btrfs: fix return value check of btrfs_start_transaction()
[deliverable/linux.git] / fs / btrfs / tree-log.c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
28
29 /* magic values for the inode_only field in btrfs_log_inode:
30 *
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
33 * during log replay
34 */
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
37
38 /*
39 * directory trouble cases
40 *
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
45 *
46 * mkdir foo/some_dir
47 * normal commit
48 * rename foo/some_dir foo2/some_dir
49 * mkdir foo/some_dir
50 * fsync foo/some_dir/some_file
51 *
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
55 *
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
58 *
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
62 *
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
65 *
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
68 *
69 * mkdir f1/foo
70 * normal commit
71 * rm -rf f1/foo
72 * fsync(f1)
73 *
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
78 * ugly details.
79 */
80
81 /*
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
86 *
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
89 */
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
93
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root, struct inode *inode,
96 int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_root *log,
103 struct btrfs_path *path,
104 u64 dirid, int del_all);
105
106 /*
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
109 *
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
113 *
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
119 *
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
123 *
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
127 */
128
129 /*
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
133 */
134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 struct btrfs_root *root)
136 {
137 int ret;
138 int err = 0;
139
140 mutex_lock(&root->log_mutex);
141 if (root->log_root) {
142 if (!root->log_start_pid) {
143 root->log_start_pid = current->pid;
144 root->log_multiple_pids = false;
145 } else if (root->log_start_pid != current->pid) {
146 root->log_multiple_pids = true;
147 }
148
149 root->log_batch++;
150 atomic_inc(&root->log_writers);
151 mutex_unlock(&root->log_mutex);
152 return 0;
153 }
154 root->log_multiple_pids = false;
155 root->log_start_pid = current->pid;
156 mutex_lock(&root->fs_info->tree_log_mutex);
157 if (!root->fs_info->log_root_tree) {
158 ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 if (ret)
160 err = ret;
161 }
162 if (err == 0 && !root->log_root) {
163 ret = btrfs_add_log_tree(trans, root);
164 if (ret)
165 err = ret;
166 }
167 mutex_unlock(&root->fs_info->tree_log_mutex);
168 root->log_batch++;
169 atomic_inc(&root->log_writers);
170 mutex_unlock(&root->log_mutex);
171 return err;
172 }
173
174 /*
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
177 * in progress
178 */
179 static int join_running_log_trans(struct btrfs_root *root)
180 {
181 int ret = -ENOENT;
182
183 smp_mb();
184 if (!root->log_root)
185 return -ENOENT;
186
187 mutex_lock(&root->log_mutex);
188 if (root->log_root) {
189 ret = 0;
190 atomic_inc(&root->log_writers);
191 }
192 mutex_unlock(&root->log_mutex);
193 return ret;
194 }
195
196 /*
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
200 */
201 int btrfs_pin_log_trans(struct btrfs_root *root)
202 {
203 int ret = -ENOENT;
204
205 mutex_lock(&root->log_mutex);
206 atomic_inc(&root->log_writers);
207 mutex_unlock(&root->log_mutex);
208 return ret;
209 }
210
211 /*
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
214 */
215 int btrfs_end_log_trans(struct btrfs_root *root)
216 {
217 if (atomic_dec_and_test(&root->log_writers)) {
218 smp_mb();
219 if (waitqueue_active(&root->log_writer_wait))
220 wake_up(&root->log_writer_wait);
221 }
222 return 0;
223 }
224
225
226 /*
227 * the walk control struct is used to pass state down the chain when
228 * processing the log tree. The stage field tells us which part
229 * of the log tree processing we are currently doing. The others
230 * are state fields used for that specific part
231 */
232 struct walk_control {
233 /* should we free the extent on disk when done? This is used
234 * at transaction commit time while freeing a log tree
235 */
236 int free;
237
238 /* should we write out the extent buffer? This is used
239 * while flushing the log tree to disk during a sync
240 */
241 int write;
242
243 /* should we wait for the extent buffer io to finish? Also used
244 * while flushing the log tree to disk for a sync
245 */
246 int wait;
247
248 /* pin only walk, we record which extents on disk belong to the
249 * log trees
250 */
251 int pin;
252
253 /* what stage of the replay code we're currently in */
254 int stage;
255
256 /* the root we are currently replaying */
257 struct btrfs_root *replay_dest;
258
259 /* the trans handle for the current replay */
260 struct btrfs_trans_handle *trans;
261
262 /* the function that gets used to process blocks we find in the
263 * tree. Note the extent_buffer might not be up to date when it is
264 * passed in, and it must be checked or read if you need the data
265 * inside it
266 */
267 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 struct walk_control *wc, u64 gen);
269 };
270
271 /*
272 * process_func used to pin down extents, write them or wait on them
273 */
274 static int process_one_buffer(struct btrfs_root *log,
275 struct extent_buffer *eb,
276 struct walk_control *wc, u64 gen)
277 {
278 if (wc->pin)
279 btrfs_pin_extent(log->fs_info->extent_root,
280 eb->start, eb->len, 0);
281
282 if (btrfs_buffer_uptodate(eb, gen)) {
283 if (wc->write)
284 btrfs_write_tree_block(eb);
285 if (wc->wait)
286 btrfs_wait_tree_block_writeback(eb);
287 }
288 return 0;
289 }
290
291 /*
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
294 *
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
298 *
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
302 *
303 * If the key isn't in the destination yet, a new item is inserted.
304 */
305 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 struct btrfs_root *root,
307 struct btrfs_path *path,
308 struct extent_buffer *eb, int slot,
309 struct btrfs_key *key)
310 {
311 int ret;
312 u32 item_size;
313 u64 saved_i_size = 0;
314 int save_old_i_size = 0;
315 unsigned long src_ptr;
316 unsigned long dst_ptr;
317 int overwrite_root = 0;
318
319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 overwrite_root = 1;
321
322 item_size = btrfs_item_size_nr(eb, slot);
323 src_ptr = btrfs_item_ptr_offset(eb, slot);
324
325 /* look for the key in the destination tree */
326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 if (ret == 0) {
328 char *src_copy;
329 char *dst_copy;
330 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 path->slots[0]);
332 if (dst_size != item_size)
333 goto insert;
334
335 if (item_size == 0) {
336 btrfs_release_path(root, path);
337 return 0;
338 }
339 dst_copy = kmalloc(item_size, GFP_NOFS);
340 src_copy = kmalloc(item_size, GFP_NOFS);
341 if (!dst_copy || !src_copy) {
342 btrfs_release_path(root, path);
343 kfree(dst_copy);
344 kfree(src_copy);
345 return -ENOMEM;
346 }
347
348 read_extent_buffer(eb, src_copy, src_ptr, item_size);
349
350 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
351 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
352 item_size);
353 ret = memcmp(dst_copy, src_copy, item_size);
354
355 kfree(dst_copy);
356 kfree(src_copy);
357 /*
358 * they have the same contents, just return, this saves
359 * us from cowing blocks in the destination tree and doing
360 * extra writes that may not have been done by a previous
361 * sync
362 */
363 if (ret == 0) {
364 btrfs_release_path(root, path);
365 return 0;
366 }
367
368 }
369 insert:
370 btrfs_release_path(root, path);
371 /* try to insert the key into the destination tree */
372 ret = btrfs_insert_empty_item(trans, root, path,
373 key, item_size);
374
375 /* make sure any existing item is the correct size */
376 if (ret == -EEXIST) {
377 u32 found_size;
378 found_size = btrfs_item_size_nr(path->nodes[0],
379 path->slots[0]);
380 if (found_size > item_size) {
381 btrfs_truncate_item(trans, root, path, item_size, 1);
382 } else if (found_size < item_size) {
383 ret = btrfs_extend_item(trans, root, path,
384 item_size - found_size);
385 BUG_ON(ret);
386 }
387 } else if (ret) {
388 return ret;
389 }
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
391 path->slots[0]);
392
393 /* don't overwrite an existing inode if the generation number
394 * was logged as zero. This is done when the tree logging code
395 * is just logging an inode to make sure it exists after recovery.
396 *
397 * Also, don't overwrite i_size on directories during replay.
398 * log replay inserts and removes directory items based on the
399 * state of the tree found in the subvolume, and i_size is modified
400 * as it goes
401 */
402 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
403 struct btrfs_inode_item *src_item;
404 struct btrfs_inode_item *dst_item;
405
406 src_item = (struct btrfs_inode_item *)src_ptr;
407 dst_item = (struct btrfs_inode_item *)dst_ptr;
408
409 if (btrfs_inode_generation(eb, src_item) == 0)
410 goto no_copy;
411
412 if (overwrite_root &&
413 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
414 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
415 save_old_i_size = 1;
416 saved_i_size = btrfs_inode_size(path->nodes[0],
417 dst_item);
418 }
419 }
420
421 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
422 src_ptr, item_size);
423
424 if (save_old_i_size) {
425 struct btrfs_inode_item *dst_item;
426 dst_item = (struct btrfs_inode_item *)dst_ptr;
427 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
428 }
429
430 /* make sure the generation is filled in */
431 if (key->type == BTRFS_INODE_ITEM_KEY) {
432 struct btrfs_inode_item *dst_item;
433 dst_item = (struct btrfs_inode_item *)dst_ptr;
434 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
435 btrfs_set_inode_generation(path->nodes[0], dst_item,
436 trans->transid);
437 }
438 }
439 no_copy:
440 btrfs_mark_buffer_dirty(path->nodes[0]);
441 btrfs_release_path(root, path);
442 return 0;
443 }
444
445 /*
446 * simple helper to read an inode off the disk from a given root
447 * This can only be called for subvolume roots and not for the log
448 */
449 static noinline struct inode *read_one_inode(struct btrfs_root *root,
450 u64 objectid)
451 {
452 struct btrfs_key key;
453 struct inode *inode;
454
455 key.objectid = objectid;
456 key.type = BTRFS_INODE_ITEM_KEY;
457 key.offset = 0;
458 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
459 if (IS_ERR(inode)) {
460 inode = NULL;
461 } else if (is_bad_inode(inode)) {
462 iput(inode);
463 inode = NULL;
464 }
465 return inode;
466 }
467
468 /* replays a single extent in 'eb' at 'slot' with 'key' into the
469 * subvolume 'root'. path is released on entry and should be released
470 * on exit.
471 *
472 * extents in the log tree have not been allocated out of the extent
473 * tree yet. So, this completes the allocation, taking a reference
474 * as required if the extent already exists or creating a new extent
475 * if it isn't in the extent allocation tree yet.
476 *
477 * The extent is inserted into the file, dropping any existing extents
478 * from the file that overlap the new one.
479 */
480 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
481 struct btrfs_root *root,
482 struct btrfs_path *path,
483 struct extent_buffer *eb, int slot,
484 struct btrfs_key *key)
485 {
486 int found_type;
487 u64 mask = root->sectorsize - 1;
488 u64 extent_end;
489 u64 alloc_hint;
490 u64 start = key->offset;
491 u64 saved_nbytes;
492 struct btrfs_file_extent_item *item;
493 struct inode *inode = NULL;
494 unsigned long size;
495 int ret = 0;
496
497 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
498 found_type = btrfs_file_extent_type(eb, item);
499
500 if (found_type == BTRFS_FILE_EXTENT_REG ||
501 found_type == BTRFS_FILE_EXTENT_PREALLOC)
502 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
503 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
504 size = btrfs_file_extent_inline_len(eb, item);
505 extent_end = (start + size + mask) & ~mask;
506 } else {
507 ret = 0;
508 goto out;
509 }
510
511 inode = read_one_inode(root, key->objectid);
512 if (!inode) {
513 ret = -EIO;
514 goto out;
515 }
516
517 /*
518 * first check to see if we already have this extent in the
519 * file. This must be done before the btrfs_drop_extents run
520 * so we don't try to drop this extent.
