c7ef569eb22a8b71a455721edc57a61acc66a226
[deliverable/linux.git] / fs / btrfs / tree-log.c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/list_sort.h>
22 #include "ctree.h"
23 #include "transaction.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "compat.h"
29 #include "tree-log.h"
30 #include "hash.h"
31
32 /* magic values for the inode_only field in btrfs_log_inode:
33 *
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
37 */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40
41 /*
42 * directory trouble cases
43 *
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
48 *
49 * mkdir foo/some_dir
50 * normal commit
51 * rename foo/some_dir foo2/some_dir
52 * mkdir foo/some_dir
53 * fsync foo/some_dir/some_file
54 *
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
58 *
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
61 *
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
65 *
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
68 *
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
71 *
72 * mkdir f1/foo
73 * normal commit
74 * rm -rf f1/foo
75 * fsync(f1)
76 *
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
81 * ugly details.
82 */
83
84 /*
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
89 *
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
92 */
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_ALL 2
96
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode,
99 int inode_only);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
108
109 /*
110 * tree logging is a special write ahead log used to make sure that
111 * fsyncs and O_SYNCs can happen without doing full tree commits.
112 *
113 * Full tree commits are expensive because they require commonly
114 * modified blocks to be recowed, creating many dirty pages in the
115 * extent tree an 4x-6x higher write load than ext3.
116 *
117 * Instead of doing a tree commit on every fsync, we use the
118 * key ranges and transaction ids to find items for a given file or directory
119 * that have changed in this transaction. Those items are copied into
120 * a special tree (one per subvolume root), that tree is written to disk
121 * and then the fsync is considered complete.
122 *
123 * After a crash, items are copied out of the log-tree back into the
124 * subvolume tree. Any file data extents found are recorded in the extent
125 * allocation tree, and the log-tree freed.
126 *
127 * The log tree is read three times, once to pin down all the extents it is
128 * using in ram and once, once to create all the inodes logged in the tree
129 * and once to do all the other items.
130 */
131
132 /*
133 * start a sub transaction and setup the log tree
134 * this increments the log tree writer count to make the people
135 * syncing the tree wait for us to finish
136 */
137 static int start_log_trans(struct btrfs_trans_handle *trans,
138 struct btrfs_root *root)
139 {
140 int ret;
141 int err = 0;
142
143 mutex_lock(&root->log_mutex);
144 if (root->log_root) {
145 if (!root->log_start_pid) {
146 root->log_start_pid = current->pid;
147 root->log_multiple_pids = false;
148 } else if (root->log_start_pid != current->pid) {
149 root->log_multiple_pids = true;
150 }
151
152 atomic_inc(&root->log_batch);
153 atomic_inc(&root->log_writers);
154 mutex_unlock(&root->log_mutex);
155 return 0;
156 }
157 root->log_multiple_pids = false;
158 root->log_start_pid = current->pid;
159 mutex_lock(&root->fs_info->tree_log_mutex);
160 if (!root->fs_info->log_root_tree) {
161 ret = btrfs_init_log_root_tree(trans, root->fs_info);
162 if (ret)
163 err = ret;
164 }
165 if (err == 0 && !root->log_root) {
166 ret = btrfs_add_log_tree(trans, root);
167 if (ret)
168 err = ret;
169 }
170 mutex_unlock(&root->fs_info->tree_log_mutex);
171 atomic_inc(&root->log_batch);
172 atomic_inc(&root->log_writers);
173 mutex_unlock(&root->log_mutex);
174 return err;
175 }
176
177 /*
178 * returns 0 if there was a log transaction running and we were able
179 * to join, or returns -ENOENT if there were not transactions
180 * in progress
181 */
182 static int join_running_log_trans(struct btrfs_root *root)
183 {
184 int ret = -ENOENT;
185
186 smp_mb();
187 if (!root->log_root)
188 return -ENOENT;
189
190 mutex_lock(&root->log_mutex);
191 if (root->log_root) {
192 ret = 0;
193 atomic_inc(&root->log_writers);
194 }
195 mutex_unlock(&root->log_mutex);
196 return ret;
197 }
198
199 /*
200 * This either makes the current running log transaction wait
201 * until you call btrfs_end_log_trans() or it makes any future
202 * log transactions wait until you call btrfs_end_log_trans()
203 */
204 int btrfs_pin_log_trans(struct btrfs_root *root)
205 {
206 int ret = -ENOENT;
207
208 mutex_lock(&root->log_mutex);
209 atomic_inc(&root->log_writers);
210 mutex_unlock(&root->log_mutex);
211 return ret;
212 }
213
214 /*
215 * indicate we're done making changes to the log tree
216 * and wake up anyone waiting to do a sync
217 */
218 void btrfs_end_log_trans(struct btrfs_root *root)
219 {
220 if (atomic_dec_and_test(&root->log_writers)) {
221 smp_mb();
222 if (waitqueue_active(&root->log_writer_wait))
223 wake_up(&root->log_writer_wait);
224 }
225 }
226
227
228 /*
229 * the walk control struct is used to pass state down the chain when
230 * processing the log tree. The stage field tells us which part
231 * of the log tree processing we are currently doing. The others
232 * are state fields used for that specific part
233 */
234 struct walk_control {
235 /* should we free the extent on disk when done? This is used
236 * at transaction commit time while freeing a log tree
237 */
238 int free;
239
240 /* should we write out the extent buffer? This is used
241 * while flushing the log tree to disk during a sync
242 */
243 int write;
244
245 /* should we wait for the extent buffer io to finish? Also used
246 * while flushing the log tree to disk for a sync
247 */
248 int wait;
249
250 /* pin only walk, we record which extents on disk belong to the
251 * log trees
252 */
253 int pin;
254
255 /* what stage of the replay code we're currently in */
256 int stage;
257
258 /* the root we are currently replaying */
259 struct btrfs_root *replay_dest;
260
261 /* the trans handle for the current replay */
262 struct btrfs_trans_handle *trans;
263
264 /* the function that gets used to process blocks we find in the
265 * tree. Note the extent_buffer might not be up to date when it is
266 * passed in, and it must be checked or read if you need the data
267 * inside it
268 */
269 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
270 struct walk_control *wc, u64 gen);
271 };
272
273 /*
274 * process_func used to pin down extents, write them or wait on them
275 */
276 static int process_one_buffer(struct btrfs_root *log,
277 struct extent_buffer *eb,
278 struct walk_control *wc, u64 gen)
279 {
280 if (wc->pin)
281 btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
282 eb->start, eb->len);
283
284 if (btrfs_buffer_uptodate(eb, gen, 0)) {
285 if (wc->write)
286 btrfs_write_tree_block(eb);
287 if (wc->wait)
288 btrfs_wait_tree_block_writeback(eb);
289 }
290 return 0;
291 }
292
293 /*
294 * Item overwrite used by replay and tree logging. eb, slot and key all refer
295 * to the src data we are copying out.
296 *
297 * root is the tree we are copying into, and path is a scratch
298 * path for use in this function (it should be released on entry and
299 * will be released on exit).
300 *
301 * If the key is already in the destination tree the existing item is
302 * overwritten. If the existing item isn't big enough, it is extended.
303 * If it is too large, it is truncated.
304 *
305 * If the key isn't in the destination yet, a new item is inserted.
306 */
307 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
308 struct btrfs_root *root,
309 struct btrfs_path *path,
310 struct extent_buffer *eb, int slot,
311 struct btrfs_key *key)
312 {
313 int ret;
314 u32 item_size;
315 u64 saved_i_size = 0;
316 int save_old_i_size = 0;
317 unsigned long src_ptr;
318 unsigned long dst_ptr;
319 int overwrite_root = 0;
320
321 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
322 overwrite_root = 1;
323
324 item_size = btrfs_item_size_nr(eb, slot);
325 src_ptr = btrfs_item_ptr_offset(eb, slot);
326
327 /* look for the key in the destination tree */
328 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
329 if (ret == 0) {
330 char *src_copy;
331 char *dst_copy;
332 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
333 path->slots[0]);
334 if (dst_size != item_size)
335 goto insert;
336
337 if (item_size == 0) {
338 btrfs_release_path(path);
339 return 0;
340 }
341 dst_copy = kmalloc(item_size, GFP_NOFS);
342 src_copy = kmalloc(item_size, GFP_NOFS);
343 if (!dst_copy || !src_copy) {
344 btrfs_release_path(path);
345 kfree(dst_copy);
346 kfree(src_copy);
347 return -ENOMEM;
348 }
349
350 read_extent_buffer(eb, src_copy, src_ptr, item_size);
351
352 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
353 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
354 item_size);
355 ret = memcmp(dst_copy, src_copy, item_size);
356
357 kfree(dst_copy);
358 kfree(src_copy);
359 /*
360 * they have the same contents, just return, this saves
361 * us from cowing blocks in the destination tree and doing
362 * extra writes that may not have been done by a previous
363 * sync
364 */
365 if (ret == 0) {
366 btrfs_release_path(path);
367 return 0;
368 }
369
370 }
371 insert:
372 btrfs_release_path(path);
373 /* try to insert the key into the destination tree */
374 ret = btrfs_insert_empty_item(trans, root, path,
375 key, item_size);
376
377 /* make sure any existing item is the correct size */
378 if (ret == -EEXIST) {
379 u32 found_size;
380 found_size = btrfs_item_size_nr(path->nodes[0],
381 path->slots[0]);
382 if (found_size > item_size)
383 btrfs_truncate_item(trans, root, path, item_size, 1);
384 else if (found_size < item_size)
385 btrfs_extend_item(trans, root, path,
386 item_size - found_size);
387 } else if (ret) {
388 return ret;
389 }
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
391 path->slots[0]);
392
393 /* don't overwrite an existing inode if the generation number
394 * was logged as zero. This is done when the tree logging code
395 * is just logging an inode to make sure it exists after recovery.
396 *
397 * Also, don't overwrite i_size on directories during replay.
398 * log replay inserts and removes directory items based on the
399 * state of the tree found in the subvolume, and i_size is modified
400 * as it goes
401 */
402 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
403 struct btrfs_inode_item *src_item;
404 struct btrfs_inode_item *dst_item;
405
406 src_item = (struct btrfs_inode_item *)src_ptr;
407 dst_item = (struct btrfs_inode_item *)dst_ptr;
408
409 if (btrfs_inode_generation(eb, src_item) == 0)
410 goto no_copy;
411
412 if (overwrite_root &&
413 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
414 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
415 save_old_i_size = 1;
416 saved_i_size = btrfs_inode_size(path->nodes[0],
417 dst_item);
418 }
419 }
420
421 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
422 src_ptr, item_size);
423
424 if (save_old_i_size) {
425 struct btrfs_inode_item *dst_item;
426 dst_item = (struct btrfs_inode_item *)dst_ptr;
427 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
428 }
429
430 /* make sure the generation is filled in */
431 if (key->type == BTRFS_INODE_ITEM_KEY) {
432 struct btrfs_inode_item *dst_item;
433 dst_item = (struct btrfs_inode_item *)dst_ptr;
434 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
435 btrfs_set_inode_generation(path->nodes[0], dst_item,
436 trans->transid);
437 }
438 }
439 no_copy:
440 btrfs_mark_buffer_dirty(path->nodes[0]);
441 btrfs_release_path(path);
442 return 0;
443 }
444
445 /*
446 * simple helper to read an inode off the disk from a given root
447 * This can only be called for subvolume roots and not for the log
448 */
449 static noinline struct inode *read_one_inode(struct btrfs_root *root,
450 u64 objectid)
451 {
452 struct btrfs_key key;
453 struct inode *inode;
454
455 key.objectid = objectid;
456 key.type = BTRFS_INODE_ITEM_KEY;
457 key.offset = 0;
458 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
459 if (IS_ERR(inode)) {
460 inode = NULL;
461 } else if (is_bad_inode(inode)) {
462 iput(inode);
463 inode = NULL;
464 }
465 return inode;
466 }
467
468 /* replays a single extent in 'eb' at 'slot' with 'key' into the
469 * subvolume 'root'. path is released on entry and should be released
470 * on exit.
471 *
472 * extents in the log tree have not been allocated out of the extent
473 * tree yet. So, this completes the allocation, taking a reference
474 * as required if the extent already exists or creating a new extent
475 * if it isn't in the extent allocation tree yet.
476 *
477 * The extent is inserted into the file, dropping any existing extents
478 * from the file that overlap the new one.
479 */
480 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
481 struct btrfs_root *root,
482 struct btrfs_path *path,
483 struct extent_buffer *eb, int slot,
484 struct btrfs_key *key)
485 {
486 int found_type;
487 u64 extent_end;
488 u64 start = key->offset;
489 u64 saved_nbytes;
490 struct btrfs_file_extent_item *item;
491 struct inode *inode = NULL;
492 unsigned long size;
493 int ret = 0;
494
495 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
496 found_type = btrfs_file_extent_type(eb, item);
497
498 if (found_type == BTRFS_FILE_EXTENT_REG ||
499 found_type == BTRFS_FILE_EXTENT_PREALLOC)
500 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
501 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
502 size = btrfs_file_extent_inline_len(eb, item);
503 extent_end = ALIGN(start + size, root->sectorsize);
504 } else {
505 ret = 0;
506 goto out;
507 }
508
509 inode = read_one_inode(root, key->objectid);
510 if (!inode) {
511 ret = -EIO;
512 goto out;
513 }
514
515 /*
516 * first check to see if we already have this extent in the
517 * file. This must be done before the btrfs_drop_extents run
518 * so we don't try to drop this extent.
