67e5bf709dcad3a12063438223ee38a146428917
[deliverable/linux.git] / fs / btrfs / tree-log.c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
29
30 /* magic values for the inode_only field in btrfs_log_inode:
31 *
32 * LOG_INODE_ALL means to log everything
33 * LOG_INODE_EXISTS means to log just enough to recreate the inode
34 * during log replay
35 */
36 #define LOG_INODE_ALL 0
37 #define LOG_INODE_EXISTS 1
38
39 /*
40 * directory trouble cases
41 *
42 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43 * log, we must force a full commit before doing an fsync of the directory
44 * where the unlink was done.
45 * ---> record transid of last unlink/rename per directory
46 *
47 * mkdir foo/some_dir
48 * normal commit
49 * rename foo/some_dir foo2/some_dir
50 * mkdir foo/some_dir
51 * fsync foo/some_dir/some_file
52 *
53 * The fsync above will unlink the original some_dir without recording
54 * it in its new location (foo2). After a crash, some_dir will be gone
55 * unless the fsync of some_file forces a full commit
56 *
57 * 2) we must log any new names for any file or dir that is in the fsync
58 * log. ---> check inode while renaming/linking.
59 *
60 * 2a) we must log any new names for any file or dir during rename
61 * when the directory they are being removed from was logged.
62 * ---> check inode and old parent dir during rename
63 *
64 * 2a is actually the more important variant. With the extra logging
65 * a crash might unlink the old name without recreating the new one
66 *
67 * 3) after a crash, we must go through any directories with a link count
68 * of zero and redo the rm -rf
69 *
70 * mkdir f1/foo
71 * normal commit
72 * rm -rf f1/foo
73 * fsync(f1)
74 *
75 * The directory f1 was fully removed from the FS, but fsync was never
76 * called on f1, only its parent dir. After a crash the rm -rf must
77 * be replayed. This must be able to recurse down the entire
78 * directory tree. The inode link count fixup code takes care of the
79 * ugly details.
80 */
81
82 /*
83 * stages for the tree walking. The first
84 * stage (0) is to only pin down the blocks we find
85 * the second stage (1) is to make sure that all the inodes
86 * we find in the log are created in the subvolume.
87 *
88 * The last stage is to deal with directories and links and extents
89 * and all the other fun semantics
90 */
91 #define LOG_WALK_PIN_ONLY 0
92 #define LOG_WALK_REPLAY_INODES 1
93 #define LOG_WALK_REPLAY_DIR_INDEX 2
94 #define LOG_WALK_REPLAY_ALL 3
95
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root, struct inode *inode,
98 int inode_only,
99 const loff_t start,
100 const loff_t end,
101 struct btrfs_log_ctx *ctx);
102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root,
104 struct btrfs_path *path, u64 objectid);
105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_root *log,
108 struct btrfs_path *path,
109 u64 dirid, int del_all);
110
111 /*
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 *
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
118 *
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
124 *
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
128 *
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
132 */
133
134 /*
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
138 */
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
142 {
143 int index;
144 int ret;
145
146 mutex_lock(&root->log_mutex);
147 if (root->log_root) {
148 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
149 ret = -EAGAIN;
150 goto out;
151 }
152 if (!root->log_start_pid) {
153 root->log_start_pid = current->pid;
154 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
155 } else if (root->log_start_pid != current->pid) {
156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 }
158
159 atomic_inc(&root->log_batch);
160 atomic_inc(&root->log_writers);
161 if (ctx) {
162 index = root->log_transid % 2;
163 list_add_tail(&ctx->list, &root->log_ctxs[index]);
164 ctx->log_transid = root->log_transid;
165 }
166 mutex_unlock(&root->log_mutex);
167 return 0;
168 }
169
170 ret = 0;
171 mutex_lock(&root->fs_info->tree_log_mutex);
172 if (!root->fs_info->log_root_tree)
173 ret = btrfs_init_log_root_tree(trans, root->fs_info);
174 mutex_unlock(&root->fs_info->tree_log_mutex);
175 if (ret)
176 goto out;
177
178 if (!root->log_root) {
179 ret = btrfs_add_log_tree(trans, root);
180 if (ret)
181 goto out;
182 }
183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
184 root->log_start_pid = current->pid;
185 atomic_inc(&root->log_batch);
186 atomic_inc(&root->log_writers);
187 if (ctx) {
188 index = root->log_transid % 2;
189 list_add_tail(&ctx->list, &root->log_ctxs[index]);
190 ctx->log_transid = root->log_transid;
191 }
192 out:
193 mutex_unlock(&root->log_mutex);
194 return ret;
195 }
196
197 /*
198 * returns 0 if there was a log transaction running and we were able
199 * to join, or returns -ENOENT if there were not transactions
200 * in progress
201 */
202 static int join_running_log_trans(struct btrfs_root *root)
203 {
204 int ret = -ENOENT;
205
206 smp_mb();
207 if (!root->log_root)
208 return -ENOENT;
209
210 mutex_lock(&root->log_mutex);
211 if (root->log_root) {
212 ret = 0;
213 atomic_inc(&root->log_writers);
214 }
215 mutex_unlock(&root->log_mutex);
216 return ret;
217 }
218
219 /*
220 * This either makes the current running log transaction wait
221 * until you call btrfs_end_log_trans() or it makes any future
222 * log transactions wait until you call btrfs_end_log_trans()
223 */
224 int btrfs_pin_log_trans(struct btrfs_root *root)
225 {
226 int ret = -ENOENT;
227
228 mutex_lock(&root->log_mutex);
229 atomic_inc(&root->log_writers);
230 mutex_unlock(&root->log_mutex);
231 return ret;
232 }
233
234 /*
235 * indicate we're done making changes to the log tree
236 * and wake up anyone waiting to do a sync
237 */
238 void btrfs_end_log_trans(struct btrfs_root *root)
239 {
240 if (atomic_dec_and_test(&root->log_writers)) {
241 smp_mb();
242 if (waitqueue_active(&root->log_writer_wait))
243 wake_up(&root->log_writer_wait);
244 }
245 }
246
247
248 /*
249 * the walk control struct is used to pass state down the chain when
250 * processing the log tree. The stage field tells us which part
251 * of the log tree processing we are currently doing. The others
252 * are state fields used for that specific part
253 */
254 struct walk_control {
255 /* should we free the extent on disk when done? This is used
256 * at transaction commit time while freeing a log tree
257 */
258 int free;
259
260 /* should we write out the extent buffer? This is used
261 * while flushing the log tree to disk during a sync
262 */
263 int write;
264
265 /* should we wait for the extent buffer io to finish? Also used
266 * while flushing the log tree to disk for a sync
267 */
268 int wait;
269
270 /* pin only walk, we record which extents on disk belong to the
271 * log trees
272 */
273 int pin;
274
275 /* what stage of the replay code we're currently in */
276 int stage;
277
278 /* the root we are currently replaying */
279 struct btrfs_root *replay_dest;
280
281 /* the trans handle for the current replay */
282 struct btrfs_trans_handle *trans;
283
284 /* the function that gets used to process blocks we find in the
285 * tree. Note the extent_buffer might not be up to date when it is
286 * passed in, and it must be checked or read if you need the data
287 * inside it
288 */
289 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290 struct walk_control *wc, u64 gen);
291 };
292
293 /*
294 * process_func used to pin down extents, write them or wait on them
295 */
296 static int process_one_buffer(struct btrfs_root *log,
297 struct extent_buffer *eb,
298 struct walk_control *wc, u64 gen)
299 {
300 int ret = 0;
301
302 /*
303 * If this fs is mixed then we need to be able to process the leaves to
304 * pin down any logged extents, so we have to read the block.
305 */
306 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
307 ret = btrfs_read_buffer(eb, gen);
308 if (ret)
309 return ret;
310 }
311
312 if (wc->pin)
313 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
314 eb->start, eb->len);
315
316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
317 if (wc->pin && btrfs_header_level(eb) == 0)
318 ret = btrfs_exclude_logged_extents(log, eb);
319 if (wc->write)
320 btrfs_write_tree_block(eb);
321 if (wc->wait)
322 btrfs_wait_tree_block_writeback(eb);
323 }
324 return ret;
325 }
326
327 /*
328 * Item overwrite used by replay and tree logging. eb, slot and key all refer
329 * to the src data we are copying out.
330 *
331 * root is the tree we are copying into, and path is a scratch
332 * path for use in this function (it should be released on entry and
333 * will be released on exit).
334 *
335 * If the key is already in the destination tree the existing item is
336 * overwritten. If the existing item isn't big enough, it is extended.
337 * If it is too large, it is truncated.
338 *
339 * If the key isn't in the destination yet, a new item is inserted.
340 */
341 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 struct btrfs_root *root,
343 struct btrfs_path *path,
344 struct extent_buffer *eb, int slot,
345 struct btrfs_key *key)
346 {
347 int ret;
348 u32 item_size;
349 u64 saved_i_size = 0;
350 int save_old_i_size = 0;
351 unsigned long src_ptr;
352 unsigned long dst_ptr;
353 int overwrite_root = 0;
354 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
355
356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
357 overwrite_root = 1;
358
359 item_size = btrfs_item_size_nr(eb, slot);
360 src_ptr = btrfs_item_ptr_offset(eb, slot);
361
362 /* look for the key in the destination tree */
363 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
364 if (ret < 0)
365 return ret;
366
367 if (ret == 0) {
368 char *src_copy;
369 char *dst_copy;
370 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
371 path->slots[0]);
372 if (dst_size != item_size)
373 goto insert;
374
375 if (item_size == 0) {
376 btrfs_release_path(path);
377 return 0;
378 }
379 dst_copy = kmalloc(item_size, GFP_NOFS);
380 src_copy = kmalloc(item_size, GFP_NOFS);
381 if (!dst_copy || !src_copy) {
382 btrfs_release_path(path);
383 kfree(dst_copy);
384 kfree(src_copy);
385 return -ENOMEM;
386 }
387
388 read_extent_buffer(eb, src_copy, src_ptr, item_size);
389
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
391 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
392 item_size);
393 ret = memcmp(dst_copy, src_copy, item_size);
394
395 kfree(dst_copy);
396 kfree(src_copy);
397 /*
398 * they have the same contents, just return, this saves
399 * us from cowing blocks in the destination tree and doing
400 * extra writes that may not have been done by a previous
401 * sync
402 */
403 if (ret == 0) {
404 btrfs_release_path(path);
405 return 0;
406 }
407
408 /*
409 * We need to load the old nbytes into the inode so when we
410 * replay the extents we've logged we get the right nbytes.
411 */
412 if (inode_item) {
413 struct btrfs_inode_item *item;
414 u64 nbytes;
415 u32 mode;
416
417 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
418 struct btrfs_inode_item);
419 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
420 item = btrfs_item_ptr(eb, slot,
421 struct btrfs_inode_item);
422 btrfs_set_inode_nbytes(eb, item, nbytes);
423
424 /*
425 * If this is a directory we need to reset the i_size to
426 * 0 so that we can set it up properly when replaying
427 * the rest of the items in this log.
428 */
429 mode = btrfs_inode_mode(eb, item);
430 if (S_ISDIR(mode))
431 btrfs_set_inode_size(eb, item, 0);
432 }
433 } else if (inode_item) {
434 struct btrfs_inode_item *item;
435 u32 mode;
436
437 /*
438 * New inode, set nbytes to 0 so that the nbytes comes out
439 * properly when we replay the extents.
440 */
441 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
442 btrfs_set_inode_nbytes(eb, item, 0);
443
444 /*
445 * If this is a directory we need to reset the i_size to 0 so
446 * that we can set it up properly when replaying the rest of
447 * the items in this log.
448 */
449 mode = btrfs_inode_mode(eb, item);
450 if (S_ISDIR(mode))
451 btrfs_set_inode_size(eb, item, 0);
452 }
453 insert:
454 btrfs_release_path(path);
455 /* try to insert the key into the destination tree */
456 ret = btrfs_insert_empty_item(trans, root, path,
457 key, item_size);
458
459 /* make sure any existing item is the correct size */
460 if (ret == -EEXIST) {
461 u32 found_size;
462 found_size = btrfs_item_size_nr(path->nodes[0],
463 path->slots[0]);
464 if (found_size > item_size)
465 btrfs_truncate_item(root, path, item_size, 1);
466 else if (found_size < item_size)
467 btrfs_extend_item(root, path,
468 item_size - found_size);
469 } else if (ret) {
470 return ret;
471 }
472 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
473 path->slots[0]);
474
475 /* don't overwrite an existing inode if the generation number
476 * was logged as zero. This is done when the tree logging code
477 * is just logging an inode to make sure it exists after recovery.
478 *
479 * Also, don't overwrite i_size on directories during replay.
480 * log replay inserts and removes directory items based on the
481 * state of the tree found in the subvolume, and i_size is modified
482 * as it goes
483 */
484 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
485 struct btrfs_inode_item *src_item;
486 struct btrfs_inode_item *dst_item;
487
488 src_item = (struct btrfs_inode_item *)src_ptr;
489 dst_item = (struct btrfs_inode_item *)dst_ptr;
490
491 if (btrfs_inode_generation(eb, src_item) == 0)
492 goto no_copy;
493
494 if (overwrite_root &&
495 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
496 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
497 save_old_i_size = 1;
498 saved_i_size = btrfs_inode_size(path->nodes[0],
499 dst_item);
500 }
501 }
502
503 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
504 src_ptr, item_size);
505
506 if (save_old_i_size) {
507 struct btrfs_inode_item *dst_item;
508 dst_item = (struct btrfs_inode_item *)dst_ptr;
509 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
510 }
511
512 /* make sure the generation is filled in */
513 if (key->type == BTRFS_INODE_ITEM_KEY) {
514 struct btrfs_inode_item *dst_item;
515 dst_item = (struct btrfs_inode_item *)dst_ptr;
516 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
517 btrfs_set_inode_generation(path->nodes[0], dst_item,
518 trans->transid);
519 }
520 }
521 no_copy:
522 btrfs_mark_buffer_dirty(path->nodes[0]);
523 btrfs_release_path(path);
524 return 0;
525 }
526
527 /*
528 * simple helper to read an inode off the disk from a given root
529 * This can only be called for subvolume roots and not for the log
530 */
531 static noinline struct inode *read_one_inode(struct btrfs_root *root,
532 u64 objectid)
533 {
534 struct btrfs_key key;
535 struct inode *inode;
536
537 key.objectid = objectid;
538 key.type = BTRFS_INODE_ITEM_KEY;
539 key.offset = 0;
540 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
541 if (IS_ERR(inode)) {
542 inode = NULL;
543 } else if (is_bad_inode(inode)) {
544 iput(inode);
545 inode = NULL;
546 }
547 return inode;
548 }
549
550 /* replays a single extent in 'eb' at 'slot' with 'key' into the
551 * subvolume 'root'. path is released on entry and should be released
552 * on exit.
553 *
554 * extents in the log tree have not been allocated out of the extent
555 * tree yet. So, this completes the allocation, taking a reference
556 * as required if the extent already exists or creating a new extent
557 * if it isn't in the extent allocation tree yet.
558 *
559 * The extent is inserted into the file, dropping any existing extents
560 * from the file that overlap the new one.
561 */
562 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
563 struct btrfs_root *root,
564 struct btrfs_path *path,
565 struct extent_buffer *eb, int slot,
566 struct btrfs_key *key)
567 {
568 int found_type;
569 u64 extent_end;
570 u64 start = key->offset;
571 u64 nbytes = 0;
572 struct btrfs_file_extent_item *item;
573 struct inode *inode = NULL;
574 unsigned long size;
575 int ret = 0;
576
577 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
578 found_type = btrfs_file_extent_type(eb, item);
579
580 if (found_type == BTRFS_FILE_EXTENT_REG ||
581 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
582 nbytes = btrfs_file_extent_num_bytes(eb, item);
583 extent_end = start + nbytes;
584
585 /*
586 * We don't add to the inodes nbytes if we are prealloc or a
587 * hole.
588 */
589 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
590 nbytes = 0;
591 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
592 size = btrfs_file_extent_inline_len(eb, slot, item);
593 nbytes = btrfs_file_extent_ram_bytes(eb, item);
594 extent_end = ALIGN(start + size, root->sectorsize);
595 } else {
596 ret = 0;
597 goto out;
598 }
599
600 inode = read_one_inode(root, key->objectid);
601 if (!inode) {
602 ret = -EIO;
603 goto out;
604 }
605
606 /*
607 * first check to see if we already have this extent in the
608 * file. This must be done before the btrfs_drop_extents run
609 * so we don't try to drop this extent.
