51f113119b258295b8bf08ac82b2d9e91f8ecd5e
[deliverable/linux.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <asm/div64.h>
24 #include "ctree.h"
25 #include "extent_map.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "print-tree.h"
29 #include "volumes.h"
30 #include "async-thread.h"
31
32 struct map_lookup {
33 u64 type;
34 int io_align;
35 int io_width;
36 int stripe_len;
37 int sector_size;
38 int num_stripes;
39 int sub_stripes;
40 struct btrfs_bio_stripe stripes[];
41 };
42
43 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
44 (sizeof(struct btrfs_bio_stripe) * (n)))
45
46 static DEFINE_MUTEX(uuid_mutex);
47 static LIST_HEAD(fs_uuids);
48
49 void btrfs_lock_volumes(void)
50 {
51 mutex_lock(&uuid_mutex);
52 }
53
54 void btrfs_unlock_volumes(void)
55 {
56 mutex_unlock(&uuid_mutex);
57 }
58
59 static void lock_chunks(struct btrfs_root *root)
60 {
61 mutex_lock(&root->fs_info->alloc_mutex);
62 mutex_lock(&root->fs_info->chunk_mutex);
63 }
64
65 static void unlock_chunks(struct btrfs_root *root)
66 {
67 mutex_unlock(&root->fs_info->chunk_mutex);
68 mutex_unlock(&root->fs_info->alloc_mutex);
69 }
70
71 int btrfs_cleanup_fs_uuids(void)
72 {
73 struct btrfs_fs_devices *fs_devices;
74 struct list_head *uuid_cur;
75 struct list_head *devices_cur;
76 struct btrfs_device *dev;
77
78 list_for_each(uuid_cur, &fs_uuids) {
79 fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
80 list);
81 while(!list_empty(&fs_devices->devices)) {
82 devices_cur = fs_devices->devices.next;
83 dev = list_entry(devices_cur, struct btrfs_device,
84 dev_list);
85 if (dev->bdev) {
86 close_bdev_excl(dev->bdev);
87 fs_devices->open_devices--;
88 }
89 list_del(&dev->dev_list);
90 kfree(dev->name);
91 kfree(dev);
92 }
93 }
94 return 0;
95 }
96
97 static noinline struct btrfs_device *__find_device(struct list_head *head,
98 u64 devid, u8 *uuid)
99 {
100 struct btrfs_device *dev;
101 struct list_head *cur;
102
103 list_for_each(cur, head) {
104 dev = list_entry(cur, struct btrfs_device, dev_list);
105 if (dev->devid == devid &&
106 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
107 return dev;
108 }
109 }
110 return NULL;
111 }
112
113 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
114 {
115 struct list_head *cur;
116 struct btrfs_fs_devices *fs_devices;
117
118 list_for_each(cur, &fs_uuids) {
119 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
120 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
121 return fs_devices;
122 }
123 return NULL;
124 }
125
126 /*
127 * we try to collect pending bios for a device so we don't get a large
128 * number of procs sending bios down to the same device. This greatly
129 * improves the schedulers ability to collect and merge the bios.
130 *
131 * But, it also turns into a long list of bios to process and that is sure
132 * to eventually make the worker thread block. The solution here is to
133 * make some progress and then put this work struct back at the end of
134 * the list if the block device is congested. This way, multiple devices
135 * can make progress from a single worker thread.
136 */
137 static int noinline run_scheduled_bios(struct btrfs_device *device)
138 {
139 struct bio *pending;
140 struct backing_dev_info *bdi;
141 struct btrfs_fs_info *fs_info;
142 struct bio *tail;
143 struct bio *cur;
144 int again = 0;
145 unsigned long num_run = 0;
146 unsigned long limit;
147
148 bdi = device->bdev->bd_inode->i_mapping->backing_dev_info;
149 fs_info = device->dev_root->fs_info;
150 limit = btrfs_async_submit_limit(fs_info);
151 limit = limit * 2 / 3;
152
153 loop:
154 spin_lock(&device->io_lock);
155
156 /* take all the bios off the list at once and process them
157 * later on (without the lock held). But, remember the
158 * tail and other pointers so the bios can be properly reinserted
159 * into the list if we hit congestion
160 */
161 pending = device->pending_bios;
162 tail = device->pending_bio_tail;
163 WARN_ON(pending && !tail);
164 device->pending_bios = NULL;
165 device->pending_bio_tail = NULL;
166
167 /*
168 * if pending was null this time around, no bios need processing
169 * at all and we can stop. Otherwise it'll loop back up again
170 * and do an additional check so no bios are missed.
171 *
172 * device->running_pending is used to synchronize with the
173 * schedule_bio code.
174 */
175 if (pending) {
176 again = 1;
177 device->running_pending = 1;
178 } else {
179 again = 0;
180 device->running_pending = 0;
181 }
182 spin_unlock(&device->io_lock);
183
184 while(pending) {
185 cur = pending;
186 pending = pending->bi_next;
187 cur->bi_next = NULL;
188 atomic_dec(&fs_info->nr_async_bios);
189
190 if (atomic_read(&fs_info->nr_async_bios) < limit &&
191 waitqueue_active(&fs_info->async_submit_wait))
192 wake_up(&fs_info->async_submit_wait);
193
194 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
195 bio_get(cur);
196 submit_bio(cur->bi_rw, cur);
197 bio_put(cur);
198 num_run++;
199
200 /*
201 * we made progress, there is more work to do and the bdi
202 * is now congested. Back off and let other work structs
203 * run instead
204 */
205 if (pending && bdi_write_congested(bdi)) {
206 struct bio *old_head;
207
208 spin_lock(&device->io_lock);
209
210 old_head = device->pending_bios;
211 device->pending_bios = pending;
212 if (device->pending_bio_tail)
213 tail->bi_next = old_head;
214 else
215 device->pending_bio_tail = tail;
216
217 spin_unlock(&device->io_lock);
218 btrfs_requeue_work(&device->work);
219 goto done;
220 }
221 }
222 if (again)
223 goto loop;
224 done:
225 return 0;
226 }
227
228 void pending_bios_fn(struct btrfs_work *work)
229 {
230 struct btrfs_device *device;
231
232 device = container_of(work, struct btrfs_device, work);
233 run_scheduled_bios(device);
234 }
235
236 static noinline int device_list_add(const char *path,
237 struct btrfs_super_block *disk_super,
238 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
239 {
240 struct btrfs_device *device;
241 struct btrfs_fs_devices *fs_devices;
242 u64 found_transid = btrfs_super_generation(disk_super);
243
244 fs_devices = find_fsid(disk_super->fsid);
245 if (!fs_devices) {
246 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
247 if (!fs_devices)
248 return -ENOMEM;
249 INIT_LIST_HEAD(&fs_devices->devices);
250 INIT_LIST_HEAD(&fs_devices->alloc_list);
251 list_add(&fs_devices->list, &fs_uuids);
252 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
253 fs_devices->latest_devid = devid;
254 fs_devices->latest_trans = found_transid;
255 device = NULL;
256 } else {
257 device = __find_device(&fs_devices->devices, devid,
258 disk_super->dev_item.uuid);
259 }
260 if (!device) {
261 device = kzalloc(sizeof(*device), GFP_NOFS);
262 if (!device) {
263 /* we can safely leave the fs_devices entry around */
264 return -ENOMEM;
265 }
266 device->devid = devid;
267 device->work.func = pending_bios_fn;
268 memcpy(device->uuid, disk_super->dev_item.uuid,
269 BTRFS_UUID_SIZE);
270 device->barriers = 1;
271 spin_lock_init(&device->io_lock);
272 device->name = kstrdup(path, GFP_NOFS);
273 if (!device->name) {