519 */
520 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
521 start, 0);
522
523 if (ret == 0 &&
524 (found_type == BTRFS_FILE_EXTENT_REG ||
525 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
526 struct btrfs_file_extent_item cmp1;
527 struct btrfs_file_extent_item cmp2;
528 struct btrfs_file_extent_item *existing;
529 struct extent_buffer *leaf;
530
531 leaf = path->nodes[0];
532 existing = btrfs_item_ptr(leaf, path->slots[0],
533 struct btrfs_file_extent_item);
534
535 read_extent_buffer(eb, &cmp1, (unsigned long)item,
536 sizeof(cmp1));
537 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
538 sizeof(cmp2));
539
540 /*
541 * we already have a pointer to this exact extent,
542 * we don't have to do anything
543 */
544 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
545 btrfs_release_path(path);
546 goto out;
547 }
548 }
549 btrfs_release_path(path);
550
551 saved_nbytes = inode_get_bytes(inode);
552 /* drop any overlapping extents */
553 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
554 BUG_ON(ret);
555
556 if (found_type == BTRFS_FILE_EXTENT_REG ||
557 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
558 u64 offset;
559 unsigned long dest_offset;
560 struct btrfs_key ins;
561
562 ret = btrfs_insert_empty_item(trans, root, path, key,
563 sizeof(*item));
564 BUG_ON(ret);
565 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
566 path->slots[0]);
567 copy_extent_buffer(path->nodes[0], eb, dest_offset,
568 (unsigned long)item, sizeof(*item));
569
570 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
571 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
572 ins.type = BTRFS_EXTENT_ITEM_KEY;
573 offset = key->offset - btrfs_file_extent_offset(eb, item);
574
575 if (ins.objectid > 0) {
576 u64 csum_start;
577 u64 csum_end;
578 LIST_HEAD(ordered_sums);
579 /*
580 * is this extent already allocated in the extent
581 * allocation tree? If so, just add a reference
582 */
583 ret = btrfs_lookup_extent(root, ins.objectid,
584 ins.offset);
585 if (ret == 0) {
586 ret = btrfs_inc_extent_ref(trans, root,
587 ins.objectid, ins.offset,
588 0, root->root_key.objectid,
589 key->objectid, offset, 0);
590 BUG_ON(ret);
591 } else {
592 /*
593 * insert the extent pointer in the extent
594 * allocation tree
595 */
596 ret = btrfs_alloc_logged_file_extent(trans,
597 root, root->root_key.objectid,
598 key->objectid, offset, &ins);
599 BUG_ON(ret);
600 }
601 btrfs_release_path(path);
602
603 if (btrfs_file_extent_compression(eb, item)) {
604 csum_start = ins.objectid;
605 csum_end = csum_start + ins.offset;
606 } else {
607 csum_start = ins.objectid +
608 btrfs_file_extent_offset(eb, item);
609 csum_end = csum_start +
610 btrfs_file_extent_num_bytes(eb, item);
611 }
612
613 ret = btrfs_lookup_csums_range(root->log_root,
614 csum_start, csum_end - 1,
615 &ordered_sums, 0);
616 BUG_ON(ret);
617 while (!list_empty(&ordered_sums)) {
618 struct btrfs_ordered_sum *sums;
619 sums = list_entry(ordered_sums.next,
620 struct btrfs_ordered_sum,
621 list);
622 ret = btrfs_csum_file_blocks(trans,
623 root->fs_info->csum_root,
624 sums);
625 BUG_ON(ret);
626 list_del(&sums->list);
627 kfree(sums);
628 }
629 } else {
630 btrfs_release_path(path);
631 }
632 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
633 /* inline extents are easy, we just overwrite them */
634 ret = overwrite_item(trans, root, path, eb, slot, key);
635 BUG_ON(ret);
636 }
637
638 inode_set_bytes(inode, saved_nbytes);
639 ret = btrfs_update_inode(trans, root, inode);
640 out:
641 if (inode)
642 iput(inode);
643 return ret;
644 }
645
646 /*
647 * when cleaning up conflicts between the directory names in the
648 * subvolume, directory names in the log and directory names in the
649 * inode back references, we may have to unlink inodes from directories.
650 *
651 * This is a helper function to do the unlink of a specific directory
652 * item
653 */
654 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
655 struct btrfs_root *root,
656 struct btrfs_path *path,
657 struct inode *dir,
658 struct btrfs_dir_item *di)
659 {
660 struct inode *inode;
661 char *name;
662 int name_len;
663 struct extent_buffer *leaf;
664 struct btrfs_key location;
665 int ret;
666
667 leaf = path->nodes[0];
668
669 btrfs_dir_item_key_to_cpu(leaf, di, &location);
670 name_len = btrfs_dir_name_len(leaf, di);
671 name = kmalloc(name_len, GFP_NOFS);
672 if (!name)
673 return -ENOMEM;
674
675 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
676 btrfs_release_path(path);
677
678 inode = read_one_inode(root, location.objectid);
679 if (!inode) {
680 kfree(name);
681 return -EIO;
682 }
683
684 ret = link_to_fixup_dir(trans, root, path, location.objectid);
685 BUG_ON(ret);
686
687 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
688 BUG_ON(ret);
689 kfree(name);
690
691 iput(inode);
692
693 btrfs_run_delayed_items(trans, root);
694 return ret;
695 }
696
697 /*
698 * helper function to see if a given name and sequence number found
699 * in an inode back reference are already in a directory and correctly
700 * point to this inode
701 */
702 static noinline int inode_in_dir(struct btrfs_root *root,
703 struct btrfs_path *path,
704 u64 dirid, u64 objectid, u64 index,
705 const char *name, int name_len)
706 {
707 struct btrfs_dir_item *di;
708 struct btrfs_key location;
709 int match = 0;
710
711 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
712 index, name, name_len, 0);
713 if (di && !IS_ERR(di)) {
714 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
715 if (location.objectid != objectid)
716 goto out;
717 } else
718 goto out;
719 btrfs_release_path(path);
720
721 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
722 if (di && !IS_ERR(di)) {
723 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
724 if (location.objectid != objectid)
725 goto out;
726 } else
727 goto out;
728 match = 1;
729 out:
730 btrfs_release_path(path);
731 return match;
732 }
733
734 /*
735 * helper function to check a log tree for a named back reference in
736 * an inode. This is used to decide if a back reference that is
737 * found in the subvolume conflicts with what we find in the log.
738 *
739 * inode backreferences may have multiple refs in a single item,
740 * during replay we process one reference at a time, and we don't
741 * want to delete valid links to a file from the subvolume if that
742 * link is also in the log.
743 */
744 static noinline int backref_in_log(struct btrfs_root *log,
745 struct btrfs_key *key,
746 u64 ref_objectid,
747 char *name, int namelen)
748 {
749 struct btrfs_path *path;
750 struct btrfs_inode_ref *ref;
751 unsigned long ptr;
752 unsigned long ptr_end;
753 unsigned long name_ptr;
754 int found_name_len;
755 int item_size;
756 int ret;
757 int match = 0;
758
759 path = btrfs_alloc_path();
760 if (!path)
761 return -ENOMEM;
762
763 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
764 if (ret != 0)
765 goto out;
766
767 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
768
769 if (key->type == BTRFS_INODE_EXTREF_KEY) {
770 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
771 name, namelen, NULL))
772 match = 1;
773
774 goto out;
775 }
776
777 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
778 ptr_end = ptr + item_size;
779 while (ptr < ptr_end) {
780 ref = (struct btrfs_inode_ref *)ptr;
781 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
782 if (found_name_len == namelen) {
783 name_ptr = (unsigned long)(ref + 1);
784 ret = memcmp_extent_buffer(path->nodes[0], name,
785 name_ptr, namelen);
786 if (ret == 0) {
787 match = 1;
788 goto out;
789 }
790 }
791 ptr = (unsigned long)(ref + 1) + found_name_len;
792 }
793 out:
794 btrfs_free_path(path);
795 return match;
796 }
797
798 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
799 struct btrfs_root *root,
800 struct btrfs_path *path,
801 struct btrfs_root *log_root,
802 struct inode *dir, struct inode *inode,
803 struct extent_buffer *eb,
804 u64 inode_objectid, u64 parent_objectid,
805 u64 ref_index, char *name, int namelen,
806 int *search_done)
807 {
808 int ret;
809 char *victim_name;
810 int victim_name_len;
811 struct extent_buffer *leaf;
812 struct btrfs_dir_item *di;
813 struct btrfs_key search_key;
814 struct btrfs_inode_extref *extref;
815
816 again:
817 /* Search old style refs */
818 search_key.objectid = inode_objectid;
819 search_key.type = BTRFS_INODE_REF_KEY;
820 search_key.offset = parent_objectid;
821 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
822 if (ret == 0) {
823 struct btrfs_inode_ref *victim_ref;
824 unsigned long ptr;
825 unsigned long ptr_end;
826
827 leaf = path->nodes[0];
828
829 /* are we trying to overwrite a back ref for the root directory
830 * if so, just jump out, we're done
831 */
832 if (search_key.objectid == search_key.offset)
833 return 1;
834
835 /* check all the names in this back reference to see
836 * if they are in the log. if so, we allow them to stay
837 * otherwise they must be unlinked as a conflict
838 */
839 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
840 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
841 while (ptr < ptr_end) {
842 victim_ref = (struct btrfs_inode_ref *)ptr;
843 victim_name_len = btrfs_inode_ref_name_len(leaf,
844 victim_ref);
845 victim_name = kmalloc(victim_name_len, GFP_NOFS);
846 BUG_ON(!victim_name);
847
848 read_extent_buffer(leaf, victim_name,
849 (unsigned long)(victim_ref + 1),
850 victim_name_len);
851
852 if (!backref_in_log(log_root, &search_key,
853 parent_objectid,
854 victim_name,
855 victim_name_len)) {
856 btrfs_inc_nlink(inode);
857 btrfs_release_path(path);
858
859 ret = btrfs_unlink_inode(trans, root, dir,
860 inode, victim_name,
861 victim_name_len);
862 BUG_ON(ret);
863 btrfs_run_delayed_items(trans, root);
864 kfree(victim_name);
865 *search_done = 1;
866 goto again;
867 }
868 kfree(victim_name);
869
870 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
871 }
872 BUG_ON(ret);
873
874 /*
875 * NOTE: we have searched root tree and checked the
876 * coresponding ref, it does not need to check again.
877 */
878 *search_done = 1;
879 }
880 btrfs_release_path(path);
881
882 /* Same search but for extended refs */
883 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
884 inode_objectid, parent_objectid, 0,
885 0);
886 if (!IS_ERR_OR_NULL(extref)) {
887 u32 item_size;
888 u32 cur_offset = 0;
889 unsigned long base;
890 struct inode *victim_parent;
891
892 leaf = path->nodes[0];
893
894 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
895 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
896
897 while (cur_offset < item_size) {
898 extref = (struct btrfs_inode_extref *)base + cur_offset;
899
900 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
901
902 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
903 goto next;
904
905 victim_name = kmalloc(victim_name_len, GFP_NOFS);
906 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
907 victim_name_len);
908
909 search_key.objectid = inode_objectid;
910 search_key.type = BTRFS_INODE_EXTREF_KEY;
911 search_key.offset = btrfs_extref_hash(parent_objectid,
912 victim_name,
913 victim_name_len);
914 ret = 0;
915 if (!backref_in_log(log_root, &search_key,
916 parent_objectid, victim_name,
917 victim_name_len)) {
918 ret = -ENOENT;
919 victim_parent = read_one_inode(root,
920 parent_objectid);
921 if (victim_parent) {
922 btrfs_inc_nlink(inode);
923 btrfs_release_path(path);
924
925 ret = btrfs_unlink_inode(trans, root,
926 victim_parent,
927 inode,
928 victim_name,
929 victim_name_len);
930 btrfs_run_delayed_items(trans, root);
931 }
932 BUG_ON(ret);
933 iput(victim_parent);
934 kfree(victim_name);
935 *search_done = 1;
936 goto again;
937 }
938 kfree(victim_name);
939 BUG_ON(ret);
940 next:
941 cur_offset += victim_name_len + sizeof(*extref);
942 }
943 *search_done = 1;
944 }
945 btrfs_release_path(path);
946
947 /* look for a conflicting sequence number */
948 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
949 ref_index, name, namelen, 0);
950 if (di && !IS_ERR(di)) {
951 ret = drop_one_dir_item(trans, root, path, dir, di);
952 BUG_ON(ret);
953 }
954 btrfs_release_path(path);
955
956 /* look for a conflicing name */
957 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
958 name, namelen, 0);
959 if (di && !IS_ERR(di)) {
960 ret = drop_one_dir_item(trans, root, path, dir, di);
961 BUG_ON(ret);
962 }
963 btrfs_release_path(path);
964
965 return 0;
966 }
967
968 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
969 u32 *namelen, char **name, u64 *index,
970 u64 *parent_objectid)
971 {
972 struct btrfs_inode_extref *extref;
973
974 extref = (struct btrfs_inode_extref *)ref_ptr;
975
976 *namelen = btrfs_inode_extref_name_len(eb, extref);
977 *name = kmalloc(*namelen, GFP_NOFS);
978 if (*name == NULL)
979 return -ENOMEM;
980
981 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
982 *namelen);
983
984 *index = btrfs_inode_extref_index(eb, extref);
985 if (parent_objectid)
986 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
987
988 return 0;
989 }
990
991 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
992 u32 *namelen, char **name, u64 *index)
993 {
994 struct btrfs_inode_ref *ref;
995
996 ref = (struct btrfs_inode_ref *)ref_ptr;
997
998 *namelen = btrfs_inode_ref_name_len(eb, ref);
999 *name = kmalloc(*namelen, GFP_NOFS);
1000 if (*name == NULL)
1001 return -ENOMEM;
1002
1003 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1004
1005 *index = btrfs_inode_ref_index(eb, ref);
1006
1007 return 0;
1008 }
1009
1010 /*
1011 * replay one inode back reference item found in the log tree.
1012 * eb, slot and key refer to the buffer and key found in the log tree.
1013 * root is the destination we are replaying into, and path is for temp
1014 * use by this function. (it should be released on return).
1015 */
1016 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1017 struct btrfs_root *root,
1018 struct btrfs_root *log,
1019 struct btrfs_path *path,
1020 struct extent_buffer *eb, int slot,
1021 struct btrfs_key *key)
1022 {
1023 struct inode *dir;
1024 struct inode *inode;
1025 unsigned long ref_ptr;
1026 unsigned long ref_end;
1027 char *name;
1028 int namelen;
1029 int ret;
1030 int search_done = 0;
1031 int log_ref_ver = 0;
1032 u64 parent_objectid;
1033 u64 inode_objectid;
1034 u64 ref_index = 0;
1035 int ref_struct_size;
1036
1037 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1038 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1039
1040 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1041 struct btrfs_inode_extref *r;
1042
1043 ref_struct_size = sizeof(struct btrfs_inode_extref);
1044 log_ref_ver = 1;
1045 r = (struct btrfs_inode_extref *)ref_ptr;
1046 parent_objectid = btrfs_inode_extref_parent(eb, r);
1047 } else {
1048 ref_struct_size = sizeof(struct btrfs_inode_ref);
1049 parent_objectid = key->offset;
1050 }
1051 inode_objectid = key->objectid;
1052
1053 /*
1054 * it is possible that we didn't log all the parent directories
1055 * for a given inode. If we don't find the dir, just don't
1056 * copy the back ref in. The link count fixup code will take
1057 * care of the rest
1058 */
1059 dir = read_one_inode(root, parent_objectid);
1060 if (!dir)
1061 return -ENOENT;
1062
1063 inode = read_one_inode(root, inode_objectid);
1064 if (!inode) {
1065 iput(dir);
1066 return -EIO;
1067 }
1068
1069 while (ref_ptr < ref_end) {
1070 if (log_ref_ver) {
1071 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1072 &ref_index, &parent_objectid);
1073 /*
1074 * parent object can change from one array
1075 * item to another.
1076 */
1077 if (!dir)
1078 dir = read_one_inode(root, parent_objectid);
1079 if (!dir)
1080 return -ENOENT;
1081 } else {
1082 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1083 &ref_index);
1084 }
1085 if (ret)
1086 return ret;
1087
1088 /* if we already have a perfect match, we're done */
1089 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1090 ref_index, name, namelen)) {
1091 /*
1092 * look for a conflicting back reference in the
1093 * metadata. if we find one we have to unlink that name
1094 * of the file before we add our new link. Later on, we
1095 * overwrite any existing back reference, and we don't
1096 * want to create dangling pointers in the directory.
