Btrfs: fix fallocate deadlock on inode extent lock
[deliverable/linux.git] / fs / btrfs / tree-log.c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "locking.h"
24 #include "print-tree.h"
25 #include "compat.h"
26 #include "tree-log.h"
27
28 /* magic values for the inode_only field in btrfs_log_inode:
29 *
30 * LOG_INODE_ALL means to log everything
31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
32 * during log replay
33 */
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
36
37 /*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
80 /*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
89 #define LOG_WALK_PIN_ONLY 0
90 #define LOG_WALK_REPLAY_INODES 1
91 #define LOG_WALK_REPLAY_ALL 2
92
93 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
94 struct btrfs_root *root, struct inode *inode,
95 int inode_only);
96 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root,
98 struct btrfs_path *path, u64 objectid);
99 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
100 struct btrfs_root *root,
101 struct btrfs_root *log,
102 struct btrfs_path *path,
103 u64 dirid, int del_all);
104
105 /*
106 * tree logging is a special write ahead log used to make sure that
107 * fsyncs and O_SYNCs can happen without doing full tree commits.
108 *
109 * Full tree commits are expensive because they require commonly
110 * modified blocks to be recowed, creating many dirty pages in the
111 * extent tree an 4x-6x higher write load than ext3.
112 *
113 * Instead of doing a tree commit on every fsync, we use the
114 * key ranges and transaction ids to find items for a given file or directory
115 * that have changed in this transaction. Those items are copied into
116 * a special tree (one per subvolume root), that tree is written to disk
117 * and then the fsync is considered complete.
118 *
119 * After a crash, items are copied out of the log-tree back into the
120 * subvolume tree. Any file data extents found are recorded in the extent
121 * allocation tree, and the log-tree freed.
122 *
123 * The log tree is read three times, once to pin down all the extents it is
124 * using in ram and once, once to create all the inodes logged in the tree
125 * and once to do all the other items.
126 */
127
128 /*
129 * start a sub transaction and setup the log tree
130 * this increments the log tree writer count to make the people
131 * syncing the tree wait for us to finish
132 */
133 static int start_log_trans(struct btrfs_trans_handle *trans,
134 struct btrfs_root *root)
135 {
136 int ret;
137
138 mutex_lock(&root->log_mutex);
139 if (root->log_root) {
140 root->log_batch++;
141 atomic_inc(&root->log_writers);
142 mutex_unlock(&root->log_mutex);
143 return 0;
144 }
145 mutex_lock(&root->fs_info->tree_log_mutex);
146 if (!root->fs_info->log_root_tree) {
147 ret = btrfs_init_log_root_tree(trans, root->fs_info);
148 BUG_ON(ret);
149 }
150 if (!root->log_root) {
151 ret = btrfs_add_log_tree(trans, root);
152 BUG_ON(ret);
153 }
154 mutex_unlock(&root->fs_info->tree_log_mutex);
155 root->log_batch++;
156 atomic_inc(&root->log_writers);
157 mutex_unlock(&root->log_mutex);
158 return 0;
159 }
160
161 /*
162 * returns 0 if there was a log transaction running and we were able
163 * to join, or returns -ENOENT if there were not transactions
164 * in progress
165 */
166 static int join_running_log_trans(struct btrfs_root *root)
167 {
168 int ret = -ENOENT;
169
170 smp_mb();
171 if (!root->log_root)
172 return -ENOENT;
173
174 mutex_lock(&root->log_mutex);
175 if (root->log_root) {
176 ret = 0;
177 atomic_inc(&root->log_writers);
178 }
179 mutex_unlock(&root->log_mutex);
180 return ret;
181 }
182
183 /*
184 * This either makes the current running log transaction wait
185 * until you call btrfs_end_log_trans() or it makes any future
186 * log transactions wait until you call btrfs_end_log_trans()
187 */
188 int btrfs_pin_log_trans(struct btrfs_root *root)
189 {
190 int ret = -ENOENT;
191
192 mutex_lock(&root->log_mutex);
193 atomic_inc(&root->log_writers);
194 mutex_unlock(&root->log_mutex);
195 return ret;
196 }
197
198 /*
199 * indicate we're done making changes to the log tree
200 * and wake up anyone waiting to do a sync
201 */
202 int btrfs_end_log_trans(struct btrfs_root *root)
203 {
204 if (atomic_dec_and_test(&root->log_writers)) {
205 smp_mb();
206 if (waitqueue_active(&root->log_writer_wait))
207 wake_up(&root->log_writer_wait);
208 }
209 return 0;
210 }
211
212
213 /*
214 * the walk control struct is used to pass state down the chain when
215 * processing the log tree. The stage field tells us which part
216 * of the log tree processing we are currently doing. The others
217 * are state fields used for that specific part
218 */
219 struct walk_control {
220 /* should we free the extent on disk when done? This is used
221 * at transaction commit time while freeing a log tree
222 */
223 int free;
224
225 /* should we write out the extent buffer? This is used
226 * while flushing the log tree to disk during a sync
227 */
228 int write;
229
230 /* should we wait for the extent buffer io to finish? Also used
231 * while flushing the log tree to disk for a sync
232 */
233 int wait;
234
235 /* pin only walk, we record which extents on disk belong to the
236 * log trees
237 */
238 int pin;
239
240 /* what stage of the replay code we're currently in */
241 int stage;
242
243 /* the root we are currently replaying */
244 struct btrfs_root *replay_dest;
245
246 /* the trans handle for the current replay */
247 struct btrfs_trans_handle *trans;
248
249 /* the function that gets used to process blocks we find in the
250 * tree. Note the extent_buffer might not be up to date when it is
251 * passed in, and it must be checked or read if you need the data
252 * inside it
253 */
254 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
255 struct walk_control *wc, u64 gen);
256 };
257
258 /*
259 * process_func used to pin down extents, write them or wait on them
260 */
261 static int process_one_buffer(struct btrfs_root *log,
262 struct extent_buffer *eb,
263 struct walk_control *wc, u64 gen)
264 {
265 if (wc->pin)
266 btrfs_update_pinned_extents(log->fs_info->extent_root,
267 eb->start, eb->len, 1);
268
269 if (btrfs_buffer_uptodate(eb, gen)) {
270 if (wc->write)
271 btrfs_write_tree_block(eb);
272 if (wc->wait)
273 btrfs_wait_tree_block_writeback(eb);
274 }
275 return 0;
276 }
277
278 /*
279 * Item overwrite used by replay and tree logging. eb, slot and key all refer
280 * to the src data we are copying out.
281 *
282 * root is the tree we are copying into, and path is a scratch
283 * path for use in this function (it should be released on entry and
284 * will be released on exit).
285 *
286 * If the key is already in the destination tree the existing item is
287 * overwritten. If the existing item isn't big enough, it is extended.
288 * If it is too large, it is truncated.
289 *
290 * If the key isn't in the destination yet, a new item is inserted.
291 */
292 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
293 struct btrfs_root *root,
294 struct btrfs_path *path,
295 struct extent_buffer *eb, int slot,
296 struct btrfs_key *key)
297 {
298 int ret;
299 u32 item_size;
300 u64 saved_i_size = 0;
301 int save_old_i_size = 0;
302 unsigned long src_ptr;
303 unsigned long dst_ptr;
304 int overwrite_root = 0;
305
306 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
307 overwrite_root = 1;
308
309 item_size = btrfs_item_size_nr(eb, slot);
310 src_ptr = btrfs_item_ptr_offset(eb, slot);
311
312 /* look for the key in the destination tree */
313 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
314 if (ret == 0) {
315 char *src_copy;
316 char *dst_copy;
317 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
318 path->slots[0]);
319 if (dst_size != item_size)
320 goto insert;
321
322 if (item_size == 0) {
323 btrfs_release_path(root, path);
324 return 0;
325 }
326 dst_copy = kmalloc(item_size, GFP_NOFS);
327 src_copy = kmalloc(item_size, GFP_NOFS);
328
329 read_extent_buffer(eb, src_copy, src_ptr, item_size);
330
331 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
332 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
333 item_size);
334 ret = memcmp(dst_copy, src_copy, item_size);
335
336 kfree(dst_copy);
337 kfree(src_copy);
338 /*
339 * they have the same contents, just return, this saves
340 * us from cowing blocks in the destination tree and doing
341 * extra writes that may not have been done by a previous
342 * sync
343 */
344 if (ret == 0) {
345 btrfs_release_path(root, path);
346 return 0;
347 }
348
349 }
350 insert:
351 btrfs_release_path(root, path);
352 /* try to insert the key into the destination tree */
353 ret = btrfs_insert_empty_item(trans, root, path,
354 key, item_size);
355
356 /* make sure any existing item is the correct size */
357 if (ret == -EEXIST) {
358 u32 found_size;
359 found_size = btrfs_item_size_nr(path->nodes[0],
360 path->slots[0]);
361 if (found_size > item_size) {
362 btrfs_truncate_item(trans, root, path, item_size, 1);
363 } else if (found_size < item_size) {
364 ret = btrfs_extend_item(trans, root, path,
365 item_size - found_size);
366 BUG_ON(ret);
367 }
368 } else if (ret) {
369 BUG();
370 }
371 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
372 path->slots[0]);
373
374 /* don't overwrite an existing inode if the generation number
375 * was logged as zero. This is done when the tree logging code
376 * is just logging an inode to make sure it exists after recovery.
377 *
378 * Also, don't overwrite i_size on directories during replay.
379 * log replay inserts and removes directory items based on the
380 * state of the tree found in the subvolume, and i_size is modified
381 * as it goes
382 */
383 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
384 struct btrfs_inode_item *src_item;
385 struct btrfs_inode_item *dst_item;
386
387 src_item = (struct btrfs_inode_item *)src_ptr;
388 dst_item = (struct btrfs_inode_item *)dst_ptr;
389
390 if (btrfs_inode_generation(eb, src_item) == 0)
391 goto no_copy;
392
393 if (overwrite_root &&
394 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
395 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
396 save_old_i_size = 1;
397 saved_i_size = btrfs_inode_size(path->nodes[0],
398 dst_item);
399 }
400 }
401
402 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
403 src_ptr, item_size);
404
405 if (save_old_i_size) {
406 struct btrfs_inode_item *dst_item;
407 dst_item = (struct btrfs_inode_item *)dst_ptr;
408 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
409 }
410
411 /* make sure the generation is filled in */
412 if (key->type == BTRFS_INODE_ITEM_KEY) {
413 struct btrfs_inode_item *dst_item;
414 dst_item = (struct btrfs_inode_item *)dst_ptr;
415 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
416 btrfs_set_inode_generation(path->nodes[0], dst_item,
417 trans->transid);
418 }
419 }
420 no_copy:
421 btrfs_mark_buffer_dirty(path->nodes[0]);
422 btrfs_release_path(root, path);
423 return 0;
424 }
425
426 /*
427 * simple helper to read an inode off the disk from a given root
428 * This can only be called for subvolume roots and not for the log
429 */
430 static noinline struct inode *read_one_inode(struct btrfs_root *root,
431 u64 objectid)
432 {
433 struct inode *inode;
434 inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
435 if (inode->i_state & I_NEW) {
436 BTRFS_I(inode)->root = root;
437 BTRFS_I(inode)->location.objectid = objectid;
438 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
439 BTRFS_I(inode)->location.offset = 0;
440 btrfs_read_locked_inode(inode);
441 unlock_new_inode(inode);
442
443 }
444 if (is_bad_inode(inode)) {
445 iput(inode);
446 inode = NULL;
447 }
448 return inode;
449 }
450
451 /* replays a single extent in 'eb' at 'slot' with 'key' into the
452 * subvolume 'root'. path is released on entry and should be released
453 * on exit.
454 *
455 * extents in the log tree have not been allocated out of the extent
456 * tree yet. So, this completes the allocation, taking a reference
457 * as required if the extent already exists or creating a new extent
458 * if it isn't in the extent allocation tree yet.