521 */
522 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
523 start, 0);
524
525 if (ret == 0 &&
526 (found_type == BTRFS_FILE_EXTENT_REG ||
527 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
528 struct btrfs_file_extent_item cmp1;
529 struct btrfs_file_extent_item cmp2;
530 struct btrfs_file_extent_item *existing;
531 struct extent_buffer *leaf;
532
533 leaf = path->nodes[0];
534 existing = btrfs_item_ptr(leaf, path->slots[0],
535 struct btrfs_file_extent_item);
536
537 read_extent_buffer(eb, &cmp1, (unsigned long)item,
538 sizeof(cmp1));
539 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
540 sizeof(cmp2));
541
542 /*
543 * we already have a pointer to this exact extent,
544 * we don't have to do anything
545 */
546 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
547 btrfs_release_path(root, path);
548 goto out;
549 }
550 }
551 btrfs_release_path(root, path);
552
553 saved_nbytes = inode_get_bytes(inode);
554 /* drop any overlapping extents */
555 ret = btrfs_drop_extents(trans, inode, start, extent_end,
556 &alloc_hint, 1);
557 BUG_ON(ret);
558
559 if (found_type == BTRFS_FILE_EXTENT_REG ||
560 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
561 u64 offset;
562 unsigned long dest_offset;
563 struct btrfs_key ins;
564
565 ret = btrfs_insert_empty_item(trans, root, path, key,
566 sizeof(*item));
567 BUG_ON(ret);
568 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
569 path->slots[0]);
570 copy_extent_buffer(path->nodes[0], eb, dest_offset,
571 (unsigned long)item, sizeof(*item));
572
573 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
574 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
575 ins.type = BTRFS_EXTENT_ITEM_KEY;
576 offset = key->offset - btrfs_file_extent_offset(eb, item);
577
578 if (ins.objectid > 0) {
579 u64 csum_start;
580 u64 csum_end;
581 LIST_HEAD(ordered_sums);
582 /*
583 * is this extent already allocated in the extent
584 * allocation tree? If so, just add a reference
585 */
586 ret = btrfs_lookup_extent(root, ins.objectid,
587 ins.offset);
588 if (ret == 0) {
589 ret = btrfs_inc_extent_ref(trans, root,
590 ins.objectid, ins.offset,
591 0, root->root_key.objectid,
592 key->objectid, offset);
593 } else {
594 /*
595 * insert the extent pointer in the extent
596 * allocation tree
597 */
598 ret = btrfs_alloc_logged_file_extent(trans,
599 root, root->root_key.objectid,
600 key->objectid, offset, &ins);
601 BUG_ON(ret);
602 }
603 btrfs_release_path(root, path);
604
605 if (btrfs_file_extent_compression(eb, item)) {
606 csum_start = ins.objectid;
607 csum_end = csum_start + ins.offset;
608 } else {
609 csum_start = ins.objectid +
610 btrfs_file_extent_offset(eb, item);
611 csum_end = csum_start +
612 btrfs_file_extent_num_bytes(eb, item);
613 }
614
615 ret = btrfs_lookup_csums_range(root->log_root,
616 csum_start, csum_end - 1,
617 &ordered_sums);
618 BUG_ON(ret);
619 while (!list_empty(&ordered_sums)) {
620 struct btrfs_ordered_sum *sums;
621 sums = list_entry(ordered_sums.next,
622 struct btrfs_ordered_sum,
623 list);
624 ret = btrfs_csum_file_blocks(trans,
625 root->fs_info->csum_root,
626 sums);
627 BUG_ON(ret);
628 list_del(&sums->list);
629 kfree(sums);
630 }
631 } else {
632 btrfs_release_path(root, path);
633 }
634 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
635 /* inline extents are easy, we just overwrite them */
636 ret = overwrite_item(trans, root, path, eb, slot, key);
637 BUG_ON(ret);
638 }
639
640 inode_set_bytes(inode, saved_nbytes);
641 btrfs_update_inode(trans, root, inode);
642 out:
643 if (inode)
644 iput(inode);
645 return ret;
646 }
647
648 /*
649 * when cleaning up conflicts between the directory names in the
650 * subvolume, directory names in the log and directory names in the
651 * inode back references, we may have to unlink inodes from directories.
652 *
653 * This is a helper function to do the unlink of a specific directory
654 * item
655 */
656 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path,
659 struct inode *dir,
660 struct btrfs_dir_item *di)
661 {
662 struct inode *inode;
663 char *name;
664 int name_len;
665 struct extent_buffer *leaf;
666 struct btrfs_key location;
667 int ret;
668
669 leaf = path->nodes[0];
670
671 btrfs_dir_item_key_to_cpu(leaf, di, &location);
672 name_len = btrfs_dir_name_len(leaf, di);
673 name = kmalloc(name_len, GFP_NOFS);
674 if (!name)
675 return -ENOMEM;
676
677 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
678 btrfs_release_path(root, path);
679
680 inode = read_one_inode(root, location.objectid);
681 BUG_ON(!inode);
682
683 ret = link_to_fixup_dir(trans, root, path, location.objectid);
684 BUG_ON(ret);
685
686 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
687 BUG_ON(ret);
688 kfree(name);
689
690 iput(inode);
691 return ret;
692 }
693
694 /*
695 * helper function to see if a given name and sequence number found
696 * in an inode back reference are already in a directory and correctly
697 * point to this inode
698 */
699 static noinline int inode_in_dir(struct btrfs_root *root,
700 struct btrfs_path *path,
701 u64 dirid, u64 objectid, u64 index,
702 const char *name, int name_len)
703 {
704 struct btrfs_dir_item *di;
705 struct btrfs_key location;
706 int match = 0;
707
708 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
709 index, name, name_len, 0);
710 if (di && !IS_ERR(di)) {
711 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
712 if (location.objectid != objectid)
713 goto out;
714 } else
715 goto out;
716 btrfs_release_path(root, path);
717
718 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
719 if (di && !IS_ERR(di)) {
720 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
721 if (location.objectid != objectid)
722 goto out;
723 } else
724 goto out;
725 match = 1;
726 out:
727 btrfs_release_path(root, path);
728 return match;
729 }
730
731 /*
732 * helper function to check a log tree for a named back reference in
733 * an inode. This is used to decide if a back reference that is
734 * found in the subvolume conflicts with what we find in the log.
735 *
736 * inode backreferences may have multiple refs in a single item,
737 * during replay we process one reference at a time, and we don't
738 * want to delete valid links to a file from the subvolume if that
739 * link is also in the log.
740 */
741 static noinline int backref_in_log(struct btrfs_root *log,
742 struct btrfs_key *key,
743 char *name, int namelen)
744 {
745 struct btrfs_path *path;
746 struct btrfs_inode_ref *ref;
747 unsigned long ptr;
748 unsigned long ptr_end;
749 unsigned long name_ptr;
750 int found_name_len;
751 int item_size;
752 int ret;
753 int match = 0;
754
755 path = btrfs_alloc_path();
756 if (!path)
757 return -ENOMEM;
758
759 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
760 if (ret != 0)
761 goto out;
762
763 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
764 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
765 ptr_end = ptr + item_size;
766 while (ptr < ptr_end) {
767 ref = (struct btrfs_inode_ref *)ptr;
768 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
769 if (found_name_len == namelen) {
770 name_ptr = (unsigned long)(ref + 1);
771 ret = memcmp_extent_buffer(path->nodes[0], name,
772 name_ptr, namelen);
773 if (ret == 0) {
774 match = 1;
775 goto out;
776 }
777 }
778 ptr = (unsigned long)(ref + 1) + found_name_len;
779 }
780 out:
781 btrfs_free_path(path);
782 return match;
783 }
784
785
786 /*
787 * replay one inode back reference item found in the log tree.
788 * eb, slot and key refer to the buffer and key found in the log tree.
789 * root is the destination we are replaying into, and path is for temp
790 * use by this function. (it should be released on return).
791 */
792 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
793 struct btrfs_root *root,
794 struct btrfs_root *log,
795 struct btrfs_path *path,
796 struct extent_buffer *eb, int slot,
797 struct btrfs_key *key)
798 {
799 struct inode *dir;
800 int ret;
801 struct btrfs_inode_ref *ref;
802 struct btrfs_dir_item *di;
803 struct inode *inode;
804 char *name;
805 int namelen;
806 unsigned long ref_ptr;
807 unsigned long ref_end;
808
809 /*
810 * it is possible that we didn't log all the parent directories
811 * for a given inode. If we don't find the dir, just don't
812 * copy the back ref in. The link count fixup code will take
813 * care of the rest
814 */
815 dir = read_one_inode(root, key->offset);
816 if (!dir)
817 return -ENOENT;
818
819 inode = read_one_inode(root, key->objectid);
820 BUG_ON(!inode);
821
822 ref_ptr = btrfs_item_ptr_offset(eb, slot);
823 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
824
825 again:
826 ref = (struct btrfs_inode_ref *)ref_ptr;
827
828 namelen = btrfs_inode_ref_name_len(eb, ref);
829 name = kmalloc(namelen, GFP_NOFS);
830 BUG_ON(!name);
831
832 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
833
834 /* if we already have a perfect match, we're done */
835 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
836 btrfs_inode_ref_index(eb, ref),
837 name, namelen)) {
838 goto out;
839 }
840
841 /*
842 * look for a conflicting back reference in the metadata.
843 * if we find one we have to unlink that name of the file
844 * before we add our new link. Later on, we overwrite any
845 * existing back reference, and we don't want to create
846 * dangling pointers in the directory.
847 */
848 conflict_again:
849 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
850 if (ret == 0) {
851 char *victim_name;
852 int victim_name_len;
853 struct btrfs_inode_ref *victim_ref;
854 unsigned long ptr;
855 unsigned long ptr_end;
856 struct extent_buffer *leaf = path->nodes[0];
857
858 /* are we trying to overwrite a back ref for the root directory
859 * if so, just jump out, we're done
860 */
861 if (key->objectid == key->offset)
862 goto out_nowrite;
863
864 /* check all the names in this back reference to see
865 * if they are in the log. if so, we allow them to stay
866 * otherwise they must be unlinked as a conflict
867 */
868 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
869 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
870 while (ptr < ptr_end) {
871 victim_ref = (struct btrfs_inode_ref *)ptr;
872 victim_name_len = btrfs_inode_ref_name_len(leaf,
873 victim_ref);
874 victim_name = kmalloc(victim_name_len, GFP_NOFS);
875 BUG_ON(!victim_name);
876
877 read_extent_buffer(leaf, victim_name,
878 (unsigned long)(victim_ref + 1),
879 victim_name_len);
880
881 if (!backref_in_log(log, key, victim_name,
882 victim_name_len)) {
883 btrfs_inc_nlink(inode);
884 btrfs_release_path(root, path);
885
886 ret = btrfs_unlink_inode(trans, root, dir,
887 inode, victim_name,
888 victim_name_len);
889 kfree(victim_name);
890 btrfs_release_path(root, path);
891 goto conflict_again;
892 }
893 kfree(victim_name);
894 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
895 }
896 BUG_ON(ret);
897 }
898 btrfs_release_path(root, path);
899
900 /* look for a conflicting sequence number */
901 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
902 btrfs_inode_ref_index(eb, ref),
903 name, namelen, 0);
904 if (di && !IS_ERR(di)) {
905 ret = drop_one_dir_item(trans, root, path, dir, di);
906 BUG_ON(ret);
907 }
908 btrfs_release_path(root, path);
909
910
911 /* look for a conflicting name */
912 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
913 name, namelen, 0);
914 if (di && !IS_ERR(di)) {
915 ret = drop_one_dir_item(trans, root, path, dir, di);
916 BUG_ON(ret);
917 }
918 btrfs_release_path(root, path);
919
920 /* insert our name */
921 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
922 btrfs_inode_ref_index(eb, ref));
923 BUG_ON(ret);
924
925 btrfs_update_inode(trans, root, inode);
926
927 out:
928 ref_ptr = (unsigned long)(ref + 1) + namelen;
929 kfree(name);
930 if (ref_ptr < ref_end)
931 goto again;
932
933 /* finally write the back reference in the inode */
934 ret = overwrite_item(trans, root, path, eb, slot, key);
935 BUG_ON(ret);
936
937 out_nowrite:
938 btrfs_release_path(root, path);
939 iput(dir);
940 iput(inode);
941 return 0;
942 }
943
944 static int insert_orphan_item(struct btrfs_trans_handle *trans,
945 struct btrfs_root *root, u64 offset)
946 {
947 int ret;
948 ret = btrfs_find_orphan_item(root, offset);
949 if (ret > 0)
950 ret = btrfs_insert_orphan_item(trans, root, offset);
951 return ret;
952 }
953
954
955 /*
956 * There are a few corners where the link count of the file can't
957 * be properly maintained during replay. So, instead of adding
958 * lots of complexity to the log code, we just scan the backrefs
959 * for any file that has been through replay.
