_path *path,
1775 u64 dirid, int del_all)
1776 {
1777 u64 range_start;
1778 u64 range_end;
1779 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1780 int ret = 0;
1781 struct btrfs_key dir_key;
1782 struct btrfs_key found_key;
1783 struct btrfs_path *log_path;
1784 struct inode *dir;
1785
1786 dir_key.objectid = dirid;
1787 dir_key.type = BTRFS_DIR_ITEM_KEY;
1788 log_path = btrfs_alloc_path();
1789 if (!log_path)
1790 return -ENOMEM;
1791
1792 dir = read_one_inode(root, dirid);
1793 /* it isn't an error if the inode isn't there, that can happen
1794 * because we replay the deletes before we copy in the inode item
1795 * from the log
1796 */
1797 if (!dir) {
1798 btrfs_free_path(log_path);
1799 return 0;
1800 }
1801 again:
1802 range_start = 0;
1803 range_end = 0;
1804 while (1) {
1805 if (del_all)
1806 range_end = (u64)-1;
1807 else {
1808 ret = find_dir_range(log, path, dirid, key_type,
1809 &range_start, &range_end);
1810 if (ret != 0)
1811 break;
1812 }
1813
1814 dir_key.offset = range_start;
1815 while (1) {
1816 int nritems;
1817 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1818 0, 0);
1819 if (ret < 0)
1820 goto out;
1821
1822 nritems = btrfs_header_nritems(path->nodes[0]);
1823 if (path->slots[0] >= nritems) {
1824 ret = btrfs_next_leaf(root, path);
1825 if (ret)
1826 break;
1827 }
1828 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1829 path->slots[0]);
1830 if (found_key.objectid != dirid ||
1831 found_key.type != dir_key.type)
1832 goto next_type;
1833
1834 if (found_key.offset > range_end)
1835 break;
1836
1837 ret = check_item_in_log(trans, root, log, path,
1838 log_path, dir,
1839 &found_key);
1840 BUG_ON(ret);
1841 if (found_key.offset == (u64)-1)
1842 break;
1843 dir_key.offset = found_key.offset + 1;
1844 }
1845 btrfs_release_path(path);
1846 if (range_end == (u64)-1)
1847 break;
1848 range_start = range_end + 1;
1849 }
1850
1851 next_type:
1852 ret = 0;
1853 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1854 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1855 dir_key.type = BTRFS_DIR_INDEX_KEY;
1856 btrfs_release_path(path);
1857 goto again;
1858 }
1859 out:
1860 btrfs_release_path(path);
1861 btrfs_free_path(log_path);
1862 iput(dir);
1863 return ret;
1864 }
1865
1866 /*
1867 * the process_func used to replay items from the log tree. This
1868 * gets called in two different stages. The first stage just looks
1869 * for inodes and makes sure they are all copied into the subvolume.
1870 *
1871 * The second stage copies all the other item types from the log into
1872 * the subvolume. The two stage approach is slower, but gets rid of
1873 * lots of complexity around inodes referencing other inodes that exist
1874 * only in the log (references come from either directory items or inode
1875 * back refs).
1876 */
1877 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1878 struct walk_control *wc, u64 gen)
1879 {
1880 int nritems;
1881 struct btrfs_path *path;
1882 struct btrfs_root *root = wc->replay_dest;
1883 struct btrfs_key key;
1884 int level;
1885 int i;
1886 int ret;
1887
1888 ret = btrfs_read_buffer(eb, gen);
1889 if (ret)
1890 return ret;
1891
1892 level = btrfs_header_level(eb);
1893
1894 if (level != 0)
1895 return 0;
1896
1897 path = btrfs_alloc_path();
1898 if (!path)
1899 return -ENOMEM;
1900
1901 nritems = btrfs_header_nritems(eb);
1902 for (i = 0; i < nritems; i++) {
1903 btrfs_item_key_to_cpu(eb, &key, i);
1904
1905 /* inode keys are done during the first stage */
1906 if (key.type == BTRFS_INODE_ITEM_KEY &&
1907 wc->stage == LOG_WALK_REPLAY_INODES) {
1908 struct btrfs_inode_item *inode_item;
1909 u32 mode;
1910
1911 inode_item = btrfs_item_ptr(eb, i,
1912 struct btrfs_inode_item);
1913 mode = btrfs_inode_mode(eb, inode_item);
1914 if (S_ISDIR(mode)) {
1915 ret = replay_dir_deletes(wc->trans,
1916 root, log, path, key.objectid, 0);
1917 BUG_ON(ret);
1918 }
1919 ret = overwrite_item(wc->trans, root, path,
1920 eb, i, &key);
1921 BUG_ON(ret);
1922
1923 /* for regular files, make sure corresponding
1924 * orhpan item exist. extents past the new EOF
1925 * will be truncated later by orphan cleanup.
1926 */
1927 if (S_ISREG(mode)) {
1928 ret = insert_orphan_item(wc->trans, root,
1929 key.objectid);
1930 BUG_ON(ret);
1931 }
1932
1933 ret = link_to_fixup_dir(wc->trans, root,
1934 path, key.objectid);
1935 BUG_ON(ret);
1936 }
1937 if (wc->stage < LOG_WALK_REPLAY_ALL)
1938 continue;
1939
1940 /* these keys are simply copied */
1941 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1942 ret = overwrite_item(wc->trans, root, path,
1943 eb, i, &key);
1944 BUG_ON(ret);
1945 } else if (key.type == BTRFS_INODE_REF_KEY) {
1946 ret = add_inode_ref(wc->trans, root, log, path,
1947 eb, i, &key);
1948 BUG_ON(ret && ret != -ENOENT);
1949 } else if (key.type == BTRFS_INODE_EXTREF_KEY) {
1950 ret = add_inode_ref(wc->trans, root, log, path,
1951 eb, i, &key);
1952 BUG_ON(ret && ret != -ENOENT);
1953 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1954 ret = replay_one_extent(wc->trans, root, path,
1955 eb, i, &key);
1956 BUG_ON(ret);
1957 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1958 key.type == BTRFS_DIR_INDEX_KEY) {
1959 ret = replay_one_dir_item(wc->trans, root, path,
1960 eb, i, &key);
1961 BUG_ON(ret);
1962 }
1963 }
1964 btrfs_free_path(path);
1965 return 0;
1966 }
1967
1968 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 struct btrfs_path *path, int *level,
1971 struct walk_control *wc)
1972 {
1973 u64 root_owner;
1974 u64 bytenr;
1975 u64 ptr_gen;
1976 struct extent_buffer *next;
1977 struct extent_buffer *cur;
1978 struct extent_buffer *parent;
1979 u32 blocksize;
1980 int ret = 0;
1981
1982 WARN_ON(*level < 0);
1983 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1984
1985 while (*level > 0) {
1986 WARN_ON(*level < 0);
1987 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1988 cur = path->nodes[*level];
1989
1990 if (btrfs_header_level(cur) != *level)
1991 WARN_ON(1);
1992
1993 if (path->slots[*level] >=
1994 btrfs_header_nritems(cur))
1995 break;
1996
1997 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1998 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1999 blocksize = btrfs_level_size(root, *level - 1);
2000
2001 parent = path->nodes[*level];
2002 root_owner = btrfs_header_owner(parent);
2003
2004 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2005 if (!next)
2006 return -ENOMEM;
2007
2008 if (*level == 1) {
2009 ret = wc->process_func(root, next, wc, ptr_gen);
2010 if (ret)
2011 return ret;
2012
2013 path->slots[*level]++;
2014 if (wc->free) {
2015 ret = btrfs_read_buffer(next, ptr_gen);
2016 if (ret) {
2017 free_extent_buffer(next);
2018 return ret;
2019 }
2020
2021 btrfs_tree_lock(next);
2022 btrfs_set_lock_blocking(next);
2023 clean_tree_block(trans, root, next);
2024 btrfs_wait_tree_block_writeback(next);
2025 btrfs_tree_unlock(next);
2026
2027 WARN_ON(root_owner !=
2028 BTRFS_TREE_LOG_OBJECTID);
2029 ret = btrfs_free_and_pin_reserved_extent(root,
2030 bytenr, blocksize);
2031 BUG_ON(ret); /* -ENOMEM or logic errors */
2032 }
2033 free_extent_buffer(next);
2034 continue;
2035 }
2036 ret = btrfs_read_buffer(next, ptr_gen);
2037 if (ret) {
2038 free_extent_buffer(next);
2039 return ret;
2040 }
2041
2042 WARN_ON(*level <= 0);
2043 if (path->nodes[*level-1])
2044 free_extent_buffer(path->nodes[*level-1]);
2045 path->nodes[*level-1] = next;
2046 *level = btrfs_header_level(next);
2047 path->slots[*level] = 0;
2048 cond_resched();
2049 }
2050 WARN_ON(*level < 0);
2051 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2052
2053 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2054
2055 cond_resched();
2056 return 0;
2057 }
2058
2059 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2060 struct btrfs_root *root,
2061 struct btrfs_path *path, int *level,
2062 struct walk_control *wc)
2063 {
2064 u64 root_owner;
2065 int i;
2066 int slot;
2067 int ret;
2068
2069 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2070 slot = path->slots[i];
2071 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2072 path->slots[i]++;
2073 *level = i;
2074 WARN_ON(*level == 0);
2075 return 0;
2076 } else {
2077 struct extent_buffer *parent;
2078 if (path->nodes[*level] == root->node)
2079 parent = path->nodes[*level];
2080 else
2081 parent = path->nodes[*level + 1];
2082
2083 root_owner = btrfs_header_owner(parent);
2084 ret = wc->process_func(root, path->nodes[*level], wc,
2085 btrfs_header_generation(path->nodes[*level]));
2086 if (ret)
2087 return ret;
2088
2089 if (wc->free) {
2090 struct extent_buffer *next;
2091
2092 next = path->nodes[*level];
2093
2094 btrfs_tree_lock(next);
2095 btrfs_set_lock_blocking(next);
2096 clean_tree_block(trans, root, next);
2097 btrfs_wait_tree_block_writeback(next);
2098 btrfs_tree_unlock(next);
2099
2100 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2101 ret = btrfs_free_and_pin_reserved_extent(root,
2102 path->nodes[*level]->start,
2103 path->nodes[*level]->len);
2104 BUG_ON(ret);
2105 }
2106 free_extent_buffer(path->nodes[*level]);
2107 path->nodes[*level] = NULL;
2108 *level = i + 1;
2109 }
2110 }
2111 return 1;
2112 }
2113
2114 /*
2115 * drop the reference count on the tree rooted at 'snap'. This traverses
2116 * the tree freeing any blocks that have a ref count of zero after being
2117 * decremented.