274 kfree(device);
275 return -ENOMEM;
276 }
277 list_add(&device->dev_list, &fs_devices->devices);
278 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
279 fs_devices->num_devices++;
280 }
281
282 if (found_transid > fs_devices->latest_trans) {
283 fs_devices->latest_devid = devid;
284 fs_devices->latest_trans = found_transid;
285 }
286 *fs_devices_ret = fs_devices;
287 return 0;
288 }
289
290 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
291 {
292 struct list_head *head = &fs_devices->devices;
293 struct list_head *cur;
294 struct btrfs_device *device;
295
296 mutex_lock(&uuid_mutex);
297 again:
298 list_for_each(cur, head) {
299 device = list_entry(cur, struct btrfs_device, dev_list);
300 if (!device->in_fs_metadata) {
301 struct block_device *bdev;
302 list_del(&device->dev_list);
303 list_del(&device->dev_alloc_list);
304 fs_devices->num_devices--;
305 if (device->bdev) {
306 bdev = device->bdev;
307 fs_devices->open_devices--;
308 mutex_unlock(&uuid_mutex);
309 close_bdev_excl(bdev);
310 mutex_lock(&uuid_mutex);
311 }
312 kfree(device->name);
313 kfree(device);
314 goto again;
315 }
316 }
317 mutex_unlock(&uuid_mutex);
318 return 0;
319 }
320
321 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
322 {
323 struct list_head *head = &fs_devices->devices;
324 struct list_head *cur;
325 struct btrfs_device *device;
326
327 mutex_lock(&uuid_mutex);
328 list_for_each(cur, head) {
329 device = list_entry(cur, struct btrfs_device, dev_list);
330 if (device->bdev) {
331 close_bdev_excl(device->bdev);
332 fs_devices->open_devices--;
333 }
334 device->bdev = NULL;
335 device->in_fs_metadata = 0;
336 }
337 fs_devices->mounted = 0;
338 mutex_unlock(&uuid_mutex);
339 return 0;
340 }
341
342 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
343 int flags, void *holder)
344 {
345 struct block_device *bdev;
346 struct list_head *head = &fs_devices->devices;
347 struct list_head *cur;
348 struct btrfs_device *device;
349 struct block_device *latest_bdev = NULL;
350 struct buffer_head *bh;
351 struct btrfs_super_block *disk_super;
352 u64 latest_devid = 0;
353 u64 latest_transid = 0;
354 u64 transid;
355 u64 devid;
356 int ret = 0;
357
358 mutex_lock(&uuid_mutex);
359 if (fs_devices->mounted)
360 goto out;
361
362 list_for_each(cur, head) {
363 device = list_entry(cur, struct btrfs_device, dev_list);
364 if (device->bdev)
365 continue;
366
367 if (!device->name)
368 continue;
369
370 bdev = open_bdev_excl(device->name, flags, holder);
371
372 if (IS_ERR(bdev)) {
373 printk("open %s failed\n", device->name);
374 goto error;
375 }
376 set_blocksize(bdev, 4096);
377
378 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
379 if (!bh)
380 goto error_close;
381
382 disk_super = (struct btrfs_super_block *)bh->b_data;
383 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
384 sizeof(disk_super->magic)))
385 goto error_brelse;
386
387 devid = le64_to_cpu(disk_super->dev_item.devid);
388 if (devid != device->devid)
389 goto error_brelse;
390
391 transid = btrfs_super_generation(disk_super);
392 if (!latest_transid || transid > latest_transid) {
393 latest_devid = devid;
394 latest_transid = transid;
395 latest_bdev = bdev;
396 }
397
398 device->bdev = bdev;
399 device->in_fs_metadata = 0;
400 fs_devices->open_devices++;
401 continue;
402
403 error_brelse:
404 brelse(bh);
405 error_close:
406 close_bdev_excl(bdev);
407 error:
408 continue;
409 }
410 if (fs_devices->open_devices == 0) {
411 ret = -EIO;
412 goto out;
413 }
414 fs_devices->mounted = 1;
415 fs_devices->latest_bdev = latest_bdev;
416 fs_devices->latest_devid = latest_devid;
417 fs_devices->latest_trans = latest_transid;
418 out:
419 mutex_unlock(&uuid_mutex);
420 return ret;
421 }
422
423 int btrfs_scan_one_device(const char *path, int flags, void *holder,
424 struct btrfs_fs_devices **fs_devices_ret)
425 {
426 struct btrfs_super_block *disk_super;
427 struct block_device *bdev;
428 struct buffer_head *bh;
429 int ret;
430 u64 devid;
431 u64 transid;
432
433 mutex_lock(&uuid_mutex);
434
435 bdev = open_bdev_excl(path, flags, holder);
436
437 if (IS_ERR(bdev)) {
438 ret = PTR_ERR(bdev);
439 goto error;
440 }
441
442 ret = set_blocksize(bdev, 4096);
443 if (ret)
444 goto error_close;
445 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
446 if (!bh) {
447 ret = -EIO;
448 goto error_close;
449 }
450 disk_super = (struct btrfs_super_block *)bh->b_data;
451 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
452 sizeof(disk_super->magic))) {
453 ret = -EINVAL;
454 goto error_brelse;
455 }
456 devid = le64_to_cpu(disk_super->dev_item.devid);
457 transid = btrfs_super_generation(disk_super);
458 if (disk_super->label[0])
459 printk("device label %s ", disk_super->label);
460 else {
461 /* FIXME, make a readl uuid parser */
462 printk("device fsid %llx-%llx ",
463 *(unsigned long long *)disk_super->fsid,
464 *(unsigned long long *)(disk_super->fsid + 8));
465 }
466 printk("devid %Lu transid %Lu %s\n", devid, transid, path);
467 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
468
469 error_brelse:
470 brelse(bh);
471 error_close:
472 close_bdev_excl(bdev);
473 error:
474 mutex_unlock(&uuid_mutex);
475 return ret;
476 }
477
478 /*
479 * this uses a pretty simple search, the expectation is that it is
480 * called very infrequently and that a given device has a small number
481 * of extents
482 */
483 static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans,
484 struct btrfs_device *device,
485 struct btrfs_path *path,
486 u64 num_bytes, u64 *start)
487 {
488 struct btrfs_key key;
489 struct btrfs_root *root = device->dev_root;
490 struct btrfs_dev_extent *dev_extent = NULL;
491 u64 hole_size = 0;
492 u64 last_byte = 0;
493 u64 search_start = 0;
494 u64 search_end = device->total_bytes;
495 int ret;
496 int slot = 0;
497 int start_found;
498 struct extent_buffer *l;
499
500 start_found = 0;
501 path->reada = 2;
502
503 /* FIXME use last free of some kind */
504
505 /* we don't want to overwrite the superblock on the drive,
506 * so we make sure to start at an offset of at least 1MB
507 */
508 search_start = max((u64)1024 * 1024, search_start);
509
510 if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
511 search_start = max(root->fs_info->alloc_start, search_start);
512
513 key.objectid = device->devid;
514 key.offset = search_start;
515 key.type = BTRFS_DEV_EXTENT_KEY;
516 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
517 if (ret < 0)
518 goto error;
519 ret = btrfs_previous_item(root, path, 0, key.type);
520 if (ret < 0)
521 goto error;
522 l = path->nodes[0];
523 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
524 while (1) {
525 l = path->nodes[0];
526 slot = path->slots[0];
527 if (slot >= btrfs_header_nritems(l)) {
528 ret = btrfs_next_leaf(root, path);
529 if (ret == 0)
530 continue;
531 if (ret < 0)
532 goto error;
533 no_more_items:
534 if (!start_found) {
535 if (search_start >= search_end) {
536 ret = -ENOSPC;
537 goto error;
538 }
539 *start = search_start;
540 start_found = 1;
541 goto check_pending;
542 }
543 *start = last_byte > search_start ?