960 *
961 * The scan will update the link count on the inode to reflect the
962 * number of back refs found. If it goes down to zero, the iput
963 * will free the inode.
964 */
965 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
966 struct btrfs_root *root,
967 struct inode *inode)
968 {
969 struct btrfs_path *path;
970 int ret;
971 struct btrfs_key key;
972 u64 nlink = 0;
973 unsigned long ptr;
974 unsigned long ptr_end;
975 int name_len;
976
977 key.objectid = inode->i_ino;
978 key.type = BTRFS_INODE_REF_KEY;
979 key.offset = (u64)-1;
980
981 path = btrfs_alloc_path();
982 if (!path)
983 return -ENOMEM;
984
985 while (1) {
986 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
987 if (ret < 0)
988 break;
989 if (ret > 0) {
990 if (path->slots[0] == 0)
991 break;
992 path->slots[0]--;
993 }
994 btrfs_item_key_to_cpu(path->nodes[0], &key,
995 path->slots[0]);
996 if (key.objectid != inode->i_ino ||
997 key.type != BTRFS_INODE_REF_KEY)
998 break;
999 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1000 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1001 path->slots[0]);
1002 while (ptr < ptr_end) {
1003 struct btrfs_inode_ref *ref;
1004
1005 ref = (struct btrfs_inode_ref *)ptr;
1006 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1007 ref);
1008 ptr = (unsigned long)(ref + 1) + name_len;
1009 nlink++;
1010 }
1011
1012 if (key.offset == 0)
1013 break;
1014 key.offset--;
1015 btrfs_release_path(root, path);
1016 }
1017 btrfs_release_path(root, path);
1018 if (nlink != inode->i_nlink) {
1019 inode->i_nlink = nlink;
1020 btrfs_update_inode(trans, root, inode);
1021 }
1022 BTRFS_I(inode)->index_cnt = (u64)-1;
1023
1024 if (inode->i_nlink == 0) {
1025 if (S_ISDIR(inode->i_mode)) {
1026 ret = replay_dir_deletes(trans, root, NULL, path,
1027 inode->i_ino, 1);
1028 BUG_ON(ret);
1029 }
1030 ret = insert_orphan_item(trans, root, inode->i_ino);
1031 BUG_ON(ret);
1032 }
1033 btrfs_free_path(path);
1034
1035 return 0;
1036 }
1037
1038 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1039 struct btrfs_root *root,
1040 struct btrfs_path *path)
1041 {
1042 int ret;
1043 struct btrfs_key key;
1044 struct inode *inode;
1045
1046 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1047 key.type = BTRFS_ORPHAN_ITEM_KEY;
1048 key.offset = (u64)-1;
1049 while (1) {
1050 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1051 if (ret < 0)
1052 break;
1053
1054 if (ret == 1) {
1055 if (path->slots[0] == 0)
1056 break;
1057 path->slots[0]--;
1058 }
1059
1060 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1061 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1062 key.type != BTRFS_ORPHAN_ITEM_KEY)
1063 break;
1064
1065 ret = btrfs_del_item(trans, root, path);
1066 BUG_ON(ret);
1067
1068 btrfs_release_path(root, path);
1069 inode = read_one_inode(root, key.offset);
1070 BUG_ON(!inode);
1071
1072 ret = fixup_inode_link_count(trans, root, inode);
1073 BUG_ON(ret);
1074
1075 iput(inode);
1076
1077 /*
1078 * fixup on a directory may create new entries,
1079 * make sure we always look for the highset possible
1080 * offset
1081 */
1082 key.offset = (u64)-1;
1083 }
1084 btrfs_release_path(root, path);
1085 return 0;
1086 }
1087
1088
1089 /*
1090 * record a given inode in the fixup dir so we can check its link
1091 * count when replay is done. The link count is incremented here
1092 * so the inode won't go away until we check it
1093 */
1094 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1095 struct btrfs_root *root,
1096 struct btrfs_path *path,
1097 u64 objectid)
1098 {
1099 struct btrfs_key key;
1100 int ret = 0;
1101 struct inode *inode;
1102
1103 inode = read_one_inode(root, objectid);
1104 BUG_ON(!inode);
1105
1106 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1107 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1108 key.offset = objectid;
1109
1110 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1111
1112 btrfs_release_path(root, path);
1113 if (ret == 0) {
1114 btrfs_inc_nlink(inode);
1115 btrfs_update_inode(trans, root, inode);
1116 } else if (ret == -EEXIST) {
1117 ret = 0;
1118 } else {
1119 BUG();
1120 }
1121 iput(inode);
1122
1123 return ret;
1124 }
1125
1126 /*
1127 * when replaying the log for a directory, we only insert names
1128 * for inodes that actually exist. This means an fsync on a directory
1129 * does not implicitly fsync all the new files in it
1130 */
1131 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1132 struct btrfs_root *root,
1133 struct btrfs_path *path,
1134 u64 dirid, u64 index,
1135 char *name, int name_len, u8 type,
1136 struct btrfs_key *location)
1137 {
1138 struct inode *inode;
1139 struct inode *dir;
1140 int ret;
1141
1142 inode = read_one_inode(root, location->objectid);
1143 if (!inode)
1144 return -ENOENT;
1145
1146 dir = read_one_inode(root, dirid);
1147 if (!dir) {
1148 iput(inode);
1149 return -EIO;
1150 }
1151 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1152
1153 /* FIXME, put inode into FIXUP list */
1154
1155 iput(inode);
1156 iput(dir);
1157 return ret;
1158 }
1159
1160 /*
1161 * take a single entry in a log directory item and replay it into
1162 * the subvolume.
1163 *
1164 * if a conflicting item exists in the subdirectory already,
1165 * the inode it points to is unlinked and put into the link count
1166 * fix up tree.
1167 *
1168 * If a name from the log points to a file or directory that does
1169 * not exist in the FS, it is skipped. fsyncs on directories
1170 * do not force down inodes inside that directory, just changes to the
1171 * names or unlinks in a directory.
1172 */
1173 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1174 struct btrfs_root *root,
1175 struct btrfs_path *path,
1176 struct extent_buffer *eb,
1177 struct btrfs_dir_item *di,
1178 struct btrfs_key *key)
1179 {
1180 char *name;
1181 int name_len;
1182 struct btrfs_dir_item *dst_di;
1183 struct btrfs_key found_key;
1184 struct btrfs_key log_key;
1185 struct inode *dir;
1186 u8 log_type;
1187 int exists;
1188 int ret;
1189
1190 dir = read_one_inode(root, key->objectid);
1191 BUG_ON(!dir);
1192
1193 name_len = btrfs_dir_name_len(eb, di);
1194 name = kmalloc(name_len, GFP_NOFS);
1195 if (!name)
1196 return -ENOMEM;
1197
1198 log_type = btrfs_dir_type(eb, di);
1199 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1200 name_len);
1201
1202 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1203 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1204 if (exists == 0)
1205 exists = 1;
1206 else
1207 exists = 0;
1208 btrfs_release_path(root, path);
1209
1210 if (key->type == BTRFS_DIR_ITEM_KEY) {
1211 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1212 name, name_len, 1);
1213 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1214 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1215 key->objectid,
1216 key->offset, name,
1217 name_len, 1);
1218 } else {
1219 BUG();
1220 }
1221 if (!dst_di || IS_ERR(dst_di)) {
1222 /* we need a sequence number to insert, so we only
1223 * do inserts for the BTRFS_DIR_INDEX_KEY types
1224 */
1225 if (key->type != BTRFS_DIR_INDEX_KEY)
1226 goto out;
1227 goto insert;
1228 }
1229
1230 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1231 /* the existing item matches the logged item */
1232 if (found_key.objectid == log_key.objectid &&
1233 found_key.type == log_key.type &&
1234 found_key.offset == log_key.offset &&
1235 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1236 goto out;
1237 }
1238
1239 /*
1240 * don't drop the conflicting directory entry if the inode
1241 * for the new entry doesn't exist
1242 */
1243 if (!exists)
1244 goto out;
1245
1246 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1247 BUG_ON(ret);
1248
1249 if (key->type == BTRFS_DIR_INDEX_KEY)
1250 goto insert;
1251 out:
1252 btrfs_release_path(root, path);
1253 kfree(name);
1254 iput(dir);
1255 return 0;
1256
1257 insert:
1258 btrfs_release_path(root, path);
1259 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1260 name, name_len, log_type, &log_key);
1261
1262 BUG_ON(ret && ret != -ENOENT);
1263 goto out;
1264 }
1265
1266 /*
1267 * find all the names in a directory item and reconcile them into
1268 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1269 * one name in a directory item, but the same code gets used for
1270 * both directory index types
1271 */
1272 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1273 struct btrfs_root *root,
1274 struct btrfs_path *path,
1275 struct extent_buffer *eb, int slot,
1276 struct btrfs_key *key)
1277 {
1278 int ret;
1279 u32 item_size = btrfs_item_size_nr(eb, slot);
1280 struct btrfs_dir_item *di;
1281 int name_len;
1282 unsigned long ptr;
1283 unsigned long ptr_end;
1284
1285 ptr = btrfs_item_ptr_offset(eb, slot);
1286 ptr_end = ptr + item_size;
1287 while (ptr < ptr_end) {
1288 di = (struct btrfs_dir_item *)ptr;
1289 name_len = btrfs_dir_name_len(eb, di);
1290 ret = replay_one_name(trans, root, path, eb, di, key);
1291 BUG_ON(ret);
1292 ptr = (unsigned long)(di + 1);
1293 ptr += name_len;
1294 }
1295 return 0;
1296 }
1297
1298 /*
1299 * directory replay has two parts. There are the standard directory
1300 * items in the log copied from the subvolume, and range items
1301 * created in the log while the subvolume was logged.
1302 *
1303 * The range items tell us which parts of the key space the log
1304 * is authoritative for. During replay, if a key in the subvolume
1305 * directory is in a logged range item, but not actually in the log
1306 * that means it was deleted from the directory before the fsync
1307 * and should be removed.