1097 */
1098
1099 if (!search_done) {
1100 ret = __add_inode_ref(trans, root, path, log,
1101 dir, inode, eb,
1102 inode_objectid,
1103 parent_objectid,
1104 ref_index, name, namelen,
1105 &search_done);
1106 if (ret == 1)
1107 goto out;
1108 BUG_ON(ret);
1109 }
1110
1111 /* insert our name */
1112 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1113 0, ref_index);
1114 BUG_ON(ret);
1115
1116 btrfs_update_inode(trans, root, inode);
1117 }
1118
1119 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1120 kfree(name);
1121 if (log_ref_ver) {
1122 iput(dir);
1123 dir = NULL;
1124 }
1125 }
1126
1127 /* finally write the back reference in the inode */
1128 ret = overwrite_item(trans, root, path, eb, slot, key);
1129 BUG_ON(ret);
1130
1131 out:
1132 btrfs_release_path(path);
1133 iput(dir);
1134 iput(inode);
1135 return 0;
1136 }
1137
1138 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1139 struct btrfs_root *root, u64 offset)
1140 {
1141 int ret;
1142 ret = btrfs_find_orphan_item(root, offset);
1143 if (ret > 0)
1144 ret = btrfs_insert_orphan_item(trans, root, offset);
1145 return ret;
1146 }
1147
1148 static int count_inode_extrefs(struct btrfs_root *root,
1149 struct inode *inode, struct btrfs_path *path)
1150 {
1151 int ret = 0;
1152 int name_len;
1153 unsigned int nlink = 0;
1154 u32 item_size;
1155 u32 cur_offset = 0;
1156 u64 inode_objectid = btrfs_ino(inode);
1157 u64 offset = 0;
1158 unsigned long ptr;
1159 struct btrfs_inode_extref *extref;
1160 struct extent_buffer *leaf;
1161
1162 while (1) {
1163 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1164 &extref, &offset);
1165 if (ret)
1166 break;
1167
1168 leaf = path->nodes[0];
1169 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1170 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1171
1172 while (cur_offset < item_size) {
1173 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1174 name_len = btrfs_inode_extref_name_len(leaf, extref);
1175
1176 nlink++;
1177
1178 cur_offset += name_len + sizeof(*extref);
1179 }
1180
1181 offset++;
1182 btrfs_release_path(path);
1183 }
1184 btrfs_release_path(path);
1185
1186 if (ret < 0)
1187 return ret;
1188 return nlink;
1189 }
1190
1191 static int count_inode_refs(struct btrfs_root *root,
1192 struct inode *inode, struct btrfs_path *path)
1193 {
1194 int ret;
1195 struct btrfs_key key;
1196 unsigned int nlink = 0;
1197 unsigned long ptr;
1198 unsigned long ptr_end;
1199 int name_len;
1200 u64 ino = btrfs_ino(inode);
1201
1202 key.objectid = ino;
1203 key.type = BTRFS_INODE_REF_KEY;
1204 key.offset = (u64)-1;
1205
1206 while (1) {
1207 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1208 if (ret < 0)
1209 break;
1210 if (ret > 0) {
1211 if (path->slots[0] == 0)
1212 break;
1213 path->slots[0]--;
1214 }
1215 btrfs_item_key_to_cpu(path->nodes[0], &key,
1216 path->slots[0]);
1217 if (key.objectid != ino ||
1218 key.type != BTRFS_INODE_REF_KEY)
1219 break;
1220 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1221 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1222 path->slots[0]);
1223 while (ptr < ptr_end) {
1224 struct btrfs_inode_ref *ref;
1225
1226 ref = (struct btrfs_inode_ref *)ptr;
1227 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1228 ref);
1229 ptr = (unsigned long)(ref + 1) + name_len;
1230 nlink++;
1231 }
1232
1233 if (key.offset == 0)
1234 break;
1235 key.offset--;
1236 btrfs_release_path(path);
1237 }
1238 btrfs_release_path(path);
1239
1240 return nlink;
1241 }
1242
1243 /*
1244 * There are a few corners where the link count of the file can't
1245 * be properly maintained during replay. So, instead of adding
1246 * lots of complexity to the log code, we just scan the backrefs
1247 * for any file that has been through replay.
1248 *
1249 * The scan will update the link count on the inode to reflect the
1250 * number of back refs found. If it goes down to zero, the iput
1251 * will free the inode.
1252 */
1253 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1254 struct btrfs_root *root,
1255 struct inode *inode)
1256 {
1257 struct btrfs_path *path;
1258 int ret;
1259 u64 nlink = 0;
1260 u64 ino = btrfs_ino(inode);
1261
1262 path = btrfs_alloc_path();
1263 if (!path)
1264 return -ENOMEM;
1265
1266 ret = count_inode_refs(root, inode, path);
1267 if (ret < 0)
1268 goto out;
1269
1270 nlink = ret;
1271
1272 ret = count_inode_extrefs(root, inode, path);
1273 if (ret == -ENOENT)
1274 ret = 0;
1275
1276 if (ret < 0)
1277 goto out;
1278
1279 nlink += ret;
1280
1281 ret = 0;
1282
1283 if (nlink != inode->i_nlink) {
1284 set_nlink(inode, nlink);
1285 btrfs_update_inode(trans, root, inode);
1286 }
1287 BTRFS_I(inode)->index_cnt = (u64)-1;
1288
1289 if (inode->i_nlink == 0) {
1290 if (S_ISDIR(inode->i_mode)) {
1291 ret = replay_dir_deletes(trans, root, NULL, path,
1292 ino, 1);
1293 BUG_ON(ret);
1294 }
1295 ret = insert_orphan_item(trans, root, ino);
1296 BUG_ON(ret);
1297 }
1298
1299 out:
1300 btrfs_free_path(path);
1301 return ret;
1302 }
1303
1304 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1305 struct btrfs_root *root,
1306 struct btrfs_path *path)
1307 {
1308 int ret;
1309 struct btrfs_key key;
1310 struct inode *inode;
1311
1312 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1313 key.type = BTRFS_ORPHAN_ITEM_KEY;
1314 key.offset = (u64)-1;
1315 while (1) {
1316 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1317 if (ret < 0)
1318 break;
1319
1320 if (ret == 1) {
1321 if (path->slots[0] == 0)
1322 break;
1323 path->slots[0]--;
1324 }
1325
1326 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1327 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1328 key.type != BTRFS_ORPHAN_ITEM_KEY)
1329 break;
1330
1331 ret = btrfs_del_item(trans, root, path);
1332 if (ret)
1333 goto out;
1334
1335 btrfs_release_path(path);
1336 inode = read_one_inode(root, key.offset);
1337 if (!inode)
1338 return -EIO;
1339
1340 ret = fixup_inode_link_count(trans, root, inode);
1341 BUG_ON(ret);
1342
1343 iput(inode);
1344
1345 /*
1346 * fixup on a directory may create new entries,
1347 * make sure we always look for the highset possible
1348 * offset
1349 */
1350 key.offset = (u64)-1;
1351 }
1352 ret = 0;
1353 out:
1354 btrfs_release_path(path);
1355 return ret;
1356 }
1357
1358
1359 /*
1360 * record a given inode in the fixup dir so we can check its link
1361 * count when replay is done. The link count is incremented here
1362 * so the inode won't go away until we check it
1363 */
1364 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1365 struct btrfs_root *root,
1366 struct btrfs_path *path,
1367 u64 objectid)
1368 {
1369 struct btrfs_key key;
1370 int ret = 0;
1371 struct inode *inode;
1372
1373 inode = read_one_inode(root, objectid);
1374 if (!inode)
1375 return -EIO;
1376
1377 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1378 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1379 key.offset = objectid;
1380
1381 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1382
1383 btrfs_release_path(path);
1384 if (ret == 0) {
1385 btrfs_inc_nlink(inode);
1386 ret = btrfs_update_inode(trans, root, inode);
1387 } else if (ret == -EEXIST) {
1388 ret = 0;
1389 } else {
1390 BUG();
1391 }
1392 iput(inode);
1393
1394 return ret;
1395 }
1396
1397 /*
1398 * when replaying the log for a directory, we only insert names
1399 * for inodes that actually exist. This means an fsync on a directory
1400 * does not implicitly fsync all the new files in it
1401 */
1402 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1403 struct btrfs_root *root,
1404 struct btrfs_path *path,
1405 u64 dirid, u64 index,
1406 char *name, int name_len, u8 type,
1407 struct btrfs_key *location)
1408 {
1409 struct inode *inode;
1410 struct inode *dir;
1411 int ret;
1412
1413 inode = read_one_inode(root, location->objectid);
1414 if (!inode)
1415 return -ENOENT;
1416
1417 dir = read_one_inode(root, dirid);
1418 if (!dir) {
1419 iput(inode);
1420 return -EIO;
1421 }
1422 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1423
1424 /* FIXME, put inode into FIXUP list */
1425
1426 iput(inode);
1427 iput(dir);
1428 return ret;
1429 }
1430
1431 /*
1432 * take a single entry in a log directory item and replay it into
1433 * the subvolume.
1434 *
1435 * if a conflicting item exists in the subdirectory already,
1436 * the inode it points to is unlinked and put into the link count
1437 * fix up tree.
1438 *
1439 * If a name from the log points to a file or directory that does
1440 * not exist in the FS, it is skipped. fsyncs on directories
1441 * do not force down inodes inside that directory, just changes to the
1442 * names or unlinks in a directory.
1443 */
1444 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1445 struct btrfs_root *root,
1446 struct btrfs_path *path,
1447 struct extent_buffer *eb,
1448 struct btrfs_dir_item *di,
1449 struct btrfs_key *key)
1450 {
1451 char *name;
1452 int name_len;
1453 struct btrfs_dir_item *dst_di;
1454 struct btrfs_key found_key;
1455 struct btrfs_key log_key;
1456 struct inode *dir;
1457 u8 log_type;
1458 int exists;
1459 int ret;
1460
1461 dir = read_one_inode(root, key->objectid);
1462 if (!dir)
1463 return -EIO;
1464
1465 name_len = btrfs_dir_name_len(eb, di);
1466 name = kmalloc(name_len, GFP_NOFS);
1467 if (!name)
1468 return -ENOMEM;
1469
1470 log_type = btrfs_dir_type(eb, di);
1471 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1472 name_len);
1473
1474 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1475 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1476 if (exists == 0)
1477 exists = 1;
1478 else
1479 exists = 0;
1480 btrfs_release_path(path);
1481
1482 if (key->type == BTRFS_DIR_ITEM_KEY) {
1483 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1484 name, name_len, 1);
1485 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1486 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1487 key->objectid,
1488 key->offset, name,
1489 name_len, 1);
1490 } else {
1491 BUG();
1492 }
1493 if (IS_ERR_OR_NULL(dst_di)) {
1494 /* we need a sequence number to insert, so we only
1495 * do inserts for the BTRFS_DIR_INDEX_KEY types
1496 */
1497 if (key->type != BTRFS_DIR_INDEX_KEY)
1498 goto out;
1499 goto insert;
1500 }
1501
1502 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1503 /* the existing item matches the logged item */
1504 if (found_key.objectid == log_key.objectid &&
1505 found_key.type == log_key.type &&
1506 found_key.offset == log_key.offset &&
1507 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1508 goto out;
1509 }
1510
1511 /*
1512 * don't drop the conflicting directory entry if the inode
1513 * for the new entry doesn't exist
1514 */
1515 if (!exists)
1516 goto out;
1517
1518 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1519 BUG_ON(ret);
1520
1521 if (key->type == BTRFS_DIR_INDEX_KEY)
1522 goto insert;
1523 out:
1524 btrfs_release_path(path);
1525 kfree(name);
1526 iput(dir);
1527 return 0;
1528
1529 insert:
1530 btrfs_release_path(path);
1531 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1532 name, name_len, log_type, &log_key);
1533
1534 BUG_ON(ret && ret != -ENOENT);
1535 goto out;
1536 }
1537
1538 /*
1539 * find all the names in a directory item and reconcile them into
1540 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1541 * one name in a directory item, but the same code gets used for
1542 * both directory index types
1543 */
1544 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1545 struct btrfs_root *root,
1546 struct btrfs_path *path,
1547 struct extent_buffer *eb, int slot,
1548 struct btrfs_key *key)
1549 {
1550 int ret;
1551 u32 item_size = btrfs_item_size_nr(eb, slot);
1552 struct btrfs_dir_item *di;
1553 int name_len;
1554 unsigned long ptr;
1555 unsigned long ptr_end;
1556
1557 ptr = btrfs_item_ptr_offset(eb, slot);
1558 ptr_end = ptr + item_size;
1559 while (ptr < ptr_end) {
1560 di = (struct btrfs_dir_item *)ptr;
1561 if (verify_dir_item(root, eb, di))
1562 return -EIO;
1563 name_len = btrfs_dir_name_len(eb, di);
1564 ret = replay_one_name(trans, root, path, eb, di, key);
1565 BUG_ON(ret);
1566 ptr = (unsigned long)(di + 1);
1567 ptr += name_len;
1568 }
1569 return 0;
1570 }
1571
1572 /*
1573 * directory replay has two parts. There are the standard directory
1574 * items in the log copied from the subvolume, and range items
1575 * created in the log while the subvolume was logged.
1576 *
1577 * The range items tell us which parts of the key space the log
1578 * is authoritative for. During replay, if a key in the subvolume
1579 * directory is in a logged range item, but not actually in the log
1580 * that means it was deleted from the directory before the fsync
1581 * and should be removed.
1582 */
1583 static noinline int find_dir_range(struct btrfs_root *root,
1584 struct btrfs_path *path,
1585 u64 dirid, int key_type,
1586 u64 *start_ret, u64 *end_ret)
1587 {
1588 struct btrfs_key key;
1589 u64 found_end;
1590 struct btrfs_dir_log_item *item;
1591 int ret;
1592 int nritems;
1593
1594 if (*start_ret == (u64)-1)
1595 return 1;
1596
1597 key.objectid = dirid;
1598 key.type = key_type;
1599 key.offset = *start_ret;
1600
1601 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1602 if (ret < 0)
1603 goto out;
1604 if (ret > 0) {
1605 if (path->slots[0] == 0)
1606 goto out;
1607 path->slots[0]--;
1608 }
1609 if (ret != 0)
1610 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1611
1612 if (key.type != key_type || key.objectid != dirid) {
1613 ret = 1;
1614 goto next;
1615 }
1616 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1617 struct btrfs_dir_log_item);
1618 found_end = btrfs_dir_log_end(path->nodes[0], item);
1619
1620 if (*start_ret >= key.offset && *start_ret <= found_end) {
1621 ret = 0;
1622 *start_ret = key.offset;
1623 *end_ret = found_end;
1624 goto out;
1625 }
1626 ret = 1;
1627 next:
1628 /* check the next slot in the tree to see if it is a valid item */
1629 nritems = btrfs_header_nritems(path->nodes[0]);
1630 if (path->slots[0] >= nritems) {
1631 ret = btrfs_next_leaf(root, path);
1632 if (ret)
1633 goto out;
1634 } else {
1635 path->slots[0]++;
1636 }
1637
1638 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1639
1640 if (key.type != key_type || key.objectid != dirid) {
1641 ret = 1;
1642 goto out;
1643 }
1644 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1645 struct btrfs_dir_log_item);
1646 found_end = btrfs_dir_log_end(path->nodes[0], item);
1647 *start_ret = key.offset;
1648 *end_ret = found_end;
1649 ret = 0;
1650 out:
1651 btrfs_release_path(path);
1652 return ret;
1653 }
1654
1655 /*
1656 * this looks for a given directory item in the log. If the directory
1657 * item is not in the log, the item is removed and the inode it points
1658 * to is unlinked
1659 */
1660 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1661 struct btrfs_root *root,
1662 struct btrfs_root *log,
1663 struct btrfs_path *path,
1664 struct btrfs_path *log_path,
1665 struct inode *dir,
1666 struct btrfs_key *dir_key)
1667 {
1668 int ret;
1669 struct extent_buffer *eb;
1670 int slot;
1671 u32 item_size;
1672 struct btrfs_dir_item *di;
1673 struct btrfs_dir_item *log_di;
1674 int name_len;
1675 unsigned long ptr;
1676 unsigned long ptr_end;
1677 char *name;
1678 struct inode *inode;
1679 struct btrfs_key location;
1680
1681 again:
1682 eb = path->nodes[0];
1683 slot = path->slots[0];
1684 item_size = btrfs_item_size_nr(eb, slot);
1685 ptr = btrfs_item_ptr_offset(eb, slot);
1686 ptr_end = ptr + item_size;
1687 while (ptr < ptr_end) {
1688 di = (struct btrfs_dir_item *)ptr;
1689 if (verify_dir_item(root, eb, di)) {
1690 ret = -EIO;
1691 goto out;
1692 }
1693
1694 name_len = btrfs_dir_name_len(eb, di);
1695 name = kmalloc(name_len, GFP_NOFS);
1696 if (!name) {
1697 ret = -ENOMEM;
1698 goto out;
1699 }
1700 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1701 name_len);
1702 log_di = NULL;
1703 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1704 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1705 dir_key->objectid,
1706 name, name_len, 0);
1707 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1708 log_di = btrfs_lookup_dir_index_item(trans, log,
1709 log_path,
1710 dir_key->objectid,
1711 dir_key->offset,
1712 name, name_len, 0);
1713 }
1714 if (IS_ERR_OR_NULL(log_di)) {
1715 btrfs_dir_item_key_to_cpu(eb, di, &location);
1716 btrfs_release_path(path);
1717 btrfs_release_path(log_path);
1718 inode = read_one_inode(root, location.objectid);
1719 if (!inode) {
1720 kfree(name);
1721 return -EIO;
1722 }
1723
1724 ret = link_to_fixup_dir(trans, root,
1725 path, location.objectid);
1726 BUG_ON(ret);
1727 btrfs_inc_nlink(inode);
1728 ret = btrfs_unlink_inode(trans, root, dir, inode,
1729 name, name_len);
1730 BUG_ON(ret);
1731
1732 btrfs_run_delayed_items(trans, root);
1733
1734 kfree(name);
1735 iput(inode);
1736
1737 /* there might still be more names under this key
1738 * check and repeat if required
1739 */
1740 ret = btrfs_search_slot(NULL, root, dir_key, path,
1741 0, 0);
1742 if (ret == 0)
1743 goto again;
1744 ret = 0;
1745 goto out;
1746 }
1747 btrfs_release_path(log_path);
1748 kfree(name);
1749
1750 ptr = (unsigned long)(di + 1);
1751 ptr += name_len;
1752 }
1753 ret = 0;
1754 out:
1755 btrfs_release_path(path);
1756 btrfs_release_path(log_path);
1757 return ret;
1758 }
1759
1760 /*
1761 * deletion replay happens before we copy any new directory items
1762 * out of the log or out of backreferences from inodes. It
1763 * scans the log to find ranges of keys that log is authoritative for,
1764 * and then scans the directory to find items in those ranges that are
1765 * not present in the log.