544 last_byte : search_start;
545 if (search_end <= *start) {
546 ret = -ENOSPC;
547 goto error;
548 }
549 goto check_pending;
550 }
551 btrfs_item_key_to_cpu(l, &key, slot);
552
553 if (key.objectid < device->devid)
554 goto next;
555
556 if (key.objectid > device->devid)
557 goto no_more_items;
558
559 if (key.offset >= search_start && key.offset > last_byte &&
560 start_found) {
561 if (last_byte < search_start)
562 last_byte = search_start;
563 hole_size = key.offset - last_byte;
564 if (key.offset > last_byte &&
565 hole_size >= num_bytes) {
566 *start = last_byte;
567 goto check_pending;
568 }
569 }
570 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
571 goto next;
572 }
573
574 start_found = 1;
575 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
576 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
577 next:
578 path->slots[0]++;
579 cond_resched();
580 }
581 check_pending:
582 /* we have to make sure we didn't find an extent that has already
583 * been allocated by the map tree or the original allocation
584 */
585 btrfs_release_path(root, path);
586 BUG_ON(*start < search_start);
587
588 if (*start + num_bytes > search_end) {
589 ret = -ENOSPC;
590 goto error;
591 }
592 /* check for pending inserts here */
593 return 0;
594
595 error:
596 btrfs_release_path(root, path);
597 return ret;
598 }
599
600 int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
601 struct btrfs_device *device,
602 u64 start)
603 {
604 int ret;
605 struct btrfs_path *path;
606 struct btrfs_root *root = device->dev_root;
607 struct btrfs_key key;
608 struct btrfs_key found_key;
609 struct extent_buffer *leaf = NULL;
610 struct btrfs_dev_extent *extent = NULL;
611
612 path = btrfs_alloc_path();
613 if (!path)
614 return -ENOMEM;
615
616 key.objectid = device->devid;
617 key.offset = start;
618 key.type = BTRFS_DEV_EXTENT_KEY;
619
620 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
621 if (ret > 0) {
622 ret = btrfs_previous_item(root, path, key.objectid,
623 BTRFS_DEV_EXTENT_KEY);
624 BUG_ON(ret);
625 leaf = path->nodes[0];
626 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
627 extent = btrfs_item_ptr(leaf, path->slots[0],
628 struct btrfs_dev_extent);
629 BUG_ON(found_key.offset > start || found_key.offset +
630 btrfs_dev_extent_length(leaf, extent) < start);
631 ret = 0;
632 } else if (ret == 0) {
633 leaf = path->nodes[0];
634 extent = btrfs_item_ptr(leaf, path->slots[0],
635 struct btrfs_dev_extent);
636 }
637 BUG_ON(ret);
638
639 if (device->bytes_used > 0)
640 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
641 ret = btrfs_del_item(trans, root, path);
642 BUG_ON(ret);
643
644 btrfs_free_path(path);
645 return ret;
646 }
647
648 int noinline btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
649 struct btrfs_device *device,
650 u64 chunk_tree, u64 chunk_objectid,
651 u64 chunk_offset,
652 u64 num_bytes, u64 *start)
653 {
654 int ret;
655 struct btrfs_path *path;
656 struct btrfs_root *root = device->dev_root;
657 struct btrfs_dev_extent *extent;
658 struct extent_buffer *leaf;
659 struct btrfs_key key;
660
661 WARN_ON(!device->in_fs_metadata);
662 path = btrfs_alloc_path();
663 if (!path)
664 return -ENOMEM;
665
666 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
667 if (ret) {
668 goto err;
669 }
670
671 key.objectid = device->devid;
672 key.offset = *start;
673 key.type = BTRFS_DEV_EXTENT_KEY;
674 ret = btrfs_insert_empty_item(trans, root, path, &key,
675 sizeof(*extent));
676 BUG_ON(ret);
677
678 leaf = path->nodes[0];
679 extent = btrfs_item_ptr(leaf, path->slots[0],
680 struct btrfs_dev_extent);
681 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
682 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
683 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
684
685 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
686 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
687 BTRFS_UUID_SIZE);
688
689 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
690 btrfs_mark_buffer_dirty(leaf);
691 err:
692 btrfs_free_path(path);
693 return ret;
694 }
695
696 static noinline int find_next_chunk(struct btrfs_root *root,
697 u64 objectid, u64 *offset)
698 {
699 struct btrfs_path *path;
700 int ret;
701 struct btrfs_key key;
702 struct btrfs_chunk *chunk;
703 struct btrfs_key found_key;
704
705 path = btrfs_alloc_path();
706 BUG_ON(!path);
707
708 key.objectid = objectid;
709 key.offset = (u64)-1;
710 key.type = BTRFS_CHUNK_ITEM_KEY;
711
712 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
713 if (ret < 0)
714 goto error;
715
716 BUG_ON(ret == 0);
717
718 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
719 if (ret) {
720 *offset = 0;
721 } else {
722 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
723 path->slots[0]);
724 if (found_key.objectid != objectid)
725 *offset = 0;
726 else {
727 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
728 struct btrfs_chunk);
729 *offset = found_key.offset +
730 btrfs_chunk_length(path->nodes[0], chunk);
731 }
732 }
733 ret = 0;
734 error:
735 btrfs_free_path(path);
736 return ret;
737 }
738
739 static noinline int find_next_devid(struct btrfs_root *root,
740 struct btrfs_path *path, u64 *objectid)
741 {
742 int ret;
743 struct btrfs_key key;
744 struct btrfs_key found_key;
745
746 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
747 key.type = BTRFS_DEV_ITEM_KEY;
748 key.offset = (u64)-1;
749
750 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
751 if (ret < 0)
752 goto error;
753
754 BUG_ON(ret == 0);
755
756 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
757 BTRFS_DEV_ITEM_KEY);
758 if (ret) {
759 *objectid = 1;
760 } else {
761 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
762 path->slots[0]);
763 *objectid = found_key.offset + 1;
764 }
765 ret = 0;
766 error:
767 btrfs_release_path(root, path);
768 return ret;
769 }
770
771 /*
772 * the device information is stored in the chunk root
773 * the btrfs_device struct should be fully filled in
774 */
775 int btrfs_add_device(struct btrfs_trans_handle *trans,
776 struct btrfs_root *root,
777 struct btrfs_device *device)
778 {
779 int ret;
780 struct btrfs_path *path;
781 struct btrfs_dev_item *dev_item;
782 struct extent_buffer *leaf;
783 struct btrfs_key key;
784 unsigned long ptr;
785 u64 free_devid = 0;
786
787 root = root->fs_info->chunk_root;
788
789 path = btrfs_alloc_path();
790 if (!path)
791 return -ENOMEM;
792
793 ret = find_next_devid(root, path, &free_devid);
794 if (ret)
795 goto out;
796
797 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
798 key.type = BTRFS_DEV_ITEM_KEY;
799 key.offset = free_devid;
800
801 ret = btrfs_insert_empty_item(trans, root, path, &key,
802 sizeof(*dev_item));
803 if (ret)
804 goto out;
805
806 leaf = path->nodes[0];
807 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
808
809 device->devid = free_devid;
810 btrfs_set_device_id(leaf, dev_item, device->devid);
811 btrfs_set_device_type(leaf, dev_item, device->type);
812 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
813 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
814 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
815 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
816 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
817 btrfs_set_device_group(leaf, dev_item, 0);
818 btrfs_set_device_seek_speed(leaf, dev_item, 0);
819 btrfs_set_device_bandwidth(leaf, dev_item, 0);
820
821 ptr = (unsigned long)btrfs_device_uuid(dev_item);
822 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
823 btrfs_mark_buffer_dirty(leaf);
824 ret = 0;
825
826 out:
827 btrfs_free_path(path);
828 return ret;
829 }
830
831 static int btrfs_rm_dev_item(struct btrfs_root *root,
832 struct btrfs_device *device)
833 {
834 int ret;
835 struct btrfs_path *path;
836 struct block_device *bdev = device->bdev;
837 struct btrfs_device *next_dev;
838 struct btrfs_key key;
839 u64 total_bytes;
840 struct btrfs_fs_devices *fs_devices;
841 struct btrfs_trans_handle *trans;