1308 */
1309 static noinline int find_dir_range(struct btrfs_root *root,
1310 struct btrfs_path *path,
1311 u64 dirid, int key_type,
1312 u64 *start_ret, u64 *end_ret)
1313 {
1314 struct btrfs_key key;
1315 u64 found_end;
1316 struct btrfs_dir_log_item *item;
1317 int ret;
1318 int nritems;
1319
1320 if (*start_ret == (u64)-1)
1321 return 1;
1322
1323 key.objectid = dirid;
1324 key.type = key_type;
1325 key.offset = *start_ret;
1326
1327 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1328 if (ret < 0)
1329 goto out;
1330 if (ret > 0) {
1331 if (path->slots[0] == 0)
1332 goto out;
1333 path->slots[0]--;
1334 }
1335 if (ret != 0)
1336 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1337
1338 if (key.type != key_type || key.objectid != dirid) {
1339 ret = 1;
1340 goto next;
1341 }
1342 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1343 struct btrfs_dir_log_item);
1344 found_end = btrfs_dir_log_end(path->nodes[0], item);
1345
1346 if (*start_ret >= key.offset && *start_ret <= found_end) {
1347 ret = 0;
1348 *start_ret = key.offset;
1349 *end_ret = found_end;
1350 goto out;
1351 }
1352 ret = 1;
1353 next:
1354 /* check the next slot in the tree to see if it is a valid item */
1355 nritems = btrfs_header_nritems(path->nodes[0]);
1356 if (path->slots[0] >= nritems) {
1357 ret = btrfs_next_leaf(root, path);
1358 if (ret)
1359 goto out;
1360 } else {
1361 path->slots[0]++;
1362 }
1363
1364 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1365
1366 if (key.type != key_type || key.objectid != dirid) {
1367 ret = 1;
1368 goto out;
1369 }
1370 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1371 struct btrfs_dir_log_item);
1372 found_end = btrfs_dir_log_end(path->nodes[0], item);
1373 *start_ret = key.offset;
1374 *end_ret = found_end;
1375 ret = 0;
1376 out:
1377 btrfs_release_path(root, path);
1378 return ret;
1379 }
1380
1381 /*
1382 * this looks for a given directory item in the log. If the directory
1383 * item is not in the log, the item is removed and the inode it points
1384 * to is unlinked
1385 */
1386 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1387 struct btrfs_root *root,
1388 struct btrfs_root *log,
1389 struct btrfs_path *path,
1390 struct btrfs_path *log_path,
1391 struct inode *dir,
1392 struct btrfs_key *dir_key)
1393 {
1394 int ret;
1395 struct extent_buffer *eb;
1396 int slot;
1397 u32 item_size;
1398 struct btrfs_dir_item *di;
1399 struct btrfs_dir_item *log_di;
1400 int name_len;
1401 unsigned long ptr;
1402 unsigned long ptr_end;
1403 char *name;
1404 struct inode *inode;
1405 struct btrfs_key location;
1406
1407 again:
1408 eb = path->nodes[0];
1409 slot = path->slots[0];
1410 item_size = btrfs_item_size_nr(eb, slot);
1411 ptr = btrfs_item_ptr_offset(eb, slot);
1412 ptr_end = ptr + item_size;
1413 while (ptr < ptr_end) {
1414 di = (struct btrfs_dir_item *)ptr;
1415 name_len = btrfs_dir_name_len(eb, di);
1416 name = kmalloc(name_len, GFP_NOFS);
1417 if (!name) {
1418 ret = -ENOMEM;
1419 goto out;
1420 }
1421 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1422 name_len);
1423 log_di = NULL;
1424 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1425 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1426 dir_key->objectid,
1427 name, name_len, 0);
1428 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1429 log_di = btrfs_lookup_dir_index_item(trans, log,
1430 log_path,
1431 dir_key->objectid,
1432 dir_key->offset,
1433 name, name_len, 0);
1434 }
1435 if (!log_di || IS_ERR(log_di)) {
1436 btrfs_dir_item_key_to_cpu(eb, di, &location);
1437 btrfs_release_path(root, path);
1438 btrfs_release_path(log, log_path);
1439 inode = read_one_inode(root, location.objectid);
1440 BUG_ON(!inode);
1441
1442 ret = link_to_fixup_dir(trans, root,
1443 path, location.objectid);
1444 BUG_ON(ret);
1445 btrfs_inc_nlink(inode);
1446 ret = btrfs_unlink_inode(trans, root, dir, inode,
1447 name, name_len);
1448 BUG_ON(ret);
1449 kfree(name);
1450 iput(inode);
1451
1452 /* there might still be more names under this key
1453 * check and repeat if required
1454 */
1455 ret = btrfs_search_slot(NULL, root, dir_key, path,
1456 0, 0);
1457 if (ret == 0)
1458 goto again;
1459 ret = 0;
1460 goto out;
1461 }
1462 btrfs_release_path(log, log_path);
1463 kfree(name);
1464
1465 ptr = (unsigned long)(di + 1);
1466 ptr += name_len;
1467 }
1468 ret = 0;
1469 out:
1470 btrfs_release_path(root, path);
1471 btrfs_release_path(log, log_path);
1472 return ret;
1473 }
1474
1475 /*
1476 * deletion replay happens before we copy any new directory items
1477 * out of the log or out of backreferences from inodes. It
1478 * scans the log to find ranges of keys that log is authoritative for,
1479 * and then scans the directory to find items in those ranges that are
1480 * not present in the log.
1481 *
1482 * Anything we don't find in the log is unlinked and removed from the
1483 * directory.
1484 */
1485 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1486 struct btrfs_root *root,
1487 struct btrfs_root *log,
1488 struct btrfs_path *path,
1489 u64 dirid, int del_all)
1490 {
1491 u64 range_start;
1492 u64 range_end;
1493 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1494 int ret = 0;
1495 struct btrfs_key dir_key;
1496 struct btrfs_key found_key;
1497 struct btrfs_path *log_path;
1498 struct inode *dir;
1499
1500 dir_key.objectid = dirid;
1501 dir_key.type = BTRFS_DIR_ITEM_KEY;
1502 log_path = btrfs_alloc_path();
1503 if (!log_path)
1504 return -ENOMEM;
1505
1506 dir = read_one_inode(root, dirid);
1507 /* it isn't an error if the inode isn't there, that can happen
1508 * because we replay the deletes before we copy in the inode item
1509 * from the log
1510 */
1511 if (!dir) {
1512 btrfs_free_path(log_path);
1513 return 0;
1514 }
1515 again:
1516 range_start = 0;
1517 range_end = 0;
1518 while (1) {
1519 if (del_all)
1520 range_end = (u64)-1;
1521 else {
1522 ret = find_dir_range(log, path, dirid, key_type,
1523 &range_start, &range_end);
1524 if (ret != 0)
1525 break;
1526 }
1527
1528 dir_key.offset = range_start;
1529 while (1) {
1530 int nritems;
1531 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1532 0, 0);
1533 if (ret < 0)
1534 goto out;
1535
1536 nritems = btrfs_header_nritems(path->nodes[0]);
1537 if (path->slots[0] >= nritems) {
1538 ret = btrfs_next_leaf(root, path);
1539 if (ret)
1540 break;
1541 }
1542 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1543 path->slots[0]);
1544 if (found_key.objectid != dirid ||
1545 found_key.type != dir_key.type)
1546 goto next_type;
1547
1548 if (found_key.offset > range_end)
1549 break;
1550
1551 ret = check_item_in_log(trans, root, log, path,
1552 log_path, dir,
1553 &found_key);
1554 BUG_ON(ret);
1555 if (found_key.offset == (u64)-1)
1556 break;
1557 dir_key.offset = found_key.offset + 1;
1558 }
1559 btrfs_release_path(root, path);
1560 if (range_end == (u64)-1)
1561 break;
1562 range_start = range_end + 1;
1563 }
1564
1565 next_type:
1566 ret = 0;
1567 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1568 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1569 dir_key.type = BTRFS_DIR_INDEX_KEY;
1570 btrfs_release_path(root, path);
1571 goto again;
1572 }
1573 out:
1574 btrfs_release_path(root, path);
1575 btrfs_free_path(log_path);
1576 iput(dir);
1577 return ret;
1578 }
1579
1580 /*
1581 * the process_func used to replay items from the log tree. This
1582 * gets called in two different stages. The first stage just looks
1583 * for inodes and makes sure they are all copied into the subvolume.
1584 *
1585 * The second stage copies all the other item types from the log into
1586 * the subvolume. The two stage approach is slower, but gets rid of
1587 * lots of complexity around inodes referencing other inodes that exist
1588 * only in the log (references come from either directory items or inode
1589 * back refs).
1590 */
1591 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1592 struct walk_control *wc, u64 gen)
1593 {
1594 int nritems;
1595 struct btrfs_path *path;
1596 struct btrfs_root *root = wc->replay_dest;
1597 struct btrfs_key key;
1598 int level;
1599 int i;
1600 int ret;
1601
1602 btrfs_read_buffer(eb, gen);
1603
1604 level = btrfs_header_level(eb);
1605
1606 if (level != 0)
1607 return 0;
1608
1609 path = btrfs_alloc_path();
1610 BUG_ON(!path);
1611
1612 nritems = btrfs_header_nritems(eb);
1613 for (i = 0; i < nritems; i++) {
1614 btrfs_item_key_to_cpu(eb, &key, i);
1615
1616 /* inode keys are done during the first stage */
1617 if (key.type == BTRFS_INODE_ITEM_KEY &&
1618 wc->stage == LOG_WALK_REPLAY_INODES) {
1619 struct btrfs_inode_item *inode_item;
1620 u32 mode;
1621
1622 inode_item = btrfs_item_ptr(eb, i,
1623 struct btrfs_inode_item);
1624 mode = btrfs_inode_mode(eb, inode_item);
1625 if (S_ISDIR(mode)) {
1626 ret = replay_dir_deletes(wc->trans,
1627 root, log, path, key.objectid, 0);
1628 BUG_ON(ret);
1629 }
1630 ret = overwrite_item(wc->trans, root, path,
1631 eb, i, &key);
1632 BUG_ON(ret);
1633
1634 /* for regular files, make sure corresponding
1635 * orhpan item exist. extents past the new EOF
1636 * will be truncated later by orphan cleanup.