610 */
611 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
612 start, 0);
613
614 if (ret == 0 &&
615 (found_type == BTRFS_FILE_EXTENT_REG ||
616 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
617 struct btrfs_file_extent_item cmp1;
618 struct btrfs_file_extent_item cmp2;
619 struct btrfs_file_extent_item *existing;
620 struct extent_buffer *leaf;
621
622 leaf = path->nodes[0];
623 existing = btrfs_item_ptr(leaf, path->slots[0],
624 struct btrfs_file_extent_item);
625
626 read_extent_buffer(eb, &cmp1, (unsigned long)item,
627 sizeof(cmp1));
628 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
629 sizeof(cmp2));
630
631 /*
632 * we already have a pointer to this exact extent,
633 * we don't have to do anything
634 */
635 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
636 btrfs_release_path(path);
637 goto out;
638 }
639 }
640 btrfs_release_path(path);
641
642 /* drop any overlapping extents */
643 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
644 if (ret)
645 goto out;
646
647 if (found_type == BTRFS_FILE_EXTENT_REG ||
648 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
649 u64 offset;
650 unsigned long dest_offset;
651 struct btrfs_key ins;
652
653 ret = btrfs_insert_empty_item(trans, root, path, key,
654 sizeof(*item));
655 if (ret)
656 goto out;
657 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
658 path->slots[0]);
659 copy_extent_buffer(path->nodes[0], eb, dest_offset,
660 (unsigned long)item, sizeof(*item));
661
662 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
663 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
664 ins.type = BTRFS_EXTENT_ITEM_KEY;
665 offset = key->offset - btrfs_file_extent_offset(eb, item);
666
667 if (ins.objectid > 0) {
668 u64 csum_start;
669 u64 csum_end;
670 LIST_HEAD(ordered_sums);
671 /*
672 * is this extent already allocated in the extent
673 * allocation tree? If so, just add a reference
674 */
675 ret = btrfs_lookup_data_extent(root, ins.objectid,
676 ins.offset);
677 if (ret == 0) {
678 ret = btrfs_inc_extent_ref(trans, root,
679 ins.objectid, ins.offset,
680 0, root->root_key.objectid,
681 key->objectid, offset, 0);
682 if (ret)
683 goto out;
684 } else {
685 /*
686 * insert the extent pointer in the extent
687 * allocation tree
688 */
689 ret = btrfs_alloc_logged_file_extent(trans,
690 root, root->root_key.objectid,
691 key->objectid, offset, &ins);
692 if (ret)
693 goto out;
694 }
695 btrfs_release_path(path);
696
697 if (btrfs_file_extent_compression(eb, item)) {
698 csum_start = ins.objectid;
699 csum_end = csum_start + ins.offset;
700 } else {
701 csum_start = ins.objectid +
702 btrfs_file_extent_offset(eb, item);
703 csum_end = csum_start +
704 btrfs_file_extent_num_bytes(eb, item);
705 }
706
707 ret = btrfs_lookup_csums_range(root->log_root,
708 csum_start, csum_end - 1,
709 &ordered_sums, 0);
710 if (ret)
711 goto out;
712 while (!list_empty(&ordered_sums)) {
713 struct btrfs_ordered_sum *sums;
714 sums = list_entry(ordered_sums.next,
715 struct btrfs_ordered_sum,
716 list);
717 if (!ret)
718 ret = btrfs_csum_file_blocks(trans,
719 root->fs_info->csum_root,
720 sums);
721 list_del(&sums->list);
722 kfree(sums);
723 }
724 if (ret)
725 goto out;
726 } else {
727 btrfs_release_path(path);
728 }
729 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
730 /* inline extents are easy, we just overwrite them */
731 ret = overwrite_item(trans, root, path, eb, slot, key);
732 if (ret)
733 goto out;
734 }
735
736 inode_add_bytes(inode, nbytes);
737 ret = btrfs_update_inode(trans, root, inode);
738 out:
739 if (inode)
740 iput(inode);
741 return ret;
742 }
743
744 /*
745 * when cleaning up conflicts between the directory names in the
746 * subvolume, directory names in the log and directory names in the
747 * inode back references, we may have to unlink inodes from directories.
748 *
749 * This is a helper function to do the unlink of a specific directory
750 * item
751 */
752 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
753 struct btrfs_root *root,
754 struct btrfs_path *path,
755 struct inode *dir,
756 struct btrfs_dir_item *di)
757 {
758 struct inode *inode;
759 char *name;
760 int name_len;
761 struct extent_buffer *leaf;
762 struct btrfs_key location;
763 int ret;
764
765 leaf = path->nodes[0];
766
767 btrfs_dir_item_key_to_cpu(leaf, di, &location);
768 name_len = btrfs_dir_name_len(leaf, di);
769 name = kmalloc(name_len, GFP_NOFS);
770 if (!name)
771 return -ENOMEM;
772
773 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
774 btrfs_release_path(path);
775
776 inode = read_one_inode(root, location.objectid);
777 if (!inode) {
778 ret = -EIO;
779 goto out;
780 }
781
782 ret = link_to_fixup_dir(trans, root, path, location.objectid);
783 if (ret)
784 goto out;
785
786 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
787 if (ret)
788 goto out;
789 else
790 ret = btrfs_run_delayed_items(trans, root);
791 out:
792 kfree(name);
793 iput(inode);
794 return ret;
795 }
796
797 /*
798 * helper function to see if a given name and sequence number found
799 * in an inode back reference are already in a directory and correctly
800 * point to this inode
801 */
802 static noinline int inode_in_dir(struct btrfs_root *root,
803 struct btrfs_path *path,
804 u64 dirid, u64 objectid, u64 index,
805 const char *name, int name_len)
806 {
807 struct btrfs_dir_item *di;
808 struct btrfs_key location;
809 int match = 0;
810
811 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
812 index, name, name_len, 0);
813 if (di && !IS_ERR(di)) {
814 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
815 if (location.objectid != objectid)
816 goto out;
817 } else
818 goto out;
819 btrfs_release_path(path);
820
821 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
822 if (di && !IS_ERR(di)) {
823 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
824 if (location.objectid != objectid)
825 goto out;
826 } else
827 goto out;
828 match = 1;
829 out:
830 btrfs_release_path(path);
831 return match;
832 }
833
834 /*
835 * helper function to check a log tree for a named back reference in
836 * an inode. This is used to decide if a back reference that is
837 * found in the subvolume conflicts with what we find in the log.
838 *
839 * inode backreferences may have multiple refs in a single item,
840 * during replay we process one reference at a time, and we don't
841 * want to delete valid links to a file from the subvolume if that
842 * link is also in the log.
843 */
844 static noinline int backref_in_log(struct btrfs_root *log,
845 struct btrfs_key *key,
846 u64 ref_objectid,
847 char *name, int namelen)
848 {
849 struct btrfs_path *path;
850 struct btrfs_inode_ref *ref;
851 unsigned long ptr;
852 unsigned long ptr_end;
853 unsigned long name_ptr;
854 int found_name_len;
855 int item_size;
856 int ret;
857 int match = 0;
858
859 path = btrfs_alloc_path();
860 if (!path)
861 return -ENOMEM;
862
863 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
864 if (ret != 0)
865 goto out;
866
867 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
868
869 if (key->type == BTRFS_INODE_EXTREF_KEY) {
870 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
871 name, namelen, NULL))
872 match = 1;
873
874 goto out;
875 }
876
877 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
878 ptr_end = ptr + item_size;
879 while (ptr < ptr_end) {
880 ref = (struct btrfs_inode_ref *)ptr;
881 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
882 if (found_name_len == namelen) {
883 name_ptr = (unsigned long)(ref + 1);
884 ret = memcmp_extent_buffer(path->nodes[0], name,
885 name_ptr, namelen);
886 if (ret == 0) {
887 match = 1;
888 goto out;
889 }
890 }
891 ptr = (unsigned long)(ref + 1) + found_name_len;
892 }
893 out:
894 btrfs_free_path(path);
895 return match;
896 }
897
898 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
899 struct btrfs_root *root,
900 struct btrfs_path *path,
901 struct btrfs_root *log_root,
902 struct inode *dir, struct inode *inode,
903 struct extent_buffer *eb,
904 u64 inode_objectid, u64 parent_objectid,
905 u64 ref_index, char *name, int namelen,
906 int *search_done)
907 {
908 int ret;
909 char *victim_name;
910 int victim_name_len;
911 struct extent_buffer *leaf;
912 struct btrfs_dir_item *di;
913 struct btrfs_key search_key;
914 struct btrfs_inode_extref *extref;
915
916 again:
917 /* Search old style refs */
918 search_key.objectid = inode_objectid;
919 search_key.type = BTRFS_INODE_REF_KEY;
920 search_key.offset = parent_objectid;
921 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
922 if (ret == 0) {
923 struct btrfs_inode_ref *victim_ref;
924 unsigned long ptr;
925 unsigned long ptr_end;
926
927 leaf = path->nodes[0];
928
929 /* are we trying to overwrite a back ref for the root directory
930 * if so, just jump out, we're done
931 */
932 if (search_key.objectid == search_key.offset)
933 return 1;
934
935 /* check all the names in this back reference to see
936 * if they are in the log. if so, we allow them to stay
937 * otherwise they must be unlinked as a conflict
938 */
939 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
940 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
941 while (ptr < ptr_end) {
942 victim_ref = (struct btrfs_inode_ref *)ptr;
943 victim_name_len = btrfs_inode_ref_name_len(leaf,
944 victim_ref);
945 victim_name = kmalloc(victim_name_len, GFP_NOFS);
946 if (!victim_name)
947 return -ENOMEM;
948
949 read_extent_buffer(leaf, victim_name,
950 (unsigned long)(victim_ref + 1),
951 victim_name_len);
952
953 if (!backref_in_log(log_root, &search_key,
954 parent_objectid,
955 victim_name,
956 victim_name_len)) {
957 inc_nlink(inode);
958 btrfs_release_path(path);
959
960 ret = btrfs_unlink_inode(trans, root, dir,
961 inode, victim_name,
962 victim_name_len);
963 kfree(victim_name);
964 if (ret)
965 return ret;
966 ret = btrfs_run_delayed_items(trans, root);
967 if (ret)
968 return ret;
969 *search_done = 1;
970 goto again;
971 }
972 kfree(victim_name);
973
974 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
975 }
976
977 /*
978 * NOTE: we have searched root tree and checked the
979 * coresponding ref, it does not need to check again.
980 */
981 *search_done = 1;
982 }
983 btrfs_release_path(path);
984
985 /* Same search but for extended refs */
986 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
987 inode_objectid, parent_objectid, 0,
988 0);
989 if (!IS_ERR_OR_NULL(extref)) {
990 u32 item_size;
991 u32 cur_offset = 0;
992 unsigned long base;
993 struct inode *victim_parent;
994
995 leaf = path->nodes[0];
996
997 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
998 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
999
1000 while (cur_offset < item_size) {
1001 extref = (struct btrfs_inode_extref *)base + cur_offset;
1002
1003 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1004
1005 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1006 goto next;
1007
1008 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1009 if (!victim_name)
1010 return -ENOMEM;
1011 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1012 victim_name_len);
1013
1014 search_key.objectid = inode_objectid;
1015 search_key.type = BTRFS_INODE_EXTREF_KEY;
1016 search_key.offset = btrfs_extref_hash(parent_objectid,
1017 victim_name,
1018 victim_name_len);
1019 ret = 0;
1020 if (!backref_in_log(log_root, &search_key,
1021 parent_objectid, victim_name,
1022 victim_name_len)) {
1023 ret = -ENOENT;
1024 victim_parent = read_one_inode(root,
1025 parent_objectid);
1026 if (victim_parent) {
1027 inc_nlink(inode);
1028 btrfs_release_path(path);
1029
1030 ret = btrfs_unlink_inode(trans, root,
1031 victim_parent,
1032 inode,
1033 victim_name,
1034 victim_name_len);
1035 if (!ret)
1036 ret = btrfs_run_delayed_items(
1037 trans, root);
1038 }
1039 iput(victim_parent);
1040 kfree(victim_name);
1041 if (ret)
1042 return ret;
1043 *search_done = 1;
1044 goto again;
1045 }
1046 kfree(victim_name);
1047 if (ret)
1048 return ret;
1049 next:
1050 cur_offset += victim_name_len + sizeof(*extref);
1051 }
1052 *search_done = 1;
1053 }
1054 btrfs_release_path(path);
1055
1056 /* look for a conflicting sequence number */
1057 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1058 ref_index, name, namelen, 0);
1059 if (di && !IS_ERR(di)) {
1060 ret = drop_one_dir_item(trans, root, path, dir, di);
1061 if (ret)
1062 return ret;
1063 }
1064 btrfs_release_path(path);
1065
1066 /* look for a conflicing name */
1067 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1068 name, namelen, 0);
1069 if (di && !IS_ERR(di)) {
1070 ret = drop_one_dir_item(trans, root, path, dir, di);
1071 if (ret)
1072 return ret;
1073 }
1074 btrfs_release_path(path);
1075
1076 return 0;
1077 }
1078
1079 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1080 u32 *namelen, char **name, u64 *index,
1081 u64 *parent_objectid)
1082 {
1083 struct btrfs_inode_extref *extref;
1084
1085 extref = (struct btrfs_inode_extref *)ref_ptr;
1086
1087 *namelen = btrfs_inode_extref_name_len(eb, extref);
1088 *name = kmalloc(*namelen, GFP_NOFS);
1089 if (*name == NULL)
1090 return -ENOMEM;
1091
1092 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1093 *namelen);
1094
1095 *index = btrfs_inode_extref_index(eb, extref);
1096 if (parent_objectid)
1097 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1098
1099 return 0;
1100 }
1101
1102 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1103 u32 *namelen, char **name, u64 *index)
1104 {
1105 struct btrfs_inode_ref *ref;
1106
1107 ref = (struct btrfs_inode_ref *)ref_ptr;
1108
1109 *namelen = btrfs_inode_ref_name_len(eb, ref);
1110 *name = kmalloc(*namelen, GFP_NOFS);
1111 if (*name == NULL)
1112 return -ENOMEM;
1113
1114 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1115
1116 *index = btrfs_inode_ref_index(eb, ref);
1117
1118 return 0;
1119 }
1120
1121 /*
1122 * replay one inode back reference item found in the log tree.
1123 * eb, slot and key refer to the buffer and key found in the log tree.
1124 * root is the destination we are replaying into, and path is for temp
1125 * use by this function. (it should be released on return).
1126 */
1127 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1128 struct btrfs_root *root,
1129 struct btrfs_root *log,
1130 struct btrfs_path *path,
1131 struct extent_buffer *eb, int slot,
1132 struct btrfs_key *key)
1133 {
1134 struct inode *dir = NULL;
1135 struct inode *inode = NULL;
1136 unsigned long ref_ptr;
1137 unsigned long ref_end;
1138 char *name = NULL;
1139 int namelen;
1140 int ret;
1141 int search_done = 0;
1142 int log_ref_ver = 0;
1143 u64 parent_objectid;
1144 u64 inode_objectid;
1145 u64 ref_index = 0;
1146 int ref_struct_size;
1147
1148 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1149 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1150
1151 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1152 struct btrfs_inode_extref *r;
1153
1154 ref_struct_size = sizeof(struct btrfs_inode_extref);
1155 log_ref_ver = 1;
1156 r = (struct btrfs_inode_extref *)ref_ptr;
1157 parent_objectid = btrfs_inode_extref_parent(eb, r);
1158 } else {
1159 ref_struct_size = sizeof(struct btrfs_inode_ref);
1160 parent_objectid = key->offset;
1161 }
1162 inode_objectid = key->objectid;
1163
1164 /*
1165 * it is possible that we didn't log all the parent directories
1166 * for a given inode. If we don't find the dir, just don't
1167 * copy the back ref in. The link count fixup code will take
1168 * care of the rest
1169 */
1170 dir = read_one_inode(root, parent_objectid);
1171 if (!dir) {
1172 ret = -ENOENT;
1173 goto out;
1174 }
1175
1176 inode = read_one_inode(root, inode_objectid);
1177 if (!inode) {
1178 ret = -EIO;
1179 goto out;
1180 }
1181
1182 while (ref_ptr < ref_end) {
1183 if (log_ref_ver) {
1184 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1185 &ref_index, &parent_objectid);
1186 /*
1187 * parent object can change from one array
1188 * item to another.
1189 */
1190 if (!dir)
1191 dir = read_one_inode(root, parent_objectid);
1192 if (!dir) {
1193 ret = -ENOENT;
1194 goto out;
1195 }
1196 } else {
1197 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1198 &ref_index);
1199 }
1200 if (ret)
1201 goto out;
1202
1203 /* if we already have a perfect match, we're done */
1204 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1205 ref_index, name, namelen)) {
1206 /*
1207 * look for a conflicting back reference in the
1208 * metadata. if we find one we have to unlink that name
1209 * of the file before we add our new link. Later on, we
1210 * overwrite any existing back reference, and we don't
1211 * want to create dangling pointers in the directory.