842
843 root = root->fs_info->chunk_root;
844
845 path = btrfs_alloc_path();
846 if (!path)
847 return -ENOMEM;
848
849 trans = btrfs_start_transaction(root, 1);
850 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
851 key.type = BTRFS_DEV_ITEM_KEY;
852 key.offset = device->devid;
853 lock_chunks(root);
854
855 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
856 if (ret < 0)
857 goto out;
858
859 if (ret > 0) {
860 ret = -ENOENT;
861 goto out;
862 }
863
864 ret = btrfs_del_item(trans, root, path);
865 if (ret)
866 goto out;
867
868 /*
869 * at this point, the device is zero sized. We want to
870 * remove it from the devices list and zero out the old super
871 */
872 list_del_init(&device->dev_list);
873 list_del_init(&device->dev_alloc_list);
874 fs_devices = root->fs_info->fs_devices;
875
876 next_dev = list_entry(fs_devices->devices.next, struct btrfs_device,
877 dev_list);
878 if (bdev == root->fs_info->sb->s_bdev)
879 root->fs_info->sb->s_bdev = next_dev->bdev;
880 if (bdev == fs_devices->latest_bdev)
881 fs_devices->latest_bdev = next_dev->bdev;
882
883 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
884 btrfs_set_super_num_devices(&root->fs_info->super_copy,
885 total_bytes - 1);
886 out:
887 btrfs_free_path(path);
888 unlock_chunks(root);
889 btrfs_commit_transaction(trans, root);
890 return ret;
891 }
892
893 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
894 {
895 struct btrfs_device *device;
896 struct block_device *bdev;
897 struct buffer_head *bh = NULL;
898 struct btrfs_super_block *disk_super;
899 u64 all_avail;
900 u64 devid;
901 int ret = 0;
902
903 mutex_lock(&uuid_mutex);
904 mutex_lock(&root->fs_info->volume_mutex);
905
906 all_avail = root->fs_info->avail_data_alloc_bits |
907 root->fs_info->avail_system_alloc_bits |
908 root->fs_info->avail_metadata_alloc_bits;
909
910 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
911 btrfs_super_num_devices(&root->fs_info->super_copy) <= 4) {
912 printk("btrfs: unable to go below four devices on raid10\n");
913 ret = -EINVAL;
914 goto out;
915 }
916
917 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
918 btrfs_super_num_devices(&root->fs_info->super_copy) <= 2) {
919 printk("btrfs: unable to go below two devices on raid1\n");
920 ret = -EINVAL;
921 goto out;
922 }
923
924 if (strcmp(device_path, "missing") == 0) {
925 struct list_head *cur;
926 struct list_head *devices;
927 struct btrfs_device *tmp;
928
929 device = NULL;
930 devices = &root->fs_info->fs_devices->devices;
931 list_for_each(cur, devices) {
932 tmp = list_entry(cur, struct btrfs_device, dev_list);
933 if (tmp->in_fs_metadata && !tmp->bdev) {
934 device = tmp;
935 break;
936 }
937 }
938 bdev = NULL;
939 bh = NULL;
940 disk_super = NULL;
941 if (!device) {
942 printk("btrfs: no missing devices found to remove\n");
943 goto out;
944 }
945
946 } else {
947 bdev = open_bdev_excl(device_path, 0,
948 root->fs_info->bdev_holder);
949 if (IS_ERR(bdev)) {
950 ret = PTR_ERR(bdev);
951 goto out;
952 }
953
954 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
955 if (!bh) {
956 ret = -EIO;
957 goto error_close;
958 }
959 disk_super = (struct btrfs_super_block *)bh->b_data;
960 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
961 sizeof(disk_super->magic))) {
962 ret = -ENOENT;
963 goto error_brelse;
964 }
965 if (memcmp(disk_super->fsid, root->fs_info->fsid,
966 BTRFS_FSID_SIZE)) {
967 ret = -ENOENT;
968 goto error_brelse;
969 }
970 devid = le64_to_cpu(disk_super->dev_item.devid);
971 device = btrfs_find_device(root, devid, NULL);
972 if (!device) {
973 ret = -ENOENT;
974 goto error_brelse;
975 }
976
977 }
978 root->fs_info->fs_devices->num_devices--;
979 root->fs_info->fs_devices->open_devices--;
980
981 ret = btrfs_shrink_device(device, 0);
982 if (ret)
983 goto error_brelse;
984
985
986 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
987 if (ret)
988 goto error_brelse;
989
990 if (bh) {
991 /* make sure this device isn't detected as part of
992 * the FS anymore
993 */
994 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
995 set_buffer_dirty(bh);
996 sync_dirty_buffer(bh);
997
998 brelse(bh);
999 }
1000
1001 if (device->bdev) {
1002 /* one close for the device struct or super_block */
1003 close_bdev_excl(device->bdev);
1004 }
1005 if (bdev) {
1006 /* one close for us */
1007 close_bdev_excl(bdev);
1008 }
1009 kfree(device->name);
1010 kfree(device);
1011 ret = 0;
1012 goto out;
1013
1014 error_brelse:
1015 brelse(bh);
1016 error_close:
1017 if (bdev)
1018 close_bdev_excl(bdev);
1019 out:
1020 mutex_unlock(&root->fs_info->volume_mutex);
1021 mutex_unlock(&uuid_mutex);
1022 return ret;
1023 }
1024
1025 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1026 {
1027 struct btrfs_trans_handle *trans;
1028 struct btrfs_device *device;
1029 struct block_device *bdev;
1030 struct list_head *cur;
1031 struct list_head *devices;
1032 u64 total_bytes;
1033 int ret = 0;
1034
1035
1036 bdev = open_bdev_excl(device_path, 0, root->fs_info->bdev_holder);
1037 if (!bdev) {
1038 return -EIO;
1039 }
1040
1041 mutex_lock(&root->fs_info->volume_mutex);
1042
1043 trans = btrfs_start_transaction(root, 1);
1044 lock_chunks(root);
1045 devices = &root->fs_info->fs_devices->devices;
1046 list_for_each(cur, devices) {
1047 device = list_entry(cur, struct btrfs_device, dev_list);
1048 if (device->bdev == bdev) {
1049 ret = -EEXIST;
1050 goto out;
1051 }
1052 }
1053
1054 device = kzalloc(sizeof(*device), GFP_NOFS);
1055 if (!device) {
1056 /* we can safely leave the fs_devices entry around */
1057 ret = -ENOMEM;
1058 goto out_close_bdev;
1059 }
1060
1061 device->barriers = 1;
1062 device->work.func = pending_bios_fn;
1063 generate_random_uuid(device->uuid);
1064 spin_lock_init(&device->io_lock);
1065 device->name = kstrdup(device_path, GFP_NOFS);
1066 if (!device->name) {
1067 kfree(device);
1068 goto out_close_bdev;
1069 }
1070 device->io_width = root->sectorsize;
1071 device->io_align = root->sectorsize;
1072 device->sector_size = root->sectorsize;
1073 device->total_bytes = i_size_read(bdev->bd_inode);
1074 device->dev_root = root->fs_info->dev_root;
1075 device->bdev = bdev;
1076 device->in_fs_metadata = 1;
1077
1078 ret = btrfs_add_device(trans, root, device);
1079 if (ret)
1080 goto out_close_bdev;
1081
1082 set_blocksize(device->bdev, 4096);
1083
1084 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1085 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1086 total_bytes + device->total_bytes);
1087
1088 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1089 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1090 total_bytes + 1);
1091
1092 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1093 list_add(&device->dev_alloc_list,
1094 &root->fs_info->fs_devices->alloc_list);
1095 root->fs_info->fs_devices->num_devices++;
1096 root->fs_info->fs_devices->open_devices++;
1097 out:
1098 unlock_chunks(root);
1099 btrfs_end_transaction(trans, root);
1100 mutex_unlock(&root->fs_info->volume_mutex);
1101
1102 return ret;
1103
1104 out_close_bdev:
1105 close_bdev_excl(bdev);
1106 goto out;
1107 }
1108
1109 int noinline btrfs_update_device(struct btrfs_trans_handle *trans,
1110 struct btrfs_device *device)
1111 {
1112 int ret;
1113 struct btrfs_path *path;
1114 struct btrfs_root *root;
1115 struct btrfs_dev_item *dev_item;
1116 struct extent_buffer *leaf;
1117 struct btrfs_key key;
1118
1119 root = device->dev_root->fs_info->chunk_root;
1120
1121 path = btrfs_alloc_path();
1122 if (!path)
1123 return -ENOMEM;
1124
1125 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1126 key.type = BTRFS_DEV_ITEM_KEY;
1127 key.offset = device->devid;
1128
1129 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1130 if (ret < 0)
1131 goto out;
1132
1133 if (ret > 0) {
1134 ret = -ENOENT;
1135 goto out;
1136 }
1137
1138 leaf = path->nodes[0];
1139 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1140
1141 btrfs_set_device_id(leaf, dev_item, device->devid);