1637 */
1638 if (S_ISREG(mode)) {
1639 ret = insert_orphan_item(wc->trans, root,
1640 key.objectid);
1641 BUG_ON(ret);
1642 }
1643
1644 ret = link_to_fixup_dir(wc->trans, root,
1645 path, key.objectid);
1646 BUG_ON(ret);
1647 }
1648 if (wc->stage < LOG_WALK_REPLAY_ALL)
1649 continue;
1650
1651 /* these keys are simply copied */
1652 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1653 ret = overwrite_item(wc->trans, root, path,
1654 eb, i, &key);
1655 BUG_ON(ret);
1656 } else if (key.type == BTRFS_INODE_REF_KEY) {
1657 ret = add_inode_ref(wc->trans, root, log, path,
1658 eb, i, &key);
1659 BUG_ON(ret && ret != -ENOENT);
1660 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1661 ret = replay_one_extent(wc->trans, root, path,
1662 eb, i, &key);
1663 BUG_ON(ret);
1664 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1665 key.type == BTRFS_DIR_INDEX_KEY) {
1666 ret = replay_one_dir_item(wc->trans, root, path,
1667 eb, i, &key);
1668 BUG_ON(ret);
1669 }
1670 }
1671 btrfs_free_path(path);
1672 return 0;
1673 }
1674
1675 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1676 struct btrfs_root *root,
1677 struct btrfs_path *path, int *level,
1678 struct walk_control *wc)
1679 {
1680 u64 root_owner;
1681 u64 bytenr;
1682 u64 ptr_gen;
1683 struct extent_buffer *next;
1684 struct extent_buffer *cur;
1685 struct extent_buffer *parent;
1686 u32 blocksize;
1687 int ret = 0;
1688
1689 WARN_ON(*level < 0);
1690 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1691
1692 while (*level > 0) {
1693 WARN_ON(*level < 0);
1694 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1695 cur = path->nodes[*level];
1696
1697 if (btrfs_header_level(cur) != *level)
1698 WARN_ON(1);
1699
1700 if (path->slots[*level] >=
1701 btrfs_header_nritems(cur))
1702 break;
1703
1704 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1705 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1706 blocksize = btrfs_level_size(root, *level - 1);
1707
1708 parent = path->nodes[*level];
1709 root_owner = btrfs_header_owner(parent);
1710
1711 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1712 if (!next)
1713 return -ENOMEM;
1714
1715 if (*level == 1) {
1716 wc->process_func(root, next, wc, ptr_gen);
1717
1718 path->slots[*level]++;
1719 if (wc->free) {
1720 btrfs_read_buffer(next, ptr_gen);
1721
1722 btrfs_tree_lock(next);
1723 clean_tree_block(trans, root, next);
1724 btrfs_set_lock_blocking(next);
1725 btrfs_wait_tree_block_writeback(next);
1726 btrfs_tree_unlock(next);
1727
1728 WARN_ON(root_owner !=
1729 BTRFS_TREE_LOG_OBJECTID);
1730 ret = btrfs_free_reserved_extent(root,
1731 bytenr, blocksize);
1732 BUG_ON(ret);
1733 }
1734 free_extent_buffer(next);
1735 continue;
1736 }
1737 btrfs_read_buffer(next, ptr_gen);
1738
1739 WARN_ON(*level <= 0);
1740 if (path->nodes[*level-1])
1741 free_extent_buffer(path->nodes[*level-1]);
1742 path->nodes[*level-1] = next;
1743 *level = btrfs_header_level(next);
1744 path->slots[*level] = 0;
1745 cond_resched();
1746 }
1747 WARN_ON(*level < 0);
1748 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1749
1750 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1751
1752 cond_resched();
1753 return 0;
1754 }
1755
1756 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1757 struct btrfs_root *root,
1758 struct btrfs_path *path, int *level,
1759 struct walk_control *wc)
1760 {
1761 u64 root_owner;
1762 int i;
1763 int slot;
1764 int ret;
1765
1766 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1767 slot = path->slots[i];
1768 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1769 path->slots[i]++;
1770 *level = i;
1771 WARN_ON(*level == 0);
1772 return 0;
1773 } else {
1774 struct extent_buffer *parent;
1775 if (path->nodes[*level] == root->node)
1776 parent = path->nodes[*level];
1777 else
1778 parent = path->nodes[*level + 1];
1779
1780 root_owner = btrfs_header_owner(parent);
1781 wc->process_func(root, path->nodes[*level], wc,
1782 btrfs_header_generation(path->nodes[*level]));
1783 if (wc->free) {
1784 struct extent_buffer *next;
1785
1786 next = path->nodes[*level];
1787
1788 btrfs_tree_lock(next);
1789 clean_tree_block(trans, root, next);
1790 btrfs_set_lock_blocking(next);
1791 btrfs_wait_tree_block_writeback(next);
1792 btrfs_tree_unlock(next);
1793
1794 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1795 ret = btrfs_free_reserved_extent(root,
1796 path->nodes[*level]->start,
1797 path->nodes[*level]->len);
1798 BUG_ON(ret);
1799 }
1800 free_extent_buffer(path->nodes[*level]);
1801 path->nodes[*level] = NULL;
1802 *level = i + 1;
1803 }
1804 }
1805 return 1;
1806 }
1807
1808 /*
1809 * drop the reference count on the tree rooted at 'snap'. This traverses
1810 * the tree freeing any blocks that have a ref count of zero after being
1811 * decremented.
1812 */
1813 static int walk_log_tree(struct btrfs_trans_handle *trans,
1814 struct btrfs_root *log, struct walk_control *wc)
1815 {
1816 int ret = 0;
1817 int wret;
1818 int level;
1819 struct btrfs_path *path;
1820 int i;
1821 int orig_level;
1822
1823 path = btrfs_alloc_path();
1824 BUG_ON(!path);
1825
1826 level = btrfs_header_level(log->node);
1827 orig_level = level;
1828 path->nodes[level] = log->node;
1829 extent_buffer_get(log->node);
1830 path->slots[level] = 0;
1831
1832 while (1) {
1833 wret = walk_down_log_tree(trans, log, path, &level, wc);
1834 if (wret > 0)
1835 break;
1836 if (wret < 0)
1837 ret = wret;
1838
1839 wret = walk_up_log_tree(trans, log, path, &level, wc);
1840 if (wret > 0)
1841 break;
1842 if (wret < 0)
1843 ret = wret;
1844 }
1845
1846 /* was the root node processed? if not, catch it here */
1847 if (path->nodes[orig_level]) {
1848 wc->process_func(log, path->nodes[orig_level], wc,
1849 btrfs_header_generation(path->nodes[orig_level]));
1850 if (wc->free) {
1851 struct extent_buffer *next;
1852
1853 next = path->nodes[orig_level];
1854
1855 btrfs_tree_lock(next);
1856 clean_tree_block(trans, log, next);
1857 btrfs_set_lock_blocking(next);
1858 btrfs_wait_tree_block_writeback(next);
1859 btrfs_tree_unlock(next);
1860
1861 WARN_ON(log->root_key.objectid !=
1862 BTRFS_TREE_LOG_OBJECTID);
1863 ret = btrfs_free_reserved_extent(log, next->start,
1864 next->len);
1865 BUG_ON(ret);
1866 }
1867 }
1868
1869 for (i = 0; i <= orig_level; i++) {
1870 if (path->nodes[i]) {
1871 free_extent_buffer(path->nodes[i]);
1872 path->nodes[i] = NULL;
1873 }
1874 }
1875 btrfs_free_path(path);
1876 return ret;
1877 }
1878
1879 /*
1880 * helper function to update the item for a given subvolumes log root
1881 * in the tree of log roots
1882 */
1883 static int update_log_root(struct btrfs_trans_handle *trans,
1884 struct btrfs_root *log)
1885 {
1886 int ret;
1887
1888 if (log->log_transid == 1) {
1889 /* insert root item on the first sync */
1890 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1891 &log->root_key, &log->root_item);
1892 } else {
1893 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1894 &log->root_key, &log->root_item);
1895 }
1896 return ret;
1897 }
1898
1899 static int wait_log_commit(struct btrfs_trans_handle *trans,
1900 struct btrfs_root *root, unsigned long transid)
1901 {
1902 DEFINE_WAIT(wait);
1903 int index = transid % 2;
1904
1905 /*
1906 * we only allow two pending log transactions at a time,
1907 * so we know that if ours is more than 2 older than the
1908 * current transaction, we're done
1909 */
1910 do {
1911 prepare_to_wait(&root->log_commit_wait[index],
1912 &wait, TASK_UNINTERRUPTIBLE);
1913 mutex_unlock(&root->log_mutex);
1914
1915 if (root->fs_info->last_trans_log_full_commit !=
1916 trans->transid && root->log_transid < transid + 2 &&
1917 atomic_read(&root->log_commit[index]))
1918 schedule();
1919
1920 finish_wait(&root->log_commit_wait[index], &wait);
1921 mutex_lock(&root->log_mutex);
1922 } while (root->log_transid < transid + 2 &&
1923 atomic_read(&root->log_commit[index]));
1924 return 0;
1925 }
1926
1927 static int wait_for_writer(struct btrfs_trans_handle *trans,
1928 struct btrfs_root *root)
1929 {
1930 DEFINE_WAIT(wait);
1931 while (atomic_read(&root->log_writers)) {
1932 prepare_to_wait(&root->log_writer_wait,
1933 &wait, TASK_UNINTERRUPTIBLE);
1934 mutex_unlock(&root->log_mutex);
1935 if (root->fs_info->last_trans_log_full_commit !=
1936 trans->transid && atomic_read(&root->log_writers))
1937 schedule();
1938 mutex_lock(&root->log_mutex);
1939 finish_wait(&root->log_writer_wait, &wait);
1940 }
1941 return 0;
1942 }
1943
1944 /*
1945 * btrfs_sync_log does sends a given tree log down to the disk and
1946 * updates the super blocks to record it. When this call is done,
1947 * you know that any inodes previously logged are safely on disk only
1948 * if it returns 0.
1949 *
1950 * Any other return value means you need to call btrfs_commit_transaction.
1951 * Some of the edge cases for fsyncing directories that have had unlinks
1952 * or renames done in the past mean that sometimes the only safe
1953 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1954 * that has happened.
1955 */
1956 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1957 struct btrfs_root *root)
1958 {
1959 int index1;
1960 int index2;
1961 int mark;
1962 int ret;
1963 struct btrfs_root *log = root->log_root;
1964 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1965 unsigned long log_transid = 0;
1966
1967 mutex_lock(&root->log_mutex);
1968 index1 = root->log_transid % 2;
1969 if (atomic_read(&root->log_commit[index1])) {
1970 wait_log_commit(trans, root, root->log_transid);
1971 mutex_unlock(&root->log_mutex);
1972 return 0;
1973 }
1974 atomic_set(&root->log_commit[index1], 1);
1975
1976 /* wait for previous tree log sync to complete */
1977 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1978 wait_log_commit(trans, root, root->log_transid - 1);
1979
1980 while (1) {
1981 unsigned long batch = root->log_batch;
1982 if (root->log_multiple_pids) {
1983 mutex_unlock(&root->log_mutex);
1984 schedule_timeout_uninterruptible(1);
1985 mutex_lock(&root->log_mutex);
1986 }
1987 wait_for_writer(trans, root);
1988 if (batch == root->log_batch)
1989 break;
1990 }
1991
1992 /* bail out if we need to do a full commit */
1993 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
1994 ret = -EAGAIN;
1995 mutex_unlock(&root->log_mutex);
1996 goto out;
1997 }
1998
1999 log_transid = root->log_transid;
2000 if (log_transid % 2 == 0)
2001 mark = EXTENT_DIRTY;
2002 else
2003 mark = EXTENT_NEW;
2004
2005 /* we start IO on all the marked extents here, but we don't actually
2006 * wait for them until later.
2007 */
2008 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2009 BUG_ON(ret);
2010
2011 btrfs_set_root_node(&log->root_item, log->node);
2012
2013 root->log_batch = 0;
2014 root->log_transid++;
2015 log->log_transid = root->log_transid;
2016 root->log_start_pid = 0;
2017 smp_mb();
2018 /*
2019 * IO has been started, blocks of the log tree have WRITTEN flag set
2020 * in their headers. new modifications of the log will be written to
2021 * new positions. so it's safe to allow log writers to go in.
2022 */
2023 mutex_unlock(&root->log_mutex);
2024
2025 mutex_lock(&log_root_tree->log_mutex);
2026 log_root_tree->log_batch++;
2027 atomic_inc(&log_root_tree->log_writers);
2028 mutex_unlock(&log_root_tree->log_mutex);
2029
2030 ret = update_log_root(trans, log);
2031
2032 mutex_lock(&log_root_tree->log_mutex);
2033 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2034 smp_mb();
2035 if (waitqueue_active(&log_root_tree->log_writer_wait))
2036 wake_up(&log_root_tree->log_writer_wait);
2037 }
2038
2039 if (ret) {
2040 BUG_ON(ret != -ENOSPC);
2041 root->fs_info->last_trans_log_full_commit = trans->transid;
2042 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2043 mutex_unlock(&log_root_tree->log_mutex);
2044 ret = -EAGAIN;
2045 goto out;
2046 }
2047
2048 index2 = log_root_tree->log_transid % 2;
2049 if (atomic_read(&log_root_tree->log_commit[index2])) {
2050 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2051 wait_log_commit(trans, log_root_tree,
2052 log_root_tree->log_transid);
2053 mutex_unlock(&log_root_tree->log_mutex);
2054 ret = 0;
2055 goto out;
2056 }
2057 atomic_set(&log_root_tree->log_commit[index2], 1);
2058
2059 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2060 wait_log_commit(trans, log_root_tree,
2061 log_root_tree->log_transid - 1);
2062 }
2063
2064 wait_for_writer(trans, log_root_tree);
2065
2066 /*
2067 * now that we've moved on to the tree of log tree roots,
2068 * check the full commit flag again
2069 */
2070 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2071 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2072 mutex_unlock(&log_root_tree->log_mutex);
2073 ret = -EAGAIN;
2074 goto out_wake_log_root;
2075 }
2076
2077 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2078 &log_root_tree->dirty_log_pages,
2079 EXTENT_DIRTY | EXTENT_NEW);
2080 BUG_ON(ret);
2081 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2082
2083 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2084 log_root_tree->node->start);
2085 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2086 btrfs_header_level(log_root_tree->node));
2087
2088 log_root_tree->log_batch = 0;
2089 log_root_tree->log_transid++;
2090 smp_mb();
2091
2092 mutex_unlock(&log_root_tree->log_mutex);
2093
2094 /*
2095 * nobody else is going to jump in and write the the ctree
2096 * super here because the log_commit atomic below is protecting
2097 * us. We must be called with a transaction handle pinning
2098 * the running transaction open, so a full commit can't hop
2099 * in and cause problems either.