2118 */
2119 static int walk_log_tree(struct btrfs_trans_handle *trans,
2120 struct btrfs_root *log, struct walk_control *wc)
2121 {
2122 int ret = 0;
2123 int wret;
2124 int level;
2125 struct btrfs_path *path;
2126 int i;
2127 int orig_level;
2128
2129 path = btrfs_alloc_path();
2130 if (!path)
2131 return -ENOMEM;
2132
2133 level = btrfs_header_level(log->node);
2134 orig_level = level;
2135 path->nodes[level] = log->node;
2136 extent_buffer_get(log->node);
2137 path->slots[level] = 0;
2138
2139 while (1) {
2140 wret = walk_down_log_tree(trans, log, path, &level, wc);
2141 if (wret > 0)
2142 break;
2143 if (wret < 0) {
2144 ret = wret;
2145 goto out;
2146 }
2147
2148 wret = walk_up_log_tree(trans, log, path, &level, wc);
2149 if (wret > 0)
2150 break;
2151 if (wret < 0) {
2152 ret = wret;
2153 goto out;
2154 }
2155 }
2156
2157 /* was the root node processed? if not, catch it here */
2158 if (path->nodes[orig_level]) {
2159 ret = wc->process_func(log, path->nodes[orig_level], wc,
2160 btrfs_header_generation(path->nodes[orig_level]));
2161 if (ret)
2162 goto out;
2163 if (wc->free) {
2164 struct extent_buffer *next;
2165
2166 next = path->nodes[orig_level];
2167
2168 btrfs_tree_lock(next);
2169 btrfs_set_lock_blocking(next);
2170 clean_tree_block(trans, log, next);
2171 btrfs_wait_tree_block_writeback(next);
2172 btrfs_tree_unlock(next);
2173
2174 WARN_ON(log->root_key.objectid !=
2175 BTRFS_TREE_LOG_OBJECTID);
2176 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2177 next->len);
2178 BUG_ON(ret); /* -ENOMEM or logic errors */
2179 }
2180 }
2181
2182 out:
2183 for (i = 0; i <= orig_level; i++) {
2184 if (path->nodes[i]) {
2185 free_extent_buffer(path->nodes[i]);
2186 path->nodes[i] = NULL;
2187 }
2188 }
2189 btrfs_free_path(path);
2190 return ret;
2191 }
2192
2193 /*
2194 * helper function to update the item for a given subvolumes log root
2195 * in the tree of log roots
2196 */
2197 static int update_log_root(struct btrfs_trans_handle *trans,
2198 struct btrfs_root *log)
2199 {
2200 int ret;
2201
2202 if (log->log_transid == 1) {
2203 /* insert root item on the first sync */
2204 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2205 &log->root_key, &log->root_item);
2206 } else {
2207 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2208 &log->root_key, &log->root_item);
2209 }
2210 return ret;
2211 }
2212
2213 static int wait_log_commit(struct btrfs_trans_handle *trans,
2214 struct btrfs_root *root, unsigned long transid)
2215 {
2216 DEFINE_WAIT(wait);
2217 int index = transid % 2;
2218
2219 /*
2220 * we only allow two pending log transactions at a time,
2221 * so we know that if ours is more than 2 older than the
2222 * current transaction, we're done
2223 */
2224 do {
2225 prepare_to_wait(&root->log_commit_wait[index],
2226 &wait, TASK_UNINTERRUPTIBLE);
2227 mutex_unlock(&root->log_mutex);
2228
2229 if (root->fs_info->last_trans_log_full_commit !=
2230 trans->transid && root->log_transid < transid + 2 &&
2231 atomic_read(&root->log_commit[index]))
2232 schedule();
2233
2234 finish_wait(&root->log_commit_wait[index], &wait);
2235 mutex_lock(&root->log_mutex);
2236 } while (root->fs_info->last_trans_log_full_commit !=
2237 trans->transid && root->log_transid < transid + 2 &&
2238 atomic_read(&root->log_commit[index]));
2239 return 0;
2240 }
2241
2242 static void wait_for_writer(struct btrfs_trans_handle *trans,
2243 struct btrfs_root *root)
2244 {
2245 DEFINE_WAIT(wait);
2246 while (root->fs_info->last_trans_log_full_commit !=
2247 trans->transid && atomic_read(&root->log_writers)) {
2248 prepare_to_wait(&root->log_writer_wait,
2249 &wait, TASK_UNINTERRUPTIBLE);
2250 mutex_unlock(&root->log_mutex);
2251 if (root->fs_info->last_trans_log_full_commit !=
2252 trans->transid && atomic_read(&root->log_writers))
2253 schedule();
2254 mutex_lock(&root->log_mutex);
2255 finish_wait(&root->log_writer_wait, &wait);
2256 }
2257 }
2258
2259 /*
2260 * btrfs_sync_log does sends a given tree log down to the disk and
2261 * updates the super blocks to record it. When this call is done,
2262 * you know that any inodes previously logged are safely on disk only
2263 * if it returns 0.
2264 *
2265 * Any other return value means you need to call btrfs_commit_transaction.
2266 * Some of the edge cases for fsyncing directories that have had unlinks
2267 * or renames done in the past mean that sometimes the only safe
2268 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2269 * that has happened.
2270 */
2271 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2272 struct btrfs_root *root)
2273 {
2274 int index1;
2275 int index2;
2276 int mark;
2277 int ret;
2278 struct btrfs_root *log = root->log_root;
2279 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2280 unsigned long log_transid = 0;
2281
2282 mutex_lock(&root->log_mutex);
2283 log_transid = root->log_transid;
2284 index1 = root->log_transid % 2;
2285 if (atomic_read(&root->log_commit[index1])) {
2286 wait_log_commit(trans, root, root->log_transid);
2287 mutex_unlock(&root->log_mutex);
2288 return 0;
2289 }
2290 atomic_set(&root->log_commit[index1], 1);
2291
2292 /* wait for previous tree log sync to complete */
2293 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2294 wait_log_commit(trans, root, root->log_transid - 1);
2295 while (1) {
2296 int batch = atomic_read(&root->log_batch);
2297 /* when we're on an ssd, just kick the log commit out */
2298 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2299 mutex_unlock(&root->log_mutex);
2300 schedule_timeout_uninterruptible(1);
2301 mutex_lock(&root->log_mutex);
2302 }
2303 wait_for_writer(trans, root);
2304 if (batch == atomic_read(&root->log_batch))
2305 break;
2306 }
2307
2308 /* bail out if we need to do a full commit */
2309 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2310 ret = -EAGAIN;
2311 btrfs_free_logged_extents(log, log_transid);
2312 mutex_unlock(&root->log_mutex);
2313 goto out;
2314 }
2315
2316 if (log_transid % 2 == 0)
2317 mark = EXTENT_DIRTY;
2318 else
2319 mark = EXTENT_NEW;
2320
2321 /* we start IO on all the marked extents here, but we don't actually
2322 * wait for them until later.
2323 */
2324 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2325 if (ret) {
2326 btrfs_abort_transaction(trans, root, ret);
2327 btrfs_free_logged_extents(log, log_transid);
2328 mutex_unlock(&root->log_mutex);
2329 goto out;
2330 }
2331
2332 btrfs_set_root_node(&log->root_item, log->node);
2333
2334 root->log_transid++;
2335 log->log_transid = root->log_transid;
2336 root->log_start_pid = 0;
2337 smp_mb();
2338 /*
2339 * IO has been started, blocks of the log tree have WRITTEN flag set
2340 * in their headers. new modifications of the log will be written to
2341 * new positions. so it's safe to allow log writers to go in.
