Btrfs: convert printk to btrfs_ and fix BTRFS prefix
[deliverable/linux.git] / fs / btrfs / tree-log.c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "disk-io.h"
26 #include "locking.h"
27 #include "print-tree.h"
28 #include "backref.h"
29 #include "tree-log.h"
30 #include "hash.h"
31
32 /* magic values for the inode_only field in btrfs_log_inode:
33 *
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
37 */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40
41 /*
42 * directory trouble cases
43 *
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
48 *
49 * mkdir foo/some_dir
50 * normal commit
51 * rename foo/some_dir foo2/some_dir
52 * mkdir foo/some_dir
53 * fsync foo/some_dir/some_file
54 *
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
58 *
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
61 *
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
65 *
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
68 *
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
71 *
72 * mkdir f1/foo
73 * normal commit
74 * rm -rf f1/foo
75 * fsync(f1)
76 *
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
81 * ugly details.
82 */
83
84 /*
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
89 *
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
92 */
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_DIR_INDEX 2
96 #define LOG_WALK_REPLAY_ALL 3
97
98 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
99 struct btrfs_root *root, struct inode *inode,
100 int inode_only);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 struct btrfs_root *root,
103 struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct btrfs_root *log,
107 struct btrfs_path *path,
108 u64 dirid, int del_all);
109
110 /*
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
113 *
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
117 *
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
123 *
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
127 *
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
131 */
132
133 /*
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
137 */
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139 struct btrfs_root *root)
140 {
141 int ret;
142 int err = 0;
143
144 mutex_lock(&root->log_mutex);
145 if (root->log_root) {
146 if (!root->log_start_pid) {
147 root->log_start_pid = current->pid;
148 root->log_multiple_pids = false;
149 } else if (root->log_start_pid != current->pid) {
150 root->log_multiple_pids = true;
151 }
152
153 atomic_inc(&root->log_batch);
154 atomic_inc(&root->log_writers);
155 mutex_unlock(&root->log_mutex);
156 return 0;
157 }
158 root->log_multiple_pids = false;
159 root->log_start_pid = current->pid;
160 mutex_lock(&root->fs_info->tree_log_mutex);
161 if (!root->fs_info->log_root_tree) {
162 ret = btrfs_init_log_root_tree(trans, root->fs_info);
163 if (ret)
164 err = ret;
165 }
166 if (err == 0 && !root->log_root) {
167 ret = btrfs_add_log_tree(trans, root);
168 if (ret)
169 err = ret;
170 }
171 mutex_unlock(&root->fs_info->tree_log_mutex);
172 atomic_inc(&root->log_batch);
173 atomic_inc(&root->log_writers);
174 mutex_unlock(&root->log_mutex);
175 return err;
176 }
177
178 /*
179 * returns 0 if there was a log transaction running and we were able
180 * to join, or returns -ENOENT if there were not transactions
181 * in progress
182 */
183 static int join_running_log_trans(struct btrfs_root *root)
184 {
185 int ret = -ENOENT;
186
187 smp_mb();
188 if (!root->log_root)
189 return -ENOENT;
190
191 mutex_lock(&root->log_mutex);
192 if (root->log_root) {
193 ret = 0;
194 atomic_inc(&root->log_writers);
195 }
196 mutex_unlock(&root->log_mutex);
197 return ret;
198 }
199
200 /*
201 * This either makes the current running log transaction wait
202 * until you call btrfs_end_log_trans() or it makes any future
203 * log transactions wait until you call btrfs_end_log_trans()
204 */
205 int btrfs_pin_log_trans(struct btrfs_root *root)
206 {
207 int ret = -ENOENT;
208
209 mutex_lock(&root->log_mutex);
210 atomic_inc(&root->log_writers);
211 mutex_unlock(&root->log_mutex);
212 return ret;
213 }
214
215 /*
216 * indicate we're done making changes to the log tree
217 * and wake up anyone waiting to do a sync
218 */
219 void btrfs_end_log_trans(struct btrfs_root *root)
220 {
221 if (atomic_dec_and_test(&root->log_writers)) {
222 smp_mb();
223 if (waitqueue_active(&root->log_writer_wait))
224 wake_up(&root->log_writer_wait);
225 }
226 }
227
228
229 /*
230 * the walk control struct is used to pass state down the chain when
231 * processing the log tree. The stage field tells us which part
232 * of the log tree processing we are currently doing. The others
233 * are state fields used for that specific part
234 */
235 struct walk_control {
236 /* should we free the extent on disk when done? This is used
237 * at transaction commit time while freeing a log tree
238 */
239 int free;
240
241 /* should we write out the extent buffer? This is used
242 * while flushing the log tree to disk during a sync
243 */
244 int write;
245
246 /* should we wait for the extent buffer io to finish? Also used
247 * while flushing the log tree to disk for a sync
248 */
249 int wait;
250
251 /* pin only walk, we record which extents on disk belong to the
252 * log trees
253 */
254 int pin;
255
256 /* what stage of the replay code we're currently in */
257 int stage;
258
259 /* the root we are currently replaying */
260 struct btrfs_root *replay_dest;
261
262 /* the trans handle for the current replay */
263 struct btrfs_trans_handle *trans;
264
265 /* the function that gets used to process blocks we find in the
266 * tree. Note the extent_buffer might not be up to date when it is
267 * passed in, and it must be checked or read if you need the data
268 * inside it
269 */
270 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
271 struct walk_control *wc, u64 gen);
272 };
273
274 /*
275 * process_func used to pin down extents, write them or wait on them
276 */
277 static int process_one_buffer(struct btrfs_root *log,
278 struct extent_buffer *eb,
279 struct walk_control *wc, u64 gen)
280 {
281 int ret = 0;
282
283 /*
284 * If this fs is mixed then we need to be able to process the leaves to
285 * pin down any logged extents, so we have to read the block.
286 */
287 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
288 ret = btrfs_read_buffer(eb, gen);
289 if (ret)
290 return ret;
291 }
292
293 if (wc->pin)
294 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
295 eb->start, eb->len);
296
297 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
298 if (wc->pin && btrfs_header_level(eb) == 0)
299 ret = btrfs_exclude_logged_extents(log, eb);
300 if (wc->write)
301 btrfs_write_tree_block(eb);
302 if (wc->wait)
303 btrfs_wait_tree_block_writeback(eb);
304 }
305 return ret;
306 }
307
308 /*
309 * Item overwrite used by replay and tree logging. eb, slot and key all refer
310 * to the src data we are copying out.
311 *
312 * root is the tree we are copying into, and path is a scratch
313 * path for use in this function (it should be released on entry and
314 * will be released on exit).
315 *
316 * If the key is already in the destination tree the existing item is
317 * overwritten. If the existing item isn't big enough, it is extended.
318 * If it is too large, it is truncated.
319 *
320 * If the key isn't in the destination yet, a new item is inserted.
321 */
322 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
323 struct btrfs_root *root,
324 struct btrfs_path *path,
325 struct extent_buffer *eb, int slot,
326 struct btrfs_key *key)
327 {
328 int ret;
329 u32 item_size;
330 u64 saved_i_size = 0;
331 int save_old_i_size = 0;
332 unsigned long src_ptr;
333 unsigned long dst_ptr;
334 int overwrite_root = 0;
335 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
336
337 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
338 overwrite_root = 1;
339
340 item_size = btrfs_item_size_nr(eb, slot);
341 src_ptr = btrfs_item_ptr_offset(eb, slot);
342
343 /* look for the key in the destination tree */
344 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
345 if (ret < 0)
346 return ret;
347
348 if (ret == 0) {
349 char *src_copy;
350 char *dst_copy;
351 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
352 path->slots[0]);
353 if (dst_size != item_size)
354 goto insert;
355
356 if (item_size == 0) {
357 btrfs_release_path(path);
358 return 0;
359 }
360 dst_copy = kmalloc(item_size, GFP_NOFS);
361 src_copy = kmalloc(item_size, GFP_NOFS);
362 if (!dst_copy || !src_copy) {
363 btrfs_release_path(path);
364 kfree(dst_copy);
365 kfree(src_copy);
366 return -ENOMEM;
367 }
368
369 read_extent_buffer(eb, src_copy, src_ptr, item_size);
370
371 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
372 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
373 item_size);
374 ret = memcmp(dst_copy, src_copy, item_size);
375
376 kfree(dst_copy);
377 kfree(src_copy);
378 /*
379 * they have the same contents, just return, this saves
380 * us from cowing blocks in the destination tree and doing
381 * extra writes that may not have been done by a previous
382 * sync
383 */
384 if (ret == 0) {
385 btrfs_release_path(path);
386 return 0;
387 }
388
389 /*
390 * We need to load the old nbytes into the inode so when we
391 * replay the extents we've logged we get the right nbytes.
392 */
393 if (inode_item) {
394 struct btrfs_inode_item *item;
395 u64 nbytes;
396 u32 mode;
397
398 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
399 struct btrfs_inode_item);
400 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
401 item = btrfs_item_ptr(eb, slot,
402 struct btrfs_inode_item);
403 btrfs_set_inode_nbytes(eb, item, nbytes);
404
405 /*
406 * If this is a directory we need to reset the i_size to
407 * 0 so that we can set it up properly when replaying
408 * the rest of the items in this log.
409 */
410 mode = btrfs_inode_mode(eb, item);
411 if (S_ISDIR(mode))
412 btrfs_set_inode_size(eb, item, 0);
413 }
414 } else if (inode_item) {
415 struct btrfs_inode_item *item;
416 u32 mode;
417
418 /*
419 * New inode, set nbytes to 0 so that the nbytes comes out
420 * properly when we replay the extents.
421 */
422 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
423 btrfs_set_inode_nbytes(eb, item, 0);
424
425 /*
426 * If this is a directory we need to reset the i_size to 0 so
427 * that we can set it up properly when replaying the rest of
428 * the items in this log.
429 */
430 mode = btrfs_inode_mode(eb, item);
431 if (S_ISDIR(mode))
432 btrfs_set_inode_size(eb, item, 0);
433 }
434 insert:
435 btrfs_release_path(path);
436 /* try to insert the key into the destination tree */
437 ret = btrfs_insert_empty_item(trans, root, path,
438 key, item_size);
439
440 /* make sure any existing item is the correct size */
441 if (ret == -EEXIST) {
442 u32 found_size;
443 found_size = btrfs_item_size_nr(path->nodes[0],
444 path->slots[0]);
445 if (found_size > item_size)
446 btrfs_truncate_item(root, path, item_size, 1);
447 else if (found_size < item_size)
448 btrfs_extend_item(root, path,
449 item_size - found_size);
450 } else if (ret) {
451 return ret;
452 }
453 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
454 path->slots[0]);
455
456 /* don't overwrite an existing inode if the generation number
457 * was logged as zero. This is done when the tree logging code
458 * is just logging an inode to make sure it exists after recovery.
459 *
460 * Also, don't overwrite i_size on directories during replay.
461 * log replay inserts and removes directory items based on the
462 * state of the tree found in the subvolume, and i_size is modified
463 * as it goes
464 */
465 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
466 struct btrfs_inode_item *src_item;
467 struct btrfs_inode_item *dst_item;
468
469 src_item = (struct btrfs_inode_item *)src_ptr;
470 dst_item = (struct btrfs_inode_item *)dst_ptr;
471
472 if (btrfs_inode_generation(eb, src_item) == 0)
473 goto no_copy;
474
475 if (overwrite_root &&
476 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
477 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
478 save_old_i_size = 1;
479 saved_i_size = btrfs_inode_size(path->nodes[0],
480 dst_item);
481 }
482 }
483
484 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
485 src_ptr, item_size);
486
487 if (save_old_i_size) {
488 struct btrfs_inode_item *dst_item;
489 dst_item = (struct btrfs_inode_item *)dst_ptr;
490 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
491 }
492
493 /* make sure the generation is filled in */
494 if (key->type == BTRFS_INODE_ITEM_KEY) {
495 struct btrfs_inode_item *dst_item;
496 dst_item = (struct btrfs_inode_item *)dst_ptr;
497 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
498 btrfs_set_inode_generation(path->nodes[0], dst_item,
499 trans->transid);
500 }
501 }
502 no_copy:
503 btrfs_mark_buffer_dirty(path->nodes[0]);
504 btrfs_release_path(path);
505 return 0;
506 }
507
508 /*
509 * simple helper to read an inode off the disk from a given root
510 * This can only be called for subvolume roots and not for the log
511 */
512 static noinline struct inode *read_one_inode(struct btrfs_root *root,
513 u64 objectid)
514 {
515 struct btrfs_key key;
516 struct inode *inode;
517
518 key.objectid = objectid;
519 key.type = BTRFS_INODE_ITEM_KEY;
520 key.offset = 0;
521 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
522 if (IS_ERR(inode)) {
523 inode = NULL;
524 } else if (is_bad_inode(inode)) {
525 iput(inode);
526 inode = NULL;
527 }
528 return inode;
529 }
530
531 /* replays a single extent in 'eb' at 'slot' with 'key' into the
532 * subvolume 'root'. path is released on entry and should be released
533 * on exit.
534 *
535 * extents in the log tree have not been allocated out of the extent
536 * tree yet. So, this completes the allocation, taking a reference
537 * as required if the extent already exists or creating a new extent
538 * if it isn't in the extent allocation tree yet.
539 *
540 * The extent is inserted into the file, dropping any existing extents
541 * from the file that overlap the new one.
542 */
543 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
544 struct btrfs_root *root,
545 struct btrfs_path *path,
546 struct extent_buffer *eb, int slot,
547 struct btrfs_key *key)
548 {
549 int found_type;
550 u64 extent_end;
551 u64 start = key->offset;
552 u64 nbytes = 0;
553 struct btrfs_file_extent_item *item;
554 struct inode *inode = NULL;
555 unsigned long size;
556 int ret = 0;
557
558 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
559 found_type = btrfs_file_extent_type(eb, item);
560
561 if (found_type == BTRFS_FILE_EXTENT_REG ||
562 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
563 nbytes = btrfs_file_extent_num_bytes(eb, item);
564 extent_end = start + nbytes;
565
566 /*
567 * We don't add to the inodes nbytes if we are prealloc or a
568 * hole.
569 */
570 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
571 nbytes = 0;
572 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
573 size = btrfs_file_extent_inline_len(eb, item);
574 nbytes = btrfs_file_extent_ram_bytes(eb, item);
575 extent_end = ALIGN(start + size, root->sectorsize);
576 } else {
577 ret = 0;
578 goto out;
579 }
580
581 inode = read_one_inode(root, key->objectid);
582 if (!inode) {
583 ret = -EIO;
584 goto out;
585 }
586
587 /*
588 * first check to see if we already have this extent in the
589 * file. This must be done before the btrfs_drop_extents run
590 * so we don't try to drop this extent.