1766 *
1767 * Anything we don't find in the log is unlinked and removed from the
1768 * directory.
1769 */
1770 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1771 struct btrfs_root *root,
1772 struct btrfs_root *log,
1773 struct btrfs_path *path,
1774 u64 dirid, int del_all)
1775 {
1776 u64 range_start;
1777 u64 range_end;
1778 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1779 int ret = 0;
1780 struct btrfs_key dir_key;
1781 struct btrfs_key found_key;
1782 struct btrfs_path *log_path;
1783 struct inode *dir;
1784
1785 dir_key.objectid = dirid;
1786 dir_key.type = BTRFS_DIR_ITEM_KEY;
1787 log_path = btrfs_alloc_path();
1788 if (!log_path)
1789 return -ENOMEM;
1790
1791 dir = read_one_inode(root, dirid);
1792 /* it isn't an error if the inode isn't there, that can happen
1793 * because we replay the deletes before we copy in the inode item
1794 * from the log
1795 */
1796 if (!dir) {
1797 btrfs_free_path(log_path);
1798 return 0;
1799 }
1800 again:
1801 range_start = 0;
1802 range_end = 0;
1803 while (1) {
1804 if (del_all)
1805 range_end = (u64)-1;
1806 else {
1807 ret = find_dir_range(log, path, dirid, key_type,
1808 &range_start, &range_end);
1809 if (ret != 0)
1810 break;
1811 }
1812
1813 dir_key.offset = range_start;
1814 while (1) {
1815 int nritems;
1816 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1817 0, 0);
1818 if (ret < 0)
1819 goto out;
1820
1821 nritems = btrfs_header_nritems(path->nodes[0]);
1822 if (path->slots[0] >= nritems) {
1823 ret = btrfs_next_leaf(root, path);
1824 if (ret)
1825 break;
1826 }
1827 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1828 path->slots[0]);
1829 if (found_key.objectid != dirid ||
1830 found_key.type != dir_key.type)
1831 goto next_type;
1832
1833 if (found_key.offset > range_end)
1834 break;
1835
1836 ret = check_item_in_log(trans, root, log, path,
1837 log_path, dir,
1838 &found_key);
1839 BUG_ON(ret);
1840 if (found_key.offset == (u64)-1)
1841 break;
1842 dir_key.offset = found_key.offset + 1;
1843 }
1844 btrfs_release_path(path);
1845 if (range_end == (u64)-1)
1846 break;
1847 range_start = range_end + 1;
1848 }
1849
1850 next_type:
1851 ret = 0;
1852 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1853 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1854 dir_key.type = BTRFS_DIR_INDEX_KEY;
1855 btrfs_release_path(path);
1856 goto again;
1857 }
1858 out:
1859 btrfs_release_path(path);
1860 btrfs_free_path(log_path);
1861 iput(dir);
1862 return ret;
1863 }
1864
1865 /*
1866 * the process_func used to replay items from the log tree. This
1867 * gets called in two different stages. The first stage just looks
1868 * for inodes and makes sure they are all copied into the subvolume.
1869 *
1870 * The second stage copies all the other item types from the log into
1871 * the subvolume. The two stage approach is slower, but gets rid of
1872 * lots of complexity around inodes referencing other inodes that exist
1873 * only in the log (references come from either directory items or inode
1874 * back refs).
1875 */
1876 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1877 struct walk_control *wc, u64 gen)
1878 {
1879 int nritems;
1880 struct btrfs_path *path;
1881 struct btrfs_root *root = wc->replay_dest;
1882 struct btrfs_key key;
1883 int level;
1884 int i;
1885 int ret;
1886
1887 ret = btrfs_read_buffer(eb, gen);
1888 if (ret)
1889 return ret;
1890
1891 level = btrfs_header_level(eb);
1892
1893 if (level != 0)
1894 return 0;
1895
1896 path = btrfs_alloc_path();
1897 if (!path)
1898 return -ENOMEM;
1899
1900 nritems = btrfs_header_nritems(eb);
1901 for (i = 0; i < nritems; i++) {
1902 btrfs_item_key_to_cpu(eb, &key, i);
1903
1904 /* inode keys are done during the first stage */
1905 if (key.type == BTRFS_INODE_ITEM_KEY &&
1906 wc->stage == LOG_WALK_REPLAY_INODES) {
1907 struct btrfs_inode_item *inode_item;
1908 u32 mode;
1909
1910 inode_item = btrfs_item_ptr(eb, i,
1911 struct btrfs_inode_item);
1912 mode = btrfs_inode_mode(eb, inode_item);
1913 if (S_ISDIR(mode)) {
1914 ret = replay_dir_deletes(wc->trans,
1915 root, log, path, key.objectid, 0);
1916 BUG_ON(ret);
1917 }
1918 ret = overwrite_item(wc->trans, root, path,
1919 eb, i, &key);
1920 BUG_ON(ret);
1921
1922 /* for regular files, make sure corresponding
1923 * orhpan item exist. extents past the new EOF
1924 * will be truncated later by orphan cleanup.
1925 */
1926 if (S_ISREG(mode)) {
1927 ret = insert_orphan_item(wc->trans, root,
1928 key.objectid);
1929 BUG_ON(ret);
1930 }
1931
1932 ret = link_to_fixup_dir(wc->trans, root,
1933 path, key.objectid);
1934 BUG_ON(ret);
1935 }
1936 if (wc->stage < LOG_WALK_REPLAY_ALL)
1937 continue;
1938
1939 /* these keys are simply copied */
1940 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1941 ret = overwrite_item(wc->trans, root, path,
1942 eb, i, &key);
1943 BUG_ON(ret);
1944 } else if (key.type == BTRFS_INODE_REF_KEY) {
1945 ret = add_inode_ref(wc->trans, root, log, path,
1946 eb, i, &key);
1947 BUG_ON(ret && ret != -ENOENT);
1948 } else if (key.type == BTRFS_INODE_EXTREF_KEY) {
1949 ret = add_inode_ref(wc->trans, root, log, path,
1950 eb, i, &key);
1951 BUG_ON(ret && ret != -ENOENT);
1952 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1953 ret = replay_one_extent(wc->trans, root, path,
1954 eb, i, &key);
1955 BUG_ON(ret);
1956 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1957 key.type == BTRFS_DIR_INDEX_KEY) {
1958 ret = replay_one_dir_item(wc->trans, root, path,
1959 eb, i, &key);
1960 BUG_ON(ret);
1961 }
1962 }
1963 btrfs_free_path(path);
1964 return 0;
1965 }
1966
1967 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1968 struct btrfs_root *root,
1969 struct btrfs_path *path, int *level,
1970 struct walk_control *wc)
1971 {
1972 u64 root_owner;
1973 u64 bytenr;
1974 u64 ptr_gen;
1975 struct extent_buffer *next;
1976 struct extent_buffer *cur;
1977 struct extent_buffer *parent;
1978 u32 blocksize;
1979 int ret = 0;
1980
1981 WARN_ON(*level < 0);
1982 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1983
1984 while (*level > 0) {
1985 WARN_ON(*level < 0);
1986 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1987 cur = path->nodes[*level];
1988
1989 if (btrfs_header_level(cur) != *level)
1990 WARN_ON(1);
1991
1992 if (path->slots[*level] >=
1993 btrfs_header_nritems(cur))
1994 break;
1995
1996 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1997 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1998 blocksize = btrfs_level_size(root, *level - 1);
1999
2000 parent = path->nodes[*level];
2001 root_owner = btrfs_header_owner(parent);
2002
2003 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2004 if (!next)
2005 return -ENOMEM;
2006
2007 if (*level == 1) {
2008 ret = wc->process_func(root, next, wc, ptr_gen);
2009 if (ret)
2010 return ret;
2011
2012 path->slots[*level]++;
2013 if (wc->free) {
2014 ret = btrfs_read_buffer(next, ptr_gen);
2015 if (ret) {
2016 free_extent_buffer(next);
2017 return ret;
2018 }
2019
2020 btrfs_tree_lock(next);
2021 btrfs_set_lock_blocking(next);
2022 clean_tree_block(trans, root, next);
2023 btrfs_wait_tree_block_writeback(next);
2024 btrfs_tree_unlock(next);
2025
2026 WARN_ON(root_owner !=
2027 BTRFS_TREE_LOG_OBJECTID);
2028 ret = btrfs_free_and_pin_reserved_extent(root,
2029 bytenr, blocksize);
2030 BUG_ON(ret); /* -ENOMEM or logic errors */
2031 }
2032 free_extent_buffer(next);
2033 continue;
2034 }
2035 ret = btrfs_read_buffer(next, ptr_gen);
2036 if (ret) {
2037 free_extent_buffer(next);
2038 return ret;
2039 }
2040
2041 WARN_ON(*level <= 0);
2042 if (path->nodes[*level-1])
2043 free_extent_buffer(path->nodes[*level-1]);
2044 path->nodes[*level-1] = next;
2045 *level = btrfs_header_level(next);
2046 path->slots[*level] = 0;
2047 cond_resched();
2048 }
2049 WARN_ON(*level < 0);
2050 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2051
2052 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2053
2054 cond_resched();
2055 return 0;
2056 }
2057
2058 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_path *path, int *level,
2061 struct walk_control *wc)
2062 {
2063 u64 root_owner;
2064 int i;
2065 int slot;
2066 int ret;
2067
2068 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2069 slot = path->slots[i];
2070 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2071 path->slots[i]++;
2072 *level = i;
2073 WARN_ON(*level == 0);
2074 return 0;
2075 } else {
2076 struct extent_buffer *parent;
2077 if (path->nodes[*level] == root->node)
2078 parent = path->nodes[*level];
2079 else
2080 parent = path->nodes[*level + 1];
2081
2082 root_owner = btrfs_header_owner(parent);
2083 ret = wc->process_func(root, path->nodes[*level], wc,
2084 btrfs_header_generation(path->nodes[*level]));
2085 if (ret)
2086 return ret;
2087
2088 if (wc->free) {
2089 struct extent_buffer *next;
2090
2091 next = path->nodes[*level];
2092
2093 btrfs_tree_lock(next);
2094 btrfs_set_lock_blocking(next);
2095 clean_tree_block(trans, root, next);
2096 btrfs_wait_tree_block_writeback(next);
2097 btrfs_tree_unlock(next);
2098
2099 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2100 ret = btrfs_free_and_pin_reserved_extent(root,
2101 path->nodes[*level]->start,
2102 path->nodes[*level]->len);
2103 BUG_ON(ret);
2104 }
2105 free_extent_buffer(path->nodes[*level]);
2106 path->nodes[*level] = NULL;
2107 *level = i + 1;
2108 }
2109 }
2110 return 1;
2111 }
2112
2113 /*
2114 * drop the reference count on the tree rooted at 'snap'. This traverses
2115 * the tree freeing any blocks that have a ref count of zero after being
2116 * decremented.