2342 */
2343 mutex_unlock(&root->log_mutex);
2344
2345 mutex_lock(&log_root_tree->log_mutex);
2346 atomic_inc(&log_root_tree->log_batch);
2347 atomic_inc(&log_root_tree->log_writers);
2348 mutex_unlock(&log_root_tree->log_mutex);
2349
2350 ret = update_log_root(trans, log);
2351
2352 mutex_lock(&log_root_tree->log_mutex);
2353 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2354 smp_mb();
2355 if (waitqueue_active(&log_root_tree->log_writer_wait))
2356 wake_up(&log_root_tree->log_writer_wait);
2357 }
2358
2359 if (ret) {
2360 if (ret != -ENOSPC) {
2361 btrfs_abort_transaction(trans, root, ret);
2362 mutex_unlock(&log_root_tree->log_mutex);
2363 goto out;
2364 }
2365 root->fs_info->last_trans_log_full_commit = trans->transid;
2366 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2367 btrfs_free_logged_extents(log, log_transid);
2368 mutex_unlock(&log_root_tree->log_mutex);
2369 ret = -EAGAIN;
2370 goto out;
2371 }
2372
2373 index2 = log_root_tree->log_transid % 2;
2374 if (atomic_read(&log_root_tree->log_commit[index2])) {
2375 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2376 wait_log_commit(trans, log_root_tree,
2377 log_root_tree->log_transid);
2378 btrfs_free_logged_extents(log, log_transid);
2379 mutex_unlock(&log_root_tree->log_mutex);
2380 ret = 0;
2381 goto out;
2382 }
2383 atomic_set(&log_root_tree->log_commit[index2], 1);
2384
2385 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2386 wait_log_commit(trans, log_root_tree,
2387 log_root_tree->log_transid - 1);
2388 }
2389
2390 wait_for_writer(trans, log_root_tree);
2391
2392 /*
2393 * now that we've moved on to the tree of log tree roots,
2394 * check the full commit flag again
2395 */
2396 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2397 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2398 btrfs_free_logged_extents(log, log_transid);
2399 mutex_unlock(&log_root_tree->log_mutex);
2400 ret = -EAGAIN;
2401 goto out_wake_log_root;
2402 }
2403
2404 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2405 &log_root_tree->dirty_log_pages,
2406 EXTENT_DIRTY | EXTENT_NEW);
2407 if (ret) {
2408 btrfs_abort_transaction(trans, root, ret);
2409 btrfs_free_logged_extents(log, log_transid);
2410 mutex_unlock(&log_root_tree->log_mutex);
2411 goto out_wake_log_root;
2412 }
2413 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2414 btrfs_wait_logged_extents(log, log_transid);
2415
2416 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2417 log_root_tree->node->start);
2418 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2419 btrfs_header_level(log_root_tree->node));
2420
2421 log_root_tree->log_transid++;
2422 smp_mb();
2423
2424 mutex_unlock(&log_root_tree->log_mutex);
2425
2426 /*
2427 * nobody else is going to jump in and write the the ctree
2428 * super here because the log_commit atomic below is protecting
2429 * us. We must be called with a transaction handle pinning
2430 * the running transaction open, so a full commit can't hop
2431 * in and cause problems either.
2432 */
2433 btrfs_scrub_pause_super(root);
2434 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2435 btrfs_scrub_continue_super(root);
2436 if (ret) {
2437 btrfs_abort_transaction(trans, root, ret);
2438 goto out_wake_log_root;
2439 }
2440
2441 mutex_lock(&root->log_mutex);
2442 if (root->last_log_commit < log_transid)
2443 root->last_log_commit = log_transid;
2444 mutex_unlock(&root->log_mutex);
2445
2446 out_wake_log_root:
2447 atomic_set(&log_root_tree->log_commit[index2], 0);
2448 smp_mb();
2449 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2450 wake_up(&log_root_tree->log_commit_wait[index2]);
2451 out:
2452 atomic_set(&root->log_commit[index1], 0);
2453 smp_mb();
2454 if (waitqueue_active(&root->log_commit_wait[index1]))
2455 wake_up(&root->log_commit_wait[index1]);
2456 return ret;
2457 }
2458
2459 static void free_log_tree(struct btrfs_trans_handle *trans,
2460 struct btrfs_root *log)
2461 {
2462 int ret;
2463 u64 start;
2464 u64 end;
2465 struct walk_control wc = {
2466 .free = 1,
2467 .process_func = process_one_buffer
2468 };
2469
2470 ret = walk_log_tree(trans, log, &wc);
2471 BUG_ON(ret);
2472
2473 while (1) {
2474 ret = find_first_extent_bit(&log->dirty_log_pages,
2475 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2476 NULL);
2477 if (ret)
2478 break;
2479
2480 clear_extent_bits(&log->dirty_log_pages, start, end,
2481 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2482 }
2483
2484 /*
2485 * We may have short-circuited the log tree with the full commit logic
2486 * and left ordered extents on our list, so clear these out to keep us
2487 * from leaking inodes and memory.
2488 */
2489 btrfs_free_logged_extents(log, 0);
2490 btrfs_free_logged_extents(log, 1);
2491
2492 free_extent_buffer(log->node);
2493 kfree(log);
2494 }
2495
2496 /*
2497 * free all the extents used by the tree log. This should be called
2498 * at commit time of the full transaction
2499 */
2500 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2501 {
2502 if (root->log_root) {
2503 free_log_tree(trans, root->log_root);
2504 root->log_root = NULL;
2505 }
2506 return 0;
2507 }
2508
2509 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2510 struct btrfs_fs_info *fs_info)
2511 {
2512 if (fs_info->log_root_tree) {
2513 free_log_tree(trans, fs_info->log_root_tree);
2514 fs_info->log_root_tree = NULL;
2515 }
2516 return 0;
2517 }
2518
2519 /*
2520 * If both a file and directory are logged, and unlinks or renames are
2521 * mixed in, we have a few interesting corners:
2522 *
2523 * create file X in dir Y
2524 * link file X to X.link in dir Y
2525 * fsync file X
2526 * unlink file X but leave X.link
2527 * fsync dir Y
2528 *
2529 * After a crash we would expect only X.link to exist. But file X
2530 * didn't get fsync'd again so the log has back refs for X and X.link.
2531 *
2532 * We solve this by removing directory entries and inode backrefs from the
2533 * log when a file that was logged in the current transaction is
2534 * unlinked. Any later fsync will include the updated log entries, and
2535 * we'll be able to reconstruct the proper directory items from backrefs.
2536 *
2537 * This optimizations allows us to avoid relogging the entire inode
2538 * or the entire directory.
2539 */
2540 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2541 struct btrfs_root *root,
2542 const char *name, int name_len,
2543 struct inode *dir, u64 index)
2544 {
2545 struct btrfs_root *log;
2546 struct btrfs_dir_item *di;
2547 struct btrfs_path *path;
2548 int ret;
2549 int err = 0;
2550 int bytes_del = 0;
2551 u64 dir_ino = btrfs_ino(dir);
2552
2553 if (BTRFS_I(dir)->logged_trans < trans->transid)
2554 return 0;
2555
2556 ret = join_running_log_trans(root);
2557 if (ret)
2558 return 0;
2559
2560 mutex_lock(&BTRFS_I(dir)->log_mutex);
2561
2562 log = root->log_root;
2563 path = btrfs_alloc_path();
2564 if (!path) {
2565 err = -ENOMEM;
2566 goto out_unlock;
2567 }
2568
2569 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2570 name, name_len, -1);
2571 if (IS_ERR(di)) {
2572 err = PTR_ERR(di);
2573 goto fail;
2574 }
2575 if (di) {
2576 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2577 bytes_del += name_len;
2578 BUG_ON(ret);
2579 }
2580 btrfs_release_path(path);
2581 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2582 index, name, name_len, -1);
2583 if (IS_ERR(di)) {
2584 err = PTR_ERR(di);
2585 goto fail;
2586 }
2587 if (di) {
2588 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2589 bytes_del += name_len;
2590 BUG_ON(ret);
2591 }
2592
2593 /* update the directory size in the log to reflect the names
2594 * we have removed
2595 */
2596 if (bytes_del) {
2597 struct btrfs_key key;
2598
2599 key.objectid = dir_ino;
2600 key.offset = 0;
2601 key.type = BTRFS_INODE_ITEM_KEY;
2602 btrfs_release_path(path);
2603
2604 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2605 if (ret < 0) {
2606 err = ret;
2607 goto fail;
2608 }
2609 if (ret == 0) {
2610 struct btrfs_inode_item *item;
2611 u64 i_size;
2612
2613 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2614 struct btrfs_inode_item);
2615 i_size = btrfs_inode_size(path->nodes[0], item);
2616 if (i_size > bytes_del)
2617 i_size -= bytes_del;
2618 else
2619 i_size = 0;
2620 btrfs_set_inode_size(path->nodes[0], item, i_size);
2621 btrfs_mark_buffer_dirty(path->nodes[0]);
2622 } else
2623 ret = 0;
2624 btrfs_release_path(path);
2625 }
2626 fail:
2627 btrfs_free_path(path);
2628 out_unlock:
2629 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2630 if (ret == -ENOSPC) {
2631 root->fs_info->last_trans_log_full_commit = trans->transid;
2632 ret = 0;
2633 } else if (ret < 0)
2634 btrfs_abort_transaction(trans, root, ret);
2635
2636 btrfs_end_log_trans(root);
2637
2638 return err;
2639 }
2640
2641 /* see comments for btrfs_del_dir_entries_in_log */
2642 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2643 struct btrfs_root *root,
2644 const char *name, int name_len,
2645 struct inode *inode, u64 dirid)
2646 {
2647 struct btrfs_root *log;
2648 u64 index;
2649 int ret;
2650
2651 if (BTRFS_I(inode)->logged_trans < trans->transid)
2652 return 0;
2653
2654 ret = join_running_log_trans(root);
2655 if (ret)
2656 return 0;
2657 log = root->log_root;
2658 mutex_lock(&BTRFS_I(inode)->log_mutex);
2659
2660 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2661 dirid, &index);
2662 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2663 if (ret == -ENOSPC) {
2664 root->fs_info->last_trans_log_full_commit = trans->transid;
2665 ret = 0;
2666 } else if (ret < 0 && ret != -ENOENT)
2667 btrfs_abort_transaction(trans, root, ret);
2668 btrfs_end_log_trans(root);
2669
2670 return ret;
2671 }
2672
2673 /*
2674 * creates a range item in the log for 'dirid'. first_offset and
2675 * last_offset tell us which parts of the key space the log should
2676 * be considered authoritative for.