1142 btrfs_set_device_type(leaf, dev_item, device->type);
1143 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1144 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1145 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1146 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1147 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1148 btrfs_mark_buffer_dirty(leaf);
1149
1150 out:
1151 btrfs_free_path(path);
1152 return ret;
1153 }
1154
1155 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1156 struct btrfs_device *device, u64 new_size)
1157 {
1158 struct btrfs_super_block *super_copy =
1159 &device->dev_root->fs_info->super_copy;
1160 u64 old_total = btrfs_super_total_bytes(super_copy);
1161 u64 diff = new_size - device->total_bytes;
1162
1163 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1164 return btrfs_update_device(trans, device);
1165 }
1166
1167 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1168 struct btrfs_device *device, u64 new_size)
1169 {
1170 int ret;
1171 lock_chunks(device->dev_root);
1172 ret = __btrfs_grow_device(trans, device, new_size);
1173 unlock_chunks(device->dev_root);
1174 return ret;
1175 }
1176
1177 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1178 struct btrfs_root *root,
1179 u64 chunk_tree, u64 chunk_objectid,
1180 u64 chunk_offset)
1181 {
1182 int ret;
1183 struct btrfs_path *path;
1184 struct btrfs_key key;
1185
1186 root = root->fs_info->chunk_root;
1187 path = btrfs_alloc_path();
1188 if (!path)
1189 return -ENOMEM;
1190
1191 key.objectid = chunk_objectid;
1192 key.offset = chunk_offset;
1193 key.type = BTRFS_CHUNK_ITEM_KEY;
1194
1195 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1196 BUG_ON(ret);
1197
1198 ret = btrfs_del_item(trans, root, path);
1199 BUG_ON(ret);
1200
1201 btrfs_free_path(path);
1202 return 0;
1203 }
1204
1205 int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1206 chunk_offset)
1207 {
1208 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1209 struct btrfs_disk_key *disk_key;
1210 struct btrfs_chunk *chunk;
1211 u8 *ptr;
1212 int ret = 0;
1213 u32 num_stripes;
1214 u32 array_size;
1215 u32 len = 0;
1216 u32 cur;
1217 struct btrfs_key key;
1218
1219 array_size = btrfs_super_sys_array_size(super_copy);
1220
1221 ptr = super_copy->sys_chunk_array;
1222 cur = 0;
1223
1224 while (cur < array_size) {
1225 disk_key = (struct btrfs_disk_key *)ptr;
1226 btrfs_disk_key_to_cpu(&key, disk_key);
1227
1228 len = sizeof(*disk_key);
1229
1230 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1231 chunk = (struct btrfs_chunk *)(ptr + len);
1232 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1233 len += btrfs_chunk_item_size(num_stripes);
1234 } else {
1235 ret = -EIO;
1236 break;
1237 }
1238 if (key.objectid == chunk_objectid &&
1239 key.offset == chunk_offset) {
1240 memmove(ptr, ptr + len, array_size - (cur + len));
1241 array_size -= len;
1242 btrfs_set_super_sys_array_size(super_copy, array_size);
1243 } else {
1244 ptr += len;
1245 cur += len;
1246 }
1247 }
1248 return ret;
1249 }
1250
1251
1252 int btrfs_relocate_chunk(struct btrfs_root *root,
1253 u64 chunk_tree, u64 chunk_objectid,
1254 u64 chunk_offset)
1255 {
1256 struct extent_map_tree *em_tree;
1257 struct btrfs_root *extent_root;
1258 struct btrfs_trans_handle *trans;
1259 struct extent_map *em;
1260 struct map_lookup *map;
1261 int ret;
1262 int i;
1263
1264 printk("btrfs relocating chunk %llu\n",
1265 (unsigned long long)chunk_offset);
1266 root = root->fs_info->chunk_root;
1267 extent_root = root->fs_info->extent_root;
1268 em_tree = &root->fs_info->mapping_tree.map_tree;
1269
1270 /* step one, relocate all the extents inside this chunk */
1271 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1272 BUG_ON(ret);
1273
1274 trans = btrfs_start_transaction(root, 1);
1275 BUG_ON(!trans);
1276
1277 lock_chunks(root);
1278
1279 /*
1280 * step two, delete the device extents and the
1281 * chunk tree entries
1282 */
1283 spin_lock(&em_tree->lock);
1284 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1285 spin_unlock(&em_tree->lock);
1286
1287 BUG_ON(em->start > chunk_offset ||
1288 em->start + em->len < chunk_offset);
1289 map = (struct map_lookup *)em->bdev;
1290
1291 for (i = 0; i < map->num_stripes; i++) {
1292 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1293 map->stripes[i].physical);
1294 BUG_ON(ret);
1295
1296 if (map->stripes[i].dev) {
1297 ret = btrfs_update_device(trans, map->stripes[i].dev);
1298 BUG_ON(ret);
1299 }
1300 }
1301 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1302 chunk_offset);
1303
1304 BUG_ON(ret);
1305
1306 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1307 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1308 BUG_ON(ret);
1309 }
1310
1311 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1312 BUG_ON(ret);
1313
1314 spin_lock(&em_tree->lock);
1315 remove_extent_mapping(em_tree, em);
1316 spin_unlock(&em_tree->lock);
1317
1318 kfree(map);
1319 em->bdev = NULL;
1320
1321 /* once for the tree */
1322 free_extent_map(em);
1323 /* once for us */
1324 free_extent_map(em);
1325
1326 unlock_chunks(root);
1327 btrfs_end_transaction(trans, root);
1328 return 0;
1329 }
1330
1331 static u64 div_factor(u64 num, int factor)
1332 {
1333 if (factor == 10)
1334 return num;
1335 num *= factor;
1336 do_div(num, 10);
1337 return num;
1338 }
1339
1340
1341 int btrfs_balance(struct btrfs_root *dev_root)
1342 {
1343 int ret;
1344 struct list_head *cur;
1345 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1346 struct btrfs_device *device;
1347 u64 old_size;
1348 u64 size_to_free;
1349 struct btrfs_path *path;
1350 struct btrfs_key key;
1351 struct btrfs_chunk *chunk;
1352 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1353 struct btrfs_trans_handle *trans;
1354 struct btrfs_key found_key;
1355
1356
1357 mutex_lock(&dev_root->fs_info->volume_mutex);
1358 dev_root = dev_root->fs_info->dev_root;
1359
1360 /* step one make some room on all the devices */
1361 list_for_each(cur, devices) {
1362 device = list_entry(cur, struct btrfs_device, dev_list);
1363 old_size = device->total_bytes;
1364 size_to_free = div_factor(old_size, 1);
1365 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1366 if (device->total_bytes - device->bytes_used > size_to_free)
1367 continue;
1368
1369 ret = btrfs_shrink_device(device, old_size - size_to_free);
1370 BUG_ON(ret);
1371
1372 trans = btrfs_start_transaction(dev_root, 1);
1373 BUG_ON(!trans);
1374
1375 ret = btrfs_grow_device(trans, device, old_size);
1376 BUG_ON(ret);
1377
1378 btrfs_end_transaction(trans, dev_root);
1379 }
1380
1381 /* step two, relocate all the chunks */
1382 path = btrfs_alloc_path();
1383 BUG_ON(!path);
1384
1385 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1386 key.offset = (u64)-1;
1387 key.type = BTRFS_CHUNK_ITEM_KEY;
1388
1389 while(1) {
1390 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1391 if (ret < 0)
1392 goto error;
1393
1394 /*
1395 * this shouldn't happen, it means the last relocate
1396 * failed
1397 */
1398 if (ret == 0)
1399 break;
1400
1401 ret = btrfs_previous_item(chunk_root, path, 0,
1402 BTRFS_CHUNK_ITEM_KEY);
1403 if (ret)
1404 break;
1405
1406 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1407 path->slots[0]);
1408 if (found_key.objectid != key.objectid)
1409 break;
1410
1411 chunk = btrfs_item_ptr(path->nodes[0],
1412 path->slots[0],
1413 struct btrfs_chunk);
1414 key.offset = found_key.offset;
1415 /* chunk zero is special */
1416 if (key.offset == 0)
1417 break;
1418
1419 btrfs_release_path(chunk_root, path);
1420 ret = btrfs_relocate_chunk(chunk_root,
1421 chunk_root->root_key.objectid,
1422 found_key.objectid,
1423 found_key.offset);
1424 BUG_ON(ret);
1425 }
1426 ret = 0;
1427 error:
1428 btrfs_free_path(path);
1429 mutex_unlock(&dev_root->fs_info->volume_mutex);
1430 return ret;
1431 }
1432
1433 /*
1434 * shrinking a device means finding all of the device extents past
1435 * the new size, and then following the back refs to the chunks.