2117 */
2118 static int walk_log_tree(struct btrfs_trans_handle *trans,
2119 struct btrfs_root *log, struct walk_control *wc)
2120 {
2121 int ret = 0;
2122 int wret;
2123 int level;
2124 struct btrfs_path *path;
2125 int i;
2126 int orig_level;
2127
2128 path = btrfs_alloc_path();
2129 if (!path)
2130 return -ENOMEM;
2131
2132 level = btrfs_header_level(log->node);
2133 orig_level = level;
2134 path->nodes[level] = log->node;
2135 extent_buffer_get(log->node);
2136 path->slots[level] = 0;
2137
2138 while (1) {
2139 wret = walk_down_log_tree(trans, log, path, &level, wc);
2140 if (wret > 0)
2141 break;
2142 if (wret < 0) {
2143 ret = wret;
2144 goto out;
2145 }
2146
2147 wret = walk_up_log_tree(trans, log, path, &level, wc);
2148 if (wret > 0)
2149 break;
2150 if (wret < 0) {
2151 ret = wret;
2152 goto out;
2153 }
2154 }
2155
2156 /* was the root node processed? if not, catch it here */
2157 if (path->nodes[orig_level]) {
2158 ret = wc->process_func(log, path->nodes[orig_level], wc,
2159 btrfs_header_generation(path->nodes[orig_level]));
2160 if (ret)
2161 goto out;
2162 if (wc->free) {
2163 struct extent_buffer *next;
2164
2165 next = path->nodes[orig_level];
2166
2167 btrfs_tree_lock(next);
2168 btrfs_set_lock_blocking(next);
2169 clean_tree_block(trans, log, next);
2170 btrfs_wait_tree_block_writeback(next);
2171 btrfs_tree_unlock(next);
2172
2173 WARN_ON(log->root_key.objectid !=
2174 BTRFS_TREE_LOG_OBJECTID);
2175 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2176 next->len);
2177 BUG_ON(ret); /* -ENOMEM or logic errors */
2178 }
2179 }
2180
2181 out:
2182 for (i = 0; i <= orig_level; i++) {
2183 if (path->nodes[i]) {
2184 free_extent_buffer(path->nodes[i]);
2185 path->nodes[i] = NULL;
2186 }
2187 }
2188 btrfs_free_path(path);
2189 return ret;
2190 }
2191
2192 /*
2193 * helper function to update the item for a given subvolumes log root
2194 * in the tree of log roots
2195 */
2196 static int update_log_root(struct btrfs_trans_handle *trans,
2197 struct btrfs_root *log)
2198 {
2199 int ret;
2200
2201 if (log->log_transid == 1) {
2202 /* insert root item on the first sync */
2203 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2204 &log->root_key, &log->root_item);
2205 } else {
2206 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2207 &log->root_key, &log->root_item);
2208 }
2209 return ret;
2210 }
2211
2212 static int wait_log_commit(struct btrfs_trans_handle *trans,
2213 struct btrfs_root *root, unsigned long transid)
2214 {
2215 DEFINE_WAIT(wait);
2216 int index = transid % 2;
2217
2218 /*
2219 * we only allow two pending log transactions at a time,
2220 * so we know that if ours is more than 2 older than the
2221 * current transaction, we're done
2222 */
2223 do {
2224 prepare_to_wait(&root->log_commit_wait[index],
2225 &wait, TASK_UNINTERRUPTIBLE);
2226 mutex_unlock(&root->log_mutex);
2227
2228 if (root->fs_info->last_trans_log_full_commit !=
2229 trans->transid && root->log_transid < transid + 2 &&
2230 atomic_read(&root->log_commit[index]))
2231 schedule();
2232
2233 finish_wait(&root->log_commit_wait[index], &wait);
2234 mutex_lock(&root->log_mutex);
2235 } while (root->fs_info->last_trans_log_full_commit !=
2236 trans->transid && root->log_transid < transid + 2 &&
2237 atomic_read(&root->log_commit[index]));
2238 return 0;
2239 }
2240
2241 static void wait_for_writer(struct btrfs_trans_handle *trans,
2242 struct btrfs_root *root)
2243 {
2244 DEFINE_WAIT(wait);
2245 while (root->fs_info->last_trans_log_full_commit !=
2246 trans->transid && atomic_read(&root->log_writers)) {
2247 prepare_to_wait(&root->log_writer_wait,
2248 &wait, TASK_UNINTERRUPTIBLE);
2249 mutex_unlock(&root->log_mutex);
2250 if (root->fs_info->last_trans_log_full_commit !=
2251 trans->transid && atomic_read(&root->log_writers))
2252 schedule();
2253 mutex_lock(&root->log_mutex);
2254 finish_wait(&root->log_writer_wait, &wait);
2255 }
2256 }
2257
2258 /*
2259 * btrfs_sync_log does sends a given tree log down to the disk and
2260 * updates the super blocks to record it. When this call is done,
2261 * you know that any inodes previously logged are safely on disk only
2262 * if it returns 0.
2263 *
2264 * Any other return value means you need to call btrfs_commit_transaction.
2265 * Some of the edge cases for fsyncing directories that have had unlinks
2266 * or renames done in the past mean that sometimes the only safe
2267 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2268 * that has happened.
2269 */
2270 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2271 struct btrfs_root *root)
2272 {
2273 int index1;
2274 int index2;
2275 int mark;
2276 int ret;
2277 struct btrfs_root *log = root->log_root;
2278 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2279 unsigned long log_transid = 0;
2280
2281 mutex_lock(&root->log_mutex);
2282 log_transid = root->log_transid;
2283 index1 = root->log_transid % 2;
2284 if (atomic_read(&root->log_commit[index1])) {
2285 wait_log_commit(trans, root, root->log_transid);
2286 mutex_unlock(&root->log_mutex);
2287 return 0;
2288 }
2289 atomic_set(&root->log_commit[index1], 1);
2290
2291 /* wait for previous tree log sync to complete */
2292 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2293 wait_log_commit(trans, root, root->log_transid - 1);
2294 while (1) {
2295 int batch = atomic_read(&root->log_batch);
2296 /* when we're on an ssd, just kick the log commit out */
2297 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2298 mutex_unlock(&root->log_mutex);
2299 schedule_timeout_uninterruptible(1);
2300 mutex_lock(&root->log_mutex);
2301 }
2302 wait_for_writer(trans, root);
2303 if (batch == atomic_read(&root->log_batch))
2304 break;
2305 }
2306
2307 /* bail out if we need to do a full commit */
2308 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2309 ret = -EAGAIN;
2310 btrfs_free_logged_extents(log, log_transid);
2311 mutex_unlock(&root->log_mutex);
2312 goto out;
2313 }
2314
2315 if (log_transid % 2 == 0)
2316 mark = EXTENT_DIRTY;
2317 else
2318 mark = EXTENT_NEW;
2319
2320 /* we start IO on all the marked extents here, but we don't actually
2321 * wait for them until later.
2322 */
2323 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2324 if (ret) {
2325 btrfs_abort_transaction(trans, root, ret);
2326 btrfs_free_logged_extents(log, log_transid);
2327 mutex_unlock(&root->log_mutex);
2328 goto out;
2329 }
2330
2331 btrfs_set_root_node(&log->root_item, log->node);
2332
2333 root->log_transid++;
2334 log->log_transid = root->log_transid;
2335 root->log_start_pid = 0;
2336 smp_mb();
2337 /*
2338 * IO has been started, blocks of the log tree have WRITTEN flag set
2339 * in their headers. new modifications of the log will be written to
2340 * new positions. so it's safe to allow log writers to go in.
2341 */
2342 mutex_unlock(&root->log_mutex);
2343
2344 mutex_lock(&log_root_tree->log_mutex);
2345 atomic_inc(&log_root_tree->log_batch);
2346 atomic_inc(&log_root_tree->log_writers);
2347 mutex_unlock(&log_root_tree->log_mutex);
2348
2349 ret = update_log_root(trans, log);
2350
2351 mutex_lock(&log_root_tree->log_mutex);
2352 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2353 smp_mb();
2354 if (waitqueue_active(&log_root_tree->log_writer_wait))
2355 wake_up(&log_root_tree->log_writer_wait);
2356 }
2357
2358 if (ret) {
2359 if (ret != -ENOSPC) {
2360 btrfs_abort_transaction(trans, root, ret);
2361 mutex_unlock(&log_root_tree->log_mutex);
2362 goto out;
2363 }
2364 root->fs_info->last_trans_log_full_commit = trans->transid;
2365 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2366 btrfs_free_logged_extents(log, log_transid);
2367 mutex_unlock(&log_root_tree->log_mutex);
2368 ret = -EAGAIN;
2369 goto out;
2370 }
2371
2372 index2 = log_root_tree->log_transid % 2;
2373 if (atomic_read(&log_root_tree->log_commit[index2])) {
2374 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2375 wait_log_commit(trans, log_root_tree,
2376 log_root_tree->log_transid);
2377 btrfs_free_logged_extents(log, log_transid);
2378 mutex_unlock(&log_root_tree->log_mutex);
2379 ret = 0;
2380 goto out;
2381 }
2382 atomic_set(&log_root_tree->log_commit[index2], 1);
2383
2384 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2385 wait_log_commit(trans, log_root_tree,
2386 log_root_tree->log_transid - 1);
2387 }
2388
2389 wait_for_writer(trans, log_root_tree);
2390
2391 /*
2392 * now that we've moved on to the tree of log tree roots,
2393 * check the full commit flag again
2394 */
2395 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2396 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2397 btrfs_free_logged_extents(log, log_transid);
2398 mutex_unlock(&log_root_tree->log_mutex);
2399 ret = -EAGAIN;
2400 goto out_wake_log_root;
2401 }
2402
2403 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2404 &log_root_tree->dirty_log_pages,
2405 EXTENT_DIRTY | EXTENT_NEW);
2406 if (ret) {
2407 btrfs_abort_transaction(trans, root, ret);
2408 btrfs_free_logged_extents(log, log_transid);
2409 mutex_unlock(&log_root_tree->log_mutex);
2410 goto out_wake_log_root;
2411 }
2412 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2413 btrfs_wait_logged_extents(log, log_transid);
2414
2415 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2416 log_root_tree->node->start);
2417 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2418 btrfs_header_level(log_root_tree->node));
2419
2420 log_root_tree->log_transid++;
2421 smp_mb();
2422
2423 mutex_unlock(&log_root_tree->log_mutex);
2424
2425 /*
2426 * nobody else is going to jump in and write the the ctree
2427 * super here because the log_commit atomic below is protecting
2428 * us. We must be called with a transaction handle pinning
2429 * the running transaction open, so a full commit can't hop
2430 * in and cause problems either.
2431 */
2432 btrfs_scrub_pause_super(root);
2433 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2434 btrfs_scrub_continue_super(root);
2435 if (ret) {
2436 btrfs_abort_transaction(trans, root, ret);
2437 goto out_wake_log_root;
2438 }
2439
2440 mutex_lock(&root->log_mutex);
2441 if (root->last_log_commit < log_transid)
2442 root->last_log_commit = log_transid;
2443 mutex_unlock(&root->log_mutex);
2444
2445 out_wake_log_root:
2446 atomic_set(&log_root_tree->log_commit[index2], 0);
2447 smp_mb();
2448 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2449 wake_up(&log_root_tree->log_commit_wait[index2]);
2450 out:
2451 atomic_set(&root->log_commit[index1], 0);
2452 smp_mb();
2453 if (waitqueue_active(&root->log_commit_wait[index1]))
2454 wake_up(&root->log_commit_wait[index1]);
2455 return ret;
2456 }
2457
2458 static void free_log_tree(struct btrfs_trans_handle *trans,
2459 struct btrfs_root *log)
2460 {
2461 int ret;
2462 u64 start;
2463 u64 end;
2464 struct walk_control wc = {
2465 .free = 1,
2466 .process_func = process_one_buffer
2467 };
2468
2469 if (trans) {
2470 ret = walk_log_tree(trans, log, &wc);
2471 BUG_ON(ret);
2472 }
2473
2474 while (1) {
2475 ret = find_first_extent_bit(&log->dirty_log_pages,
2476 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2477 NULL);
2478 if (ret)
2479 break;
2480
2481 clear_extent_bits(&log->dirty_log_pages, start, end,
2482 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2483 }
2484
2485 /*
2486 * We may have short-circuited the log tree with the full commit logic
2487 * and left ordered extents on our list, so clear these out to keep us
2488 * from leaking inodes and memory.
2489 */
2490 btrfs_free_logged_extents(log, 0);
2491 btrfs_free_logged_extents(log, 1);
2492
2493 free_extent_buffer(log->node);
2494 kfree(log);
2495 }
2496
2497 /*
2498 * free all the extents used by the tree log. This should be called
2499 * at commit time of the full transaction
2500 */
2501 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2502 {
2503 if (root->log_root) {
2504 free_log_tree(trans, root->log_root);
2505 root->log_root = NULL;
2506 }
2507 return 0;
2508 }
2509
2510 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2511 struct btrfs_fs_info *fs_info)
2512 {
2513 if (fs_info->log_root_tree) {
2514 free_log_tree(trans, fs_info->log_root_tree);
2515 fs_info->log_root_tree = NULL;
2516 }
2517 return 0;
2518 }
2519
2520 /*
2521 * If both a file and directory are logged, and unlinks or renames are
2522 * mixed in, we have a few interesting corners:
2523 *
2524 * create file X in dir Y
2525 * link file X to X.link in dir Y
2526 * fsync file X
2527 * unlink file X but leave X.link
2528 * fsync dir Y
2529 *
2530 * After a crash we would expect only X.link to exist. But file X
2531 * didn't get fsync'd again so the log has back refs for X and X.link.
2532 *
2533 * We solve this by removing directory entries and inode backrefs from the
2534 * log when a file that was logged in the current transaction is
2535 * unlinked. Any later fsync will include the updated log entries, and
2536 * we'll be able to reconstruct the proper directory items from backrefs.
2537 *
2538 * This optimizations allows us to avoid relogging the entire inode
2539 * or the entire directory.
2540 */
2541 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2542 struct btrfs_root *root,
2543 const char *name, int name_len,
2544 struct inode *dir, u64 index)
2545 {
2546 struct btrfs_root *log;
2547 struct btrfs_dir_item *di;
2548 struct btrfs_path *path;
2549 int ret;
2550 int err = 0;
2551 int bytes_del = 0;
2552 u64 dir_ino = btrfs_ino(dir);
2553
2554 if (BTRFS_I(dir)->logged_trans < trans->transid)
2555 return 0;
2556
2557 ret = join_running_log_trans(root);
2558 if (ret)
2559 return 0;
2560
2561 mutex_lock(&BTRFS_I(dir)->log_mutex);
2562
2563 log = root->log_root;
2564 path = btrfs_alloc_path();
2565 if (!path) {
2566 err = -ENOMEM;
2567 goto out_unlock;
2568 }
2569
2570 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2571 name, name_len, -1);
2572 if (IS_ERR(di)) {
2573 err = PTR_ERR(di);
2574 goto fail;
2575 }
2576 if (di) {
2577 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2578 bytes_del += name_len;
2579 BUG_ON(ret);
2580 }
2581 btrfs_release_path(path);
2582 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2583 index, name, name_len, -1);
2584 if (IS_ERR(di)) {
2585 err = PTR_ERR(di);
2586 goto fail;
2587 }
2588 if (di) {
2589 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2590 bytes_del += name_len;
2591 BUG_ON(ret);
2592 }
2593
2594 /* update the directory size in the log to reflect the names
2595 * we have removed
2596 */
2597 if (bytes_del) {
2598 struct btrfs_key key;
2599
2600 key.objectid = dir_ino;
2601 key.offset = 0;
2602 key.type = BTRFS_INODE_ITEM_KEY;
2603 btrfs_release_path(path);
2604
2605 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2606 if (ret < 0) {
2607 err = ret;
2608 goto fail;
2609 }
2610 if (ret == 0) {
2611 struct btrfs_inode_item *item;
2612 u64 i_size;
2613
2614 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2615 struct btrfs_inode_item);
2616 i_size = btrfs_inode_size(path->nodes[0], item);
2617 if (i_size > bytes_del)
2618 i_size -= bytes_del;
2619 else
2620 i_size = 0;
2621 btrfs_set_inode_size(path->nodes[0], item, i_size);
2622 btrfs_mark_buffer_dirty(path->nodes[0]);
2623 } else
2624 ret = 0;
2625 btrfs_release_path(path);
2626 }
2627 fail:
2628 btrfs_free_path(path);
2629 out_unlock:
2630 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2631 if (ret == -ENOSPC) {
2632 root->fs_info->last_trans_log_full_commit = trans->transid;
2633 ret = 0;
2634 } else if (ret < 0)
2635 btrfs_abort_transaction(trans, root, ret);
2636
2637 btrfs_end_log_trans(root);
2638
2639 return err;
2640 }
2641
2642 /* see comments for btrfs_del_dir_entries_in_log */
2643 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2644 struct btrfs_root *root,
2645 const char *name, int name_len,
2646 struct inode *inode, u64 dirid)
2647 {
2648 struct btrfs_root *log;
2649 u64 index;
2650 int ret;
2651
2652 if (BTRFS_I(inode)->logged_trans < trans->transid)
2653 return 0;
2654
2655 ret = join_running_log_trans(root);
2656 if (ret)
2657 return 0;
2658 log = root->log_root;
2659 mutex_lock(&BTRFS_I(inode)->log_mutex);
2660
2661 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2662 dirid, &index);
2663 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2664 if (ret == -ENOSPC) {
2665 root->fs_info->last_trans_log_full_commit = trans->transid;
2666 ret = 0;
2667 } else if (ret < 0 && ret != -ENOENT)
2668 btrfs_abort_transaction(trans, root, ret);
2669 btrfs_end_log_trans(root);
2670
2671 return ret;
2672 }
2673
2674 /*
2675 * creates a range item in the log for 'dirid'. first_offset and
2676 * last_offset tell us which parts of the key space the log should
2677 * be considered authoritative for.