591 */
592 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
593 start, 0);
594
595 if (ret == 0 &&
596 (found_type == BTRFS_FILE_EXTENT_REG ||
597 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
598 struct btrfs_file_extent_item cmp1;
599 struct btrfs_file_extent_item cmp2;
600 struct btrfs_file_extent_item *existing;
601 struct extent_buffer *leaf;
602
603 leaf = path->nodes[0];
604 existing = btrfs_item_ptr(leaf, path->slots[0],
605 struct btrfs_file_extent_item);
606
607 read_extent_buffer(eb, &cmp1, (unsigned long)item,
608 sizeof(cmp1));
609 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
610 sizeof(cmp2));
611
612 /*
613 * we already have a pointer to this exact extent,
614 * we don't have to do anything
615 */
616 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
617 btrfs_release_path(path);
618 goto out;
619 }
620 }
621 btrfs_release_path(path);
622
623 /* drop any overlapping extents */
624 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
625 if (ret)
626 goto out;
627
628 if (found_type == BTRFS_FILE_EXTENT_REG ||
629 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
630 u64 offset;
631 unsigned long dest_offset;
632 struct btrfs_key ins;
633
634 ret = btrfs_insert_empty_item(trans, root, path, key,
635 sizeof(*item));
636 if (ret)
637 goto out;
638 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
639 path->slots[0]);
640 copy_extent_buffer(path->nodes[0], eb, dest_offset,
641 (unsigned long)item, sizeof(*item));
642
643 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
644 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
645 ins.type = BTRFS_EXTENT_ITEM_KEY;
646 offset = key->offset - btrfs_file_extent_offset(eb, item);
647
648 if (ins.objectid > 0) {
649 u64 csum_start;
650 u64 csum_end;
651 LIST_HEAD(ordered_sums);
652 /*
653 * is this extent already allocated in the extent
654 * allocation tree? If so, just add a reference
655 */
656 ret = btrfs_lookup_extent(root, ins.objectid,
657 ins.offset);
658 if (ret == 0) {
659 ret = btrfs_inc_extent_ref(trans, root,
660 ins.objectid, ins.offset,
661 0, root->root_key.objectid,
662 key->objectid, offset, 0);
663 if (ret)
664 goto out;
665 } else {
666 /*
667 * insert the extent pointer in the extent
668 * allocation tree
669 */
670 ret = btrfs_alloc_logged_file_extent(trans,
671 root, root->root_key.objectid,
672 key->objectid, offset, &ins);
673 if (ret)
674 goto out;
675 }
676 btrfs_release_path(path);
677
678 if (btrfs_file_extent_compression(eb, item)) {
679 csum_start = ins.objectid;
680 csum_end = csum_start + ins.offset;
681 } else {
682 csum_start = ins.objectid +
683 btrfs_file_extent_offset(eb, item);
684 csum_end = csum_start +
685 btrfs_file_extent_num_bytes(eb, item);
686 }
687
688 ret = btrfs_lookup_csums_range(root->log_root,
689 csum_start, csum_end - 1,
690 &ordered_sums, 0);
691 if (ret)
692 goto out;
693 while (!list_empty(&ordered_sums)) {
694 struct btrfs_ordered_sum *sums;
695 sums = list_entry(ordered_sums.next,
696 struct btrfs_ordered_sum,
697 list);
698 if (!ret)
699 ret = btrfs_csum_file_blocks(trans,
700 root->fs_info->csum_root,
701 sums);
702 list_del(&sums->list);
703 kfree(sums);
704 }
705 if (ret)
706 goto out;
707 } else {
708 btrfs_release_path(path);
709 }
710 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
711 /* inline extents are easy, we just overwrite them */
712 ret = overwrite_item(trans, root, path, eb, slot, key);
713 if (ret)
714 goto out;
715 }
716
717 inode_add_bytes(inode, nbytes);
718 ret = btrfs_update_inode(trans, root, inode);
719 out:
720 if (inode)
721 iput(inode);
722 return ret;
723 }
724
725 /*
726 * when cleaning up conflicts between the directory names in the
727 * subvolume, directory names in the log and directory names in the
728 * inode back references, we may have to unlink inodes from directories.
729 *
730 * This is a helper function to do the unlink of a specific directory
731 * item
732 */
733 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
734 struct btrfs_root *root,
735 struct btrfs_path *path,
736 struct inode *dir,
737 struct btrfs_dir_item *di)
738 {
739 struct inode *inode;
740 char *name;
741 int name_len;
742 struct extent_buffer *leaf;
743 struct btrfs_key location;
744 int ret;
745
746 leaf = path->nodes[0];
747
748 btrfs_dir_item_key_to_cpu(leaf, di, &location);
749 name_len = btrfs_dir_name_len(leaf, di);
750 name = kmalloc(name_len, GFP_NOFS);
751 if (!name)
752 return -ENOMEM;
753
754 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
755 btrfs_release_path(path);
756
757 inode = read_one_inode(root, location.objectid);
758 if (!inode) {
759 ret = -EIO;
760 goto out;
761 }
762
763 ret = link_to_fixup_dir(trans, root, path, location.objectid);
764 if (ret)
765 goto out;
766
767 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
768 if (ret)
769 goto out;
770 else
771 ret = btrfs_run_delayed_items(trans, root);
772 out:
773 kfree(name);
774 iput(inode);
775 return ret;
776 }
777
778 /*
779 * helper function to see if a given name and sequence number found
780 * in an inode back reference are already in a directory and correctly
781 * point to this inode
782 */
783 static noinline int inode_in_dir(struct btrfs_root *root,
784 struct btrfs_path *path,
785 u64 dirid, u64 objectid, u64 index,
786 const char *name, int name_len)
787 {
788 struct btrfs_dir_item *di;
789 struct btrfs_key location;
790 int match = 0;
791
792 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
793 index, name, name_len, 0);
794 if (di && !IS_ERR(di)) {
795 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
796 if (location.objectid != objectid)
797 goto out;
798 } else
799 goto out;
800 btrfs_release_path(path);
801
802 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
803 if (di && !IS_ERR(di)) {
804 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
805 if (location.objectid != objectid)
806 goto out;
807 } else
808 goto out;
809 match = 1;
810 out:
811 btrfs_release_path(path);
812 return match;
813 }
814
815 /*
816 * helper function to check a log tree for a named back reference in
817 * an inode. This is used to decide if a back reference that is
818 * found in the subvolume conflicts with what we find in the log.
819 *
820 * inode backreferences may have multiple refs in a single item,
821 * during replay we process one reference at a time, and we don't
822 * want to delete valid links to a file from the subvolume if that
823 * link is also in the log.
824 */
825 static noinline int backref_in_log(struct btrfs_root *log,
826 struct btrfs_key *key,
827 u64 ref_objectid,
828 char *name, int namelen)
829 {
830 struct btrfs_path *path;
831 struct btrfs_inode_ref *ref;
832 unsigned long ptr;
833 unsigned long ptr_end;
834 unsigned long name_ptr;
835 int found_name_len;
836 int item_size;
837 int ret;
838 int match = 0;
839
840 path = btrfs_alloc_path();
841 if (!path)
842 return -ENOMEM;
843
844 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
845 if (ret != 0)
846 goto out;
847
848 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
849
850 if (key->type == BTRFS_INODE_EXTREF_KEY) {
851 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
852 name, namelen, NULL))
853 match = 1;
854
855 goto out;
856 }
857
858 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
859 ptr_end = ptr + item_size;
860 while (ptr < ptr_end) {
861 ref = (struct btrfs_inode_ref *)ptr;
862 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
863 if (found_name_len == namelen) {
864 name_ptr = (unsigned long)(ref + 1);
865 ret = memcmp_extent_buffer(path->nodes[0], name,
866 name_ptr, namelen);
867 if (ret == 0) {
868 match = 1;
869 goto out;
870 }
871 }
872 ptr = (unsigned long)(ref + 1) + found_name_len;
873 }
874 out:
875 btrfs_free_path(path);
876 return match;
877 }
878
879 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
880 struct btrfs_root *root,
881 struct btrfs_path *path,
882 struct btrfs_root *log_root,
883 struct inode *dir, struct inode *inode,
884 struct extent_buffer *eb,
885 u64 inode_objectid, u64 parent_objectid,
886 u64 ref_index, char *name, int namelen,
887 int *search_done)
888 {
889 int ret;
890 char *victim_name;
891 int victim_name_len;
892 struct extent_buffer *leaf;
893 struct btrfs_dir_item *di;
894 struct btrfs_key search_key;
895 struct btrfs_inode_extref *extref;
896
897 again:
898 /* Search old style refs */
899 search_key.objectid = inode_objectid;
900 search_key.type = BTRFS_INODE_REF_KEY;
901 search_key.offset = parent_objectid;
902 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
903 if (ret == 0) {
904 struct btrfs_inode_ref *victim_ref;
905 unsigned long ptr;
906 unsigned long ptr_end;
907
908 leaf = path->nodes[0];
909
910 /* are we trying to overwrite a back ref for the root directory
911 * if so, just jump out, we're done
912 */
913 if (search_key.objectid == search_key.offset)
914 return 1;
915
916 /* check all the names in this back reference to see
917 * if they are in the log. if so, we allow them to stay
918 * otherwise they must be unlinked as a conflict
919 */
920 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
921 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
922 while (ptr < ptr_end) {
923 victim_ref = (struct btrfs_inode_ref *)ptr;
924 victim_name_len = btrfs_inode_ref_name_len(leaf,
925 victim_ref);
926 victim_name = kmalloc(victim_name_len, GFP_NOFS);
927 if (!victim_name)
928 return -ENOMEM;
929
930 read_extent_buffer(leaf, victim_name,
931 (unsigned long)(victim_ref + 1),
932 victim_name_len);
933
934 if (!backref_in_log(log_root, &search_key,
935 parent_objectid,
936 victim_name,
937 victim_name_len)) {
938 inc_nlink(inode);
939 btrfs_release_path(path);
940
941 ret = btrfs_unlink_inode(trans, root, dir,
942 inode, victim_name,
943 victim_name_len);
944 kfree(victim_name);
945 if (ret)
946 return ret;
947 ret = btrfs_run_delayed_items(trans, root);
948 if (ret)
949 return ret;
950 *search_done = 1;
951 goto again;
952 }
953 kfree(victim_name);
954
955 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
956 }
957
958 /*
959 * NOTE: we have searched root tree and checked the
960 * coresponding ref, it does not need to check again.
961 */
962 *search_done = 1;
963 }
964 btrfs_release_path(path);
965
966 /* Same search but for extended refs */
967 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
968 inode_objectid, parent_objectid, 0,
969 0);
970 if (!IS_ERR_OR_NULL(extref)) {
971 u32 item_size;
972 u32 cur_offset = 0;
973 unsigned long base;
974 struct inode *victim_parent;
975
976 leaf = path->nodes[0];
977
978 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
979 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
980
981 while (cur_offset < item_size) {
982 extref = (struct btrfs_inode_extref *)base + cur_offset;
983
984 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
985
986 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
987 goto next;
988
989 victim_name = kmalloc(victim_name_len, GFP_NOFS);
990 if (!victim_name)
991 return -ENOMEM;
992 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
993 victim_name_len);
994
995 search_key.objectid = inode_objectid;
996 search_key.type = BTRFS_INODE_EXTREF_KEY;
997 search_key.offset = btrfs_extref_hash(parent_objectid,
998 victim_name,
999 victim_name_len);
1000 ret = 0;
1001 if (!backref_in_log(log_root, &search_key,
1002 parent_objectid, victim_name,
1003 victim_name_len)) {
1004 ret = -ENOENT;
1005 victim_parent = read_one_inode(root,
1006 parent_objectid);
1007 if (victim_parent) {
1008 inc_nlink(inode);
1009 btrfs_release_path(path);
1010
1011 ret = btrfs_unlink_inode(trans, root,
1012 victim_parent,
1013 inode,
1014 victim_name,
1015 victim_name_len);
1016 if (!ret)
1017 ret = btrfs_run_delayed_items(
1018 trans, root);
1019 }
1020 iput(victim_parent);
1021 kfree(victim_name);
1022 if (ret)
1023 return ret;
1024 *search_done = 1;
1025 goto again;
1026 }
1027 kfree(victim_name);
1028 if (ret)
1029 return ret;
1030 next:
1031 cur_offset += victim_name_len + sizeof(*extref);
1032 }
1033 *search_done = 1;
1034 }
1035 btrfs_release_path(path);
1036
1037 /* look for a conflicting sequence number */
1038 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1039 ref_index, name, namelen, 0);
1040 if (di && !IS_ERR(di)) {
1041 ret = drop_one_dir_item(trans, root, path, dir, di);
1042 if (ret)
1043 return ret;
1044 }
1045 btrfs_release_path(path);
1046
1047 /* look for a conflicing name */
1048 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1049 name, namelen, 0);
1050 if (di && !IS_ERR(di)) {
1051 ret = drop_one_dir_item(trans, root, path, dir, di);
1052 if (ret)
1053 return ret;
1054 }
1055 btrfs_release_path(path);
1056
1057 return 0;
1058 }
1059
1060 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1061 u32 *namelen, char **name, u64 *index,
1062 u64 *parent_objectid)
1063 {
1064 struct btrfs_inode_extref *extref;
1065
1066 extref = (struct btrfs_inode_extref *)ref_ptr;
1067
1068 *namelen = btrfs_inode_extref_name_len(eb, extref);
1069 *name = kmalloc(*namelen, GFP_NOFS);
1070 if (*name == NULL)
1071 return -ENOMEM;
1072
1073 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1074 *namelen);
1075
1076 *index = btrfs_inode_extref_index(eb, extref);
1077 if (parent_objectid)
1078 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1079
1080 return 0;
1081 }
1082
1083 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1084 u32 *namelen, char **name, u64 *index)
1085 {
1086 struct btrfs_inode_ref *ref;
1087
1088 ref = (struct btrfs_inode_ref *)ref_ptr;
1089
1090 *namelen = btrfs_inode_ref_name_len(eb, ref);
1091 *name = kmalloc(*namelen, GFP_NOFS);
1092 if (*name == NULL)
1093 return -ENOMEM;
1094
1095 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1096
1097 *index = btrfs_inode_ref_index(eb, ref);
1098
1099 return 0;
1100 }
1101
1102 /*
1103 * replay one inode back reference item found in the log tree.
1104 * eb, slot and key refer to the buffer and key found in the log tree.
1105 * root is the destination we are replaying into, and path is for temp
1106 * use by this function. (it should be released on return).
1107 */
1108 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1109 struct btrfs_root *root,
1110 struct btrfs_root *log,
1111 struct btrfs_path *path,
1112 struct extent_buffer *eb, int slot,
1113 struct btrfs_key *key)
1114 {
1115 struct inode *dir = NULL;
1116 struct inode *inode = NULL;
1117 unsigned long ref_ptr;
1118 unsigned long ref_end;
1119 char *name = NULL;
1120 int namelen;
1121 int ret;
1122 int search_done = 0;
1123 int log_ref_ver = 0;
1124 u64 parent_objectid;
1125 u64 inode_objectid;
1126 u64 ref_index = 0;
1127 int ref_struct_size;
1128
1129 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1130 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1131
1132 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1133 struct btrfs_inode_extref *r;
1134
1135 ref_struct_size = sizeof(struct btrfs_inode_extref);
1136 log_ref_ver = 1;
1137 r = (struct btrfs_inode_extref *)ref_ptr;
1138 parent_objectid = btrfs_inode_extref_parent(eb, r);
1139 } else {
1140 ref_struct_size = sizeof(struct btrfs_inode_ref);
1141 parent_objectid = key->offset;
1142 }
1143 inode_objectid = key->objectid;
1144
1145 /*
1146 * it is possible that we didn't log all the parent directories
1147 * for a given inode. If we don't find the dir, just don't
1148 * copy the back ref in. The link count fixup code will take
1149 * care of the rest
1150 */
1151 dir = read_one_inode(root, parent_objectid);
1152 if (!dir) {
1153 ret = -ENOENT;
1154 goto out;
1155 }
1156
1157 inode = read_one_inode(root, inode_objectid);
1158 if (!inode) {
1159 ret = -EIO;
1160 goto out;
1161 }
1162
1163 while (ref_ptr < ref_end) {
1164 if (log_ref_ver) {
1165 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1166 &ref_index, &parent_objectid);
1167 /*
1168 * parent object can change from one array
1169 * item to another.
1170 */
1171 if (!dir)
1172 dir = read_one_inode(root, parent_objectid);
1173 if (!dir) {
1174 ret = -ENOENT;
1175 goto out;
1176 }
1177 } else {
1178 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1179 &ref_index);
1180 }
1181 if (ret)
1182 goto out;
1183
1184 /* if we already have a perfect match, we're done */
1185 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1186 ref_index, name, namelen)) {
1187 /*
1188 * look for a conflicting back reference in the
1189 * metadata. if we find one we have to unlink that name
1190 * of the file before we add our new link. Later on, we
1191 * overwrite any existing back reference, and we don't
1192 * want to create dangling pointers in the directory.