1436 * The chunk relocation code actually frees the device extent
1437 */
1438 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1439 {
1440 struct btrfs_trans_handle *trans;
1441 struct btrfs_root *root = device->dev_root;
1442 struct btrfs_dev_extent *dev_extent = NULL;
1443 struct btrfs_path *path;
1444 u64 length;
1445 u64 chunk_tree;
1446 u64 chunk_objectid;
1447 u64 chunk_offset;
1448 int ret;
1449 int slot;
1450 struct extent_buffer *l;
1451 struct btrfs_key key;
1452 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1453 u64 old_total = btrfs_super_total_bytes(super_copy);
1454 u64 diff = device->total_bytes - new_size;
1455
1456
1457 path = btrfs_alloc_path();
1458 if (!path)
1459 return -ENOMEM;
1460
1461 trans = btrfs_start_transaction(root, 1);
1462 if (!trans) {
1463 ret = -ENOMEM;
1464 goto done;
1465 }
1466
1467 path->reada = 2;
1468
1469 lock_chunks(root);
1470
1471 device->total_bytes = new_size;
1472 ret = btrfs_update_device(trans, device);
1473 if (ret) {
1474 unlock_chunks(root);
1475 btrfs_end_transaction(trans, root);
1476 goto done;
1477 }
1478 WARN_ON(diff > old_total);
1479 btrfs_set_super_total_bytes(super_copy, old_total - diff);
1480 unlock_chunks(root);
1481 btrfs_end_transaction(trans, root);
1482
1483 key.objectid = device->devid;
1484 key.offset = (u64)-1;
1485 key.type = BTRFS_DEV_EXTENT_KEY;
1486
1487 while (1) {
1488 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1489 if (ret < 0)
1490 goto done;
1491
1492 ret = btrfs_previous_item(root, path, 0, key.type);
1493 if (ret < 0)
1494 goto done;
1495 if (ret) {
1496 ret = 0;
1497 goto done;
1498 }
1499
1500 l = path->nodes[0];
1501 slot = path->slots[0];
1502 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
1503
1504 if (key.objectid != device->devid)
1505 goto done;
1506
1507 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1508 length = btrfs_dev_extent_length(l, dev_extent);
1509
1510 if (key.offset + length <= new_size)
1511 goto done;
1512
1513 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1514 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1515 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1516 btrfs_release_path(root, path);
1517
1518 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
1519 chunk_offset);
1520 if (ret)
1521 goto done;
1522 }
1523
1524 done:
1525 btrfs_free_path(path);
1526 return ret;
1527 }
1528
1529 int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
1530 struct btrfs_root *root,
1531 struct btrfs_key *key,
1532 struct btrfs_chunk *chunk, int item_size)
1533 {
1534 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1535 struct btrfs_disk_key disk_key;
1536 u32 array_size;
1537 u8 *ptr;
1538
1539 array_size = btrfs_super_sys_array_size(super_copy);
1540 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
1541 return -EFBIG;
1542
1543 ptr = super_copy->sys_chunk_array + array_size;
1544 btrfs_cpu_key_to_disk(&disk_key, key);
1545 memcpy(ptr, &disk_key, sizeof(disk_key));
1546 ptr += sizeof(disk_key);
1547 memcpy(ptr, chunk, item_size);
1548 item_size += sizeof(disk_key);
1549 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
1550 return 0;
1551 }
1552
1553 static u64 noinline chunk_bytes_by_type(u64 type, u64 calc_size,
1554 int num_stripes, int sub_stripes)
1555 {
1556 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
1557 return calc_size;
1558 else if (type & BTRFS_BLOCK_GROUP_RAID10)
1559 return calc_size * (num_stripes / sub_stripes);
1560 else
1561 return calc_size * num_stripes;
1562 }
1563
1564
1565 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
1566 struct btrfs_root *extent_root, u64 *start,
1567 u64 *num_bytes, u64 type)
1568 {
1569 u64 dev_offset;
1570 struct btrfs_fs_info *info = extent_root->fs_info;
1571 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
1572 struct btrfs_path *path;
1573 struct btrfs_stripe *stripes;
1574 struct btrfs_device *device = NULL;
1575 struct btrfs_chunk *chunk;
1576 struct list_head private_devs;
1577 struct list_head *dev_list;
1578 struct list_head *cur;
1579 struct extent_map_tree *em_tree;
1580 struct map_lookup *map;
1581 struct extent_map *em;
1582 int min_stripe_size = 1 * 1024 * 1024;
1583 u64 physical;
1584 u64 calc_size = 1024 * 1024 * 1024;
1585 u64 max_chunk_size = calc_size;
1586 u64 min_free;
1587 u64 avail;
1588 u64 max_avail = 0;
1589 u64 percent_max;
1590 int num_stripes = 1;
1591 int min_stripes = 1;
1592 int sub_stripes = 0;
1593 int looped = 0;
1594 int ret;
1595 int index;
1596 int stripe_len = 64 * 1024;
1597 struct btrfs_key key;
1598
1599 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
1600 (type & BTRFS_BLOCK_GROUP_DUP)) {
1601 WARN_ON(1);
1602 type &= ~BTRFS_BLOCK_GROUP_DUP;
1603 }
1604 dev_list = &extent_root->fs_info->fs_devices->alloc_list;
1605 if (list_empty(dev_list))
1606 return -ENOSPC;
1607
1608 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
1609 num_stripes = extent_root->fs_info->fs_devices->open_devices;
1610 min_stripes = 2;
1611 }
1612 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
1613 num_stripes = 2;
1614 min_stripes = 2;
1615 }
1616 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
1617 num_stripes = min_t(u64, 2,
1618 extent_root->fs_info->fs_devices->open_devices);
1619 if (num_stripes < 2)
1620 return -ENOSPC;
1621 min_stripes = 2;
1622 }
1623 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
1624 num_stripes = extent_root->fs_info->fs_devices->open_devices;
1625 if (num_stripes < 4)
1626 return -ENOSPC;
1627 num_stripes &= ~(u32)1;
1628 sub_stripes = 2;
1629 min_stripes = 4;
1630 }
1631
1632 if (type & BTRFS_BLOCK_GROUP_DATA) {
1633 max_chunk_size = 10 * calc_size;
1634 min_stripe_size = 64 * 1024 * 1024;
1635 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1636 max_chunk_size = 4 * calc_size;
1637 min_stripe_size = 32 * 1024 * 1024;
1638 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1639 calc_size = 8 * 1024 * 1024;
1640 max_chunk_size = calc_size * 2;
1641 min_stripe_size = 1 * 1024 * 1024;
1642 }
1643
1644 path = btrfs_alloc_path();
1645 if (!path)
1646 return -ENOMEM;
1647
1648 /* we don't want a chunk larger than 10% of the FS */
1649 percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
1650 max_chunk_size = min(percent_max, max_chunk_size);
1651
1652 again:
1653 if (calc_size * num_stripes > max_chunk_size) {
1654 calc_size = max_chunk_size;
1655 do_div(calc_size, num_stripes);
1656 do_div(calc_size, stripe_len);
1657 calc_size *= stripe_len;
1658 }
1659 /* we don't want tiny stripes */
1660 calc_size = max_t(u64, min_stripe_size, calc_size);
1661
1662 do_div(calc_size, stripe_len);
1663 calc_size *= stripe_len;
1664
1665 INIT_LIST_HEAD(&private_devs);
1666 cur = dev_list->next;
1667 index = 0;
1668
1669 if (type & BTRFS_BLOCK_GROUP_DUP)
1670 min_free = calc_size * 2;
1671 else
1672 min_free = calc_size;
1673
1674 /*
1675 * we add 1MB because we never use the first 1MB of the device, unless
1676 * we've looped, then we are likely allocating the maximum amount of
1677 * space left already
1678 */
1679 if (!looped)
1680 min_free += 1024 * 1024;
1681
1682 /* build a private list of devices we will allocate from */
1683 while(index < num_stripes) {
1684 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
1685
1686 if (device->total_bytes > device->bytes_used)
1687 avail = device->total_bytes - device->bytes_used;
1688 else
1689 avail = 0;
1690 cur = cur->next;
1691
1692 if (device->in_fs_metadata && avail >= min_free) {