2677 */
2678 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2679 struct btrfs_root *log,
2680 struct btrfs_path *path,
2681 int key_type, u64 dirid,
2682 u64 first_offset, u64 last_offset)
2683 {
2684 int ret;
2685 struct btrfs_key key;
2686 struct btrfs_dir_log_item *item;
2687
2688 key.objectid = dirid;
2689 key.offset = first_offset;
2690 if (key_type == BTRFS_DIR_ITEM_KEY)
2691 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2692 else
2693 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2694 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2695 if (ret)
2696 return ret;
2697
2698 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2699 struct btrfs_dir_log_item);
2700 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2701 btrfs_mark_buffer_dirty(path->nodes[0]);
2702 btrfs_release_path(path);
2703 return 0;
2704 }
2705
2706 /*
2707 * log all the items included in the current transaction for a given
2708 * directory. This also creates the range items in the log tree required
2709 * to replay anything deleted before the fsync
2710 */
2711 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2712 struct btrfs_root *root, struct inode *inode,
2713 struct btrfs_path *path,
2714 struct btrfs_path *dst_path, int key_type,
2715 u64 min_offset, u64 *last_offset_ret)
2716 {
2717 struct btrfs_key min_key;
2718 struct btrfs_key max_key;
2719 struct btrfs_root *log = root->log_root;
2720 struct extent_buffer *src;
2721 int err = 0;
2722 int ret;
2723 int i;
2724 int nritems;
2725 u64 first_offset = min_offset;
2726 u64 last_offset = (u64)-1;
2727 u64 ino = btrfs_ino(inode);
2728
2729 log = root->log_root;
2730 max_key.objectid = ino;
2731 max_key.offset = (u64)-1;
2732 max_key.type = key_type;
2733
2734 min_key.objectid = ino;
2735 min_key.type = key_type;
2736 min_key.offset = min_offset;
2737
2738 path->keep_locks = 1;
2739
2740 ret = btrfs_search_forward(root, &min_key, &max_key,
2741 path, trans->transid);
2742
2743 /*
2744 * we didn't find anything from this transaction, see if there
2745 * is anything at all
2746 */
2747 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2748 min_key.objectid = ino;
2749 min_key.type = key_type;
2750 min_key.offset = (u64)-1;
2751 btrfs_release_path(path);
2752 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2753 if (ret < 0) {
2754 btrfs_release_path(path);
2755 return ret;
2756 }
2757 ret = btrfs_previous_item(root, path, ino, key_type);
2758
2759 /* if ret == 0 there are items for this type,
2760 * create a range to tell us the last key of this type.
2761 * otherwise, there are no items in this directory after
2762 * *min_offset, and we create a range to indicate that.
2763 */
2764 if (ret == 0) {
2765 struct btrfs_key tmp;
2766 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2767 path->slots[0]);
2768 if (key_type == tmp.type)
2769 first_offset = max(min_offset, tmp.offset) + 1;
2770 }
2771 goto done;
2772 }
2773
2774 /* go backward to find any previous key */
2775 ret = btrfs_previous_item(root, path, ino, key_type);
2776 if (ret == 0) {
2777 struct btrfs_key tmp;
2778 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2779 if (key_type == tmp.type) {
2780 first_offset = tmp.offset;
2781 ret = overwrite_item(trans, log, dst_path,
2782 path->nodes[0], path->slots[0],
2783 &tmp);
2784 if (ret) {
2785 err = ret;
2786 goto done;
2787 }
2788 }
2789 }
2790 btrfs_release_path(path);
2791
2792 /* find the first key from this transaction again */
2793 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2794 if (ret != 0) {
2795 WARN_ON(1);
2796 goto done;
2797 }
2798
2799 /*
2800 * we have a block from this transaction, log every item in it
2801 * from our directory
2802 */
2803 while (1) {
2804 struct btrfs_key tmp;
2805 src = path->nodes[0];
2806 nritems = btrfs_header_nritems(src);
2807 for (i = path->slots[0]; i < nritems; i++) {
2808 btrfs_item_key_to_cpu(src, &min_key, i);
2809
2810 if (min_key.objectid != ino || min_key.type != key_type)
2811 goto done;
2812 ret = overwrite_item(trans, log, dst_path, src, i,
2813 &min_key);
2814 if (ret) {
2815 err = ret;
2816 goto done;
2817 }
2818 }
2819 path->slots[0] = nritems;
2820
2821 /*
2822 * look ahead to the next item and see if it is also
2823 * from this directory and from this transaction
2824 */
2825 ret = btrfs_next_leaf(root, path);
2826 if (ret == 1) {
2827 last_offset = (u64)-1;
2828 goto done;
2829 }
2830 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2831 if (tmp.objectid != ino || tmp.type != key_type) {
2832 last_offset = (u64)-1;
2833 goto done;
2834 }
2835 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2836 ret = overwrite_item(trans, log, dst_path,
2837 path->nodes[0], path->slots[0],
2838 &tmp);
2839 if (ret)
2840 err = ret;
2841 else
2842 last_offset = tmp.offset;
2843 goto done;
2844 }
2845 }
2846 done:
2847 btrfs_release_path(path);
2848 btrfs_release_path(dst_path);
2849
2850 if (err == 0) {
2851 *last_offset_ret = last_offset;
2852 /*
2853 * insert the log range keys to indicate where the log
2854 * is valid
2855 */
2856 ret = insert_dir_log_key(trans, log, path, key_type,
2857 ino, first_offset, last_offset);
2858 if (ret)
2859 err = ret;
2860 }
2861 return err;
2862 }
2863
2864 /*
2865 * logging directories is very similar to logging inodes, We find all the items
2866 * from the current transaction and write them to the log.
2867 *
2868 * The recovery code scans the directory in the subvolume, and if it finds a
2869 * key in the range logged that is not present in the log tree, then it means
2870 * that dir entry was unlinked during the transaction.
2871 *
2872 * In order for that scan to work, we must include one key smaller than
2873 * the smallest logged by this transaction and one key larger than the largest
2874 * key logged by this transaction.
2875 */
2876 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2877 struct btrfs_root *root, struct inode *inode,
2878 struct btrfs_path *path,
2879 struct btrfs_path *dst_path)
2880 {
2881 u64 min_key;
2882 u64 max_key;
2883 int ret;
2884 int key_type = BTRFS_DIR_ITEM_KEY;
2885
2886 again:
2887 min_key = 0;
2888 max_key = 0;
2889 while (1) {
2890 ret = log_dir_items(trans, root, inode, path,
2891 dst_path, key_type, min_key,
2892 &max_key);
2893 if (ret)
2894 return ret;
2895 if (max_key == (u64)-1)
2896 break;
2897 min_key = max_key + 1;
2898 }
2899
2900 if (key_type == BTRFS_DIR_ITEM_KEY) {
2901 key_type = BTRFS_DIR_INDEX_KEY;
2902 goto again;
2903 }
2904 return 0;
2905 }
2906
2907 /*
2908 * a helper function to drop items from the log before we relog an
2909 * inode. max_key_type indicates the highest item type to remove.
2910 * This cannot be run for file data extents because it does not
2911 * free the extents they point to.
2912 */
2913 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2914 struct btrfs_root *log,
2915 struct btrfs_path *path,
2916 u64 objectid, int max_key_type)
2917 {
2918 int ret;
2919 struct btrfs_key key;
2920 struct btrfs_key found_key;
2921 int start_slot;
2922
2923 key.objectid = objectid;
2924 key.type = max_key_type;
2925 key.offset = (u64)-1;
2926
2927 while (1) {
2928 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2929 BUG_ON(ret == 0);
2930 if (ret < 0)
2931 break;
2932
2933 if (path->slots[0] == 0)
2934 break;
2935
2936 path->slots[0]--;
2937 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2938 path->slots[0]);
2939
2940 if (found_key.objectid != objectid)
2941 break;
2942
2943 found_key.offset = 0;
2944 found_key.type = 0;
2945 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
2946 &start_slot);
2947
2948 ret = btrfs_del_items(trans, log, path, start_slot,
2949 path->slots[0] - start_slot + 1);
2950 /*
2951 * If start slot isn't 0 then we don't need to re-search, we've
2952 * found the last guy with the objectid in this tree.