1212 */
1213
1214 if (!search_done) {
1215 ret = __add_inode_ref(trans, root, path, log,
1216 dir, inode, eb,
1217 inode_objectid,
1218 parent_objectid,
1219 ref_index, name, namelen,
1220 &search_done);
1221 if (ret) {
1222 if (ret == 1)
1223 ret = 0;
1224 goto out;
1225 }
1226 }
1227
1228 /* insert our name */
1229 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1230 0, ref_index);
1231 if (ret)
1232 goto out;
1233
1234 btrfs_update_inode(trans, root, inode);
1235 }
1236
1237 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1238 kfree(name);
1239 name = NULL;
1240 if (log_ref_ver) {
1241 iput(dir);
1242 dir = NULL;
1243 }
1244 }
1245
1246 /* finally write the back reference in the inode */
1247 ret = overwrite_item(trans, root, path, eb, slot, key);
1248 out:
1249 btrfs_release_path(path);
1250 kfree(name);
1251 iput(dir);
1252 iput(inode);
1253 return ret;
1254 }
1255
1256 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1257 struct btrfs_root *root, u64 ino)
1258 {
1259 int ret;
1260
1261 ret = btrfs_insert_orphan_item(trans, root, ino);
1262 if (ret == -EEXIST)
1263 ret = 0;
1264
1265 return ret;
1266 }
1267
1268 static int count_inode_extrefs(struct btrfs_root *root,
1269 struct inode *inode, struct btrfs_path *path)
1270 {
1271 int ret = 0;
1272 int name_len;
1273 unsigned int nlink = 0;
1274 u32 item_size;
1275 u32 cur_offset = 0;
1276 u64 inode_objectid = btrfs_ino(inode);
1277 u64 offset = 0;
1278 unsigned long ptr;
1279 struct btrfs_inode_extref *extref;
1280 struct extent_buffer *leaf;
1281
1282 while (1) {
1283 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1284 &extref, &offset);
1285 if (ret)
1286 break;
1287
1288 leaf = path->nodes[0];
1289 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1290 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1291
1292 while (cur_offset < item_size) {
1293 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1294 name_len = btrfs_inode_extref_name_len(leaf, extref);
1295
1296 nlink++;
1297
1298 cur_offset += name_len + sizeof(*extref);
1299 }
1300
1301 offset++;
1302 btrfs_release_path(path);
1303 }
1304 btrfs_release_path(path);
1305
1306 if (ret < 0)
1307 return ret;
1308 return nlink;
1309 }
1310
1311 static int count_inode_refs(struct btrfs_root *root,
1312 struct inode *inode, struct btrfs_path *path)
1313 {
1314 int ret;
1315 struct btrfs_key key;
1316 unsigned int nlink = 0;
1317 unsigned long ptr;
1318 unsigned long ptr_end;
1319 int name_len;
1320 u64 ino = btrfs_ino(inode);
1321
1322 key.objectid = ino;
1323 key.type = BTRFS_INODE_REF_KEY;
1324 key.offset = (u64)-1;
1325
1326 while (1) {
1327 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1328 if (ret < 0)
1329 break;
1330 if (ret > 0) {
1331 if (path->slots[0] == 0)
1332 break;
1333 path->slots[0]--;
1334 }
1335 process_slot:
1336 btrfs_item_key_to_cpu(path->nodes[0], &key,
1337 path->slots[0]);
1338 if (key.objectid != ino ||
1339 key.type != BTRFS_INODE_REF_KEY)
1340 break;
1341 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1342 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1343 path->slots[0]);
1344 while (ptr < ptr_end) {
1345 struct btrfs_inode_ref *ref;
1346
1347 ref = (struct btrfs_inode_ref *)ptr;
1348 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1349 ref);
1350 ptr = (unsigned long)(ref + 1) + name_len;
1351 nlink++;
1352 }
1353
1354 if (key.offset == 0)
1355 break;
1356 if (path->slots[0] > 0) {
1357 path->slots[0]--;
1358 goto process_slot;
1359 }
1360 key.offset--;
1361 btrfs_release_path(path);
1362 }
1363 btrfs_release_path(path);
1364
1365 return nlink;
1366 }
1367
1368 /*
1369 * There are a few corners where the link count of the file can't
1370 * be properly maintained during replay. So, instead of adding
1371 * lots of complexity to the log code, we just scan the backrefs
1372 * for any file that has been through replay.
1373 *
1374 * The scan will update the link count on the inode to reflect the
1375 * number of back refs found. If it goes down to zero, the iput
1376 * will free the inode.
1377 */
1378 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1379 struct btrfs_root *root,
1380 struct inode *inode)
1381 {
1382 struct btrfs_path *path;
1383 int ret;
1384 u64 nlink = 0;
1385 u64 ino = btrfs_ino(inode);
1386
1387 path = btrfs_alloc_path();
1388 if (!path)
1389 return -ENOMEM;
1390
1391 ret = count_inode_refs(root, inode, path);
1392 if (ret < 0)
1393 goto out;
1394
1395 nlink = ret;
1396
1397 ret = count_inode_extrefs(root, inode, path);
1398 if (ret == -ENOENT)
1399 ret = 0;
1400
1401 if (ret < 0)
1402 goto out;
1403
1404 nlink += ret;
1405
1406 ret = 0;
1407
1408 if (nlink != inode->i_nlink) {
1409 set_nlink(inode, nlink);
1410 btrfs_update_inode(trans, root, inode);
1411 }
1412 BTRFS_I(inode)->index_cnt = (u64)-1;
1413
1414 if (inode->i_nlink == 0) {
1415 if (S_ISDIR(inode->i_mode)) {
1416 ret = replay_dir_deletes(trans, root, NULL, path,
1417 ino, 1);
1418 if (ret)
1419 goto out;
1420 }
1421 ret = insert_orphan_item(trans, root, ino);
1422 }
1423
1424 out:
1425 btrfs_free_path(path);
1426 return ret;
1427 }
1428
1429 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1430 struct btrfs_root *root,
1431 struct btrfs_path *path)
1432 {
1433 int ret;
1434 struct btrfs_key key;
1435 struct inode *inode;
1436
1437 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1438 key.type = BTRFS_ORPHAN_ITEM_KEY;
1439 key.offset = (u64)-1;
1440 while (1) {
1441 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1442 if (ret < 0)
1443 break;
1444
1445 if (ret == 1) {
1446 if (path->slots[0] == 0)
1447 break;
1448 path->slots[0]--;
1449 }
1450
1451 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1452 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1453 key.type != BTRFS_ORPHAN_ITEM_KEY)
1454 break;
1455
1456 ret = btrfs_del_item(trans, root, path);
1457 if (ret)
1458 goto out;
1459
1460 btrfs_release_path(path);
1461 inode = read_one_inode(root, key.offset);
1462 if (!inode)
1463 return -EIO;
1464
1465 ret = fixup_inode_link_count(trans, root, inode);
1466 iput(inode);
1467 if (ret)
1468 goto out;
1469
1470 /*
1471 * fixup on a directory may create new entries,
1472 * make sure we always look for the highset possible
1473 * offset
1474 */
1475 key.offset = (u64)-1;
1476 }
1477 ret = 0;
1478 out:
1479 btrfs_release_path(path);
1480 return ret;
1481 }
1482
1483
1484 /*
1485 * record a given inode in the fixup dir so we can check its link
1486 * count when replay is done. The link count is incremented here
1487 * so the inode won't go away until we check it
1488 */
1489 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1490 struct btrfs_root *root,
1491 struct btrfs_path *path,
1492 u64 objectid)
1493 {
1494 struct btrfs_key key;
1495 int ret = 0;
1496 struct inode *inode;
1497
1498 inode = read_one_inode(root, objectid);
1499 if (!inode)
1500 return -EIO;
1501
1502 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1503 key.type = BTRFS_ORPHAN_ITEM_KEY;
1504 key.offset = objectid;
1505
1506 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1507
1508 btrfs_release_path(path);
1509 if (ret == 0) {
1510 if (!inode->i_nlink)
1511 set_nlink(inode, 1);
1512 else
1513 inc_nlink(inode);
1514 ret = btrfs_update_inode(trans, root, inode);
1515 } else if (ret == -EEXIST) {
1516 ret = 0;
1517 } else {
1518 BUG(); /* Logic Error */
1519 }
1520 iput(inode);
1521
1522 return ret;
1523 }
1524
1525 /*
1526 * when replaying the log for a directory, we only insert names
1527 * for inodes that actually exist. This means an fsync on a directory
1528 * does not implicitly fsync all the new files in it
1529 */
1530 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1531 struct btrfs_root *root,
1532 struct btrfs_path *path,
1533 u64 dirid, u64 index,
1534 char *name, int name_len, u8 type,
1535 struct btrfs_key *location)
1536 {
1537 struct inode *inode;
1538 struct inode *dir;
1539 int ret;
1540
1541 inode = read_one_inode(root, location->objectid);
1542 if (!inode)
1543 return -ENOENT;
1544
1545 dir = read_one_inode(root, dirid);
1546 if (!dir) {
1547 iput(inode);
1548 return -EIO;
1549 }
1550
1551 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1552
1553 /* FIXME, put inode into FIXUP list */
1554
1555 iput(inode);
1556 iput(dir);
1557 return ret;
1558 }
1559
1560 /*
1561 * take a single entry in a log directory item and replay it into
1562 * the subvolume.
1563 *
1564 * if a conflicting item exists in the subdirectory already,
1565 * the inode it points to is unlinked and put into the link count
1566 * fix up tree.
1567 *
1568 * If a name from the log points to a file or directory that does
1569 * not exist in the FS, it is skipped. fsyncs on directories
1570 * do not force down inodes inside that directory, just changes to the
1571 * names or unlinks in a directory.
1572 */
1573 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1574 struct btrfs_root *root,
1575 struct btrfs_path *path,
1576 struct extent_buffer *eb,
1577 struct btrfs_dir_item *di,
1578 struct btrfs_key *key)
1579 {
1580 char *name;
1581 int name_len;
1582 struct btrfs_dir_item *dst_di;
1583 struct btrfs_key found_key;
1584 struct btrfs_key log_key;
1585 struct inode *dir;
1586 u8 log_type;
1587 int exists;
1588 int ret = 0;
1589 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1590
1591 dir = read_one_inode(root, key->objectid);
1592 if (!dir)
1593 return -EIO;
1594
1595 name_len = btrfs_dir_name_len(eb, di);
1596 name = kmalloc(name_len, GFP_NOFS);
1597 if (!name) {
1598 ret = -ENOMEM;
1599 goto out;
1600 }
1601
1602 log_type = btrfs_dir_type(eb, di);
1603 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1604 name_len);
1605
1606 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1607 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1608 if (exists == 0)
1609 exists = 1;
1610 else
1611 exists = 0;
1612 btrfs_release_path(path);
1613
1614 if (key->type == BTRFS_DIR_ITEM_KEY) {
1615 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1616 name, name_len, 1);
1617 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1618 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1619 key->objectid,
1620 key->offset, name,
1621 name_len, 1);
1622 } else {
1623 /* Corruption */
1624 ret = -EINVAL;
1625 goto out;
1626 }
1627 if (IS_ERR_OR_NULL(dst_di)) {
1628 /* we need a sequence number to insert, so we only
1629 * do inserts for the BTRFS_DIR_INDEX_KEY types
1630 */
1631 if (key->type != BTRFS_DIR_INDEX_KEY)
1632 goto out;
1633 goto insert;
1634 }
1635
1636 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1637 /* the existing item matches the logged item */
1638 if (found_key.objectid == log_key.objectid &&
1639 found_key.type == log_key.type &&
1640 found_key.offset == log_key.offset &&
1641 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1642 update_size = false;
1643 goto out;
1644 }
1645
1646 /*
1647 * don't drop the conflicting directory entry if the inode
1648 * for the new entry doesn't exist
1649 */
1650 if (!exists)
1651 goto out;
1652
1653 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1654 if (ret)
1655 goto out;
1656
1657 if (key->type == BTRFS_DIR_INDEX_KEY)
1658 goto insert;
1659 out:
1660 btrfs_release_path(path);
1661 if (!ret && update_size) {
1662 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1663 ret = btrfs_update_inode(trans, root, dir);
1664 }
1665 kfree(name);
1666 iput(dir);
1667 return ret;
1668
1669 insert:
1670 btrfs_release_path(path);
1671 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1672 name, name_len, log_type, &log_key);
1673 if (ret && ret != -ENOENT)
1674 goto out;
1675 update_size = false;
1676 ret = 0;
1677 goto out;
1678 }
1679
1680 /*
1681 * find all the names in a directory item and reconcile them into
1682 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1683 * one name in a directory item, but the same code gets used for
1684 * both directory index types
1685 */
1686 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1687 struct btrfs_root *root,
1688 struct btrfs_path *path,
1689 struct extent_buffer *eb, int slot,
1690 struct btrfs_key *key)
1691 {
1692 int ret;
1693 u32 item_size = btrfs_item_size_nr(eb, slot);
1694 struct btrfs_dir_item *di;
1695 int name_len;
1696 unsigned long ptr;
1697 unsigned long ptr_end;
1698
1699 ptr = btrfs_item_ptr_offset(eb, slot);
1700 ptr_end = ptr + item_size;
1701 while (ptr < ptr_end) {
1702 di = (struct btrfs_dir_item *)ptr;
1703 if (verify_dir_item(root, eb, di))
1704 return -EIO;
1705 name_len = btrfs_dir_name_len(eb, di);
1706 ret = replay_one_name(trans, root, path, eb, di, key);
1707 if (ret)
1708 return ret;
1709 ptr = (unsigned long)(di + 1);
1710 ptr += name_len;
1711 }
1712 return 0;
1713 }
1714
1715 /*
1716 * directory replay has two parts. There are the standard directory
1717 * items in the log copied from the subvolume, and range items
1718 * created in the log while the subvolume was logged.
1719 *
1720 * The range items tell us which parts of the key space the log
1721 * is authoritative for. During replay, if a key in the subvolume
1722 * directory is in a logged range item, but not actually in the log
1723 * that means it was deleted from the directory before the fsync
1724 * and should be removed.
1725 */
1726 static noinline int find_dir_range(struct btrfs_root *root,
1727 struct btrfs_path *path,
1728 u64 dirid, int key_type,
1729 u64 *start_ret, u64 *end_ret)
1730 {
1731 struct btrfs_key key;
1732 u64 found_end;
1733 struct btrfs_dir_log_item *item;
1734 int ret;
1735 int nritems;
1736
1737 if (*start_ret == (u64)-1)
1738 return 1;
1739
1740 key.objectid = dirid;
1741 key.type = key_type;
1742 key.offset = *start_ret;
1743
1744 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1745 if (ret < 0)
1746 goto out;
1747 if (ret > 0) {
1748 if (path->slots[0] == 0)
1749 goto out;
1750 path->slots[0]--;
1751 }
1752 if (ret != 0)
1753 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1754
1755 if (key.type != key_type || key.objectid != dirid) {
1756 ret = 1;
1757 goto next;
1758 }
1759 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1760 struct btrfs_dir_log_item);
1761 found_end = btrfs_dir_log_end(path->nodes[0], item);
1762
1763 if (*start_ret >= key.offset && *start_ret <= found_end) {
1764 ret = 0;
1765 *start_ret = key.offset;
1766 *end_ret = found_end;
1767 goto out;
1768 }
1769 ret = 1;
1770 next:
1771 /* check the next slot in the tree to see if it is a valid item */
1772 nritems = btrfs_header_nritems(path->nodes[0]);
1773 if (path->slots[0] >= nritems) {
1774 ret = btrfs_next_leaf(root, path);
1775 if (ret)
1776 goto out;
1777 } else {
1778 path->slots[0]++;
1779 }
1780
1781 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1782
1783 if (key.type != key_type || key.objectid != dirid) {
1784 ret = 1;
1785 goto out;
1786 }
1787 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1788 struct btrfs_dir_log_item);
1789 found_end = btrfs_dir_log_end(path->nodes[0], item);
1790 *start_ret = key.offset;
1791 *end_ret = found_end;
1792 ret = 0;
1793 out:
1794 btrfs_release_path(path);
1795 return ret;
1796 }
1797
1798 /*
1799 * this looks for a given directory item in the log. If the directory
1800 * item is not in the log, the item is removed and the inode it points
1801 * to is unlinked
1802 */
1803 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1804 struct btrfs_root *root,
1805 struct btrfs_root *log,
1806 struct btrfs_path *path,
1807 struct btrfs_path *log_path,
1808 struct inode *dir,
1809 struct btrfs_key *dir_key)
1810 {
1811 int ret;
1812 struct extent_buffer *eb;
1813 int slot;
1814 u32 item_size;
1815 struct btrfs_dir_item *di;
1816 struct btrfs_dir_item *log_di;
1817 int name_len;
1818 unsigned long ptr;
1819 unsigned long ptr_end;
1820 char *name;
1821 struct inode *inode;
1822 struct btrfs_key location;
1823
1824 again:
1825 eb = path->nodes[0];
1826 slot = path->slots[0];
1827 item_size = btrfs_item_size_nr(eb, slot);
1828 ptr = btrfs_item_ptr_offset(eb, slot);
1829 ptr_end = ptr + item_size;
1830 while (ptr < ptr_end) {
1831 di = (struct btrfs_dir_item *)ptr;
1832 if (verify_dir_item(root, eb, di)) {
1833 ret = -EIO;
1834 goto out;
1835 }
1836
1837 name_len = btrfs_dir_name_len(eb, di);
1838 name = kmalloc(name_len, GFP_NOFS);
1839 if (!name) {
1840 ret = -ENOMEM;
1841 goto out;
1842 }
1843 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1844 name_len);
1845 log_di = NULL;
1846 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1847 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1848 dir_key->objectid,
1849 name, name_len, 0);
1850 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1851 log_di = btrfs_lookup_dir_index_item(trans, log,
1852 log_path,
1853 dir_key->objectid,
1854 dir_key->offset,
1855 name, name_len, 0);
1856 }
1857 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1858 btrfs_dir_item_key_to_cpu(eb, di, &location);
1859 btrfs_release_path(path);
1860 btrfs_release_path(log_path);
1861 inode = read_one_inode(root, location.objectid);
1862 if (!inode) {
1863 kfree(name);
1864 return -EIO;
1865 }
1866
1867 ret = link_to_fixup_dir(trans, root,
1868 path, location.objectid);
1869 if (ret) {
1870 kfree(name);
1871 iput(inode);
1872 goto out;
1873 }
1874
1875 inc_nlink(inode);
1876 ret = btrfs_unlink_inode(trans, root, dir, inode,
1877 name, name_len);
1878 if (!ret)
1879 ret = btrfs_run_delayed_items(trans, root);
1880 kfree(name);
1881 iput(inode);
1882 if (ret)
1883 goto out;
1884
1885 /* there might still be more names under this key
1886 * check and repeat if required
1887 */
1888 ret = btrfs_search_slot(NULL, root, dir_key, path,
1889 0, 0);
1890 if (ret == 0)
1891 goto again;
1892 ret = 0;
1893 goto out;
1894 } else if (IS_ERR(log_di)) {
1895 kfree(name);
1896 return PTR_ERR(log_di);
1897 }
1898 btrfs_release_path(log_path);
1899 kfree(name);
1900
1901 ptr = (unsigned long)(di + 1);
1902 ptr += name_len;
1903 }
1904 ret = 0;
1905 out:
1906 btrfs_release_path(path);
1907 btrfs_release_path(log_path);
1908 return ret;
1909 }
1910
1911 /*
1912 * deletion replay happens before we copy any new directory items
1913 * out of the log or out of backreferences from inodes. It
1914 * scans the log to find ranges of keys that log is authoritative for,
1915 * and then scans the directory to find items in those ranges that are
1916 * not present in the log.