2100 */
2101 write_ctree_super(trans, root->fs_info->tree_root, 1);
2102 ret = 0;
2103
2104 mutex_lock(&root->log_mutex);
2105 if (root->last_log_commit < log_transid)
2106 root->last_log_commit = log_transid;
2107 mutex_unlock(&root->log_mutex);
2108
2109 out_wake_log_root:
2110 atomic_set(&log_root_tree->log_commit[index2], 0);
2111 smp_mb();
2112 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2113 wake_up(&log_root_tree->log_commit_wait[index2]);
2114 out:
2115 atomic_set(&root->log_commit[index1], 0);
2116 smp_mb();
2117 if (waitqueue_active(&root->log_commit_wait[index1]))
2118 wake_up(&root->log_commit_wait[index1]);
2119 return ret;
2120 }
2121
2122 static void free_log_tree(struct btrfs_trans_handle *trans,
2123 struct btrfs_root *log)
2124 {
2125 int ret;
2126 u64 start;
2127 u64 end;
2128 struct walk_control wc = {
2129 .free = 1,
2130 .process_func = process_one_buffer
2131 };
2132
2133 ret = walk_log_tree(trans, log, &wc);
2134 BUG_ON(ret);
2135
2136 while (1) {
2137 ret = find_first_extent_bit(&log->dirty_log_pages,
2138 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2139 if (ret)
2140 break;
2141
2142 clear_extent_bits(&log->dirty_log_pages, start, end,
2143 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2144 }
2145
2146 free_extent_buffer(log->node);
2147 kfree(log);
2148 }
2149
2150 /*
2151 * free all the extents used by the tree log. This should be called
2152 * at commit time of the full transaction
2153 */
2154 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2155 {
2156 if (root->log_root) {
2157 free_log_tree(trans, root->log_root);
2158 root->log_root = NULL;
2159 }
2160 return 0;
2161 }
2162
2163 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2164 struct btrfs_fs_info *fs_info)
2165 {
2166 if (fs_info->log_root_tree) {
2167 free_log_tree(trans, fs_info->log_root_tree);
2168 fs_info->log_root_tree = NULL;
2169 }
2170 return 0;
2171 }
2172
2173 /*
2174 * If both a file and directory are logged, and unlinks or renames are
2175 * mixed in, we have a few interesting corners:
2176 *
2177 * create file X in dir Y
2178 * link file X to X.link in dir Y
2179 * fsync file X
2180 * unlink file X but leave X.link
2181 * fsync dir Y
2182 *
2183 * After a crash we would expect only X.link to exist. But file X
2184 * didn't get fsync'd again so the log has back refs for X and X.link.
2185 *
2186 * We solve this by removing directory entries and inode backrefs from the
2187 * log when a file that was logged in the current transaction is
2188 * unlinked. Any later fsync will include the updated log entries, and
2189 * we'll be able to reconstruct the proper directory items from backrefs.
2190 *
2191 * This optimizations allows us to avoid relogging the entire inode
2192 * or the entire directory.
2193 */
2194 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2195 struct btrfs_root *root,
2196 const char *name, int name_len,
2197 struct inode *dir, u64 index)
2198 {
2199 struct btrfs_root *log;
2200 struct btrfs_dir_item *di;
2201 struct btrfs_path *path;
2202 int ret;
2203 int err = 0;
2204 int bytes_del = 0;
2205
2206 if (BTRFS_I(dir)->logged_trans < trans->transid)
2207 return 0;
2208
2209 ret = join_running_log_trans(root);
2210 if (ret)
2211 return 0;
2212
2213 mutex_lock(&BTRFS_I(dir)->log_mutex);
2214
2215 log = root->log_root;
2216 path = btrfs_alloc_path();
2217 if (!path)
2218 return -ENOMEM;
2219
2220 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2221 name, name_len, -1);
2222 if (IS_ERR(di)) {
2223 err = PTR_ERR(di);
2224 goto fail;
2225 }
2226 if (di) {
2227 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2228 bytes_del += name_len;
2229 BUG_ON(ret);
2230 }
2231 btrfs_release_path(log, path);
2232 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2233 index, name, name_len, -1);
2234 if (IS_ERR(di)) {
2235 err = PTR_ERR(di);
2236 goto fail;
2237 }
2238 if (di) {
2239 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2240 bytes_del += name_len;
2241 BUG_ON(ret);
2242 }
2243
2244 /* update the directory size in the log to reflect the names
2245 * we have removed
2246 */
2247 if (bytes_del) {
2248 struct btrfs_key key;
2249
2250 key.objectid = dir->i_ino;
2251 key.offset = 0;
2252 key.type = BTRFS_INODE_ITEM_KEY;
2253 btrfs_release_path(log, path);
2254
2255 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2256 if (ret < 0) {
2257 err = ret;
2258 goto fail;
2259 }
2260 if (ret == 0) {
2261 struct btrfs_inode_item *item;
2262 u64 i_size;
2263
2264 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2265 struct btrfs_inode_item);
2266 i_size = btrfs_inode_size(path->nodes[0], item);
2267 if (i_size > bytes_del)
2268 i_size -= bytes_del;
2269 else
2270 i_size = 0;
2271 btrfs_set_inode_size(path->nodes[0], item, i_size);
2272 btrfs_mark_buffer_dirty(path->nodes[0]);
2273 } else
2274 ret = 0;
2275 btrfs_release_path(log, path);
2276 }
2277 fail:
2278 btrfs_free_path(path);
2279 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2280 if (ret == -ENOSPC) {
2281 root->fs_info->last_trans_log_full_commit = trans->transid;
2282 ret = 0;
2283 }
2284 btrfs_end_log_trans(root);
2285
2286 return err;
2287 }
2288
2289 /* see comments for btrfs_del_dir_entries_in_log */
2290 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2291 struct btrfs_root *root,
2292 const char *name, int name_len,
2293 struct inode *inode, u64 dirid)
2294 {
2295 struct btrfs_root *log;
2296 u64 index;
2297 int ret;
2298
2299 if (BTRFS_I(inode)->logged_trans < trans->transid)
2300 return 0;
2301
2302 ret = join_running_log_trans(root);
2303 if (ret)
2304 return 0;
2305 log = root->log_root;
2306 mutex_lock(&BTRFS_I(inode)->log_mutex);
2307
2308 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2309 dirid, &index);
2310 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2311 if (ret == -ENOSPC) {
2312 root->fs_info->last_trans_log_full_commit = trans->transid;
2313 ret = 0;
2314 }
2315 btrfs_end_log_trans(root);
2316
2317 return ret;
2318 }
2319
2320 /*
2321 * creates a range item in the log for 'dirid'. first_offset and
2322 * last_offset tell us which parts of the key space the log should
2323 * be considered authoritative for.
2324 */
2325 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2326 struct btrfs_root *log,
2327 struct btrfs_path *path,
2328 int key_type, u64 dirid,
2329 u64 first_offset, u64 last_offset)
2330 {
2331 int ret;
2332 struct btrfs_key key;
2333 struct btrfs_dir_log_item *item;
2334
2335 key.objectid = dirid;
2336 key.offset = first_offset;
2337 if (key_type == BTRFS_DIR_ITEM_KEY)
2338 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2339 else
2340 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2341 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2342 if (ret)
2343 return ret;
2344
2345 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2346 struct btrfs_dir_log_item);
2347 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2348 btrfs_mark_buffer_dirty(path->nodes[0]);
2349 btrfs_release_path(log, path);
2350 return 0;
2351 }
2352
2353 /*
2354 * log all the items included in the current transaction for a given
2355 * directory. This also creates the range items in the log tree required
2356 * to replay anything deleted before the fsync
2357 */
2358 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2359 struct btrfs_root *root, struct inode *inode,
2360 struct btrfs_path *path,
2361 struct btrfs_path *dst_path, int key_type,
2362 u64 min_offset, u64 *last_offset_ret)
2363 {
2364 struct btrfs_key min_key;
2365 struct btrfs_key max_key;
2366 struct btrfs_root *log = root->log_root;
2367 struct extent_buffer *src;
2368 int err = 0;
2369 int ret;
2370 int i;
2371 int nritems;
2372 u64 first_offset = min_offset;
2373 u64 last_offset = (u64)-1;
2374
2375 log = root->log_root;
2376 max_key.objectid = inode->i_ino;
2377 max_key.offset = (u64)-1;
2378 max_key.type = key_type;
2379
2380 min_key.objectid = inode->i_ino;
2381 min_key.type = key_type;
2382 min_key.offset = min_offset;
2383
2384 path->keep_locks = 1;
2385
2386 ret = btrfs_search_forward(root, &min_key, &max_key,
2387 path, 0, trans->transid);
2388
2389 /*
2390 * we didn't find anything from this transaction, see if there
2391 * is anything at all
2392 */
2393 if (ret != 0 || min_key.objectid != inode->i_ino ||
2394 min_key.type != key_type) {
2395 min_key.objectid = inode->i_ino;
2396 min_key.type = key_type;
2397 min_key.offset = (u64)-1;
2398 btrfs_release_path(root, path);
2399 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2400 if (ret < 0) {
2401 btrfs_release_path(root, path);
2402 return ret;
2403 }
2404 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2405
2406 /* if ret == 0 there are items for this type,
2407 * create a range to tell us the last key of this type.
2408 * otherwise, there are no items in this directory after
2409 * *min_offset, and we create a range to indicate that.
2410 */
2411 if (ret == 0) {
2412 struct btrfs_key tmp;
2413 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2414 path->slots[0]);
2415 if (key_type == tmp.type)
2416 first_offset = max(min_offset, tmp.offset) + 1;
2417 }
2418 goto done;
2419 }
2420
2421 /* go backward to find any previous key */
2422 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2423 if (ret == 0) {
2424 struct btrfs_key tmp;
2425 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2426 if (key_type == tmp.type) {
2427 first_offset = tmp.offset;
2428 ret = overwrite_item(trans, log, dst_path,
2429 path->nodes[0], path->slots[0],
2430 &tmp);
2431 if (ret) {
2432 err = ret;
2433 goto done;
2434 }
2435 }
2436 }
2437 btrfs_release_path(root, path);
2438
2439 /* find the first key from this transaction again */
2440 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2441 if (ret != 0) {
2442 WARN_ON(1);
2443 goto done;
2444 }
2445
2446 /*
2447 * we have a block from this transaction, log every item in it
2448 * from our directory
2449 */
2450 while (1) {
2451 struct btrfs_key tmp;
2452 src = path->nodes[0];
2453 nritems = btrfs_header_nritems(src);
2454 for (i = path->slots[0]; i < nritems; i++) {
2455 btrfs_item_key_to_cpu(src, &min_key, i);
2456
2457 if (min_key.objectid != inode->i_ino ||
2458 min_key.type != key_type)
2459 goto done;
2460 ret = overwrite_item(trans, log, dst_path, src, i,
2461 &min_key);
2462 if (ret) {
2463 err = ret;
2464 goto done;
2465 }
2466 }
2467 path->slots[0] = nritems;
2468
2469 /*
2470 * look ahead to the next item and see if it is also
2471 * from this directory and from this transaction
2472 */
2473 ret = btrfs_next_leaf(root, path);
2474 if (ret == 1) {
2475 last_offset = (u64)-1;
2476 goto done;
2477 }
2478 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2479 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2480 last_offset = (u64)-1;
2481 goto done;
2482 }
2483 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2484 ret = overwrite_item(trans, log, dst_path,
2485 path->nodes[0], path->slots[0],
2486 &tmp);
2487 if (ret)
2488 err = ret;
2489 else
2490 last_offset = tmp.offset;
2491 goto done;
2492 }
2493 }
2494 done:
2495 btrfs_release_path(root, path);
2496 btrfs_release_path(log, dst_path);
2497
2498 if (err == 0) {
2499 *last_offset_ret = last_offset;
2500 /*
2501 * insert the log range keys to indicate where the log
2502 * is valid
2503 */
2504 ret = insert_dir_log_key(trans, log, path, key_type,
2505 inode->i_ino, first_offset,
2506 last_offset);
2507 if (ret)
2508 err = ret;
2509 }
2510 return err;
2511 }
2512
2513 /*
2514 * logging directories is very similar to logging inodes, We find all the items
2515 * from the current transaction and write them to the log.