2953 */
2954 if (ret || start_slot != 0)
2955 break;
2956 btrfs_release_path(path);
2957 }
2958 btrfs_release_path(path);
2959 if (ret > 0)
2960 ret = 0;
2961 return ret;
2962 }
2963
2964 static void fill_inode_item(struct btrfs_trans_handle *trans,
2965 struct extent_buffer *leaf,
2966 struct btrfs_inode_item *item,
2967 struct inode *inode, int log_inode_only)
2968 {
2969 struct btrfs_map_token token;
2970
2971 btrfs_init_map_token(&token);
2972
2973 if (log_inode_only) {
2974 /* set the generation to zero so the recover code
2975 * can tell the difference between an logging
2976 * just to say 'this inode exists' and a logging
2977 * to say 'update this inode with these values'
2978 */
2979 btrfs_set_token_inode_generation(leaf, item, 0, &token);
2980 btrfs_set_token_inode_size(leaf, item, 0, &token);
2981 } else {
2982 btrfs_set_token_inode_generation(leaf, item,
2983 BTRFS_I(inode)->generation,
2984 &token);
2985 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
2986 }
2987
2988 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
2989 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
2990 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
2991 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
2992
2993 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
2994 inode->i_atime.tv_sec, &token);
2995 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
2996 inode->i_atime.tv_nsec, &token);
2997
2998 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
2999 inode->i_mtime.tv_sec, &token);
3000 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3001 inode->i_mtime.tv_nsec, &token);
3002
3003 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3004 inode->i_ctime.tv_sec, &token);
3005 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3006 inode->i_ctime.tv_nsec, &token);
3007
3008 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3009 &token);
3010
3011 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3012 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3013 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3014 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3015 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3016 }
3017
3018 static int log_inode_item(struct btrfs_trans_handle *trans,
3019 struct btrfs_root *log, struct btrfs_path *path,
3020 struct inode *inode)
3021 {
3022 struct btrfs_inode_item *inode_item;
3023 struct btrfs_key key;
3024 int ret;
3025
3026 memcpy(&key, &BTRFS_I(inode)->location, sizeof(key));
3027 ret = btrfs_insert_empty_item(trans, log, path, &key,
3028 sizeof(*inode_item));
3029 if (ret && ret != -EEXIST)
3030 return ret;
3031 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3032 struct btrfs_inode_item);
3033 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3034 btrfs_release_path(path);
3035 return 0;
3036 }
3037
3038 static noinline int copy_items(struct btrfs_trans_handle *trans,
3039 struct inode *inode,
3040 struct btrfs_path *dst_path,
3041 struct extent_buffer *src,
3042 int start_slot, int nr, int inode_only)
3043 {
3044 unsigned long src_offset;
3045 unsigned long dst_offset;
3046 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3047 struct btrfs_file_extent_item *extent;
3048 struct btrfs_inode_item *inode_item;
3049 int ret;
3050 struct btrfs_key *ins_keys;
3051 u32 *ins_sizes;
3052 char *ins_data;
3053 int i;
3054 struct list_head ordered_sums;
3055 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3056
3057 INIT_LIST_HEAD(&ordered_sums);
3058
3059 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3060 nr * sizeof(u32), GFP_NOFS);
3061 if (!ins_data)
3062 return -ENOMEM;
3063
3064 ins_sizes = (u32 *)ins_data;
3065 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3066
3067 for (i = 0; i < nr; i++) {
3068 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3069 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3070 }
3071 ret = btrfs_insert_empty_items(trans, log, dst_path,
3072 ins_keys, ins_sizes, nr);
3073 if (ret) {
3074 kfree(ins_data);
3075 return ret;
3076 }
3077
3078 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3079 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3080 dst_path->slots[0]);
3081
3082 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3083
3084 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3085 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3086 dst_path->slots[0],
3087 struct btrfs_inode_item);
3088 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3089 inode, inode_only == LOG_INODE_EXISTS);
3090 } else {
3091 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3092 src_offset, ins_sizes[i]);
3093 }
3094
3095 /* take a reference on file data extents so that truncates
3096 * or deletes of this inode don't have to relog the inode
3097 * again
3098 */
3099 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3100 !skip_csum) {
3101 int found_type;
3102 extent = btrfs_item_ptr(src, start_slot + i,
3103 struct btrfs_file_extent_item);
3104
3105 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3106 continue;
3107
3108 found_type = btrfs_file_extent_type(src, extent);
3109 if (found_type == BTRFS_FILE_EXTENT_REG) {
3110 u64 ds, dl, cs, cl;
3111 ds = btrfs_file_extent_disk_bytenr(src,
3112 extent);
3113 /* ds == 0 is a hole */
3114 if (ds == 0)
3115 continue;
3116
3117 dl = btrfs_file_extent_disk_num_bytes(src,
3118 extent);
3119 cs = btrfs_file_extent_offset(src, extent);
3120 cl = btrfs_file_extent_num_bytes(src,
3121 extent);
3122 if (btrfs_file_extent_compression(src,
3123 extent)) {
3124 cs = 0;
3125 cl = dl;
3126 }
3127
3128 ret = btrfs_lookup_csums_range(
3129 log->fs_info->csum_root,
3130 ds + cs, ds + cs + cl - 1,
3131 &ordered_sums, 0);
3132 BUG_ON(ret);
3133 }
3134 }
3135 }
3136
3137 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3138 btrfs_release_path(dst_path);
3139 kfree(ins_data);
3140
3141 /*
3142 * we have to do this after the loop above to avoid changing the
3143 * log tree while trying to change the log tree.
3144 */
3145 ret = 0;
3146 while (!list_empty(&ordered_sums)) {
3147 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3148 struct btrfs_ordered_sum,
3149 list);
3150 if (!ret)
3151 ret = btrfs_csum_file_blocks(trans, log, sums);
3152 list_del(&sums->list);
3153 kfree(sums);
3154 }
3155 return ret;
3156 }
3157
3158 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3159 {
3160 struct extent_map *em1, *em2;
3161
3162 em1 = list_entry(a, struct extent_map, list);
3163 em2 = list_entry(b, struct extent_map, list);
3164
3165 if (em1->start < em2->start)
3166 return -1;
3167 else if (em1->start > em2->start)
3168 return 1;
3169 return 0;
3170 }
3171
3172 static int drop_adjacent_extents(struct btrfs_trans_handle *trans,
3173 struct btrfs_root *root, struct inode *inode,
3174 struct extent_map *em,
3175 struct btrfs_path *path)
3176 {
3177 struct btrfs_file_extent_item *fi;
3178 struct extent_buffer *leaf;
3179 struct btrfs_key key, new_key;
3180 struct btrfs_map_token token;
3181 u64 extent_end;
3182 u64 extent_offset = 0;
3183 int extent_type;
3184 int del_slot = 0;
3185 int del_nr = 0;
3186 int ret = 0;
3187
3188 while (1) {
3189 btrfs_init_map_token(&token);
3190 leaf = path->nodes[0];
3191 path->slots[0]++;
3192 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3193 if (del_nr) {
3194 ret = btrfs_del_items(trans, root, path,
3195 del_slot, del_nr);
3196 if (ret)
3197 return ret;
3198 del_nr = 0;
3199 }
3200
3201 ret = btrfs_next_leaf_write(trans, root, path, 1);
3202 if (ret < 0)
3203 return ret;
3204 if (ret > 0)
3205 return 0;
3206 leaf = path->nodes[0];
3207 }
3208
3209 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3210 if (key.objectid != btrfs_ino(inode) ||
3211 key.type != BTRFS_EXTENT_DATA_KEY ||
3212 key.offset >= em->start + em->len)
3213 break;
3214
3215 fi = btrfs_item_ptr(leaf, path->slots[0],
3216 struct btrfs_file_extent_item);
3217 extent_type = btrfs_token_file_extent_type(leaf, fi, &token);
3218 if (extent_type == BTRFS_FILE_EXTENT_REG ||
3219 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3220 extent_offset = btrfs_token_file_extent_offset(leaf,
3221 fi, &token);
3222 extent_end = key.offset +
3223 btrfs_token_file_extent_num_bytes(leaf, fi,
3224 &token);
3225 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3226 extent_end = key.offset +
3227 btrfs_file_extent_inline_len(leaf, fi);
3228 } else {
3229 BUG();
3230 }
3231
3232 if (extent_end <= em->len + em->start) {
3233 if (!del_nr) {
3234 del_slot = path->slots[0];
3235 }
3236 del_nr++;
3237 continue;
3238 }
3239
3240 /*
3241 * Ok so we'll ignore previous items if we log a new extent,
3242 * which can lead to overlapping extents, so if we have an
3243 * existing extent we want to adjust we _have_ to check the next
3244 * guy to make sure we even need this extent anymore, this keeps
3245 * us from panicing in set_item_key_safe.