1917 *
1918 * Anything we don't find in the log is unlinked and removed from the
1919 * directory.
1920 */
1921 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1922 struct btrfs_root *root,
1923 struct btrfs_root *log,
1924 struct btrfs_path *path,
1925 u64 dirid, int del_all)
1926 {
1927 u64 range_start;
1928 u64 range_end;
1929 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1930 int ret = 0;
1931 struct btrfs_key dir_key;
1932 struct btrfs_key found_key;
1933 struct btrfs_path *log_path;
1934 struct inode *dir;
1935
1936 dir_key.objectid = dirid;
1937 dir_key.type = BTRFS_DIR_ITEM_KEY;
1938 log_path = btrfs_alloc_path();
1939 if (!log_path)
1940 return -ENOMEM;
1941
1942 dir = read_one_inode(root, dirid);
1943 /* it isn't an error if the inode isn't there, that can happen
1944 * because we replay the deletes before we copy in the inode item
1945 * from the log
1946 */
1947 if (!dir) {
1948 btrfs_free_path(log_path);
1949 return 0;
1950 }
1951 again:
1952 range_start = 0;
1953 range_end = 0;
1954 while (1) {
1955 if (del_all)
1956 range_end = (u64)-1;
1957 else {
1958 ret = find_dir_range(log, path, dirid, key_type,
1959 &range_start, &range_end);
1960 if (ret != 0)
1961 break;
1962 }
1963
1964 dir_key.offset = range_start;
1965 while (1) {
1966 int nritems;
1967 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1968 0, 0);
1969 if (ret < 0)
1970 goto out;
1971
1972 nritems = btrfs_header_nritems(path->nodes[0]);
1973 if (path->slots[0] >= nritems) {
1974 ret = btrfs_next_leaf(root, path);
1975 if (ret)
1976 break;
1977 }
1978 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1979 path->slots[0]);
1980 if (found_key.objectid != dirid ||
1981 found_key.type != dir_key.type)
1982 goto next_type;
1983
1984 if (found_key.offset > range_end)
1985 break;
1986
1987 ret = check_item_in_log(trans, root, log, path,
1988 log_path, dir,
1989 &found_key);
1990 if (ret)
1991 goto out;
1992 if (found_key.offset == (u64)-1)
1993 break;
1994 dir_key.offset = found_key.offset + 1;
1995 }
1996 btrfs_release_path(path);
1997 if (range_end == (u64)-1)
1998 break;
1999 range_start = range_end + 1;
2000 }
2001
2002 next_type:
2003 ret = 0;
2004 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2005 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2006 dir_key.type = BTRFS_DIR_INDEX_KEY;
2007 btrfs_release_path(path);
2008 goto again;
2009 }
2010 out:
2011 btrfs_release_path(path);
2012 btrfs_free_path(log_path);
2013 iput(dir);
2014 return ret;
2015 }
2016
2017 /*
2018 * the process_func used to replay items from the log tree. This
2019 * gets called in two different stages. The first stage just looks
2020 * for inodes and makes sure they are all copied into the subvolume.
2021 *
2022 * The second stage copies all the other item types from the log into
2023 * the subvolume. The two stage approach is slower, but gets rid of
2024 * lots of complexity around inodes referencing other inodes that exist
2025 * only in the log (references come from either directory items or inode
2026 * back refs).
2027 */
2028 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2029 struct walk_control *wc, u64 gen)
2030 {
2031 int nritems;
2032 struct btrfs_path *path;
2033 struct btrfs_root *root = wc->replay_dest;
2034 struct btrfs_key key;
2035 int level;
2036 int i;
2037 int ret;
2038
2039 ret = btrfs_read_buffer(eb, gen);
2040 if (ret)
2041 return ret;
2042
2043 level = btrfs_header_level(eb);
2044
2045 if (level != 0)
2046 return 0;
2047
2048 path = btrfs_alloc_path();
2049 if (!path)
2050 return -ENOMEM;
2051
2052 nritems = btrfs_header_nritems(eb);
2053 for (i = 0; i < nritems; i++) {
2054 btrfs_item_key_to_cpu(eb, &key, i);
2055
2056 /* inode keys are done during the first stage */
2057 if (key.type == BTRFS_INODE_ITEM_KEY &&
2058 wc->stage == LOG_WALK_REPLAY_INODES) {
2059 struct btrfs_inode_item *inode_item;
2060 u32 mode;
2061
2062 inode_item = btrfs_item_ptr(eb, i,
2063 struct btrfs_inode_item);
2064 mode = btrfs_inode_mode(eb, inode_item);
2065 if (S_ISDIR(mode)) {
2066 ret = replay_dir_deletes(wc->trans,
2067 root, log, path, key.objectid, 0);
2068 if (ret)
2069 break;
2070 }
2071 ret = overwrite_item(wc->trans, root, path,
2072 eb, i, &key);
2073 if (ret)
2074 break;
2075
2076 /* for regular files, make sure corresponding
2077 * orhpan item exist. extents past the new EOF
2078 * will be truncated later by orphan cleanup.
2079 */
2080 if (S_ISREG(mode)) {
2081 ret = insert_orphan_item(wc->trans, root,
2082 key.objectid);
2083 if (ret)
2084 break;
2085 }
2086
2087 ret = link_to_fixup_dir(wc->trans, root,
2088 path, key.objectid);
2089 if (ret)
2090 break;
2091 }
2092
2093 if (key.type == BTRFS_DIR_INDEX_KEY &&
2094 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2095 ret = replay_one_dir_item(wc->trans, root, path,
2096 eb, i, &key);
2097 if (ret)
2098 break;
2099 }
2100
2101 if (wc->stage < LOG_WALK_REPLAY_ALL)
2102 continue;
2103
2104 /* these keys are simply copied */
2105 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2106 ret = overwrite_item(wc->trans, root, path,
2107 eb, i, &key);
2108 if (ret)
2109 break;
2110 } else if (key.type == BTRFS_INODE_REF_KEY ||
2111 key.type == BTRFS_INODE_EXTREF_KEY) {
2112 ret = add_inode_ref(wc->trans, root, log, path,
2113 eb, i, &key);
2114 if (ret && ret != -ENOENT)
2115 break;
2116 ret = 0;
2117 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2118 ret = replay_one_extent(wc->trans, root, path,
2119 eb, i, &key);
2120 if (ret)
2121 break;
2122 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2123 ret = replay_one_dir_item(wc->trans, root, path,
2124 eb, i, &key);
2125 if (ret)
2126 break;
2127 }
2128 }
2129 btrfs_free_path(path);
2130 return ret;
2131 }
2132
2133 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2134 struct btrfs_root *root,
2135 struct btrfs_path *path, int *level,
2136 struct walk_control *wc)
2137 {
2138 u64 root_owner;
2139 u64 bytenr;
2140 u64 ptr_gen;
2141 struct extent_buffer *next;
2142 struct extent_buffer *cur;
2143 struct extent_buffer *parent;
2144 u32 blocksize;
2145 int ret = 0;
2146
2147 WARN_ON(*level < 0);
2148 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2149
2150 while (*level > 0) {
2151 WARN_ON(*level < 0);
2152 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2153 cur = path->nodes[*level];
2154
2155 WARN_ON(btrfs_header_level(cur) != *level);
2156
2157 if (path->slots[*level] >=
2158 btrfs_header_nritems(cur))
2159 break;
2160
2161 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2162 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2163 blocksize = root->nodesize;
2164
2165 parent = path->nodes[*level];
2166 root_owner = btrfs_header_owner(parent);
2167
2168 next = btrfs_find_create_tree_block(root, bytenr);
2169 if (!next)
2170 return -ENOMEM;
2171
2172 if (*level == 1) {
2173 ret = wc->process_func(root, next, wc, ptr_gen);
2174 if (ret) {
2175 free_extent_buffer(next);
2176 return ret;
2177 }
2178
2179 path->slots[*level]++;
2180 if (wc->free) {
2181 ret = btrfs_read_buffer(next, ptr_gen);
2182 if (ret) {
2183 free_extent_buffer(next);
2184 return ret;
2185 }
2186
2187 if (trans) {
2188 btrfs_tree_lock(next);
2189 btrfs_set_lock_blocking(next);
2190 clean_tree_block(trans, root, next);
2191 btrfs_wait_tree_block_writeback(next);
2192 btrfs_tree_unlock(next);
2193 }
2194
2195 WARN_ON(root_owner !=
2196 BTRFS_TREE_LOG_OBJECTID);
2197 ret = btrfs_free_and_pin_reserved_extent(root,
2198 bytenr, blocksize);
2199 if (ret) {
2200 free_extent_buffer(next);
2201 return ret;
2202 }
2203 }
2204 free_extent_buffer(next);
2205 continue;
2206 }
2207 ret = btrfs_read_buffer(next, ptr_gen);
2208 if (ret) {
2209 free_extent_buffer(next);
2210 return ret;
2211 }
2212
2213 WARN_ON(*level <= 0);
2214 if (path->nodes[*level-1])
2215 free_extent_buffer(path->nodes[*level-1]);
2216 path->nodes[*level-1] = next;
2217 *level = btrfs_header_level(next);
2218 path->slots[*level] = 0;
2219 cond_resched();
2220 }
2221 WARN_ON(*level < 0);
2222 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2223
2224 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2225
2226 cond_resched();
2227 return 0;
2228 }
2229
2230 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2231 struct btrfs_root *root,
2232 struct btrfs_path *path, int *level,
2233 struct walk_control *wc)
2234 {
2235 u64 root_owner;
2236 int i;
2237 int slot;
2238 int ret;
2239
2240 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2241 slot = path->slots[i];
2242 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2243 path->slots[i]++;
2244 *level = i;
2245 WARN_ON(*level == 0);
2246 return 0;
2247 } else {
2248 struct extent_buffer *parent;
2249 if (path->nodes[*level] == root->node)
2250 parent = path->nodes[*level];
2251 else
2252 parent = path->nodes[*level + 1];
2253
2254 root_owner = btrfs_header_owner(parent);
2255 ret = wc->process_func(root, path->nodes[*level], wc,
2256 btrfs_header_generation(path->nodes[*level]));
2257 if (ret)
2258 return ret;
2259
2260 if (wc->free) {
2261 struct extent_buffer *next;
2262
2263 next = path->nodes[*level];
2264
2265 if (trans) {
2266 btrfs_tree_lock(next);
2267 btrfs_set_lock_blocking(next);
2268 clean_tree_block(trans, root, next);
2269 btrfs_wait_tree_block_writeback(next);
2270 btrfs_tree_unlock(next);
2271 }
2272
2273 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2274 ret = btrfs_free_and_pin_reserved_extent(root,
2275 path->nodes[*level]->start,
2276 path->nodes[*level]->len);
2277 if (ret)
2278 return ret;
2279 }
2280 free_extent_buffer(path->nodes[*level]);
2281 path->nodes[*level] = NULL;
2282 *level = i + 1;
2283 }
2284 }
2285 return 1;
2286 }
2287
2288 /*
2289 * drop the reference count on the tree rooted at 'snap'. This traverses
2290 * the tree freeing any blocks that have a ref count of zero after being
2291 * decremented.
2292 */
2293 static int walk_log_tree(struct btrfs_trans_handle *trans,
2294 struct btrfs_root *log, struct walk_control *wc)
2295 {
2296 int ret = 0;
2297 int wret;
2298 int level;
2299 struct btrfs_path *path;
2300 int orig_level;
2301
2302 path = btrfs_alloc_path();
2303 if (!path)
2304 return -ENOMEM;
2305
2306 level = btrfs_header_level(log->node);
2307 orig_level = level;
2308 path->nodes[level] = log->node;
2309 extent_buffer_get(log->node);
2310 path->slots[level] = 0;
2311
2312 while (1) {
2313 wret = walk_down_log_tree(trans, log, path, &level, wc);
2314 if (wret > 0)
2315 break;
2316 if (wret < 0) {
2317 ret = wret;
2318 goto out;
2319 }
2320
2321 wret = walk_up_log_tree(trans, log, path, &level, wc);
2322 if (wret > 0)
2323 break;
2324 if (wret < 0) {
2325 ret = wret;
2326 goto out;
2327 }
2328 }
2329
2330 /* was the root node processed? if not, catch it here */
2331 if (path->nodes[orig_level]) {
2332 ret = wc->process_func(log, path->nodes[orig_level], wc,
2333 btrfs_header_generation(path->nodes[orig_level]));
2334 if (ret)
2335 goto out;
2336 if (wc->free) {
2337 struct extent_buffer *next;
2338
2339 next = path->nodes[orig_level];
2340
2341 if (trans) {
2342 btrfs_tree_lock(next);
2343 btrfs_set_lock_blocking(next);
2344 clean_tree_block(trans, log, next);
2345 btrfs_wait_tree_block_writeback(next);
2346 btrfs_tree_unlock(next);
2347 }
2348
2349 WARN_ON(log->root_key.objectid !=
2350 BTRFS_TREE_LOG_OBJECTID);
2351 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2352 next->len);
2353 if (ret)
2354 goto out;
2355 }
2356 }
2357
2358 out:
2359 btrfs_free_path(path);
2360 return ret;
2361 }
2362
2363 /*
2364 * helper function to update the item for a given subvolumes log root
2365 * in the tree of log roots
2366 */
2367 static int update_log_root(struct btrfs_trans_handle *trans,
2368 struct btrfs_root *log)
2369 {
2370 int ret;
2371
2372 if (log->log_transid == 1) {
2373 /* insert root item on the first sync */
2374 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2375 &log->root_key, &log->root_item);
2376 } else {
2377 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2378 &log->root_key, &log->root_item);
2379 }
2380 return ret;
2381 }
2382
2383 static void wait_log_commit(struct btrfs_trans_handle *trans,
2384 struct btrfs_root *root, int transid)
2385 {
2386 DEFINE_WAIT(wait);
2387 int index = transid % 2;
2388
2389 /*
2390 * we only allow two pending log transactions at a time,
2391 * so we know that if ours is more than 2 older than the
2392 * current transaction, we're done
2393 */
2394 do {
2395 prepare_to_wait(&root->log_commit_wait[index],
2396 &wait, TASK_UNINTERRUPTIBLE);
2397 mutex_unlock(&root->log_mutex);
2398
2399 if (root->log_transid_committed < transid &&
2400 atomic_read(&root->log_commit[index]))
2401 schedule();
2402
2403 finish_wait(&root->log_commit_wait[index], &wait);
2404 mutex_lock(&root->log_mutex);
2405 } while (root->log_transid_committed < transid &&
2406 atomic_read(&root->log_commit[index]));
2407 }
2408
2409 static void wait_for_writer(struct btrfs_trans_handle *trans,
2410 struct btrfs_root *root)
2411 {
2412 DEFINE_WAIT(wait);
2413
2414 while (atomic_read(&root->log_writers)) {
2415 prepare_to_wait(&root->log_writer_wait,
2416 &wait, TASK_UNINTERRUPTIBLE);
2417 mutex_unlock(&root->log_mutex);
2418 if (atomic_read(&root->log_writers))
2419 schedule();
2420 mutex_lock(&root->log_mutex);
2421 finish_wait(&root->log_writer_wait, &wait);
2422 }
2423 }
2424
2425 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2426 struct btrfs_log_ctx *ctx)
2427 {
2428 if (!ctx)
2429 return;
2430
2431 mutex_lock(&root->log_mutex);
2432 list_del_init(&ctx->list);
2433 mutex_unlock(&root->log_mutex);
2434 }
2435
2436 /*
2437 * Invoked in log mutex context, or be sure there is no other task which
2438 * can access the list.