2678 */
2679 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2680 struct btrfs_root *log,
2681 struct btrfs_path *path,
2682 int key_type, u64 dirid,
2683 u64 first_offset, u64 last_offset)
2684 {
2685 int ret;
2686 struct btrfs_key key;
2687 struct btrfs_dir_log_item *item;
2688
2689 key.objectid = dirid;
2690 key.offset = first_offset;
2691 if (key_type == BTRFS_DIR_ITEM_KEY)
2692 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2693 else
2694 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2695 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2696 if (ret)
2697 return ret;
2698
2699 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2700 struct btrfs_dir_log_item);
2701 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2702 btrfs_mark_buffer_dirty(path->nodes[0]);
2703 btrfs_release_path(path);
2704 return 0;
2705 }
2706
2707 /*
2708 * log all the items included in the current transaction for a given
2709 * directory. This also creates the range items in the log tree required
2710 * to replay anything deleted before the fsync
2711 */
2712 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2713 struct btrfs_root *root, struct inode *inode,
2714 struct btrfs_path *path,
2715 struct btrfs_path *dst_path, int key_type,
2716 u64 min_offset, u64 *last_offset_ret)
2717 {
2718 struct btrfs_key min_key;
2719 struct btrfs_key max_key;
2720 struct btrfs_root *log = root->log_root;
2721 struct extent_buffer *src;
2722 int err = 0;
2723 int ret;
2724 int i;
2725 int nritems;
2726 u64 first_offset = min_offset;
2727 u64 last_offset = (u64)-1;
2728 u64 ino = btrfs_ino(inode);
2729
2730 log = root->log_root;
2731 max_key.objectid = ino;
2732 max_key.offset = (u64)-1;
2733 max_key.type = key_type;
2734
2735 min_key.objectid = ino;
2736 min_key.type = key_type;
2737 min_key.offset = min_offset;
2738
2739 path->keep_locks = 1;
2740
2741 ret = btrfs_search_forward(root, &min_key, &max_key,
2742 path, trans->transid);
2743
2744 /*
2745 * we didn't find anything from this transaction, see if there
2746 * is anything at all
2747 */
2748 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2749 min_key.objectid = ino;
2750 min_key.type = key_type;
2751 min_key.offset = (u64)-1;
2752 btrfs_release_path(path);
2753 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2754 if (ret < 0) {
2755 btrfs_release_path(path);
2756 return ret;
2757 }
2758 ret = btrfs_previous_item(root, path, ino, key_type);
2759
2760 /* if ret == 0 there are items for this type,
2761 * create a range to tell us the last key of this type.
2762 * otherwise, there are no items in this directory after
2763 * *min_offset, and we create a range to indicate that.
2764 */
2765 if (ret == 0) {
2766 struct btrfs_key tmp;
2767 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2768 path->slots[0]);
2769 if (key_type == tmp.type)
2770 first_offset = max(min_offset, tmp.offset) + 1;
2771 }
2772 goto done;
2773 }
2774
2775 /* go backward to find any previous key */
2776 ret = btrfs_previous_item(root, path, ino, key_type);
2777 if (ret == 0) {
2778 struct btrfs_key tmp;
2779 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2780 if (key_type == tmp.type) {
2781 first_offset = tmp.offset;
2782 ret = overwrite_item(trans, log, dst_path,
2783 path->nodes[0], path->slots[0],
2784 &tmp);
2785 if (ret) {
2786 err = ret;
2787 goto done;
2788 }
2789 }
2790 }
2791 btrfs_release_path(path);
2792
2793 /* find the first key from this transaction again */
2794 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2795 if (ret != 0) {
2796 WARN_ON(1);
2797 goto done;
2798 }
2799
2800 /*
2801 * we have a block from this transaction, log every item in it
2802 * from our directory
2803 */
2804 while (1) {
2805 struct btrfs_key tmp;
2806 src = path->nodes[0];
2807 nritems = btrfs_header_nritems(src);
2808 for (i = path->slots[0]; i < nritems; i++) {
2809 btrfs_item_key_to_cpu(src, &min_key, i);
2810
2811 if (min_key.objectid != ino || min_key.type != key_type)
2812 goto done;
2813 ret = overwrite_item(trans, log, dst_path, src, i,
2814 &min_key);
2815 if (ret) {
2816 err = ret;
2817 goto done;
2818 }
2819 }
2820 path->slots[0] = nritems;
2821
2822 /*
2823 * look ahead to the next item and see if it is also
2824 * from this directory and from this transaction
2825 */
2826 ret = btrfs_next_leaf(root, path);
2827 if (ret == 1) {
2828 last_offset = (u64)-1;
2829 goto done;
2830 }
2831 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2832 if (tmp.objectid != ino || tmp.type != key_type) {
2833 last_offset = (u64)-1;
2834 goto done;
2835 }
2836 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2837 ret = overwrite_item(trans, log, dst_path,
2838 path->nodes[0], path->slots[0],
2839 &tmp);
2840 if (ret)
2841 err = ret;
2842 else
2843 last_offset = tmp.offset;
2844 goto done;
2845 }
2846 }
2847 done:
2848 btrfs_release_path(path);
2849 btrfs_release_path(dst_path);
2850
2851 if (err == 0) {
2852 *last_offset_ret = last_offset;
2853 /*
2854 * insert the log range keys to indicate where the log
2855 * is valid
2856 */
2857 ret = insert_dir_log_key(trans, log, path, key_type,
2858 ino, first_offset, last_offset);
2859 if (ret)
2860 err = ret;
2861 }
2862 return err;
2863 }
2864
2865 /*
2866 * logging directories is very similar to logging inodes, We find all the items
2867 * from the current transaction and write them to the log.
2868 *
2869 * The recovery code scans the directory in the subvolume, and if it finds a
2870 * key in the range logged that is not present in the log tree, then it means
2871 * that dir entry was unlinked during the transaction.
2872 *
2873 * In order for that scan to work, we must include one key smaller than
2874 * the smallest logged by this transaction and one key larger than the largest
2875 * key logged by this transaction.
2876 */
2877 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2878 struct btrfs_root *root, struct inode *inode,
2879 struct btrfs_path *path,
2880 struct btrfs_path *dst_path)
2881 {
2882 u64 min_key;
2883 u64 max_key;
2884 int ret;
2885 int key_type = BTRFS_DIR_ITEM_KEY;
2886
2887 again:
2888 min_key = 0;
2889 max_key = 0;
2890 while (1) {
2891 ret = log_dir_items(trans, root, inode, path,
2892 dst_path, key_type, min_key,
2893 &max_key);
2894 if (ret)
2895 return ret;
2896 if (max_key == (u64)-1)
2897 break;
2898 min_key = max_key + 1;
2899 }
2900
2901 if (key_type == BTRFS_DIR_ITEM_KEY) {
2902 key_type = BTRFS_DIR_INDEX_KEY;
2903 goto again;
2904 }
2905 return 0;
2906 }
2907
2908 /*
2909 * a helper function to drop items from the log before we relog an
2910 * inode. max_key_type indicates the highest item type to remove.
2911 * This cannot be run for file data extents because it does not
2912 * free the extents they point to.
2913 */
2914 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2915 struct btrfs_root *log,
2916 struct btrfs_path *path,
2917 u64 objectid, int max_key_type)
2918 {
2919 int ret;
2920 struct btrfs_key key;
2921 struct btrfs_key found_key;
2922 int start_slot;
2923
2924 key.objectid = objectid;
2925 key.type = max_key_type;
2926 key.offset = (u64)-1;
2927
2928 while (1) {
2929 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2930 BUG_ON(ret == 0);
2931 if (ret < 0)
2932 break;
2933
2934 if (path->slots[0] == 0)
2935 break;
2936
2937 path->slots[0]--;
2938 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2939 path->slots[0]);
2940
2941 if (found_key.objectid != objectid)
2942 break;
2943
2944 found_key.offset = 0;
2945 found_key.type = 0;
2946 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
2947 &start_slot);
2948
2949 ret = btrfs_del_items(trans, log, path, start_slot,
2950 path->slots[0] - start_slot + 1);
2951 /*
2952 * If start slot isn't 0 then we don't need to re-search, we've
2953 * found the last guy with the objectid in this tree.
2954 */
2955 if (ret || start_slot != 0)
2956 break;
2957 btrfs_release_path(path);
2958 }
2959 btrfs_release_path(path);
2960 if (ret > 0)
2961 ret = 0;
2962 return ret;
2963 }
2964
2965 static void fill_inode_item(struct btrfs_trans_handle *trans,
2966 struct extent_buffer *leaf,
2967 struct btrfs_inode_item *item,
2968 struct inode *inode, int log_inode_only)
2969 {
2970 struct btrfs_map_token token;
2971
2972 btrfs_init_map_token(&token);
2973
2974 if (log_inode_only) {
2975 /* set the generation to zero so the recover code
2976 * can tell the difference between an logging
2977 * just to say 'this inode exists' and a logging
2978 * to say 'update this inode with these values'
2979 */
2980 btrfs_set_token_inode_generation(leaf, item, 0, &token);
2981 btrfs_set_token_inode_size(leaf, item, 0, &token);
2982 } else {
2983 btrfs_set_token_inode_generation(leaf, item,
2984 BTRFS_I(inode)->generation,
2985 &token);
2986 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
2987 }
2988
2989 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
2990 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
2991 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
2992 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
2993
2994 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
2995 inode->i_atime.tv_sec, &token);
2996 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
2997 inode->i_atime.tv_nsec, &token);
2998
2999 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3000 inode->i_mtime.tv_sec, &token);
3001 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3002 inode->i_mtime.tv_nsec, &token);
3003
3004 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3005 inode->i_ctime.tv_sec, &token);
3006 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3007 inode->i_ctime.tv_nsec, &token);
3008
3009 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3010 &token);
3011
3012 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3013 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3014 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3015 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3016 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3017 }
3018
3019 static int log_inode_item(struct btrfs_trans_handle *trans,
3020 struct btrfs_root *log, struct btrfs_path *path,
3021 struct inode *inode)
3022 {
3023 struct btrfs_inode_item *inode_item;
3024 struct btrfs_key key;
3025 int ret;
3026
3027 memcpy(&key, &BTRFS_I(inode)->location, sizeof(key));
3028 ret = btrfs_insert_empty_item(trans, log, path, &key,
3029 sizeof(*inode_item));
3030 if (ret && ret != -EEXIST)
3031 return ret;
3032 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3033 struct btrfs_inode_item);
3034 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3035 btrfs_release_path(path);
3036 return 0;
3037 }
3038
3039 static noinline int copy_items(struct btrfs_trans_handle *trans,
3040 struct inode *inode,
3041 struct btrfs_path *dst_path,
3042 struct extent_buffer *src,
3043 int start_slot, int nr, int inode_only)
3044 {
3045 unsigned long src_offset;
3046 unsigned long dst_offset;
3047 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3048 struct btrfs_file_extent_item *extent;
3049 struct btrfs_inode_item *inode_item;
3050 int ret;
3051 struct btrfs_key *ins_keys;
3052 u32 *ins_sizes;
3053 char *ins_data;
3054 int i;
3055 struct list_head ordered_sums;
3056 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3057
3058 INIT_LIST_HEAD(&ordered_sums);
3059
3060 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3061 nr * sizeof(u32), GFP_NOFS);
3062 if (!ins_data)
3063 return -ENOMEM;
3064
3065 ins_sizes = (u32 *)ins_data;
3066 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3067
3068 for (i = 0; i < nr; i++) {
3069 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3070 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3071 }
3072 ret = btrfs_insert_empty_items(trans, log, dst_path,
3073 ins_keys, ins_sizes, nr);
3074 if (ret) {
3075 kfree(ins_data);
3076 return ret;
3077 }
3078
3079 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3080 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3081 dst_path->slots[0]);
3082
3083 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3084
3085 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3086 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3087 dst_path->slots[0],
3088 struct btrfs_inode_item);
3089 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3090 inode, inode_only == LOG_INODE_EXISTS);
3091 } else {
3092 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3093 src_offset, ins_sizes[i]);
3094 }
3095
3096 /* take a reference on file data extents so that truncates
3097 * or deletes of this inode don't have to relog the inode
3098 * again
3099 */
3100 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3101 !skip_csum) {
3102 int found_type;
3103 extent = btrfs_item_ptr(src, start_slot + i,
3104 struct btrfs_file_extent_item);
3105
3106 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3107 continue;
3108
3109 found_type = btrfs_file_extent_type(src, extent);
3110 if (found_type == BTRFS_FILE_EXTENT_REG) {
3111 u64 ds, dl, cs, cl;
3112 ds = btrfs_file_extent_disk_bytenr(src,
3113 extent);
3114 /* ds == 0 is a hole */
3115 if (ds == 0)
3116 continue;
3117
3118 dl = btrfs_file_extent_disk_num_bytes(src,
3119 extent);
3120 cs = btrfs_file_extent_offset(src, extent);
3121 cl = btrfs_file_extent_num_bytes(src,
3122 extent);
3123 if (btrfs_file_extent_compression(src,
3124 extent)) {
3125 cs = 0;
3126 cl = dl;
3127 }
3128
3129 ret = btrfs_lookup_csums_range(
3130 log->fs_info->csum_root,
3131 ds + cs, ds + cs + cl - 1,
3132 &ordered_sums, 0);
3133 BUG_ON(ret);
3134 }
3135 }
3136 }
3137
3138 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3139 btrfs_release_path(dst_path);
3140 kfree(ins_data);
3141
3142 /*
3143 * we have to do this after the loop above to avoid changing the
3144 * log tree while trying to change the log tree.