1693 u64 ignored_start = 0;
1694 ret = find_free_dev_extent(trans, device, path,
1695 min_free,
1696 &ignored_start);
1697 if (ret == 0) {
1698 list_move_tail(&device->dev_alloc_list,
1699 &private_devs);
1700 index++;
1701 if (type & BTRFS_BLOCK_GROUP_DUP)
1702 index++;
1703 }
1704 } else if (device->in_fs_metadata && avail > max_avail)
1705 max_avail = avail;
1706 if (cur == dev_list)
1707 break;
1708 }
1709 if (index < num_stripes) {
1710 list_splice(&private_devs, dev_list);
1711 if (index >= min_stripes) {
1712 num_stripes = index;
1713 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
1714 num_stripes /= sub_stripes;
1715 num_stripes *= sub_stripes;
1716 }
1717 looped = 1;
1718 goto again;
1719 }
1720 if (!looped && max_avail > 0) {
1721 looped = 1;
1722 calc_size = max_avail;
1723 goto again;
1724 }
1725 btrfs_free_path(path);
1726 return -ENOSPC;
1727 }
1728 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1729 key.type = BTRFS_CHUNK_ITEM_KEY;
1730 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1731 &key.offset);
1732 if (ret) {
1733 btrfs_free_path(path);
1734 return ret;
1735 }
1736
1737 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
1738 if (!chunk) {
1739 btrfs_free_path(path);
1740 return -ENOMEM;
1741 }
1742
1743 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1744 if (!map) {
1745 kfree(chunk);
1746 btrfs_free_path(path);
1747 return -ENOMEM;
1748 }
1749 btrfs_free_path(path);
1750 path = NULL;
1751
1752 stripes = &chunk->stripe;
1753 *num_bytes = chunk_bytes_by_type(type, calc_size,
1754 num_stripes, sub_stripes);
1755
1756 index = 0;
1757 while(index < num_stripes) {
1758 struct btrfs_stripe *stripe;
1759 BUG_ON(list_empty(&private_devs));
1760 cur = private_devs.next;
1761 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
1762
1763 /* loop over this device again if we're doing a dup group */
1764 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
1765 (index == num_stripes - 1))
1766 list_move_tail(&device->dev_alloc_list, dev_list);
1767
1768 ret = btrfs_alloc_dev_extent(trans, device,
1769 info->chunk_root->root_key.objectid,
1770 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
1771 calc_size, &dev_offset);
1772 BUG_ON(ret);
1773 device->bytes_used += calc_size;
1774 ret = btrfs_update_device(trans, device);
1775 BUG_ON(ret);
1776
1777 map->stripes[index].dev = device;
1778 map->stripes[index].physical = dev_offset;
1779 stripe = stripes + index;
1780 btrfs_set_stack_stripe_devid(stripe, device->devid);
1781 btrfs_set_stack_stripe_offset(stripe, dev_offset);
1782 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
1783 physical = dev_offset;
1784 index++;
1785 }
1786 BUG_ON(!list_empty(&private_devs));
1787
1788 /* key was set above */
1789 btrfs_set_stack_chunk_length(chunk, *num_bytes);
1790 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
1791 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
1792 btrfs_set_stack_chunk_type(chunk, type);
1793 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
1794 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
1795 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
1796 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
1797 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
1798 map->sector_size = extent_root->sectorsize;
1799 map->stripe_len = stripe_len;
1800 map->io_align = stripe_len;
1801 map->io_width = stripe_len;
1802 map->type = type;
1803 map->num_stripes = num_stripes;
1804 map->sub_stripes = sub_stripes;
1805
1806 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1807 btrfs_chunk_item_size(num_stripes));
1808 BUG_ON(ret);
1809 *start = key.offset;;
1810
1811 em = alloc_extent_map(GFP_NOFS);
1812 if (!em)
1813 return -ENOMEM;
1814 em->bdev = (struct block_device *)map;
1815 em->start = key.offset;
1816 em->len = *num_bytes;
1817 em->block_start = 0;
1818
1819 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1820 ret = btrfs_add_system_chunk(trans, chunk_root, &key,
1821 chunk, btrfs_chunk_item_size(num_stripes));
1822 BUG_ON(ret);
1823 }
1824 kfree(chunk);
1825
1826 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
1827 spin_lock(&em_tree->lock);
1828 ret = add_extent_mapping(em_tree, em);
1829 spin_unlock(&em_tree->lock);
1830 BUG_ON(ret);
1831 free_extent_map(em);
1832 return ret;
1833 }
1834
1835 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
1836 {
1837 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
1838 }
1839
1840 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
1841 {
1842 struct extent_map *em;
1843
1844 while(1) {
1845 spin_lock(&tree->map_tree.lock);
1846 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
1847 if (em)
1848 remove_extent_mapping(&tree->map_tree, em);
1849 spin_unlock(&tree->map_tree.lock);
1850 if (!em)
1851 break;
1852 kfree(em->bdev);
1853 /* once for us */
1854 free_extent_map(em);
1855 /* once for the tree */
1856 free_extent_map(em);
1857 }
1858 }
1859
1860 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
1861 {
1862 struct extent_map *em;
1863 struct map_lookup *map;
1864 struct extent_map_tree *em_tree = &map_tree->map_tree;
1865 int ret;
1866
1867 spin_lock(&em_tree->lock);
1868 em = lookup_extent_mapping(em_tree, logical, len);
1869 spin_unlock(&em_tree->lock);
1870 BUG_ON(!em);
1871
1872 BUG_ON(em->start > logical || em->start + em->len < logical);
1873 map = (struct map_lookup *)em->bdev;
1874 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
1875 ret = map->num_stripes;
1876 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1877 ret = map->sub_stripes;
1878 else
1879 ret = 1;
1880 free_extent_map(em);
1881 return ret;
1882 }
1883
1884 static int find_live_mirror(struct map_lookup *map, int first, int num,
1885 int optimal)
1886 {
1887 int i;
1888 if (map->stripes[optimal].dev->bdev)
1889 return optimal;
1890 for (i = first; i < first + num; i++) {
1891 if (map->stripes[i].dev->bdev)
1892 return i;
1893 }
1894 /* we couldn't find one that doesn't fail. Just return something
1895 * and the io error handling code will clean up eventually
1896 */
1897 return optimal;
1898 }
1899
1900 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1901 u64 logical, u64 *length,
1902 struct btrfs_multi_bio **multi_ret,
1903 int mirror_num, struct page *unplug_page)
1904 {
1905 struct extent_map *em;
1906 struct map_lookup *map;
1907 struct extent_map_tree *em_tree = &map_tree->map_tree;
1908 u64 offset;
1909 u64 stripe_offset;
1910 u64 stripe_nr;
1911 int stripes_allocated = 8;
1912 int stripes_required = 1;
1913 int stripe_index;
1914 int i;
1915 int num_stripes;
1916 int max_errors = 0;
1917 struct btrfs_multi_bio *multi = NULL;
1918
1919 if (multi_ret && !(rw & (1 << BIO_RW))) {
1920 stripes_allocated = 1;
1921 }
1922 again:
1923 if (multi_ret) {
1924 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
1925 GFP_NOFS);
1926 if (!multi)
1927 return -ENOMEM;
1928
1929 atomic_set(&multi->error, 0);
1930 }
1931
1932 spin_lock(&em_tree->lock);
1933 em = lookup_extent_mapping(em_tree, logical, *length);
1934 spin_unlock(&em_tree->lock);
1935
1936 if (!em && unplug_page)
1937 return 0;
1938
1939 if (!em) {
1940 printk("unable to find logical %Lu len %Lu\n", logical, *length);
1941 BUG();
1942 }
1943
1944 BUG_ON(em->start > logical || em->start + em->len < logical);
1945 map = (struct map_lookup *)em->bdev;
1946 offset = logical - em->start;
1947
1948 if (mirror_num > map->num_stripes)