459 *
460 * The extent is inserted into the file, dropping any existing extents
461 * from the file that overlap the new one.
462 */
463 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
464 struct btrfs_root *root,
465 struct btrfs_path *path,
466 struct extent_buffer *eb, int slot,
467 struct btrfs_key *key)
468 {
469 int found_type;
470 u64 mask = root->sectorsize - 1;
471 u64 extent_end;
472 u64 alloc_hint;
473 u64 start = key->offset;
474 u64 saved_nbytes;
475 struct btrfs_file_extent_item *item;
476 struct inode *inode = NULL;
477 unsigned long size;
478 int ret = 0;
479
480 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
481 found_type = btrfs_file_extent_type(eb, item);
482
483 if (found_type == BTRFS_FILE_EXTENT_REG ||
484 found_type == BTRFS_FILE_EXTENT_PREALLOC)
485 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
486 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
487 size = btrfs_file_extent_inline_len(eb, item);
488 extent_end = (start + size + mask) & ~mask;
489 } else {
490 ret = 0;
491 goto out;
492 }
493
494 inode = read_one_inode(root, key->objectid);
495 if (!inode) {
496 ret = -EIO;
497 goto out;
498 }
499
500 /*
501 * first check to see if we already have this extent in the
502 * file. This must be done before the btrfs_drop_extents run
503 * so we don't try to drop this extent.
504 */
505 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
506 start, 0);
507
508 if (ret == 0 &&
509 (found_type == BTRFS_FILE_EXTENT_REG ||
510 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
511 struct btrfs_file_extent_item cmp1;
512 struct btrfs_file_extent_item cmp2;
513 struct btrfs_file_extent_item *existing;
514 struct extent_buffer *leaf;
515
516 leaf = path->nodes[0];
517 existing = btrfs_item_ptr(leaf, path->slots[0],
518 struct btrfs_file_extent_item);
519
520 read_extent_buffer(eb, &cmp1, (unsigned long)item,
521 sizeof(cmp1));
522 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
523 sizeof(cmp2));
524
525 /*
526 * we already have a pointer to this exact extent,
527 * we don't have to do anything
528 */
529 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
530 btrfs_release_path(root, path);
531 goto out;
532 }
533 }
534 btrfs_release_path(root, path);
535
536 saved_nbytes = inode_get_bytes(inode);
537 /* drop any overlapping extents */
538 ret = btrfs_drop_extents(trans, root, inode,
539 start, extent_end, extent_end, start, &alloc_hint);
540 BUG_ON(ret);
541
542 if (found_type == BTRFS_FILE_EXTENT_REG ||
543 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
544 unsigned long dest_offset;
545 struct btrfs_key ins;
546
547 ret = btrfs_insert_empty_item(trans, root, path, key,
548 sizeof(*item));
549 BUG_ON(ret);
550 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
551 path->slots[0]);
552 copy_extent_buffer(path->nodes[0], eb, dest_offset,
553 (unsigned long)item, sizeof(*item));
554
555 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
556 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
557 ins.type = BTRFS_EXTENT_ITEM_KEY;
558
559 if (ins.objectid > 0) {
560 u64 csum_start;
561 u64 csum_end;
562 LIST_HEAD(ordered_sums);
563 /*
564 * is this extent already allocated in the extent
565 * allocation tree? If so, just add a reference
566 */
567 ret = btrfs_lookup_extent(root, ins.objectid,
568 ins.offset);
569 if (ret == 0) {
570 ret = btrfs_inc_extent_ref(trans, root,
571 ins.objectid, ins.offset,
572 path->nodes[0]->start,
573 root->root_key.objectid,
574 trans->transid, key->objectid);
575 } else {
576 /*
577 * insert the extent pointer in the extent
578 * allocation tree
579 */
580 ret = btrfs_alloc_logged_extent(trans, root,
581 path->nodes[0]->start,
582 root->root_key.objectid,
583 trans->transid, key->objectid,
584 &ins);
585 BUG_ON(ret);
586 }
587 btrfs_release_path(root, path);
588
589 if (btrfs_file_extent_compression(eb, item)) {
590 csum_start = ins.objectid;
591 csum_end = csum_start + ins.offset;
592 } else {
593 csum_start = ins.objectid +
594 btrfs_file_extent_offset(eb, item);
595 csum_end = csum_start +
596 btrfs_file_extent_num_bytes(eb, item);
597 }
598
599 ret = btrfs_lookup_csums_range(root->log_root,
600 csum_start, csum_end - 1,
601 &ordered_sums);
602 BUG_ON(ret);
603 while (!list_empty(&ordered_sums)) {
604 struct btrfs_ordered_sum *sums;
605 sums = list_entry(ordered_sums.next,
606 struct btrfs_ordered_sum,
607 list);
608 ret = btrfs_csum_file_blocks(trans,
609 root->fs_info->csum_root,
610 sums);
611 BUG_ON(ret);
612 list_del(&sums->list);
613 kfree(sums);
614 }
615 } else {
616 btrfs_release_path(root, path);
617 }
618 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
619 /* inline extents are easy, we just overwrite them */
620 ret = overwrite_item(trans, root, path, eb, slot, key);
621 BUG_ON(ret);
622 }
623
624 inode_set_bytes(inode, saved_nbytes);
625 btrfs_update_inode(trans, root, inode);
626 out:
627 if (inode)
628 iput(inode);
629 return ret;
630 }
631
632 /*
633 * when cleaning up conflicts between the directory names in the
634 * subvolume, directory names in the log and directory names in the
635 * inode back references, we may have to unlink inodes from directories.
636 *
637 * This is a helper function to do the unlink of a specific directory
638 * item
639 */
640 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
641 struct btrfs_root *root,
642 struct btrfs_path *path,
643 struct inode *dir,
644 struct btrfs_dir_item *di)
645 {
646 struct inode *inode;
647 char *name;
648 int name_len;
649 struct extent_buffer *leaf;
650 struct btrfs_key location;
651 int ret;
652
653 leaf = path->nodes[0];
654
655 btrfs_dir_item_key_to_cpu(leaf, di, &location);
656 name_len = btrfs_dir_name_len(leaf, di);
657 name = kmalloc(name_len, GFP_NOFS);
658 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
659 btrfs_release_path(root, path);
660
661 inode = read_one_inode(root, location.objectid);
662 BUG_ON(!inode);
663
664 ret = link_to_fixup_dir(trans, root, path, location.objectid);
665 BUG_ON(ret);
666
667 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
668 BUG_ON(ret);
669 kfree(name);
670
671 iput(inode);
672 return ret;
673 }
674
675 /*
676 * helper function to see if a given name and sequence number found
677 * in an inode back reference are already in a directory and correctly
678 * point to this inode
679 */
680 static noinline int inode_in_dir(struct btrfs_root *root,
681 struct btrfs_path *path,
682 u64 dirid, u64 objectid, u64 index,
683 const char *name, int name_len)
684 {
685 struct btrfs_dir_item *di;
686 struct btrfs_key location;
687 int match = 0;
688
689 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
690 index, name, name_len, 0);
691 if (di && !IS_ERR(di)) {
692 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
693 if (location.objectid != objectid)
694 goto out;
695 } else
696 goto out;
697 btrfs_release_path(root, path);
698
699 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
700 if (di && !IS_ERR(di)) {
701 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
702 if (location.objectid != objectid)
703 goto out;
704 } else
705 goto out;
706 match = 1;
707 out:
708 btrfs_release_path(root, path);
709 return match;
710 }
711
712 /*
713 * helper function to check a log tree for a named back reference in
714 * an inode. This is used to decide if a back reference that is
715 * found in the subvolume conflicts with what we find in the log.
716 *
717 * inode backreferences may have multiple refs in a single item,
718 * during replay we process one reference at a time, and we don't
719 * want to delete valid links to a file from the subvolume if that
720 * link is also in the log.
721 */
722 static noinline int backref_in_log(struct btrfs_root *log,
723 struct btrfs_key *key,
724 char *name, int namelen)
725 {
726 struct btrfs_path *path;
727 struct btrfs_inode_ref *ref;
728 unsigned long ptr;
729 unsigned long ptr_end;
730 unsigned long name_ptr;
731 int found_name_len;
732 int item_size;
733 int ret;
734 int match = 0;
735
736 path = btrfs_alloc_path();
737 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
738 if (ret != 0)
739 goto out;
740
741 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
742 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
743 ptr_end = ptr + item_size;
744 while (ptr < ptr_end) {
745 ref = (struct btrfs_inode_ref *)ptr;
746 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
747 if (found_name_len == namelen) {
748 name_ptr = (unsigned long)(ref + 1);
749 ret = memcmp_extent_buffer(path->nodes[0], name,
750 name_ptr, namelen);
751 if (ret == 0) {
752 match = 1;
753 goto out;
754 }
755 }
756 ptr = (unsigned long)(ref + 1) + found_name_len;
757 }
758 out:
759 btrfs_free_path(path);
760 return match;
761 }
762
763
764 /*
765 * replay one inode back reference item found in the log tree.
766 * eb, slot and key refer to the buffer and key found in the log tree.
767 * root is the destination we are replaying into, and path is for temp
768 * use by this function. (it should be released on return).
769 */
770 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
771 struct btrfs_root *root,
772 struct btrfs_root *log,
773 struct btrfs_path *path,
774 struct extent_buffer *eb, int slot,
775 struct btrfs_key *key)
776 {
777 struct inode *dir;
778 int ret;
779 struct btrfs_key location;
780 struct btrfs_inode_ref *ref;
781 struct btrfs_dir_item *di;
782 struct inode *inode;
783 char *name;
784 int namelen;
785 unsigned long ref_ptr;
786 unsigned long ref_end;
787
788 location.objectid = key->objectid;
789 location.type = BTRFS_INODE_ITEM_KEY;
790 location.offset = 0;
791
792 /*
793 * it is possible that we didn't log all the parent directories
794 * for a given inode. If we don't find the dir, just don't
795 * copy the back ref in. The link count fixup code will take
796 * care of the rest
797 */
798 dir = read_one_inode(root, key->offset);
799 if (!dir)
800 return -ENOENT;
801
802 inode = read_one_inode(root, key->objectid);
803 BUG_ON(!dir);
804
805 ref_ptr = btrfs_item_ptr_offset(eb, slot);
806 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
807
808 again:
809 ref = (struct btrfs_inode_ref *)ref_ptr;
810
811 namelen = btrfs_inode_ref_name_len(eb, ref);
812 name = kmalloc(namelen, GFP_NOFS);
813 BUG_ON(!name);
814
815 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
816
817 /* if we already have a perfect match, we're done */
818 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
819 btrfs_inode_ref_index(eb, ref),
820 name, namelen)) {
821 goto out;
822 }
823
824 /*
825 * look for a conflicting back reference in the metadata.
826 * if we find one we have to unlink that name of the file
827 * before we add our new link. Later on, we overwrite any
828 * existing back reference, and we don't want to create
829 * dangling pointers in the directory.