2439 */
2440 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2441 int index, int error)
2442 {
2443 struct btrfs_log_ctx *ctx;
2444
2445 if (!error) {
2446 INIT_LIST_HEAD(&root->log_ctxs[index]);
2447 return;
2448 }
2449
2450 list_for_each_entry(ctx, &root->log_ctxs[index], list)
2451 ctx->log_ret = error;
2452
2453 INIT_LIST_HEAD(&root->log_ctxs[index]);
2454 }
2455
2456 /*
2457 * btrfs_sync_log does sends a given tree log down to the disk and
2458 * updates the super blocks to record it. When this call is done,
2459 * you know that any inodes previously logged are safely on disk only
2460 * if it returns 0.
2461 *
2462 * Any other return value means you need to call btrfs_commit_transaction.
2463 * Some of the edge cases for fsyncing directories that have had unlinks
2464 * or renames done in the past mean that sometimes the only safe
2465 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2466 * that has happened.
2467 */
2468 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2469 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2470 {
2471 int index1;
2472 int index2;
2473 int mark;
2474 int ret;
2475 struct btrfs_root *log = root->log_root;
2476 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2477 int log_transid = 0;
2478 struct btrfs_log_ctx root_log_ctx;
2479 struct blk_plug plug;
2480
2481 mutex_lock(&root->log_mutex);
2482 log_transid = ctx->log_transid;
2483 if (root->log_transid_committed >= log_transid) {
2484 mutex_unlock(&root->log_mutex);
2485 return ctx->log_ret;
2486 }
2487
2488 index1 = log_transid % 2;
2489 if (atomic_read(&root->log_commit[index1])) {
2490 wait_log_commit(trans, root, log_transid);
2491 mutex_unlock(&root->log_mutex);
2492 return ctx->log_ret;
2493 }
2494 ASSERT(log_transid == root->log_transid);
2495 atomic_set(&root->log_commit[index1], 1);
2496
2497 /* wait for previous tree log sync to complete */
2498 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2499 wait_log_commit(trans, root, log_transid - 1);
2500
2501 while (1) {
2502 int batch = atomic_read(&root->log_batch);
2503 /* when we're on an ssd, just kick the log commit out */
2504 if (!btrfs_test_opt(root, SSD) &&
2505 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2506 mutex_unlock(&root->log_mutex);
2507 schedule_timeout_uninterruptible(1);
2508 mutex_lock(&root->log_mutex);
2509 }
2510 wait_for_writer(trans, root);
2511 if (batch == atomic_read(&root->log_batch))
2512 break;
2513 }
2514
2515 /* bail out if we need to do a full commit */
2516 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2517 ret = -EAGAIN;
2518 btrfs_free_logged_extents(log, log_transid);
2519 mutex_unlock(&root->log_mutex);
2520 goto out;
2521 }
2522
2523 if (log_transid % 2 == 0)
2524 mark = EXTENT_DIRTY;
2525 else
2526 mark = EXTENT_NEW;
2527
2528 /* we start IO on all the marked extents here, but we don't actually
2529 * wait for them until later.
2530 */
2531 blk_start_plug(&plug);
2532 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2533 if (ret) {
2534 blk_finish_plug(&plug);
2535 btrfs_abort_transaction(trans, root, ret);
2536 btrfs_free_logged_extents(log, log_transid);
2537 btrfs_set_log_full_commit(root->fs_info, trans);
2538 mutex_unlock(&root->log_mutex);
2539 goto out;
2540 }
2541
2542 btrfs_set_root_node(&log->root_item, log->node);
2543
2544 root->log_transid++;
2545 log->log_transid = root->log_transid;
2546 root->log_start_pid = 0;
2547 /*
2548 * IO has been started, blocks of the log tree have WRITTEN flag set
2549 * in their headers. new modifications of the log will be written to
2550 * new positions. so it's safe to allow log writers to go in.
2551 */
2552 mutex_unlock(&root->log_mutex);
2553
2554 btrfs_init_log_ctx(&root_log_ctx);
2555
2556 mutex_lock(&log_root_tree->log_mutex);
2557 atomic_inc(&log_root_tree->log_batch);
2558 atomic_inc(&log_root_tree->log_writers);
2559
2560 index2 = log_root_tree->log_transid % 2;
2561 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2562 root_log_ctx.log_transid = log_root_tree->log_transid;
2563
2564 mutex_unlock(&log_root_tree->log_mutex);
2565
2566 ret = update_log_root(trans, log);
2567
2568 mutex_lock(&log_root_tree->log_mutex);
2569 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2570 smp_mb();
2571 if (waitqueue_active(&log_root_tree->log_writer_wait))
2572 wake_up(&log_root_tree->log_writer_wait);
2573 }
2574
2575 if (ret) {
2576 if (!list_empty(&root_log_ctx.list))
2577 list_del_init(&root_log_ctx.list);
2578
2579 blk_finish_plug(&plug);
2580 btrfs_set_log_full_commit(root->fs_info, trans);
2581
2582 if (ret != -ENOSPC) {
2583 btrfs_abort_transaction(trans, root, ret);
2584 mutex_unlock(&log_root_tree->log_mutex);
2585 goto out;
2586 }
2587 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2588 btrfs_free_logged_extents(log, log_transid);
2589 mutex_unlock(&log_root_tree->log_mutex);
2590 ret = -EAGAIN;
2591 goto out;
2592 }
2593
2594 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2595 mutex_unlock(&log_root_tree->log_mutex);
2596 ret = root_log_ctx.log_ret;
2597 goto out;
2598 }
2599
2600 index2 = root_log_ctx.log_transid % 2;
2601 if (atomic_read(&log_root_tree->log_commit[index2])) {
2602 blk_finish_plug(&plug);
2603 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2604 mark);
2605 btrfs_wait_logged_extents(trans, log, log_transid);
2606 wait_log_commit(trans, log_root_tree,
2607 root_log_ctx.log_transid);
2608 mutex_unlock(&log_root_tree->log_mutex);
2609 if (!ret)
2610 ret = root_log_ctx.log_ret;
2611 goto out;
2612 }
2613 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2614 atomic_set(&log_root_tree->log_commit[index2], 1);
2615
2616 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2617 wait_log_commit(trans, log_root_tree,
2618 root_log_ctx.log_transid - 1);
2619 }
2620
2621 wait_for_writer(trans, log_root_tree);
2622
2623 /*
2624 * now that we've moved on to the tree of log tree roots,
2625 * check the full commit flag again
2626 */
2627 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2628 blk_finish_plug(&plug);
2629 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2630 btrfs_free_logged_extents(log, log_transid);
2631 mutex_unlock(&log_root_tree->log_mutex);
2632 ret = -EAGAIN;
2633 goto out_wake_log_root;
2634 }
2635
2636 ret = btrfs_write_marked_extents(log_root_tree,
2637 &log_root_tree->dirty_log_pages,
2638 EXTENT_DIRTY | EXTENT_NEW);
2639 blk_finish_plug(&plug);
2640 if (ret) {
2641 btrfs_set_log_full_commit(root->fs_info, trans);
2642 btrfs_abort_transaction(trans, root, ret);
2643 btrfs_free_logged_extents(log, log_transid);
2644 mutex_unlock(&log_root_tree->log_mutex);
2645 goto out_wake_log_root;
2646 }
2647 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2648 if (!ret)
2649 ret = btrfs_wait_marked_extents(log_root_tree,
2650 &log_root_tree->dirty_log_pages,
2651 EXTENT_NEW | EXTENT_DIRTY);
2652 if (ret) {
2653 btrfs_set_log_full_commit(root->fs_info, trans);
2654 btrfs_free_logged_extents(log, log_transid);
2655 mutex_unlock(&log_root_tree->log_mutex);
2656 goto out_wake_log_root;
2657 }
2658 btrfs_wait_logged_extents(trans, log, log_transid);
2659
2660 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2661 log_root_tree->node->start);
2662 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2663 btrfs_header_level(log_root_tree->node));
2664
2665 log_root_tree->log_transid++;
2666 mutex_unlock(&log_root_tree->log_mutex);
2667
2668 /*
2669 * nobody else is going to jump in and write the the ctree
2670 * super here because the log_commit atomic below is protecting
2671 * us. We must be called with a transaction handle pinning
2672 * the running transaction open, so a full commit can't hop
2673 * in and cause problems either.
2674 */
2675 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2676 if (ret) {
2677 btrfs_set_log_full_commit(root->fs_info, trans);
2678 btrfs_abort_transaction(trans, root, ret);
2679 goto out_wake_log_root;
2680 }
2681
2682 mutex_lock(&root->log_mutex);
2683 if (root->last_log_commit < log_transid)
2684 root->last_log_commit = log_transid;
2685 mutex_unlock(&root->log_mutex);
2686
2687 out_wake_log_root:
2688 /*
2689 * We needn't get log_mutex here because we are sure all
2690 * the other tasks are blocked.
2691 */
2692 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2693
2694 mutex_lock(&log_root_tree->log_mutex);
2695 log_root_tree->log_transid_committed++;
2696 atomic_set(&log_root_tree->log_commit[index2], 0);
2697 mutex_unlock(&log_root_tree->log_mutex);
2698
2699 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2700 wake_up(&log_root_tree->log_commit_wait[index2]);
2701 out:
2702 /* See above. */
2703 btrfs_remove_all_log_ctxs(root, index1, ret);
2704
2705 mutex_lock(&root->log_mutex);
2706 root->log_transid_committed++;
2707 atomic_set(&root->log_commit[index1], 0);
2708 mutex_unlock(&root->log_mutex);
2709
2710 if (waitqueue_active(&root->log_commit_wait[index1]))
2711 wake_up(&root->log_commit_wait[index1]);
2712 return ret;
2713 }
2714
2715 static void free_log_tree(struct btrfs_trans_handle *trans,
2716 struct btrfs_root *log)
2717 {
2718 int ret;
2719 u64 start;
2720 u64 end;
2721 struct walk_control wc = {
2722 .free = 1,
2723 .process_func = process_one_buffer
2724 };
2725
2726 ret = walk_log_tree(trans, log, &wc);
2727 /* I don't think this can happen but just in case */
2728 if (ret)
2729 btrfs_abort_transaction(trans, log, ret);
2730
2731 while (1) {
2732 ret = find_first_extent_bit(&log->dirty_log_pages,
2733 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2734 NULL);
2735 if (ret)
2736 break;
2737
2738 clear_extent_bits(&log->dirty_log_pages, start, end,
2739 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2740 }
2741
2742 /*
2743 * We may have short-circuited the log tree with the full commit logic
2744 * and left ordered extents on our list, so clear these out to keep us
2745 * from leaking inodes and memory.
2746 */
2747 btrfs_free_logged_extents(log, 0);
2748 btrfs_free_logged_extents(log, 1);
2749
2750 free_extent_buffer(log->node);
2751 kfree(log);
2752 }
2753
2754 /*
2755 * free all the extents used by the tree log. This should be called
2756 * at commit time of the full transaction
2757 */
2758 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2759 {
2760 if (root->log_root) {
2761 free_log_tree(trans, root->log_root);
2762 root->log_root = NULL;
2763 }
2764 return 0;
2765 }
2766
2767 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2768 struct btrfs_fs_info *fs_info)
2769 {
2770 if (fs_info->log_root_tree) {
2771 free_log_tree(trans, fs_info->log_root_tree);
2772 fs_info->log_root_tree = NULL;
2773 }
2774 return 0;
2775 }
2776
2777 /*
2778 * If both a file and directory are logged, and unlinks or renames are
2779 * mixed in, we have a few interesting corners:
2780 *
2781 * create file X in dir Y
2782 * link file X to X.link in dir Y
2783 * fsync file X
2784 * unlink file X but leave X.link
2785 * fsync dir Y
2786 *
2787 * After a crash we would expect only X.link to exist. But file X
2788 * didn't get fsync'd again so the log has back refs for X and X.link.
2789 *
2790 * We solve this by removing directory entries and inode backrefs from the
2791 * log when a file that was logged in the current transaction is
2792 * unlinked. Any later fsync will include the updated log entries, and
2793 * we'll be able to reconstruct the proper directory items from backrefs.
2794 *
2795 * This optimizations allows us to avoid relogging the entire inode
2796 * or the entire directory.
2797 */
2798 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2799 struct btrfs_root *root,
2800 const char *name, int name_len,
2801 struct inode *dir, u64 index)
2802 {
2803 struct btrfs_root *log;
2804 struct btrfs_dir_item *di;
2805 struct btrfs_path *path;
2806 int ret;
2807 int err = 0;
2808 int bytes_del = 0;
2809 u64 dir_ino = btrfs_ino(dir);
2810
2811 if (BTRFS_I(dir)->logged_trans < trans->transid)
2812 return 0;
2813
2814 ret = join_running_log_trans(root);
2815 if (ret)
2816 return 0;
2817
2818 mutex_lock(&BTRFS_I(dir)->log_mutex);
2819
2820 log = root->log_root;
2821 path = btrfs_alloc_path();
2822 if (!path) {
2823 err = -ENOMEM;
2824 goto out_unlock;
2825 }
2826
2827 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2828 name, name_len, -1);
2829 if (IS_ERR(di)) {
2830 err = PTR_ERR(di);
2831 goto fail;
2832 }
2833 if (di) {
2834 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2835 bytes_del += name_len;
2836 if (ret) {
2837 err = ret;
2838 goto fail;
2839 }
2840 }
2841 btrfs_release_path(path);
2842 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2843 index, name, name_len, -1);
2844 if (IS_ERR(di)) {
2845 err = PTR_ERR(di);
2846 goto fail;
2847 }
2848 if (di) {
2849 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2850 bytes_del += name_len;
2851 if (ret) {
2852 err = ret;
2853 goto fail;
2854 }
2855 }
2856
2857 /* update the directory size in the log to reflect the names
2858 * we have removed
2859 */
2860 if (bytes_del) {
2861 struct btrfs_key key;
2862
2863 key.objectid = dir_ino;
2864 key.offset = 0;
2865 key.type = BTRFS_INODE_ITEM_KEY;
2866 btrfs_release_path(path);
2867
2868 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2869 if (ret < 0) {
2870 err = ret;
2871 goto fail;
2872 }
2873 if (ret == 0) {
2874 struct btrfs_inode_item *item;
2875 u64 i_size;
2876
2877 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2878 struct btrfs_inode_item);
2879 i_size = btrfs_inode_size(path->nodes[0], item);
2880 if (i_size > bytes_del)
2881 i_size -= bytes_del;
2882 else
2883 i_size = 0;
2884 btrfs_set_inode_size(path->nodes[0], item, i_size);
2885 btrfs_mark_buffer_dirty(path->nodes[0]);
2886 } else
2887 ret = 0;
2888 btrfs_release_path(path);
2889 }
2890 fail:
2891 btrfs_free_path(path);
2892 out_unlock:
2893 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2894 if (ret == -ENOSPC) {
2895 btrfs_set_log_full_commit(root->fs_info, trans);
2896 ret = 0;
2897 } else if (ret < 0)
2898 btrfs_abort_transaction(trans, root, ret);
2899
2900 btrfs_end_log_trans(root);
2901
2902 return err;
2903 }
2904
2905 /* see comments for btrfs_del_dir_entries_in_log */
2906 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2907 struct btrfs_root *root,
2908 const char *name, int name_len,
2909 struct inode *inode, u64 dirid)
2910 {
2911 struct btrfs_root *log;
2912 u64 index;
2913 int ret;
2914
2915 if (BTRFS_I(inode)->logged_trans < trans->transid)
2916 return 0;
2917
2918 ret = join_running_log_trans(root);
2919 if (ret)
2920 return 0;
2921 log = root->log_root;
2922 mutex_lock(&BTRFS_I(inode)->log_mutex);
2923
2924 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2925 dirid, &index);
2926 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2927 if (ret == -ENOSPC) {
2928 btrfs_set_log_full_commit(root->fs_info, trans);
2929 ret = 0;
2930 } else if (ret < 0 && ret != -ENOENT)
2931 btrfs_abort_transaction(trans, root, ret);
2932 btrfs_end_log_trans(root);
2933
2934 return ret;
2935 }
2936
2937 /*
2938 * creates a range item in the log for 'dirid'. first_offset and
2939 * last_offset tell us which parts of the key space the log should
2940 * be considered authoritative for.