3246 */
3247 if (path->slots[0] < btrfs_header_nritems(leaf) - 1) {
3248 struct btrfs_key tmp_key;
3249
3250 btrfs_item_key_to_cpu(leaf, &tmp_key,
3251 path->slots[0] + 1);
3252 if (tmp_key.objectid == btrfs_ino(inode) &&
3253 tmp_key.type == BTRFS_EXTENT_DATA_KEY &&
3254 tmp_key.offset <= em->start + em->len) {
3255 if (!del_nr)
3256 del_slot = path->slots[0];
3257 del_nr++;
3258 continue;
3259 }
3260 }
3261
3262 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
3263 memcpy(&new_key, &key, sizeof(new_key));
3264 new_key.offset = em->start + em->len;
3265 btrfs_set_item_key_safe(trans, root, path, &new_key);
3266 extent_offset += em->start + em->len - key.offset;
3267 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset,
3268 &token);
3269 btrfs_set_token_file_extent_num_bytes(leaf, fi, extent_end -
3270 (em->start + em->len),
3271 &token);
3272 btrfs_mark_buffer_dirty(leaf);
3273 }
3274
3275 if (del_nr)
3276 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
3277
3278 return ret;
3279 }
3280
3281 static int log_one_extent(struct btrfs_trans_handle *trans,
3282 struct inode *inode, struct btrfs_root *root,
3283 struct extent_map *em, struct btrfs_path *path)
3284 {
3285 struct btrfs_root *log = root->log_root;
3286 struct btrfs_file_extent_item *fi;
3287 struct extent_buffer *leaf;
3288 struct btrfs_ordered_extent *ordered;
3289 struct list_head ordered_sums;
3290 struct btrfs_map_token token;
3291 struct btrfs_key key;
3292 u64 mod_start = em->mod_start;
3293 u64 mod_len = em->mod_len;
3294 u64 csum_offset;
3295 u64 csum_len;
3296 u64 extent_offset = em->start - em->orig_start;
3297 u64 block_len;
3298 int ret;
3299 int index = log->log_transid % 2;
3300 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3301
3302 INIT_LIST_HEAD(&ordered_sums);
3303 btrfs_init_map_token(&token);
3304 key.objectid = btrfs_ino(inode);
3305 key.type = BTRFS_EXTENT_DATA_KEY;
3306 key.offset = em->start;
3307 path->really_keep_locks = 1;
3308
3309 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
3310 if (ret && ret != -EEXIST) {
3311 path->really_keep_locks = 0;
3312 return ret;
3313 }
3314 leaf = path->nodes[0];
3315 fi = btrfs_item_ptr(leaf, path->slots[0],
3316 struct btrfs_file_extent_item);
3317 btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3318 &token);
3319 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3320 skip_csum = true;
3321 btrfs_set_token_file_extent_type(leaf, fi,
3322 BTRFS_FILE_EXTENT_PREALLOC,
3323 &token);
3324 } else {
3325 btrfs_set_token_file_extent_type(leaf, fi,
3326 BTRFS_FILE_EXTENT_REG,
3327 &token);
3328 if (em->block_start == 0)
3329 skip_csum = true;
3330 }
3331
3332 block_len = max(em->block_len, em->orig_block_len);
3333 if (em->compress_type != BTRFS_COMPRESS_NONE) {
3334 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3335 em->block_start,
3336 &token);
3337 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3338 &token);
3339 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3340 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3341 em->block_start -
3342 extent_offset, &token);
3343 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3344 &token);
3345 } else {
3346 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3347 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3348 &token);
3349 }
3350
3351 btrfs_set_token_file_extent_offset(leaf, fi,
3352 em->start - em->orig_start,
3353 &token);
3354 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3355 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->len, &token);
3356 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3357 &token);
3358 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3359 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3360 btrfs_mark_buffer_dirty(leaf);
3361
3362 /*
3363 * Have to check the extent to the right of us to make sure it doesn't
3364 * fall in our current range. We're ok if the previous extent is in our
3365 * range since the recovery stuff will run us in key order and thus just
3366 * drop the part we overwrote.
3367 */
3368 ret = drop_adjacent_extents(trans, log, inode, em, path);
3369 btrfs_release_path(path);
3370 path->really_keep_locks = 0;
3371 if (ret) {
3372 return ret;
3373 }
3374
3375 if (skip_csum)
3376 return 0;
3377
3378 if (em->compress_type) {
3379 csum_offset = 0;
3380 csum_len = block_len;
3381 }
3382
3383 /*
3384 * First check and see if our csums are on our outstanding ordered
3385 * extents.
3386 */
3387 again:
3388 spin_lock_irq(&log->log_extents_lock[index]);
3389 list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3390 struct btrfs_ordered_sum *sum;
3391
3392 if (!mod_len)
3393 break;
3394
3395 if (ordered->inode != inode)
3396 continue;
3397
3398 if (ordered->file_offset + ordered->len <= mod_start ||
3399 mod_start + mod_len <= ordered->file_offset)
3400 continue;
3401
3402 /*
3403 * We are going to copy all the csums on this ordered extent, so
3404 * go ahead and adjust mod_start and mod_len in case this
3405 * ordered extent has already been logged.
3406 */
3407 if (ordered->file_offset > mod_start) {
3408 if (ordered->file_offset + ordered->len >=
3409 mod_start + mod_len)
3410 mod_len = ordered->file_offset - mod_start;
3411 /*
3412 * If we have this case
3413 *
3414 * |--------- logged extent ---------|
3415 * |----- ordered extent ----|
3416 *
3417 * Just don't mess with mod_start and mod_len, we'll
3418 * just end up logging more csums than we need and it
3419 * will be ok.
3420 */
3421 } else {
3422 if (ordered->file_offset + ordered->len <
3423 mod_start + mod_len) {
3424 mod_len = (mod_start + mod_len) -
3425 (ordered->file_offset + ordered->len);
3426 mod_start = ordered->file_offset +
3427 ordered->len;
3428 } else {
3429 mod_len = 0;
3430 }
3431 }
3432
3433 /*
3434 * To keep us from looping for the above case of an ordered
3435 * extent that falls inside of the logged extent.
3436 */
3437 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3438 &ordered->flags))
3439 continue;
3440 atomic_inc(&ordered->refs);
3441 spin_unlock_irq(&log->log_extents_lock[index]);
3442 /*
3443 * we've dropped the lock, we must either break or
3444 * start over after this.
3445 */
3446
3447 wait_event(ordered->wait, ordered->csum_bytes_left == 0);
3448
3449 list_for_each_entry(sum, &ordered->list, list) {
3450 ret = btrfs_csum_file_blocks(trans, log, sum);
3451 if (ret) {
3452 btrfs_put_ordered_extent(ordered);
3453 goto unlocked;
3454 }
3455 }
3456 btrfs_put_ordered_extent(ordered);
3457 goto again;
3458
3459 }
3460 spin_unlock_irq(&log->log_extents_lock[index]);
3461 unlocked:
3462
3463 if (!mod_len || ret)
3464 return ret;
3465
3466 csum_offset = mod_start - em->start;
3467 csum_len = mod_len;
3468
3469 /* block start is already adjusted for the file extent offset. */
3470 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3471 em->block_start + csum_offset,
3472 em->block_start + csum_offset +
3473 csum_len - 1, &ordered_sums, 0);
3474 if (ret)
3475 return ret;
3476
3477 while (!list_empty(&ordered_sums)) {
3478 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3479 struct btrfs_ordered_sum,
3480 list);
3481 if (!ret)
3482 ret = btrfs_csum_file_blocks(trans, log, sums);
3483 list_del(&sums->list);
3484 kfree(sums);
3485 }
3486
3487 return ret;
3488 }
3489
3490 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3491 struct btrfs_root *root,
3492 struct inode *inode,
3493 struct btrfs_path *path)
3494 {
3495 struct extent_map *em, *n;
3496 struct list_head extents;
3497 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3498 u64 test_gen;
3499 int ret = 0;
3500 int num = 0;
3501
3502 INIT_LIST_HEAD(&extents);
3503
3504 write_lock(&tree->lock);
3505 test_gen = root->fs_info->last_trans_committed;
3506
3507 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3508 list_del_init(&em->list);
3509
3510 /*
3511 * Just an arbitrary number, this can be really CPU intensive
3512 * once we start getting a lot of extents, and really once we
3513 * have a bunch of extents we just want to commit since it will
3514 * be faster.
3515 */
3516 if (++num > 32768) {
3517 list_del_init(&tree->modified_extents);
3518 ret = -EFBIG;
3519 goto process;
3520 }
3521
3522 if (em->generation <= test_gen)
3523 continue;
3524 /* Need a ref to keep it from getting evicted from cache */
3525 atomic_inc(&em->refs);
3526 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3527 list_add_tail(&em->list, &extents);
3528 num++;
3529 }
3530
3531 list_sort(NULL, &extents, extent_cmp);
3532
3533 process:
3534 while (!list_empty(&extents)) {
3535 em = list_entry(extents.next, struct extent_map, list);
3536
3537 list_del_init(&em->list);
3538
3539 /*
3540 * If we had an error we just need to delete everybody from our
3541 * private list.
3542 */
3543 if (ret) {
3544 clear_em_logging(tree, em);
3545 free_extent_map(em);
3546 continue;
3547 }
3548
3549 write_unlock(&tree->lock);
3550
3551 ret = log_one_extent(trans, inode, root, em, path);
3552 write_lock(&tree->lock);
3553 clear_em_logging(tree, em);
3554 free_extent_map(em);
3555 }
3556 WARN_ON(!list_empty(&extents));
3557 write_unlock(&tree->lock);
3558
3559 btrfs_release_path(path);
3560 return ret;
3561 }
3562
3563 /* log a single inode in the tree log.
3564 * At least one parent directory for this inode must exist in the tree
3565 * or be logged already.
3566 *
3567 * Any items from this inode changed by the current transaction are copied
3568 * to the log tree. An extra reference is taken on any extents in this
3569 * file, allowing us to avoid a whole pile of corner cases around logging
3570 * blocks that have been removed from the tree.