830 */
831 conflict_again:
832 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
833 if (ret == 0) {
834 char *victim_name;
835 int victim_name_len;
836 struct btrfs_inode_ref *victim_ref;
837 unsigned long ptr;
838 unsigned long ptr_end;
839 struct extent_buffer *leaf = path->nodes[0];
840
841 /* are we trying to overwrite a back ref for the root directory
842 * if so, just jump out, we're done
843 */
844 if (key->objectid == key->offset)
845 goto out_nowrite;
846
847 /* check all the names in this back reference to see
848 * if they are in the log. if so, we allow them to stay
849 * otherwise they must be unlinked as a conflict
850 */
851 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
852 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
853 while (ptr < ptr_end) {
854 victim_ref = (struct btrfs_inode_ref *)ptr;
855 victim_name_len = btrfs_inode_ref_name_len(leaf,
856 victim_ref);
857 victim_name = kmalloc(victim_name_len, GFP_NOFS);
858 BUG_ON(!victim_name);
859
860 read_extent_buffer(leaf, victim_name,
861 (unsigned long)(victim_ref + 1),
862 victim_name_len);
863
864 if (!backref_in_log(log, key, victim_name,
865 victim_name_len)) {
866 btrfs_inc_nlink(inode);
867 btrfs_release_path(root, path);
868
869 ret = btrfs_unlink_inode(trans, root, dir,
870 inode, victim_name,
871 victim_name_len);
872 kfree(victim_name);
873 btrfs_release_path(root, path);
874 goto conflict_again;
875 }
876 kfree(victim_name);
877 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
878 }
879 BUG_ON(ret);
880 }
881 btrfs_release_path(root, path);
882
883 /* look for a conflicting sequence number */
884 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
885 btrfs_inode_ref_index(eb, ref),
886 name, namelen, 0);
887 if (di && !IS_ERR(di)) {
888 ret = drop_one_dir_item(trans, root, path, dir, di);
889 BUG_ON(ret);
890 }
891 btrfs_release_path(root, path);
892
893
894 /* look for a conflicting name */
895 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
896 name, namelen, 0);
897 if (di && !IS_ERR(di)) {
898 ret = drop_one_dir_item(trans, root, path, dir, di);
899 BUG_ON(ret);
900 }
901 btrfs_release_path(root, path);
902
903 /* insert our name */
904 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
905 btrfs_inode_ref_index(eb, ref));
906 BUG_ON(ret);
907
908 btrfs_update_inode(trans, root, inode);
909
910 out:
911 ref_ptr = (unsigned long)(ref + 1) + namelen;
912 kfree(name);
913 if (ref_ptr < ref_end)
914 goto again;
915
916 /* finally write the back reference in the inode */
917 ret = overwrite_item(trans, root, path, eb, slot, key);
918 BUG_ON(ret);
919
920 out_nowrite:
921 btrfs_release_path(root, path);
922 iput(dir);
923 iput(inode);
924 return 0;
925 }
926
927 /*
928 * There are a few corners where the link count of the file can't
929 * be properly maintained during replay. So, instead of adding
930 * lots of complexity to the log code, we just scan the backrefs
931 * for any file that has been through replay.
932 *
933 * The scan will update the link count on the inode to reflect the
934 * number of back refs found. If it goes down to zero, the iput
935 * will free the inode.
936 */
937 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
938 struct btrfs_root *root,
939 struct inode *inode)
940 {
941 struct btrfs_path *path;
942 int ret;
943 struct btrfs_key key;
944 u64 nlink = 0;
945 unsigned long ptr;
946 unsigned long ptr_end;
947 int name_len;
948
949 key.objectid = inode->i_ino;
950 key.type = BTRFS_INODE_REF_KEY;
951 key.offset = (u64)-1;
952
953 path = btrfs_alloc_path();
954
955 while (1) {
956 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
957 if (ret < 0)
958 break;
959 if (ret > 0) {
960 if (path->slots[0] == 0)
961 break;
962 path->slots[0]--;
963 }
964 btrfs_item_key_to_cpu(path->nodes[0], &key,
965 path->slots[0]);
966 if (key.objectid != inode->i_ino ||
967 key.type != BTRFS_INODE_REF_KEY)
968 break;
969 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
970 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
971 path->slots[0]);
972 while (ptr < ptr_end) {
973 struct btrfs_inode_ref *ref;
974
975 ref = (struct btrfs_inode_ref *)ptr;
976 name_len = btrfs_inode_ref_name_len(path->nodes[0],
977 ref);
978 ptr = (unsigned long)(ref + 1) + name_len;
979 nlink++;
980 }
981
982 if (key.offset == 0)
983 break;
984 key.offset--;
985 btrfs_release_path(root, path);
986 }
987 btrfs_release_path(root, path);
988 if (nlink != inode->i_nlink) {
989 inode->i_nlink = nlink;
990 btrfs_update_inode(trans, root, inode);
991 }
992 BTRFS_I(inode)->index_cnt = (u64)-1;
993
994 if (inode->i_nlink == 0 && S_ISDIR(inode->i_mode)) {
995 ret = replay_dir_deletes(trans, root, NULL, path,
996 inode->i_ino, 1);
997 BUG_ON(ret);
998 }
999 btrfs_free_path(path);
1000
1001 return 0;
1002 }
1003
1004 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1005 struct btrfs_root *root,
1006 struct btrfs_path *path)
1007 {
1008 int ret;
1009 struct btrfs_key key;
1010 struct inode *inode;
1011
1012 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1013 key.type = BTRFS_ORPHAN_ITEM_KEY;
1014 key.offset = (u64)-1;
1015 while (1) {
1016 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1017 if (ret < 0)
1018 break;
1019
1020 if (ret == 1) {
1021 if (path->slots[0] == 0)
1022 break;
1023 path->slots[0]--;
1024 }
1025
1026 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1027 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1028 key.type != BTRFS_ORPHAN_ITEM_KEY)
1029 break;
1030
1031 ret = btrfs_del_item(trans, root, path);
1032 BUG_ON(ret);
1033
1034 btrfs_release_path(root, path);
1035 inode = read_one_inode(root, key.offset);
1036 BUG_ON(!inode);
1037
1038 ret = fixup_inode_link_count(trans, root, inode);
1039 BUG_ON(ret);
1040
1041 iput(inode);
1042
1043 /*
1044 * fixup on a directory may create new entries,
1045 * make sure we always look for the highset possible
1046 * offset
1047 */
1048 key.offset = (u64)-1;
1049 }
1050 btrfs_release_path(root, path);
1051 return 0;
1052 }
1053
1054
1055 /*
1056 * record a given inode in the fixup dir so we can check its link
1057 * count when replay is done. The link count is incremented here
1058 * so the inode won't go away until we check it
1059 */
1060 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1061 struct btrfs_root *root,
1062 struct btrfs_path *path,
1063 u64 objectid)
1064 {
1065 struct btrfs_key key;
1066 int ret = 0;
1067 struct inode *inode;
1068
1069 inode = read_one_inode(root, objectid);
1070 BUG_ON(!inode);
1071
1072 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1073 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1074 key.offset = objectid;
1075
1076 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1077
1078 btrfs_release_path(root, path);
1079 if (ret == 0) {
1080 btrfs_inc_nlink(inode);
1081 btrfs_update_inode(trans, root, inode);
1082 } else if (ret == -EEXIST) {
1083 ret = 0;
1084 } else {
1085 BUG();
1086 }
1087 iput(inode);
1088
1089 return ret;
1090 }
1091
1092 /*
1093 * when replaying the log for a directory, we only insert names
1094 * for inodes that actually exist. This means an fsync on a directory
1095 * does not implicitly fsync all the new files in it
1096 */
1097 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1098 struct btrfs_root *root,
1099 struct btrfs_path *path,
1100 u64 dirid, u64 index,
1101 char *name, int name_len, u8 type,
1102 struct btrfs_key *location)
1103 {
1104 struct inode *inode;
1105 struct inode *dir;
1106 int ret;
1107
1108 inode = read_one_inode(root, location->objectid);
1109 if (!inode)
1110 return -ENOENT;
1111
1112 dir = read_one_inode(root, dirid);
1113 if (!dir) {
1114 iput(inode);
1115 return -EIO;
1116 }
1117 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1118
1119 /* FIXME, put inode into FIXUP list */
1120
1121 iput(inode);
1122 iput(dir);
1123 return ret;
1124 }
1125
1126 /*
1127 * take a single entry in a log directory item and replay it into
1128 * the subvolume.
1129 *
1130 * if a conflicting item exists in the subdirectory already,
1131 * the inode it points to is unlinked and put into the link count
1132 * fix up tree.
1133 *
1134 * If a name from the log points to a file or directory that does
1135 * not exist in the FS, it is skipped. fsyncs on directories
1136 * do not force down inodes inside that directory, just changes to the
1137 * names or unlinks in a directory.
1138 */
1139 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1140 struct btrfs_root *root,
1141 struct btrfs_path *path,
1142 struct extent_buffer *eb,
1143 struct btrfs_dir_item *di,
1144 struct btrfs_key *key)
1145 {
1146 char *name;
1147 int name_len;
1148 struct btrfs_dir_item *dst_di;
1149 struct btrfs_key found_key;
1150 struct btrfs_key log_key;
1151 struct inode *dir;
1152 u8 log_type;
1153 int exists;
1154 int ret;
1155
1156 dir = read_one_inode(root, key->objectid);
1157 BUG_ON(!dir);
1158
1159 name_len = btrfs_dir_name_len(eb, di);
1160 name = kmalloc(name_len, GFP_NOFS);
1161 log_type = btrfs_dir_type(eb, di);
1162 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1163 name_len);
1164
1165 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1166 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1167 if (exists == 0)
1168 exists = 1;
1169 else
1170 exists = 0;
1171 btrfs_release_path(root, path);
1172
1173 if (key->type == BTRFS_DIR_ITEM_KEY) {
1174 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1175 name, name_len, 1);
1176 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1177 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1178 key->objectid,
1179 key->offset, name,
1180 name_len, 1);
1181 } else {
1182 BUG();
1183 }
1184 if (!dst_di || IS_ERR(dst_di)) {
1185 /* we need a sequence number to insert, so we only
1186 * do inserts for the BTRFS_DIR_INDEX_KEY types
1187 */
1188 if (key->type != BTRFS_DIR_INDEX_KEY)
1189 goto out;
1190 goto insert;
1191 }
1192
1193 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1194 /* the existing item matches the logged item */
1195 if (found_key.objectid == log_key.objectid &&
1196 found_key.type == log_key.type &&
1197 found_key.offset == log_key.offset &&
1198 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1199 goto out;
1200 }
1201
1202 /*
1203 * don't drop the conflicting directory entry if the inode
1204 * for the new entry doesn't exist
1205 */
1206 if (!exists)
1207 goto out;
1208
1209 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1210 BUG_ON(ret);
1211
1212 if (key->type == BTRFS_DIR_INDEX_KEY)
1213 goto insert;
1214 out:
1215 btrfs_release_path(root, path);
1216 kfree(name);
1217 iput(dir);
1218 return 0;
1219
1220 insert:
1221 btrfs_release_path(root, path);
1222 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1223 name, name_len, log_type, &log_key);
1224
1225 BUG_ON(ret && ret != -ENOENT);
1226 goto out;
1227 }
1228
1229 /*
1230 * find all the names in a directory item and reconcile them into
1231 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1232 * one name in a directory item, but the same code gets used for
1233 * both directory index types
1234 */
1235 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1236 struct btrfs_root *root,
1237 struct btrfs_path *path,
1238 struct extent_buffer *eb, int slot,
1239 struct btrfs_key *key)
1240 {
1241 int ret;
1242 u32 item_size = btrfs_item_size_nr(eb, slot);
1243 struct btrfs_dir_item *di;
1244 int name_len;
1245 unsigned long ptr;
1246 unsigned long ptr_end;
1247
1248 ptr = btrfs_item_ptr_offset(eb, slot);
1249 ptr_end = ptr + item_size;
1250 while (ptr < ptr_end) {
1251 di = (struct btrfs_dir_item *)ptr;
1252 name_len = btrfs_dir_name_len(eb, di);
1253 ret = replay_one_name(trans, root, path, eb, di, key);
1254 BUG_ON(ret);
1255 ptr = (unsigned long)(di + 1);
1256 ptr += name_len;
1257 }
1258 return 0;
1259 }
1260
1261 /*
1262 * directory replay has two parts. There are the standard directory
1263 * items in the log copied from the subvolume, and range items
1264 * created in the log while the subvolume was logged.
1265 *
1266 * The range items tell us which parts of the key space the log
1267 * is authoritative for. During replay, if a key in the subvolume
1268 * directory is in a logged range item, but not actually in the log
1269 * that means it was deleted from the directory before the fsync
1270 * and should be removed.
