btrfs: cleanup for open-coded alignment
[deliverable/linux.git] / fs / btrfs / tree-log.c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/list_sort.h>
22 #include "ctree.h"
23 #include "transaction.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "compat.h"
29 #include "tree-log.h"
30 #include "hash.h"
31
32 /* magic values for the inode_only field in btrfs_log_inode:
33 *
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
37 */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40
41 /*
42 * directory trouble cases
43 *
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
48 *
49 * mkdir foo/some_dir
50 * normal commit
51 * rename foo/some_dir foo2/some_dir
52 * mkdir foo/some_dir
53 * fsync foo/some_dir/some_file
54 *
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
58 *
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
61 *
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
65 *
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
68 *
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
71 *
72 * mkdir f1/foo
73 * normal commit
74 * rm -rf f1/foo
75 * fsync(f1)
76 *
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
81 * ugly details.
82 */
83
84 /*
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
89 *
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
92 */
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_ALL 2
96
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode,
99 int inode_only);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
108
109 /*
110 * tree logging is a special write ahead log used to make sure that
111 * fsyncs and O_SYNCs can happen without doing full tree commits.
112 *
113 * Full tree commits are expensive because they require commonly
114 * modified blocks to be recowed, creating many dirty pages in the
115 * extent tree an 4x-6x higher write load than ext3.
116 *
117 * Instead of doing a tree commit on every fsync, we use the
118 * key ranges and transaction ids to find items for a given file or directory
119 * that have changed in this transaction. Those items are copied into
120 * a special tree (one per subvolume root), that tree is written to disk
121 * and then the fsync is considered complete.
122 *
123 * After a crash, items are copied out of the log-tree back into the
124 * subvolume tree. Any file data extents found are recorded in the extent
125 * allocation tree, and the log-tree freed.
126 *
127 * The log tree is read three times, once to pin down all the extents it is
128 * using in ram and once, once to create all the inodes logged in the tree
129 * and once to do all the other items.
130 */
131
132 /*
133 * start a sub transaction and setup the log tree
134 * this increments the log tree writer count to make the people
135 * syncing the tree wait for us to finish
136 */
137 static int start_log_trans(struct btrfs_trans_handle *trans,
138 struct btrfs_root *root)
139 {
140 int ret;
141 int err = 0;
142
143 mutex_lock(&root->log_mutex);
144 if (root->log_root) {
145 if (!root->log_start_pid) {
146 root->log_start_pid = current->pid;
147 root->log_multiple_pids = false;
148 } else if (root->log_start_pid != current->pid) {
149 root->log_multiple_pids = true;
150 }
151
152 atomic_inc(&root->log_batch);
153 atomic_inc(&root->log_writers);
154 mutex_unlock(&root->log_mutex);
155 return 0;
156 }
157 root->log_multiple_pids = false;
158 root->log_start_pid = current->pid;
159 mutex_lock(&root->fs_info->tree_log_mutex);
160 if (!root->fs_info->log_root_tree) {
161 ret = btrfs_init_log_root_tree(trans, root->fs_info);
162 if (ret)
163 err = ret;
164 }
165 if (err == 0 && !root->log_root) {
166 ret = btrfs_add_log_tree(trans, root);
167 if (ret)
168 err = ret;
169 }
170 mutex_unlock(&root->fs_info->tree_log_mutex);
171 atomic_inc(&root->log_batch);
172 atomic_inc(&root->log_writers);
173 mutex_unlock(&root->log_mutex);
174 return err;
175 }
176
177 /*
178 * returns 0 if there was a log transaction running and we were able
179 * to join, or returns -ENOENT if there were not transactions
180 * in progress
181 */
182 static int join_running_log_trans(struct btrfs_root *root)
183 {
184 int ret = -ENOENT;
185
186 smp_mb();
187 if (!root->log_root)
188 return -ENOENT;
189
190 mutex_lock(&root->log_mutex);
191 if (root->log_root) {
192 ret = 0;
193 atomic_inc(&root->log_writers);
194 }
195 mutex_unlock(&root->log_mutex);
196 return ret;
197 }
198
199 /*
200 * This either makes the current running log transaction wait
201 * until you call btrfs_end_log_trans() or it makes any future
202 * log transactions wait until you call btrfs_end_log_trans()
203 */
204 int btrfs_pin_log_trans(struct btrfs_root *root)
205 {
206 int ret = -ENOENT;
207
208 mutex_lock(&root->log_mutex);
209 atomic_inc(&root->log_writers);
210 mutex_unlock(&root->log_mutex);
211 return ret;
212 }
213
214 /*
215 * indicate we're done making changes to the log tree
216 * and wake up anyone waiting to do a sync
217 */
218 void btrfs_end_log_trans(struct btrfs_root *root)
219 {
220 if (atomic_dec_and_test(&root->log_writers)) {
221 smp_mb();
222 if (waitqueue_active(&root->log_writer_wait))
223 wake_up(&root->log_writer_wait);
224 }
225 }
226
227
228 /*
229 * the walk control struct is used to pass state down the chain when
230 * processing the log tree. The stage field tells us which part
231 * of the log tree processing we are currently doing. The others
232 * are state fields used for that specific part
233 */
234 struct walk_control {
235 /* should we free the extent on disk when done? This is used
236 * at transaction commit time while freeing a log tree
237 */
238 int free;
239
240 /* should we write out the extent buffer? This is used
241 * while flushing the log tree to disk during a sync
242 */
243 int write;
244
245 /* should we wait for the extent buffer io to finish? Also used
246 * while flushing the log tree to disk for a sync
247 */
248 int wait;
249
250 /* pin only walk, we record which extents on disk belong to the
251 * log trees
252 */
253 int pin;
254
255 /* what stage of the replay code we're currently in */
256 int stage;
257
258 /* the root we are currently replaying */
259 struct btrfs_root *replay_dest;
260
261 /* the trans handle for the current replay */
262 struct btrfs_trans_handle *trans;
263
264 /* the function that gets used to process blocks we find in the
265 * tree. Note the extent_buffer might not be up to date when it is
266 * passed in, and it must be checked or read if you need the data
267 * inside it
268 */
269 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
270 struct walk_control *wc, u64 gen);
271 };
272
273 /*
274 * process_func used to pin down extents, write them or wait on them
275 */
276 static int process_one_buffer(struct btrfs_root *log,
277 struct extent_buffer *eb,
278 struct walk_control *wc, u64 gen)
279 {
280 if (wc->pin)
281 btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
282 eb->start, eb->len);
283
284 if (btrfs_buffer_uptodate(eb, gen, 0)) {
285 if (wc->write)
286 btrfs_write_tree_block(eb);
287 if (wc->wait)
288 btrfs_wait_tree_block_writeback(eb);
289 }
290 return 0;
291 }
292
293 /*
294 * Item overwrite used by replay and tree logging. eb, slot and key all refer
295 * to the src data we are copying out.
296 *
297 * root is the tree we are copying into, and path is a scratch
298 * path for use in this function (it should be released on entry and
299 * will be released on exit).
300 *
301 * If the key is already in the destination tree the existing item is
302 * overwritten. If the existing item isn't big enough, it is extended.
303 * If it is too large, it is truncated.
304 *
305 * If the key isn't in the destination yet, a new item is inserted.
306 */
307 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
308 struct btrfs_root *root,
309 struct btrfs_path *path,
310 struct extent_buffer *eb, int slot,
311 struct btrfs_key *key)
312 {
313 int ret;
314 u32 item_size;
315 u64 saved_i_size = 0;
316 int save_old_i_size = 0;
317 unsigned long src_ptr;
318 unsigned long dst_ptr;
319 int overwrite_root = 0;
320
321 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
322 overwrite_root = 1;
323
324 item_size = btrfs_item_size_nr(eb, slot);
325 src_ptr = btrfs_item_ptr_offset(eb, slot);
326
327 /* look for the key in the destination tree */
328 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
329 if (ret == 0) {
330 char *src_copy;
331 char *dst_copy;
332 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
333 path->slots[0]);
334 if (dst_size != item_size)
335 goto insert;
336
337 if (item_size == 0) {
338 btrfs_release_path(path);
339 return 0;
340 }
341 dst_copy = kmalloc(item_size, GFP_NOFS);
342 src_copy = kmalloc(item_size, GFP_NOFS);
343 if (!dst_copy || !src_copy) {
344 btrfs_release_path(path);
345 kfree(dst_copy);
346 kfree(src_copy);
347 return -ENOMEM;
348 }
349
350 read_extent_buffer(eb, src_copy, src_ptr, item_size);
351
352 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
353 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
354 item_size);
355 ret = memcmp(dst_copy, src_copy, item_size);
356
357 kfree(dst_copy);
358 kfree(src_copy);
359 /*
360 * they have the same contents, just return, this saves
361 * us from cowing blocks in the destination tree and doing
362 * extra writes that may not have been done by a previous
363 * sync
364 */
365 if (ret == 0) {
366 btrfs_release_path(path);
367 return 0;
368 }
369
370 }
371 insert:
372 btrfs_release_path(path);
373 /* try to insert the key into the destination tree */
374 ret = btrfs_insert_empty_item(trans, root, path,
375 key, item_size);
376
377 /* make sure any existing item is the correct size */
378 if (ret == -EEXIST) {
379 u32 found_size;
380 found_size = btrfs_item_size_nr(path->nodes[0],
381 path->slots[0]);
382 if (found_size > item_size)
383 btrfs_truncate_item(trans, root, path, item_size, 1);
384 else if (found_size < item_size)
385 btrfs_extend_item(trans, root, path,
386 item_size - found_size);
387 } else if (ret) {
388 return ret;
389 }
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
391 path->slots[0]);
392
393 /* don't overwrite an existing inode if the generation number
394 * was logged as zero. This is done when the tree logging code
395 * is just logging an inode to make sure it exists after recovery.
396 *
397 * Also, don't overwrite i_size on directories during replay.
398 * log replay inserts and removes directory items based on the
399 * state of the tree found in the subvolume, and i_size is modified
400 * as it goes
401 */
402 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
403 struct btrfs_inode_item *src_item;
404 struct btrfs_inode_item *dst_item;
405
406 src_item = (struct btrfs_inode_item *)src_ptr;
407 dst_item = (struct btrfs_inode_item *)dst_ptr;
408
409 if (btrfs_inode_generation(eb, src_item) == 0)
410 goto no_copy;
411
412 if (overwrite_root &&
413 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
414 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
415 save_old_i_size = 1;
416 saved_i_size = btrfs_inode_size(path->nodes[0],
417 dst_item);
418 }
419 }
420
421 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
422 src_ptr, item_size);
423
424 if (save_old_i_size) {
425 struct btrfs_inode_item *dst_item;
426 dst_item = (struct btrfs_inode_item *)dst_ptr;
427 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
428 }
429
430 /* make sure the generation is filled in */
431 if (key->type == BTRFS_INODE_ITEM_KEY) {
432 struct btrfs_inode_item *dst_item;
433 dst_item = (struct btrfs_inode_item *)dst_ptr;
434 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
435 btrfs_set_inode_generation(path->nodes[0], dst_item,
436 trans->transid);
437 }
438 }
439 no_copy:
440 btrfs_mark_buffer_dirty(path->nodes[0]);
441 btrfs_release_path(path);
442 return 0;
443 }
444
445 /*
446 * simple helper to read an inode off the disk from a given root
447 * This can only be called for subvolume roots and not for the log
448 */
449 static noinline struct inode *read_one_inode(struct btrfs_root *root,
450 u64 objectid)
451 {
452 struct btrfs_key key;
453 struct inode *inode;
454
455 key.objectid = objectid;
456 key.type = BTRFS_INODE_ITEM_KEY;
457 key.offset = 0;
458 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
459 if (IS_ERR(inode)) {
460 inode = NULL;
461 } else if (is_bad_inode(inode)) {
462 iput(inode);
463 inode = NULL;
464 }
465 return inode;
466 }
467
468 /* replays a single extent in 'eb' at 'slot' with 'key' into the
469 * subvolume 'root'. path is released on entry and should be released
470 * on exit.
471 *
472 * extents in the log tree have not been allocated out of the extent
473 * tree yet. So, this completes the allocation, taking a reference
474 * as required if the extent already exists or creating a new extent
475 * if it isn't in the extent allocation tree yet.
476 *
477 * The extent is inserted into the file, dropping any existing extents
478 * from the file that overlap the new one.
479 */
480 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
481 struct btrfs_root *root,
482 struct btrfs_path *path,
483 struct extent_buffer *eb, int slot,
484 struct btrfs_key *key)
485 {
486 int found_type;
487 u64 extent_end;
488 u64 start = key->offset;
489 u64 saved_nbytes;
490 struct btrfs_file_extent_item *item;
491 struct inode *inode = NULL;
492 unsigned long size;
493 int ret = 0;
494
495 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
496 found_type = btrfs_file_extent_type(eb, item);
497
498 if (found_type == BTRFS_FILE_EXTENT_REG ||
499 found_type == BTRFS_FILE_EXTENT_PREALLOC)
500 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
501 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
502 size = btrfs_file_extent_inline_len(eb, item);
503 extent_end = ALIGN(start + size, root->sectorsize);
504 } else {
505 ret = 0;
506 goto out;
507 }
508
509 inode = read_one_inode(root, key->objectid);
510 if (!inode) {
511 ret = -EIO;
512 goto out;
513 }
514
515 /*
516 * first check to see if we already have this extent in the
517 * file. This must be done before the btrfs_drop_extents run
518 * so we don't try to drop this extent.