2941 */
2942 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2943 struct btrfs_root *log,
2944 struct btrfs_path *path,
2945 int key_type, u64 dirid,
2946 u64 first_offset, u64 last_offset)
2947 {
2948 int ret;
2949 struct btrfs_key key;
2950 struct btrfs_dir_log_item *item;
2951
2952 key.objectid = dirid;
2953 key.offset = first_offset;
2954 if (key_type == BTRFS_DIR_ITEM_KEY)
2955 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2956 else
2957 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2958 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2959 if (ret)
2960 return ret;
2961
2962 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2963 struct btrfs_dir_log_item);
2964 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2965 btrfs_mark_buffer_dirty(path->nodes[0]);
2966 btrfs_release_path(path);
2967 return 0;
2968 }
2969
2970 /*
2971 * log all the items included in the current transaction for a given
2972 * directory. This also creates the range items in the log tree required
2973 * to replay anything deleted before the fsync
2974 */
2975 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2976 struct btrfs_root *root, struct inode *inode,
2977 struct btrfs_path *path,
2978 struct btrfs_path *dst_path, int key_type,
2979 u64 min_offset, u64 *last_offset_ret)
2980 {
2981 struct btrfs_key min_key;
2982 struct btrfs_root *log = root->log_root;
2983 struct extent_buffer *src;
2984 int err = 0;
2985 int ret;
2986 int i;
2987 int nritems;
2988 u64 first_offset = min_offset;
2989 u64 last_offset = (u64)-1;
2990 u64 ino = btrfs_ino(inode);
2991
2992 log = root->log_root;
2993
2994 min_key.objectid = ino;
2995 min_key.type = key_type;
2996 min_key.offset = min_offset;
2997
2998 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
2999
3000 /*
3001 * we didn't find anything from this transaction, see if there
3002 * is anything at all
3003 */
3004 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3005 min_key.objectid = ino;
3006 min_key.type = key_type;
3007 min_key.offset = (u64)-1;
3008 btrfs_release_path(path);
3009 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3010 if (ret < 0) {
3011 btrfs_release_path(path);
3012 return ret;
3013 }
3014 ret = btrfs_previous_item(root, path, ino, key_type);
3015
3016 /* if ret == 0 there are items for this type,
3017 * create a range to tell us the last key of this type.
3018 * otherwise, there are no items in this directory after
3019 * *min_offset, and we create a range to indicate that.
3020 */
3021 if (ret == 0) {
3022 struct btrfs_key tmp;
3023 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3024 path->slots[0]);
3025 if (key_type == tmp.type)
3026 first_offset = max(min_offset, tmp.offset) + 1;
3027 }
3028 goto done;
3029 }
3030
3031 /* go backward to find any previous key */
3032 ret = btrfs_previous_item(root, path, ino, key_type);
3033 if (ret == 0) {
3034 struct btrfs_key tmp;
3035 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3036 if (key_type == tmp.type) {
3037 first_offset = tmp.offset;
3038 ret = overwrite_item(trans, log, dst_path,
3039 path->nodes[0], path->slots[0],
3040 &tmp);
3041 if (ret) {
3042 err = ret;
3043 goto done;
3044 }
3045 }
3046 }
3047 btrfs_release_path(path);
3048
3049 /* find the first key from this transaction again */
3050 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3051 if (WARN_ON(ret != 0))
3052 goto done;
3053
3054 /*
3055 * we have a block from this transaction, log every item in it
3056 * from our directory
3057 */
3058 while (1) {
3059 struct btrfs_key tmp;
3060 src = path->nodes[0];
3061 nritems = btrfs_header_nritems(src);
3062 for (i = path->slots[0]; i < nritems; i++) {
3063 btrfs_item_key_to_cpu(src, &min_key, i);
3064
3065 if (min_key.objectid != ino || min_key.type != key_type)
3066 goto done;
3067 ret = overwrite_item(trans, log, dst_path, src, i,
3068 &min_key);
3069 if (ret) {
3070 err = ret;
3071 goto done;
3072 }
3073 }
3074 path->slots[0] = nritems;
3075
3076 /*
3077 * look ahead to the next item and see if it is also
3078 * from this directory and from this transaction
3079 */
3080 ret = btrfs_next_leaf(root, path);
3081 if (ret == 1) {
3082 last_offset = (u64)-1;
3083 goto done;
3084 }
3085 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3086 if (tmp.objectid != ino || tmp.type != key_type) {
3087 last_offset = (u64)-1;
3088 goto done;
3089 }
3090 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3091 ret = overwrite_item(trans, log, dst_path,
3092 path->nodes[0], path->slots[0],
3093 &tmp);
3094 if (ret)
3095 err = ret;
3096 else
3097 last_offset = tmp.offset;
3098 goto done;
3099 }
3100 }
3101 done:
3102 btrfs_release_path(path);
3103 btrfs_release_path(dst_path);
3104
3105 if (err == 0) {
3106 *last_offset_ret = last_offset;
3107 /*
3108 * insert the log range keys to indicate where the log
3109 * is valid
3110 */
3111 ret = insert_dir_log_key(trans, log, path, key_type,
3112 ino, first_offset, last_offset);
3113 if (ret)
3114 err = ret;
3115 }
3116 return err;
3117 }
3118
3119 /*
3120 * logging directories is very similar to logging inodes, We find all the items
3121 * from the current transaction and write them to the log.
3122 *
3123 * The recovery code scans the directory in the subvolume, and if it finds a
3124 * key in the range logged that is not present in the log tree, then it means
3125 * that dir entry was unlinked during the transaction.
3126 *
3127 * In order for that scan to work, we must include one key smaller than
3128 * the smallest logged by this transaction and one key larger than the largest
3129 * key logged by this transaction.
3130 */
3131 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3132 struct btrfs_root *root, struct inode *inode,
3133 struct btrfs_path *path,
3134 struct btrfs_path *dst_path)
3135 {
3136 u64 min_key;
3137 u64 max_key;
3138 int ret;
3139 int key_type = BTRFS_DIR_ITEM_KEY;
3140
3141 again:
3142 min_key = 0;
3143 max_key = 0;
3144 while (1) {
3145 ret = log_dir_items(trans, root, inode, path,
3146 dst_path, key_type, min_key,
3147 &max_key);
3148 if (ret)
3149 return ret;
3150 if (max_key == (u64)-1)
3151 break;
3152 min_key = max_key + 1;
3153 }
3154
3155 if (key_type == BTRFS_DIR_ITEM_KEY) {
3156 key_type = BTRFS_DIR_INDEX_KEY;
3157 goto again;
3158 }
3159 return 0;
3160 }
3161
3162 /*
3163 * a helper function to drop items from the log before we relog an
3164 * inode. max_key_type indicates the highest item type to remove.
3165 * This cannot be run for file data extents because it does not
3166 * free the extents they point to.
3167 */
3168 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3169 struct btrfs_root *log,
3170 struct btrfs_path *path,
3171 u64 objectid, int max_key_type)
3172 {
3173 int ret;
3174 struct btrfs_key key;
3175 struct btrfs_key found_key;
3176 int start_slot;
3177
3178 key.objectid = objectid;
3179 key.type = max_key_type;
3180 key.offset = (u64)-1;
3181
3182 while (1) {
3183 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3184 BUG_ON(ret == 0); /* Logic error */
3185 if (ret < 0)
3186 break;
3187
3188 if (path->slots[0] == 0)
3189 break;
3190
3191 path->slots[0]--;
3192 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3193 path->slots[0]);
3194
3195 if (found_key.objectid != objectid)
3196 break;
3197
3198 found_key.offset = 0;
3199 found_key.type = 0;
3200 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3201 &start_slot);
3202
3203 ret = btrfs_del_items(trans, log, path, start_slot,
3204 path->slots[0] - start_slot + 1);
3205 /*
3206 * If start slot isn't 0 then we don't need to re-search, we've
3207 * found the last guy with the objectid in this tree.
3208 */
3209 if (ret || start_slot != 0)
3210 break;
3211 btrfs_release_path(path);
3212 }
3213 btrfs_release_path(path);
3214 if (ret > 0)
3215 ret = 0;
3216 return ret;
3217 }
3218
3219 static void fill_inode_item(struct btrfs_trans_handle *trans,
3220 struct extent_buffer *leaf,
3221 struct btrfs_inode_item *item,
3222 struct inode *inode, int log_inode_only)
3223 {
3224 struct btrfs_map_token token;
3225
3226 btrfs_init_map_token(&token);
3227
3228 if (log_inode_only) {
3229 /* set the generation to zero so the recover code
3230 * can tell the difference between an logging
3231 * just to say 'this inode exists' and a logging
3232 * to say 'update this inode with these values'
3233 */
3234 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3235 btrfs_set_token_inode_size(leaf, item, 0, &token);
3236 } else {
3237 btrfs_set_token_inode_generation(leaf, item,
3238 BTRFS_I(inode)->generation,
3239 &token);
3240 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3241 }
3242
3243 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3244 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3245 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3246 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3247
3248 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3249 inode->i_atime.tv_sec, &token);
3250 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3251 inode->i_atime.tv_nsec, &token);
3252
3253 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3254 inode->i_mtime.tv_sec, &token);
3255 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3256 inode->i_mtime.tv_nsec, &token);
3257
3258 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3259 inode->i_ctime.tv_sec, &token);
3260 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3261 inode->i_ctime.tv_nsec, &token);
3262
3263 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3264 &token);
3265
3266 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3267 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3268 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3269 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3270 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3271 }
3272
3273 static int log_inode_item(struct btrfs_trans_handle *trans,
3274 struct btrfs_root *log, struct btrfs_path *path,
3275 struct inode *inode)
3276 {
3277 struct btrfs_inode_item *inode_item;
3278 int ret;
3279
3280 ret = btrfs_insert_empty_item(trans, log, path,
3281 &BTRFS_I(inode)->location,
3282 sizeof(*inode_item));
3283 if (ret && ret != -EEXIST)
3284 return ret;
3285 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3286 struct btrfs_inode_item);
3287 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3288 btrfs_release_path(path);
3289 return 0;
3290 }
3291
3292 static noinline int copy_items(struct btrfs_trans_handle *trans,
3293 struct inode *inode,
3294 struct btrfs_path *dst_path,
3295 struct btrfs_path *src_path, u64 *last_extent,
3296 int start_slot, int nr, int inode_only)
3297 {
3298 unsigned long src_offset;
3299 unsigned long dst_offset;
3300 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3301 struct btrfs_file_extent_item *extent;
3302 struct btrfs_inode_item *inode_item;
3303 struct extent_buffer *src = src_path->nodes[0];
3304 struct btrfs_key first_key, last_key, key;
3305 int ret;
3306 struct btrfs_key *ins_keys;
3307 u32 *ins_sizes;
3308 char *ins_data;
3309 int i;
3310 struct list_head ordered_sums;
3311 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3312 bool has_extents = false;
3313 bool need_find_last_extent = true;
3314 bool done = false;
3315
3316 INIT_LIST_HEAD(&ordered_sums);
3317
3318 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3319 nr * sizeof(u32), GFP_NOFS);
3320 if (!ins_data)
3321 return -ENOMEM;
3322
3323 first_key.objectid = (u64)-1;
3324
3325 ins_sizes = (u32 *)ins_data;
3326 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3327
3328 for (i = 0; i < nr; i++) {
3329 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3330 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3331 }
3332 ret = btrfs_insert_empty_items(trans, log, dst_path,
3333 ins_keys, ins_sizes, nr);
3334 if (ret) {
3335 kfree(ins_data);
3336 return ret;
3337 }
3338
3339 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3340 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3341 dst_path->slots[0]);
3342
3343 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3344
3345 if ((i == (nr - 1)))
3346 last_key = ins_keys[i];
3347
3348 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3349 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3350 dst_path->slots[0],
3351 struct btrfs_inode_item);
3352 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3353 inode, inode_only == LOG_INODE_EXISTS);
3354 } else {
3355 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3356 src_offset, ins_sizes[i]);
3357 }
3358
3359 /*
3360 * We set need_find_last_extent here in case we know we were
3361 * processing other items and then walk into the first extent in
3362 * the inode. If we don't hit an extent then nothing changes,
3363 * we'll do the last search the next time around.
3364 */
3365 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3366 has_extents = true;
3367 if (first_key.objectid == (u64)-1)
3368 first_key = ins_keys[i];
3369 } else {
3370 need_find_last_extent = false;
3371 }
3372
3373 /* take a reference on file data extents so that truncates
3374 * or deletes of this inode don't have to relog the inode
3375 * again
3376 */
3377 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3378 !skip_csum) {
3379 int found_type;
3380 extent = btrfs_item_ptr(src, start_slot + i,
3381 struct btrfs_file_extent_item);
3382
3383 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3384 continue;
3385
3386 found_type = btrfs_file_extent_type(src, extent);
3387 if (found_type == BTRFS_FILE_EXTENT_REG) {
3388 u64 ds, dl, cs, cl;
3389 ds = btrfs_file_extent_disk_bytenr(src,
3390 extent);
3391 /* ds == 0 is a hole */
3392 if (ds == 0)
3393 continue;
3394
3395 dl = btrfs_file_extent_disk_num_bytes(src,
3396 extent);
3397 cs = btrfs_file_extent_offset(src, extent);
3398 cl = btrfs_file_extent_num_bytes(src,
3399 extent);
3400 if (btrfs_file_extent_compression(src,
3401 extent)) {
3402 cs = 0;
3403 cl = dl;
3404 }
3405
3406 ret = btrfs_lookup_csums_range(
3407 log->fs_info->csum_root,
3408 ds + cs, ds + cs + cl - 1,
3409 &ordered_sums, 0);
3410 if (ret) {
3411 btrfs_release_path(dst_path);
3412 kfree(ins_data);
3413 return ret;
3414 }
3415 }
3416 }
3417 }
3418
3419 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3420 btrfs_release_path(dst_path);
3421 kfree(ins_data);
3422
3423 /*
3424 * we have to do this after the loop above to avoid changing the
3425 * log tree while trying to change the log tree.
3426 */
3427 ret = 0;
3428 while (!list_empty(&ordered_sums)) {
3429 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3430 struct btrfs_ordered_sum,
3431 list);
3432 if (!ret)
3433 ret = btrfs_csum_file_blocks(trans, log, sums);
3434 list_del(&sums->list);
3435 kfree(sums);
3436 }
3437
3438 if (!has_extents)
3439 return ret;
3440
3441 if (need_find_last_extent && *last_extent == first_key.offset) {
3442 /*
3443 * We don't have any leafs between our current one and the one
3444 * we processed before that can have file extent items for our
3445 * inode (and have a generation number smaller than our current
3446 * transaction id).
3447 */
3448 need_find_last_extent = false;
3449 }
3450
3451 /*
3452 * Because we use btrfs_search_forward we could skip leaves that were
3453 * not modified and then assume *last_extent is valid when it really
3454 * isn't. So back up to the previous leaf and read the end of the last
3455 * extent before we go and fill in holes.
3456 */
3457 if (need_find_last_extent) {
3458 u64 len;
3459
3460 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3461 if (ret < 0)
3462 return ret;
3463 if (ret)
3464 goto fill_holes;
3465 if (src_path->slots[0])
3466 src_path->slots[0]--;
3467 src = src_path->nodes[0];
3468 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3469 if (key.objectid != btrfs_ino(inode) ||
3470 key.type != BTRFS_EXTENT_DATA_KEY)
3471 goto fill_holes;
3472 extent = btrfs_item_ptr(src, src_path->slots[0],
3473 struct btrfs_file_extent_item);
3474 if (btrfs_file_extent_type(src, extent) ==
3475 BTRFS_FILE_EXTENT_INLINE) {
3476 len = btrfs_file_extent_inline_len(src,
3477 src_path->slots[0],
3478 extent);
3479 *last_extent = ALIGN(key.offset + len,
3480 log->sectorsize);
3481 } else {
3482 len = btrfs_file_extent_num_bytes(src, extent);
3483 *last_extent = key.offset + len;
3484 }
3485 }
3486 fill_holes:
3487 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3488 * things could have happened
3489 *
3490 * 1) A merge could have happened, so we could currently be on a leaf
3491 * that holds what we were copying in the first place.