1271 */
1272 static noinline int find_dir_range(struct btrfs_root *root,
1273 struct btrfs_path *path,
1274 u64 dirid, int key_type,
1275 u64 *start_ret, u64 *end_ret)
1276 {
1277 struct btrfs_key key;
1278 u64 found_end;
1279 struct btrfs_dir_log_item *item;
1280 int ret;
1281 int nritems;
1282
1283 if (*start_ret == (u64)-1)
1284 return 1;
1285
1286 key.objectid = dirid;
1287 key.type = key_type;
1288 key.offset = *start_ret;
1289
1290 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1291 if (ret < 0)
1292 goto out;
1293 if (ret > 0) {
1294 if (path->slots[0] == 0)
1295 goto out;
1296 path->slots[0]--;
1297 }
1298 if (ret != 0)
1299 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1300
1301 if (key.type != key_type || key.objectid != dirid) {
1302 ret = 1;
1303 goto next;
1304 }
1305 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1306 struct btrfs_dir_log_item);
1307 found_end = btrfs_dir_log_end(path->nodes[0], item);
1308
1309 if (*start_ret >= key.offset && *start_ret <= found_end) {
1310 ret = 0;
1311 *start_ret = key.offset;
1312 *end_ret = found_end;
1313 goto out;
1314 }
1315 ret = 1;
1316 next:
1317 /* check the next slot in the tree to see if it is a valid item */
1318 nritems = btrfs_header_nritems(path->nodes[0]);
1319 if (path->slots[0] >= nritems) {
1320 ret = btrfs_next_leaf(root, path);
1321 if (ret)
1322 goto out;
1323 } else {
1324 path->slots[0]++;
1325 }
1326
1327 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1328
1329 if (key.type != key_type || key.objectid != dirid) {
1330 ret = 1;
1331 goto out;
1332 }
1333 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1334 struct btrfs_dir_log_item);
1335 found_end = btrfs_dir_log_end(path->nodes[0], item);
1336 *start_ret = key.offset;
1337 *end_ret = found_end;
1338 ret = 0;
1339 out:
1340 btrfs_release_path(root, path);
1341 return ret;
1342 }
1343
1344 /*
1345 * this looks for a given directory item in the log. If the directory
1346 * item is not in the log, the item is removed and the inode it points
1347 * to is unlinked
1348 */
1349 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1350 struct btrfs_root *root,
1351 struct btrfs_root *log,
1352 struct btrfs_path *path,
1353 struct btrfs_path *log_path,
1354 struct inode *dir,
1355 struct btrfs_key *dir_key)
1356 {
1357 int ret;
1358 struct extent_buffer *eb;
1359 int slot;
1360 u32 item_size;
1361 struct btrfs_dir_item *di;
1362 struct btrfs_dir_item *log_di;
1363 int name_len;
1364 unsigned long ptr;
1365 unsigned long ptr_end;
1366 char *name;
1367 struct inode *inode;
1368 struct btrfs_key location;
1369
1370 again:
1371 eb = path->nodes[0];
1372 slot = path->slots[0];
1373 item_size = btrfs_item_size_nr(eb, slot);
1374 ptr = btrfs_item_ptr_offset(eb, slot);
1375 ptr_end = ptr + item_size;
1376 while (ptr < ptr_end) {
1377 di = (struct btrfs_dir_item *)ptr;
1378 name_len = btrfs_dir_name_len(eb, di);
1379 name = kmalloc(name_len, GFP_NOFS);
1380 if (!name) {
1381 ret = -ENOMEM;
1382 goto out;
1383 }
1384 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1385 name_len);
1386 log_di = NULL;
1387 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1388 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1389 dir_key->objectid,
1390 name, name_len, 0);
1391 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1392 log_di = btrfs_lookup_dir_index_item(trans, log,
1393 log_path,
1394 dir_key->objectid,
1395 dir_key->offset,
1396 name, name_len, 0);
1397 }
1398 if (!log_di || IS_ERR(log_di)) {
1399 btrfs_dir_item_key_to_cpu(eb, di, &location);
1400 btrfs_release_path(root, path);
1401 btrfs_release_path(log, log_path);
1402 inode = read_one_inode(root, location.objectid);
1403 BUG_ON(!inode);
1404
1405 ret = link_to_fixup_dir(trans, root,
1406 path, location.objectid);
1407 BUG_ON(ret);
1408 btrfs_inc_nlink(inode);
1409 ret = btrfs_unlink_inode(trans, root, dir, inode,
1410 name, name_len);
1411 BUG_ON(ret);
1412 kfree(name);
1413 iput(inode);
1414
1415 /* there might still be more names under this key
1416 * check and repeat if required
1417 */
1418 ret = btrfs_search_slot(NULL, root, dir_key, path,
1419 0, 0);
1420 if (ret == 0)
1421 goto again;
1422 ret = 0;
1423 goto out;
1424 }
1425 btrfs_release_path(log, log_path);
1426 kfree(name);
1427
1428 ptr = (unsigned long)(di + 1);
1429 ptr += name_len;
1430 }
1431 ret = 0;
1432 out:
1433 btrfs_release_path(root, path);
1434 btrfs_release_path(log, log_path);
1435 return ret;
1436 }
1437
1438 /*
1439 * deletion replay happens before we copy any new directory items
1440 * out of the log or out of backreferences from inodes. It
1441 * scans the log to find ranges of keys that log is authoritative for,
1442 * and then scans the directory to find items in those ranges that are
1443 * not present in the log.
1444 *
1445 * Anything we don't find in the log is unlinked and removed from the
1446 * directory.
1447 */
1448 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1449 struct btrfs_root *root,
1450 struct btrfs_root *log,
1451 struct btrfs_path *path,
1452 u64 dirid, int del_all)
1453 {
1454 u64 range_start;
1455 u64 range_end;
1456 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1457 int ret = 0;
1458 struct btrfs_key dir_key;
1459 struct btrfs_key found_key;
1460 struct btrfs_path *log_path;
1461 struct inode *dir;
1462
1463 dir_key.objectid = dirid;
1464 dir_key.type = BTRFS_DIR_ITEM_KEY;
1465 log_path = btrfs_alloc_path();
1466 if (!log_path)
1467 return -ENOMEM;
1468
1469 dir = read_one_inode(root, dirid);
1470 /* it isn't an error if the inode isn't there, that can happen
1471 * because we replay the deletes before we copy in the inode item
1472 * from the log
1473 */
1474 if (!dir) {
1475 btrfs_free_path(log_path);
1476 return 0;
1477 }
1478 again:
1479 range_start = 0;
1480 range_end = 0;
1481 while (1) {
1482 if (del_all)
1483 range_end = (u64)-1;
1484 else {
1485 ret = find_dir_range(log, path, dirid, key_type,
1486 &range_start, &range_end);
1487 if (ret != 0)
1488 break;
1489 }
1490
1491 dir_key.offset = range_start;
1492 while (1) {
1493 int nritems;
1494 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1495 0, 0);
1496 if (ret < 0)
1497 goto out;
1498
1499 nritems = btrfs_header_nritems(path->nodes[0]);
1500 if (path->slots[0] >= nritems) {
1501 ret = btrfs_next_leaf(root, path);
1502 if (ret)
1503 break;
1504 }
1505 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1506 path->slots[0]);
1507 if (found_key.objectid != dirid ||
1508 found_key.type != dir_key.type)
1509 goto next_type;
1510
1511 if (found_key.offset > range_end)
1512 break;
1513
1514 ret = check_item_in_log(trans, root, log, path,
1515 log_path, dir,
1516 &found_key);
1517 BUG_ON(ret);
1518 if (found_key.offset == (u64)-1)
1519 break;
1520 dir_key.offset = found_key.offset + 1;
1521 }
1522 btrfs_release_path(root, path);
1523 if (range_end == (u64)-1)
1524 break;
1525 range_start = range_end + 1;
1526 }
1527
1528 next_type:
1529 ret = 0;
1530 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1531 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1532 dir_key.type = BTRFS_DIR_INDEX_KEY;
1533 btrfs_release_path(root, path);
1534 goto again;
1535 }
1536 out:
1537 btrfs_release_path(root, path);
1538 btrfs_free_path(log_path);
1539 iput(dir);
1540 return ret;
1541 }
1542
1543 /*
1544 * the process_func used to replay items from the log tree. This
1545 * gets called in two different stages. The first stage just looks
1546 * for inodes and makes sure they are all copied into the subvolume.
1547 *
1548 * The second stage copies all the other item types from the log into
1549 * the subvolume. The two stage approach is slower, but gets rid of
1550 * lots of complexity around inodes referencing other inodes that exist
1551 * only in the log (references come from either directory items or inode
1552 * back refs).