519 */
520 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
521 start, 0);
522
523 if (ret == 0 &&
524 (found_type == BTRFS_FILE_EXTENT_REG ||
525 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
526 struct btrfs_file_extent_item cmp1;
527 struct btrfs_file_extent_item cmp2;
528 struct btrfs_file_extent_item *existing;
529 struct extent_buffer *leaf;
530
531 leaf = path->nodes[0];
532 existing = btrfs_item_ptr(leaf, path->slots[0],
533 struct btrfs_file_extent_item);
534
535 read_extent_buffer(eb, &cmp1, (unsigned long)item,
536 sizeof(cmp1));
537 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
538 sizeof(cmp2));
539
540 /*
541 * we already have a pointer to this exact extent,
542 * we don't have to do anything
543 */
544 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
545 btrfs_release_path(path);
546 goto out;
547 }
548 }
549 btrfs_release_path(path);
550
551 saved_nbytes = inode_get_bytes(inode);
552 /* drop any overlapping extents */
553 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
554 BUG_ON(ret);
555
556 if (found_type == BTRFS_FILE_EXTENT_REG ||
557 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
558 u64 offset;
559 unsigned long dest_offset;
560 struct btrfs_key ins;
561
562 ret = btrfs_insert_empty_item(trans, root, path, key,
563 sizeof(*item));
564 BUG_ON(ret);
565 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
566 path->slots[0]);
567 copy_extent_buffer(path->nodes[0], eb, dest_offset,
568 (unsigned long)item, sizeof(*item));
569
570 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
571 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
572 ins.type = BTRFS_EXTENT_ITEM_KEY;
573 offset = key->offset - btrfs_file_extent_offset(eb, item);
574
575 if (ins.objectid > 0) {
576 u64 csum_start;
577 u64 csum_end;
578 LIST_HEAD(ordered_sums);
579 /*
580 * is this extent already allocated in the extent
581 * allocation tree? If so, just add a reference
582 */
583 ret = btrfs_lookup_extent(root, ins.objectid,
584 ins.offset);
585 if (ret == 0) {
586 ret = btrfs_inc_extent_ref(trans, root,
587 ins.objectid, ins.offset,
588 0, root->root_key.objectid,
589 key->objectid, offset, 0);
590 BUG_ON(ret);
591 } else {
592 /*
593 * insert the extent pointer in the extent
594 * allocation tree
595 */
596 ret = btrfs_alloc_logged_file_extent(trans,
597 root, root->root_key.objectid,
598 key->objectid, offset, &ins);
599 BUG_ON(ret);
600 }
601 btrfs_release_path(path);
602
603 if (btrfs_file_extent_compression(eb, item)) {
604 csum_start = ins.objectid;
605 csum_end = csum_start + ins.offset;
606 } else {
607 csum_start = ins.objectid +
608 btrfs_file_extent_offset(eb, item);
609 csum_end = csum_start +
610 btrfs_file_extent_num_bytes(eb, item);
611 }
612
613 ret = btrfs_lookup_csums_range(root->log_root,
614 csum_start, csum_end - 1,
615 &ordered_sums, 0);
616 BUG_ON(ret);
617 while (!list_empty(&ordered_sums)) {
618 struct btrfs_ordered_sum *sums;
619 sums = list_entry(ordered_sums.next,
620 struct btrfs_ordered_sum,
621 list);
622 ret = btrfs_csum_file_blocks(trans,
623 root->fs_info->csum_root,
624 sums);
625 BUG_ON(ret);
626 list_del(&sums->list);
627 kfree(sums);
628 }
629 } else {
630 btrfs_release_path(path);
631 }
632 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
633 /* inline extents are easy, we just overwrite them */
634 ret = overwrite_item(trans, root, path, eb, slot, key);
635 BUG_ON(ret);
636 }
637
638 inode_set_bytes(inode, saved_nbytes);
639 ret = btrfs_update_inode(trans, root, inode);
640 out:
641 if (inode)
642 iput(inode);
643 return ret;
644 }
645
646 /*
647 * when cleaning up conflicts between the directory names in the
648 * subvolume, directory names in the log and directory names in the
649 * inode back references, we may have to unlink inodes from directories.
650 *
651 * This is a helper function to do the unlink of a specific directory
652 * item
653 */
654 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
655 struct btrfs_root *root,
656 struct btrfs_path *path,
657 struct inode *dir,
658 struct btrfs_dir_item *di)
659 {
660 struct inode *inode;
661 char *name;
662 int name_len;
663 struct extent_buffer *leaf;
664 struct btrfs_key location;
665 int ret;
666
667 leaf = path->nodes[0];
668
669 btrfs_dir_item_key_to_cpu(leaf, di, &location);
670 name_len = btrfs_dir_name_len(leaf, di);
671 name = kmalloc(name_len, GFP_NOFS);
672 if (!name)
673 return -ENOMEM;
674
675 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
676 btrfs_release_path(path);
677
678 inode = read_one_inode(root, location.objectid);
679 if (!inode) {
680 kfree(name);
681 return -EIO;
682 }
683
684 ret = link_to_fixup_dir(trans, root, path, location.objectid);
685 BUG_ON(ret);
686
687 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
688 BUG_ON(ret);
689 kfree(name);
690
691 iput(inode);
692
693 btrfs_run_delayed_items(trans, root);
694 return ret;
695 }
696
697 /*
698 * helper function to see if a given name and sequence number found
699 * in an inode back reference are already in a directory and correctly
700 * point to this inode
701 */
702 static noinline int inode_in_dir(struct btrfs_root *root,
703 struct btrfs_path *path,
704 u64 dirid, u64 objectid, u64 index,
705 const char *name, int name_len)
706 {
707 struct btrfs_dir_item *di;
708 struct btrfs_key location;
709 int match = 0;
710
711 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
712 index, name, name_len, 0);
713 if (di && !IS_ERR(di)) {
714 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
715 if (location.objectid != objectid)
716 goto out;
717 } else
718 goto out;
719 btrfs_release_path(path);
720
721 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
722 if (di && !IS_ERR(di)) {
723 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
724 if (location.objectid != objectid)
725 goto out;
726 } else
727 goto out;
728 match = 1;
729 out:
730 btrfs_release_path(path);
731 return match;
732 }
733
734 /*
735 * helper function to check a log tree for a named back reference in
736 * an inode. This is used to decide if a back reference that is
737 * found in the subvolume conflicts with what we find in the log.
738 *
739 * inode backreferences may have multiple refs in a single item,
740 * during replay we process one reference at a time, and we don't
741 * want to delete valid links to a file from the subvolume if that
742 * link is also in the log.
743 */
744 static noinline int backref_in_log(struct btrfs_root *log,
745 struct btrfs_key *key,
746 u64 ref_objectid,
747 char *name, int namelen)
748 {
749 struct btrfs_path *path;
750 struct btrfs_inode_ref *ref;
751 unsigned long ptr;
752 unsigned long ptr_end;
753 unsigned long name_ptr;
754 int found_name_len;
755 int item_size;
756 int ret;
757 int match = 0;
758
759 path = btrfs_alloc_path();
760 if (!path)
761 return -ENOMEM;
762
763 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
764 if (ret != 0)
765 goto out;
766
767 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
768
769 if (key->type == BTRFS_INODE_EXTREF_KEY) {
770 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
771 name, namelen, NULL))
772 match = 1;
773
774 goto out;
775 }
776
777 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
778 ptr_end = ptr + item_size;
779 while (ptr < ptr_end) {
780 ref = (struct btrfs_inode_ref *)ptr;
781 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
782 if (found_name_len == namelen) {
783 name_ptr = (unsigned long)(ref + 1);
784 ret = memcmp_extent_buffer(path->nodes[0], name,
785 name_ptr, namelen);
786 if (ret == 0) {
787 match = 1;
788 goto out;
789 }
790 }
791 ptr = (unsigned long)(ref + 1) + found_name_len;
792 }
793 out:
794 btrfs_free_path(path);
795 return match;
796 }
797
798 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
799 struct btrfs_root *root,
800 struct btrfs_path *path,
801 struct btrfs_root *log_root,
802 struct inode *dir, struct inode *inode,
803 struct extent_buffer *eb,
804 u64 inode_objectid, u64 parent_objectid,
805 u64 ref_index, char *name, int namelen,
806 int *search_done)
807 {
808 int ret;
809 char *victim_name;
810 int victim_name_len;
811 struct extent_buffer *leaf;
812 struct btrfs_dir_item *di;
813 struct btrfs_key search_key;
814 struct btrfs_inode_extref *extref;
815
816 again:
817 /* Search old style refs */
818 search_key.objectid = inode_objectid;
819 search_key.type = BTRFS_INODE_REF_KEY;
820 search_key.offset = parent_objectid;
821 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
822 if (ret == 0) {
823 struct btrfs_inode_ref *victim_ref;
824 unsigned long ptr;
825 unsigned long ptr_end;
826
827 leaf = path->nodes[0];
828
829 /* are we trying to overwrite a back ref for the root directory
830 * if so, just jump out, we're done
831 */
832 if (search_key.objectid == search_key.offset)
833 return 1;
834
835 /* check all the names in this back reference to see
836 * if they are in the log. if so, we allow them to stay
837 * otherwise they must be unlinked as a conflict
838 */
839 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
840 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
841 while (ptr < ptr_end) {
842 victim_ref = (struct btrfs_inode_ref *)ptr;
843 victim_name_len = btrfs_inode_ref_name_len(leaf,
844 victim_ref);
845 victim_name = kmalloc(victim_name_len, GFP_NOFS);
846 BUG_ON(!victim_name);
847
848 read_extent_buffer(leaf, victim_name,
849 (unsigned long)(victim_ref + 1),
850 victim_name_len);
851
852 if (!backref_in_log(log_root, &search_key,
853 parent_objectid,
854 victim_name,
855 victim_name_len)) {
856 btrfs_inc_nlink(inode);
857 btrfs_release_path(path);
858
859 ret = btrfs_unlink_inode(trans, root, dir,
860 inode, victim_name,
861 victim_name_len);
862 BUG_ON(ret);
863 btrfs_run_delayed_items(trans, root);
864 kfree(victim_name);
865 *search_done = 1;
866 goto again;
867 }
868 kfree(victim_name);
869
870 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
871 }
872 BUG_ON(ret);
873
874 /*
875 * NOTE: we have searched root tree and checked the
876 * coresponding ref, it does not need to check again.
877 */
878 *search_done = 1;
879 }
880 btrfs_release_path(path);
881
882 /* Same search but for extended refs */
883 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
884 inode_objectid, parent_objectid, 0,
885 0);
886 if (!IS_ERR_OR_NULL(extref)) {
887 u32 item_size;
888 u32 cur_offset = 0;
889 unsigned long base;
890 struct inode *victim_parent;
891
892 leaf = path->nodes[0];
893
894 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
895 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
896
897 while (cur_offset < item_size) {
898 extref = (struct btrfs_inode_extref *)base + cur_offset;
899
900 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
901
902 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
903 goto next;
904
905 victim_name = kmalloc(victim_name_len, GFP_NOFS);
906 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
907 victim_name_len);
908
909 search_key.objectid = inode_objectid;
910 search_key.type = BTRFS_INODE_EXTREF_KEY;
911 search_key.offset = btrfs_extref_hash(parent_objectid,
912 victim_name,
913 victim_name_len);
914 ret = 0;
915 if (!backref_in_log(log_root, &search_key,
916 parent_objectid, victim_name,
917 victim_name_len)) {
918 ret = -ENOENT;
919 victim_parent = read_one_inode(root,
920 parent_objectid);
921 if (victim_parent) {
922 btrfs_inc_nlink(inode);
923 btrfs_release_path(path);
924
925 ret = btrfs_unlink_inode(trans, root,
926 victim_parent,
927 inode,
928 victim_name,
929 victim_name_len);
930 btrfs_run_delayed_items(trans, root);
931 }
932 BUG_ON(ret);
933 iput(victim_parent);
934 kfree(victim_name);
935 *search_done = 1;
936 goto again;
937 }
938 kfree(victim_name);
939 BUG_ON(ret);
940 next:
941 cur_offset += victim_name_len + sizeof(*extref);
942 }
943 *search_done = 1;
944 }
945 btrfs_release_path(path);
946
947 /* look for a conflicting sequence number */
948 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
949 ref_index, name, namelen, 0);
950 if (di && !IS_ERR(di)) {
951 ret = drop_one_dir_item(trans, root, path, dir, di);
952 BUG_ON(ret);
953 }
954 btrfs_release_path(path);
955
956 /* look for a conflicing name */
957 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
958 name, namelen, 0);
959 if (di && !IS_ERR(di)) {
960 ret = drop_one_dir_item(trans, root, path, dir, di);
961 BUG_ON(ret);
962 }
963 btrfs_release_path(path);
964
965 return 0;
966 }
967
968 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
969 u32 *namelen, char **name, u64 *index,
970 u64 *parent_objectid)
971 {
972 struct btrfs_inode_extref *extref;
973
974 extref = (struct btrfs_inode_extref *)ref_ptr;
975
976 *namelen = btrfs_inode_extref_name_len(eb, extref);
977 *name = kmalloc(*namelen, GFP_NOFS);
978 if (*name == NULL)
979 return -ENOMEM;
980
981 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
982 *namelen);
983
984 *index = btrfs_inode_extref_index(eb, extref);
985 if (parent_objectid)
986 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
987
988 return 0;
989 }
990
991 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
992 u32 *namelen, char **name, u64 *index)
993 {
994 struct btrfs_inode_ref *ref;
995
996 ref = (struct btrfs_inode_ref *)ref_ptr;
997
998 *namelen = btrfs_inode_ref_name_len(eb, ref);
999 *name = kmalloc(*namelen, GFP_NOFS);
1000 if (*name == NULL)
1001 return -ENOMEM;
1002
1003 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1004
1005 *index = btrfs_inode_ref_index(eb, ref);
1006
1007 return 0;
1008 }
1009
1010 /*
1011 * replay one inode back reference item found in the log tree.
1012 * eb, slot and key refer to the buffer and key found in the log tree.
1013 * root is the destination we are replaying into, and path is for temp
1014 * use by this function. (it should be released on return).
1015 */
1016 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1017 struct btrfs_root *root,
1018 struct btrfs_root *log,
1019 struct btrfs_path *path,
1020 struct extent_buffer *eb, int slot,
1021 struct btrfs_key *key)
1022 {
1023 struct inode *dir;
1024 struct inode *inode;
1025 unsigned long ref_ptr;
1026 unsigned long ref_end;
1027 char *name;
1028 int namelen;
1029 int ret;
1030 int search_done = 0;
1031 int log_ref_ver = 0;
1032 u64 parent_objectid;
1033 u64 inode_objectid;
1034 u64 ref_index = 0;
1035 int ref_struct_size;
1036
1037 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1038 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1039
1040 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1041 struct btrfs_inode_extref *r;
1042
1043 ref_struct_size = sizeof(struct btrfs_inode_extref);
1044 log_ref_ver = 1;
1045 r = (struct btrfs_inode_extref *)ref_ptr;
1046 parent_objectid = btrfs_inode_extref_parent(eb, r);
1047 } else {
1048 ref_struct_size = sizeof(struct btrfs_inode_ref);
1049 parent_objectid = key->offset;
1050 }
1051 inode_objectid = key->objectid;
1052
1053 /*
1054 * it is possible that we didn't log all the parent directories
1055 * for a given inode. If we don't find the dir, just don't
1056 * copy the back ref in. The link count fixup code will take
1057 * care of the rest
1058 */
1059 dir = read_one_inode(root, parent_objectid);
1060 if (!dir)
1061 return -ENOENT;
1062
1063 inode = read_one_inode(root, inode_objectid);
1064 if (!inode) {
1065 iput(dir);
1066 return -EIO;
1067 }
1068
1069 while (ref_ptr < ref_end) {
1070 if (log_ref_ver) {
1071 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1072 &ref_index, &parent_objectid);
1073 /*
1074 * parent object can change from one array
1075 * item to another.
1076 */
1077 if (!dir)
1078 dir = read_one_inode(root, parent_objectid);
1079 if (!dir)
1080 return -ENOENT;
1081 } else {
1082 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1083 &ref_index);
1084 }
1085 if (ret)
1086 return ret;
1087
1088 /* if we already have a perfect match, we're done */
1089 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1090 ref_index, name, namelen)) {
1091 /*
1092 * look for a conflicting back reference in the
1093 * metadata. if we find one we have to unlink that name
1094 * of the file before we add our new link. Later on, we
1095 * overwrite any existing back reference, and we don't
1096 * want to create dangling pointers in the directory.