3492 * 2) A split could have happened, and now not all of the items we want
3493 * are on the same leaf.
3494 *
3495 * So we need to adjust how we search for holes, we need to drop the
3496 * path and re-search for the first extent key we found, and then walk
3497 * forward until we hit the last one we copied.
3498 */
3499 if (need_find_last_extent) {
3500 /* btrfs_prev_leaf could return 1 without releasing the path */
3501 btrfs_release_path(src_path);
3502 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3503 src_path, 0, 0);
3504 if (ret < 0)
3505 return ret;
3506 ASSERT(ret == 0);
3507 src = src_path->nodes[0];
3508 i = src_path->slots[0];
3509 } else {
3510 i = start_slot;
3511 }
3512
3513 /*
3514 * Ok so here we need to go through and fill in any holes we may have
3515 * to make sure that holes are punched for those areas in case they had
3516 * extents previously.
3517 */
3518 while (!done) {
3519 u64 offset, len;
3520 u64 extent_end;
3521
3522 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3523 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3524 if (ret < 0)
3525 return ret;
3526 ASSERT(ret == 0);
3527 src = src_path->nodes[0];
3528 i = 0;
3529 }
3530
3531 btrfs_item_key_to_cpu(src, &key, i);
3532 if (!btrfs_comp_cpu_keys(&key, &last_key))
3533 done = true;
3534 if (key.objectid != btrfs_ino(inode) ||
3535 key.type != BTRFS_EXTENT_DATA_KEY) {
3536 i++;
3537 continue;
3538 }
3539 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3540 if (btrfs_file_extent_type(src, extent) ==
3541 BTRFS_FILE_EXTENT_INLINE) {
3542 len = btrfs_file_extent_inline_len(src, i, extent);
3543 extent_end = ALIGN(key.offset + len, log->sectorsize);
3544 } else {
3545 len = btrfs_file_extent_num_bytes(src, extent);
3546 extent_end = key.offset + len;
3547 }
3548 i++;
3549
3550 if (*last_extent == key.offset) {
3551 *last_extent = extent_end;
3552 continue;
3553 }
3554 offset = *last_extent;
3555 len = key.offset - *last_extent;
3556 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3557 offset, 0, 0, len, 0, len, 0,
3558 0, 0);
3559 if (ret)
3560 break;
3561 *last_extent = extent_end;
3562 }
3563 /*
3564 * Need to let the callers know we dropped the path so they should
3565 * re-search.
3566 */
3567 if (!ret && need_find_last_extent)
3568 ret = 1;
3569 return ret;
3570 }
3571
3572 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3573 {
3574 struct extent_map *em1, *em2;
3575
3576 em1 = list_entry(a, struct extent_map, list);
3577 em2 = list_entry(b, struct extent_map, list);
3578
3579 if (em1->start < em2->start)
3580 return -1;
3581 else if (em1->start > em2->start)
3582 return 1;
3583 return 0;
3584 }
3585
3586 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3587 struct inode *inode,
3588 struct btrfs_root *root,
3589 const struct extent_map *em,
3590 const struct list_head *logged_list,
3591 bool *ordered_io_error)
3592 {
3593 struct btrfs_ordered_extent *ordered;
3594 struct btrfs_root *log = root->log_root;
3595 u64 mod_start = em->mod_start;
3596 u64 mod_len = em->mod_len;
3597 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3598 u64 csum_offset;
3599 u64 csum_len;
3600 LIST_HEAD(ordered_sums);
3601 int ret = 0;
3602
3603 *ordered_io_error = false;
3604
3605 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3606 em->block_start == EXTENT_MAP_HOLE)
3607 return 0;
3608
3609 /*
3610 * Wait far any ordered extent that covers our extent map. If it
3611 * finishes without an error, first check and see if our csums are on
3612 * our outstanding ordered extents.
3613 */
3614 list_for_each_entry(ordered, logged_list, log_list) {
3615 struct btrfs_ordered_sum *sum;
3616
3617 if (!mod_len)
3618 break;
3619
3620 if (ordered->file_offset + ordered->len <= mod_start ||
3621 mod_start + mod_len <= ordered->file_offset)
3622 continue;
3623
3624 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3625 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3626 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3627 const u64 start = ordered->file_offset;
3628 const u64 end = ordered->file_offset + ordered->len - 1;
3629
3630 WARN_ON(ordered->inode != inode);
3631 filemap_fdatawrite_range(inode->i_mapping, start, end);
3632 }
3633
3634 wait_event(ordered->wait,
3635 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3636 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3637
3638 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3639 /*
3640 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3641 * i_mapping flags, so that the next fsync won't get
3642 * an outdated io error too.
3643 */
3644 btrfs_inode_check_errors(inode);
3645 *ordered_io_error = true;
3646 break;
3647 }
3648 /*
3649 * We are going to copy all the csums on this ordered extent, so
3650 * go ahead and adjust mod_start and mod_len in case this
3651 * ordered extent has already been logged.
3652 */
3653 if (ordered->file_offset > mod_start) {
3654 if (ordered->file_offset + ordered->len >=
3655 mod_start + mod_len)
3656 mod_len = ordered->file_offset - mod_start;
3657 /*
3658 * If we have this case
3659 *
3660 * |--------- logged extent ---------|
3661 * |----- ordered extent ----|
3662 *
3663 * Just don't mess with mod_start and mod_len, we'll
3664 * just end up logging more csums than we need and it
3665 * will be ok.
3666 */
3667 } else {
3668 if (ordered->file_offset + ordered->len <
3669 mod_start + mod_len) {
3670 mod_len = (mod_start + mod_len) -
3671 (ordered->file_offset + ordered->len);
3672 mod_start = ordered->file_offset +
3673 ordered->len;
3674 } else {
3675 mod_len = 0;
3676 }
3677 }
3678
3679 if (skip_csum)
3680 continue;
3681
3682 /*
3683 * To keep us from looping for the above case of an ordered
3684 * extent that falls inside of the logged extent.
3685 */
3686 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3687 &ordered->flags))
3688 continue;
3689
3690 if (ordered->csum_bytes_left) {
3691 btrfs_start_ordered_extent(inode, ordered, 0);
3692 wait_event(ordered->wait,
3693 ordered->csum_bytes_left == 0);
3694 }
3695
3696 list_for_each_entry(sum, &ordered->list, list) {
3697 ret = btrfs_csum_file_blocks(trans, log, sum);
3698 if (ret)
3699 break;
3700 }
3701 }
3702
3703 if (*ordered_io_error || !mod_len || ret || skip_csum)
3704 return ret;
3705
3706 if (em->compress_type) {
3707 csum_offset = 0;
3708 csum_len = max(em->block_len, em->orig_block_len);
3709 } else {
3710 csum_offset = mod_start - em->start;
3711 csum_len = mod_len;
3712 }
3713
3714 /* block start is already adjusted for the file extent offset. */
3715 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3716 em->block_start + csum_offset,
3717 em->block_start + csum_offset +
3718 csum_len - 1, &ordered_sums, 0);
3719 if (ret)
3720 return ret;
3721
3722 while (!list_empty(&ordered_sums)) {
3723 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3724 struct btrfs_ordered_sum,
3725 list);
3726 if (!ret)
3727 ret = btrfs_csum_file_blocks(trans, log, sums);
3728 list_del(&sums->list);
3729 kfree(sums);
3730 }
3731
3732 return ret;
3733 }
3734
3735 static int log_one_extent(struct btrfs_trans_handle *trans,
3736 struct inode *inode, struct btrfs_root *root,
3737 const struct extent_map *em,
3738 struct btrfs_path *path,
3739 const struct list_head *logged_list,
3740 struct btrfs_log_ctx *ctx)
3741 {
3742 struct btrfs_root *log = root->log_root;
3743 struct btrfs_file_extent_item *fi;
3744 struct extent_buffer *leaf;
3745 struct btrfs_map_token token;
3746 struct btrfs_key key;
3747 u64 extent_offset = em->start - em->orig_start;
3748 u64 block_len;
3749 int ret;
3750 int extent_inserted = 0;
3751 bool ordered_io_err = false;
3752
3753 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
3754 &ordered_io_err);
3755 if (ret)
3756 return ret;
3757
3758 if (ordered_io_err) {
3759 ctx->io_err = -EIO;
3760 return 0;
3761 }
3762
3763 btrfs_init_map_token(&token);
3764
3765 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3766 em->start + em->len, NULL, 0, 1,
3767 sizeof(*fi), &extent_inserted);
3768 if (ret)
3769 return ret;
3770
3771 if (!extent_inserted) {
3772 key.objectid = btrfs_ino(inode);
3773 key.type = BTRFS_EXTENT_DATA_KEY;
3774 key.offset = em->start;
3775
3776 ret = btrfs_insert_empty_item(trans, log, path, &key,
3777 sizeof(*fi));
3778 if (ret)
3779 return ret;
3780 }
3781 leaf = path->nodes[0];
3782 fi = btrfs_item_ptr(leaf, path->slots[0],
3783 struct btrfs_file_extent_item);
3784
3785 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
3786 &token);
3787 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3788 btrfs_set_token_file_extent_type(leaf, fi,
3789 BTRFS_FILE_EXTENT_PREALLOC,
3790 &token);
3791 else
3792 btrfs_set_token_file_extent_type(leaf, fi,
3793 BTRFS_FILE_EXTENT_REG,
3794 &token);
3795
3796 block_len = max(em->block_len, em->orig_block_len);
3797 if (em->compress_type != BTRFS_COMPRESS_NONE) {
3798 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3799 em->block_start,
3800 &token);
3801 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3802 &token);
3803 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3804 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3805 em->block_start -
3806 extent_offset, &token);
3807 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3808 &token);
3809 } else {
3810 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3811 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3812 &token);
3813 }
3814
3815 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
3816 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3817 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3818 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3819 &token);
3820 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3821 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3822 btrfs_mark_buffer_dirty(leaf);
3823
3824 btrfs_release_path(path);
3825
3826 return ret;
3827 }
3828
3829 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3830 struct btrfs_root *root,
3831 struct inode *inode,
3832 struct btrfs_path *path,
3833 struct list_head *logged_list,
3834 struct btrfs_log_ctx *ctx)
3835 {
3836 struct extent_map *em, *n;
3837 struct list_head extents;
3838 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3839 u64 test_gen;
3840 int ret = 0;
3841 int num = 0;
3842
3843 INIT_LIST_HEAD(&extents);
3844
3845 write_lock(&tree->lock);
3846 test_gen = root->fs_info->last_trans_committed;
3847
3848 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3849 list_del_init(&em->list);
3850
3851 /*
3852 * Just an arbitrary number, this can be really CPU intensive
3853 * once we start getting a lot of extents, and really once we
3854 * have a bunch of extents we just want to commit since it will
3855 * be faster.
3856 */
3857 if (++num > 32768) {
3858 list_del_init(&tree->modified_extents);
3859 ret = -EFBIG;
3860 goto process;
3861 }
3862
3863 if (em->generation <= test_gen)
3864 continue;
3865 /* Need a ref to keep it from getting evicted from cache */
3866 atomic_inc(&em->refs);
3867 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3868 list_add_tail(&em->list, &extents);
3869 num++;
3870 }
3871
3872 list_sort(NULL, &extents, extent_cmp);
3873
3874 process:
3875 while (!list_empty(&extents)) {
3876 em = list_entry(extents.next, struct extent_map, list);
3877
3878 list_del_init(&em->list);
3879
3880 /*
3881 * If we had an error we just need to delete everybody from our
3882 * private list.
3883 */
3884 if (ret) {
3885 clear_em_logging(tree, em);
3886 free_extent_map(em);
3887 continue;
3888 }
3889
3890 write_unlock(&tree->lock);
3891
3892 ret = log_one_extent(trans, inode, root, em, path, logged_list,
3893 ctx);
3894 write_lock(&tree->lock);
3895 clear_em_logging(tree, em);
3896 free_extent_map(em);
3897 }
3898 WARN_ON(!list_empty(&extents));
3899 write_unlock(&tree->lock);
3900
3901 btrfs_release_path(path);
3902 return ret;
3903 }
3904
3905 /* log a single inode in the tree log.
3906 * At least one parent directory for this inode must exist in the tree
3907 * or be logged already.
3908 *
3909 * Any items from this inode changed by the current transaction are copied
3910 * to the log tree. An extra reference is taken on any extents in this
3911 * file, allowing us to avoid a whole pile of corner cases around logging
3912 * blocks that have been removed from the tree.
3913 *
3914 * See LOG_INODE_ALL and related defines for a description of what inode_only
3915 * does.
3916 *
3917 * This handles both files and directories.
3918 */
3919 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3920 struct btrfs_root *root, struct inode *inode,
3921 int inode_only,
3922 const loff_t start,
3923 const loff_t end,
3924 struct btrfs_log_ctx *ctx)
3925 {
3926 struct btrfs_path *path;
3927 struct btrfs_path *dst_path;
3928 struct btrfs_key min_key;
3929 struct btrfs_key max_key;
3930 struct btrfs_root *log = root->log_root;
3931 struct extent_buffer *src = NULL;
3932 LIST_HEAD(logged_list);
3933 u64 last_extent = 0;
3934 int err = 0;
3935 int ret;
3936 int nritems;
3937 int ins_start_slot = 0;
3938 int ins_nr;
3939 bool fast_search = false;
3940 u64 ino = btrfs_ino(inode);
3941 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3942
3943 path = btrfs_alloc_path();
3944 if (!path)
3945 return -ENOMEM;
3946 dst_path = btrfs_alloc_path();
3947 if (!dst_path) {
3948 btrfs_free_path(path);
3949 return -ENOMEM;
3950 }
3951
3952 min_key.objectid = ino;
3953 min_key.type = BTRFS_INODE_ITEM_KEY;
3954 min_key.offset = 0;
3955
3956 max_key.objectid = ino;
3957
3958
3959 /* today the code can only do partial logging of directories */
3960 if (S_ISDIR(inode->i_mode) ||
3961 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3962 &BTRFS_I(inode)->runtime_flags) &&
3963 inode_only == LOG_INODE_EXISTS))
3964 max_key.type = BTRFS_XATTR_ITEM_KEY;
3965 else
3966 max_key.type = (u8)-1;
3967 max_key.offset = (u64)-1;
3968
3969 /* Only run delayed items if we are a dir or a new file */
3970 if (S_ISDIR(inode->i_mode) ||
3971 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3972 ret = btrfs_commit_inode_delayed_items(trans, inode);
3973 if (ret) {
3974 btrfs_free_path(path);
3975 btrfs_free_path(dst_path);
3976 return ret;
3977 }
3978 }
3979
3980 mutex_lock(&BTRFS_I(inode)->log_mutex);
3981
3982 btrfs_get_logged_extents(inode, &logged_list, start, end);
3983
3984 /*
3985 * a brute force approach to making sure we get the most uptodate
3986 * copies of everything.
3987 */
3988 if (S_ISDIR(inode->i_mode)) {
3989 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3990
3991 if (inode_only == LOG_INODE_EXISTS)
3992 max_key_type = BTRFS_XATTR_ITEM_KEY;
3993 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3994 } else {
3995 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3996 &BTRFS_I(inode)->runtime_flags)) {
3997 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3998 &BTRFS_I(inode)->runtime_flags);
3999 ret = btrfs_truncate_inode_items(trans, log,
4000 inode, 0, 0);
4001 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4002 &BTRFS_I(inode)->runtime_flags) ||
4003 inode_only == LOG_INODE_EXISTS) {
4004 if (inode_only == LOG_INODE_ALL)
4005 fast_search = true;
4006 max_key.type = BTRFS_XATTR_ITEM_KEY;
4007 ret = drop_objectid_items(trans, log, path, ino,
4008 max_key.type);
4009 } else {
4010 if (inode_only == LOG_INODE_ALL)
4011 fast_search = true;
4012 ret = log_inode_item(trans, log, dst_path, inode);
4013 if (ret) {
4014 err = ret;
4015 goto out_unlock;
4016 }
4017 goto log_extents;
4018 }
4019
4020 }
4021 if (ret) {
4022 err = ret;
4023 goto out_unlock;
4024 }
4025
4026 while (1) {
4027 ins_nr = 0;
4028 ret = btrfs_search_forward(root, &min_key,
4029 path, trans->transid);
4030 if (ret != 0)
4031 break;
4032 again:
4033 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4034 if (min_key.objectid != ino)
4035 break;
4036 if (min_key.type > max_key.type)
4037 break;
4038
4039 src = path->nodes[0];
4040 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4041 ins_nr++;
4042 goto next_slot;
4043 } else if (!ins_nr) {
4044 ins_start_slot = path->slots[0];
4045 ins_nr = 1;
4046 goto next_slot;
4047 }
4048
4049 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4050 ins_start_slot, ins_nr, inode_only);
4051 if (ret < 0) {
4052 err = ret;
4053 goto out_unlock;
4054 }
4055 if (ret) {
4056 ins_nr = 0;
4057 btrfs_release_path(path);
4058 continue;
4059 }
4060 ins_nr = 1;
4061 ins_start_slot = path->slots[0];
4062 next_slot:
4063
4064 nritems = btrfs_header_nritems(path->nodes[0]);
4065 path->slots[0]++;
4066 if (path->slots[0] < nritems) {
4067 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4068 path->slots[0]);
4069 goto again;
4070 }
4071 if (ins_nr) {
4072 ret = copy_items(trans, inode, dst_path, path,
4073 &last_extent, ins_start_slot,
4074 ins_nr, inode_only);
4075 if (ret < 0) {
4076 err = ret;
4077 goto out_unlock;
4078 }
4079 ret = 0;
4080 ins_nr = 0;
4081 }
4082 btrfs_release_path(path);
4083
4084 if (min_key.offset < (u64)-1) {
4085 min_key.offset++;
4086 } else if (min_key.type < max_key.type) {
4087 min_key.type++;
4088 min_key.offset = 0;
4089 } else {
4090 break;
4091 }
4092 }
4093 if (ins_nr) {
4094 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4095 ins_start_slot, ins_nr, inode_only);
4096 if (ret < 0) {
4097 err = ret;
4098 goto out_unlock;
4099 }
4100 ret = 0;
4101 ins_nr = 0;
4102 }
4103
4104 log_extents:
4105 btrfs_release_path(path);
4106 btrfs_release_path(dst_path);
4107 if (fast_search) {
4108 /*
4109 * Some ordered extents started by fsync might have completed
4110 * before we collected the ordered extents in logged_list, which
4111 * means they're gone, not in our logged_list nor in the inode's
4112 * ordered tree. We want the application/user space to know an
4113 * error happened while attempting to persist file data so that
4114 * it can take proper action. If such error happened, we leave
4115 * without writing to the log tree and the fsync must report the
4116 * file data write error and not commit the current transaction.