1193 */
1194
1195 if (!search_done) {
1196 ret = __add_inode_ref(trans, root, path, log,
1197 dir, inode, eb,
1198 inode_objectid,
1199 parent_objectid,
1200 ref_index, name, namelen,
1201 &search_done);
1202 if (ret) {
1203 if (ret == 1)
1204 ret = 0;
1205 goto out;
1206 }
1207 }
1208
1209 /* insert our name */
1210 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1211 0, ref_index);
1212 if (ret)
1213 goto out;
1214
1215 btrfs_update_inode(trans, root, inode);
1216 }
1217
1218 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1219 kfree(name);
1220 name = NULL;
1221 if (log_ref_ver) {
1222 iput(dir);
1223 dir = NULL;
1224 }
1225 }
1226
1227 /* finally write the back reference in the inode */
1228 ret = overwrite_item(trans, root, path, eb, slot, key);
1229 out:
1230 btrfs_release_path(path);
1231 kfree(name);
1232 iput(dir);
1233 iput(inode);
1234 return ret;
1235 }
1236
1237 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1238 struct btrfs_root *root, u64 offset)
1239 {
1240 int ret;
1241 ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID,
1242 offset, BTRFS_ORPHAN_ITEM_KEY, NULL);
1243 if (ret > 0)
1244 ret = btrfs_insert_orphan_item(trans, root, offset);
1245 return ret;
1246 }
1247
1248 static int count_inode_extrefs(struct btrfs_root *root,
1249 struct inode *inode, struct btrfs_path *path)
1250 {
1251 int ret = 0;
1252 int name_len;
1253 unsigned int nlink = 0;
1254 u32 item_size;
1255 u32 cur_offset = 0;
1256 u64 inode_objectid = btrfs_ino(inode);
1257 u64 offset = 0;
1258 unsigned long ptr;
1259 struct btrfs_inode_extref *extref;
1260 struct extent_buffer *leaf;
1261
1262 while (1) {
1263 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1264 &extref, &offset);
1265 if (ret)
1266 break;
1267
1268 leaf = path->nodes[0];
1269 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1270 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1271
1272 while (cur_offset < item_size) {
1273 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1274 name_len = btrfs_inode_extref_name_len(leaf, extref);
1275
1276 nlink++;
1277
1278 cur_offset += name_len + sizeof(*extref);
1279 }
1280
1281 offset++;
1282 btrfs_release_path(path);
1283 }
1284 btrfs_release_path(path);
1285
1286 if (ret < 0)
1287 return ret;
1288 return nlink;
1289 }
1290
1291 static int count_inode_refs(struct btrfs_root *root,
1292 struct inode *inode, struct btrfs_path *path)
1293 {
1294 int ret;
1295 struct btrfs_key key;
1296 unsigned int nlink = 0;
1297 unsigned long ptr;
1298 unsigned long ptr_end;
1299 int name_len;
1300 u64 ino = btrfs_ino(inode);
1301
1302 key.objectid = ino;
1303 key.type = BTRFS_INODE_REF_KEY;
1304 key.offset = (u64)-1;
1305
1306 while (1) {
1307 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1308 if (ret < 0)
1309 break;
1310 if (ret > 0) {
1311 if (path->slots[0] == 0)
1312 break;
1313 path->slots[0]--;
1314 }
1315 process_slot:
1316 btrfs_item_key_to_cpu(path->nodes[0], &key,
1317 path->slots[0]);
1318 if (key.objectid != ino ||
1319 key.type != BTRFS_INODE_REF_KEY)
1320 break;
1321 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1322 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1323 path->slots[0]);
1324 while (ptr < ptr_end) {
1325 struct btrfs_inode_ref *ref;
1326
1327 ref = (struct btrfs_inode_ref *)ptr;
1328 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1329 ref);
1330 ptr = (unsigned long)(ref + 1) + name_len;
1331 nlink++;
1332 }
1333
1334 if (key.offset == 0)
1335 break;
1336 if (path->slots[0] > 0) {
1337 path->slots[0]--;
1338 goto process_slot;
1339 }
1340 key.offset--;
1341 btrfs_release_path(path);
1342 }
1343 btrfs_release_path(path);
1344
1345 return nlink;
1346 }
1347
1348 /*
1349 * There are a few corners where the link count of the file can't
1350 * be properly maintained during replay. So, instead of adding
1351 * lots of complexity to the log code, we just scan the backrefs
1352 * for any file that has been through replay.
1353 *
1354 * The scan will update the link count on the inode to reflect the
1355 * number of back refs found. If it goes down to zero, the iput
1356 * will free the inode.
1357 */
1358 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1359 struct btrfs_root *root,
1360 struct inode *inode)
1361 {
1362 struct btrfs_path *path;
1363 int ret;
1364 u64 nlink = 0;
1365 u64 ino = btrfs_ino(inode);
1366
1367 path = btrfs_alloc_path();
1368 if (!path)
1369 return -ENOMEM;
1370
1371 ret = count_inode_refs(root, inode, path);
1372 if (ret < 0)
1373 goto out;
1374
1375 nlink = ret;
1376
1377 ret = count_inode_extrefs(root, inode, path);
1378 if (ret == -ENOENT)
1379 ret = 0;
1380
1381 if (ret < 0)
1382 goto out;
1383
1384 nlink += ret;
1385
1386 ret = 0;
1387
1388 if (nlink != inode->i_nlink) {
1389 set_nlink(inode, nlink);
1390 btrfs_update_inode(trans, root, inode);
1391 }
1392 BTRFS_I(inode)->index_cnt = (u64)-1;
1393
1394 if (inode->i_nlink == 0) {
1395 if (S_ISDIR(inode->i_mode)) {
1396 ret = replay_dir_deletes(trans, root, NULL, path,
1397 ino, 1);
1398 if (ret)
1399 goto out;
1400 }
1401 ret = insert_orphan_item(trans, root, ino);
1402 }
1403
1404 out:
1405 btrfs_free_path(path);
1406 return ret;
1407 }
1408
1409 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1410 struct btrfs_root *root,
1411 struct btrfs_path *path)
1412 {
1413 int ret;
1414 struct btrfs_key key;
1415 struct inode *inode;
1416
1417 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1418 key.type = BTRFS_ORPHAN_ITEM_KEY;
1419 key.offset = (u64)-1;
1420 while (1) {
1421 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1422 if (ret < 0)
1423 break;
1424
1425 if (ret == 1) {
1426 if (path->slots[0] == 0)
1427 break;
1428 path->slots[0]--;
1429 }
1430
1431 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1432 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1433 key.type != BTRFS_ORPHAN_ITEM_KEY)
1434 break;
1435
1436 ret = btrfs_del_item(trans, root, path);
1437 if (ret)
1438 goto out;
1439
1440 btrfs_release_path(path);
1441 inode = read_one_inode(root, key.offset);
1442 if (!inode)
1443 return -EIO;
1444
1445 ret = fixup_inode_link_count(trans, root, inode);
1446 iput(inode);
1447 if (ret)
1448 goto out;
1449
1450 /*
1451 * fixup on a directory may create new entries,
1452 * make sure we always look for the highset possible
1453 * offset
1454 */
1455 key.offset = (u64)-1;
1456 }
1457 ret = 0;
1458 out:
1459 btrfs_release_path(path);
1460 return ret;
1461 }
1462
1463
1464 /*
1465 * record a given inode in the fixup dir so we can check its link
1466 * count when replay is done. The link count is incremented here
1467 * so the inode won't go away until we check it
1468 */
1469 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1470 struct btrfs_root *root,
1471 struct btrfs_path *path,
1472 u64 objectid)
1473 {
1474 struct btrfs_key key;
1475 int ret = 0;
1476 struct inode *inode;
1477
1478 inode = read_one_inode(root, objectid);
1479 if (!inode)
1480 return -EIO;
1481
1482 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1483 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1484 key.offset = objectid;
1485
1486 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1487
1488 btrfs_release_path(path);
1489 if (ret == 0) {
1490 if (!inode->i_nlink)
1491 set_nlink(inode, 1);
1492 else
1493 inc_nlink(inode);
1494 ret = btrfs_update_inode(trans, root, inode);
1495 } else if (ret == -EEXIST) {
1496 ret = 0;
1497 } else {
1498 BUG(); /* Logic Error */
1499 }
1500 iput(inode);
1501
1502 return ret;
1503 }
1504
1505 /*
1506 * when replaying the log for a directory, we only insert names
1507 * for inodes that actually exist. This means an fsync on a directory
1508 * does not implicitly fsync all the new files in it
1509 */
1510 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1511 struct btrfs_root *root,
1512 struct btrfs_path *path,
1513 u64 dirid, u64 index,
1514 char *name, int name_len, u8 type,
1515 struct btrfs_key *location)
1516 {
1517 struct inode *inode;
1518 struct inode *dir;
1519 int ret;
1520
1521 inode = read_one_inode(root, location->objectid);
1522 if (!inode)
1523 return -ENOENT;
1524
1525 dir = read_one_inode(root, dirid);
1526 if (!dir) {
1527 iput(inode);
1528 return -EIO;
1529 }
1530
1531 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1532
1533 /* FIXME, put inode into FIXUP list */
1534
1535 iput(inode);
1536 iput(dir);
1537 return ret;
1538 }
1539
1540 /*
1541 * take a single entry in a log directory item and replay it into
1542 * the subvolume.
1543 *
1544 * if a conflicting item exists in the subdirectory already,
1545 * the inode it points to is unlinked and put into the link count
1546 * fix up tree.
1547 *
1548 * If a name from the log points to a file or directory that does
1549 * not exist in the FS, it is skipped. fsyncs on directories
1550 * do not force down inodes inside that directory, just changes to the
1551 * names or unlinks in a directory.
1552 */
1553 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1554 struct btrfs_root *root,
1555 struct btrfs_path *path,
1556 struct extent_buffer *eb,
1557 struct btrfs_dir_item *di,
1558 struct btrfs_key *key)
1559 {
1560 char *name;
1561 int name_len;
1562 struct btrfs_dir_item *dst_di;
1563 struct btrfs_key found_key;
1564 struct btrfs_key log_key;
1565 struct inode *dir;
1566 u8 log_type;
1567 int exists;
1568 int ret = 0;
1569 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1570
1571 dir = read_one_inode(root, key->objectid);
1572 if (!dir)
1573 return -EIO;
1574
1575 name_len = btrfs_dir_name_len(eb, di);
1576 name = kmalloc(name_len, GFP_NOFS);
1577 if (!name) {
1578 ret = -ENOMEM;
1579 goto out;
1580 }
1581
1582 log_type = btrfs_dir_type(eb, di);
1583 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1584 name_len);
1585
1586 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1587 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1588 if (exists == 0)
1589 exists = 1;
1590 else
1591 exists = 0;
1592 btrfs_release_path(path);
1593
1594 if (key->type == BTRFS_DIR_ITEM_KEY) {
1595 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1596 name, name_len, 1);
1597 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1598 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1599 key->objectid,
1600 key->offset, name,
1601 name_len, 1);
1602 } else {
1603 /* Corruption */
1604 ret = -EINVAL;
1605 goto out;
1606 }
1607 if (IS_ERR_OR_NULL(dst_di)) {
1608 /* we need a sequence number to insert, so we only
1609 * do inserts for the BTRFS_DIR_INDEX_KEY types
1610 */
1611 if (key->type != BTRFS_DIR_INDEX_KEY)
1612 goto out;
1613 goto insert;
1614 }
1615
1616 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1617 /* the existing item matches the logged item */
1618 if (found_key.objectid == log_key.objectid &&
1619 found_key.type == log_key.type &&
1620 found_key.offset == log_key.offset &&
1621 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1622 goto out;
1623 }
1624
1625 /*
1626 * don't drop the conflicting directory entry if the inode
1627 * for the new entry doesn't exist
1628 */
1629 if (!exists)
1630 goto out;
1631
1632 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1633 if (ret)
1634 goto out;
1635
1636 if (key->type == BTRFS_DIR_INDEX_KEY)
1637 goto insert;
1638 out:
1639 btrfs_release_path(path);
1640 if (!ret && update_size) {
1641 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1642 ret = btrfs_update_inode(trans, root, dir);
1643 }
1644 kfree(name);
1645 iput(dir);
1646 return ret;
1647
1648 insert:
1649 btrfs_release_path(path);
1650 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1651 name, name_len, log_type, &log_key);
1652 if (ret && ret != -ENOENT)
1653 goto out;
1654 update_size = false;
1655 ret = 0;
1656 goto out;
1657 }
1658
1659 /*
1660 * find all the names in a directory item and reconcile them into
1661 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1662 * one name in a directory item, but the same code gets used for
1663 * both directory index types
1664 */
1665 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1666 struct btrfs_root *root,
1667 struct btrfs_path *path,
1668 struct extent_buffer *eb, int slot,
1669 struct btrfs_key *key)
1670 {
1671 int ret;
1672 u32 item_size = btrfs_item_size_nr(eb, slot);
1673 struct btrfs_dir_item *di;
1674 int name_len;
1675 unsigned long ptr;
1676 unsigned long ptr_end;
1677
1678 ptr = btrfs_item_ptr_offset(eb, slot);
1679 ptr_end = ptr + item_size;
1680 while (ptr < ptr_end) {
1681 di = (struct btrfs_dir_item *)ptr;
1682 if (verify_dir_item(root, eb, di))
1683 return -EIO;
1684 name_len = btrfs_dir_name_len(eb, di);
1685 ret = replay_one_name(trans, root, path, eb, di, key);
1686 if (ret)
1687 return ret;
1688 ptr = (unsigned long)(di + 1);
1689 ptr += name_len;
1690 }
1691 return 0;
1692 }
1693
1694 /*
1695 * directory replay has two parts. There are the standard directory
1696 * items in the log copied from the subvolume, and range items
1697 * created in the log while the subvolume was logged.
1698 *
1699 * The range items tell us which parts of the key space the log
1700 * is authoritative for. During replay, if a key in the subvolume
1701 * directory is in a logged range item, but not actually in the log
1702 * that means it was deleted from the directory before the fsync
1703 * and should be removed.