1097 */
1098
1099 if (!search_done) {
1100 ret = __add_inode_ref(trans, root, path, log,
1101 dir, inode, eb,
1102 inode_objectid,
1103 parent_objectid,
1104 ref_index, name, namelen,
1105 &search_done);
1106 if (ret == 1)
1107 goto out;
1108 BUG_ON(ret);
1109 }
1110
1111 /* insert our name */
1112 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1113 0, ref_index);
1114 BUG_ON(ret);
1115
1116 btrfs_update_inode(trans, root, inode);
1117 }
1118
1119 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1120 kfree(name);
1121 if (log_ref_ver) {
1122 iput(dir);
1123 dir = NULL;
1124 }
1125 }
1126
1127 /* finally write the back reference in the inode */
1128 ret = overwrite_item(trans, root, path, eb, slot, key);
1129 BUG_ON(ret);
1130
1131 out:
1132 btrfs_release_path(path);
1133 iput(dir);
1134 iput(inode);
1135 return 0;
1136 }
1137
1138 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1139 struct btrfs_root *root, u64 offset)
1140 {
1141 int ret;
1142 ret = btrfs_find_orphan_item(root, offset);
1143 if (ret > 0)
1144 ret = btrfs_insert_orphan_item(trans, root, offset);
1145 return ret;
1146 }
1147
1148 static int count_inode_extrefs(struct btrfs_root *root,
1149 struct inode *inode, struct btrfs_path *path)
1150 {
1151 int ret = 0;
1152 int name_len;
1153 unsigned int nlink = 0;
1154 u32 item_size;
1155 u32 cur_offset = 0;
1156 u64 inode_objectid = btrfs_ino(inode);
1157 u64 offset = 0;
1158 unsigned long ptr;
1159 struct btrfs_inode_extref *extref;
1160 struct extent_buffer *leaf;
1161
1162 while (1) {
1163 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1164 &extref, &offset);
1165 if (ret)
1166 break;
1167
1168 leaf = path->nodes[0];
1169 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1170 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1171
1172 while (cur_offset < item_size) {
1173 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1174 name_len = btrfs_inode_extref_name_len(leaf, extref);
1175
1176 nlink++;
1177
1178 cur_offset += name_len + sizeof(*extref);
1179 }
1180
1181 offset++;
1182 btrfs_release_path(path);
1183 }
1184 btrfs_release_path(path);
1185
1186 if (ret < 0)
1187 return ret;
1188 return nlink;
1189 }
1190
1191 static int count_inode_refs(struct btrfs_root *root,
1192 struct inode *inode, struct btrfs_path *path)
1193 {
1194 int ret;
1195 struct btrfs_key key;
1196 unsigned int nlink = 0;
1197 unsigned long ptr;
1198 unsigned long ptr_end;
1199 int name_len;
1200 u64 ino = btrfs_ino(inode);
1201
1202 key.objectid = ino;
1203 key.type = BTRFS_INODE_REF_KEY;
1204 key.offset = (u64)-1;
1205
1206 while (1) {
1207 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1208 if (ret < 0)
1209 break;
1210 if (ret > 0) {
1211 if (path->slots[0] == 0)
1212 break;
1213 path->slots[0]--;
1214 }
1215 btrfs_item_key_to_cpu(path->nodes[0], &key,
1216 path->slots[0]);
1217 if (key.objectid != ino ||
1218 key.type != BTRFS_INODE_REF_KEY)
1219 break;
1220 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1221 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1222 path->slots[0]);
1223 while (ptr < ptr_end) {
1224 struct btrfs_inode_ref *ref;
1225
1226 ref = (struct btrfs_inode_ref *)ptr;
1227 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1228 ref);
1229 ptr = (unsigned long)(ref + 1) + name_len;
1230 nlink++;
1231 }
1232
1233 if (key.offset == 0)
1234 break;
1235 key.offset--;
1236 btrfs_release_path(path);
1237 }
1238 btrfs_release_path(path);
1239
1240 return nlink;
1241 }
1242
1243 /*
1244 * There are a few corners where the link count of the file can't
1245 * be properly maintained during replay. So, instead of adding
1246 * lots of complexity to the log code, we just scan the backrefs
1247 * for any file that has been through replay.
1248 *
1249 * The scan will update the link count on the inode to reflect the
1250 * number of back refs found. If it goes down to zero, the iput
1251 * will free the inode.
1252 */
1253 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1254 struct btrfs_root *root,
1255 struct inode *inode)
1256 {
1257 struct btrfs_path *path;
1258 int ret;
1259 u64 nlink = 0;
1260 u64 ino = btrfs_ino(inode);
1261
1262 path = btrfs_alloc_path();
1263 if (!path)
1264 return -ENOMEM;
1265
1266 ret = count_inode_refs(root, inode, path);
1267 if (ret < 0)
1268 goto out;
1269
1270 nlink = ret;
1271
1272 ret = count_inode_extrefs(root, inode, path);
1273 if (ret == -ENOENT)
1274 ret = 0;
1275
1276 if (ret < 0)
1277 goto out;
1278
1279 nlink += ret;
1280
1281 ret = 0;
1282
1283 if (nlink != inode->i_nlink) {
1284 set_nlink(inode, nlink);
1285 btrfs_update_inode(trans, root, inode);
1286 }
1287 BTRFS_I(inode)->index_cnt = (u64)-1;
1288
1289 if (inode->i_nlink == 0) {
1290 if (S_ISDIR(inode->i_mode)) {
1291 ret = replay_dir_deletes(trans, root, NULL, path,
1292 ino, 1);
1293 BUG_ON(ret);
1294 }
1295 ret = insert_orphan_item(trans, root, ino);
1296 BUG_ON(ret);
1297 }
1298
1299 out:
1300 btrfs_free_path(path);
1301 return ret;
1302 }
1303
1304 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1305 struct btrfs_root *root,
1306 struct btrfs_path *path)
1307 {
1308 int ret;
1309 struct btrfs_key key;
1310 struct inode *inode;
1311
1312 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1313 key.type = BTRFS_ORPHAN_ITEM_KEY;
1314 key.offset = (u64)-1;
1315 while (1) {
1316 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1317 if (ret < 0)
1318 break;
1319
1320 if (ret == 1) {
1321 if (path->slots[0] == 0)
1322 break;
1323 path->slots[0]--;
1324 }
1325
1326 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1327 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1328 key.type != BTRFS_ORPHAN_ITEM_KEY)
1329 break;
1330
1331 ret = btrfs_del_item(trans, root, path);
1332 if (ret)
1333 goto out;
1334
1335 btrfs_release_path(path);
1336 inode = read_one_inode(root, key.offset);
1337 if (!inode)
1338 return -EIO;
1339
1340 ret = fixup_inode_link_count(trans, root, inode);
1341 BUG_ON(ret);
1342
1343 iput(inode);
1344
1345 /*
1346 * fixup on a directory may create new entries,
1347 * make sure we always look for the highset possible
1348 * offset
1349 */
1350 key.offset = (u64)-1;
1351 }
1352 ret = 0;
1353 out:
1354 btrfs_release_path(path);
1355 return ret;
1356 }
1357
1358
1359 /*
1360 * record a given inode in the fixup dir so we can check its link
1361 * count when replay is done. The link count is incremented here
1362 * so the inode won't go away until we check it
1363 */
1364 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1365 struct btrfs_root *root,
1366 struct btrfs_path *path,
1367 u64 objectid)
1368 {
1369 struct btrfs_key key;
1370 int ret = 0;
1371 struct inode *inode;
1372
1373 inode = read_one_inode(root, objectid);
1374 if (!inode)
1375 return -EIO;
1376
1377 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1378 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1379 key.offset = objectid;
1380
1381 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1382
1383 btrfs_release_path(path);
1384 if (ret == 0) {
1385 btrfs_inc_nlink(inode);
1386 ret = btrfs_update_inode(trans, root, inode);
1387 } else if (ret == -EEXIST) {
1388 ret = 0;
1389 } else {
1390 BUG();
1391 }
1392 iput(inode);
1393
1394 return ret;
1395 }
1396
1397 /*
1398 * when replaying the log for a directory, we only insert names
1399 * for inodes that actually exist. This means an fsync on a directory
1400 * does not implicitly fsync all the new files in it
1401 */
1402 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1403 struct btrfs_root *root,
1404 struct btrfs_path *path,
1405 u64 dirid, u64 index,
1406 char *name, int name_len, u8 type,
1407 struct btrfs_key *location)
1408 {
1409 struct inode *inode;
1410 struct inode *dir;
1411 int ret;
1412
1413 inode = read_one_inode(root, location->objectid);
1414 if (!inode)
1415 return -ENOENT;
1416
1417 dir = read_one_inode(root, dirid);
1418 if (!dir) {
1419 iput(inode);
1420 return -EIO;
1421 }
1422 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1423
1424 /* FIXME, put inode into FIXUP list */
1425
1426 iput(inode);
1427 iput(dir);
1428 return ret;
1429 }
1430
1431 /*
1432 * take a single entry in a log directory item and replay it into
1433 * the subvolume.
1434 *
1435 * if a conflicting item exists in the subdirectory already,
1436 * the inode it points to is unlinked and put into the link count
1437 * fix up tree.
1438 *
1439 * If a name from the log points to a file or directory that does
1440 * not exist in the FS, it is skipped. fsyncs on directories
1441 * do not force down inodes inside that directory, just changes to the
1442 * names or unlinks in a directory.
1443 */
1444 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1445 struct btrfs_root *root,
1446 struct btrfs_path *path,
1447 struct extent_buffer *eb,
1448 struct btrfs_dir_item *di,
1449 struct btrfs_key *key)
1450 {
1451 char *name;
1452 int name_len;
1453 struct btrfs_dir_item *dst_di;
1454 struct btrfs_key found_key;
1455 struct btrfs_key log_key;
1456 struct inode *dir;
1457 u8 log_type;
1458 int exists;
1459 int ret;
1460
1461 dir = read_one_inode(root, key->objectid);
1462 if (!dir)
1463 return -EIO;
1464
1465 name_len = btrfs_dir_name_len(eb, di);
1466 name = kmalloc(name_len, GFP_NOFS);
1467 if (!name)
1468 return -ENOMEM;
1469
1470 log_type = btrfs_dir_type(eb, di);
1471 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1472 name_len);
1473
1474 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1475 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1476 if (exists == 0)
1477 exists = 1;
1478 else
1479 exists = 0;
1480 btrfs_release_path(path);
1481
1482 if (key->type == BTRFS_DIR_ITEM_KEY) {
1483 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1484 name, name_len, 1);
1485 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1486 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1487 key->objectid,
1488 key->offset, name,
1489 name_len, 1);
1490 } else {
1491 BUG();
1492 }
1493 if (IS_ERR_OR_NULL(dst_di)) {
1494 /* we need a sequence number to insert, so we only
1495 * do inserts for the BTRFS_DIR_INDEX_KEY types
1496 */
1497 if (key->type != BTRFS_DIR_INDEX_KEY)
1498 goto out;
1499 goto insert;
1500 }
1501
1502 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1503 /* the existing item matches the logged item */
1504 if (found_key.objectid == log_key.objectid &&
1505 found_key.type == log_key.type &&
1506 found_key.offset == log_key.offset &&
1507 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1508 goto out;
1509 }
1510
1511 /*
1512 * don't drop the conflicting directory entry if the inode
1513 * for the new entry doesn't exist
1514 */
1515 if (!exists)
1516 goto out;
1517
1518 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1519 BUG_ON(ret);
1520
1521 if (key->type == BTRFS_DIR_INDEX_KEY)
1522 goto insert;
1523 out:
1524 btrfs_release_path(path);
1525 kfree(name);
1526 iput(dir);
1527 return 0;
1528
1529 insert:
1530 btrfs_release_path(path);
1531 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1532 name, name_len, log_type, &log_key);
1533
1534 BUG_ON(ret && ret != -ENOENT);
1535 goto out;
1536 }
1537
1538 /*
1539 * find all the names in a directory item and reconcile them into
1540 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1541 * one name in a directory item, but the same code gets used for
1542 * both directory index types
1543 */
1544 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1545 struct btrfs_root *root,
1546 struct btrfs_path *path,
1547 struct extent_buffer *eb, int slot,
1548 struct btrfs_key *key)
1549 {
1550 int ret;
1551 u32 item_size = btrfs_item_size_nr(eb, slot);
1552 struct btrfs_dir_item *di;
1553 int name_len;
1554 unsigned long ptr;
1555 unsigned long ptr_end;
1556
1557 ptr = btrfs_item_ptr_offset(eb, slot);
1558 ptr_end = ptr + item_size;
1559 while (ptr < ptr_end) {
1560 di = (struct btrfs_dir_item *)ptr;
1561 if (verify_dir_item(root, eb, di))
1562 return -EIO;
1563 name_len = btrfs_dir_name_len(eb, di);
1564 ret = replay_one_name(trans, root, path, eb, di, key);
1565 BUG_ON(ret);
1566 ptr = (unsigned long)(di + 1);
1567 ptr += name_len;
1568 }
1569 return 0;
1570 }
1571
1572 /*
1573 * directory replay has two parts. There are the standard directory
1574 * items in the log copied from the subvolume, and range items
1575 * created in the log while the subvolume was logged.
1576 *
1577 * The range items tell us which parts of the key space the log
1578 * is authoritative for. During replay, if a key in the subvolume
1579 * directory is in a logged range item, but not actually in the log
1580 * that means it was deleted from the directory before the fsync
1581 * and should be removed.