2516 *
2517 * The recovery code scans the directory in the subvolume, and if it finds a
2518 * key in the range logged that is not present in the log tree, then it means
2519 * that dir entry was unlinked during the transaction.
2520 *
2521 * In order for that scan to work, we must include one key smaller than
2522 * the smallest logged by this transaction and one key larger than the largest
2523 * key logged by this transaction.
2524 */
2525 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2526 struct btrfs_root *root, struct inode *inode,
2527 struct btrfs_path *path,
2528 struct btrfs_path *dst_path)
2529 {
2530 u64 min_key;
2531 u64 max_key;
2532 int ret;
2533 int key_type = BTRFS_DIR_ITEM_KEY;
2534
2535 again:
2536 min_key = 0;
2537 max_key = 0;
2538 while (1) {
2539 ret = log_dir_items(trans, root, inode, path,
2540 dst_path, key_type, min_key,
2541 &max_key);
2542 if (ret)
2543 return ret;
2544 if (max_key == (u64)-1)
2545 break;
2546 min_key = max_key + 1;
2547 }
2548
2549 if (key_type == BTRFS_DIR_ITEM_KEY) {
2550 key_type = BTRFS_DIR_INDEX_KEY;
2551 goto again;
2552 }
2553 return 0;
2554 }
2555
2556 /*
2557 * a helper function to drop items from the log before we relog an
2558 * inode. max_key_type indicates the highest item type to remove.
2559 * This cannot be run for file data extents because it does not
2560 * free the extents they point to.
2561 */
2562 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2563 struct btrfs_root *log,
2564 struct btrfs_path *path,
2565 u64 objectid, int max_key_type)
2566 {
2567 int ret;
2568 struct btrfs_key key;
2569 struct btrfs_key found_key;
2570
2571 key.objectid = objectid;
2572 key.type = max_key_type;
2573 key.offset = (u64)-1;
2574
2575 while (1) {
2576 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2577 BUG_ON(ret == 0);
2578 if (ret < 0)
2579 break;
2580
2581 if (path->slots[0] == 0)
2582 break;
2583
2584 path->slots[0]--;
2585 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2586 path->slots[0]);
2587
2588 if (found_key.objectid != objectid)
2589 break;
2590
2591 ret = btrfs_del_item(trans, log, path);
2592 BUG_ON(ret);
2593 btrfs_release_path(log, path);
2594 }
2595 btrfs_release_path(log, path);
2596 return ret;
2597 }
2598
2599 static noinline int copy_items(struct btrfs_trans_handle *trans,
2600 struct btrfs_root *log,
2601 struct btrfs_path *dst_path,
2602 struct extent_buffer *src,
2603 int start_slot, int nr, int inode_only)
2604 {
2605 unsigned long src_offset;
2606 unsigned long dst_offset;
2607 struct btrfs_file_extent_item *extent;
2608 struct btrfs_inode_item *inode_item;
2609 int ret;
2610 struct btrfs_key *ins_keys;
2611 u32 *ins_sizes;
2612 char *ins_data;
2613 int i;
2614 struct list_head ordered_sums;
2615
2616 INIT_LIST_HEAD(&ordered_sums);
2617
2618 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2619 nr * sizeof(u32), GFP_NOFS);
2620 if (!ins_data)
2621 return -ENOMEM;
2622
2623 ins_sizes = (u32 *)ins_data;
2624 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2625
2626 for (i = 0; i < nr; i++) {
2627 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2628 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2629 }
2630 ret = btrfs_insert_empty_items(trans, log, dst_path,
2631 ins_keys, ins_sizes, nr);
2632 if (ret) {
2633 kfree(ins_data);
2634 return ret;
2635 }
2636
2637 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2638 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2639 dst_path->slots[0]);
2640
2641 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2642
2643 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2644 src_offset, ins_sizes[i]);
2645
2646 if (inode_only == LOG_INODE_EXISTS &&
2647 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2648 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2649 dst_path->slots[0],
2650 struct btrfs_inode_item);
2651 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2652
2653 /* set the generation to zero so the recover code
2654 * can tell the difference between an logging
2655 * just to say 'this inode exists' and a logging
2656 * to say 'update this inode with these values'
2657 */
2658 btrfs_set_inode_generation(dst_path->nodes[0],
2659 inode_item, 0);
2660 }
2661 /* take a reference on file data extents so that truncates
2662 * or deletes of this inode don't have to relog the inode
2663 * again
2664 */
2665 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2666 int found_type;
2667 extent = btrfs_item_ptr(src, start_slot + i,
2668 struct btrfs_file_extent_item);
2669
2670 found_type = btrfs_file_extent_type(src, extent);
2671 if (found_type == BTRFS_FILE_EXTENT_REG ||
2672 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2673 u64 ds, dl, cs, cl;
2674 ds = btrfs_file_extent_disk_bytenr(src,
2675 extent);
2676 /* ds == 0 is a hole */
2677 if (ds == 0)
2678 continue;
2679
2680 dl = btrfs_file_extent_disk_num_bytes(src,
2681 extent);
2682 cs = btrfs_file_extent_offset(src, extent);
2683 cl = btrfs_file_extent_num_bytes(src,
2684 extent);
2685 if (btrfs_file_extent_compression(src,
2686 extent)) {
2687 cs = 0;
2688 cl = dl;
2689 }
2690
2691 ret = btrfs_lookup_csums_range(
2692 log->fs_info->csum_root,
2693 ds + cs, ds + cs + cl - 1,
2694 &ordered_sums);
2695 BUG_ON(ret);
2696 }
2697 }
2698 }
2699
2700 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2701 btrfs_release_path(log, dst_path);
2702 kfree(ins_data);
2703
2704 /*
2705 * we have to do this after the loop above to avoid changing the
2706 * log tree while trying to change the log tree.
2707 */
2708 ret = 0;
2709 while (!list_empty(&ordered_sums)) {
2710 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2711 struct btrfs_ordered_sum,
2712 list);
2713 if (!ret)
2714 ret = btrfs_csum_file_blocks(trans, log, sums);
2715 list_del(&sums->list);
2716 kfree(sums);
2717 }
2718 return ret;
2719 }
2720
2721 /* log a single inode in the tree log.
2722 * At least one parent directory for this inode must exist in the tree
2723 * or be logged already.
2724 *
2725 * Any items from this inode changed by the current transaction are copied
2726 * to the log tree. An extra reference is taken on any extents in this
2727 * file, allowing us to avoid a whole pile of corner cases around logging
2728 * blocks that have been removed from the tree.
2729 *
2730 * See LOG_INODE_ALL and related defines for a description of what inode_only
2731 * does.
2732 *
2733 * This handles both files and directories.
2734 */
2735 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2736 struct btrfs_root *root, struct inode *inode,
2737 int inode_only)
2738 {
2739 struct btrfs_path *path;
2740 struct btrfs_path *dst_path;
2741 struct btrfs_key min_key;
2742 struct btrfs_key max_key;
2743 struct btrfs_root *log = root->log_root;
2744 struct extent_buffer *src = NULL;
2745 int err = 0;
2746 int ret;
2747 int nritems;
2748 int ins_start_slot = 0;
2749 int ins_nr;
2750
2751 log = root->log_root;
2752
2753 path = btrfs_alloc_path();
2754 if (!path)
2755 return -ENOMEM;
2756 dst_path = btrfs_alloc_path();
2757 if (!dst_path) {
2758 btrfs_free_path(path);
2759 return -ENOMEM;
2760 }
2761
2762 min_key.objectid = inode->i_ino;
2763 min_key.type = BTRFS_INODE_ITEM_KEY;
2764 min_key.offset = 0;
2765
2766 max_key.objectid = inode->i_ino;
2767
2768 /* today the code can only do partial logging of directories */
2769 if (!S_ISDIR(inode->i_mode))
2770 inode_only = LOG_INODE_ALL;
2771
2772 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2773 max_key.type = BTRFS_XATTR_ITEM_KEY;
2774 else
2775 max_key.type = (u8)-1;
2776 max_key.offset = (u64)-1;
2777
2778 mutex_lock(&BTRFS_I(inode)->log_mutex);
2779
2780 /*
2781 * a brute force approach to making sure we get the most uptodate
2782 * copies of everything.
2783 */
2784 if (S_ISDIR(inode->i_mode)) {
2785 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2786
2787 if (inode_only == LOG_INODE_EXISTS)
2788 max_key_type = BTRFS_XATTR_ITEM_KEY;
2789 ret = drop_objectid_items(trans, log, path,
2790 inode->i_ino, max_key_type);
2791 } else {
2792 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2793 }
2794 if (ret) {
2795 err = ret;
2796 goto out_unlock;
2797 }
2798 path->keep_locks = 1;
2799
2800 while (1) {
2801 ins_nr = 0;
2802 ret = btrfs_search_forward(root, &min_key, &max_key,
2803 path, 0, trans->transid);
2804 if (ret != 0)
2805 break;
2806 again:
2807 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2808 if (min_key.objectid != inode->i_ino)
2809 break;
2810 if (min_key.type > max_key.type)
2811 break;
2812
2813 src = path->nodes[0];
2814 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2815 ins_nr++;
2816 goto next_slot;
2817 } else if (!ins_nr) {
2818 ins_start_slot = path->slots[0];
2819 ins_nr = 1;
2820 goto next_slot;
2821 }
2822
2823 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2824 ins_nr, inode_only);
2825 if (ret) {
2826 err = ret;
2827 goto out_unlock;
2828 }
2829 ins_nr = 1;
2830 ins_start_slot = path->slots[0];
2831 next_slot:
2832
2833 nritems = btrfs_header_nritems(path->nodes[0]);
2834 path->slots[0]++;
2835 if (path->slots[0] < nritems) {
2836 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2837 path->slots[0]);
2838 goto again;
2839 }
2840 if (ins_nr) {
2841 ret = copy_items(trans, log, dst_path, src,
2842 ins_start_slot,
2843 ins_nr, inode_only);
2844 if (ret) {
2845 err = ret;
2846 goto out_unlock;
2847 }
2848 ins_nr = 0;
2849 }
2850 btrfs_release_path(root, path);
2851
2852 if (min_key.offset < (u64)-1)
2853 min_key.offset++;
2854 else if (min_key.type < (u8)-1)
2855 min_key.type++;
2856 else if (min_key.objectid < (u64)-1)
2857 min_key.objectid++;
2858 else
2859 break;
2860 }
2861 if (ins_nr) {
2862 ret = copy_items(trans, log, dst_path, src,
2863 ins_start_slot,
2864 ins_nr, inode_only);
2865 if (ret) {
2866 err = ret;
2867 goto out_unlock;
2868 }
2869 ins_nr = 0;
2870 }
2871 WARN_ON(ins_nr);
2872 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2873 btrfs_release_path(root, path);
2874 btrfs_release_path(log, dst_path);
2875 ret = log_directory_changes(trans, root, inode, path, dst_path);
2876 if (ret) {
2877 err = ret;
2878 goto out_unlock;
2879 }
2880 }
2881 BTRFS_I(inode)->logged_trans = trans->transid;
2882 out_unlock:
2883 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2884
2885 btrfs_free_path(path);
2886 btrfs_free_path(dst_path);
2887 return err;
2888 }
2889
2890 /*
2891 * follow the dentry parent pointers up the chain and see if any
2892 * of the directories in it require a full commit before they can
2893 * be logged. Returns zero if nothing special needs to be done or 1 if
2894 * a full commit is required.