1704 */
1705 static noinline int find_dir_range(struct btrfs_root *root,
1706 struct btrfs_path *path,
1707 u64 dirid, int key_type,
1708 u64 *start_ret, u64 *end_ret)
1709 {
1710 struct btrfs_key key;
1711 u64 found_end;
1712 struct btrfs_dir_log_item *item;
1713 int ret;
1714 int nritems;
1715
1716 if (*start_ret == (u64)-1)
1717 return 1;
1718
1719 key.objectid = dirid;
1720 key.type = key_type;
1721 key.offset = *start_ret;
1722
1723 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1724 if (ret < 0)
1725 goto out;
1726 if (ret > 0) {
1727 if (path->slots[0] == 0)
1728 goto out;
1729 path->slots[0]--;
1730 }
1731 if (ret != 0)
1732 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1733
1734 if (key.type != key_type || key.objectid != dirid) {
1735 ret = 1;
1736 goto next;
1737 }
1738 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1739 struct btrfs_dir_log_item);
1740 found_end = btrfs_dir_log_end(path->nodes[0], item);
1741
1742 if (*start_ret >= key.offset && *start_ret <= found_end) {
1743 ret = 0;
1744 *start_ret = key.offset;
1745 *end_ret = found_end;
1746 goto out;
1747 }
1748 ret = 1;
1749 next:
1750 /* check the next slot in the tree to see if it is a valid item */
1751 nritems = btrfs_header_nritems(path->nodes[0]);
1752 if (path->slots[0] >= nritems) {
1753 ret = btrfs_next_leaf(root, path);
1754 if (ret)
1755 goto out;
1756 } else {
1757 path->slots[0]++;
1758 }
1759
1760 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1761
1762 if (key.type != key_type || key.objectid != dirid) {
1763 ret = 1;
1764 goto out;
1765 }
1766 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1767 struct btrfs_dir_log_item);
1768 found_end = btrfs_dir_log_end(path->nodes[0], item);
1769 *start_ret = key.offset;
1770 *end_ret = found_end;
1771 ret = 0;
1772 out:
1773 btrfs_release_path(path);
1774 return ret;
1775 }
1776
1777 /*
1778 * this looks for a given directory item in the log. If the directory
1779 * item is not in the log, the item is removed and the inode it points
1780 * to is unlinked
1781 */
1782 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1783 struct btrfs_root *root,
1784 struct btrfs_root *log,
1785 struct btrfs_path *path,
1786 struct btrfs_path *log_path,
1787 struct inode *dir,
1788 struct btrfs_key *dir_key)
1789 {
1790 int ret;
1791 struct extent_buffer *eb;
1792 int slot;
1793 u32 item_size;
1794 struct btrfs_dir_item *di;
1795 struct btrfs_dir_item *log_di;
1796 int name_len;
1797 unsigned long ptr;
1798 unsigned long ptr_end;
1799 char *name;
1800 struct inode *inode;
1801 struct btrfs_key location;
1802
1803 again:
1804 eb = path->nodes[0];
1805 slot = path->slots[0];
1806 item_size = btrfs_item_size_nr(eb, slot);
1807 ptr = btrfs_item_ptr_offset(eb, slot);
1808 ptr_end = ptr + item_size;
1809 while (ptr < ptr_end) {
1810 di = (struct btrfs_dir_item *)ptr;
1811 if (verify_dir_item(root, eb, di)) {
1812 ret = -EIO;
1813 goto out;
1814 }
1815
1816 name_len = btrfs_dir_name_len(eb, di);
1817 name = kmalloc(name_len, GFP_NOFS);
1818 if (!name) {
1819 ret = -ENOMEM;
1820 goto out;
1821 }
1822 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1823 name_len);
1824 log_di = NULL;
1825 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1826 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1827 dir_key->objectid,
1828 name, name_len, 0);
1829 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1830 log_di = btrfs_lookup_dir_index_item(trans, log,
1831 log_path,
1832 dir_key->objectid,
1833 dir_key->offset,
1834 name, name_len, 0);
1835 }
1836 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1837 btrfs_dir_item_key_to_cpu(eb, di, &location);
1838 btrfs_release_path(path);
1839 btrfs_release_path(log_path);
1840 inode = read_one_inode(root, location.objectid);
1841 if (!inode) {
1842 kfree(name);
1843 return -EIO;
1844 }
1845
1846 ret = link_to_fixup_dir(trans, root,
1847 path, location.objectid);
1848 if (ret) {
1849 kfree(name);
1850 iput(inode);
1851 goto out;
1852 }
1853
1854 inc_nlink(inode);
1855 ret = btrfs_unlink_inode(trans, root, dir, inode,
1856 name, name_len);
1857 if (!ret)
1858 ret = btrfs_run_delayed_items(trans, root);
1859 kfree(name);
1860 iput(inode);
1861 if (ret)
1862 goto out;
1863
1864 /* there might still be more names under this key
1865 * check and repeat if required
1866 */
1867 ret = btrfs_search_slot(NULL, root, dir_key, path,
1868 0, 0);
1869 if (ret == 0)
1870 goto again;
1871 ret = 0;
1872 goto out;
1873 } else if (IS_ERR(log_di)) {
1874 kfree(name);
1875 return PTR_ERR(log_di);
1876 }
1877 btrfs_release_path(log_path);
1878 kfree(name);
1879
1880 ptr = (unsigned long)(di + 1);
1881 ptr += name_len;
1882 }
1883 ret = 0;
1884 out:
1885 btrfs_release_path(path);
1886 btrfs_release_path(log_path);
1887 return ret;
1888 }
1889
1890 /*
1891 * deletion replay happens before we copy any new directory items
1892 * out of the log or out of backreferences from inodes. It
1893 * scans the log to find ranges of keys that log is authoritative for,
1894 * and then scans the directory to find items in those ranges that are
1895 * not present in the log.
1896 *
1897 * Anything we don't find in the log is unlinked and removed from the
1898 * directory.
1899 */
1900 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1901 struct btrfs_root *root,
1902 struct btrfs_root *log,
1903 struct btrfs_path *path,
1904 u64 dirid, int del_all)
1905 {
1906 u64 range_start;
1907 u64 range_end;
1908 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1909 int ret = 0;
1910 struct btrfs_key dir_key;
1911 struct btrfs_key found_key;
1912 struct btrfs_path *log_path;
1913 struct inode *dir;
1914
1915 dir_key.objectid = dirid;
1916 dir_key.type = BTRFS_DIR_ITEM_KEY;
1917 log_path = btrfs_alloc_path();
1918 if (!log_path)
1919 return -ENOMEM;
1920
1921 dir = read_one_inode(root, dirid);
1922 /* it isn't an error if the inode isn't there, that can happen
1923 * because we replay the deletes before we copy in the inode item
1924 * from the log
1925 */
1926 if (!dir) {
1927 btrfs_free_path(log_path);
1928 return 0;
1929 }
1930 again:
1931 range_start = 0;
1932 range_end = 0;
1933 while (1) {
1934 if (del_all)
1935 range_end = (u64)-1;
1936 else {
1937 ret = find_dir_range(log, path, dirid, key_type,
1938 &range_start, &range_end);
1939 if (ret != 0)
1940 break;
1941 }
1942
1943 dir_key.offset = range_start;
1944 while (1) {
1945 int nritems;
1946 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1947 0, 0);
1948 if (ret < 0)
1949 goto out;
1950
1951 nritems = btrfs_header_nritems(path->nodes[0]);
1952 if (path->slots[0] >= nritems) {
1953 ret = btrfs_next_leaf(root, path);
1954 if (ret)
1955 break;
1956 }
1957 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1958 path->slots[0]);
1959 if (found_key.objectid != dirid ||
1960 found_key.type != dir_key.type)
1961 goto next_type;
1962
1963 if (found_key.offset > range_end)
1964 break;
1965
1966 ret = check_item_in_log(trans, root, log, path,
1967 log_path, dir,
1968 &found_key);
1969 if (ret)
1970 goto out;
1971 if (found_key.offset == (u64)-1)
1972 break;
1973 dir_key.offset = found_key.offset + 1;
1974 }
1975 btrfs_release_path(path);
1976 if (range_end == (u64)-1)
1977 break;
1978 range_start = range_end + 1;
1979 }
1980
1981 next_type:
1982 ret = 0;
1983 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1984 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1985 dir_key.type = BTRFS_DIR_INDEX_KEY;
1986 btrfs_release_path(path);
1987 goto again;
1988 }
1989 out:
1990 btrfs_release_path(path);
1991 btrfs_free_path(log_path);
1992 iput(dir);
1993 return ret;
1994 }
1995
1996 /*
1997 * the process_func used to replay items from the log tree. This
1998 * gets called in two different stages. The first stage just looks
1999 * for inodes and makes sure they are all copied into the subvolume.
2000 *
2001 * The second stage copies all the other item types from the log into
2002 * the subvolume. The two stage approach is slower, but gets rid of
2003 * lots of complexity around inodes referencing other inodes that exist
2004 * only in the log (references come from either directory items or inode
2005 * back refs).
2006 */
2007 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2008 struct walk_control *wc, u64 gen)
2009 {
2010 int nritems;
2011 struct btrfs_path *path;
2012 struct btrfs_root *root = wc->replay_dest;
2013 struct btrfs_key key;
2014 int level;
2015 int i;
2016 int ret;
2017
2018 ret = btrfs_read_buffer(eb, gen);
2019 if (ret)
2020 return ret;
2021
2022 level = btrfs_header_level(eb);
2023
2024 if (level != 0)
2025 return 0;
2026
2027 path = btrfs_alloc_path();
2028 if (!path)
2029 return -ENOMEM;
2030
2031 nritems = btrfs_header_nritems(eb);
2032 for (i = 0; i < nritems; i++) {
2033 btrfs_item_key_to_cpu(eb, &key, i);
2034
2035 /* inode keys are done during the first stage */
2036 if (key.type == BTRFS_INODE_ITEM_KEY &&
2037 wc->stage == LOG_WALK_REPLAY_INODES) {
2038 struct btrfs_inode_item *inode_item;
2039 u32 mode;
2040
2041 inode_item = btrfs_item_ptr(eb, i,
2042 struct btrfs_inode_item);
2043 mode = btrfs_inode_mode(eb, inode_item);
2044 if (S_ISDIR(mode)) {
2045 ret = replay_dir_deletes(wc->trans,
2046 root, log, path, key.objectid, 0);
2047 if (ret)
2048 break;
2049 }
2050 ret = overwrite_item(wc->trans, root, path,
2051 eb, i, &key);
2052 if (ret)
2053 break;
2054
2055 /* for regular files, make sure corresponding
2056 * orhpan item exist. extents past the new EOF
2057 * will be truncated later by orphan cleanup.
2058 */
2059 if (S_ISREG(mode)) {
2060 ret = insert_orphan_item(wc->trans, root,
2061 key.objectid);
2062 if (ret)
2063 break;
2064 }
2065
2066 ret = link_to_fixup_dir(wc->trans, root,
2067 path, key.objectid);
2068 if (ret)
2069 break;
2070 }
2071
2072 if (key.type == BTRFS_DIR_INDEX_KEY &&
2073 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2074 ret = replay_one_dir_item(wc->trans, root, path,
2075 eb, i, &key);
2076 if (ret)
2077 break;
2078 }
2079
2080 if (wc->stage < LOG_WALK_REPLAY_ALL)
2081 continue;
2082
2083 /* these keys are simply copied */
2084 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2085 ret = overwrite_item(wc->trans, root, path,
2086 eb, i, &key);
2087 if (ret)
2088 break;
2089 } else if (key.type == BTRFS_INODE_REF_KEY ||
2090 key.type == BTRFS_INODE_EXTREF_KEY) {
2091 ret = add_inode_ref(wc->trans, root, log, path,
2092 eb, i, &key);
2093 if (ret && ret != -ENOENT)
2094 break;
2095 ret = 0;
2096 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2097 ret = replay_one_extent(wc->trans, root, path,
2098 eb, i, &key);
2099 if (ret)
2100 break;
2101 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2102 ret = replay_one_dir_item(wc->trans, root, path,
2103 eb, i, &key);
2104 if (ret)
2105 break;
2106 }
2107 }
2108 btrfs_free_path(path);
2109 return ret;
2110 }
2111
2112 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2113 struct btrfs_root *root,
2114 struct btrfs_path *path, int *level,
2115 struct walk_control *wc)
2116 {
2117 u64 root_owner;
2118 u64 bytenr;
2119 u64 ptr_gen;
2120 struct extent_buffer *next;
2121 struct extent_buffer *cur;
2122 struct extent_buffer *parent;
2123 u32 blocksize;
2124 int ret = 0;
2125
2126 WARN_ON(*level < 0);
2127 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2128
2129 while (*level > 0) {
2130 WARN_ON(*level < 0);
2131 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2132 cur = path->nodes[*level];
2133
2134 WARN_ON(btrfs_header_level(cur) != *level);
2135
2136 if (path->slots[*level] >=
2137 btrfs_header_nritems(cur))
2138 break;
2139
2140 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2141 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2142 blocksize = btrfs_level_size(root, *level - 1);
2143
2144 parent = path->nodes[*level];
2145 root_owner = btrfs_header_owner(parent);
2146
2147 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2148 if (!next)
2149 return -ENOMEM;
2150
2151 if (*level == 1) {
2152 ret = wc->process_func(root, next, wc, ptr_gen);
2153 if (ret) {
2154 free_extent_buffer(next);
2155 return ret;
2156 }
2157
2158 path->slots[*level]++;
2159 if (wc->free) {
2160 ret = btrfs_read_buffer(next, ptr_gen);
2161 if (ret) {
2162 free_extent_buffer(next);
2163 return ret;
2164 }
2165
2166 if (trans) {
2167 btrfs_tree_lock(next);
2168 btrfs_set_lock_blocking(next);
2169 clean_tree_block(trans, root, next);
2170 btrfs_wait_tree_block_writeback(next);
2171 btrfs_tree_unlock(next);
2172 }
2173
2174 WARN_ON(root_owner !=
2175 BTRFS_TREE_LOG_OBJECTID);
2176 ret = btrfs_free_and_pin_reserved_extent(root,
2177 bytenr, blocksize);
2178 if (ret) {
2179 free_extent_buffer(next);
2180 return ret;
2181 }
2182 }
2183 free_extent_buffer(next);
2184 continue;
2185 }
2186 ret = btrfs_read_buffer(next, ptr_gen);
2187 if (ret) {
2188 free_extent_buffer(next);
2189 return ret;
2190 }
2191
2192 WARN_ON(*level <= 0);
2193 if (path->nodes[*level-1])
2194 free_extent_buffer(path->nodes[*level-1]);
2195 path->nodes[*level-1] = next;
2196 *level = btrfs_header_level(next);
2197 path->slots[*level] = 0;
2198 cond_resched();
2199 }
2200 WARN_ON(*level < 0);
2201 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2202
2203 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2204
2205 cond_resched();
2206 return 0;
2207 }
2208
2209 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2210 struct btrfs_root *root,
2211 struct btrfs_path *path, int *level,
2212 struct walk_control *wc)
2213 {
2214 u64 root_owner;
2215 int i;
2216 int slot;
2217 int ret;
2218
2219 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2220 slot = path->slots[i];
2221 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2222 path->slots[i]++;
2223 *level = i;
2224 WARN_ON(*level == 0);
2225 return 0;
2226 } else {
2227 struct extent_buffer *parent;
2228 if (path->nodes[*level] == root->node)
2229 parent = path->nodes[*level];
2230 else
2231 parent = path->nodes[*level + 1];
2232
2233 root_owner = btrfs_header_owner(parent);
2234 ret = wc->process_func(root, path->nodes[*level], wc,
2235 btrfs_header_generation(path->nodes[*level]));
2236 if (ret)
2237 return ret;
2238
2239 if (wc->free) {
2240 struct extent_buffer *next;
2241
2242 next = path->nodes[*level];
2243
2244 if (trans) {
2245 btrfs_tree_lock(next);
2246 btrfs_set_lock_blocking(next);
2247 clean_tree_block(trans, root, next);
2248 btrfs_wait_tree_block_writeback(next);
2249 btrfs_tree_unlock(next);
2250 }
2251
2252 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2253 ret = btrfs_free_and_pin_reserved_extent(root,
2254 path->nodes[*level]->start,
2255 path->nodes[*level]->len);
2256 if (ret)
2257 return ret;
2258 }
2259 free_extent_buffer(path->nodes[*level]);
2260 path->nodes[*level] = NULL;
2261 *level = i + 1;
2262 }
2263 }
2264 return 1;
2265 }
2266
2267 /*
2268 * drop the reference count on the tree rooted at 'snap'. This traverses
2269 * the tree freeing any blocks that have a ref count of zero after being
2270 * decremented.