1582 */
1583 static noinline int find_dir_range(struct btrfs_root *root,
1584 struct btrfs_path *path,
1585 u64 dirid, int key_type,
1586 u64 *start_ret, u64 *end_ret)
1587 {
1588 struct btrfs_key key;
1589 u64 found_end;
1590 struct btrfs_dir_log_item *item;
1591 int ret;
1592 int nritems;
1593
1594 if (*start_ret == (u64)-1)
1595 return 1;
1596
1597 key.objectid = dirid;
1598 key.type = key_type;
1599 key.offset = *start_ret;
1600
1601 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1602 if (ret < 0)
1603 goto out;
1604 if (ret > 0) {
1605 if (path->slots[0] == 0)
1606 goto out;
1607 path->slots[0]--;
1608 }
1609 if (ret != 0)
1610 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1611
1612 if (key.type != key_type || key.objectid != dirid) {
1613 ret = 1;
1614 goto next;
1615 }
1616 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1617 struct btrfs_dir_log_item);
1618 found_end = btrfs_dir_log_end(path->nodes[0], item);
1619
1620 if (*start_ret >= key.offset && *start_ret <= found_end) {
1621 ret = 0;
1622 *start_ret = key.offset;
1623 *end_ret = found_end;
1624 goto out;
1625 }
1626 ret = 1;
1627 next:
1628 /* check the next slot in the tree to see if it is a valid item */
1629 nritems = btrfs_header_nritems(path->nodes[0]);
1630 if (path->slots[0] >= nritems) {
1631 ret = btrfs_next_leaf(root, path);
1632 if (ret)
1633 goto out;
1634 } else {
1635 path->slots[0]++;
1636 }
1637
1638 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1639
1640 if (key.type != key_type || key.objectid != dirid) {
1641 ret = 1;
1642 goto out;
1643 }
1644 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1645 struct btrfs_dir_log_item);
1646 found_end = btrfs_dir_log_end(path->nodes[0], item);
1647 *start_ret = key.offset;
1648 *end_ret = found_end;
1649 ret = 0;
1650 out:
1651 btrfs_release_path(path);
1652 return ret;
1653 }
1654
1655 /*
1656 * this looks for a given directory item in the log. If the directory
1657 * item is not in the log, the item is removed and the inode it points
1658 * to is unlinked
1659 */
1660 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1661 struct btrfs_root *root,
1662 struct btrfs_root *log,
1663 struct btrfs_path *path,
1664 struct btrfs_path *log_path,
1665 struct inode *dir,
1666 struct btrfs_key *dir_key)
1667 {
1668 int ret;
1669 struct extent_buffer *eb;
1670 int slot;
1671 u32 item_size;
1672 struct btrfs_dir_item *di;
1673 struct btrfs_dir_item *log_di;
1674 int name_len;
1675 unsigned long ptr;
1676 unsigned long ptr_end;
1677 char *name;
1678 struct inode *inode;
1679 struct btrfs_key location;
1680
1681 again:
1682 eb = path->nodes[0];
1683 slot = path->slots[0];
1684 item_size = btrfs_item_size_nr(eb, slot);
1685 ptr = btrfs_item_ptr_offset(eb, slot);
1686 ptr_end = ptr + item_size;
1687 while (ptr < ptr_end) {
1688 di = (struct btrfs_dir_item *)ptr;
1689 if (verify_dir_item(root, eb, di)) {
1690 ret = -EIO;
1691 goto out;
1692 }
1693
1694 name_len = btrfs_dir_name_len(eb, di);
1695 name = kmalloc(name_len, GFP_NOFS);
1696 if (!name) {
1697 ret = -ENOMEM;
1698 goto out;
1699 }
1700 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1701 name_len);
1702 log_di = NULL;
1703 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1704 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1705 dir_key->objectid,
1706 name, name_len, 0);
1707 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1708 log_di = btrfs_lookup_dir_index_item(trans, log,
1709 log_path,
1710 dir_key->objectid,
1711 dir_key->offset,
1712 name, name_len, 0);
1713 }
1714 if (IS_ERR_OR_NULL(log_di)) {
1715 btrfs_dir_item_key_to_cpu(eb, di, &location);
1716 btrfs_release_path(path);
1717 btrfs_release_path(log_path);
1718 inode = read_one_inode(root, location.objectid);
1719 if (!inode) {
1720 kfree(name);
1721 return -EIO;
1722 }
1723
1724 ret = link_to_fixup_dir(trans, root,
1725 path, location.objectid);
1726 BUG_ON(ret);
1727 btrfs_inc_nlink(inode);
1728 ret = btrfs_unlink_inode(trans, root, dir, inode,
1729 name, name_len);
1730 BUG_ON(ret);
1731
1732 btrfs_run_delayed_items(trans, root);
1733
1734 kfree(name);
1735 iput(inode);
1736
1737 /* there might still be more names under this key
1738 * check and repeat if required
1739 */
1740 ret = btrfs_search_slot(NULL, root, dir_key, path,
1741 0, 0);
1742 if (ret == 0)
1743 goto again;
1744 ret = 0;
1745 goto out;
1746 }
1747 btrfs_release_path(log_path);
1748 kfree(name);
1749
1750 ptr = (unsigned long)(di + 1);
1751 ptr += name_len;
1752 }
1753 ret = 0;
1754 out:
1755 btrfs_release_path(path);
1756 btrfs_release_path(log_path);
1757 return ret;
1758 }
1759
1760 /*
1761 * deletion replay happens before we copy any new directory items
1762 * out of the log or out of backreferences from inodes. It
1763 * scans the log to find ranges of keys that log is authoritative for,
1764 * and then scans the directory to find items in those ranges that are
1765 * not present in the log.
1766 *
1767 * Anything we don't find in the log is unlinked and removed from the
1768 * directory.
1769 */
1770 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1771 struct btrfs_root *root,
1772 struct btrfs_root *log,
1773 struct btrfs_path *path,
1774 u64 dirid, int del_all)
1775 {
1776 u64 range_start;
1777 u64 range_end;
1778 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1779 int ret = 0;
1780 struct btrfs_key dir_key;
1781 struct btrfs_key found_key;
1782 struct btrfs_path *log_path;
1783 struct inode *dir;
1784
1785 dir_key.objectid = dirid;
1786 dir_key.type = BTRFS_DIR_ITEM_KEY;
1787 log_path = btrfs_alloc_path();
1788 if (!log_path)
1789 return -ENOMEM;
1790
1791 dir = read_one_inode(root, dirid);
1792 /* it isn't an error if the inode isn't there, that can happen
1793 * because we replay the deletes before we copy in the inode item
1794 * from the log
1795 */
1796 if (!dir) {
1797 btrfs_free_path(log_path);
1798 return 0;
1799 }
1800 again:
1801 range_start = 0;
1802 range_end = 0;
1803 while (1) {
1804 if (del_all)
1805 range_end = (u64)-1;
1806 else {
1807 ret = find_dir_range(log, path, dirid, key_type,
1808 &range_start, &range_end);
1809 if (ret != 0)
1810 break;
1811 }
1812
1813 dir_key.offset = range_start;
1814 while (1) {
1815 int nritems;
1816 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1817 0, 0);
1818 if (ret < 0)
1819 goto out;
1820
1821 nritems = btrfs_header_nritems(path->nodes[0]);
1822 if (path->slots[0] >= nritems) {
1823 ret = btrfs_next_leaf(root, path);
1824 if (ret)
1825 break;
1826 }
1827 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1828 path->slots[0]);
1829 if (found_key.objectid != dirid ||
1830 found_key.type != dir_key.type)
1831 goto next_type;
1832
1833 if (found_key.offset > range_end)
1834 break;
1835
1836 ret = check_item_in_log(trans, root, log, path,
1837 log_path, dir,
1838 &found_key);
1839 BUG_ON(ret);
1840 if (found_key.offset == (u64)-1)
1841 break;
1842 dir_key.offset = found_key.offset + 1;
1843 }
1844 btrfs_release_path(path);
1845 if (range_end == (u64)-1)
1846 break;
1847 range_start = range_end + 1;
1848 }
1849
1850 next_type:
1851 ret = 0;
1852 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1853 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1854 dir_key.type = BTRFS_DIR_INDEX_KEY;
1855 btrfs_release_path(path);
1856 goto again;
1857 }
1858 out:
1859 btrfs_release_path(path);
1860 btrfs_free_path(log_path);
1861 iput(dir);
1862 return ret;
1863 }
1864
1865 /*
1866 * the process_func used to replay items from the log tree. This
1867 * gets called in two different stages. The first stage just looks
1868 * for inodes and makes sure they are all copied into the subvolume.
1869 *
1870 * The second stage copies all the other item types from the log into
1871 * the subvolume. The two stage approach is slower, but gets rid of
1872 * lots of complexity around inodes referencing other inodes that exist
1873 * only in the log (references come from either directory items or inode
1874 * back refs).
1875 */
1876 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1877 struct walk_control *wc, u64 gen)
1878 {
1879 int nritems;
1880 struct btrfs_path *path;
1881 struct btrfs_root *root = wc->replay_dest;
1882 struct btrfs_key key;
1883 int level;
1884 int i;
1885 int ret;
1886
1887 ret = btrfs_read_buffer(eb, gen);
1888 if (ret)
1889 return ret;
1890
1891 level = btrfs_header_level(eb);
1892
1893 if (level != 0)
1894 return 0;
1895
1896 path = btrfs_alloc_path();
1897 if (!path)
1898 return -ENOMEM;
1899
1900 nritems = btrfs_header_nritems(eb);
1901 for (i = 0; i < nritems; i++) {
1902 btrfs_item_key_to_cpu(eb, &key, i);
1903
1904 /* inode keys are done during the first stage */
1905 if (key.type == BTRFS_INODE_ITEM_KEY &&
1906 wc->stage == LOG_WALK_REPLAY_INODES) {
1907 struct btrfs_inode_item *inode_item;
1908 u32 mode;
1909
1910 inode_item = btrfs_item_ptr(eb, i,
1911 struct btrfs_inode_item);
1912 mode = btrfs_inode_mode(eb, inode_item);
1913 if (S_ISDIR(mode)) {
1914 ret = replay_dir_deletes(wc->trans,
1915 root, log, path, key.objectid, 0);
1916 BUG_ON(ret);
1917 }
1918 ret = overwrite_item(wc->trans, root, path,
1919 eb, i, &key);
1920 BUG_ON(ret);
1921
1922 /* for regular files, make sure corresponding
1923 * orhpan item exist. extents past the new EOF
1924 * will be truncated later by orphan cleanup.
1925 */
1926 if (S_ISREG(mode)) {
1927 ret = insert_orphan_item(wc->trans, root,
1928 key.objectid);
1929 BUG_ON(ret);
1930 }
1931
1932 ret = link_to_fixup_dir(wc->trans, root,
1933 path, key.objectid);
1934 BUG_ON(ret);
1935 }
1936 if (wc->stage < LOG_WALK_REPLAY_ALL)
1937 continue;
1938
1939 /* these keys are simply copied */
1940 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1941 ret = overwrite_item(wc->trans, root, path,
1942 eb, i, &key);
1943 BUG_ON(ret);
1944 } else if (key.type == BTRFS_INODE_REF_KEY) {
1945 ret = add_inode_ref(wc->trans, root, log, path,
1946 eb, i, &key);
1947 BUG_ON(ret && ret != -ENOENT);
1948 } else if (key.type == BTRFS_INODE_EXTREF_KEY) {
1949 ret = add_inode_ref(wc->trans, root, log, path,
1950 eb, i, &key);
1951 BUG_ON(ret && ret != -ENOENT);
1952 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1953 ret = replay_one_extent(wc->trans, root, path,
1954 eb, i, &key);
1955 BUG_ON(ret);
1956 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1957 key.type == BTRFS_DIR_INDEX_KEY) {
1958 ret = replay_one_dir_item(wc->trans, root, path,
1959 eb, i, &key);
1960 BUG_ON(ret);
1961 }
1962 }
1963 btrfs_free_path(path);
1964 return 0;
1965 }
1966
1967 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1968 struct btrfs_root *root,
1969 struct btrfs_path *path, int *level,
1970 struct walk_control *wc)
1971 {
1972 u64 root_owner;
1973 u64 bytenr;
1974 u64 ptr_gen;
1975 struct extent_buffer *next;
1976 struct extent_buffer *cur;
1977 struct extent_buffer *parent;
1978 u32 blocksize;
1979 int ret = 0;
1980
1981 WARN_ON(*level < 0);
1982 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1983
1984 while (*level > 0) {
1985 WARN_ON(*level < 0);
1986 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1987 cur = path->nodes[*level];
1988
1989 if (btrfs_header_level(cur) != *level)
1990 WARN_ON(1);
1991
1992 if (path->slots[*level] >=
1993 btrfs_header_nritems(cur))
1994 break;
1995
1996 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1997 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1998 blocksize = btrfs_level_size(root, *level - 1);
1999
2000 parent = path->nodes[*level];
2001 root_owner = btrfs_header_owner(parent);
2002
2003 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2004 if (!next)
2005 return -ENOMEM;
2006
2007 if (*level == 1) {
2008 ret = wc->process_func(root, next, wc, ptr_gen);
2009 if (ret)
2010 return ret;
2011
2012 path->slots[*level]++;
2013 if (wc->free) {
2014 ret = btrfs_read_buffer(next, ptr_gen);
2015 if (ret) {
2016 free_extent_buffer(next);
2017 return ret;
2018 }
2019
2020 btrfs_tree_lock(next);
2021 btrfs_set_lock_blocking(next);
2022 clean_tree_block(trans, root, next);
2023 btrfs_wait_tree_block_writeback(next);
2024 btrfs_tree_unlock(next);
2025
2026 WARN_ON(root_owner !=
2027 BTRFS_TREE_LOG_OBJECTID);
2028 ret = btrfs_free_and_pin_reserved_extent(root,
2029 bytenr, blocksize);
2030 BUG_ON(ret); /* -ENOMEM or logic errors */
2031 }
2032 free_extent_buffer(next);
2033 continue;
2034 }
2035 ret = btrfs_read_buffer(next, ptr_gen);
2036 if (ret) {
2037 free_extent_buffer(next);
2038 return ret;
2039 }
2040
2041 WARN_ON(*level <= 0);
2042 if (path->nodes[*level-1])
2043 free_extent_buffer(path->nodes[*level-1]);
2044 path->nodes[*level-1] = next;
2045 *level = btrfs_header_level(next);
2046 path->slots[*level] = 0;
2047 cond_resched();
2048 }
2049 WARN_ON(*level < 0);
2050 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2051
2052 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2053
2054 cond_resched();
2055 return 0;
2056 }
2057
2058 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_path *path, int *level,
2061 struct walk_control *wc)
2062 {
2063 u64 root_owner;
2064 int i;
2065 int slot;
2066 int ret;
2067
2068 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2069 slot = path->slots[i];
2070 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2071 path->slots[i]++;
2072 *level = i;
2073 WARN_ON(*level == 0);
2074 return 0;
2075 } else {
2076 struct extent_buffer *parent;
2077 if (path->nodes[*level] == root->node)
2078 parent = path->nodes[*level];
2079 else
2080 parent = path->nodes[*level + 1];
2081
2082 root_owner = btrfs_header_owner(parent);
2083 ret = wc->process_func(root, path->nodes[*level], wc,
2084 btrfs_header_generation(path->nodes[*level]));
2085 if (ret)
2086 return ret;
2087
2088 if (wc->free) {
2089 struct extent_buffer *next;
2090
2091 next = path->nodes[*level];
2092
2093 btrfs_tree_lock(next);
2094 btrfs_set_lock_blocking(next);
2095 clean_tree_block(trans, root, next);
2096 btrfs_wait_tree_block_writeback(next);
2097 btrfs_tree_unlock(next);
2098
2099 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2100 ret = btrfs_free_and_pin_reserved_extent(root,
2101 path->nodes[*level]->start,
2102 path->nodes[*level]->len);
2103 BUG_ON(ret);
2104 }
2105 free_extent_buffer(path->nodes[*level]);
2106 path->nodes[*level] = NULL;
2107 *level = i + 1;
2108 }
2109 }
2110 return 1;
2111 }
2112
2113 /*
2114 * drop the reference count on the tree rooted at 'snap'. This traverses
2115 * the tree freeing any blocks that have a ref count of zero after being
2116 * decremented.