1553 */
1554 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1555 struct walk_control *wc, u64 gen)
1556 {
1557 int nritems;
1558 struct btrfs_path *path;
1559 struct btrfs_root *root = wc->replay_dest;
1560 struct btrfs_key key;
1561 u32 item_size;
1562 int level;
1563 int i;
1564 int ret;
1565
1566 btrfs_read_buffer(eb, gen);
1567
1568 level = btrfs_header_level(eb);
1569
1570 if (level != 0)
1571 return 0;
1572
1573 path = btrfs_alloc_path();
1574 BUG_ON(!path);
1575
1576 nritems = btrfs_header_nritems(eb);
1577 for (i = 0; i < nritems; i++) {
1578 btrfs_item_key_to_cpu(eb, &key, i);
1579 item_size = btrfs_item_size_nr(eb, i);
1580
1581 /* inode keys are done during the first stage */
1582 if (key.type == BTRFS_INODE_ITEM_KEY &&
1583 wc->stage == LOG_WALK_REPLAY_INODES) {
1584 struct inode *inode;
1585 struct btrfs_inode_item *inode_item;
1586 u32 mode;
1587
1588 inode_item = btrfs_item_ptr(eb, i,
1589 struct btrfs_inode_item);
1590 mode = btrfs_inode_mode(eb, inode_item);
1591 if (S_ISDIR(mode)) {
1592 ret = replay_dir_deletes(wc->trans,
1593 root, log, path, key.objectid, 0);
1594 BUG_ON(ret);
1595 }
1596 ret = overwrite_item(wc->trans, root, path,
1597 eb, i, &key);
1598 BUG_ON(ret);
1599
1600 /* for regular files, truncate away
1601 * extents past the new EOF
1602 */
1603 if (S_ISREG(mode)) {
1604 inode = read_one_inode(root,
1605 key.objectid);
1606 BUG_ON(!inode);
1607
1608 ret = btrfs_truncate_inode_items(wc->trans,
1609 root, inode, inode->i_size,
1610 BTRFS_EXTENT_DATA_KEY);
1611 BUG_ON(ret);
1612
1613 /* if the nlink count is zero here, the iput
1614 * will free the inode. We bump it to make
1615 * sure it doesn't get freed until the link
1616 * count fixup is done
1617 */
1618 if (inode->i_nlink == 0) {
1619 btrfs_inc_nlink(inode);
1620 btrfs_update_inode(wc->trans,
1621 root, inode);
1622 }
1623 iput(inode);
1624 }
1625 ret = link_to_fixup_dir(wc->trans, root,
1626 path, key.objectid);
1627 BUG_ON(ret);
1628 }
1629 if (wc->stage < LOG_WALK_REPLAY_ALL)
1630 continue;
1631
1632 /* these keys are simply copied */
1633 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1634 ret = overwrite_item(wc->trans, root, path,
1635 eb, i, &key);
1636 BUG_ON(ret);
1637 } else if (key.type == BTRFS_INODE_REF_KEY) {
1638 ret = add_inode_ref(wc->trans, root, log, path,
1639 eb, i, &key);
1640 BUG_ON(ret && ret != -ENOENT);
1641 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1642 ret = replay_one_extent(wc->trans, root, path,
1643 eb, i, &key);
1644 BUG_ON(ret);
1645 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1646 key.type == BTRFS_DIR_INDEX_KEY) {
1647 ret = replay_one_dir_item(wc->trans, root, path,
1648 eb, i, &key);
1649 BUG_ON(ret);
1650 }
1651 }
1652 btrfs_free_path(path);
1653 return 0;
1654 }
1655
1656 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1657 struct btrfs_root *root,
1658 struct btrfs_path *path, int *level,
1659 struct walk_control *wc)
1660 {
1661 u64 root_owner;
1662 u64 root_gen;
1663 u64 bytenr;
1664 u64 ptr_gen;
1665 struct extent_buffer *next;
1666 struct extent_buffer *cur;
1667 struct extent_buffer *parent;
1668 u32 blocksize;
1669 int ret = 0;
1670
1671 WARN_ON(*level < 0);
1672 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1673
1674 while (*level > 0) {
1675 WARN_ON(*level < 0);
1676 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1677 cur = path->nodes[*level];
1678
1679 if (btrfs_header_level(cur) != *level)
1680 WARN_ON(1);
1681
1682 if (path->slots[*level] >=
1683 btrfs_header_nritems(cur))
1684 break;
1685
1686 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1687 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1688 blocksize = btrfs_level_size(root, *level - 1);
1689
1690 parent = path->nodes[*level];
1691 root_owner = btrfs_header_owner(parent);
1692 root_gen = btrfs_header_generation(parent);
1693
1694 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1695
1696 wc->process_func(root, next, wc, ptr_gen);
1697
1698 if (*level == 1) {
1699 path->slots[*level]++;
1700 if (wc->free) {
1701 btrfs_read_buffer(next, ptr_gen);
1702
1703 btrfs_tree_lock(next);
1704 clean_tree_block(trans, root, next);
1705 btrfs_set_lock_blocking(next);
1706 btrfs_wait_tree_block_writeback(next);
1707 btrfs_tree_unlock(next);
1708
1709 ret = btrfs_drop_leaf_ref(trans, root, next);
1710 BUG_ON(ret);
1711
1712 WARN_ON(root_owner !=
1713 BTRFS_TREE_LOG_OBJECTID);
1714 ret = btrfs_free_reserved_extent(root,
1715 bytenr, blocksize);
1716 BUG_ON(ret);
1717 }
1718 free_extent_buffer(next);
1719 continue;
1720 }
1721 btrfs_read_buffer(next, ptr_gen);
1722
1723 WARN_ON(*level <= 0);
1724 if (path->nodes[*level-1])
1725 free_extent_buffer(path->nodes[*level-1]);
1726 path->nodes[*level-1] = next;
1727 *level = btrfs_header_level(next);
1728 path->slots[*level] = 0;
1729 cond_resched();
1730 }
1731 WARN_ON(*level < 0);
1732 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1733
1734 if (path->nodes[*level] == root->node)
1735 parent = path->nodes[*level];
1736 else
1737 parent = path->nodes[*level + 1];
1738
1739 bytenr = path->nodes[*level]->start;
1740
1741 blocksize = btrfs_level_size(root, *level);
1742 root_owner = btrfs_header_owner(parent);
1743 root_gen = btrfs_header_generation(parent);
1744
1745 wc->process_func(root, path->nodes[*level], wc,
1746 btrfs_header_generation(path->nodes[*level]));
1747
1748 if (wc->free) {
1749 next = path->nodes[*level];
1750 btrfs_tree_lock(next);
1751 clean_tree_block(trans, root, next);
1752 btrfs_set_lock_blocking(next);
1753 btrfs_wait_tree_block_writeback(next);
1754 btrfs_tree_unlock(next);
1755
1756 if (*level == 0) {
1757 ret = btrfs_drop_leaf_ref(trans, root, next);
1758 BUG_ON(ret);
1759 }
1760 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1761 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
1762 BUG_ON(ret);
1763 }
1764 free_extent_buffer(path->nodes[*level]);
1765 path->nodes[*level] = NULL;
1766 *level += 1;
1767
1768 cond_resched();
1769 return 0;
1770 }
1771
1772 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1773 struct btrfs_root *root,
1774 struct btrfs_path *path, int *level,
1775 struct walk_control *wc)
1776 {
1777 u64 root_owner;
1778 u64 root_gen;
1779 int i;
1780 int slot;
1781 int ret;
1782
1783 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1784 slot = path->slots[i];
1785 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1786 struct extent_buffer *node;
1787 node = path->nodes[i];
1788 path->slots[i]++;
1789 *level = i;
1790 WARN_ON(*level == 0);
1791 return 0;
1792 } else {
1793 struct extent_buffer *parent;
1794 if (path->nodes[*level] == root->node)
1795 parent = path->nodes[*level];
1796 else
1797 parent = path->nodes[*level + 1];
1798
1799 root_owner = btrfs_header_owner(parent);
1800 root_gen = btrfs_header_generation(parent);
1801 wc->process_func(root, path->nodes[*level], wc,
1802 btrfs_header_generation(path->nodes[*level]));
1803 if (wc->free) {
1804 struct extent_buffer *next;
1805
1806 next = path->nodes[*level];
1807
1808 btrfs_tree_lock(next);
1809 clean_tree_block(trans, root, next);
1810 btrfs_set_lock_blocking(next);
1811 btrfs_wait_tree_block_writeback(next);
1812 btrfs_tree_unlock(next);
1813
1814 if (*level == 0) {
1815 ret = btrfs_drop_leaf_ref(trans, root,
1816 next);
1817 BUG_ON(ret);
1818 }
1819
1820 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1821 ret = btrfs_free_reserved_extent(root,
1822 path->nodes[*level]->start,
1823 path->nodes[*level]->len);
1824 BUG_ON(ret);
1825 }
1826 free_extent_buffer(path->nodes[*level]);
1827 path->nodes[*level] = NULL;
1828 *level = i + 1;
1829 }
1830 }
1831 return 1;
1832 }
1833
1834 /*
1835 * drop the reference count on the tree rooted at 'snap'. This traverses
1836 * the tree freeing any blocks that have a ref count of zero after being
1837 * decremented.
1838 */
1839 static int walk_log_tree(struct btrfs_trans_handle *trans,
1840 struct btrfs_root *log, struct walk_control *wc)
1841 {
1842 int ret = 0;
1843 int wret;
1844 int level;
1845 struct btrfs_path *path;
1846 int i;
1847 int orig_level;
1848
1849 path = btrfs_alloc_path();
1850 BUG_ON(!path);
1851
1852 level = btrfs_header_level(log->node);
1853 orig_level = level;
1854 path->nodes[level] = log->node;
1855 extent_buffer_get(log->node);
1856 path->slots[level] = 0;
1857
1858 while (1) {
1859 wret = walk_down_log_tree(trans, log, path, &level, wc);
1860 if (wret > 0)
1861 break;
1862 if (wret < 0)
1863 ret = wret;
1864
1865 wret = walk_up_log_tree(trans, log, path, &level, wc);
1866 if (wret > 0)
1867 break;
1868 if (wret < 0)
1869 ret = wret;
1870 }
1871
1872 /* was the root node processed? if not, catch it here */
1873 if (path->nodes[orig_level]) {
1874 wc->process_func(log, path->nodes[orig_level], wc,
1875 btrfs_header_generation(path->nodes[orig_level]));
1876 if (wc->free) {
1877 struct extent_buffer *next;
1878
1879 next = path->nodes[orig_level];
1880
1881 btrfs_tree_lock(next);
1882 clean_tree_block(trans, log, next);
1883 btrfs_set_lock_blocking(next);
1884 btrfs_wait_tree_block_writeback(next);
1885 btrfs_tree_unlock(next);
1886
1887 if (orig_level == 0) {
1888 ret = btrfs_drop_leaf_ref(trans, log,
1889 next);
1890 BUG_ON(ret);
1891 }
1892 WARN_ON(log->root_key.objectid !=
1893 BTRFS_TREE_LOG_OBJECTID);
1894 ret = btrfs_free_reserved_extent(log, next->start,
1895 next->len);
1896 BUG_ON(ret);
1897 }
1898 }
1899
1900 for (i = 0; i <= orig_level; i++) {
1901 if (path->nodes[i]) {
1902 free_extent_buffer(path->nodes[i]);
1903 path->nodes[i] = NULL;
1904 }
1905 }
1906 btrfs_free_path(path);
1907 return ret;
1908 }
1909
1910 /*
1911 * helper function to update the item for a given subvolumes log root
1912 * in the tree of log roots
1913 */
1914 static int update_log_root(struct btrfs_trans_handle *trans,
1915 struct btrfs_root *log)
1916 {
1917 int ret;
1918
1919 if (log->log_transid == 1) {
1920 /* insert root item on the first sync */
1921 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1922 &log->root_key, &log->root_item);
1923 } else {
1924 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1925 &log->root_key, &log->root_item);
1926 }
1927 return ret;
1928 }
1929
1930 static int wait_log_commit(struct btrfs_trans_handle *trans,
1931 struct btrfs_root *root, unsigned long transid)
1932 {
1933 DEFINE_WAIT(wait);
1934 int index = transid % 2;
1935
1936 /*
1937 * we only allow two pending log transactions at a time,
1938 * so we know that if ours is more than 2 older than the
1939 * current transaction, we're done
1940 */
1941 do {
1942 prepare_to_wait(&root->log_commit_wait[index],
1943 &wait, TASK_UNINTERRUPTIBLE);
1944 mutex_unlock(&root->log_mutex);
1945
1946 if (root->fs_info->last_trans_log_full_commit !=
1947 trans->transid && root->log_transid < transid + 2 &&
1948 atomic_read(&root->log_commit[index]))
1949 schedule();
1950
1951 finish_wait(&root->log_commit_wait[index], &wait);
1952 mutex_lock(&root->log_mutex);
1953 } while (root->log_transid < transid + 2 &&
1954 atomic_read(&root->log_commit[index]));
1955 return 0;
1956 }
1957
1958 static int wait_for_writer(struct btrfs_trans_handle *trans,
1959 struct btrfs_root *root)
1960 {
1961 DEFINE_WAIT(wait);
1962 while (atomic_read(&root->log_writers)) {
1963 prepare_to_wait(&root->log_writer_wait,
1964 &wait, TASK_UNINTERRUPTIBLE);
1965 mutex_unlock(&root->log_mutex);
1966 if (root->fs_info->last_trans_log_full_commit !=
1967 trans->transid && atomic_read(&root->log_writers))
1968 schedule();
1969 mutex_lock(&root->log_mutex);
1970 finish_wait(&root->log_writer_wait, &wait);
1971 }
1972 return 0;
1973 }
1974
1975 /*
1976 * btrfs_sync_log does sends a given tree log down to the disk and
1977 * updates the super blocks to record it. When this call is done,
1978 * you know that any inodes previously logged are safely on disk only
1979 * if it returns 0.
1980 *
1981 * Any other return value means you need to call btrfs_commit_transaction.
1982 * Some of the edge cases for fsyncing directories that have had unlinks
1983 * or renames done in the past mean that sometimes the only safe
1984 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1985 * that has happened.