3145 */
3146 ret = 0;
3147 while (!list_empty(&ordered_sums)) {
3148 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3149 struct btrfs_ordered_sum,
3150 list);
3151 if (!ret)
3152 ret = btrfs_csum_file_blocks(trans, log, sums);
3153 list_del(&sums->list);
3154 kfree(sums);
3155 }
3156 return ret;
3157 }
3158
3159 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3160 {
3161 struct extent_map *em1, *em2;
3162
3163 em1 = list_entry(a, struct extent_map, list);
3164 em2 = list_entry(b, struct extent_map, list);
3165
3166 if (em1->start < em2->start)
3167 return -1;
3168 else if (em1->start > em2->start)
3169 return 1;
3170 return 0;
3171 }
3172
3173 static int drop_adjacent_extents(struct btrfs_trans_handle *trans,
3174 struct btrfs_root *root, struct inode *inode,
3175 struct extent_map *em,
3176 struct btrfs_path *path)
3177 {
3178 struct btrfs_file_extent_item *fi;
3179 struct extent_buffer *leaf;
3180 struct btrfs_key key, new_key;
3181 struct btrfs_map_token token;
3182 u64 extent_end;
3183 u64 extent_offset = 0;
3184 int extent_type;
3185 int del_slot = 0;
3186 int del_nr = 0;
3187 int ret = 0;
3188
3189 while (1) {
3190 btrfs_init_map_token(&token);
3191 leaf = path->nodes[0];
3192 path->slots[0]++;
3193 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3194 if (del_nr) {
3195 ret = btrfs_del_items(trans, root, path,
3196 del_slot, del_nr);
3197 if (ret)
3198 return ret;
3199 del_nr = 0;
3200 }
3201
3202 ret = btrfs_next_leaf_write(trans, root, path, 1);
3203 if (ret < 0)
3204 return ret;
3205 if (ret > 0)
3206 return 0;
3207 leaf = path->nodes[0];
3208 }
3209
3210 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3211 if (key.objectid != btrfs_ino(inode) ||
3212 key.type != BTRFS_EXTENT_DATA_KEY ||
3213 key.offset >= em->start + em->len)
3214 break;
3215
3216 fi = btrfs_item_ptr(leaf, path->slots[0],
3217 struct btrfs_file_extent_item);
3218 extent_type = btrfs_token_file_extent_type(leaf, fi, &token);
3219 if (extent_type == BTRFS_FILE_EXTENT_REG ||
3220 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3221 extent_offset = btrfs_token_file_extent_offset(leaf,
3222 fi, &token);
3223 extent_end = key.offset +
3224 btrfs_token_file_extent_num_bytes(leaf, fi,
3225 &token);
3226 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3227 extent_end = key.offset +
3228 btrfs_file_extent_inline_len(leaf, fi);
3229 } else {
3230 BUG();
3231 }
3232
3233 if (extent_end <= em->len + em->start) {
3234 if (!del_nr) {
3235 del_slot = path->slots[0];
3236 }
3237 del_nr++;
3238 continue;
3239 }
3240
3241 /*
3242 * Ok so we'll ignore previous items if we log a new extent,
3243 * which can lead to overlapping extents, so if we have an
3244 * existing extent we want to adjust we _have_ to check the next
3245 * guy to make sure we even need this extent anymore, this keeps
3246 * us from panicing in set_item_key_safe.
3247 */
3248 if (path->slots[0] < btrfs_header_nritems(leaf) - 1) {
3249 struct btrfs_key tmp_key;
3250
3251 btrfs_item_key_to_cpu(leaf, &tmp_key,
3252 path->slots[0] + 1);
3253 if (tmp_key.objectid == btrfs_ino(inode) &&
3254 tmp_key.type == BTRFS_EXTENT_DATA_KEY &&
3255 tmp_key.offset <= em->start + em->len) {
3256 if (!del_nr)
3257 del_slot = path->slots[0];
3258 del_nr++;
3259 continue;
3260 }
3261 }
3262
3263 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
3264 memcpy(&new_key, &key, sizeof(new_key));
3265 new_key.offset = em->start + em->len;
3266 btrfs_set_item_key_safe(trans, root, path, &new_key);
3267 extent_offset += em->start + em->len - key.offset;
3268 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset,
3269 &token);
3270 btrfs_set_token_file_extent_num_bytes(leaf, fi, extent_end -
3271 (em->start + em->len),
3272 &token);
3273 btrfs_mark_buffer_dirty(leaf);
3274 }
3275
3276 if (del_nr)
3277 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
3278
3279 return ret;
3280 }
3281
3282 static int log_one_extent(struct btrfs_trans_handle *trans,
3283 struct inode *inode, struct btrfs_root *root,
3284 struct extent_map *em, struct btrfs_path *path)
3285 {
3286 struct btrfs_root *log = root->log_root;
3287 struct btrfs_file_extent_item *fi;
3288 struct extent_buffer *leaf;
3289 struct btrfs_ordered_extent *ordered;
3290 struct list_head ordered_sums;
3291 struct btrfs_map_token token;
3292 struct btrfs_key key;
3293 u64 mod_start = em->mod_start;
3294 u64 mod_len = em->mod_len;
3295 u64 csum_offset;
3296 u64 csum_len;
3297 u64 extent_offset = em->start - em->orig_start;
3298 u64 block_len;
3299 int ret;
3300 int index = log->log_transid % 2;
3301 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3302
3303 insert:
3304 INIT_LIST_HEAD(&ordered_sums);
3305 btrfs_init_map_token(&token);
3306 key.objectid = btrfs_ino(inode);
3307 key.type = BTRFS_EXTENT_DATA_KEY;
3308 key.offset = em->start;
3309 path->really_keep_locks = 1;
3310
3311 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
3312 if (ret && ret != -EEXIST) {
3313 path->really_keep_locks = 0;
3314 return ret;
3315 }
3316 leaf = path->nodes[0];
3317 fi = btrfs_item_ptr(leaf, path->slots[0],
3318 struct btrfs_file_extent_item);
3319
3320 /*
3321 * If we are overwriting an inline extent with a real one then we need
3322 * to just delete the inline extent as it may not be large enough to
3323 * have the entire file_extent_item.
3324 */
3325 if (ret && btrfs_token_file_extent_type(leaf, fi, &token) ==
3326 BTRFS_FILE_EXTENT_INLINE) {
3327 ret = btrfs_del_item(trans, log, path);
3328 btrfs_release_path(path);
3329 if (ret) {
3330 path->really_keep_locks = 0;
3331 return ret;
3332 }
3333 goto insert;
3334 }
3335
3336 btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3337 &token);
3338 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3339 skip_csum = true;
3340 btrfs_set_token_file_extent_type(leaf, fi,
3341 BTRFS_FILE_EXTENT_PREALLOC,
3342 &token);
3343 } else {
3344 btrfs_set_token_file_extent_type(leaf, fi,
3345 BTRFS_FILE_EXTENT_REG,
3346 &token);
3347 if (em->block_start == 0)
3348 skip_csum = true;
3349 }
3350
3351 block_len = max(em->block_len, em->orig_block_len);
3352 if (em->compress_type != BTRFS_COMPRESS_NONE) {
3353 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3354 em->block_start,
3355 &token);
3356 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3357 &token);
3358 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3359 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3360 em->block_start -
3361 extent_offset, &token);
3362 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3363 &token);
3364 } else {
3365 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3366 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3367 &token);
3368 }
3369
3370 btrfs_set_token_file_extent_offset(leaf, fi,
3371 em->start - em->orig_start,
3372 &token);
3373 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3374 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->len, &token);
3375 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3376 &token);
3377 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3378 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3379 btrfs_mark_buffer_dirty(leaf);
3380
3381 /*
3382 * Have to check the extent to the right of us to make sure it doesn't
3383 * fall in our current range. We're ok if the previous extent is in our
3384 * range since the recovery stuff will run us in key order and thus just
3385 * drop the part we overwrote.
3386 */
3387 ret = drop_adjacent_extents(trans, log, inode, em, path);
3388 btrfs_release_path(path);
3389 path->really_keep_locks = 0;
3390 if (ret) {
3391 return ret;
3392 }
3393
3394 if (skip_csum)
3395 return 0;
3396
3397 if (em->compress_type) {
3398 csum_offset = 0;
3399 csum_len = block_len;
3400 }
3401
3402 /*
3403 * First check and see if our csums are on our outstanding ordered
3404 * extents.
3405 */
3406 again:
3407 spin_lock_irq(&log->log_extents_lock[index]);
3408 list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3409 struct btrfs_ordered_sum *sum;
3410
3411 if (!mod_len)
3412 break;
3413
3414 if (ordered->inode != inode)
3415 continue;
3416
3417 if (ordered->file_offset + ordered->len <= mod_start ||
3418 mod_start + mod_len <= ordered->file_offset)
3419 continue;
3420
3421 /*
3422 * We are going to copy all the csums on this ordered extent, so
3423 * go ahead and adjust mod_start and mod_len in case this
3424 * ordered extent has already been logged.
3425 */
3426 if (ordered->file_offset > mod_start) {
3427 if (ordered->file_offset + ordered->len >=
3428 mod_start + mod_len)
3429 mod_len = ordered->file_offset - mod_start;
3430 /*
3431 * If we have this case
3432 *
3433 * |--------- logged extent ---------|
3434 * |----- ordered extent ----|
3435 *
3436 * Just don't mess with mod_start and mod_len, we'll
3437 * just end up logging more csums than we need and it
3438 * will be ok.
3439 */
3440 } else {
3441 if (ordered->file_offset + ordered->len <
3442 mod_start + mod_len) {
3443 mod_len = (mod_start + mod_len) -
3444 (ordered->file_offset + ordered->len);
3445 mod_start = ordered->file_offset +
3446 ordered->len;
3447 } else {
3448 mod_len = 0;
3449 }
3450 }
3451
3452 /*
3453 * To keep us from looping for the above case of an ordered
3454 * extent that falls inside of the logged extent.
3455 */
3456 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3457 &ordered->flags))
3458 continue;
3459 atomic_inc(&ordered->refs);
3460 spin_unlock_irq(&log->log_extents_lock[index]);
3461 /*
3462 * we've dropped the lock, we must either break or
3463 * start over after this.
3464 */
3465
3466 wait_event(ordered->wait, ordered->csum_bytes_left == 0);
3467
3468 list_for_each_entry(sum, &ordered->list, list) {
3469 ret = btrfs_csum_file_blocks(trans, log, sum);
3470 if (ret) {
3471 btrfs_put_ordered_extent(ordered);
3472 goto unlocked;
3473 }
3474 }
3475 btrfs_put_ordered_extent(ordered);
3476 goto again;
3477
3478 }
3479 spin_unlock_irq(&log->log_extents_lock[index]);
3480 unlocked:
3481
3482 if (!mod_len || ret)
3483 return ret;
3484
3485 csum_offset = mod_start - em->start;
3486 csum_len = mod_len;
3487
3488 /* block start is already adjusted for the file extent offset. */
3489 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3490 em->block_start + csum_offset,
3491 em->block_start + csum_offset +
3492 csum_len - 1, &ordered_sums, 0);
3493 if (ret)
3494 return ret;
3495
3496 while (!list_empty(&ordered_sums)) {
3497 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3498 struct btrfs_ordered_sum,
3499 list);
3500 if (!ret)
3501 ret = btrfs_csum_file_blocks(trans, log, sums);
3502 list_del(&sums->list);
3503 kfree(sums);
3504 }
3505
3506 return ret;
3507 }
3508
3509 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3510 struct btrfs_root *root,
3511 struct inode *inode,
3512 struct btrfs_path *path)
3513 {
3514 struct extent_map *em, *n;
3515 struct list_head extents;
3516 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3517 u64 test_gen;
3518 int ret = 0;
3519 int num = 0;
3520
3521 INIT_LIST_HEAD(&extents);
3522
3523 write_lock(&tree->lock);
3524 test_gen = root->fs_info->last_trans_committed;
3525
3526 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3527 list_del_init(&em->list);
3528
3529 /*
3530 * Just an arbitrary number, this can be really CPU intensive
3531 * once we start getting a lot of extents, and really once we
3532 * have a bunch of extents we just want to commit since it will
3533 * be faster.
3534 */
3535 if (++num > 32768) {
3536 list_del_init(&tree->modified_extents);
3537 ret = -EFBIG;
3538 goto process;
3539 }
3540
3541 if (em->generation <= test_gen)
3542 continue;
3543 /* Need a ref to keep it from getting evicted from cache */
3544 atomic_inc(&em->refs);
3545 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3546 list_add_tail(&em->list, &extents);
3547 num++;
3548 }
3549
3550 list_sort(NULL, &extents, extent_cmp);
3551
3552 process:
3553 while (!list_empty(&extents)) {
3554 em = list_entry(extents.next, struct extent_map, list);
3555
3556 list_del_init(&em->list);
3557
3558 /*
3559 * If we had an error we just need to delete everybody from our
3560 * private list.
3561 */
3562 if (ret) {
3563 clear_em_logging(tree, em);
3564 free_extent_map(em);
3565 continue;
3566 }
3567
3568 write_unlock(&tree->lock);
3569
3570 ret = log_one_extent(trans, inode, root, em, path);
3571 write_lock(&tree->lock);
3572 clear_em_logging(tree, em);
3573 free_extent_map(em);
3574 }
3575 WARN_ON(!list_empty(&extents));
3576 write_unlock(&tree->lock);
3577
3578 btrfs_release_path(path);
3579 return ret;
3580 }
3581
3582 /* log a single inode in the tree log.
3583 * At least one parent directory for this inode must exist in the tree
3584 * or be logged already.
3585 *
3586 * Any items from this inode changed by the current transaction are copied
3587 * to the log tree. An extra reference is taken on any extents in this
3588 * file, allowing us to avoid a whole pile of corner cases around logging
3589 * blocks that have been removed from the tree.
3590 *
3591 * See LOG_INODE_ALL and related defines for a description of what inode_only
3592 * does.
3593 *
3594 * This handles both files and directories.
3595 */
3596 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3597 struct btrfs_root *root, struct inode *inode,
3598 int inode_only)
3599 {
3600 struct btrfs_path *path;
3601 struct btrfs_path *dst_path;
3602 struct btrfs_key min_key;
3603 struct btrfs_key max_key;
3604 struct btrfs_root *log = root->log_root;
3605 struct extent_buffer *src = NULL;
3606 int err = 0;
3607 int ret;
3608 int nritems;
3609 int ins_start_slot = 0;
3610 int ins_nr;
3611 bool fast_search = false;
3612 u64 ino = btrfs_ino(inode);
3613
3614 log = root->log_root;
3615
3616 path = btrfs_alloc_path();
3617 if (!path)
3618 return -ENOMEM;
3619 dst_path = btrfs_alloc_path();
3620 if (!dst_path) {
3621 btrfs_free_path(path);
3622 return -ENOMEM;
3623 }
3624
3625 min_key.objectid = ino;
3626 min_key.type = BTRFS_INODE_ITEM_KEY;
3627 min_key.offset = 0;
3628
3629 max_key.objectid = ino;
3630
3631
3632 /* today the code can only do partial logging of directories */
3633 if (S_ISDIR(inode->i_mode) ||
3634 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3635 &BTRFS_I(inode)->runtime_flags) &&
3636 inode_only == LOG_INODE_EXISTS))
3637 max_key.type = BTRFS_XATTR_ITEM_KEY;
3638 else
3639 max_key.type = (u8)-1;
3640 max_key.offset = (u64)-1;
3641
3642 /* Only run delayed items if we are a dir or a new file */
3643 if (S_ISDIR(inode->i_mode) ||
3644 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3645 ret = btrfs_commit_inode_delayed_items(trans, inode);
3646 if (ret) {
3647 btrfs_free_path(path);
3648 btrfs_free_path(dst_path);
3649 return ret;
3650 }
3651 }
3652
3653 mutex_lock(&BTRFS_I(inode)->log_mutex);
3654
3655 btrfs_get_logged_extents(log, inode);
3656
3657 /*
3658 * a brute force approach to making sure we get the most uptodate
3659 * copies of everything.