2117 */
2118 static int walk_log_tree(struct btrfs_trans_handle *trans,
2119 struct btrfs_root *log, struct walk_control *wc)
2120 {
2121 int ret = 0;
2122 int wret;
2123 int level;
2124 struct btrfs_path *path;
2125 int i;
2126 int orig_level;
2127
2128 path = btrfs_alloc_path();
2129 if (!path)
2130 return -ENOMEM;
2131
2132 level = btrfs_header_level(log->node);
2133 orig_level = level;
2134 path->nodes[level] = log->node;
2135 extent_buffer_get(log->node);
2136 path->slots[level] = 0;
2137
2138 while (1) {
2139 wret = walk_down_log_tree(trans, log, path, &level, wc);
2140 if (wret > 0)
2141 break;
2142 if (wret < 0) {
2143 ret = wret;
2144 goto out;
2145 }
2146
2147 wret = walk_up_log_tree(trans, log, path, &level, wc);
2148 if (wret > 0)
2149 break;
2150 if (wret < 0) {
2151 ret = wret;
2152 goto out;
2153 }
2154 }
2155
2156 /* was the root node processed? if not, catch it here */
2157 if (path->nodes[orig_level]) {
2158 ret = wc->process_func(log, path->nodes[orig_level], wc,
2159 btrfs_header_generation(path->nodes[orig_level]));
2160 if (ret)
2161 goto out;
2162 if (wc->free) {
2163 struct extent_buffer *next;
2164
2165 next = path->nodes[orig_level];
2166
2167 btrfs_tree_lock(next);
2168 btrfs_set_lock_blocking(next);
2169 clean_tree_block(trans, log, next);
2170 btrfs_wait_tree_block_writeback(next);
2171 btrfs_tree_unlock(next);
2172
2173 WARN_ON(log->root_key.objectid !=
2174 BTRFS_TREE_LOG_OBJECTID);
2175 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2176 next->len);
2177 BUG_ON(ret); /* -ENOMEM or logic errors */
2178 }
2179 }
2180
2181 out:
2182 for (i = 0; i <= orig_level; i++) {
2183 if (path->nodes[i]) {
2184 free_extent_buffer(path->nodes[i]);
2185 path->nodes[i] = NULL;
2186 }
2187 }
2188 btrfs_free_path(path);
2189 return ret;
2190 }
2191
2192 /*
2193 * helper function to update the item for a given subvolumes log root
2194 * in the tree of log roots
2195 */
2196 static int update_log_root(struct btrfs_trans_handle *trans,
2197 struct btrfs_root *log)
2198 {
2199 int ret;
2200
2201 if (log->log_transid == 1) {
2202 /* insert root item on the first sync */
2203 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2204 &log->root_key, &log->root_item);
2205 } else {
2206 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2207 &log->root_key, &log->root_item);
2208 }
2209 return ret;
2210 }
2211
2212 static int wait_log_commit(struct btrfs_trans_handle *trans,
2213 struct btrfs_root *root, unsigned long transid)
2214 {
2215 DEFINE_WAIT(wait);
2216 int index = transid % 2;
2217
2218 /*
2219 * we only allow two pending log transactions at a time,
2220 * so we know that if ours is more than 2 older than the
2221 * current transaction, we're done
2222 */
2223 do {
2224 prepare_to_wait(&root->log_commit_wait[index],
2225 &wait, TASK_UNINTERRUPTIBLE);
2226 mutex_unlock(&root->log_mutex);
2227
2228 if (root->fs_info->last_trans_log_full_commit !=
2229 trans->transid && root->log_transid < transid + 2 &&
2230 atomic_read(&root->log_commit[index]))
2231 schedule();
2232
2233 finish_wait(&root->log_commit_wait[index], &wait);
2234 mutex_lock(&root->log_mutex);
2235 } while (root->fs_info->last_trans_log_full_commit !=
2236 trans->transid && root->log_transid < transid + 2 &&
2237 atomic_read(&root->log_commit[index]));
2238 return 0;
2239 }
2240
2241 static void wait_for_writer(struct btrfs_trans_handle *trans,
2242 struct btrfs_root *root)
2243 {
2244 DEFINE_WAIT(wait);
2245 while (root->fs_info->last_trans_log_full_commit !=
2246 trans->transid && atomic_read(&root->log_writers)) {
2247 prepare_to_wait(&root->log_writer_wait,
2248 &wait, TASK_UNINTERRUPTIBLE);
2249 mutex_unlock(&root->log_mutex);
2250 if (root->fs_info->last_trans_log_full_commit !=
2251 trans->transid && atomic_read(&root->log_writers))
2252 schedule();
2253 mutex_lock(&root->log_mutex);
2254 finish_wait(&root->log_writer_wait, &wait);
2255 }
2256 }
2257
2258 /*
2259 * btrfs_sync_log does sends a given tree log down to the disk and
2260 * updates the super blocks to record it. When this call is done,
2261 * you know that any inodes previously logged are safely on disk only
2262 * if it returns 0.
2263 *
2264 * Any other return value means you need to call btrfs_commit_transaction.
2265 * Some of the edge cases for fsyncing directories that have had unlinks
2266 * or renames done in the past mean that sometimes the only safe
2267 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2268 * that has happened.
2269 */
2270 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2271 struct btrfs_root *root)
2272 {
2273 int index1;
2274 int index2;
2275 int mark;
2276 int ret;
2277 struct btrfs_root *log = root->log_root;
2278 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2279 unsigned long log_transid = 0;
2280
2281 mutex_lock(&root->log_mutex);
2282 log_transid = root->log_transid;
2283 index1 = root->log_transid % 2;
2284 if (atomic_read(&root->log_commit[index1])) {
2285 wait_log_commit(trans, root, root->log_transid);
2286 mutex_unlock(&root->log_mutex);
2287 return 0;
2288 }
2289 atomic_set(&root->log_commit[index1], 1);
2290
2291 /* wait for previous tree log sync to complete */
2292 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2293 wait_log_commit(trans, root, root->log_transid - 1);
2294 while (1) {
2295 int batch = atomic_read(&root->log_batch);
2296 /* when we're on an ssd, just kick the log commit out */
2297 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2298 mutex_unlock(&root->log_mutex);
2299 schedule_timeout_uninterruptible(1);
2300 mutex_lock(&root->log_mutex);
2301 }
2302 wait_for_writer(trans, root);
2303 if (batch == atomic_read(&root->log_batch))
2304 break;
2305 }
2306
2307 /* bail out if we need to do a full commit */
2308 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2309 ret = -EAGAIN;
2310 btrfs_free_logged_extents(log, log_transid);
2311 mutex_unlock(&root->log_mutex);
2312 goto out;
2313 }
2314
2315 if (log_transid % 2 == 0)
2316 mark = EXTENT_DIRTY;
2317 else
2318 mark = EXTENT_NEW;
2319
2320 /* we start IO on all the marked extents here, but we don't actually
2321 * wait for them until later.
2322 */
2323 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2324 if (ret) {
2325 btrfs_abort_transaction(trans, root, ret);
2326 btrfs_free_logged_extents(log, log_transid);
2327 mutex_unlock(&root->log_mutex);
2328 goto out;
2329 }
2330
2331 btrfs_set_root_node(&log->root_item, log->node);
2332
2333 root->log_transid++;
2334 log->log_transid = root->log_transid;
2335 root->log_start_pid = 0;
2336 smp_mb();
2337 /*
2338 * IO has been started, blocks of the log tree have WRITTEN flag set
2339 * in their headers. new modifications of the log will be written to
2340 * new positions. so it's safe to allow log writers to go in.
2341 */
2342 mutex_unlock(&root->log_mutex);
2343
2344 mutex_lock(&log_root_tree->log_mutex);
2345 atomic_inc(&log_root_tree->log_batch);
2346 atomic_inc(&log_root_tree->log_writers);
2347 mutex_unlock(&log_root_tree->log_mutex);
2348
2349 ret = update_log_root(trans, log);
2350
2351 mutex_lock(&log_root_tree->log_mutex);
2352 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2353 smp_mb();
2354 if (waitqueue_active(&log_root_tree->log_writer_wait))
2355 wake_up(&log_root_tree->log_writer_wait);
2356 }
2357
2358 if (ret) {
2359 if (ret != -ENOSPC) {
2360 btrfs_abort_transaction(trans, root, ret);
2361 mutex_unlock(&log_root_tree->log_mutex);
2362 goto out;
2363 }
2364 root->fs_info->last_trans_log_full_commit = trans->transid;
2365 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2366 btrfs_free_logged_extents(log, log_transid);
2367 mutex_unlock(&log_root_tree->log_mutex);
2368 ret = -EAGAIN;
2369 goto out;
2370 }
2371
2372 index2 = log_root_tree->log_transid % 2;
2373 if (atomic_read(&log_root_tree->log_commit[index2])) {
2374 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2375 wait_log_commit(trans, log_root_tree,
2376 log_root_tree->log_transid);
2377 btrfs_free_logged_extents(log, log_transid);
2378 mutex_unlock(&log_root_tree->log_mutex);
2379 ret = 0;
2380 goto out;
2381 }
2382 atomic_set(&log_root_tree->log_commit[index2], 1);
2383
2384 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2385 wait_log_commit(trans, log_root_tree,
2386 log_root_tree->log_transid - 1);
2387 }
2388
2389 wait_for_writer(trans, log_root_tree);
2390
2391 /*
2392 * now that we've moved on to the tree of log tree roots,
2393 * check the full commit flag again
2394 */
2395 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2396 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2397 btrfs_free_logged_extents(log, log_transid);
2398 mutex_unlock(&log_root_tree->log_mutex);
2399 ret = -EAGAIN;
2400 goto out_wake_log_root;
2401 }
2402
2403 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2404 &log_root_tree->dirty_log_pages,
2405 EXTENT_DIRTY | EXTENT_NEW);
2406 if (ret) {
2407 btrfs_abort_transaction(trans, root, ret);
2408 btrfs_free_logged_extents(log, log_transid);
2409 mutex_unlock(&log_root_tree->log_mutex);
2410 goto out_wake_log_root;
2411 }
2412 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2413 btrfs_wait_logged_extents(log, log_transid);
2414
2415 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2416 log_root_tree->node->start);
2417 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2418 btrfs_header_level(log_root_tree->node));
2419
2420 log_root_tree->log_transid++;
2421 smp_mb();
2422
2423 mutex_unlock(&log_root_tree->log_mutex);
2424
2425 /*
2426 * nobody else is going to jump in and write the the ctree
2427 * super here because the log_commit atomic below is protecting
2428 * us. We must be called with a transaction handle pinning
2429 * the running transaction open, so a full commit can't hop
2430 * in and cause problems either.
2431 */
2432 btrfs_scrub_pause_super(root);
2433 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2434 btrfs_scrub_continue_super(root);
2435 if (ret) {
2436 btrfs_abort_transaction(trans, root, ret);
2437 goto out_wake_log_root;
2438 }
2439
2440 mutex_lock(&root->log_mutex);
2441 if (root->last_log_commit < log_transid)
2442 root->last_log_commit = log_transid;
2443 mutex_unlock(&root->log_mutex);
2444
2445 out_wake_log_root:
2446 atomic_set(&log_root_tree->log_commit[index2], 0);
2447 smp_mb();
2448 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2449 wake_up(&log_root_tree->log_commit_wait[index2]);
2450 out:
2451 atomic_set(&root->log_commit[index1], 0);
2452 smp_mb();
2453 if (waitqueue_active(&root->log_commit_wait[index1]))
2454 wake_up(&root->log_commit_wait[index1]);
2455 return ret;
2456 }
2457
2458 static void free_log_tree(struct btrfs_trans_handle *trans,
2459 struct btrfs_root *log)
2460 {
2461 int ret;
2462 u64 start;
2463 u64 end;
2464 struct walk_control wc = {
2465 .free = 1,
2466 .process_func = process_one_buffer
2467 };
2468
2469 ret = walk_log_tree(trans, log, &wc);
2470 BUG_ON(ret);
2471
2472 while (1) {
2473 ret = find_first_extent_bit(&log->dirty_log_pages,
2474 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2475 NULL);
2476 if (ret)
2477 break;
2478
2479 clear_extent_bits(&log->dirty_log_pages, start, end,
2480 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2481 }
2482
2483 /*
2484 * We may have short-circuited the log tree with the full commit logic
2485 * and left ordered extents on our list, so clear these out to keep us
2486 * from leaking inodes and memory.
2487 */
2488 btrfs_free_logged_extents(log, 0);
2489 btrfs_free_logged_extents(log, 1);
2490
2491 free_extent_buffer(log->node);
2492 kfree(log);
2493 }
2494
2495 /*
2496 * free all the extents used by the tree log. This should be called
2497 * at commit time of the full transaction
2498 */
2499 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2500 {
2501 if (root->log_root) {
2502 free_log_tree(trans, root->log_root);
2503 root->log_root = NULL;
2504 }
2505 return 0;
2506 }
2507
2508 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2509 struct btrfs_fs_info *fs_info)
2510 {
2511 if (fs_info->log_root_tree) {
2512 free_log_tree(trans, fs_info->log_root_tree);
2513 fs_info->log_root_tree = NULL;
2514 }
2515 return 0;
2516 }
2517
2518 /*
2519 * If both a file and directory are logged, and unlinks or renames are
2520 * mixed in, we have a few interesting corners:
2521 *
2522 * create file X in dir Y
2523 * link file X to X.link in dir Y
2524 * fsync file X
2525 * unlink file X but leave X.link
2526 * fsync dir Y
2527 *
2528 * After a crash we would expect only X.link to exist. But file X
2529 * didn't get fsync'd again so the log has back refs for X and X.link.
2530 *
2531 * We solve this by removing directory entries and inode backrefs from the
2532 * log when a file that was logged in the current transaction is
2533 * unlinked. Any later fsync will include the updated log entries, and
2534 * we'll be able to reconstruct the proper directory items from backrefs.
2535 *
2536 * This optimizations allows us to avoid relogging the entire inode
2537 * or the entire directory.
2538 */
2539 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2540 struct btrfs_root *root,
2541 const char *name, int name_len,
2542 struct inode *dir, u64 index)
2543 {
2544 struct btrfs_root *log;
2545 struct btrfs_dir_item *di;
2546 struct btrfs_path *path;
2547 int ret;
2548 int err = 0;
2549 int bytes_del = 0;
2550 u64 dir_ino = btrfs_ino(dir);
2551
2552 if (BTRFS_I(dir)->logged_trans < trans->transid)
2553 return 0;
2554
2555 ret = join_running_log_trans(root);
2556 if (ret)
2557 return 0;
2558
2559 mutex_lock(&BTRFS_I(dir)->log_mutex);
2560
2561 log = root->log_root;
2562 path = btrfs_alloc_path();
2563 if (!path) {
2564 err = -ENOMEM;
2565 goto out_unlock;
2566 }
2567
2568 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2569 name, name_len, -1);
2570 if (IS_ERR(di)) {
2571 err = PTR_ERR(di);
2572 goto fail;
2573 }
2574 if (di) {
2575 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2576 bytes_del += name_len;
2577 BUG_ON(ret);
2578 }
2579 btrfs_release_path(path);
2580 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2581 index, name, name_len, -1);
2582 if (IS_ERR(di)) {
2583 err = PTR_ERR(di);
2584 goto fail;
2585 }
2586 if (di) {
2587 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2588 bytes_del += name_len;
2589 BUG_ON(ret);
2590 }
2591
2592 /* update the directory size in the log to reflect the names
2593 * we have removed
2594 */
2595 if (bytes_del) {
2596 struct btrfs_key key;
2597
2598 key.objectid = dir_ino;
2599 key.offset = 0;
2600 key.type = BTRFS_INODE_ITEM_KEY;
2601 btrfs_release_path(path);
2602
2603 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2604 if (ret < 0) {
2605 err = ret;
2606 goto fail;
2607 }
2608 if (ret == 0) {
2609 struct btrfs_inode_item *item;
2610 u64 i_size;
2611
2612 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2613 struct btrfs_inode_item);
2614 i_size = btrfs_inode_size(path->nodes[0], item);
2615 if (i_size > bytes_del)
2616 i_size -= bytes_del;
2617 else
2618 i_size = 0;
2619 btrfs_set_inode_size(path->nodes[0], item, i_size);
2620 btrfs_mark_buffer_dirty(path->nodes[0]);
2621 } else
2622 ret = 0;
2623 btrfs_release_path(path);
2624 }
2625 fail:
2626 btrfs_free_path(path);
2627 out_unlock:
2628 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2629 if (ret == -ENOSPC) {
2630 root->fs_info->last_trans_log_full_commit = trans->transid;
2631 ret = 0;
2632 } else if (ret < 0)
2633 btrfs_abort_transaction(trans, root, ret);
2634
2635 btrfs_end_log_trans(root);
2636
2637 return err;
2638 }
2639
2640 /* see comments for btrfs_del_dir_entries_in_log */
2641 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2642 struct btrfs_root *root,
2643 const char *name, int name_len,
2644 struct inode *inode, u64 dirid)
2645 {
2646 struct btrfs_root *log;
2647 u64 index;
2648 int ret;
2649
2650 if (BTRFS_I(inode)->logged_trans < trans->transid)
2651 return 0;
2652
2653 ret = join_running_log_trans(root);
2654 if (ret)
2655 return 0;
2656 log = root->log_root;
2657 mutex_lock(&BTRFS_I(inode)->log_mutex);
2658
2659 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2660 dirid, &index);
2661 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2662 if (ret == -ENOSPC) {
2663 root->fs_info->last_trans_log_full_commit = trans->transid;
2664 ret = 0;
2665 } else if (ret < 0 && ret != -ENOENT)
2666 btrfs_abort_transaction(trans, root, ret);
2667 btrfs_end_log_trans(root);
2668
2669 return ret;
2670 }
2671
2672 /*
2673 * creates a range item in the log for 'dirid'. first_offset and
2674 * last_offset tell us which parts of the key space the log should
2675 * be considered authoritative for.