1986 */
1987 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1988 struct btrfs_root *root)
1989 {
1990 int index1;
1991 int index2;
1992 int ret;
1993 struct btrfs_root *log = root->log_root;
1994 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1995
1996 mutex_lock(&root->log_mutex);
1997 index1 = root->log_transid % 2;
1998 if (atomic_read(&root->log_commit[index1])) {
1999 wait_log_commit(trans, root, root->log_transid);
2000 mutex_unlock(&root->log_mutex);
2001 return 0;
2002 }
2003 atomic_set(&root->log_commit[index1], 1);
2004
2005 /* wait for previous tree log sync to complete */
2006 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2007 wait_log_commit(trans, root, root->log_transid - 1);
2008
2009 while (1) {
2010 unsigned long batch = root->log_batch;
2011 mutex_unlock(&root->log_mutex);
2012 schedule_timeout_uninterruptible(1);
2013 mutex_lock(&root->log_mutex);
2014
2015 wait_for_writer(trans, root);
2016 if (batch == root->log_batch)
2017 break;
2018 }
2019
2020 /* bail out if we need to do a full commit */
2021 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2022 ret = -EAGAIN;
2023 mutex_unlock(&root->log_mutex);
2024 goto out;
2025 }
2026
2027 ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
2028 BUG_ON(ret);
2029
2030 btrfs_set_root_bytenr(&log->root_item, log->node->start);
2031 btrfs_set_root_generation(&log->root_item, trans->transid);
2032 btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
2033
2034 root->log_batch = 0;
2035 root->log_transid++;
2036 log->log_transid = root->log_transid;
2037 smp_mb();
2038 /*
2039 * log tree has been flushed to disk, new modifications of
2040 * the log will be written to new positions. so it's safe to
2041 * allow log writers to go in.
2042 */
2043 mutex_unlock(&root->log_mutex);
2044
2045 mutex_lock(&log_root_tree->log_mutex);
2046 log_root_tree->log_batch++;
2047 atomic_inc(&log_root_tree->log_writers);
2048 mutex_unlock(&log_root_tree->log_mutex);
2049
2050 ret = update_log_root(trans, log);
2051 BUG_ON(ret);
2052
2053 mutex_lock(&log_root_tree->log_mutex);
2054 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2055 smp_mb();
2056 if (waitqueue_active(&log_root_tree->log_writer_wait))
2057 wake_up(&log_root_tree->log_writer_wait);
2058 }
2059
2060 index2 = log_root_tree->log_transid % 2;
2061 if (atomic_read(&log_root_tree->log_commit[index2])) {
2062 wait_log_commit(trans, log_root_tree,
2063 log_root_tree->log_transid);
2064 mutex_unlock(&log_root_tree->log_mutex);
2065 goto out;
2066 }
2067 atomic_set(&log_root_tree->log_commit[index2], 1);
2068
2069 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2070 wait_log_commit(trans, log_root_tree,
2071 log_root_tree->log_transid - 1);
2072 }
2073
2074 wait_for_writer(trans, log_root_tree);
2075
2076 /*
2077 * now that we've moved on to the tree of log tree roots,
2078 * check the full commit flag again
2079 */
2080 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2081 mutex_unlock(&log_root_tree->log_mutex);
2082 ret = -EAGAIN;
2083 goto out_wake_log_root;
2084 }
2085
2086 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2087 &log_root_tree->dirty_log_pages);
2088 BUG_ON(ret);
2089
2090 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2091 log_root_tree->node->start);
2092 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2093 btrfs_header_level(log_root_tree->node));
2094
2095 log_root_tree->log_batch = 0;
2096 log_root_tree->log_transid++;
2097 smp_mb();
2098
2099 mutex_unlock(&log_root_tree->log_mutex);
2100
2101 /*
2102 * nobody else is going to jump in and write the the ctree
2103 * super here because the log_commit atomic below is protecting
2104 * us. We must be called with a transaction handle pinning
2105 * the running transaction open, so a full commit can't hop
2106 * in and cause problems either.
2107 */
2108 write_ctree_super(trans, root->fs_info->tree_root, 2);
2109 ret = 0;
2110
2111 out_wake_log_root:
2112 atomic_set(&log_root_tree->log_commit[index2], 0);
2113 smp_mb();
2114 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2115 wake_up(&log_root_tree->log_commit_wait[index2]);
2116 out:
2117 atomic_set(&root->log_commit[index1], 0);
2118 smp_mb();
2119 if (waitqueue_active(&root->log_commit_wait[index1]))
2120 wake_up(&root->log_commit_wait[index1]);
2121 return 0;
2122 }
2123
2124 /*
2125 * free all the extents used by the tree log. This should be called
2126 * at commit time of the full transaction
2127 */
2128 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2129 {
2130 int ret;
2131 struct btrfs_root *log;
2132 struct key;
2133 u64 start;
2134 u64 end;
2135 struct walk_control wc = {
2136 .free = 1,
2137 .process_func = process_one_buffer
2138 };
2139
2140 if (!root->log_root || root->fs_info->log_root_recovering)
2141 return 0;
2142
2143 log = root->log_root;
2144 ret = walk_log_tree(trans, log, &wc);
2145 BUG_ON(ret);
2146
2147 while (1) {
2148 ret = find_first_extent_bit(&log->dirty_log_pages,
2149 0, &start, &end, EXTENT_DIRTY);
2150 if (ret)
2151 break;
2152
2153 clear_extent_dirty(&log->dirty_log_pages,
2154 start, end, GFP_NOFS);
2155 }
2156
2157 if (log->log_transid > 0) {
2158 ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2159 &log->root_key);
2160 BUG_ON(ret);
2161 }
2162 root->log_root = NULL;
2163 free_extent_buffer(log->node);
2164 kfree(log);
2165 return 0;
2166 }
2167
2168 /*
2169 * If both a file and directory are logged, and unlinks or renames are
2170 * mixed in, we have a few interesting corners:
2171 *
2172 * create file X in dir Y
2173 * link file X to X.link in dir Y
2174 * fsync file X
2175 * unlink file X but leave X.link
2176 * fsync dir Y
2177 *
2178 * After a crash we would expect only X.link to exist. But file X
2179 * didn't get fsync'd again so the log has back refs for X and X.link.
2180 *
2181 * We solve this by removing directory entries and inode backrefs from the
2182 * log when a file that was logged in the current transaction is
2183 * unlinked. Any later fsync will include the updated log entries, and
2184 * we'll be able to reconstruct the proper directory items from backrefs.
2185 *
2186 * This optimizations allows us to avoid relogging the entire inode
2187 * or the entire directory.
2188 */
2189 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2190 struct btrfs_root *root,
2191 const char *name, int name_len,
2192 struct inode *dir, u64 index)
2193 {
2194 struct btrfs_root *log;
2195 struct btrfs_dir_item *di;
2196 struct btrfs_path *path;
2197 int ret;
2198 int bytes_del = 0;
2199
2200 if (BTRFS_I(dir)->logged_trans < trans->transid)
2201 return 0;
2202
2203 ret = join_running_log_trans(root);
2204 if (ret)
2205 return 0;
2206
2207 mutex_lock(&BTRFS_I(dir)->log_mutex);
2208
2209 log = root->log_root;
2210 path = btrfs_alloc_path();
2211 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2212 name, name_len, -1);
2213 if (di && !IS_ERR(di)) {
2214 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2215 bytes_del += name_len;
2216 BUG_ON(ret);
2217 }
2218 btrfs_release_path(log, path);
2219 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2220 index, name, name_len, -1);
2221 if (di && !IS_ERR(di)) {
2222 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2223 bytes_del += name_len;
2224 BUG_ON(ret);
2225 }
2226
2227 /* update the directory size in the log to reflect the names
2228 * we have removed
2229 */
2230 if (bytes_del) {
2231 struct btrfs_key key;
2232
2233 key.objectid = dir->i_ino;
2234 key.offset = 0;
2235 key.type = BTRFS_INODE_ITEM_KEY;
2236 btrfs_release_path(log, path);
2237
2238 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2239 if (ret == 0) {
2240 struct btrfs_inode_item *item;
2241 u64 i_size;
2242
2243 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2244 struct btrfs_inode_item);
2245 i_size = btrfs_inode_size(path->nodes[0], item);
2246 if (i_size > bytes_del)
2247 i_size -= bytes_del;
2248 else
2249 i_size = 0;
2250 btrfs_set_inode_size(path->nodes[0], item, i_size);
2251 btrfs_mark_buffer_dirty(path->nodes[0]);
2252 } else
2253 ret = 0;
2254 btrfs_release_path(log, path);
2255 }
2256
2257 btrfs_free_path(path);
2258 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2259 btrfs_end_log_trans(root);
2260
2261 return 0;
2262 }
2263
2264 /* see comments for btrfs_del_dir_entries_in_log */
2265 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2266 struct btrfs_root *root,
2267 const char *name, int name_len,
2268 struct inode *inode, u64 dirid)
2269 {
2270 struct btrfs_root *log;
2271 u64 index;
2272 int ret;
2273
2274 if (BTRFS_I(inode)->logged_trans < trans->transid)
2275 return 0;
2276
2277 ret = join_running_log_trans(root);
2278 if (ret)
2279 return 0;
2280 log = root->log_root;
2281 mutex_lock(&BTRFS_I(inode)->log_mutex);
2282
2283 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2284 dirid, &index);
2285 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2286 btrfs_end_log_trans(root);
2287
2288 return ret;
2289 }
2290
2291 /*
2292 * creates a range item in the log for 'dirid'. first_offset and
2293 * last_offset tell us which parts of the key space the log should
2294 * be considered authoritative for.
2295 */
2296 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2297 struct btrfs_root *log,
2298 struct btrfs_path *path,
2299 int key_type, u64 dirid,
2300 u64 first_offset, u64 last_offset)
2301 {
2302 int ret;
2303 struct btrfs_key key;
2304 struct btrfs_dir_log_item *item;
2305
2306 key.objectid = dirid;
2307 key.offset = first_offset;
2308 if (key_type == BTRFS_DIR_ITEM_KEY)
2309 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2310 else
2311 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2312 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2313 BUG_ON(ret);
2314
2315 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2316 struct btrfs_dir_log_item);
2317 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2318 btrfs_mark_buffer_dirty(path->nodes[0]);
2319 btrfs_release_path(log, path);
2320 return 0;
2321 }
2322
2323 /*
2324 * log all the items included in the current transaction for a given
2325 * directory. This also creates the range items in the log tree required
2326 * to replay anything deleted before the fsync
2327 */
2328 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2329 struct btrfs_root *root, struct inode *inode,
2330 struct btrfs_path *path,
2331 struct btrfs_path *dst_path, int key_type,
2332 u64 min_offset, u64 *last_offset_ret)
2333 {
2334 struct btrfs_key min_key;
2335 struct btrfs_key max_key;
2336 struct btrfs_root *log = root->log_root;
2337 struct extent_buffer *src;
2338 int ret;
2339 int i;
2340 int nritems;
2341 u64 first_offset = min_offset;
2342 u64 last_offset = (u64)-1;
2343
2344 log = root->log_root;
2345 max_key.objectid = inode->i_ino;
2346 max_key.offset = (u64)-1;
2347 max_key.type = key_type;
2348
2349 min_key.objectid = inode->i_ino;
2350 min_key.type = key_type;
2351 min_key.offset = min_offset;
2352
2353 path->keep_locks = 1;
2354
2355 ret = btrfs_search_forward(root, &min_key, &max_key,
2356 path, 0, trans->transid);
2357
2358 /*
2359 * we didn't find anything from this transaction, see if there
2360 * is anything at all
2361 */
2362 if (ret != 0 || min_key.objectid != inode->i_ino ||
2363 min_key.type != key_type) {
2364 min_key.objectid = inode->i_ino;
2365 min_key.type = key_type;
2366 min_key.offset = (u64)-1;
2367 btrfs_release_path(root, path);
2368 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2369 if (ret < 0) {
2370 btrfs_release_path(root, path);
2371 return ret;
2372 }
2373 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2374
2375 /* if ret == 0 there are items for this type,
2376 * create a range to tell us the last key of this type.
2377 * otherwise, there are no items in this directory after
2378 * *min_offset, and we create a range to indicate that.