3571 *
3572 * See LOG_INODE_ALL and related defines for a description of what inode_only
3573 * does.
3574 *
3575 * This handles both files and directories.
3576 */
3577 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3578 struct btrfs_root *root, struct inode *inode,
3579 int inode_only)
3580 {
3581 struct btrfs_path *path;
3582 struct btrfs_path *dst_path;
3583 struct btrfs_key min_key;
3584 struct btrfs_key max_key;
3585 struct btrfs_root *log = root->log_root;
3586 struct extent_buffer *src = NULL;
3587 int err = 0;
3588 int ret;
3589 int nritems;
3590 int ins_start_slot = 0;
3591 int ins_nr;
3592 bool fast_search = false;
3593 u64 ino = btrfs_ino(inode);
3594
3595 log = root->log_root;
3596
3597 path = btrfs_alloc_path();
3598 if (!path)
3599 return -ENOMEM;
3600 dst_path = btrfs_alloc_path();
3601 if (!dst_path) {
3602 btrfs_free_path(path);
3603 return -ENOMEM;
3604 }
3605
3606 min_key.objectid = ino;
3607 min_key.type = BTRFS_INODE_ITEM_KEY;
3608 min_key.offset = 0;
3609
3610 max_key.objectid = ino;
3611
3612
3613 /* today the code can only do partial logging of directories */
3614 if (S_ISDIR(inode->i_mode) ||
3615 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3616 &BTRFS_I(inode)->runtime_flags) &&
3617 inode_only == LOG_INODE_EXISTS))
3618 max_key.type = BTRFS_XATTR_ITEM_KEY;
3619 else
3620 max_key.type = (u8)-1;
3621 max_key.offset = (u64)-1;
3622
3623 /* Only run delayed items if we are a dir or a new file */
3624 if (S_ISDIR(inode->i_mode) ||
3625 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3626 ret = btrfs_commit_inode_delayed_items(trans, inode);
3627 if (ret) {
3628 btrfs_free_path(path);
3629 btrfs_free_path(dst_path);
3630 return ret;
3631 }
3632 }
3633
3634 mutex_lock(&BTRFS_I(inode)->log_mutex);
3635
3636 btrfs_get_logged_extents(log, inode);
3637
3638 /*
3639 * a brute force approach to making sure we get the most uptodate
3640 * copies of everything.
3641 */
3642 if (S_ISDIR(inode->i_mode)) {
3643 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3644
3645 if (inode_only == LOG_INODE_EXISTS)
3646 max_key_type = BTRFS_XATTR_ITEM_KEY;
3647 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3648 } else {
3649 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3650 &BTRFS_I(inode)->runtime_flags)) {
3651 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3652 &BTRFS_I(inode)->runtime_flags);
3653 ret = btrfs_truncate_inode_items(trans, log,
3654 inode, 0, 0);
3655 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3656 &BTRFS_I(inode)->runtime_flags)) {
3657 if (inode_only == LOG_INODE_ALL)
3658 fast_search = true;
3659 max_key.type = BTRFS_XATTR_ITEM_KEY;
3660 ret = drop_objectid_items(trans, log, path, ino,
3661 max_key.type);
3662 } else {
3663 if (inode_only == LOG_INODE_ALL)
3664 fast_search = true;
3665 ret = log_inode_item(trans, log, dst_path, inode);
3666 if (ret) {
3667 err = ret;
3668 goto out_unlock;
3669 }
3670 goto log_extents;
3671 }
3672
3673 }
3674 if (ret) {
3675 err = ret;
3676 goto out_unlock;
3677 }
3678 path->keep_locks = 1;
3679
3680 while (1) {
3681 ins_nr = 0;
3682 ret = btrfs_search_forward(root, &min_key, &max_key,
3683 path, trans->transid);
3684 if (ret != 0)
3685 break;
3686 again:
3687 /* note, ins_nr might be > 0 here, cleanup outside the loop */
3688 if (min_key.objectid != ino)
3689 break;
3690 if (min_key.type > max_key.type)
3691 break;
3692
3693 src = path->nodes[0];
3694 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3695 ins_nr++;
3696 goto next_slot;
3697 } else if (!ins_nr) {
3698 ins_start_slot = path->slots[0];
3699 ins_nr = 1;
3700 goto next_slot;
3701 }
3702
3703 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3704 ins_nr, inode_only);
3705 if (ret) {
3706 err = ret;
3707 goto out_unlock;
3708 }
3709 ins_nr = 1;
3710 ins_start_slot = path->slots[0];
3711 next_slot:
3712
3713 nritems = btrfs_header_nritems(path->nodes[0]);
3714 path->slots[0]++;
3715 if (path->slots[0] < nritems) {
3716 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3717 path->slots[0]);
3718 goto again;
3719 }
3720 if (ins_nr) {
3721 ret = copy_items(trans, inode, dst_path, src,
3722 ins_start_slot,
3723 ins_nr, inode_only);
3724 if (ret) {
3725 err = ret;
3726 goto out_unlock;
3727 }
3728 ins_nr = 0;
3729 }
3730 btrfs_release_path(path);
3731
3732 if (min_key.offset < (u64)-1)
3733 min_key.offset++;
3734 else if (min_key.type < (u8)-1)
3735 min_key.type++;
3736 else if (min_key.objectid < (u64)-1)
3737 min_key.objectid++;
3738 else
3739 break;
3740 }
3741 if (ins_nr) {
3742 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3743 ins_nr, inode_only);
3744 if (ret) {
3745 err = ret;
3746 goto out_unlock;
3747 }
3748 ins_nr = 0;
3749 }
3750
3751 log_extents:
3752 if (fast_search) {
3753 btrfs_release_path(dst_path);
3754 ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
3755 if (ret) {
3756 err = ret;
3757 goto out_unlock;
3758 }
3759 } else {
3760 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3761 struct extent_map *em, *n;
3762
3763 write_lock(&tree->lock);
3764 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3765 list_del_init(&em->list);
3766 write_unlock(&tree->lock);
3767 }
3768
3769 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3770 btrfs_release_path(path);
3771 btrfs_release_path(dst_path);
3772 ret = log_directory_changes(trans, root, inode, path, dst_path);
3773 if (ret) {
3774 err = ret;
3775 goto out_unlock;
3776 }
3777 }
3778 BTRFS_I(inode)->logged_trans = trans->transid;
3779 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3780 out_unlock:
3781 if (err)
3782 btrfs_free_logged_extents(log, log->log_transid);
3783 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3784
3785 btrfs_free_path(path);
3786 btrfs_free_path(dst_path);
3787 return err;
3788 }
3789
3790 /*
3791 * follow the dentry parent pointers up the chain and see if any
3792 * of the directories in it require a full commit before they can
3793 * be logged. Returns zero if nothing special needs to be done or 1 if
3794 * a full commit is required.
3795 */
3796 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3797 struct inode *inode,
3798 struct dentry *parent,
3799 struct super_block *sb,
3800 u64 last_committed)
3801 {
3802 int ret = 0;
3803 struct btrfs_root *root;
3804 struct dentry *old_parent = NULL;
3805
3806 /*
3807 * for regular files, if its inode is already on disk, we don't
3808 * have to worry about the parents at all. This is because
3809 * we can use the last_unlink_trans field to record renames
3810 * and other fun in this file.
3811 */
3812 if (S_ISREG(inode->i_mode) &&
3813 BTRFS_I(inode)->generation <= last_committed &&
3814 BTRFS_I(inode)->last_unlink_trans <= last_committed)
3815 goto out;
3816
3817 if (!S_ISDIR(inode->i_mode)) {
3818 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3819 goto out;
3820 inode = parent->d_inode;
3821 }
3822
3823 while (1) {
3824 BTRFS_I(inode)->logged_trans = trans->transid;
3825 smp_mb();
3826
3827 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3828 root = BTRFS_I(inode)->root;
3829
3830 /*
3831 * make sure any commits to the log are forced
3832 * to be full commits
3833 */
3834 root->fs_info->last_trans_log_full_commit =
3835 trans->transid;
3836 ret = 1;
3837 break;
3838 }
3839
3840 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3841 break;
3842
3843 if (IS_ROOT(parent))
3844 break;
3845
3846 parent = dget_parent(parent);
3847 dput(old_parent);
3848 old_parent = parent;
3849 inode = parent->d_inode;
3850
3851 }
3852 dput(old_parent);
3853 out:
3854 return ret;
3855 }
3856
3857 /*
3858 * helper function around btrfs_log_inode to make sure newly created
3859 * parent directories also end up in the log. A minimal inode and backref
3860 * only logging is done of any parent directories that are older than
3861 * the last committed transaction
3862 */
3863 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3864 struct btrfs_root *root, struct inode *inode,
3865 struct dentry *parent, int exists_only)
3866 {
3867 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3868 struct super_block *sb;
3869 struct dentry *old_parent = NULL;
3870 int ret = 0;
3871 u64 last_committed = root->fs_info->last_trans_committed;
3872
3873 sb = inode->i_sb;
3874
3875 if (btrfs_test_opt(root, NOTREELOG)) {
3876 ret = 1;
3877 goto end_no_trans;
3878 }
3879
3880 if (root->fs_info->last_trans_log_full_commit >
3881 root->fs_info->last_trans_committed) {
3882 ret = 1;
3883 goto end_no_trans;
3884 }
3885
3886 if (root != BTRFS_I(inode)->root ||
3887 btrfs_root_refs(&root->root_item) == 0) {
3888 ret = 1;
3889 goto end_no_trans;
3890 }
3891
3892 ret = check_parent_dirs_for_sync(trans, inode, parent,
3893 sb, last_committed);
3894 if (ret)
3895 goto end_no_trans;
3896
3897 if (btrfs_inode_in_log(inode, trans->transid)) {
3898 ret = BTRFS_NO_LOG_SYNC;
3899 goto end_no_trans;
3900 }
3901
3902 ret = start_log_trans(trans, root);
3903 if (ret)
3904 goto end_trans;
3905
3906 ret = btrfs_log_inode(trans, root, inode, inode_only);
3907 if (ret)
3908 goto end_trans;
3909
3910 /*
3911 * for regular files, if its inode is already on disk, we don't
3912 * have to worry about the parents at all. This is because
3913 * we can use the last_unlink_trans field to record renames
3914 * and other fun in this file.