2676 */
2677 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2678 struct btrfs_root *log,
2679 struct btrfs_path *path,
2680 int key_type, u64 dirid,
2681 u64 first_offset, u64 last_offset)
2682 {
2683 int ret;
2684 struct btrfs_key key;
2685 struct btrfs_dir_log_item *item;
2686
2687 key.objectid = dirid;
2688 key.offset = first_offset;
2689 if (key_type == BTRFS_DIR_ITEM_KEY)
2690 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2691 else
2692 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2693 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2694 if (ret)
2695 return ret;
2696
2697 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2698 struct btrfs_dir_log_item);
2699 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2700 btrfs_mark_buffer_dirty(path->nodes[0]);
2701 btrfs_release_path(path);
2702 return 0;
2703 }
2704
2705 /*
2706 * log all the items included in the current transaction for a given
2707 * directory. This also creates the range items in the log tree required
2708 * to replay anything deleted before the fsync
2709 */
2710 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2711 struct btrfs_root *root, struct inode *inode,
2712 struct btrfs_path *path,
2713 struct btrfs_path *dst_path, int key_type,
2714 u64 min_offset, u64 *last_offset_ret)
2715 {
2716 struct btrfs_key min_key;
2717 struct btrfs_key max_key;
2718 struct btrfs_root *log = root->log_root;
2719 struct extent_buffer *src;
2720 int err = 0;
2721 int ret;
2722 int i;
2723 int nritems;
2724 u64 first_offset = min_offset;
2725 u64 last_offset = (u64)-1;
2726 u64 ino = btrfs_ino(inode);
2727
2728 log = root->log_root;
2729 max_key.objectid = ino;
2730 max_key.offset = (u64)-1;
2731 max_key.type = key_type;
2732
2733 min_key.objectid = ino;
2734 min_key.type = key_type;
2735 min_key.offset = min_offset;
2736
2737 path->keep_locks = 1;
2738
2739 ret = btrfs_search_forward(root, &min_key, &max_key,
2740 path, trans->transid);
2741
2742 /*
2743 * we didn't find anything from this transaction, see if there
2744 * is anything at all
2745 */
2746 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2747 min_key.objectid = ino;
2748 min_key.type = key_type;
2749 min_key.offset = (u64)-1;
2750 btrfs_release_path(path);
2751 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2752 if (ret < 0) {
2753 btrfs_release_path(path);
2754 return ret;
2755 }
2756 ret = btrfs_previous_item(root, path, ino, key_type);
2757
2758 /* if ret == 0 there are items for this type,
2759 * create a range to tell us the last key of this type.
2760 * otherwise, there are no items in this directory after
2761 * *min_offset, and we create a range to indicate that.
2762 */
2763 if (ret == 0) {
2764 struct btrfs_key tmp;
2765 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2766 path->slots[0]);
2767 if (key_type == tmp.type)
2768 first_offset = max(min_offset, tmp.offset) + 1;
2769 }
2770 goto done;
2771 }
2772
2773 /* go backward to find any previous key */
2774 ret = btrfs_previous_item(root, path, ino, key_type);
2775 if (ret == 0) {
2776 struct btrfs_key tmp;
2777 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2778 if (key_type == tmp.type) {
2779 first_offset = tmp.offset;
2780 ret = overwrite_item(trans, log, dst_path,
2781 path->nodes[0], path->slots[0],
2782 &tmp);
2783 if (ret) {
2784 err = ret;
2785 goto done;
2786 }
2787 }
2788 }
2789 btrfs_release_path(path);
2790
2791 /* find the first key from this transaction again */
2792 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2793 if (ret != 0) {
2794 WARN_ON(1);
2795 goto done;
2796 }
2797
2798 /*
2799 * we have a block from this transaction, log every item in it
2800 * from our directory
2801 */
2802 while (1) {
2803 struct btrfs_key tmp;
2804 src = path->nodes[0];
2805 nritems = btrfs_header_nritems(src);
2806 for (i = path->slots[0]; i < nritems; i++) {
2807 btrfs_item_key_to_cpu(src, &min_key, i);
2808
2809 if (min_key.objectid != ino || min_key.type != key_type)
2810 goto done;
2811 ret = overwrite_item(trans, log, dst_path, src, i,
2812 &min_key);
2813 if (ret) {
2814 err = ret;
2815 goto done;
2816 }
2817 }
2818 path->slots[0] = nritems;
2819
2820 /*
2821 * look ahead to the next item and see if it is also
2822 * from this directory and from this transaction
2823 */
2824 ret = btrfs_next_leaf(root, path);
2825 if (ret == 1) {
2826 last_offset = (u64)-1;
2827 goto done;
2828 }
2829 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2830 if (tmp.objectid != ino || tmp.type != key_type) {
2831 last_offset = (u64)-1;
2832 goto done;
2833 }
2834 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2835 ret = overwrite_item(trans, log, dst_path,
2836 path->nodes[0], path->slots[0],
2837 &tmp);
2838 if (ret)
2839 err = ret;
2840 else
2841 last_offset = tmp.offset;
2842 goto done;
2843 }
2844 }
2845 done:
2846 btrfs_release_path(path);
2847 btrfs_release_path(dst_path);
2848
2849 if (err == 0) {
2850 *last_offset_ret = last_offset;
2851 /*
2852 * insert the log range keys to indicate where the log
2853 * is valid
2854 */
2855 ret = insert_dir_log_key(trans, log, path, key_type,
2856 ino, first_offset, last_offset);
2857 if (ret)
2858 err = ret;
2859 }
2860 return err;
2861 }
2862
2863 /*
2864 * logging directories is very similar to logging inodes, We find all the items
2865 * from the current transaction and write them to the log.
2866 *
2867 * The recovery code scans the directory in the subvolume, and if it finds a
2868 * key in the range logged that is not present in the log tree, then it means
2869 * that dir entry was unlinked during the transaction.
2870 *
2871 * In order for that scan to work, we must include one key smaller than
2872 * the smallest logged by this transaction and one key larger than the largest
2873 * key logged by this transaction.
2874 */
2875 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2876 struct btrfs_root *root, struct inode *inode,
2877 struct btrfs_path *path,
2878 struct btrfs_path *dst_path)
2879 {
2880 u64 min_key;
2881 u64 max_key;
2882 int ret;
2883 int key_type = BTRFS_DIR_ITEM_KEY;
2884
2885 again:
2886 min_key = 0;
2887 max_key = 0;
2888 while (1) {
2889 ret = log_dir_items(trans, root, inode, path,
2890 dst_path, key_type, min_key,
2891 &max_key);
2892 if (ret)
2893 return ret;
2894 if (max_key == (u64)-1)
2895 break;
2896 min_key = max_key + 1;
2897 }
2898
2899 if (key_type == BTRFS_DIR_ITEM_KEY) {
2900 key_type = BTRFS_DIR_INDEX_KEY;
2901 goto again;
2902 }
2903 return 0;
2904 }
2905
2906 /*
2907 * a helper function to drop items from the log before we relog an
2908 * inode. max_key_type indicates the highest item type to remove.
2909 * This cannot be run for file data extents because it does not
2910 * free the extents they point to.
2911 */
2912 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2913 struct btrfs_root *log,
2914 struct btrfs_path *path,
2915 u64 objectid, int max_key_type)
2916 {
2917 int ret;
2918 struct btrfs_key key;
2919 struct btrfs_key found_key;
2920 int start_slot;
2921
2922 key.objectid = objectid;
2923 key.type = max_key_type;
2924 key.offset = (u64)-1;
2925
2926 while (1) {
2927 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2928 BUG_ON(ret == 0);
2929 if (ret < 0)
2930 break;
2931
2932 if (path->slots[0] == 0)
2933 break;
2934
2935 path->slots[0]--;
2936 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2937 path->slots[0]);
2938
2939 if (found_key.objectid != objectid)
2940 break;
2941
2942 found_key.offset = 0;
2943 found_key.type = 0;
2944 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
2945 &start_slot);
2946
2947 ret = btrfs_del_items(trans, log, path, start_slot,
2948 path->slots[0] - start_slot + 1);
2949 /*
2950 * If start slot isn't 0 then we don't need to re-search, we've
2951 * found the last guy with the objectid in this tree.
2952 */
2953 if (ret || start_slot != 0)
2954 break;
2955 btrfs_release_path(path);
2956 }
2957 btrfs_release_path(path);
2958 if (ret > 0)
2959 ret = 0;
2960 return ret;
2961 }
2962
2963 static void fill_inode_item(struct btrfs_trans_handle *trans,
2964 struct extent_buffer *leaf,
2965 struct btrfs_inode_item *item,
2966 struct inode *inode, int log_inode_only)
2967 {
2968 struct btrfs_map_token token;
2969
2970 btrfs_init_map_token(&token);
2971
2972 if (log_inode_only) {
2973 /* set the generation to zero so the recover code
2974 * can tell the difference between an logging
2975 * just to say 'this inode exists' and a logging
2976 * to say 'update this inode with these values'
2977 */
2978 btrfs_set_token_inode_generation(leaf, item, 0, &token);
2979 btrfs_set_token_inode_size(leaf, item, 0, &token);
2980 } else {
2981 btrfs_set_token_inode_generation(leaf, item,
2982 BTRFS_I(inode)->generation,
2983 &token);
2984 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
2985 }
2986
2987 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
2988 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
2989 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
2990 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
2991
2992 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
2993 inode->i_atime.tv_sec, &token);
2994 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
2995 inode->i_atime.tv_nsec, &token);
2996
2997 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
2998 inode->i_mtime.tv_sec, &token);
2999 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3000 inode->i_mtime.tv_nsec, &token);
3001
3002 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3003 inode->i_ctime.tv_sec, &token);
3004 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3005 inode->i_ctime.tv_nsec, &token);
3006
3007 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3008 &token);
3009
3010 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3011 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3012 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3013 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3014 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3015 }
3016
3017 static int log_inode_item(struct btrfs_trans_handle *trans,
3018 struct btrfs_root *log, struct btrfs_path *path,
3019 struct inode *inode)
3020 {
3021 struct btrfs_inode_item *inode_item;
3022 struct btrfs_key key;
3023 int ret;
3024
3025 memcpy(&key, &BTRFS_I(inode)->location, sizeof(key));
3026 ret = btrfs_insert_empty_item(trans, log, path, &key,
3027 sizeof(*inode_item));
3028 if (ret && ret != -EEXIST)
3029 return ret;
3030 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3031 struct btrfs_inode_item);
3032 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3033 btrfs_release_path(path);
3034 return 0;
3035 }
3036
3037 static noinline int copy_items(struct btrfs_trans_handle *trans,
3038 struct inode *inode,
3039 struct btrfs_path *dst_path,
3040 struct extent_buffer *src,
3041 int start_slot, int nr, int inode_only)
3042 {
3043 unsigned long src_offset;
3044 unsigned long dst_offset;
3045 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3046 struct btrfs_file_extent_item *extent;
3047 struct btrfs_inode_item *inode_item;
3048 int ret;
3049 struct btrfs_key *ins_keys;
3050 u32 *ins_sizes;
3051 char *ins_data;
3052 int i;
3053 struct list_head ordered_sums;
3054 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3055
3056 INIT_LIST_HEAD(&ordered_sums);
3057
3058 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3059 nr * sizeof(u32), GFP_NOFS);
3060 if (!ins_data)
3061 return -ENOMEM;
3062
3063 ins_sizes = (u32 *)ins_data;
3064 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3065
3066 for (i = 0; i < nr; i++) {
3067 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3068 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3069 }
3070 ret = btrfs_insert_empty_items(trans, log, dst_path,
3071 ins_keys, ins_sizes, nr);
3072 if (ret) {
3073 kfree(ins_data);
3074 return ret;
3075 }
3076
3077 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3078 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3079 dst_path->slots[0]);
3080
3081 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3082
3083 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3084 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3085 dst_path->slots[0],
3086 struct btrfs_inode_item);
3087 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3088 inode, inode_only == LOG_INODE_EXISTS);
3089 } else {
3090 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3091 src_offset, ins_sizes[i]);
3092 }
3093
3094 /* take a reference on file data extents so that truncates
3095 * or deletes of this inode don't have to relog the inode
3096 * again
3097 */
3098 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3099 !skip_csum) {
3100 int found_type;
3101 extent = btrfs_item_ptr(src, start_slot + i,
3102 struct btrfs_file_extent_item);
3103
3104 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3105 continue;
3106
3107 found_type = btrfs_file_extent_type(src, extent);
3108 if (found_type == BTRFS_FILE_EXTENT_REG) {
3109 u64 ds, dl, cs, cl;
3110 ds = btrfs_file_extent_disk_bytenr(src,
3111 extent);
3112 /* ds == 0 is a hole */
3113 if (ds == 0)
3114 continue;
3115
3116 dl = btrfs_file_extent_disk_num_bytes(src,
3117 extent);
3118 cs = btrfs_file_extent_offset(src, extent);
3119 cl = btrfs_file_extent_num_bytes(src,
3120 extent);
3121 if (btrfs_file_extent_compression(src,
3122 extent)) {
3123 cs = 0;
3124 cl = dl;
3125 }
3126
3127 ret = btrfs_lookup_csums_range(
3128 log->fs_info->csum_root,
3129 ds + cs, ds + cs + cl - 1,
3130 &ordered_sums, 0);
3131 BUG_ON(ret);
3132 }
3133 }
3134 }
3135
3136 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3137 btrfs_release_path(dst_path);
3138 kfree(ins_data);
3139
3140 /*
3141 * we have to do this after the loop above to avoid changing the
3142 * log tree while trying to change the log tree.