2379 */
2380 if (ret == 0) {
2381 struct btrfs_key tmp;
2382 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2383 path->slots[0]);
2384 if (key_type == tmp.type)
2385 first_offset = max(min_offset, tmp.offset) + 1;
2386 }
2387 goto done;
2388 }
2389
2390 /* go backward to find any previous key */
2391 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2392 if (ret == 0) {
2393 struct btrfs_key tmp;
2394 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2395 if (key_type == tmp.type) {
2396 first_offset = tmp.offset;
2397 ret = overwrite_item(trans, log, dst_path,
2398 path->nodes[0], path->slots[0],
2399 &tmp);
2400 }
2401 }
2402 btrfs_release_path(root, path);
2403
2404 /* find the first key from this transaction again */
2405 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2406 if (ret != 0) {
2407 WARN_ON(1);
2408 goto done;
2409 }
2410
2411 /*
2412 * we have a block from this transaction, log every item in it
2413 * from our directory
2414 */
2415 while (1) {
2416 struct btrfs_key tmp;
2417 src = path->nodes[0];
2418 nritems = btrfs_header_nritems(src);
2419 for (i = path->slots[0]; i < nritems; i++) {
2420 btrfs_item_key_to_cpu(src, &min_key, i);
2421
2422 if (min_key.objectid != inode->i_ino ||
2423 min_key.type != key_type)
2424 goto done;
2425 ret = overwrite_item(trans, log, dst_path, src, i,
2426 &min_key);
2427 BUG_ON(ret);
2428 }
2429 path->slots[0] = nritems;
2430
2431 /*
2432 * look ahead to the next item and see if it is also
2433 * from this directory and from this transaction
2434 */
2435 ret = btrfs_next_leaf(root, path);
2436 if (ret == 1) {
2437 last_offset = (u64)-1;
2438 goto done;
2439 }
2440 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2441 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2442 last_offset = (u64)-1;
2443 goto done;
2444 }
2445 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2446 ret = overwrite_item(trans, log, dst_path,
2447 path->nodes[0], path->slots[0],
2448 &tmp);
2449
2450 BUG_ON(ret);
2451 last_offset = tmp.offset;
2452 goto done;
2453 }
2454 }
2455 done:
2456 *last_offset_ret = last_offset;
2457 btrfs_release_path(root, path);
2458 btrfs_release_path(log, dst_path);
2459
2460 /* insert the log range keys to indicate where the log is valid */
2461 ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2462 first_offset, last_offset);
2463 BUG_ON(ret);
2464 return 0;
2465 }
2466
2467 /*
2468 * logging directories is very similar to logging inodes, We find all the items
2469 * from the current transaction and write them to the log.
2470 *
2471 * The recovery code scans the directory in the subvolume, and if it finds a
2472 * key in the range logged that is not present in the log tree, then it means
2473 * that dir entry was unlinked during the transaction.
2474 *
2475 * In order for that scan to work, we must include one key smaller than
2476 * the smallest logged by this transaction and one key larger than the largest
2477 * key logged by this transaction.
2478 */
2479 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2480 struct btrfs_root *root, struct inode *inode,
2481 struct btrfs_path *path,
2482 struct btrfs_path *dst_path)
2483 {
2484 u64 min_key;
2485 u64 max_key;
2486 int ret;
2487 int key_type = BTRFS_DIR_ITEM_KEY;
2488
2489 again:
2490 min_key = 0;
2491 max_key = 0;
2492 while (1) {
2493 ret = log_dir_items(trans, root, inode, path,
2494 dst_path, key_type, min_key,
2495 &max_key);
2496 BUG_ON(ret);
2497 if (max_key == (u64)-1)
2498 break;
2499 min_key = max_key + 1;
2500 }
2501
2502 if (key_type == BTRFS_DIR_ITEM_KEY) {
2503 key_type = BTRFS_DIR_INDEX_KEY;
2504 goto again;
2505 }
2506 return 0;
2507 }
2508
2509 /*
2510 * a helper function to drop items from the log before we relog an
2511 * inode. max_key_type indicates the highest item type to remove.
2512 * This cannot be run for file data extents because it does not
2513 * free the extents they point to.
2514 */
2515 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2516 struct btrfs_root *log,
2517 struct btrfs_path *path,
2518 u64 objectid, int max_key_type)
2519 {
2520 int ret;
2521 struct btrfs_key key;
2522 struct btrfs_key found_key;
2523
2524 key.objectid = objectid;
2525 key.type = max_key_type;
2526 key.offset = (u64)-1;
2527
2528 while (1) {
2529 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2530
2531 if (ret != 1)
2532 break;
2533
2534 if (path->slots[0] == 0)
2535 break;
2536
2537 path->slots[0]--;
2538 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2539 path->slots[0]);
2540
2541 if (found_key.objectid != objectid)
2542 break;
2543
2544 ret = btrfs_del_item(trans, log, path);
2545 BUG_ON(ret);
2546 btrfs_release_path(log, path);
2547 }
2548 btrfs_release_path(log, path);
2549 return 0;
2550 }
2551
2552 static noinline int copy_items(struct btrfs_trans_handle *trans,
2553 struct btrfs_root *log,
2554 struct btrfs_path *dst_path,
2555 struct extent_buffer *src,
2556 int start_slot, int nr, int inode_only)
2557 {
2558 unsigned long src_offset;
2559 unsigned long dst_offset;
2560 struct btrfs_file_extent_item *extent;
2561 struct btrfs_inode_item *inode_item;
2562 int ret;
2563 struct btrfs_key *ins_keys;
2564 u32 *ins_sizes;
2565 char *ins_data;
2566 int i;
2567 struct list_head ordered_sums;
2568
2569 INIT_LIST_HEAD(&ordered_sums);
2570
2571 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2572 nr * sizeof(u32), GFP_NOFS);
2573 ins_sizes = (u32 *)ins_data;
2574 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2575
2576 for (i = 0; i < nr; i++) {
2577 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2578 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2579 }
2580 ret = btrfs_insert_empty_items(trans, log, dst_path,
2581 ins_keys, ins_sizes, nr);
2582 BUG_ON(ret);
2583
2584 for (i = 0; i < nr; i++) {
2585 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2586 dst_path->slots[0]);
2587
2588 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2589
2590 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2591 src_offset, ins_sizes[i]);
2592
2593 if (inode_only == LOG_INODE_EXISTS &&
2594 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2595 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2596 dst_path->slots[0],
2597 struct btrfs_inode_item);
2598 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2599
2600 /* set the generation to zero so the recover code
2601 * can tell the difference between an logging
2602 * just to say 'this inode exists' and a logging
2603 * to say 'update this inode with these values'
2604 */
2605 btrfs_set_inode_generation(dst_path->nodes[0],
2606 inode_item, 0);
2607 }
2608 /* take a reference on file data extents so that truncates
2609 * or deletes of this inode don't have to relog the inode
2610 * again
2611 */
2612 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2613 int found_type;
2614 extent = btrfs_item_ptr(src, start_slot + i,
2615 struct btrfs_file_extent_item);
2616
2617 found_type = btrfs_file_extent_type(src, extent);
2618 if (found_type == BTRFS_FILE_EXTENT_REG ||
2619 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2620 u64 ds = btrfs_file_extent_disk_bytenr(src,
2621 extent);
2622 u64 dl = btrfs_file_extent_disk_num_bytes(src,
2623 extent);
2624 u64 cs = btrfs_file_extent_offset(src, extent);
2625 u64 cl = btrfs_file_extent_num_bytes(src,
2626 extent);;
2627 if (btrfs_file_extent_compression(src,
2628 extent)) {
2629 cs = 0;
2630 cl = dl;
2631 }
2632 /* ds == 0 is a hole */
2633 if (ds != 0) {
2634 ret = btrfs_inc_extent_ref(trans, log,
2635 ds, dl,
2636 dst_path->nodes[0]->start,
2637 BTRFS_TREE_LOG_OBJECTID,
2638 trans->transid,
2639 ins_keys[i].objectid);
2640 BUG_ON(ret);
2641 ret = btrfs_lookup_csums_range(
2642 log->fs_info->csum_root,
2643 ds + cs, ds + cs + cl - 1,
2644 &ordered_sums);
2645 BUG_ON(ret);
2646 }
2647 }
2648 }
2649 dst_path->slots[0]++;
2650 }
2651
2652 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2653 btrfs_release_path(log, dst_path);
2654 kfree(ins_data);
2655
2656 /*
2657 * we have to do this after the loop above to avoid changing the
2658 * log tree while trying to change the log tree.
2659 */
2660 while (!list_empty(&ordered_sums)) {
2661 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2662 struct btrfs_ordered_sum,
2663 list);
2664 ret = btrfs_csum_file_blocks(trans, log, sums);
2665 BUG_ON(ret);
2666 list_del(&sums->list);
2667 kfree(sums);
2668 }
2669 return 0;
2670 }
2671
2672 /* log a single inode in the tree log.
2673 * At least one parent directory for this inode must exist in the tree
2674 * or be logged already.
2675 *
2676 * Any items from this inode changed by the current transaction are copied
2677 * to the log tree. An extra reference is taken on any extents in this
2678 * file, allowing us to avoid a whole pile of corner cases around logging
2679 * blocks that have been removed from the tree.
2680 *
2681 * See LOG_INODE_ALL and related defines for a description of what inode_only
2682 * does.
2683 *
2684 * This handles both files and directories.
2685 */
2686 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2687 struct btrfs_root *root, struct inode *inode,
2688 int inode_only)
2689 {
2690 struct btrfs_path *path;
2691 struct btrfs_path *dst_path;
2692 struct btrfs_key min_key;
2693 struct btrfs_key max_key;
2694 struct btrfs_root *log = root->log_root;
2695 struct extent_buffer *src = NULL;
2696 u32 size;
2697 int ret;
2698 int nritems;
2699 int ins_start_slot = 0;
2700 int ins_nr;
2701
2702 log = root->log_root;
2703
2704 path = btrfs_alloc_path();
2705 dst_path = btrfs_alloc_path();
2706
2707 min_key.objectid = inode->i_ino;
2708 min_key.type = BTRFS_INODE_ITEM_KEY;
2709 min_key.offset = 0;
2710
2711 max_key.objectid = inode->i_ino;
2712
2713 /* today the code can only do partial logging of directories */
2714 if (!S_ISDIR(inode->i_mode))
2715 inode_only = LOG_INODE_ALL;
2716
2717 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2718 max_key.type = BTRFS_XATTR_ITEM_KEY;
2719 else
2720 max_key.type = (u8)-1;
2721 max_key.offset = (u64)-1;
2722
2723 mutex_lock(&BTRFS_I(inode)->log_mutex);
2724
2725 /*
2726 * a brute force approach to making sure we get the most uptodate
2727 * copies of everything.