2271 */
2272 static int walk_log_tree(struct btrfs_trans_handle *trans,
2273 struct btrfs_root *log, struct walk_control *wc)
2274 {
2275 int ret = 0;
2276 int wret;
2277 int level;
2278 struct btrfs_path *path;
2279 int orig_level;
2280
2281 path = btrfs_alloc_path();
2282 if (!path)
2283 return -ENOMEM;
2284
2285 level = btrfs_header_level(log->node);
2286 orig_level = level;
2287 path->nodes[level] = log->node;
2288 extent_buffer_get(log->node);
2289 path->slots[level] = 0;
2290
2291 while (1) {
2292 wret = walk_down_log_tree(trans, log, path, &level, wc);
2293 if (wret > 0)
2294 break;
2295 if (wret < 0) {
2296 ret = wret;
2297 goto out;
2298 }
2299
2300 wret = walk_up_log_tree(trans, log, path, &level, wc);
2301 if (wret > 0)
2302 break;
2303 if (wret < 0) {
2304 ret = wret;
2305 goto out;
2306 }
2307 }
2308
2309 /* was the root node processed? if not, catch it here */
2310 if (path->nodes[orig_level]) {
2311 ret = wc->process_func(log, path->nodes[orig_level], wc,
2312 btrfs_header_generation(path->nodes[orig_level]));
2313 if (ret)
2314 goto out;
2315 if (wc->free) {
2316 struct extent_buffer *next;
2317
2318 next = path->nodes[orig_level];
2319
2320 if (trans) {
2321 btrfs_tree_lock(next);
2322 btrfs_set_lock_blocking(next);
2323 clean_tree_block(trans, log, next);
2324 btrfs_wait_tree_block_writeback(next);
2325 btrfs_tree_unlock(next);
2326 }
2327
2328 WARN_ON(log->root_key.objectid !=
2329 BTRFS_TREE_LOG_OBJECTID);
2330 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2331 next->len);
2332 if (ret)
2333 goto out;
2334 }
2335 }
2336
2337 out:
2338 btrfs_free_path(path);
2339 return ret;
2340 }
2341
2342 /*
2343 * helper function to update the item for a given subvolumes log root
2344 * in the tree of log roots
2345 */
2346 static int update_log_root(struct btrfs_trans_handle *trans,
2347 struct btrfs_root *log)
2348 {
2349 int ret;
2350
2351 if (log->log_transid == 1) {
2352 /* insert root item on the first sync */
2353 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2354 &log->root_key, &log->root_item);
2355 } else {
2356 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2357 &log->root_key, &log->root_item);
2358 }
2359 return ret;
2360 }
2361
2362 static int wait_log_commit(struct btrfs_trans_handle *trans,
2363 struct btrfs_root *root, unsigned long transid)
2364 {
2365 DEFINE_WAIT(wait);
2366 int index = transid % 2;
2367
2368 /*
2369 * we only allow two pending log transactions at a time,
2370 * so we know that if ours is more than 2 older than the
2371 * current transaction, we're done
2372 */
2373 do {
2374 prepare_to_wait(&root->log_commit_wait[index],
2375 &wait, TASK_UNINTERRUPTIBLE);
2376 mutex_unlock(&root->log_mutex);
2377
2378 if (root->fs_info->last_trans_log_full_commit !=
2379 trans->transid && root->log_transid < transid + 2 &&
2380 atomic_read(&root->log_commit[index]))
2381 schedule();
2382
2383 finish_wait(&root->log_commit_wait[index], &wait);
2384 mutex_lock(&root->log_mutex);
2385 } while (root->fs_info->last_trans_log_full_commit !=
2386 trans->transid && root->log_transid < transid + 2 &&
2387 atomic_read(&root->log_commit[index]));
2388 return 0;
2389 }
2390
2391 static void wait_for_writer(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *root)
2393 {
2394 DEFINE_WAIT(wait);
2395 while (root->fs_info->last_trans_log_full_commit !=
2396 trans->transid && atomic_read(&root->log_writers)) {
2397 prepare_to_wait(&root->log_writer_wait,
2398 &wait, TASK_UNINTERRUPTIBLE);
2399 mutex_unlock(&root->log_mutex);
2400 if (root->fs_info->last_trans_log_full_commit !=
2401 trans->transid && atomic_read(&root->log_writers))
2402 schedule();
2403 mutex_lock(&root->log_mutex);
2404 finish_wait(&root->log_writer_wait, &wait);
2405 }
2406 }
2407
2408 /*
2409 * btrfs_sync_log does sends a given tree log down to the disk and
2410 * updates the super blocks to record it. When this call is done,
2411 * you know that any inodes previously logged are safely on disk only
2412 * if it returns 0.
2413 *
2414 * Any other return value means you need to call btrfs_commit_transaction.
2415 * Some of the edge cases for fsyncing directories that have had unlinks
2416 * or renames done in the past mean that sometimes the only safe
2417 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2418 * that has happened.
2419 */
2420 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2421 struct btrfs_root *root)
2422 {
2423 int index1;
2424 int index2;
2425 int mark;
2426 int ret;
2427 struct btrfs_root *log = root->log_root;
2428 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2429 unsigned long log_transid = 0;
2430 struct blk_plug plug;
2431
2432 mutex_lock(&root->log_mutex);
2433 log_transid = root->log_transid;
2434 index1 = root->log_transid % 2;
2435 if (atomic_read(&root->log_commit[index1])) {
2436 wait_log_commit(trans, root, root->log_transid);
2437 mutex_unlock(&root->log_mutex);
2438 return 0;
2439 }
2440 atomic_set(&root->log_commit[index1], 1);
2441
2442 /* wait for previous tree log sync to complete */
2443 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2444 wait_log_commit(trans, root, root->log_transid - 1);
2445 while (1) {
2446 int batch = atomic_read(&root->log_batch);
2447 /* when we're on an ssd, just kick the log commit out */
2448 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2449 mutex_unlock(&root->log_mutex);
2450 schedule_timeout_uninterruptible(1);
2451 mutex_lock(&root->log_mutex);
2452 }
2453 wait_for_writer(trans, root);
2454 if (batch == atomic_read(&root->log_batch))
2455 break;
2456 }
2457
2458 /* bail out if we need to do a full commit */
2459 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2460 ret = -EAGAIN;
2461 btrfs_free_logged_extents(log, log_transid);
2462 mutex_unlock(&root->log_mutex);
2463 goto out;
2464 }
2465
2466 if (log_transid % 2 == 0)
2467 mark = EXTENT_DIRTY;
2468 else
2469 mark = EXTENT_NEW;
2470
2471 /* we start IO on all the marked extents here, but we don't actually
2472 * wait for them until later.
2473 */
2474 blk_start_plug(&plug);
2475 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2476 if (ret) {
2477 blk_finish_plug(&plug);
2478 btrfs_abort_transaction(trans, root, ret);
2479 btrfs_free_logged_extents(log, log_transid);
2480 mutex_unlock(&root->log_mutex);
2481 goto out;
2482 }
2483
2484 btrfs_set_root_node(&log->root_item, log->node);
2485
2486 root->log_transid++;
2487 log->log_transid = root->log_transid;
2488 root->log_start_pid = 0;
2489 smp_mb();
2490 /*
2491 * IO has been started, blocks of the log tree have WRITTEN flag set
2492 * in their headers. new modifications of the log will be written to
2493 * new positions. so it's safe to allow log writers to go in.
2494 */
2495 mutex_unlock(&root->log_mutex);
2496
2497 mutex_lock(&log_root_tree->log_mutex);
2498 atomic_inc(&log_root_tree->log_batch);
2499 atomic_inc(&log_root_tree->log_writers);
2500 mutex_unlock(&log_root_tree->log_mutex);
2501
2502 ret = update_log_root(trans, log);
2503
2504 mutex_lock(&log_root_tree->log_mutex);
2505 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2506 smp_mb();
2507 if (waitqueue_active(&log_root_tree->log_writer_wait))
2508 wake_up(&log_root_tree->log_writer_wait);
2509 }
2510
2511 if (ret) {
2512 blk_finish_plug(&plug);
2513 if (ret != -ENOSPC) {
2514 btrfs_abort_transaction(trans, root, ret);
2515 mutex_unlock(&log_root_tree->log_mutex);
2516 goto out;
2517 }
2518 root->fs_info->last_trans_log_full_commit = trans->transid;
2519 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2520 btrfs_free_logged_extents(log, log_transid);
2521 mutex_unlock(&log_root_tree->log_mutex);
2522 ret = -EAGAIN;
2523 goto out;
2524 }
2525
2526 index2 = log_root_tree->log_transid % 2;
2527 if (atomic_read(&log_root_tree->log_commit[index2])) {
2528 blk_finish_plug(&plug);
2529 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2530 wait_log_commit(trans, log_root_tree,
2531 log_root_tree->log_transid);
2532 btrfs_free_logged_extents(log, log_transid);
2533 mutex_unlock(&log_root_tree->log_mutex);
2534 ret = 0;
2535 goto out;
2536 }
2537 atomic_set(&log_root_tree->log_commit[index2], 1);
2538
2539 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2540 wait_log_commit(trans, log_root_tree,
2541 log_root_tree->log_transid - 1);
2542 }
2543
2544 wait_for_writer(trans, log_root_tree);
2545
2546 /*
2547 * now that we've moved on to the tree of log tree roots,
2548 * check the full commit flag again
2549 */
2550 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2551 blk_finish_plug(&plug);
2552 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2553 btrfs_free_logged_extents(log, log_transid);
2554 mutex_unlock(&log_root_tree->log_mutex);
2555 ret = -EAGAIN;
2556 goto out_wake_log_root;
2557 }
2558
2559 ret = btrfs_write_marked_extents(log_root_tree,
2560 &log_root_tree->dirty_log_pages,
2561 EXTENT_DIRTY | EXTENT_NEW);
2562 blk_finish_plug(&plug);
2563 if (ret) {
2564 btrfs_abort_transaction(trans, root, ret);
2565 btrfs_free_logged_extents(log, log_transid);
2566 mutex_unlock(&log_root_tree->log_mutex);
2567 goto out_wake_log_root;
2568 }
2569 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2570 btrfs_wait_marked_extents(log_root_tree,
2571 &log_root_tree->dirty_log_pages,
2572 EXTENT_NEW | EXTENT_DIRTY);
2573 btrfs_wait_logged_extents(log, log_transid);
2574
2575 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2576 log_root_tree->node->start);
2577 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2578 btrfs_header_level(log_root_tree->node));
2579
2580 log_root_tree->log_transid++;
2581 smp_mb();
2582
2583 mutex_unlock(&log_root_tree->log_mutex);
2584
2585 /*
2586 * nobody else is going to jump in and write the the ctree
2587 * super here because the log_commit atomic below is protecting
2588 * us. We must be called with a transaction handle pinning
2589 * the running transaction open, so a full commit can't hop
2590 * in and cause problems either.
2591 */
2592 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2593 if (ret) {
2594 btrfs_abort_transaction(trans, root, ret);
2595 goto out_wake_log_root;
2596 }
2597
2598 mutex_lock(&root->log_mutex);
2599 if (root->last_log_commit < log_transid)
2600 root->last_log_commit = log_transid;
2601 mutex_unlock(&root->log_mutex);
2602
2603 out_wake_log_root:
2604 atomic_set(&log_root_tree->log_commit[index2], 0);
2605 smp_mb();
2606 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2607 wake_up(&log_root_tree->log_commit_wait[index2]);
2608 out:
2609 atomic_set(&root->log_commit[index1], 0);
2610 smp_mb();
2611 if (waitqueue_active(&root->log_commit_wait[index1]))
2612 wake_up(&root->log_commit_wait[index1]);
2613 return ret;
2614 }
2615
2616 static void free_log_tree(struct btrfs_trans_handle *trans,
2617 struct btrfs_root *log)
2618 {
2619 int ret;
2620 u64 start;
2621 u64 end;
2622 struct walk_control wc = {
2623 .free = 1,
2624 .process_func = process_one_buffer
2625 };
2626
2627 ret = walk_log_tree(trans, log, &wc);
2628 /* I don't think this can happen but just in case */
2629 if (ret)
2630 btrfs_abort_transaction(trans, log, ret);
2631
2632 while (1) {
2633 ret = find_first_extent_bit(&log->dirty_log_pages,
2634 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2635 NULL);
2636 if (ret)
2637 break;
2638
2639 clear_extent_bits(&log->dirty_log_pages, start, end,
2640 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2641 }
2642
2643 /*
2644 * We may have short-circuited the log tree with the full commit logic
2645 * and left ordered extents on our list, so clear these out to keep us
2646 * from leaking inodes and memory.
2647 */
2648 btrfs_free_logged_extents(log, 0);
2649 btrfs_free_logged_extents(log, 1);
2650
2651 free_extent_buffer(log->node);
2652 kfree(log);
2653 }
2654
2655 /*
2656 * free all the extents used by the tree log. This should be called
2657 * at commit time of the full transaction
2658 */
2659 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2660 {
2661 if (root->log_root) {
2662 free_log_tree(trans, root->log_root);
2663 root->log_root = NULL;
2664 }
2665 return 0;
2666 }
2667
2668 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2669 struct btrfs_fs_info *fs_info)
2670 {
2671 if (fs_info->log_root_tree) {
2672 free_log_tree(trans, fs_info->log_root_tree);
2673 fs_info->log_root_tree = NULL;
2674 }
2675 return 0;
2676 }
2677
2678 /*
2679 * If both a file and directory are logged, and unlinks or renames are
2680 * mixed in, we have a few interesting corners:
2681 *
2682 * create file X in dir Y
2683 * link file X to X.link in dir Y
2684 * fsync file X
2685 * unlink file X but leave X.link
2686 * fsync dir Y
2687 *
2688 * After a crash we would expect only X.link to exist. But file X
2689 * didn't get fsync'd again so the log has back refs for X and X.link.
2690 *
2691 * We solve this by removing directory entries and inode backrefs from the
2692 * log when a file that was logged in the current transaction is
2693 * unlinked. Any later fsync will include the updated log entries, and
2694 * we'll be able to reconstruct the proper directory items from backrefs.
2695 *
2696 * This optimizations allows us to avoid relogging the entire inode
2697 * or the entire directory.
2698 */
2699 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2700 struct btrfs_root *root,
2701 const char *name, int name_len,
2702 struct inode *dir, u64 index)
2703 {
2704 struct btrfs_root *log;
2705 struct btrfs_dir_item *di;
2706 struct btrfs_path *path;
2707 int ret;
2708 int err = 0;
2709 int bytes_del = 0;
2710 u64 dir_ino = btrfs_ino(dir);
2711
2712 if (BTRFS_I(dir)->logged_trans < trans->transid)
2713 return 0;
2714
2715 ret = join_running_log_trans(root);
2716 if (ret)
2717 return 0;
2718
2719 mutex_lock(&BTRFS_I(dir)->log_mutex);
2720
2721 log = root->log_root;
2722 path = btrfs_alloc_path();
2723 if (!path) {
2724 err = -ENOMEM;
2725 goto out_unlock;
2726 }
2727
2728 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2729 name, name_len, -1);
2730 if (IS_ERR(di)) {
2731 err = PTR_ERR(di);
2732 goto fail;
2733 }
2734 if (di) {
2735 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2736 bytes_del += name_len;
2737 if (ret) {
2738 err = ret;
2739 goto fail;
2740 }
2741 }
2742 btrfs_release_path(path);
2743 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2744 index, name, name_len, -1);
2745 if (IS_ERR(di)) {
2746 err = PTR_ERR(di);
2747 goto fail;
2748 }
2749 if (di) {
2750 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2751 bytes_del += name_len;
2752 if (ret) {
2753 err = ret;
2754 goto fail;
2755 }
2756 }
2757
2758 /* update the directory size in the log to reflect the names
2759 * we have removed
2760 */
2761 if (bytes_del) {
2762 struct btrfs_key key;
2763
2764 key.objectid = dir_ino;
2765 key.offset = 0;
2766 key.type = BTRFS_INODE_ITEM_KEY;
2767 btrfs_release_path(path);
2768
2769 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2770 if (ret < 0) {
2771 err = ret;
2772 goto fail;
2773 }
2774 if (ret == 0) {
2775 struct btrfs_inode_item *item;
2776 u64 i_size;
2777
2778 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2779 struct btrfs_inode_item);
2780 i_size = btrfs_inode_size(path->nodes[0], item);
2781 if (i_size > bytes_del)
2782 i_size -= bytes_del;
2783 else
2784 i_size = 0;
2785 btrfs_set_inode_size(path->nodes[0], item, i_size);
2786 btrfs_mark_buffer_dirty(path->nodes[0]);
2787 } else
2788 ret = 0;
2789 btrfs_release_path(path);
2790 }
2791 fail:
2792 btrfs_free_path(path);
2793 out_unlock:
2794 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2795 if (ret == -ENOSPC) {
2796 root->fs_info->last_trans_log_full_commit = trans->transid;
2797 ret = 0;
2798 } else if (ret < 0)
2799 btrfs_abort_transaction(trans, root, ret);
2800
2801 btrfs_end_log_trans(root);
2802
2803 return err;
2804 }
2805
2806 /* see comments for btrfs_del_dir_entries_in_log */
2807 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2808 struct btrfs_root *root,
2809 const char *name, int name_len,
2810 struct inode *inode, u64 dirid)
2811 {
2812 struct btrfs_root *log;
2813 u64 index;
2814 int ret;
2815
2816 if (BTRFS_I(inode)->logged_trans < trans->transid)
2817 return 0;
2818
2819 ret = join_running_log_trans(root);
2820 if (ret)
2821 return 0;
2822 log = root->log_root;
2823 mutex_lock(&BTRFS_I(inode)->log_mutex);
2824
2825 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2826 dirid, &index);
2827 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2828 if (ret == -ENOSPC) {
2829 root->fs_info->last_trans_log_full_commit = trans->transid;
2830 ret = 0;
2831 } else if (ret < 0 && ret != -ENOENT)
2832 btrfs_abort_transaction(trans, root, ret);
2833 btrfs_end_log_trans(root);
2834
2835 return ret;
2836 }
2837
2838 /*
2839 * creates a range item in the log for 'dirid'. first_offset and
2840 * last_offset tell us which parts of the key space the log should
2841 * be considered authoritative for.