3143 */
3144 ret = 0;
3145 while (!list_empty(&ordered_sums)) {
3146 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3147 struct btrfs_ordered_sum,
3148 list);
3149 if (!ret)
3150 ret = btrfs_csum_file_blocks(trans, log, sums);
3151 list_del(&sums->list);
3152 kfree(sums);
3153 }
3154 return ret;
3155 }
3156
3157 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3158 {
3159 struct extent_map *em1, *em2;
3160
3161 em1 = list_entry(a, struct extent_map, list);
3162 em2 = list_entry(b, struct extent_map, list);
3163
3164 if (em1->start < em2->start)
3165 return -1;
3166 else if (em1->start > em2->start)
3167 return 1;
3168 return 0;
3169 }
3170
3171 static int drop_adjacent_extents(struct btrfs_trans_handle *trans,
3172 struct btrfs_root *root, struct inode *inode,
3173 struct extent_map *em,
3174 struct btrfs_path *path)
3175 {
3176 struct btrfs_file_extent_item *fi;
3177 struct extent_buffer *leaf;
3178 struct btrfs_key key, new_key;
3179 struct btrfs_map_token token;
3180 u64 extent_end;
3181 u64 extent_offset = 0;
3182 int extent_type;
3183 int del_slot = 0;
3184 int del_nr = 0;
3185 int ret = 0;
3186
3187 while (1) {
3188 btrfs_init_map_token(&token);
3189 leaf = path->nodes[0];
3190 path->slots[0]++;
3191 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3192 if (del_nr) {
3193 ret = btrfs_del_items(trans, root, path,
3194 del_slot, del_nr);
3195 if (ret)
3196 return ret;
3197 del_nr = 0;
3198 }
3199
3200 ret = btrfs_next_leaf_write(trans, root, path, 1);
3201 if (ret < 0)
3202 return ret;
3203 if (ret > 0)
3204 return 0;
3205 leaf = path->nodes[0];
3206 }
3207
3208 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3209 if (key.objectid != btrfs_ino(inode) ||
3210 key.type != BTRFS_EXTENT_DATA_KEY ||
3211 key.offset >= em->start + em->len)
3212 break;
3213
3214 fi = btrfs_item_ptr(leaf, path->slots[0],
3215 struct btrfs_file_extent_item);
3216 extent_type = btrfs_token_file_extent_type(leaf, fi, &token);
3217 if (extent_type == BTRFS_FILE_EXTENT_REG ||
3218 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3219 extent_offset = btrfs_token_file_extent_offset(leaf,
3220 fi, &token);
3221 extent_end = key.offset +
3222 btrfs_token_file_extent_num_bytes(leaf, fi,
3223 &token);
3224 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3225 extent_end = key.offset +
3226 btrfs_file_extent_inline_len(leaf, fi);
3227 } else {
3228 BUG();
3229 }
3230
3231 if (extent_end <= em->len + em->start) {
3232 if (!del_nr) {
3233 del_slot = path->slots[0];
3234 }
3235 del_nr++;
3236 continue;
3237 }
3238
3239 /*
3240 * Ok so we'll ignore previous items if we log a new extent,
3241 * which can lead to overlapping extents, so if we have an
3242 * existing extent we want to adjust we _have_ to check the next
3243 * guy to make sure we even need this extent anymore, this keeps
3244 * us from panicing in set_item_key_safe.
3245 */
3246 if (path->slots[0] < btrfs_header_nritems(leaf) - 1) {
3247 struct btrfs_key tmp_key;
3248
3249 btrfs_item_key_to_cpu(leaf, &tmp_key,
3250 path->slots[0] + 1);
3251 if (tmp_key.objectid == btrfs_ino(inode) &&
3252 tmp_key.type == BTRFS_EXTENT_DATA_KEY &&
3253 tmp_key.offset <= em->start + em->len) {
3254 if (!del_nr)
3255 del_slot = path->slots[0];
3256 del_nr++;
3257 continue;
3258 }
3259 }
3260
3261 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
3262 memcpy(&new_key, &key, sizeof(new_key));
3263 new_key.offset = em->start + em->len;
3264 btrfs_set_item_key_safe(trans, root, path, &new_key);
3265 extent_offset += em->start + em->len - key.offset;
3266 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset,
3267 &token);
3268 btrfs_set_token_file_extent_num_bytes(leaf, fi, extent_end -
3269 (em->start + em->len),
3270 &token);
3271 btrfs_mark_buffer_dirty(leaf);
3272 }
3273
3274 if (del_nr)
3275 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
3276
3277 return ret;
3278 }
3279
3280 static int log_one_extent(struct btrfs_trans_handle *trans,
3281 struct inode *inode, struct btrfs_root *root,
3282 struct extent_map *em, struct btrfs_path *path)
3283 {
3284 struct btrfs_root *log = root->log_root;
3285 struct btrfs_file_extent_item *fi;
3286 struct extent_buffer *leaf;
3287 struct btrfs_ordered_extent *ordered;
3288 struct list_head ordered_sums;
3289 struct btrfs_map_token token;
3290 struct btrfs_key key;
3291 u64 mod_start = em->mod_start;
3292 u64 mod_len = em->mod_len;
3293 u64 csum_offset;
3294 u64 csum_len;
3295 u64 extent_offset = em->start - em->orig_start;
3296 u64 block_len;
3297 int ret;
3298 int index = log->log_transid % 2;
3299 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3300
3301 INIT_LIST_HEAD(&ordered_sums);
3302 btrfs_init_map_token(&token);
3303 key.objectid = btrfs_ino(inode);
3304 key.type = BTRFS_EXTENT_DATA_KEY;
3305 key.offset = em->start;
3306 path->really_keep_locks = 1;
3307
3308 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
3309 if (ret && ret != -EEXIST) {
3310 path->really_keep_locks = 0;
3311 return ret;
3312 }
3313 leaf = path->nodes[0];
3314 fi = btrfs_item_ptr(leaf, path->slots[0],
3315 struct btrfs_file_extent_item);
3316 btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3317 &token);
3318 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3319 skip_csum = true;
3320 btrfs_set_token_file_extent_type(leaf, fi,
3321 BTRFS_FILE_EXTENT_PREALLOC,
3322 &token);
3323 } else {
3324 btrfs_set_token_file_extent_type(leaf, fi,
3325 BTRFS_FILE_EXTENT_REG,
3326 &token);
3327 if (em->block_start == 0)
3328 skip_csum = true;
3329 }
3330
3331 block_len = max(em->block_len, em->orig_block_len);
3332 if (em->compress_type != BTRFS_COMPRESS_NONE) {
3333 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3334 em->block_start,
3335 &token);
3336 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3337 &token);
3338 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3339 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3340 em->block_start -
3341 extent_offset, &token);
3342 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3343 &token);
3344 } else {
3345 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3346 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3347 &token);
3348 }
3349
3350 btrfs_set_token_file_extent_offset(leaf, fi,
3351 em->start - em->orig_start,
3352 &token);
3353 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3354 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->len, &token);
3355 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3356 &token);
3357 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3358 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3359 btrfs_mark_buffer_dirty(leaf);
3360
3361 /*
3362 * Have to check the extent to the right of us to make sure it doesn't
3363 * fall in our current range. We're ok if the previous extent is in our
3364 * range since the recovery stuff will run us in key order and thus just
3365 * drop the part we overwrote.
3366 */
3367 ret = drop_adjacent_extents(trans, log, inode, em, path);
3368 btrfs_release_path(path);
3369 path->really_keep_locks = 0;
3370 if (ret) {
3371 return ret;
3372 }
3373
3374 if (skip_csum)
3375 return 0;
3376
3377 if (em->compress_type) {
3378 csum_offset = 0;
3379 csum_len = block_len;
3380 }
3381
3382 /*
3383 * First check and see if our csums are on our outstanding ordered
3384 * extents.
3385 */
3386 again:
3387 spin_lock_irq(&log->log_extents_lock[index]);
3388 list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3389 struct btrfs_ordered_sum *sum;
3390
3391 if (!mod_len)
3392 break;
3393
3394 if (ordered->inode != inode)
3395 continue;
3396
3397 if (ordered->file_offset + ordered->len <= mod_start ||
3398 mod_start + mod_len <= ordered->file_offset)
3399 continue;
3400
3401 /*
3402 * We are going to copy all the csums on this ordered extent, so
3403 * go ahead and adjust mod_start and mod_len in case this
3404 * ordered extent has already been logged.
3405 */
3406 if (ordered->file_offset > mod_start) {
3407 if (ordered->file_offset + ordered->len >=
3408 mod_start + mod_len)
3409 mod_len = ordered->file_offset - mod_start;
3410 /*
3411 * If we have this case
3412 *
3413 * |--------- logged extent ---------|
3414 * |----- ordered extent ----|
3415 *
3416 * Just don't mess with mod_start and mod_len, we'll
3417 * just end up logging more csums than we need and it
3418 * will be ok.
3419 */
3420 } else {
3421 if (ordered->file_offset + ordered->len <
3422 mod_start + mod_len) {
3423 mod_len = (mod_start + mod_len) -
3424 (ordered->file_offset + ordered->len);
3425 mod_start = ordered->file_offset +
3426 ordered->len;
3427 } else {
3428 mod_len = 0;
3429 }
3430 }
3431
3432 /*
3433 * To keep us from looping for the above case of an ordered
3434 * extent that falls inside of the logged extent.
3435 */
3436 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3437 &ordered->flags))
3438 continue;
3439 atomic_inc(&ordered->refs);
3440 spin_unlock_irq(&log->log_extents_lock[index]);
3441 /*
3442 * we've dropped the lock, we must either break or
3443 * start over after this.
3444 */
3445
3446 wait_event(ordered->wait, ordered->csum_bytes_left == 0);
3447
3448 list_for_each_entry(sum, &ordered->list, list) {
3449 ret = btrfs_csum_file_blocks(trans, log, sum);
3450 if (ret) {
3451 btrfs_put_ordered_extent(ordered);
3452 goto unlocked;
3453 }
3454 }
3455 btrfs_put_ordered_extent(ordered);
3456 goto again;
3457
3458 }
3459 spin_unlock_irq(&log->log_extents_lock[index]);
3460 unlocked:
3461
3462 if (!mod_len || ret)
3463 return ret;
3464
3465 csum_offset = mod_start - em->start;
3466 csum_len = mod_len;
3467
3468 /* block start is already adjusted for the file extent offset. */
3469 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3470 em->block_start + csum_offset,
3471 em->block_start + csum_offset +
3472 csum_len - 1, &ordered_sums, 0);
3473 if (ret)
3474 return ret;
3475
3476 while (!list_empty(&ordered_sums)) {
3477 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3478 struct btrfs_ordered_sum,
3479 list);
3480 if (!ret)
3481 ret = btrfs_csum_file_blocks(trans, log, sums);
3482 list_del(&sums->list);
3483 kfree(sums);
3484 }
3485
3486 return ret;
3487 }
3488
3489 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3490 struct btrfs_root *root,
3491 struct inode *inode,
3492 struct btrfs_path *path)
3493 {
3494 struct extent_map *em, *n;
3495 struct list_head extents;
3496 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3497 u64 test_gen;
3498 int ret = 0;
3499 int num = 0;
3500
3501 INIT_LIST_HEAD(&extents);
3502
3503 write_lock(&tree->lock);
3504 test_gen = root->fs_info->last_trans_committed;
3505
3506 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3507 list_del_init(&em->list);
3508
3509 /*
3510 * Just an arbitrary number, this can be really CPU intensive
3511 * once we start getting a lot of extents, and really once we
3512 * have a bunch of extents we just want to commit since it will
3513 * be faster.
3514 */
3515 if (++num > 32768) {
3516 list_del_init(&tree->modified_extents);
3517 ret = -EFBIG;
3518 goto process;
3519 }
3520
3521 if (em->generation <= test_gen)
3522 continue;
3523 /* Need a ref to keep it from getting evicted from cache */
3524 atomic_inc(&em->refs);
3525 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3526 list_add_tail(&em->list, &extents);
3527 num++;
3528 }
3529
3530 list_sort(NULL, &extents, extent_cmp);
3531
3532 process:
3533 while (!list_empty(&extents)) {
3534 em = list_entry(extents.next, struct extent_map, list);
3535
3536 list_del_init(&em->list);
3537
3538 /*
3539 * If we had an error we just need to delete everybody from our
3540 * private list.
3541 */
3542 if (ret) {
3543 clear_em_logging(tree, em);
3544 free_extent_map(em);
3545 continue;
3546 }
3547
3548 write_unlock(&tree->lock);
3549
3550 ret = log_one_extent(trans, inode, root, em, path);
3551 write_lock(&tree->lock);
3552 clear_em_logging(tree, em);
3553 free_extent_map(em);
3554 }
3555 WARN_ON(!list_empty(&extents));
3556 write_unlock(&tree->lock);
3557
3558 btrfs_release_path(path);
3559 return ret;
3560 }
3561
3562 /* log a single inode in the tree log.
3563 * At least one parent directory for this inode must exist in the tree
3564 * or be logged already.
3565 *
3566 * Any items from this inode changed by the current transaction are copied
3567 * to the log tree. An extra reference is taken on any extents in this
3568 * file, allowing us to avoid a whole pile of corner cases around logging
3569 * blocks that have been removed from the tree.
3570 *
3571 * See LOG_INODE_ALL and related defines for a description of what inode_only
3572 * does.
3573 *
3574 * This handles both files and directories.
3575 */
3576 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3577 struct btrfs_root *root, struct inode *inode,
3578 int inode_only)
3579 {
3580 struct btrfs_path *path;
3581 struct btrfs_path *dst_path;
3582 struct btrfs_key min_key;
3583 struct btrfs_key max_key;
3584 struct btrfs_root *log = root->log_root;
3585 struct extent_buffer *src = NULL;
3586 int err = 0;
3587 int ret;
3588 int nritems;
3589 int ins_start_slot = 0;
3590 int ins_nr;
3591 bool fast_search = false;
3592 u64 ino = btrfs_ino(inode);
3593
3594 log = root->log_root;
3595
3596 path = btrfs_alloc_path();
3597 if (!path)
3598 return -ENOMEM;
3599 dst_path = btrfs_alloc_path();
3600 if (!dst_path) {
3601 btrfs_free_path(path);
3602 return -ENOMEM;
3603 }
3604
3605 min_key.objectid = ino;
3606 min_key.type = BTRFS_INODE_ITEM_KEY;
3607 min_key.offset = 0;
3608
3609 max_key.objectid = ino;
3610
3611
3612 /* today the code can only do partial logging of directories */
3613 if (S_ISDIR(inode->i_mode) ||
3614 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3615 &BTRFS_I(inode)->runtime_flags) &&
3616 inode_only == LOG_INODE_EXISTS))
3617 max_key.type = BTRFS_XATTR_ITEM_KEY;
3618 else
3619 max_key.type = (u8)-1;
3620 max_key.offset = (u64)-1;
3621
3622 /* Only run delayed items if we are a dir or a new file */
3623 if (S_ISDIR(inode->i_mode) ||
3624 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3625 ret = btrfs_commit_inode_delayed_items(trans, inode);
3626 if (ret) {
3627 btrfs_free_path(path);
3628 btrfs_free_path(dst_path);
3629 return ret;
3630 }
3631 }
3632
3633 mutex_lock(&BTRFS_I(inode)->log_mutex);
3634
3635 btrfs_get_logged_extents(log, inode);
3636
3637 /*
3638 * a brute force approach to making sure we get the most uptodate
3639 * copies of everything.