3660 */
3661 if (S_ISDIR(inode->i_mode)) {
3662 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3663
3664 if (inode_only == LOG_INODE_EXISTS)
3665 max_key_type = BTRFS_XATTR_ITEM_KEY;
3666 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3667 } else {
3668 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3669 &BTRFS_I(inode)->runtime_flags)) {
3670 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3671 &BTRFS_I(inode)->runtime_flags);
3672 ret = btrfs_truncate_inode_items(trans, log,
3673 inode, 0, 0);
3674 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3675 &BTRFS_I(inode)->runtime_flags)) {
3676 if (inode_only == LOG_INODE_ALL)
3677 fast_search = true;
3678 max_key.type = BTRFS_XATTR_ITEM_KEY;
3679 ret = drop_objectid_items(trans, log, path, ino,
3680 max_key.type);
3681 } else {
3682 if (inode_only == LOG_INODE_ALL)
3683 fast_search = true;
3684 ret = log_inode_item(trans, log, dst_path, inode);
3685 if (ret) {
3686 err = ret;
3687 goto out_unlock;
3688 }
3689 goto log_extents;
3690 }
3691
3692 }
3693 if (ret) {
3694 err = ret;
3695 goto out_unlock;
3696 }
3697 path->keep_locks = 1;
3698
3699 while (1) {
3700 ins_nr = 0;
3701 ret = btrfs_search_forward(root, &min_key, &max_key,
3702 path, trans->transid);
3703 if (ret != 0)
3704 break;
3705 again:
3706 /* note, ins_nr might be > 0 here, cleanup outside the loop */
3707 if (min_key.objectid != ino)
3708 break;
3709 if (min_key.type > max_key.type)
3710 break;
3711
3712 src = path->nodes[0];
3713 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3714 ins_nr++;
3715 goto next_slot;
3716 } else if (!ins_nr) {
3717 ins_start_slot = path->slots[0];
3718 ins_nr = 1;
3719 goto next_slot;
3720 }
3721
3722 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3723 ins_nr, inode_only);
3724 if (ret) {
3725 err = ret;
3726 goto out_unlock;
3727 }
3728 ins_nr = 1;
3729 ins_start_slot = path->slots[0];
3730 next_slot:
3731
3732 nritems = btrfs_header_nritems(path->nodes[0]);
3733 path->slots[0]++;
3734 if (path->slots[0] < nritems) {
3735 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3736 path->slots[0]);
3737 goto again;
3738 }
3739 if (ins_nr) {
3740 ret = copy_items(trans, inode, dst_path, src,
3741 ins_start_slot,
3742 ins_nr, inode_only);
3743 if (ret) {
3744 err = ret;
3745 goto out_unlock;
3746 }
3747 ins_nr = 0;
3748 }
3749 btrfs_release_path(path);
3750
3751 if (min_key.offset < (u64)-1)
3752 min_key.offset++;
3753 else if (min_key.type < (u8)-1)
3754 min_key.type++;
3755 else if (min_key.objectid < (u64)-1)
3756 min_key.objectid++;
3757 else
3758 break;
3759 }
3760 if (ins_nr) {
3761 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3762 ins_nr, inode_only);
3763 if (ret) {
3764 err = ret;
3765 goto out_unlock;
3766 }
3767 ins_nr = 0;
3768 }
3769
3770 log_extents:
3771 if (fast_search) {
3772 btrfs_release_path(dst_path);
3773 ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
3774 if (ret) {
3775 err = ret;
3776 goto out_unlock;
3777 }
3778 } else {
3779 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3780 struct extent_map *em, *n;
3781
3782 write_lock(&tree->lock);
3783 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3784 list_del_init(&em->list);
3785 write_unlock(&tree->lock);
3786 }
3787
3788 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3789 btrfs_release_path(path);
3790 btrfs_release_path(dst_path);
3791 ret = log_directory_changes(trans, root, inode, path, dst_path);
3792 if (ret) {
3793 err = ret;
3794 goto out_unlock;
3795 }
3796 }
3797 BTRFS_I(inode)->logged_trans = trans->transid;
3798 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3799 out_unlock:
3800 if (err)
3801 btrfs_free_logged_extents(log, log->log_transid);
3802 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3803
3804 btrfs_free_path(path);
3805 btrfs_free_path(dst_path);
3806 return err;
3807 }
3808
3809 /*
3810 * follow the dentry parent pointers up the chain and see if any
3811 * of the directories in it require a full commit before they can
3812 * be logged. Returns zero if nothing special needs to be done or 1 if
3813 * a full commit is required.
3814 */
3815 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3816 struct inode *inode,
3817 struct dentry *parent,
3818 struct super_block *sb,
3819 u64 last_committed)
3820 {
3821 int ret = 0;
3822 struct btrfs_root *root;
3823 struct dentry *old_parent = NULL;
3824
3825 /*
3826 * for regular files, if its inode is already on disk, we don't
3827 * have to worry about the parents at all. This is because
3828 * we can use the last_unlink_trans field to record renames
3829 * and other fun in this file.
3830 */
3831 if (S_ISREG(inode->i_mode) &&
3832 BTRFS_I(inode)->generation <= last_committed &&
3833 BTRFS_I(inode)->last_unlink_trans <= last_committed)
3834 goto out;
3835
3836 if (!S_ISDIR(inode->i_mode)) {
3837 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3838 goto out;
3839 inode = parent->d_inode;
3840 }
3841
3842 while (1) {
3843 BTRFS_I(inode)->logged_trans = trans->transid;
3844 smp_mb();
3845
3846 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3847 root = BTRFS_I(inode)->root;
3848
3849 /*
3850 * make sure any commits to the log are forced
3851 * to be full commits
3852 */
3853 root->fs_info->last_trans_log_full_commit =
3854 trans->transid;
3855 ret = 1;
3856 break;
3857 }
3858
3859 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3860 break;
3861
3862 if (IS_ROOT(parent))
3863 break;
3864
3865 parent = dget_parent(parent);
3866 dput(old_parent);
3867 old_parent = parent;
3868 inode = parent->d_inode;
3869
3870 }
3871 dput(old_parent);
3872 out:
3873 return ret;
3874 }
3875
3876 /*
3877 * helper function around btrfs_log_inode to make sure newly created
3878 * parent directories also end up in the log. A minimal inode and backref
3879 * only logging is done of any parent directories that are older than
3880 * the last committed transaction
3881 */
3882 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3883 struct btrfs_root *root, struct inode *inode,
3884 struct dentry *parent, int exists_only)
3885 {
3886 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3887 struct super_block *sb;
3888 struct dentry *old_parent = NULL;
3889 int ret = 0;
3890 u64 last_committed = root->fs_info->last_trans_committed;
3891
3892 sb = inode->i_sb;
3893
3894 if (btrfs_test_opt(root, NOTREELOG)) {
3895 ret = 1;
3896 goto end_no_trans;
3897 }
3898
3899 if (root->fs_info->last_trans_log_full_commit >
3900 root->fs_info->last_trans_committed) {
3901 ret = 1;
3902 goto end_no_trans;
3903 }
3904
3905 if (root != BTRFS_I(inode)->root ||
3906 btrfs_root_refs(&root->root_item) == 0) {
3907 ret = 1;
3908 goto end_no_trans;
3909 }
3910
3911 ret = check_parent_dirs_for_sync(trans, inode, parent,
3912 sb, last_committed);
3913 if (ret)
3914 goto end_no_trans;
3915
3916 if (btrfs_inode_in_log(inode, trans->transid)) {
3917 ret = BTRFS_NO_LOG_SYNC;
3918 goto end_no_trans;
3919 }
3920
3921 ret = start_log_trans(trans, root);
3922 if (ret)
3923 goto end_trans;
3924
3925 ret = btrfs_log_inode(trans, root, inode, inode_only);
3926 if (ret)
3927 goto end_trans;
3928
3929 /*
3930 * for regular files, if its inode is already on disk, we don't
3931 * have to worry about the parents at all. This is because
3932 * we can use the last_unlink_trans field to record renames
3933 * and other fun in this file.
3934 */
3935 if (S_ISREG(inode->i_mode) &&
3936 BTRFS_I(inode)->generation <= last_committed &&
3937 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3938 ret = 0;
3939 goto end_trans;
3940 }
3941
3942 inode_only = LOG_INODE_EXISTS;
3943 while (1) {
3944 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3945 break;
3946
3947 inode = parent->d_inode;
3948 if (root != BTRFS_I(inode)->root)
3949 break;
3950
3951 if (BTRFS_I(inode)->generation >
3952 root->fs_info->last_trans_committed) {
3953 ret = btrfs_log_inode(trans, root, inode, inode_only);
3954 if (ret)
3955 goto end_trans;
3956 }
3957 if (IS_ROOT(parent))
3958 break;
3959
3960 parent = dget_parent(parent);
3961 dput(old_parent);
3962 old_parent = parent;
3963 }
3964 ret = 0;
3965 end_trans:
3966 dput(old_parent);
3967 if (ret < 0) {
3968 root->fs_info->last_trans_log_full_commit = trans->transid;
3969 ret = 1;
3970 }
3971 btrfs_end_log_trans(root);
3972 end_no_trans:
3973 return ret;
3974 }
3975
3976 /*
3977 * it is not safe to log dentry if the chunk root has added new
3978 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3979 * If this returns 1, you must commit the transaction to safely get your
3980 * data on disk.
3981 */
3982 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3983 struct btrfs_root *root, struct dentry *dentry)
3984 {
3985 struct dentry *parent = dget_parent(dentry);
3986 int ret;
3987
3988 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3989 dput(parent);
3990
3991 return ret;
3992 }
3993
3994 /*
3995 * should be called during mount to recover any replay any log trees
3996 * from the FS
3997 */
3998 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3999 {
4000 int ret;
4001 struct btrfs_path *path;
4002 struct btrfs_trans_handle *trans;
4003 struct btrfs_key key;
4004 struct btrfs_key found_key;
4005 struct btrfs_key tmp_key;
4006 struct btrfs_root *log;
4007 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4008 struct walk_control wc = {
4009 .process_func = process_one_buffer,
4010 .stage = 0,
4011 };
4012
4013 path = btrfs_alloc_path();
4014 if (!path)
4015 return -ENOMEM;
4016
4017 fs_info->log_root_recovering = 1;
4018
4019 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4020 if (IS_ERR(trans)) {
4021 ret = PTR_ERR(trans);
4022 goto error;
4023 }
4024
4025 wc.trans = trans;
4026 wc.pin = 1;
4027
4028 ret = walk_log_tree(trans, log_root_tree, &wc);
4029 if (ret) {
4030 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4031 "recovering log root tree.");
4032 goto error;
4033 }
4034
4035 again:
4036 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4037 key.offset = (u64)-1;
4038 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4039
4040 while (1) {
4041 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4042
4043 if (ret < 0) {
4044 btrfs_error(fs_info, ret,
4045 "Couldn't find tree log root.");
4046 goto error;
4047 }
4048 if (ret > 0) {
4049 if (path->slots[0] == 0)
4050 break;
4051 path->slots[0]--;
4052 }
4053 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4054 path->slots[0]);
4055 btrfs_release_path(path);
4056 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4057 break;
4058
4059 log = btrfs_read_fs_root_no_radix(log_root_tree,
4060 &found_key);
4061 if (IS_ERR(log)) {
4062 ret = PTR_ERR(log);
4063 btrfs_error(fs_info, ret,
4064 "Couldn't read tree log root.");
4065 goto error;
4066 }
4067
4068 tmp_key.objectid = found_key.offset;
4069 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4070 tmp_key.offset = (u64)-1;
4071
4072 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4073 if (IS_ERR(wc.replay_dest)) {
4074 ret = PTR_ERR(wc.replay_dest);
4075 btrfs_error(fs_info, ret, "Couldn't read target root "
4076 "for tree log recovery.");
4077 goto error;
4078 }
4079
4080 wc.replay_dest->log_root = log;
4081 btrfs_record_root_in_trans(trans, wc.replay_dest);
4082 ret = walk_log_tree(trans, log, &wc);
4083 BUG_ON(ret);
4084
4085 if (wc.stage == LOG_WALK_REPLAY_ALL) {
4086 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4087 path);
4088 BUG_ON(ret);
4089 }
4090
4091 key.offset = found_key.offset - 1;
4092 wc.replay_dest->log_root = NULL;
4093 free_extent_buffer(log->node);
4094 free_extent_buffer(log->commit_root);
4095 kfree(log);
4096
4097 if (found_key.offset == 0)
4098 break;
4099 }
4100 btrfs_release_path(path);
4101
4102 /* step one is to pin it all, step two is to replay just inodes */
4103 if (wc.pin) {
4104 wc.pin = 0;
4105 wc.process_func = replay_one_buffer;
4106 wc.stage = LOG_WALK_REPLAY_INODES;
4107 goto again;
4108 }
4109 /* step three is to replay everything */
4110 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4111 wc.stage++;
4112 goto again;
4113 }
4114
4115 btrfs_free_path(path);
4116
4117 free_extent_buffer(log_root_tree->node);
4118 log_root_tree->log_root = NULL;
4119 fs_info->log_root_recovering = 0;
4120
4121 /* step 4: commit the transaction, which also unpins the blocks */
4122 btrfs_commit_transaction(trans, fs_info->tree_root);
4123
4124 kfree(log_root_tree);
4125 return 0;
4126
4127 error:
4128 btrfs_free_path(path);
4129 return ret;
4130 }
4131
4132 /*
4133 * there are some corner cases where we want to force a full
4134 * commit instead of allowing a directory to be logged.
4135 *
4136 * They revolve around files there were unlinked from the directory, and
4137 * this function updates the parent directory so that a full commit is
4138 * properly done if it is fsync'd later after the unlinks are done.
4139 */
4140 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4141 struct inode *dir, struct inode *inode,
4142 int for_rename)
4143 {
4144 /*
4145 * when we're logging a file, if it hasn't been renamed
4146 * or unlinked, and its inode is fully committed on disk,
4147 * we don't have to worry about walking up the directory chain
4148 * to log its parents.
4149 *
4150 * So, we use the last_unlink_trans field to put this transid
4151 * into the file. When the file is logged we check it and
4152 * don't log the parents if the file is fully on disk.
4153 */
4154 if (S_ISREG(inode->i_mode))
4155 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4156
4157 /*
4158 * if this directory was already logged any new
4159 * names for this file/dir will get recorded
4160 */
4161 smp_mb();
4162 if (BTRFS_I(dir)->logged_trans == trans->transid)
4163 return;
4164
4165 /*
4166 * if the inode we're about to unlink was logged,
4167 * the log will be properly updated for any new names
4168 */
4169 if (BTRFS_I(inode)->logged_trans == trans->transid)
4170 return;
4171
4172 /*
4173 * when renaming files across directories, if the directory
4174 * there we're unlinking from gets fsync'd later on, there's
4175 * no way to find the destination directory later and fsync it
4176 * properly. So, we have to be conservative and force commits
4177 * so the new name gets discovered.
4178 */
4179 if (for_rename)
4180 goto record;
4181
4182 /* we can safely do the unlink without any special recording */
4183 return;
4184
4185 record:
4186 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4187 }
4188
4189 /*
4190 * Call this after adding a new name for a file and it will properly
4191 * update the log to reflect the new name.
4192 *
4193 * It will return zero if all goes well, and it will return 1 if a
4194 * full transaction commit is required.
4195 */
4196 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4197 struct inode *inode, struct inode *old_dir,
4198 struct dentry *parent)
4199 {
4200 struct btrfs_root * root = BTRFS_I(inode)->root;
4201
4202 /*
4203 * this will force the logging code to walk the dentry chain
4204 * up for the file
4205 */
4206 if (S_ISREG(inode->i_mode))
4207 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4208
4209 /*
4210 * if this inode hasn't been logged and directory we're renaming it
4211 * from hasn't been logged, we don't need to log it
4212 */
4213 if (BTRFS_I(inode)->logged_trans <=
4214 root->fs_info->last_trans_committed &&
4215 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4216 root->fs_info->last_trans_committed))
4217 return 0;
4218
4219 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4220 }
4221
This page took 0.109005 seconds and 4 git commands to generate.