2728 */
2729 if (S_ISDIR(inode->i_mode)) {
2730 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2731
2732 if (inode_only == LOG_INODE_EXISTS)
2733 max_key_type = BTRFS_XATTR_ITEM_KEY;
2734 ret = drop_objectid_items(trans, log, path,
2735 inode->i_ino, max_key_type);
2736 } else {
2737 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2738 }
2739 BUG_ON(ret);
2740 path->keep_locks = 1;
2741
2742 while (1) {
2743 ins_nr = 0;
2744 ret = btrfs_search_forward(root, &min_key, &max_key,
2745 path, 0, trans->transid);
2746 if (ret != 0)
2747 break;
2748 again:
2749 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2750 if (min_key.objectid != inode->i_ino)
2751 break;
2752 if (min_key.type > max_key.type)
2753 break;
2754
2755 src = path->nodes[0];
2756 size = btrfs_item_size_nr(src, path->slots[0]);
2757 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2758 ins_nr++;
2759 goto next_slot;
2760 } else if (!ins_nr) {
2761 ins_start_slot = path->slots[0];
2762 ins_nr = 1;
2763 goto next_slot;
2764 }
2765
2766 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2767 ins_nr, inode_only);
2768 BUG_ON(ret);
2769 ins_nr = 1;
2770 ins_start_slot = path->slots[0];
2771 next_slot:
2772
2773 nritems = btrfs_header_nritems(path->nodes[0]);
2774 path->slots[0]++;
2775 if (path->slots[0] < nritems) {
2776 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2777 path->slots[0]);
2778 goto again;
2779 }
2780 if (ins_nr) {
2781 ret = copy_items(trans, log, dst_path, src,
2782 ins_start_slot,
2783 ins_nr, inode_only);
2784 BUG_ON(ret);
2785 ins_nr = 0;
2786 }
2787 btrfs_release_path(root, path);
2788
2789 if (min_key.offset < (u64)-1)
2790 min_key.offset++;
2791 else if (min_key.type < (u8)-1)
2792 min_key.type++;
2793 else if (min_key.objectid < (u64)-1)
2794 min_key.objectid++;
2795 else
2796 break;
2797 }
2798 if (ins_nr) {
2799 ret = copy_items(trans, log, dst_path, src,
2800 ins_start_slot,
2801 ins_nr, inode_only);
2802 BUG_ON(ret);
2803 ins_nr = 0;
2804 }
2805 WARN_ON(ins_nr);
2806 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2807 btrfs_release_path(root, path);
2808 btrfs_release_path(log, dst_path);
2809 ret = log_directory_changes(trans, root, inode, path, dst_path);
2810 BUG_ON(ret);
2811 }
2812 BTRFS_I(inode)->logged_trans = trans->transid;
2813 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2814
2815 btrfs_free_path(path);
2816 btrfs_free_path(dst_path);
2817 return 0;
2818 }
2819
2820 /*
2821 * follow the dentry parent pointers up the chain and see if any
2822 * of the directories in it require a full commit before they can
2823 * be logged. Returns zero if nothing special needs to be done or 1 if
2824 * a full commit is required.
2825 */
2826 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2827 struct inode *inode,
2828 struct dentry *parent,
2829 struct super_block *sb,
2830 u64 last_committed)
2831 {
2832 int ret = 0;
2833 struct btrfs_root *root;
2834
2835 /*
2836 * for regular files, if its inode is already on disk, we don't
2837 * have to worry about the parents at all. This is because
2838 * we can use the last_unlink_trans field to record renames
2839 * and other fun in this file.
2840 */
2841 if (S_ISREG(inode->i_mode) &&
2842 BTRFS_I(inode)->generation <= last_committed &&
2843 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2844 goto out;
2845
2846 if (!S_ISDIR(inode->i_mode)) {
2847 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2848 goto out;
2849 inode = parent->d_inode;
2850 }
2851
2852 while (1) {
2853 BTRFS_I(inode)->logged_trans = trans->transid;
2854 smp_mb();
2855
2856 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2857 root = BTRFS_I(inode)->root;
2858
2859 /*
2860 * make sure any commits to the log are forced
2861 * to be full commits
2862 */
2863 root->fs_info->last_trans_log_full_commit =
2864 trans->transid;
2865 ret = 1;
2866 break;
2867 }
2868
2869 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2870 break;
2871
2872 if (parent == sb->s_root)
2873 break;
2874
2875 parent = parent->d_parent;
2876 inode = parent->d_inode;
2877
2878 }
2879 out:
2880 return ret;
2881 }
2882
2883 /*
2884 * helper function around btrfs_log_inode to make sure newly created
2885 * parent directories also end up in the log. A minimal inode and backref
2886 * only logging is done of any parent directories that are older than
2887 * the last committed transaction
2888 */
2889 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2890 struct btrfs_root *root, struct inode *inode,
2891 struct dentry *parent, int exists_only)
2892 {
2893 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
2894 struct super_block *sb;
2895 int ret = 0;
2896 u64 last_committed = root->fs_info->last_trans_committed;
2897
2898 sb = inode->i_sb;
2899
2900 if (btrfs_test_opt(root, NOTREELOG)) {
2901 ret = 1;
2902 goto end_no_trans;
2903 }
2904
2905 if (root->fs_info->last_trans_log_full_commit >
2906 root->fs_info->last_trans_committed) {
2907 ret = 1;
2908 goto end_no_trans;
2909 }
2910
2911 ret = check_parent_dirs_for_sync(trans, inode, parent,
2912 sb, last_committed);
2913 if (ret)
2914 goto end_no_trans;
2915
2916 start_log_trans(trans, root);
2917
2918 ret = btrfs_log_inode(trans, root, inode, inode_only);
2919 BUG_ON(ret);
2920
2921 /*
2922 * for regular files, if its inode is already on disk, we don't
2923 * have to worry about the parents at all. This is because
2924 * we can use the last_unlink_trans field to record renames
2925 * and other fun in this file.
2926 */
2927 if (S_ISREG(inode->i_mode) &&
2928 BTRFS_I(inode)->generation <= last_committed &&
2929 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2930 goto no_parent;
2931
2932 inode_only = LOG_INODE_EXISTS;
2933 while (1) {
2934 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2935 break;
2936
2937 inode = parent->d_inode;
2938 if (BTRFS_I(inode)->generation >
2939 root->fs_info->last_trans_committed) {
2940 ret = btrfs_log_inode(trans, root, inode, inode_only);
2941 BUG_ON(ret);
2942 }
2943 if (parent == sb->s_root)
2944 break;
2945
2946 parent = parent->d_parent;
2947 }
2948 no_parent:
2949 ret = 0;
2950 btrfs_end_log_trans(root);
2951 end_no_trans:
2952 return ret;
2953 }
2954
2955 /*
2956 * it is not safe to log dentry if the chunk root has added new
2957 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2958 * If this returns 1, you must commit the transaction to safely get your
2959 * data on disk.
2960 */
2961 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2962 struct btrfs_root *root, struct dentry *dentry)
2963 {
2964 return btrfs_log_inode_parent(trans, root, dentry->d_inode,
2965 dentry->d_parent, 0);
2966 }
2967
2968 /*
2969 * should be called during mount to recover any replay any log trees
2970 * from the FS
2971 */
2972 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2973 {
2974 int ret;
2975 struct btrfs_path *path;
2976 struct btrfs_trans_handle *trans;
2977 struct btrfs_key key;
2978 struct btrfs_key found_key;
2979 struct btrfs_key tmp_key;
2980 struct btrfs_root *log;
2981 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
2982 u64 highest_inode;
2983 struct walk_control wc = {
2984 .process_func = process_one_buffer,
2985 .stage = 0,
2986 };
2987
2988 fs_info->log_root_recovering = 1;
2989 path = btrfs_alloc_path();
2990 BUG_ON(!path);
2991
2992 trans = btrfs_start_transaction(fs_info->tree_root, 1);
2993
2994 wc.trans = trans;
2995 wc.pin = 1;
2996
2997 walk_log_tree(trans, log_root_tree, &wc);
2998
2999 again:
3000 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3001 key.offset = (u64)-1;
3002 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3003
3004 while (1) {
3005 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3006 if (ret < 0)
3007 break;
3008 if (ret > 0) {
3009 if (path->slots[0] == 0)
3010 break;
3011 path->slots[0]--;
3012 }
3013 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3014 path->slots[0]);
3015 btrfs_release_path(log_root_tree, path);
3016 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3017 break;
3018
3019 log = btrfs_read_fs_root_no_radix(log_root_tree,
3020 &found_key);
3021 BUG_ON(!log);
3022
3023
3024 tmp_key.objectid = found_key.offset;
3025 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3026 tmp_key.offset = (u64)-1;
3027
3028 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3029 BUG_ON(!wc.replay_dest);
3030
3031 wc.replay_dest->log_root = log;
3032 mutex_lock(&fs_info->trans_mutex);
3033 btrfs_record_root_in_trans(wc.replay_dest);
3034 mutex_unlock(&fs_info->trans_mutex);
3035 ret = walk_log_tree(trans, log, &wc);
3036 BUG_ON(ret);
3037
3038 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3039 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3040 path);
3041 BUG_ON(ret);
3042 }
3043 ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
3044 if (ret == 0) {
3045 wc.replay_dest->highest_inode = highest_inode;
3046 wc.replay_dest->last_inode_alloc = highest_inode;
3047 }
3048
3049 key.offset = found_key.offset - 1;
3050 wc.replay_dest->log_root = NULL;
3051 free_extent_buffer(log->node);
3052 kfree(log);
3053
3054 if (found_key.offset == 0)
3055 break;
3056 }
3057 btrfs_release_path(log_root_tree, path);
3058
3059 /* step one is to pin it all, step two is to replay just inodes */
3060 if (wc.pin) {
3061 wc.pin = 0;
3062 wc.process_func = replay_one_buffer;
3063 wc.stage = LOG_WALK_REPLAY_INODES;
3064 goto again;
3065 }
3066 /* step three is to replay everything */
3067 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3068 wc.stage++;
3069 goto again;
3070 }
3071
3072 btrfs_free_path(path);
3073
3074 free_extent_buffer(log_root_tree->node);
3075 log_root_tree->log_root = NULL;
3076 fs_info->log_root_recovering = 0;
3077
3078 /* step 4: commit the transaction, which also unpins the blocks */
3079 btrfs_commit_transaction(trans, fs_info->tree_root);
3080
3081 kfree(log_root_tree);
3082 return 0;
3083 }
3084
3085 /*
3086 * there are some corner cases where we want to force a full
3087 * commit instead of allowing a directory to be logged.
3088 *
3089 * They revolve around files there were unlinked from the directory, and
3090 * this function updates the parent directory so that a full commit is
3091 * properly done if it is fsync'd later after the unlinks are done.
3092 */
3093 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3094 struct inode *dir, struct inode *inode,
3095 int for_rename)
3096 {
3097 /*
3098 * when we're logging a file, if it hasn't been renamed
3099 * or unlinked, and its inode is fully committed on disk,
3100 * we don't have to worry about walking up the directory chain
3101 * to log its parents.
3102 *
3103 * So, we use the last_unlink_trans field to put this transid
3104 * into the file. When the file is logged we check it and
3105 * don't log the parents if the file is fully on disk.
3106 */
3107 if (S_ISREG(inode->i_mode))
3108 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3109
3110 /*
3111 * if this directory was already logged any new
3112 * names for this file/dir will get recorded
3113 */
3114 smp_mb();
3115 if (BTRFS_I(dir)->logged_trans == trans->transid)
3116 return;
3117
3118 /*
3119 * if the inode we're about to unlink was logged,
3120 * the log will be properly updated for any new names
3121 */
3122 if (BTRFS_I(inode)->logged_trans == trans->transid)
3123 return;
3124
3125 /*
3126 * when renaming files across directories, if the directory
3127 * there we're unlinking from gets fsync'd later on, there's
3128 * no way to find the destination directory later and fsync it
3129 * properly. So, we have to be conservative and force commits
3130 * so the new name gets discovered.
3131 */
3132 if (for_rename)
3133 goto record;
3134
3135 /* we can safely do the unlink without any special recording */
3136 return;
3137
3138 record:
3139 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3140 }
3141
3142 /*
3143 * Call this after adding a new name for a file and it will properly
3144 * update the log to reflect the new name.
3145 *
3146 * It will return zero if all goes well, and it will return 1 if a
3147 * full transaction commit is required.
3148 */
3149 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3150 struct inode *inode, struct inode *old_dir,
3151 struct dentry *parent)
3152 {
3153 struct btrfs_root * root = BTRFS_I(inode)->root;
3154
3155 /*
3156 * this will force the logging code to walk the dentry chain
3157 * up for the file
3158 */
3159 if (S_ISREG(inode->i_mode))
3160 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3161
3162 /*
3163 * if this inode hasn't been logged and directory we're renaming it
3164 * from hasn't been logged, we don't need to log it
3165 */
3166 if (BTRFS_I(inode)->logged_trans <=
3167 root->fs_info->last_trans_committed &&
3168 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3169 root->fs_info->last_trans_committed))
3170 return 0;
3171
3172 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3173 }
3174
This page took 0.151651 seconds and 5 git commands to generate.