3915 */
3916 if (S_ISREG(inode->i_mode) &&
3917 BTRFS_I(inode)->generation <= last_committed &&
3918 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3919 ret = 0;
3920 goto end_trans;
3921 }
3922
3923 inode_only = LOG_INODE_EXISTS;
3924 while (1) {
3925 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3926 break;
3927
3928 inode = parent->d_inode;
3929 if (root != BTRFS_I(inode)->root)
3930 break;
3931
3932 if (BTRFS_I(inode)->generation >
3933 root->fs_info->last_trans_committed) {
3934 ret = btrfs_log_inode(trans, root, inode, inode_only);
3935 if (ret)
3936 goto end_trans;
3937 }
3938 if (IS_ROOT(parent))
3939 break;
3940
3941 parent = dget_parent(parent);
3942 dput(old_parent);
3943 old_parent = parent;
3944 }
3945 ret = 0;
3946 end_trans:
3947 dput(old_parent);
3948 if (ret < 0) {
3949 root->fs_info->last_trans_log_full_commit = trans->transid;
3950 ret = 1;
3951 }
3952 btrfs_end_log_trans(root);
3953 end_no_trans:
3954 return ret;
3955 }
3956
3957 /*
3958 * it is not safe to log dentry if the chunk root has added new
3959 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3960 * If this returns 1, you must commit the transaction to safely get your
3961 * data on disk.
3962 */
3963 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3964 struct btrfs_root *root, struct dentry *dentry)
3965 {
3966 struct dentry *parent = dget_parent(dentry);
3967 int ret;
3968
3969 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3970 dput(parent);
3971
3972 return ret;
3973 }
3974
3975 /*
3976 * should be called during mount to recover any replay any log trees
3977 * from the FS
3978 */
3979 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3980 {
3981 int ret;
3982 struct btrfs_path *path;
3983 struct btrfs_trans_handle *trans;
3984 struct btrfs_key key;
3985 struct btrfs_key found_key;
3986 struct btrfs_key tmp_key;
3987 struct btrfs_root *log;
3988 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3989 struct walk_control wc = {
3990 .process_func = process_one_buffer,
3991 .stage = 0,
3992 };
3993
3994 path = btrfs_alloc_path();
3995 if (!path)
3996 return -ENOMEM;
3997
3998 fs_info->log_root_recovering = 1;
3999
4000 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4001 if (IS_ERR(trans)) {
4002 ret = PTR_ERR(trans);
4003 goto error;
4004 }
4005
4006 wc.trans = trans;
4007 wc.pin = 1;
4008
4009 ret = walk_log_tree(trans, log_root_tree, &wc);
4010 if (ret) {
4011 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4012 "recovering log root tree.");
4013 goto error;
4014 }
4015
4016 again:
4017 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4018 key.offset = (u64)-1;
4019 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4020
4021 while (1) {
4022 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4023
4024 if (ret < 0) {
4025 btrfs_error(fs_info, ret,
4026 "Couldn't find tree log root.");
4027 goto error;
4028 }
4029 if (ret > 0) {
4030 if (path->slots[0] == 0)
4031 break;
4032 path->slots[0]--;
4033 }
4034 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4035 path->slots[0]);
4036 btrfs_release_path(path);
4037 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4038 break;
4039
4040 log = btrfs_read_fs_root_no_radix(log_root_tree,
4041 &found_key);
4042 if (IS_ERR(log)) {
4043 ret = PTR_ERR(log);
4044 btrfs_error(fs_info, ret,
4045 "Couldn't read tree log root.");
4046 goto error;
4047 }
4048
4049 tmp_key.objectid = found_key.offset;
4050 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4051 tmp_key.offset = (u64)-1;
4052
4053 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4054 if (IS_ERR(wc.replay_dest)) {
4055 ret = PTR_ERR(wc.replay_dest);
4056 btrfs_error(fs_info, ret, "Couldn't read target root "
4057 "for tree log recovery.");
4058 goto error;
4059 }
4060
4061 wc.replay_dest->log_root = log;
4062 btrfs_record_root_in_trans(trans, wc.replay_dest);
4063 ret = walk_log_tree(trans, log, &wc);
4064 BUG_ON(ret);
4065
4066 if (wc.stage == LOG_WALK_REPLAY_ALL) {
4067 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4068 path);
4069 BUG_ON(ret);
4070 }
4071
4072 key.offset = found_key.offset - 1;
4073 wc.replay_dest->log_root = NULL;
4074 free_extent_buffer(log->node);
4075 free_extent_buffer(log->commit_root);
4076 kfree(log);
4077
4078 if (found_key.offset == 0)
4079 break;
4080 }
4081 btrfs_release_path(path);
4082
4083 /* step one is to pin it all, step two is to replay just inodes */
4084 if (wc.pin) {
4085 wc.pin = 0;
4086 wc.process_func = replay_one_buffer;
4087 wc.stage = LOG_WALK_REPLAY_INODES;
4088 goto again;
4089 }
4090 /* step three is to replay everything */
4091 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4092 wc.stage++;
4093 goto again;
4094 }
4095
4096 btrfs_free_path(path);
4097
4098 free_extent_buffer(log_root_tree->node);
4099 log_root_tree->log_root = NULL;
4100 fs_info->log_root_recovering = 0;
4101
4102 /* step 4: commit the transaction, which also unpins the blocks */
4103 btrfs_commit_transaction(trans, fs_info->tree_root);
4104
4105 kfree(log_root_tree);
4106 return 0;
4107
4108 error:
4109 btrfs_free_path(path);
4110 return ret;
4111 }
4112
4113 /*
4114 * there are some corner cases where we want to force a full
4115 * commit instead of allowing a directory to be logged.
4116 *
4117 * They revolve around files there were unlinked from the directory, and
4118 * this function updates the parent directory so that a full commit is
4119 * properly done if it is fsync'd later after the unlinks are done.
4120 */
4121 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4122 struct inode *dir, struct inode *inode,
4123 int for_rename)
4124 {
4125 /*
4126 * when we're logging a file, if it hasn't been renamed
4127 * or unlinked, and its inode is fully committed on disk,
4128 * we don't have to worry about walking up the directory chain
4129 * to log its parents.
4130 *
4131 * So, we use the last_unlink_trans field to put this transid
4132 * into the file. When the file is logged we check it and
4133 * don't log the parents if the file is fully on disk.
4134 */
4135 if (S_ISREG(inode->i_mode))
4136 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4137
4138 /*
4139 * if this directory was already logged any new
4140 * names for this file/dir will get recorded
4141 */
4142 smp_mb();
4143 if (BTRFS_I(dir)->logged_trans == trans->transid)
4144 return;
4145
4146 /*
4147 * if the inode we're about to unlink was logged,
4148 * the log will be properly updated for any new names
4149 */
4150 if (BTRFS_I(inode)->logged_trans == trans->transid)
4151 return;
4152
4153 /*
4154 * when renaming files across directories, if the directory
4155 * there we're unlinking from gets fsync'd later on, there's
4156 * no way to find the destination directory later and fsync it
4157 * properly. So, we have to be conservative and force commits
4158 * so the new name gets discovered.
4159 */
4160 if (for_rename)
4161 goto record;
4162
4163 /* we can safely do the unlink without any special recording */
4164 return;
4165
4166 record:
4167 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4168 }
4169
4170 /*
4171 * Call this after adding a new name for a file and it will properly
4172 * update the log to reflect the new name.
4173 *
4174 * It will return zero if all goes well, and it will return 1 if a
4175 * full transaction commit is required.
4176 */
4177 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4178 struct inode *inode, struct inode *old_dir,
4179 struct dentry *parent)
4180 {
4181 struct btrfs_root * root = BTRFS_I(inode)->root;
4182
4183 /*
4184 * this will force the logging code to walk the dentry chain
4185 * up for the file
4186 */
4187 if (S_ISREG(inode->i_mode))
4188 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4189
4190 /*
4191 * if this inode hasn't been logged and directory we're renaming it
4192 * from hasn't been logged, we don't need to log it
4193 */
4194 if (BTRFS_I(inode)->logged_trans <=
4195 root->fs_info->last_trans_committed &&
4196 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4197 root->fs_info->last_trans_committed))
4198 return 0;
4199
4200 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4201 }
4202
This page took 0.135997 seconds and 5 git commands to generate.