2895 */
2896 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2897 struct inode *inode,
2898 struct dentry *parent,
2899 struct super_block *sb,
2900 u64 last_committed)
2901 {
2902 int ret = 0;
2903 struct btrfs_root *root;
2904 struct dentry *old_parent = NULL;
2905
2906 /*
2907 * for regular files, if its inode is already on disk, we don't
2908 * have to worry about the parents at all. This is because
2909 * we can use the last_unlink_trans field to record renames
2910 * and other fun in this file.
2911 */
2912 if (S_ISREG(inode->i_mode) &&
2913 BTRFS_I(inode)->generation <= last_committed &&
2914 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2915 goto out;
2916
2917 if (!S_ISDIR(inode->i_mode)) {
2918 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2919 goto out;
2920 inode = parent->d_inode;
2921 }
2922
2923 while (1) {
2924 BTRFS_I(inode)->logged_trans = trans->transid;
2925 smp_mb();
2926
2927 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2928 root = BTRFS_I(inode)->root;
2929
2930 /*
2931 * make sure any commits to the log are forced
2932 * to be full commits
2933 */
2934 root->fs_info->last_trans_log_full_commit =
2935 trans->transid;
2936 ret = 1;
2937 break;
2938 }
2939
2940 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2941 break;
2942
2943 if (IS_ROOT(parent))
2944 break;
2945
2946 parent = dget_parent(parent);
2947 dput(old_parent);
2948 old_parent = parent;
2949 inode = parent->d_inode;
2950
2951 }
2952 dput(old_parent);
2953 out:
2954 return ret;
2955 }
2956
2957 static int inode_in_log(struct btrfs_trans_handle *trans,
2958 struct inode *inode)
2959 {
2960 struct btrfs_root *root = BTRFS_I(inode)->root;
2961 int ret = 0;
2962
2963 mutex_lock(&root->log_mutex);
2964 if (BTRFS_I(inode)->logged_trans == trans->transid &&
2965 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2966 ret = 1;
2967 mutex_unlock(&root->log_mutex);
2968 return ret;
2969 }
2970
2971
2972 /*
2973 * helper function around btrfs_log_inode to make sure newly created
2974 * parent directories also end up in the log. A minimal inode and backref
2975 * only logging is done of any parent directories that are older than
2976 * the last committed transaction
2977 */
2978 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2979 struct btrfs_root *root, struct inode *inode,
2980 struct dentry *parent, int exists_only)
2981 {
2982 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
2983 struct super_block *sb;
2984 struct dentry *old_parent = NULL;
2985 int ret = 0;
2986 u64 last_committed = root->fs_info->last_trans_committed;
2987
2988 sb = inode->i_sb;
2989
2990 if (btrfs_test_opt(root, NOTREELOG)) {
2991 ret = 1;
2992 goto end_no_trans;
2993 }
2994
2995 if (root->fs_info->last_trans_log_full_commit >
2996 root->fs_info->last_trans_committed) {
2997 ret = 1;
2998 goto end_no_trans;
2999 }
3000
3001 if (root != BTRFS_I(inode)->root ||
3002 btrfs_root_refs(&root->root_item) == 0) {
3003 ret = 1;
3004 goto end_no_trans;
3005 }
3006
3007 ret = check_parent_dirs_for_sync(trans, inode, parent,
3008 sb, last_committed);
3009 if (ret)
3010 goto end_no_trans;
3011
3012 if (inode_in_log(trans, inode)) {
3013 ret = BTRFS_NO_LOG_SYNC;
3014 goto end_no_trans;
3015 }
3016
3017 ret = start_log_trans(trans, root);
3018 if (ret)
3019 goto end_trans;
3020
3021 ret = btrfs_log_inode(trans, root, inode, inode_only);
3022 if (ret)
3023 goto end_trans;
3024
3025 /*
3026 * for regular files, if its inode is already on disk, we don't
3027 * have to worry about the parents at all. This is because
3028 * we can use the last_unlink_trans field to record renames
3029 * and other fun in this file.
3030 */
3031 if (S_ISREG(inode->i_mode) &&
3032 BTRFS_I(inode)->generation <= last_committed &&
3033 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3034 ret = 0;
3035 goto end_trans;
3036 }
3037
3038 inode_only = LOG_INODE_EXISTS;
3039 while (1) {
3040 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3041 break;
3042
3043 inode = parent->d_inode;
3044 if (root != BTRFS_I(inode)->root)
3045 break;
3046
3047 if (BTRFS_I(inode)->generation >
3048 root->fs_info->last_trans_committed) {
3049 ret = btrfs_log_inode(trans, root, inode, inode_only);
3050 if (ret)
3051 goto end_trans;
3052 }
3053 if (IS_ROOT(parent))
3054 break;
3055
3056 parent = dget_parent(parent);
3057 dput(old_parent);
3058 old_parent = parent;
3059 }
3060 ret = 0;
3061 end_trans:
3062 dput(old_parent);
3063 if (ret < 0) {
3064 BUG_ON(ret != -ENOSPC);
3065 root->fs_info->last_trans_log_full_commit = trans->transid;
3066 ret = 1;
3067 }
3068 btrfs_end_log_trans(root);
3069 end_no_trans:
3070 return ret;
3071 }
3072
3073 /*
3074 * it is not safe to log dentry if the chunk root has added new
3075 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3076 * If this returns 1, you must commit the transaction to safely get your
3077 * data on disk.
3078 */
3079 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3080 struct btrfs_root *root, struct dentry *dentry)
3081 {
3082 struct dentry *parent = dget_parent(dentry);
3083 int ret;
3084
3085 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3086 dput(parent);
3087
3088 return ret;
3089 }
3090
3091 /*
3092 * should be called during mount to recover any replay any log trees
3093 * from the FS
3094 */
3095 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3096 {
3097 int ret;
3098 struct btrfs_path *path;
3099 struct btrfs_trans_handle *trans;
3100 struct btrfs_key key;
3101 struct btrfs_key found_key;
3102 struct btrfs_key tmp_key;
3103 struct btrfs_root *log;
3104 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3105 struct walk_control wc = {
3106 .process_func = process_one_buffer,
3107 .stage = 0,
3108 };
3109
3110 fs_info->log_root_recovering = 1;
3111 path = btrfs_alloc_path();
3112 BUG_ON(!path);
3113
3114 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3115 BUG_ON(IS_ERR(trans));
3116
3117 wc.trans = trans;
3118 wc.pin = 1;
3119
3120 walk_log_tree(trans, log_root_tree, &wc);
3121
3122 again:
3123 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3124 key.offset = (u64)-1;
3125 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3126
3127 while (1) {
3128 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3129 if (ret < 0)
3130 break;
3131 if (ret > 0) {
3132 if (path->slots[0] == 0)
3133 break;
3134 path->slots[0]--;
3135 }
3136 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3137 path->slots[0]);
3138 btrfs_release_path(log_root_tree, path);
3139 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3140 break;
3141
3142 log = btrfs_read_fs_root_no_radix(log_root_tree,
3143 &found_key);
3144 BUG_ON(!log);
3145
3146
3147 tmp_key.objectid = found_key.offset;
3148 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3149 tmp_key.offset = (u64)-1;
3150
3151 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3152 BUG_ON(!wc.replay_dest);
3153
3154 wc.replay_dest->log_root = log;
3155 btrfs_record_root_in_trans(trans, wc.replay_dest);
3156 ret = walk_log_tree(trans, log, &wc);
3157 BUG_ON(ret);
3158
3159 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3160 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3161 path);
3162 BUG_ON(ret);
3163 }
3164
3165 key.offset = found_key.offset - 1;
3166 wc.replay_dest->log_root = NULL;
3167 free_extent_buffer(log->node);
3168 free_extent_buffer(log->commit_root);
3169 kfree(log);
3170
3171 if (found_key.offset == 0)
3172 break;
3173 }
3174 btrfs_release_path(log_root_tree, path);
3175
3176 /* step one is to pin it all, step two is to replay just inodes */
3177 if (wc.pin) {
3178 wc.pin = 0;
3179 wc.process_func = replay_one_buffer;
3180 wc.stage = LOG_WALK_REPLAY_INODES;
3181 goto again;
3182 }
3183 /* step three is to replay everything */
3184 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3185 wc.stage++;
3186 goto again;
3187 }
3188
3189 btrfs_free_path(path);
3190
3191 free_extent_buffer(log_root_tree->node);
3192 log_root_tree->log_root = NULL;
3193 fs_info->log_root_recovering = 0;
3194
3195 /* step 4: commit the transaction, which also unpins the blocks */
3196 btrfs_commit_transaction(trans, fs_info->tree_root);
3197
3198 kfree(log_root_tree);
3199 return 0;
3200 }
3201
3202 /*
3203 * there are some corner cases where we want to force a full
3204 * commit instead of allowing a directory to be logged.
3205 *
3206 * They revolve around files there were unlinked from the directory, and
3207 * this function updates the parent directory so that a full commit is
3208 * properly done if it is fsync'd later after the unlinks are done.
3209 */
3210 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3211 struct inode *dir, struct inode *inode,
3212 int for_rename)
3213 {
3214 /*
3215 * when we're logging a file, if it hasn't been renamed
3216 * or unlinked, and its inode is fully committed on disk,
3217 * we don't have to worry about walking up the directory chain
3218 * to log its parents.
3219 *
3220 * So, we use the last_unlink_trans field to put this transid
3221 * into the file. When the file is logged we check it and
3222 * don't log the parents if the file is fully on disk.
3223 */
3224 if (S_ISREG(inode->i_mode))
3225 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3226
3227 /*
3228 * if this directory was already logged any new
3229 * names for this file/dir will get recorded
3230 */
3231 smp_mb();
3232 if (BTRFS_I(dir)->logged_trans == trans->transid)
3233 return;
3234
3235 /*
3236 * if the inode we're about to unlink was logged,
3237 * the log will be properly updated for any new names
3238 */
3239 if (BTRFS_I(inode)->logged_trans == trans->transid)
3240 return;
3241
3242 /*
3243 * when renaming files across directories, if the directory
3244 * there we're unlinking from gets fsync'd later on, there's
3245 * no way to find the destination directory later and fsync it
3246 * properly. So, we have to be conservative and force commits
3247 * so the new name gets discovered.
3248 */
3249 if (for_rename)
3250 goto record;
3251
3252 /* we can safely do the unlink without any special recording */
3253 return;
3254
3255 record:
3256 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3257 }
3258
3259 /*
3260 * Call this after adding a new name for a file and it will properly
3261 * update the log to reflect the new name.
3262 *
3263 * It will return zero if all goes well, and it will return 1 if a
3264 * full transaction commit is required.
3265 */
3266 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3267 struct inode *inode, struct inode *old_dir,
3268 struct dentry *parent)
3269 {
3270 struct btrfs_root * root = BTRFS_I(inode)->root;
3271
3272 /*
3273 * this will force the logging code to walk the dentry chain
3274 * up for the file
3275 */
3276 if (S_ISREG(inode->i_mode))
3277 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3278
3279 /*
3280 * if this inode hasn't been logged and directory we're renaming it
3281 * from hasn't been logged, we don't need to log it
3282 */
3283 if (BTRFS_I(inode)->logged_trans <=
3284 root->fs_info->last_trans_committed &&
3285 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3286 root->fs_info->last_trans_committed))
3287 return 0;
3288
3289 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3290 }
3291
This page took 0.100601 seconds and 5 git commands to generate.