3640 */
3641 if (S_ISDIR(inode->i_mode)) {
3642 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3643
3644 if (inode_only == LOG_INODE_EXISTS)
3645 max_key_type = BTRFS_XATTR_ITEM_KEY;
3646 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3647 } else {
3648 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3649 &BTRFS_I(inode)->runtime_flags)) {
3650 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3651 &BTRFS_I(inode)->runtime_flags);
3652 ret = btrfs_truncate_inode_items(trans, log,
3653 inode, 0, 0);
3654 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3655 &BTRFS_I(inode)->runtime_flags)) {
3656 if (inode_only == LOG_INODE_ALL)
3657 fast_search = true;
3658 max_key.type = BTRFS_XATTR_ITEM_KEY;
3659 ret = drop_objectid_items(trans, log, path, ino,
3660 max_key.type);
3661 } else {
3662 if (inode_only == LOG_INODE_ALL)
3663 fast_search = true;
3664 ret = log_inode_item(trans, log, dst_path, inode);
3665 if (ret) {
3666 err = ret;
3667 goto out_unlock;
3668 }
3669 goto log_extents;
3670 }
3671
3672 }
3673 if (ret) {
3674 err = ret;
3675 goto out_unlock;
3676 }
3677 path->keep_locks = 1;
3678
3679 while (1) {
3680 ins_nr = 0;
3681 ret = btrfs_search_forward(root, &min_key, &max_key,
3682 path, trans->transid);
3683 if (ret != 0)
3684 break;
3685 again:
3686 /* note, ins_nr might be > 0 here, cleanup outside the loop */
3687 if (min_key.objectid != ino)
3688 break;
3689 if (min_key.type > max_key.type)
3690 break;
3691
3692 src = path->nodes[0];
3693 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3694 ins_nr++;
3695 goto next_slot;
3696 } else if (!ins_nr) {
3697 ins_start_slot = path->slots[0];
3698 ins_nr = 1;
3699 goto next_slot;
3700 }
3701
3702 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3703 ins_nr, inode_only);
3704 if (ret) {
3705 err = ret;
3706 goto out_unlock;
3707 }
3708 ins_nr = 1;
3709 ins_start_slot = path->slots[0];
3710 next_slot:
3711
3712 nritems = btrfs_header_nritems(path->nodes[0]);
3713 path->slots[0]++;
3714 if (path->slots[0] < nritems) {
3715 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3716 path->slots[0]);
3717 goto again;
3718 }
3719 if (ins_nr) {
3720 ret = copy_items(trans, inode, dst_path, src,
3721 ins_start_slot,
3722 ins_nr, inode_only);
3723 if (ret) {
3724 err = ret;
3725 goto out_unlock;
3726 }
3727 ins_nr = 0;
3728 }
3729 btrfs_release_path(path);
3730
3731 if (min_key.offset < (u64)-1)
3732 min_key.offset++;
3733 else if (min_key.type < (u8)-1)
3734 min_key.type++;
3735 else if (min_key.objectid < (u64)-1)
3736 min_key.objectid++;
3737 else
3738 break;
3739 }
3740 if (ins_nr) {
3741 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3742 ins_nr, inode_only);
3743 if (ret) {
3744 err = ret;
3745 goto out_unlock;
3746 }
3747 ins_nr = 0;
3748 }
3749
3750 log_extents:
3751 if (fast_search) {
3752 btrfs_release_path(dst_path);
3753 ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
3754 if (ret) {
3755 err = ret;
3756 goto out_unlock;
3757 }
3758 } else {
3759 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3760 struct extent_map *em, *n;
3761
3762 write_lock(&tree->lock);
3763 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3764 list_del_init(&em->list);
3765 write_unlock(&tree->lock);
3766 }
3767
3768 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3769 btrfs_release_path(path);
3770 btrfs_release_path(dst_path);
3771 ret = log_directory_changes(trans, root, inode, path, dst_path);
3772 if (ret) {
3773 err = ret;
3774 goto out_unlock;
3775 }
3776 }
3777 BTRFS_I(inode)->logged_trans = trans->transid;
3778 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3779 out_unlock:
3780 if (err)
3781 btrfs_free_logged_extents(log, log->log_transid);
3782 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3783
3784 btrfs_free_path(path);
3785 btrfs_free_path(dst_path);
3786 return err;
3787 }
3788
3789 /*
3790 * follow the dentry parent pointers up the chain and see if any
3791 * of the directories in it require a full commit before they can
3792 * be logged. Returns zero if nothing special needs to be done or 1 if
3793 * a full commit is required.
3794 */
3795 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3796 struct inode *inode,
3797 struct dentry *parent,
3798 struct super_block *sb,
3799 u64 last_committed)
3800 {
3801 int ret = 0;
3802 struct btrfs_root *root;
3803 struct dentry *old_parent = NULL;
3804
3805 /*
3806 * for regular files, if its inode is already on disk, we don't
3807 * have to worry about the parents at all. This is because
3808 * we can use the last_unlink_trans field to record renames
3809 * and other fun in this file.
3810 */
3811 if (S_ISREG(inode->i_mode) &&
3812 BTRFS_I(inode)->generation <= last_committed &&
3813 BTRFS_I(inode)->last_unlink_trans <= last_committed)
3814 goto out;
3815
3816 if (!S_ISDIR(inode->i_mode)) {
3817 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3818 goto out;
3819 inode = parent->d_inode;
3820 }
3821
3822 while (1) {
3823 BTRFS_I(inode)->logged_trans = trans->transid;
3824 smp_mb();
3825
3826 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3827 root = BTRFS_I(inode)->root;
3828
3829 /*
3830 * make sure any commits to the log are forced
3831 * to be full commits
3832 */
3833 root->fs_info->last_trans_log_full_commit =
3834 trans->transid;
3835 ret = 1;
3836 break;
3837 }
3838
3839 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3840 break;
3841
3842 if (IS_ROOT(parent))
3843 break;
3844
3845 parent = dget_parent(parent);
3846 dput(old_parent);
3847 old_parent = parent;
3848 inode = parent->d_inode;
3849
3850 }
3851 dput(old_parent);
3852 out:
3853 return ret;
3854 }
3855
3856 /*
3857 * helper function around btrfs_log_inode to make sure newly created
3858 * parent directories also end up in the log. A minimal inode and backref
3859 * only logging is done of any parent directories that are older than
3860 * the last committed transaction
3861 */
3862 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3863 struct btrfs_root *root, struct inode *inode,
3864 struct dentry *parent, int exists_only)
3865 {
3866 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3867 struct super_block *sb;
3868 struct dentry *old_parent = NULL;
3869 int ret = 0;
3870 u64 last_committed = root->fs_info->last_trans_committed;
3871
3872 sb = inode->i_sb;
3873
3874 if (btrfs_test_opt(root, NOTREELOG)) {
3875 ret = 1;
3876 goto end_no_trans;
3877 }
3878
3879 if (root->fs_info->last_trans_log_full_commit >
3880 root->fs_info->last_trans_committed) {
3881 ret = 1;
3882 goto end_no_trans;
3883 }
3884
3885 if (root != BTRFS_I(inode)->root ||
3886 btrfs_root_refs(&root->root_item) == 0) {
3887 ret = 1;
3888 goto end_no_trans;
3889 }
3890
3891 ret = check_parent_dirs_for_sync(trans, inode, parent,
3892 sb, last_committed);
3893 if (ret)
3894 goto end_no_trans;
3895
3896 if (btrfs_inode_in_log(inode, trans->transid)) {
3897 ret = BTRFS_NO_LOG_SYNC;
3898 goto end_no_trans;
3899 }
3900
3901 ret = start_log_trans(trans, root);
3902 if (ret)
3903 goto end_trans;
3904
3905 ret = btrfs_log_inode(trans, root, inode, inode_only);
3906 if (ret)
3907 goto end_trans;
3908
3909 /*
3910 * for regular files, if its inode is already on disk, we don't
3911 * have to worry about the parents at all. This is because
3912 * we can use the last_unlink_trans field to record renames
3913 * and other fun in this file.
3914 */
3915 if (S_ISREG(inode->i_mode) &&
3916 BTRFS_I(inode)->generation <= last_committed &&
3917 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3918 ret = 0;
3919 goto end_trans;
3920 }
3921
3922 inode_only = LOG_INODE_EXISTS;
3923 while (1) {
3924 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3925 break;
3926
3927 inode = parent->d_inode;
3928 if (root != BTRFS_I(inode)->root)
3929 break;
3930
3931 if (BTRFS_I(inode)->generation >
3932 root->fs_info->last_trans_committed) {
3933 ret = btrfs_log_inode(trans, root, inode, inode_only);
3934 if (ret)
3935 goto end_trans;
3936 }
3937 if (IS_ROOT(parent))
3938 break;
3939
3940 parent = dget_parent(parent);
3941 dput(old_parent);
3942 old_parent = parent;
3943 }
3944 ret = 0;
3945 end_trans:
3946 dput(old_parent);
3947 if (ret < 0) {
3948 root->fs_info->last_trans_log_full_commit = trans->transid;
3949 ret = 1;
3950 }
3951 btrfs_end_log_trans(root);
3952 end_no_trans:
3953 return ret;
3954 }
3955
3956 /*
3957 * it is not safe to log dentry if the chunk root has added new
3958 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3959 * If this returns 1, you must commit the transaction to safely get your
3960 * data on disk.
3961 */
3962 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3963 struct btrfs_root *root, struct dentry *dentry)
3964 {
3965 struct dentry *parent = dget_parent(dentry);
3966 int ret;
3967
3968 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3969 dput(parent);
3970
3971 return ret;
3972 }
3973
3974 /*
3975 * should be called during mount to recover any replay any log trees
3976 * from the FS
3977 */
3978 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3979 {
3980 int ret;
3981 struct btrfs_path *path;
3982 struct btrfs_trans_handle *trans;
3983 struct btrfs_key key;
3984 struct btrfs_key found_key;
3985 struct btrfs_key tmp_key;
3986 struct btrfs_root *log;
3987 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3988 struct walk_control wc = {
3989 .process_func = process_one_buffer,
3990 .stage = 0,
3991 };
3992
3993 path = btrfs_alloc_path();
3994 if (!path)
3995 return -ENOMEM;
3996
3997 fs_info->log_root_recovering = 1;
3998
3999 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4000 if (IS_ERR(trans)) {
4001 ret = PTR_ERR(trans);
4002 goto error;
4003 }
4004
4005 wc.trans = trans;
4006 wc.pin = 1;
4007
4008 ret = walk_log_tree(trans, log_root_tree, &wc);
4009 if (ret) {
4010 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4011 "recovering log root tree.");
4012 goto error;
4013 }
4014
4015 again:
4016 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4017 key.offset = (u64)-1;
4018 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4019
4020 while (1) {
4021 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4022
4023 if (ret < 0) {
4024 btrfs_error(fs_info, ret,
4025 "Couldn't find tree log root.");
4026 goto error;
4027 }
4028 if (ret > 0) {
4029 if (path->slots[0] == 0)
4030 break;
4031 path->slots[0]--;
4032 }
4033 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4034 path->slots[0]);
4035 btrfs_release_path(path);
4036 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4037 break;
4038
4039 log = btrfs_read_fs_root_no_radix(log_root_tree,
4040 &found_key);
4041 if (IS_ERR(log)) {
4042 ret = PTR_ERR(log);
4043 btrfs_error(fs_info, ret,
4044 "Couldn't read tree log root.");
4045 goto error;
4046 }
4047
4048 tmp_key.objectid = found_key.offset;
4049 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4050 tmp_key.offset = (u64)-1;
4051
4052 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4053 if (IS_ERR(wc.replay_dest)) {
4054 ret = PTR_ERR(wc.replay_dest);
4055 btrfs_error(fs_info, ret, "Couldn't read target root "
4056 "for tree log recovery.");
4057 goto error;
4058 }
4059
4060 wc.replay_dest->log_root = log;
4061 btrfs_record_root_in_trans(trans, wc.replay_dest);
4062 ret = walk_log_tree(trans, log, &wc);
4063 BUG_ON(ret);
4064
4065 if (wc.stage == LOG_WALK_REPLAY_ALL) {
4066 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4067 path);
4068 BUG_ON(ret);
4069 }
4070
4071 key.offset = found_key.offset - 1;
4072 wc.replay_dest->log_root = NULL;
4073 free_extent_buffer(log->node);
4074 free_extent_buffer(log->commit_root);
4075 kfree(log);
4076
4077 if (found_key.offset == 0)
4078 break;
4079 }
4080 btrfs_release_path(path);
4081
4082 /* step one is to pin it all, step two is to replay just inodes */
4083 if (wc.pin) {
4084 wc.pin = 0;
4085 wc.process_func = replay_one_buffer;
4086 wc.stage = LOG_WALK_REPLAY_INODES;
4087 goto again;
4088 }
4089 /* step three is to replay everything */
4090 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4091 wc.stage++;
4092 goto again;
4093 }
4094
4095 btrfs_free_path(path);
4096
4097 free_extent_buffer(log_root_tree->node);
4098 log_root_tree->log_root = NULL;
4099 fs_info->log_root_recovering = 0;
4100
4101 /* step 4: commit the transaction, which also unpins the blocks */
4102 btrfs_commit_transaction(trans, fs_info->tree_root);
4103
4104 kfree(log_root_tree);
4105 return 0;
4106
4107 error:
4108 btrfs_free_path(path);
4109 return ret;
4110 }
4111
4112 /*
4113 * there are some corner cases where we want to force a full
4114 * commit instead of allowing a directory to be logged.
4115 *
4116 * They revolve around files there were unlinked from the directory, and
4117 * this function updates the parent directory so that a full commit is
4118 * properly done if it is fsync'd later after the unlinks are done.
4119 */
4120 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4121 struct inode *dir, struct inode *inode,
4122 int for_rename)
4123 {
4124 /*
4125 * when we're logging a file, if it hasn't been renamed
4126 * or unlinked, and its inode is fully committed on disk,
4127 * we don't have to worry about walking up the directory chain
4128 * to log its parents.
4129 *
4130 * So, we use the last_unlink_trans field to put this transid
4131 * into the file. When the file is logged we check it and
4132 * don't log the parents if the file is fully on disk.
4133 */
4134 if (S_ISREG(inode->i_mode))
4135 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4136
4137 /*
4138 * if this directory was already logged any new
4139 * names for this file/dir will get recorded
4140 */
4141 smp_mb();
4142 if (BTRFS_I(dir)->logged_trans == trans->transid)
4143 return;
4144
4145 /*
4146 * if the inode we're about to unlink was logged,
4147 * the log will be properly updated for any new names
4148 */
4149 if (BTRFS_I(inode)->logged_trans == trans->transid)
4150 return;
4151
4152 /*
4153 * when renaming files across directories, if the directory
4154 * there we're unlinking from gets fsync'd later on, there's
4155 * no way to find the destination directory later and fsync it
4156 * properly. So, we have to be conservative and force commits
4157 * so the new name gets discovered.
4158 */
4159 if (for_rename)
4160 goto record;
4161
4162 /* we can safely do the unlink without any special recording */
4163 return;
4164
4165 record:
4166 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4167 }
4168
4169 /*
4170 * Call this after adding a new name for a file and it will properly
4171 * update the log to reflect the new name.
4172 *
4173 * It will return zero if all goes well, and it will return 1 if a
4174 * full transaction commit is required.
4175 */
4176 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4177 struct inode *inode, struct inode *old_dir,
4178 struct dentry *parent)
4179 {
4180 struct btrfs_root * root = BTRFS_I(inode)->root;
4181
4182 /*
4183 * this will force the logging code to walk the dentry chain
4184 * up for the file
4185 */
4186 if (S_ISREG(inode->i_mode))
4187 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4188
4189 /*
4190 * if this inode hasn't been logged and directory we're renaming it
4191 * from hasn't been logged, we don't need to log it
4192 */
4193 if (BTRFS_I(inode)->logged_trans <=
4194 root->fs_info->last_trans_committed &&
4195 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4196 root->fs_info->last_trans_committed))
4197 return 0;
4198
4199 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4200 }
4201
This page took 0.266379 seconds and 5 git commands to generate.