2842 */
2843 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2844 struct btrfs_root *log,
2845 struct btrfs_path *path,
2846 int key_type, u64 dirid,
2847 u64 first_offset, u64 last_offset)
2848 {
2849 int ret;
2850 struct btrfs_key key;
2851 struct btrfs_dir_log_item *item;
2852
2853 key.objectid = dirid;
2854 key.offset = first_offset;
2855 if (key_type == BTRFS_DIR_ITEM_KEY)
2856 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2857 else
2858 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2859 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2860 if (ret)
2861 return ret;
2862
2863 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2864 struct btrfs_dir_log_item);
2865 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2866 btrfs_mark_buffer_dirty(path->nodes[0]);
2867 btrfs_release_path(path);
2868 return 0;
2869 }
2870
2871 /*
2872 * log all the items included in the current transaction for a given
2873 * directory. This also creates the range items in the log tree required
2874 * to replay anything deleted before the fsync
2875 */
2876 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2877 struct btrfs_root *root, struct inode *inode,
2878 struct btrfs_path *path,
2879 struct btrfs_path *dst_path, int key_type,
2880 u64 min_offset, u64 *last_offset_ret)
2881 {
2882 struct btrfs_key min_key;
2883 struct btrfs_root *log = root->log_root;
2884 struct extent_buffer *src;
2885 int err = 0;
2886 int ret;
2887 int i;
2888 int nritems;
2889 u64 first_offset = min_offset;
2890 u64 last_offset = (u64)-1;
2891 u64 ino = btrfs_ino(inode);
2892
2893 log = root->log_root;
2894
2895 min_key.objectid = ino;
2896 min_key.type = key_type;
2897 min_key.offset = min_offset;
2898
2899 path->keep_locks = 1;
2900
2901 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
2902
2903 /*
2904 * we didn't find anything from this transaction, see if there
2905 * is anything at all
2906 */
2907 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2908 min_key.objectid = ino;
2909 min_key.type = key_type;
2910 min_key.offset = (u64)-1;
2911 btrfs_release_path(path);
2912 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2913 if (ret < 0) {
2914 btrfs_release_path(path);
2915 return ret;
2916 }
2917 ret = btrfs_previous_item(root, path, ino, key_type);
2918
2919 /* if ret == 0 there are items for this type,
2920 * create a range to tell us the last key of this type.
2921 * otherwise, there are no items in this directory after
2922 * *min_offset, and we create a range to indicate that.
2923 */
2924 if (ret == 0) {
2925 struct btrfs_key tmp;
2926 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2927 path->slots[0]);
2928 if (key_type == tmp.type)
2929 first_offset = max(min_offset, tmp.offset) + 1;
2930 }
2931 goto done;
2932 }
2933
2934 /* go backward to find any previous key */
2935 ret = btrfs_previous_item(root, path, ino, key_type);
2936 if (ret == 0) {
2937 struct btrfs_key tmp;
2938 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2939 if (key_type == tmp.type) {
2940 first_offset = tmp.offset;
2941 ret = overwrite_item(trans, log, dst_path,
2942 path->nodes[0], path->slots[0],
2943 &tmp);
2944 if (ret) {
2945 err = ret;
2946 goto done;
2947 }
2948 }
2949 }
2950 btrfs_release_path(path);
2951
2952 /* find the first key from this transaction again */
2953 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2954 if (WARN_ON(ret != 0))
2955 goto done;
2956
2957 /*
2958 * we have a block from this transaction, log every item in it
2959 * from our directory
2960 */
2961 while (1) {
2962 struct btrfs_key tmp;
2963 src = path->nodes[0];
2964 nritems = btrfs_header_nritems(src);
2965 for (i = path->slots[0]; i < nritems; i++) {
2966 btrfs_item_key_to_cpu(src, &min_key, i);
2967
2968 if (min_key.objectid != ino || min_key.type != key_type)
2969 goto done;
2970 ret = overwrite_item(trans, log, dst_path, src, i,
2971 &min_key);
2972 if (ret) {
2973 err = ret;
2974 goto done;
2975 }
2976 }
2977 path->slots[0] = nritems;
2978
2979 /*
2980 * look ahead to the next item and see if it is also
2981 * from this directory and from this transaction
2982 */
2983 ret = btrfs_next_leaf(root, path);
2984 if (ret == 1) {
2985 last_offset = (u64)-1;
2986 goto done;
2987 }
2988 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2989 if (tmp.objectid != ino || tmp.type != key_type) {
2990 last_offset = (u64)-1;
2991 goto done;
2992 }
2993 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2994 ret = overwrite_item(trans, log, dst_path,
2995 path->nodes[0], path->slots[0],
2996 &tmp);
2997 if (ret)
2998 err = ret;
2999 else
3000 last_offset = tmp.offset;
3001 goto done;
3002 }
3003 }
3004 done:
3005 btrfs_release_path(path);
3006 btrfs_release_path(dst_path);
3007
3008 if (err == 0) {
3009 *last_offset_ret = last_offset;
3010 /*
3011 * insert the log range keys to indicate where the log
3012 * is valid
3013 */
3014 ret = insert_dir_log_key(trans, log, path, key_type,
3015 ino, first_offset, last_offset);
3016 if (ret)
3017 err = ret;
3018 }
3019 return err;
3020 }
3021
3022 /*
3023 * logging directories is very similar to logging inodes, We find all the items
3024 * from the current transaction and write them to the log.
3025 *
3026 * The recovery code scans the directory in the subvolume, and if it finds a
3027 * key in the range logged that is not present in the log tree, then it means
3028 * that dir entry was unlinked during the transaction.
3029 *
3030 * In order for that scan to work, we must include one key smaller than
3031 * the smallest logged by this transaction and one key larger than the largest
3032 * key logged by this transaction.
3033 */
3034 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3035 struct btrfs_root *root, struct inode *inode,
3036 struct btrfs_path *path,
3037 struct btrfs_path *dst_path)
3038 {
3039 u64 min_key;
3040 u64 max_key;
3041 int ret;
3042 int key_type = BTRFS_DIR_ITEM_KEY;
3043
3044 again:
3045 min_key = 0;
3046 max_key = 0;
3047 while (1) {
3048 ret = log_dir_items(trans, root, inode, path,
3049 dst_path, key_type, min_key,
3050 &max_key);
3051 if (ret)
3052 return ret;
3053 if (max_key == (u64)-1)
3054 break;
3055 min_key = max_key + 1;
3056 }
3057
3058 if (key_type == BTRFS_DIR_ITEM_KEY) {
3059 key_type = BTRFS_DIR_INDEX_KEY;
3060 goto again;
3061 }
3062 return 0;
3063 }
3064
3065 /*
3066 * a helper function to drop items from the log before we relog an
3067 * inode. max_key_type indicates the highest item type to remove.
3068 * This cannot be run for file data extents because it does not
3069 * free the extents they point to.
3070 */
3071 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3072 struct btrfs_root *log,
3073 struct btrfs_path *path,
3074 u64 objectid, int max_key_type)
3075 {
3076 int ret;
3077 struct btrfs_key key;
3078 struct btrfs_key found_key;
3079 int start_slot;
3080
3081 key.objectid = objectid;
3082 key.type = max_key_type;
3083 key.offset = (u64)-1;
3084
3085 while (1) {
3086 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3087 BUG_ON(ret == 0); /* Logic error */
3088 if (ret < 0)
3089 break;
3090
3091 if (path->slots[0] == 0)
3092 break;
3093
3094 path->slots[0]--;
3095 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3096 path->slots[0]);
3097
3098 if (found_key.objectid != objectid)
3099 break;
3100
3101 found_key.offset = 0;
3102 found_key.type = 0;
3103 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3104 &start_slot);
3105
3106 ret = btrfs_del_items(trans, log, path, start_slot,
3107 path->slots[0] - start_slot + 1);
3108 /*
3109 * If start slot isn't 0 then we don't need to re-search, we've
3110 * found the last guy with the objectid in this tree.
3111 */
3112 if (ret || start_slot != 0)
3113 break;
3114 btrfs_release_path(path);
3115 }
3116 btrfs_release_path(path);
3117 if (ret > 0)
3118 ret = 0;
3119 return ret;
3120 }
3121
3122 static void fill_inode_item(struct btrfs_trans_handle *trans,
3123 struct extent_buffer *leaf,
3124 struct btrfs_inode_item *item,
3125 struct inode *inode, int log_inode_only)
3126 {
3127 struct btrfs_map_token token;
3128
3129 btrfs_init_map_token(&token);
3130
3131 if (log_inode_only) {
3132 /* set the generation to zero so the recover code
3133 * can tell the difference between an logging
3134 * just to say 'this inode exists' and a logging
3135 * to say 'update this inode with these values'
3136 */
3137 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3138 btrfs_set_token_inode_size(leaf, item, 0, &token);
3139 } else {
3140 btrfs_set_token_inode_generation(leaf, item,
3141 BTRFS_I(inode)->generation,
3142 &token);
3143 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3144 }
3145
3146 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3147 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3148 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3149 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3150
3151 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3152 inode->i_atime.tv_sec, &token);
3153 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3154 inode->i_atime.tv_nsec, &token);
3155
3156 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3157 inode->i_mtime.tv_sec, &token);
3158 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3159 inode->i_mtime.tv_nsec, &token);
3160
3161 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3162 inode->i_ctime.tv_sec, &token);
3163 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3164 inode->i_ctime.tv_nsec, &token);
3165
3166 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3167 &token);
3168
3169 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3170 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3171 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3172 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3173 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3174 }
3175
3176 static int log_inode_item(struct btrfs_trans_handle *trans,
3177 struct btrfs_root *log, struct btrfs_path *path,
3178 struct inode *inode)
3179 {
3180 struct btrfs_inode_item *inode_item;
3181 int ret;
3182
3183 ret = btrfs_insert_empty_item(trans, log, path,
3184 &BTRFS_I(inode)->location,
3185 sizeof(*inode_item));
3186 if (ret && ret != -EEXIST)
3187 return ret;
3188 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3189 struct btrfs_inode_item);
3190 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3191 btrfs_release_path(path);
3192 return 0;
3193 }
3194
3195 static noinline int copy_items(struct btrfs_trans_handle *trans,
3196 struct inode *inode,
3197 struct btrfs_path *dst_path,
3198 struct btrfs_path *src_path, u64 *last_extent,
3199 int start_slot, int nr, int inode_only)
3200 {
3201 unsigned long src_offset;
3202 unsigned long dst_offset;
3203 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3204 struct btrfs_file_extent_item *extent;
3205 struct btrfs_inode_item *inode_item;
3206 struct extent_buffer *src = src_path->nodes[0];
3207 struct btrfs_key first_key, last_key, key;
3208 int ret;
3209 struct btrfs_key *ins_keys;
3210 u32 *ins_sizes;
3211 char *ins_data;
3212 int i;
3213 struct list_head ordered_sums;
3214 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3215 bool has_extents = false;
3216 bool need_find_last_extent = (*last_extent == 0);
3217 bool done = false;
3218
3219 INIT_LIST_HEAD(&ordered_sums);
3220
3221 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3222 nr * sizeof(u32), GFP_NOFS);
3223 if (!ins_data)
3224 return -ENOMEM;
3225
3226 first_key.objectid = (u64)-1;
3227
3228 ins_sizes = (u32 *)ins_data;
3229 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3230
3231 for (i = 0; i < nr; i++) {
3232 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3233 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3234 }
3235 ret = btrfs_insert_empty_items(trans, log, dst_path,
3236 ins_keys, ins_sizes, nr);
3237 if (ret) {
3238 kfree(ins_data);
3239 return ret;
3240 }
3241
3242 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3243 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3244 dst_path->slots[0]);
3245
3246 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3247
3248 if ((i == (nr - 1)))
3249 last_key = ins_keys[i];
3250
3251 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3252 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3253 dst_path->slots[0],
3254 struct btrfs_inode_item);
3255 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3256 inode, inode_only == LOG_INODE_EXISTS);
3257 } else {
3258 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3259 src_offset, ins_sizes[i]);
3260 }
3261
3262 /*
3263 * We set need_find_last_extent here in case we know we were
3264 * processing other items and then walk into the first extent in
3265 * the inode. If we don't hit an extent then nothing changes,
3266 * we'll do the last search the next time around.
3267 */
3268 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3269 has_extents = true;
3270 if (need_find_last_extent &&
3271 first_key.objectid == (u64)-1)
3272 first_key = ins_keys[i];
3273 } else {
3274 need_find_last_extent = false;
3275 }
3276
3277 /* take a reference on file data extents so that truncates
3278 * or deletes of this inode don't have to relog the inode
3279 * again
3280 */
3281 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3282 !skip_csum) {
3283 int found_type;
3284 extent = btrfs_item_ptr(src, start_slot + i,
3285 struct btrfs_file_extent_item);
3286
3287 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3288 continue;
3289
3290 found_type = btrfs_file_extent_type(src, extent);
3291 if (found_type == BTRFS_FILE_EXTENT_REG) {
3292 u64 ds, dl, cs, cl;
3293 ds = btrfs_file_extent_disk_bytenr(src,
3294 extent);
3295 /* ds == 0 is a hole */
3296 if (ds == 0)
3297 continue;
3298
3299 dl = btrfs_file_extent_disk_num_bytes(src,
3300 extent);
3301 cs = btrfs_file_extent_offset(src, extent);
3302 cl = btrfs_file_extent_num_bytes(src,
3303 extent);
3304 if (btrfs_file_extent_compression(src,
3305 extent)) {
3306 cs = 0;
3307 cl = dl;
3308 }
3309
3310 ret = btrfs_lookup_csums_range(
3311 log->fs_info->csum_root,
3312 ds + cs, ds + cs + cl - 1,
3313 &ordered_sums, 0);
3314 if (ret) {
3315 btrfs_release_path(dst_path);
3316 kfree(ins_data);
3317 return ret;
3318 }
3319 }
3320 }
3321 }
3322
3323 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3324 btrfs_release_path(dst_path);
3325 kfree(ins_data);
3326
3327 /*
3328 * we have to do this after the loop above to avoid changing the
3329 * log tree while trying to change the log tree.
3330 */
3331 ret = 0;
3332 while (!list_empty(&ordered_sums)) {
3333 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3334 struct btrfs_ordered_sum,
3335 list);
3336 if (!ret)
3337 ret = btrfs_csum_file_blocks(trans, log, sums);
3338 list_del(&sums->list);
3339 kfree(sums);
3340 }
3341
3342 if (!has_extents)
3343 return ret;
3344
3345 /*
3346 * Because we use btrfs_search_forward we could skip leaves that were
3347 * not modified and then assume *last_extent is valid when it really
3348 * isn't. So back up to the previous leaf and read the end of the last
3349 * extent before we go and fill in holes.