4117 */
4118 err = btrfs_inode_check_errors(inode);
4119 if (err) {
4120 ctx->io_err = err;
4121 goto out_unlock;
4122 }
4123 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4124 &logged_list, ctx);
4125 if (ret) {
4126 err = ret;
4127 goto out_unlock;
4128 }
4129 } else if (inode_only == LOG_INODE_ALL) {
4130 struct extent_map *em, *n;
4131
4132 write_lock(&em_tree->lock);
4133 /*
4134 * We can't just remove every em if we're called for a ranged
4135 * fsync - that is, one that doesn't cover the whole possible
4136 * file range (0 to LLONG_MAX). This is because we can have
4137 * em's that fall outside the range we're logging and therefore
4138 * their ordered operations haven't completed yet
4139 * (btrfs_finish_ordered_io() not invoked yet). This means we
4140 * didn't get their respective file extent item in the fs/subvol
4141 * tree yet, and need to let the next fast fsync (one which
4142 * consults the list of modified extent maps) find the em so
4143 * that it logs a matching file extent item and waits for the
4144 * respective ordered operation to complete (if it's still
4145 * running).
4146 *
4147 * Removing every em outside the range we're logging would make
4148 * the next fast fsync not log their matching file extent items,
4149 * therefore making us lose data after a log replay.
4150 */
4151 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4152 list) {
4153 const u64 mod_end = em->mod_start + em->mod_len - 1;
4154
4155 if (em->mod_start >= start && mod_end <= end)
4156 list_del_init(&em->list);
4157 }
4158 write_unlock(&em_tree->lock);
4159 }
4160
4161 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4162 ret = log_directory_changes(trans, root, inode, path, dst_path);
4163 if (ret) {
4164 err = ret;
4165 goto out_unlock;
4166 }
4167 }
4168
4169 BTRFS_I(inode)->logged_trans = trans->transid;
4170 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4171 out_unlock:
4172 if (unlikely(err))
4173 btrfs_put_logged_extents(&logged_list);
4174 else
4175 btrfs_submit_logged_extents(&logged_list, log);
4176 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4177
4178 btrfs_free_path(path);
4179 btrfs_free_path(dst_path);
4180 return err;
4181 }
4182
4183 /*
4184 * follow the dentry parent pointers up the chain and see if any
4185 * of the directories in it require a full commit before they can
4186 * be logged. Returns zero if nothing special needs to be done or 1 if
4187 * a full commit is required.
4188 */
4189 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4190 struct inode *inode,
4191 struct dentry *parent,
4192 struct super_block *sb,
4193 u64 last_committed)
4194 {
4195 int ret = 0;
4196 struct btrfs_root *root;
4197 struct dentry *old_parent = NULL;
4198 struct inode *orig_inode = inode;
4199
4200 /*
4201 * for regular files, if its inode is already on disk, we don't
4202 * have to worry about the parents at all. This is because
4203 * we can use the last_unlink_trans field to record renames
4204 * and other fun in this file.
4205 */
4206 if (S_ISREG(inode->i_mode) &&
4207 BTRFS_I(inode)->generation <= last_committed &&
4208 BTRFS_I(inode)->last_unlink_trans <= last_committed)
4209 goto out;
4210
4211 if (!S_ISDIR(inode->i_mode)) {
4212 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4213 goto out;
4214 inode = parent->d_inode;
4215 }
4216
4217 while (1) {
4218 /*
4219 * If we are logging a directory then we start with our inode,
4220 * not our parents inode, so we need to skipp setting the
4221 * logged_trans so that further down in the log code we don't
4222 * think this inode has already been logged.
4223 */
4224 if (inode != orig_inode)
4225 BTRFS_I(inode)->logged_trans = trans->transid;
4226 smp_mb();
4227
4228 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4229 root = BTRFS_I(inode)->root;
4230
4231 /*
4232 * make sure any commits to the log are forced
4233 * to be full commits
4234 */
4235 btrfs_set_log_full_commit(root->fs_info, trans);
4236 ret = 1;
4237 break;
4238 }
4239
4240 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4241 break;
4242
4243 if (IS_ROOT(parent))
4244 break;
4245
4246 parent = dget_parent(parent);
4247 dput(old_parent);
4248 old_parent = parent;
4249 inode = parent->d_inode;
4250
4251 }
4252 dput(old_parent);
4253 out:
4254 return ret;
4255 }
4256
4257 /*
4258 * helper function around btrfs_log_inode to make sure newly created
4259 * parent directories also end up in the log. A minimal inode and backref
4260 * only logging is done of any parent directories that are older than
4261 * the last committed transaction
4262 */
4263 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4264 struct btrfs_root *root, struct inode *inode,
4265 struct dentry *parent,
4266 const loff_t start,
4267 const loff_t end,
4268 int exists_only,
4269 struct btrfs_log_ctx *ctx)
4270 {
4271 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
4272 struct super_block *sb;
4273 struct dentry *old_parent = NULL;
4274 int ret = 0;
4275 u64 last_committed = root->fs_info->last_trans_committed;
4276
4277 sb = inode->i_sb;
4278
4279 if (btrfs_test_opt(root, NOTREELOG)) {
4280 ret = 1;
4281 goto end_no_trans;
4282 }
4283
4284 /*
4285 * The prev transaction commit doesn't complete, we need do
4286 * full commit by ourselves.
4287 */
4288 if (root->fs_info->last_trans_log_full_commit >
4289 root->fs_info->last_trans_committed) {
4290 ret = 1;
4291 goto end_no_trans;
4292 }
4293
4294 if (root != BTRFS_I(inode)->root ||
4295 btrfs_root_refs(&root->root_item) == 0) {
4296 ret = 1;
4297 goto end_no_trans;
4298 }
4299
4300 ret = check_parent_dirs_for_sync(trans, inode, parent,
4301 sb, last_committed);
4302 if (ret)
4303 goto end_no_trans;
4304
4305 if (btrfs_inode_in_log(inode, trans->transid)) {
4306 ret = BTRFS_NO_LOG_SYNC;
4307 goto end_no_trans;
4308 }
4309
4310 ret = start_log_trans(trans, root, ctx);
4311 if (ret)
4312 goto end_no_trans;
4313
4314 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4315 if (ret)
4316 goto end_trans;
4317
4318 /*
4319 * for regular files, if its inode is already on disk, we don't
4320 * have to worry about the parents at all. This is because
4321 * we can use the last_unlink_trans field to record renames
4322 * and other fun in this file.
4323 */
4324 if (S_ISREG(inode->i_mode) &&
4325 BTRFS_I(inode)->generation <= last_committed &&
4326 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4327 ret = 0;
4328 goto end_trans;
4329 }
4330
4331 inode_only = LOG_INODE_EXISTS;
4332 while (1) {
4333 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4334 break;
4335
4336 inode = parent->d_inode;
4337 if (root != BTRFS_I(inode)->root)
4338 break;
4339
4340 if (BTRFS_I(inode)->generation >
4341 root->fs_info->last_trans_committed) {
4342 ret = btrfs_log_inode(trans, root, inode, inode_only,
4343 0, LLONG_MAX, ctx);
4344 if (ret)
4345 goto end_trans;
4346 }
4347 if (IS_ROOT(parent))
4348 break;
4349
4350 parent = dget_parent(parent);
4351 dput(old_parent);
4352 old_parent = parent;
4353 }
4354 ret = 0;
4355 end_trans:
4356 dput(old_parent);
4357 if (ret < 0) {
4358 btrfs_set_log_full_commit(root->fs_info, trans);
4359 ret = 1;
4360 }
4361
4362 if (ret)
4363 btrfs_remove_log_ctx(root, ctx);
4364 btrfs_end_log_trans(root);
4365 end_no_trans:
4366 return ret;
4367 }
4368
4369 /*
4370 * it is not safe to log dentry if the chunk root has added new
4371 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
4372 * If this returns 1, you must commit the transaction to safely get your
4373 * data on disk.
4374 */
4375 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4376 struct btrfs_root *root, struct dentry *dentry,
4377 const loff_t start,
4378 const loff_t end,
4379 struct btrfs_log_ctx *ctx)
4380 {
4381 struct dentry *parent = dget_parent(dentry);
4382 int ret;
4383
4384 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent,
4385 start, end, 0, ctx);
4386 dput(parent);
4387
4388 return ret;
4389 }
4390
4391 /*
4392 * should be called during mount to recover any replay any log trees
4393 * from the FS
4394 */
4395 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4396 {
4397 int ret;
4398 struct btrfs_path *path;
4399 struct btrfs_trans_handle *trans;
4400 struct btrfs_key key;
4401 struct btrfs_key found_key;
4402 struct btrfs_key tmp_key;
4403 struct btrfs_root *log;
4404 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4405 struct walk_control wc = {
4406 .process_func = process_one_buffer,
4407 .stage = 0,
4408 };
4409
4410 path = btrfs_alloc_path();
4411 if (!path)
4412 return -ENOMEM;
4413
4414 fs_info->log_root_recovering = 1;
4415
4416 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4417 if (IS_ERR(trans)) {
4418 ret = PTR_ERR(trans);
4419 goto error;
4420 }
4421
4422 wc.trans = trans;
4423 wc.pin = 1;
4424
4425 ret = walk_log_tree(trans, log_root_tree, &wc);
4426 if (ret) {
4427 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4428 "recovering log root tree.");
4429 goto error;
4430 }
4431
4432 again:
4433 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4434 key.offset = (u64)-1;
4435 key.type = BTRFS_ROOT_ITEM_KEY;
4436
4437 while (1) {
4438 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4439
4440 if (ret < 0) {
4441 btrfs_error(fs_info, ret,
4442 "Couldn't find tree log root.");
4443 goto error;
4444 }
4445 if (ret > 0) {
4446 if (path->slots[0] == 0)
4447 break;
4448 path->slots[0]--;
4449 }
4450 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4451 path->slots[0]);
4452 btrfs_release_path(path);
4453 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4454 break;
4455
4456 log = btrfs_read_fs_root(log_root_tree, &found_key);
4457 if (IS_ERR(log)) {
4458 ret = PTR_ERR(log);
4459 btrfs_error(fs_info, ret,
4460 "Couldn't read tree log root.");
4461 goto error;
4462 }
4463
4464 tmp_key.objectid = found_key.offset;
4465 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4466 tmp_key.offset = (u64)-1;
4467
4468 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4469 if (IS_ERR(wc.replay_dest)) {
4470 ret = PTR_ERR(wc.replay_dest);
4471 free_extent_buffer(log->node);
4472 free_extent_buffer(log->commit_root);
4473 kfree(log);
4474 btrfs_error(fs_info, ret, "Couldn't read target root "
4475 "for tree log recovery.");
4476 goto error;
4477 }
4478
4479 wc.replay_dest->log_root = log;
4480 btrfs_record_root_in_trans(trans, wc.replay_dest);
4481 ret = walk_log_tree(trans, log, &wc);
4482
4483 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4484 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4485 path);
4486 }
4487
4488 key.offset = found_key.offset - 1;
4489 wc.replay_dest->log_root = NULL;
4490 free_extent_buffer(log->node);
4491 free_extent_buffer(log->commit_root);
4492 kfree(log);
4493
4494 if (ret)
4495 goto error;
4496
4497 if (found_key.offset == 0)
4498 break;
4499 }
4500 btrfs_release_path(path);
4501
4502 /* step one is to pin it all, step two is to replay just inodes */
4503 if (wc.pin) {
4504 wc.pin = 0;
4505 wc.process_func = replay_one_buffer;
4506 wc.stage = LOG_WALK_REPLAY_INODES;
4507 goto again;
4508 }
4509 /* step three is to replay everything */
4510 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4511 wc.stage++;
4512 goto again;
4513 }
4514
4515 btrfs_free_path(path);
4516
4517 /* step 4: commit the transaction, which also unpins the blocks */
4518 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4519 if (ret)
4520 return ret;
4521
4522 free_extent_buffer(log_root_tree->node);
4523 log_root_tree->log_root = NULL;
4524 fs_info->log_root_recovering = 0;
4525 kfree(log_root_tree);
4526
4527 return 0;
4528 error:
4529 if (wc.trans)
4530 btrfs_end_transaction(wc.trans, fs_info->tree_root);
4531 btrfs_free_path(path);
4532 return ret;
4533 }
4534
4535 /*
4536 * there are some corner cases where we want to force a full
4537 * commit instead of allowing a directory to be logged.
4538 *
4539 * They revolve around files there were unlinked from the directory, and
4540 * this function updates the parent directory so that a full commit is
4541 * properly done if it is fsync'd later after the unlinks are done.
4542 */
4543 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4544 struct inode *dir, struct inode *inode,
4545 int for_rename)
4546 {
4547 /*
4548 * when we're logging a file, if it hasn't been renamed
4549 * or unlinked, and its inode is fully committed on disk,
4550 * we don't have to worry about walking up the directory chain
4551 * to log its parents.
4552 *
4553 * So, we use the last_unlink_trans field to put this transid
4554 * into the file. When the file is logged we check it and
4555 * don't log the parents if the file is fully on disk.
4556 */
4557 if (S_ISREG(inode->i_mode))
4558 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4559
4560 /*
4561 * if this directory was already logged any new
4562 * names for this file/dir will get recorded
4563 */
4564 smp_mb();
4565 if (BTRFS_I(dir)->logged_trans == trans->transid)
4566 return;
4567
4568 /*
4569 * if the inode we're about to unlink was logged,
4570 * the log will be properly updated for any new names
4571 */
4572 if (BTRFS_I(inode)->logged_trans == trans->transid)
4573 return;
4574
4575 /*
4576 * when renaming files across directories, if the directory
4577 * there we're unlinking from gets fsync'd later on, there's
4578 * no way to find the destination directory later and fsync it
4579 * properly. So, we have to be conservative and force commits
4580 * so the new name gets discovered.
4581 */
4582 if (for_rename)
4583 goto record;
4584
4585 /* we can safely do the unlink without any special recording */
4586 return;
4587
4588 record:
4589 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4590 }
4591
4592 /*
4593 * Call this after adding a new name for a file and it will properly
4594 * update the log to reflect the new name.
4595 *
4596 * It will return zero if all goes well, and it will return 1 if a
4597 * full transaction commit is required.
4598 */
4599 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4600 struct inode *inode, struct inode *old_dir,
4601 struct dentry *parent)
4602 {
4603 struct btrfs_root * root = BTRFS_I(inode)->root;
4604
4605 /*
4606 * this will force the logging code to walk the dentry chain
4607 * up for the file
4608 */
4609 if (S_ISREG(inode->i_mode))
4610 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4611
4612 /*
4613 * if this inode hasn't been logged and directory we're renaming it
4614 * from hasn't been logged, we don't need to log it
4615 */
4616 if (BTRFS_I(inode)->logged_trans <=
4617 root->fs_info->last_trans_committed &&
4618 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4619 root->fs_info->last_trans_committed))
4620 return 0;
4621
4622 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
4623 LLONG_MAX, 1, NULL);
4624 }
4625
This page took 0.119426 seconds and 4 git commands to generate.