3350 */
3351 if (need_find_last_extent) {
3352 u64 len;
3353
3354 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3355 if (ret < 0)
3356 return ret;
3357 if (ret)
3358 goto fill_holes;
3359 if (src_path->slots[0])
3360 src_path->slots[0]--;
3361 src = src_path->nodes[0];
3362 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3363 if (key.objectid != btrfs_ino(inode) ||
3364 key.type != BTRFS_EXTENT_DATA_KEY)
3365 goto fill_holes;
3366 extent = btrfs_item_ptr(src, src_path->slots[0],
3367 struct btrfs_file_extent_item);
3368 if (btrfs_file_extent_type(src, extent) ==
3369 BTRFS_FILE_EXTENT_INLINE) {
3370 len = btrfs_file_extent_inline_len(src, extent);
3371 *last_extent = ALIGN(key.offset + len,
3372 log->sectorsize);
3373 } else {
3374 len = btrfs_file_extent_num_bytes(src, extent);
3375 *last_extent = key.offset + len;
3376 }
3377 }
3378 fill_holes:
3379 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3380 * things could have happened
3381 *
3382 * 1) A merge could have happened, so we could currently be on a leaf
3383 * that holds what we were copying in the first place.
3384 * 2) A split could have happened, and now not all of the items we want
3385 * are on the same leaf.
3386 *
3387 * So we need to adjust how we search for holes, we need to drop the
3388 * path and re-search for the first extent key we found, and then walk
3389 * forward until we hit the last one we copied.
3390 */
3391 if (need_find_last_extent) {
3392 /* btrfs_prev_leaf could return 1 without releasing the path */
3393 btrfs_release_path(src_path);
3394 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3395 src_path, 0, 0);
3396 if (ret < 0)
3397 return ret;
3398 ASSERT(ret == 0);
3399 src = src_path->nodes[0];
3400 i = src_path->slots[0];
3401 } else {
3402 i = start_slot;
3403 }
3404
3405 /*
3406 * Ok so here we need to go through and fill in any holes we may have
3407 * to make sure that holes are punched for those areas in case they had
3408 * extents previously.
3409 */
3410 while (!done) {
3411 u64 offset, len;
3412 u64 extent_end;
3413
3414 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3415 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3416 if (ret < 0)
3417 return ret;
3418 ASSERT(ret == 0);
3419 src = src_path->nodes[0];
3420 i = 0;
3421 }
3422
3423 btrfs_item_key_to_cpu(src, &key, i);
3424 if (!btrfs_comp_cpu_keys(&key, &last_key))
3425 done = true;
3426 if (key.objectid != btrfs_ino(inode) ||
3427 key.type != BTRFS_EXTENT_DATA_KEY) {
3428 i++;
3429 continue;
3430 }
3431 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3432 if (btrfs_file_extent_type(src, extent) ==
3433 BTRFS_FILE_EXTENT_INLINE) {
3434 len = btrfs_file_extent_inline_len(src, extent);
3435 extent_end = ALIGN(key.offset + len, log->sectorsize);
3436 } else {
3437 len = btrfs_file_extent_num_bytes(src, extent);
3438 extent_end = key.offset + len;
3439 }
3440 i++;
3441
3442 if (*last_extent == key.offset) {
3443 *last_extent = extent_end;
3444 continue;
3445 }
3446 offset = *last_extent;
3447 len = key.offset - *last_extent;
3448 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3449 offset, 0, 0, len, 0, len, 0,
3450 0, 0);
3451 if (ret)
3452 break;
3453 *last_extent = offset + len;
3454 }
3455 /*
3456 * Need to let the callers know we dropped the path so they should
3457 * re-search.
3458 */
3459 if (!ret && need_find_last_extent)
3460 ret = 1;
3461 return ret;
3462 }
3463
3464 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3465 {
3466 struct extent_map *em1, *em2;
3467
3468 em1 = list_entry(a, struct extent_map, list);
3469 em2 = list_entry(b, struct extent_map, list);
3470
3471 if (em1->start < em2->start)
3472 return -1;
3473 else if (em1->start > em2->start)
3474 return 1;
3475 return 0;
3476 }
3477
3478 static int log_one_extent(struct btrfs_trans_handle *trans,
3479 struct inode *inode, struct btrfs_root *root,
3480 struct extent_map *em, struct btrfs_path *path)
3481 {
3482 struct btrfs_root *log = root->log_root;
3483 struct btrfs_file_extent_item *fi;
3484 struct extent_buffer *leaf;
3485 struct btrfs_ordered_extent *ordered;
3486 struct list_head ordered_sums;
3487 struct btrfs_map_token token;
3488 struct btrfs_key key;
3489 u64 mod_start = em->mod_start;
3490 u64 mod_len = em->mod_len;
3491 u64 csum_offset;
3492 u64 csum_len;
3493 u64 extent_offset = em->start - em->orig_start;
3494 u64 block_len;
3495 int ret;
3496 int index = log->log_transid % 2;
3497 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3498
3499 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3500 em->start + em->len, NULL, 0);
3501 if (ret)
3502 return ret;
3503
3504 INIT_LIST_HEAD(&ordered_sums);
3505 btrfs_init_map_token(&token);
3506 key.objectid = btrfs_ino(inode);
3507 key.type = BTRFS_EXTENT_DATA_KEY;
3508 key.offset = em->start;
3509
3510 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
3511 if (ret)
3512 return ret;
3513 leaf = path->nodes[0];
3514 fi = btrfs_item_ptr(leaf, path->slots[0],
3515 struct btrfs_file_extent_item);
3516
3517 btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3518 &token);
3519 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3520 skip_csum = true;
3521 btrfs_set_token_file_extent_type(leaf, fi,
3522 BTRFS_FILE_EXTENT_PREALLOC,
3523 &token);
3524 } else {
3525 btrfs_set_token_file_extent_type(leaf, fi,
3526 BTRFS_FILE_EXTENT_REG,
3527 &token);
3528 if (em->block_start == EXTENT_MAP_HOLE)
3529 skip_csum = true;
3530 }
3531
3532 block_len = max(em->block_len, em->orig_block_len);
3533 if (em->compress_type != BTRFS_COMPRESS_NONE) {
3534 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3535 em->block_start,
3536 &token);
3537 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3538 &token);
3539 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3540 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3541 em->block_start -
3542 extent_offset, &token);
3543 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3544 &token);
3545 } else {
3546 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3547 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3548 &token);
3549 }
3550
3551 btrfs_set_token_file_extent_offset(leaf, fi,
3552 em->start - em->orig_start,
3553 &token);
3554 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3555 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3556 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3557 &token);
3558 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3559 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3560 btrfs_mark_buffer_dirty(leaf);
3561
3562 btrfs_release_path(path);
3563 if (ret) {
3564 return ret;
3565 }
3566
3567 if (skip_csum)
3568 return 0;
3569
3570 /*
3571 * First check and see if our csums are on our outstanding ordered
3572 * extents.
3573 */
3574 again:
3575 spin_lock_irq(&log->log_extents_lock[index]);
3576 list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3577 struct btrfs_ordered_sum *sum;
3578
3579 if (!mod_len)
3580 break;
3581
3582 if (ordered->inode != inode)
3583 continue;
3584
3585 if (ordered->file_offset + ordered->len <= mod_start ||
3586 mod_start + mod_len <= ordered->file_offset)
3587 continue;
3588
3589 /*
3590 * We are going to copy all the csums on this ordered extent, so
3591 * go ahead and adjust mod_start and mod_len in case this
3592 * ordered extent has already been logged.
3593 */
3594 if (ordered->file_offset > mod_start) {
3595 if (ordered->file_offset + ordered->len >=
3596 mod_start + mod_len)
3597 mod_len = ordered->file_offset - mod_start;
3598 /*
3599 * If we have this case
3600 *
3601 * |--------- logged extent ---------|
3602 * |----- ordered extent ----|
3603 *
3604 * Just don't mess with mod_start and mod_len, we'll
3605 * just end up logging more csums than we need and it
3606 * will be ok.
3607 */
3608 } else {
3609 if (ordered->file_offset + ordered->len <
3610 mod_start + mod_len) {
3611 mod_len = (mod_start + mod_len) -
3612 (ordered->file_offset + ordered->len);
3613 mod_start = ordered->file_offset +
3614 ordered->len;
3615 } else {
3616 mod_len = 0;
3617 }
3618 }
3619
3620 /*
3621 * To keep us from looping for the above case of an ordered
3622 * extent that falls inside of the logged extent.
3623 */
3624 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3625 &ordered->flags))
3626 continue;
3627 atomic_inc(&ordered->refs);
3628 spin_unlock_irq(&log->log_extents_lock[index]);
3629 /*
3630 * we've dropped the lock, we must either break or
3631 * start over after this.
3632 */
3633
3634 wait_event(ordered->wait, ordered->csum_bytes_left == 0);
3635
3636 list_for_each_entry(sum, &ordered->list, list) {
3637 ret = btrfs_csum_file_blocks(trans, log, sum);
3638 if (ret) {
3639 btrfs_put_ordered_extent(ordered);
3640 goto unlocked;
3641 }
3642 }
3643 btrfs_put_ordered_extent(ordered);
3644 goto again;
3645
3646 }
3647 spin_unlock_irq(&log->log_extents_lock[index]);
3648 unlocked:
3649
3650 if (!mod_len || ret)
3651 return ret;
3652
3653 if (em->compress_type) {
3654 csum_offset = 0;
3655 csum_len = block_len;
3656 } else {
3657 csum_offset = mod_start - em->start;
3658 csum_len = mod_len;
3659 }
3660
3661 /* block start is already adjusted for the file extent offset. */
3662 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3663 em->block_start + csum_offset,
3664 em->block_start + csum_offset +
3665 csum_len - 1, &ordered_sums, 0);
3666 if (ret)
3667 return ret;
3668
3669 while (!list_empty(&ordered_sums)) {
3670 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3671 struct btrfs_ordered_sum,
3672 list);
3673 if (!ret)
3674 ret = btrfs_csum_file_blocks(trans, log, sums);
3675 list_del(&sums->list);
3676 kfree(sums);
3677 }
3678
3679 return ret;
3680 }
3681
3682 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3683 struct btrfs_root *root,
3684 struct inode *inode,
3685 struct btrfs_path *path)
3686 {
3687 struct extent_map *em, *n;
3688 struct list_head extents;
3689 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3690 u64 test_gen;
3691 int ret = 0;
3692 int num = 0;
3693
3694 INIT_LIST_HEAD(&extents);
3695
3696 write_lock(&tree->lock);
3697 test_gen = root->fs_info->last_trans_committed;
3698
3699 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3700 list_del_init(&em->list);
3701
3702 /*
3703 * Just an arbitrary number, this can be really CPU intensive
3704 * once we start getting a lot of extents, and really once we
3705 * have a bunch of extents we just want to commit since it will
3706 * be faster.
3707 */
3708 if (++num > 32768) {
3709 list_del_init(&tree->modified_extents);
3710 ret = -EFBIG;
3711 goto process;
3712 }
3713
3714 if (em->generation <= test_gen)
3715 continue;
3716 /* Need a ref to keep it from getting evicted from cache */
3717 atomic_inc(&em->refs);
3718 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3719 list_add_tail(&em->list, &extents);
3720 num++;
3721 }
3722
3723 list_sort(NULL, &extents, extent_cmp);
3724
3725 process:
3726 while (!list_empty(&extents)) {
3727 em = list_entry(extents.next, struct extent_map, list);
3728
3729 list_del_init(&em->list);
3730
3731 /*
3732 * If we had an error we just need to delete everybody from our
3733 * private list.
3734 */
3735 if (ret) {
3736 clear_em_logging(tree, em);
3737 free_extent_map(em);
3738 continue;
3739 }
3740
3741 write_unlock(&tree->lock);
3742
3743 ret = log_one_extent(trans, inode, root, em, path);
3744 write_lock(&tree->lock);
3745 clear_em_logging(tree, em);
3746 free_extent_map(em);
3747 }
3748 WARN_ON(!list_empty(&extents));
3749 write_unlock(&tree->lock);
3750
3751 btrfs_release_path(path);
3752 return ret;
3753 }
3754
3755 /* log a single inode in the tree log.
3756 * At least one parent directory for this inode must exist in the tree
3757 * or be logged already.
3758 *
3759 * Any items from this inode changed by the current transaction are copied
3760 * to the log tree. An extra reference is taken on any extents in this
3761 * file, allowing us to avoid a whole pile of corner cases around logging
3762 * blocks that have been removed from the tree.
3763 *
3764 * See LOG_INODE_ALL and related defines for a description of what inode_only
3765 * does.
3766 *
3767 * This handles both files and directories.
3768 */
3769 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3770 struct btrfs_root *root, struct inode *inode,
3771 int inode_only)
3772 {
3773 struct btrfs_path *path;
3774 struct btrfs_path *dst_path;
3775 struct btrfs_key min_key;
3776 struct btrfs_key max_key;
3777 struct btrfs_root *log = root->log_root;
3778 struct extent_buffer *src = NULL;
3779 u64 last_extent = 0;
3780 int err = 0;
3781 int ret;
3782 int nritems;
3783 int ins_start_slot = 0;
3784 int ins_nr;
3785 bool fast_search = false;
3786 u64 ino = btrfs_ino(inode);
3787
3788 path = btrfs_alloc_path();
3789 if (!path)
3790 return -ENOMEM;
3791 dst_path = btrfs_alloc_path();
3792 if (!dst_path) {
3793 btrfs_free_path(path);
3794 return -ENOMEM;
3795 }
3796
3797 min_key.objectid = ino;
3798 min_key.type = BTRFS_INODE_ITEM_KEY;
3799 min_key.offset = 0;
3800
3801 max_key.objectid = ino;
3802
3803
3804 /* today the code can only do partial logging of directories */
3805 if (S_ISDIR(inode->i_mode) ||
3806 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3807 &BTRFS_I(inode)->runtime_flags) &&
3808 inode_only == LOG_INODE_EXISTS))
3809 max_key.type = BTRFS_XATTR_ITEM_KEY;
3810 else
3811 max_key.type = (u8)-1;
3812 max_key.offset = (u64)-1;
3813
3814 /* Only run delayed items if we are a dir or a new file */
3815 if (S_ISDIR(inode->i_mode) ||
3816 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3817 ret = btrfs_commit_inode_delayed_items(trans, inode);
3818 if (ret) {
3819 btrfs_free_path(path);
3820 btrfs_free_path(dst_path);
3821 return ret;
3822 }
3823 }
3824
3825 mutex_lock(&BTRFS_I(inode)->log_mutex);
3826
3827 btrfs_get_logged_extents(log, inode);
3828
3829 /*
3830 * a brute force approach to making sure we get the most uptodate
3831 * copies of everything.
3832 */
3833 if (S_ISDIR(inode->i_mode)) {
3834 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3835
3836 if (inode_only == LOG_INODE_EXISTS)
3837 max_key_type = BTRFS_XATTR_ITEM_KEY;
3838 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3839 } else {
3840 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3841 &BTRFS_I(inode)->runtime_flags)) {
3842 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3843 &BTRFS_I(inode)->runtime_flags);
3844 ret = btrfs_truncate_inode_items(trans, log,
3845 inode, 0, 0);
3846 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3847 &BTRFS_I(inode)->runtime_flags) ||
3848 inode_only == LOG_INODE_EXISTS) {
3849 if (inode_only == LOG_INODE_ALL)
3850 fast_search = true;
3851 max_key.type = BTRFS_XATTR_ITEM_KEY;
3852 ret = drop_objectid_items(trans, log, path, ino,
3853 max_key.type);
3854 } else {
3855 if (inode_only == LOG_INODE_ALL)
3856 fast_search = true;
3857 ret = log_inode_item(trans, log, dst_path, inode);
3858 if (ret) {
3859 err = ret;
3860 goto out_unlock;
3861 }
3862 goto log_extents;
3863 }
3864
3865 }
3866 if (ret) {
3867 err = ret;
3868 goto out_unlock;
3869 }
3870 path->keep_locks = 1;
3871
3872 while (1) {
3873 ins_nr = 0;
3874 ret = btrfs_search_forward(root, &min_key,
3875 path, trans->transid);
3876 if (ret != 0)
3877 break;
3878 again:
3879 /* note, ins_nr might be > 0 here, cleanup outside the loop */
3880 if (min_key.objectid != ino)
3881 break;
3882 if (min_key.type > max_key.type)
3883 break;
3884
3885 src = path->nodes[0];
3886 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3887 ins_nr++;
3888 goto next_slot;
3889 } else if (!ins_nr) {
3890 ins_start_slot = path->slots[0];
3891 ins_nr = 1;
3892 goto next_slot;
3893 }
3894
3895 ret = copy_items(trans, inode, dst_path, path, &last_extent,
3896 ins_start_slot, ins_nr, inode_only);
3897 if (ret < 0) {
3898 err = ret;
3899 goto out_unlock;
3900 } if (ret) {
3901 ins_nr = 0;
3902 btrfs_release_path(path);
3903 continue;
3904 }
3905 ins_nr = 1;
3906 ins_start_slot = path->slots[0];
3907 next_slot:
3908
3909 nritems = btrfs_header_nritems(path->nodes[0]);
3910 path->slots[0]++;
3911 if (path->slots[0] < nritems) {
3912 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3913 path->slots[0]);
3914 goto again;
3915 }
3916 if (ins_nr) {
3917 ret = copy_items(trans, inode, dst_path, path,
3918 &last_extent, ins_start_slot,
3919 ins_nr, inode_only);
3920 if (ret < 0) {
3921 err = ret;
3922 goto out_unlock;
3923 }
3924 ret = 0;
3925 ins_nr = 0;
3926 }
3927 btrfs_release_path(path);
3928
3929 if (min_key.offset < (u64)-1) {
3930 min_key.offset++;
3931 } else if (min_key.type < max_key.type) {
3932 min_key.type++;
3933 min_key.offset = 0;
3934 } else {
3935 break;
3936 }
3937 }
3938 if (ins_nr) {
3939 ret = copy_items(trans, inode, dst_path, path, &last_extent,
3940 ins_start_slot, ins_nr, inode_only);
3941 if (ret < 0) {
3942 err = ret;
3943 goto out_unlock;
3944 }
3945 ret = 0;
3946 ins_nr = 0;
3947 }
3948
3949 log_extents:
3950 btrfs_release_path(path);
3951 btrfs_release_path(dst_path);
3952 if (fast_search) {
3953 ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
3954 if (ret) {
3955 err = ret;
3956 goto out_unlock;
3957 }
3958 } else if (inode_only == LOG_INODE_ALL) {
3959 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3960 struct extent_map *em, *n;
3961
3962 write_lock(&tree->lock);
3963 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3964 list_del_init(&em->list);
3965 write_unlock(&tree->lock);
3966 }
3967
3968 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3969 ret = log_directory_changes(trans, root, inode, path, dst_path);
3970 if (ret) {
3971 err = ret;
3972 goto out_unlock;
3973 }
3974 }
3975 BTRFS_I(inode)->logged_trans = trans->transid;
3976 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3977 out_unlock:
3978 if (err)
3979 btrfs_free_logged_extents(log, log->log_transid);
3980 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3981
3982 btrfs_free_path(path);
3983 btrfs_free_path(dst_path);
3984 return err;
3985 }
3986
3987 /*
3988 * follow the dentry parent pointers up the chain and see if any
3989 * of the directories in it require a full commit before they can
3990 * be logged. Returns zero if nothing special needs to be done or 1 if
3991 * a full commit is required.
3992 */
3993 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3994 struct inode *inode,
3995 struct dentry *parent,
3996 struct super_block *sb,
3997 u64 last_committed)
3998 {
3999 int ret = 0;
4000 struct btrfs_root *root;
4001 struct dentry *old_parent = NULL;
4002 struct inode *orig_inode = inode;
4003
4004 /*
4005 * for regular files, if its inode is already on disk, we don't
4006 * have to worry about the parents at all. This is because
4007 * we can use the last_unlink_trans field to record renames
4008 * and other fun in this file.
4009 */
4010 if (S_ISREG(inode->i_mode) &&
4011 BTRFS_I(inode)->generation <= last_committed &&
4012 BTRFS_I(inode)->last_unlink_trans <= last_committed)
4013 goto out;
4014
4015 if (!S_ISDIR(inode->i_mode)) {
4016 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4017 goto out;
4018 inode = parent->d_inode;
4019 }
4020
4021 while (1) {
4022 /*
4023 * If we are logging a directory then we start with our inode,
4024 * not our parents inode, so we need to skipp setting the
4025 * logged_trans so that further down in the log code we don't
4026 * think this inode has already been logged.
4027 */
4028 if (inode != orig_inode)
4029 BTRFS_I(inode)->logged_trans = trans->transid;
4030 smp_mb();
4031
4032 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4033 root = BTRFS_I(inode)->root;
4034
4035 /*
4036 * make sure any commits to the log are forced
4037 * to be full commits
4038 */
4039 root->fs_info->last_trans_log_full_commit =
4040 trans->transid;
4041 ret = 1;
4042 break;
4043 }
4044
4045 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4046 break;
4047
4048 if (IS_ROOT(parent))
4049 break;
4050
4051 parent = dget_parent(parent);
4052 dput(old_parent);
4053 old_parent = parent;
4054 inode = parent->d_inode;
4055
4056 }
4057 dput(old_parent);
4058 out:
4059 return ret;
4060 }
4061
4062 /*
4063 * helper function around btrfs_log_inode to make sure newly created
4064 * parent directories also end up in the log. A minimal inode and backref
4065 * only logging is done of any parent directories that are older than
4066 * the last committed transaction
4067 */
4068 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4069 struct btrfs_root *root, struct inode *inode,
4070 struct dentry *parent, int exists_only)
4071 {
4072 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
4073 struct super_block *sb;
4074 struct dentry *old_parent = NULL;
4075 int ret = 0;
4076 u64 last_committed = root->fs_info->last_trans_committed;
4077
4078 sb = inode->i_sb;
4079
4080 if (btrfs_test_opt(root, NOTREELOG)) {
4081 ret = 1;
4082 goto end_no_trans;
4083 }
4084
4085 if (root->fs_info->last_trans_log_full_commit >
4086 root->fs_info->last_trans_committed) {
4087 ret = 1;
4088 goto end_no_trans;
4089 }
4090
4091 if (root != BTRFS_I(inode)->root ||
4092 btrfs_root_refs(&root->root_item) == 0) {
4093 ret = 1;
4094 goto end_no_trans;
4095 }
4096
4097 ret = check_parent_dirs_for_sync(trans, inode, parent,
4098 sb, last_committed);
4099 if (ret)
4100 goto end_no_trans;
4101
4102 if (btrfs_inode_in_log(inode, trans->transid)) {
4103 ret = BTRFS_NO_LOG_SYNC;
4104 goto end_no_trans;
4105 }
4106
4107 ret = start_log_trans(trans, root);
4108 if (ret)
4109 goto end_trans;
4110
4111 ret = btrfs_log_inode(trans, root, inode, inode_only);
4112 if (ret)
4113 goto end_trans;
4114
4115 /*
4116 * for regular files, if its inode is already on disk, we don't
4117 * have to worry about the parents at all. This is because
4118 * we can use the last_unlink_trans field to record renames
4119 * and other fun in this file.
4120 */
4121 if (S_ISREG(inode->i_mode) &&
4122 BTRFS_I(inode)->generation <= last_committed &&
4123 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4124 ret = 0;
4125 goto end_trans;
4126 }
4127
4128 inode_only = LOG_INODE_EXISTS;
4129 while (1) {
4130 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4131 break;
4132
4133 inode = parent->d_inode;
4134 if (root != BTRFS_I(inode)->root)
4135 break;
4136
4137 if (BTRFS_I(inode)->generation >
4138 root->fs_info->last_trans_committed) {
4139 ret = btrfs_log_inode(trans, root, inode, inode_only);
4140 if (ret)
4141 goto end_trans;
4142 }
4143 if (IS_ROOT(parent))
4144 break;
4145
4146 parent = dget_parent(parent);
4147 dput(old_parent);
4148 old_parent = parent;
4149 }
4150 ret = 0;
4151 end_trans:
4152 dput(old_parent);
4153 if (ret < 0) {
4154 root->fs_info->last_trans_log_full_commit = trans->transid;
4155 ret = 1;
4156 }
4157 btrfs_end_log_trans(root);
4158 end_no_trans:
4159 return ret;
4160 }
4161
4162 /*
4163 * it is not safe to log dentry if the chunk root has added new
4164 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
4165 * If this returns 1, you must commit the transaction to safely get your
4166 * data on disk.
4167 */
4168 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4169 struct btrfs_root *root, struct dentry *dentry)
4170 {
4171 struct dentry *parent = dget_parent(dentry);
4172 int ret;
4173
4174 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
4175 dput(parent);
4176
4177 return ret;
4178 }
4179
4180 /*
4181 * should be called during mount to recover any replay any log trees
4182 * from the FS
4183 */
4184 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4185 {
4186 int ret;
4187 struct btrfs_path *path;
4188 struct btrfs_trans_handle *trans;
4189 struct btrfs_key key;
4190 struct btrfs_key found_key;
4191 struct btrfs_key tmp_key;
4192 struct btrfs_root *log;
4193 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4194 struct walk_control wc = {
4195 .process_func = process_one_buffer,
4196 .stage = 0,
4197 };
4198
4199 path = btrfs_alloc_path();
4200 if (!path)
4201 return -ENOMEM;
4202
4203 fs_info->log_root_recovering = 1;
4204
4205 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4206 if (IS_ERR(trans)) {
4207 ret = PTR_ERR(trans);
4208 goto error;
4209 }
4210
4211 wc.trans = trans;
4212 wc.pin = 1;
4213
4214 ret = walk_log_tree(trans, log_root_tree, &wc);
4215 if (ret) {
4216 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4217 "recovering log root tree.");
4218 goto error;
4219 }
4220
4221 again:
4222 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4223 key.offset = (u64)-1;
4224 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4225
4226 while (1) {
4227 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4228
4229 if (ret < 0) {
4230 btrfs_error(fs_info, ret,
4231 "Couldn't find tree log root.");
4232 goto error;
4233 }
4234 if (ret > 0) {
4235 if (path->slots[0] == 0)
4236 break;
4237 path->slots[0]--;
4238 }
4239 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4240 path->slots[0]);
4241 btrfs_release_path(path);
4242 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4243 break;
4244
4245 log = btrfs_read_fs_root(log_root_tree, &found_key);
4246 if (IS_ERR(log)) {
4247 ret = PTR_ERR(log);
4248 btrfs_error(fs_info, ret,
4249 "Couldn't read tree log root.");
4250 goto error;
4251 }
4252
4253 tmp_key.objectid = found_key.offset;
4254 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4255 tmp_key.offset = (u64)-1;
4256
4257 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4258 if (IS_ERR(wc.replay_dest)) {
4259 ret = PTR_ERR(wc.replay_dest);
4260 free_extent_buffer(log->node);
4261 free_extent_buffer(log->commit_root);
4262 kfree(log);
4263 btrfs_error(fs_info, ret, "Couldn't read target root "
4264 "for tree log recovery.");
4265 goto error;
4266 }
4267
4268 wc.replay_dest->log_root = log;
4269 btrfs_record_root_in_trans(trans, wc.replay_dest);
4270 ret = walk_log_tree(trans, log, &wc);
4271
4272 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4273 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4274 path);
4275 }
4276
4277 key.offset = found_key.offset - 1;
4278 wc.replay_dest->log_root = NULL;
4279 free_extent_buffer(log->node);
4280 free_extent_buffer(log->commit_root);
4281 kfree(log);
4282
4283 if (ret)
4284 goto error;
4285
4286 if (found_key.offset == 0)
4287 break;
4288 }
4289 btrfs_release_path(path);
4290
4291 /* step one is to pin it all, step two is to replay just inodes */
4292 if (wc.pin) {
4293 wc.pin = 0;
4294 wc.process_func = replay_one_buffer;
4295 wc.stage = LOG_WALK_REPLAY_INODES;
4296 goto again;
4297 }
4298 /* step three is to replay everything */
4299 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4300 wc.stage++;
4301 goto again;
4302 }
4303
4304 btrfs_free_path(path);
4305
4306 /* step 4: commit the transaction, which also unpins the blocks */
4307 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4308 if (ret)
4309 return ret;
4310
4311 free_extent_buffer(log_root_tree->node);
4312 log_root_tree->log_root = NULL;
4313 fs_info->log_root_recovering = 0;
4314 kfree(log_root_tree);
4315
4316 return 0;
4317 error:
4318 if (wc.trans)
4319 btrfs_end_transaction(wc.trans, fs_info->tree_root);
4320 btrfs_free_path(path);
4321 return ret;
4322 }
4323
4324 /*
4325 * there are some corner cases where we want to force a full
4326 * commit instead of allowing a directory to be logged.
4327 *
4328 * They revolve around files there were unlinked from the directory, and
4329 * this function updates the parent directory so that a full commit is
4330 * properly done if it is fsync'd later after the unlinks are done.
4331 */
4332 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4333 struct inode *dir, struct inode *inode,
4334 int for_rename)
4335 {
4336 /*
4337 * when we're logging a file, if it hasn't been renamed
4338 * or unlinked, and its inode is fully committed on disk,
4339 * we don't have to worry about walking up the directory chain
4340 * to log its parents.
4341 *
4342 * So, we use the last_unlink_trans field to put this transid
4343 * into the file. When the file is logged we check it and
4344 * don't log the parents if the file is fully on disk.
4345 */
4346 if (S_ISREG(inode->i_mode))
4347 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4348
4349 /*
4350 * if this directory was already logged any new
4351 * names for this file/dir will get recorded
4352 */
4353 smp_mb();
4354 if (BTRFS_I(dir)->logged_trans == trans->transid)
4355 return;
4356
4357 /*
4358 * if the inode we're about to unlink was logged,
4359 * the log will be properly updated for any new names
4360 */
4361 if (BTRFS_I(inode)->logged_trans == trans->transid)
4362 return;
4363
4364 /*
4365 * when renaming files across directories, if the directory
4366 * there we're unlinking from gets fsync'd later on, there's
4367 * no way to find the destination directory later and fsync it
4368 * properly. So, we have to be conservative and force commits
4369 * so the new name gets discovered.
4370 */
4371 if (for_rename)
4372 goto record;
4373
4374 /* we can safely do the unlink without any special recording */
4375 return;
4376
4377 record:
4378 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4379 }
4380
4381 /*
4382 * Call this after adding a new name for a file and it will properly
4383 * update the log to reflect the new name.
4384 *
4385 * It will return zero if all goes well, and it will return 1 if a
4386 * full transaction commit is required.
4387 */
4388 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4389 struct inode *inode, struct inode *old_dir,
4390 struct dentry *parent)
4391 {
4392 struct btrfs_root * root = BTRFS_I(inode)->root;
4393
4394 /*
4395 * this will force the logging code to walk the dentry chain
4396 * up for the file
4397 */
4398 if (S_ISREG(inode->i_mode))
4399 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4400
4401 /*
4402 * if this inode hasn't been logged and directory we're renaming it
4403 * from hasn't been logged, we don't need to log it
4404 */
4405 if (BTRFS_I(inode)->logged_trans <=
4406 root->fs_info->last_trans_committed &&
4407 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4408 root->fs_info->last_trans_committed))
4409 return 0;
4410
4411 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4412 }
4413
This page took 0.191897 seconds and 5 git commands to generate.