1949 mirror_num = 0;
1950
1951 /* if our multi bio struct is too small, back off and try again */
1952 if (rw & (1 << BIO_RW)) {
1953 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
1954 BTRFS_BLOCK_GROUP_DUP)) {
1955 stripes_required = map->num_stripes;
1956 max_errors = 1;
1957 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1958 stripes_required = map->sub_stripes;
1959 max_errors = 1;
1960 }
1961 }
1962 if (multi_ret && rw == WRITE &&
1963 stripes_allocated < stripes_required) {
1964 stripes_allocated = map->num_stripes;
1965 free_extent_map(em);
1966 kfree(multi);
1967 goto again;
1968 }
1969 stripe_nr = offset;
1970 /*
1971 * stripe_nr counts the total number of stripes we have to stride
1972 * to get to this block
1973 */
1974 do_div(stripe_nr, map->stripe_len);
1975
1976 stripe_offset = stripe_nr * map->stripe_len;
1977 BUG_ON(offset < stripe_offset);
1978
1979 /* stripe_offset is the offset of this block in its stripe*/
1980 stripe_offset = offset - stripe_offset;
1981
1982 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
1983 BTRFS_BLOCK_GROUP_RAID10 |
1984 BTRFS_BLOCK_GROUP_DUP)) {
1985 /* we limit the length of each bio to what fits in a stripe */
1986 *length = min_t(u64, em->len - offset,
1987 map->stripe_len - stripe_offset);
1988 } else {
1989 *length = em->len - offset;
1990 }
1991
1992 if (!multi_ret && !unplug_page)
1993 goto out;
1994
1995 num_stripes = 1;
1996 stripe_index = 0;
1997 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1998 if (unplug_page || (rw & (1 << BIO_RW)))
1999 num_stripes = map->num_stripes;
2000 else if (mirror_num)
2001 stripe_index = mirror_num - 1;
2002 else {
2003 stripe_index = find_live_mirror(map, 0,
2004 map->num_stripes,
2005 current->pid % map->num_stripes);
2006 }
2007
2008 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2009 if (rw & (1 << BIO_RW))
2010 num_stripes = map->num_stripes;
2011 else if (mirror_num)
2012 stripe_index = mirror_num - 1;
2013
2014 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2015 int factor = map->num_stripes / map->sub_stripes;
2016
2017 stripe_index = do_div(stripe_nr, factor);
2018 stripe_index *= map->sub_stripes;
2019
2020 if (unplug_page || (rw & (1 << BIO_RW)))
2021 num_stripes = map->sub_stripes;
2022 else if (mirror_num)
2023 stripe_index += mirror_num - 1;
2024 else {
2025 stripe_index = find_live_mirror(map, stripe_index,
2026 map->sub_stripes, stripe_index +
2027 current->pid % map->sub_stripes);
2028 }
2029 } else {
2030 /*
2031 * after this do_div call, stripe_nr is the number of stripes
2032 * on this device we have to walk to find the data, and
2033 * stripe_index is the number of our device in the stripe array
2034 */
2035 stripe_index = do_div(stripe_nr, map->num_stripes);
2036 }
2037 BUG_ON(stripe_index >= map->num_stripes);
2038
2039 for (i = 0; i < num_stripes; i++) {
2040 if (unplug_page) {
2041 struct btrfs_device *device;
2042 struct backing_dev_info *bdi;
2043
2044 device = map->stripes[stripe_index].dev;
2045 if (device->bdev) {
2046 bdi = blk_get_backing_dev_info(device->bdev);
2047 if (bdi->unplug_io_fn) {
2048 bdi->unplug_io_fn(bdi, unplug_page);
2049 }
2050 }
2051 } else {
2052 multi->stripes[i].physical =
2053 map->stripes[stripe_index].physical +
2054 stripe_offset + stripe_nr * map->stripe_len;
2055 multi->stripes[i].dev = map->stripes[stripe_index].dev;
2056 }
2057 stripe_index++;
2058 }
2059 if (multi_ret) {
2060 *multi_ret = multi;
2061 multi->num_stripes = num_stripes;
2062 multi->max_errors = max_errors;
2063 }
2064 out:
2065 free_extent_map(em);
2066 return 0;
2067 }
2068
2069 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2070 u64 logical, u64 *length,
2071 struct btrfs_multi_bio **multi_ret, int mirror_num)
2072 {
2073 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2074 mirror_num, NULL);
2075 }
2076
2077 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2078 u64 logical, struct page *page)
2079 {
2080 u64 length = PAGE_CACHE_SIZE;
2081 return __btrfs_map_block(map_tree, READ, logical, &length,
2082 NULL, 0, page);
2083 }
2084
2085
2086 static void end_bio_multi_stripe(struct bio *bio, int err)
2087 {
2088 struct btrfs_multi_bio *multi = bio->bi_private;
2089 int is_orig_bio = 0;
2090
2091 if (err)
2092 atomic_inc(&multi->error);
2093
2094 if (bio == multi->orig_bio)
2095 is_orig_bio = 1;
2096
2097 if (atomic_dec_and_test(&multi->stripes_pending)) {
2098 if (!is_orig_bio) {
2099 bio_put(bio);
2100 bio = multi->orig_bio;
2101 }
2102 bio->bi_private = multi->private;
2103 bio->bi_end_io = multi->end_io;
2104 /* only send an error to the higher layers if it is
2105 * beyond the tolerance of the multi-bio
2106 */
2107 if (atomic_read(&multi->error) > multi->max_errors) {
2108 err = -EIO;
2109 } else if (err) {
2110 /*
2111 * this bio is actually up to date, we didn't
2112 * go over the max number of errors
2113 */
2114 set_bit(BIO_UPTODATE, &bio->bi_flags);
2115 err = 0;
2116 }
2117 kfree(multi);
2118
2119 bio_endio(bio, err);
2120 } else if (!is_orig_bio) {
2121 bio_put(bio);
2122 }
2123 }
2124
2125 struct async_sched {
2126 struct bio *bio;
2127 int rw;
2128 struct btrfs_fs_info *info;
2129 struct btrfs_work work;
2130 };
2131
2132 /*
2133 * see run_scheduled_bios for a description of why bios are collected for
2134 * async submit.
2135 *
2136 * This will add one bio to the pending list for a device and make sure
2137 * the work struct is scheduled.
2138 */
2139 static int noinline schedule_bio(struct btrfs_root *root,
2140 struct btrfs_device *device,
2141 int rw, struct bio *bio)
2142 {
2143 int should_queue = 1;
2144
2145 /* don't bother with additional async steps for reads, right now */
2146 if (!(rw & (1 << BIO_RW))) {
2147 bio_get(bio);
2148 submit_bio(rw, bio);
2149 bio_put(bio);
2150 return 0;
2151 }
2152
2153 /*
2154 * nr_async_bios allows us to reliably return congestion to the
2155 * higher layers. Otherwise, the async bio makes it appear we have
2156 * made progress against dirty pages when we've really just put it
2157 * on a queue for later
2158 */
2159 atomic_inc(&root->fs_info->nr_async_bios);
2160 WARN_ON(bio->bi_next);
2161 bio->bi_next = NULL;
2162 bio->bi_rw |= rw;
2163
2164 spin_lock(&device->io_lock);
2165
2166 if (device->pending_bio_tail)
2167 device->pending_bio_tail->bi_next = bio;
2168
2169 device->pending_bio_tail = bio;
2170 if (!device->pending_bios)
2171 device->pending_bios = bio;
2172 if (device->running_pending)
2173 should_queue = 0;
2174
2175 spin_unlock(&device->io_lock);
2176
2177 if (should_queue)
2178 btrfs_queue_worker(&root->fs_info->submit_workers,
2179 &device->work);
2180 return 0;
2181 }
2182
2183 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
2184 int mirror_num, int async_submit)
2185 {
2186 struct btrfs_mapping_tree *map_tree;
2187 struct btrfs_device *dev;
2188 struct bio *first_bio = bio;
2189 u64 logical = bio->bi_sector << 9;
2190 u64 length = 0;
2191 u64 map_length;
2192 struct btrfs_multi_bio *multi = NULL;
2193 int ret;
2194 int dev_nr = 0;
2195 int total_devs = 1;
2196
2197 length = bio->bi_size;
2198 map_tree = &root->fs_info->mapping_tree;
2199 map_length = length;
2200
2201 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2202 mirror_num);
2203 BUG_ON(ret);
2204
2205 total_devs = multi->num_stripes;
2206 if (map_length < length) {
2207 printk("mapping failed logical %Lu bio len %Lu "
2208 "len %Lu\n", logical, length, map_length);
2209 BUG();
2210 }
2211 multi->end_io = first_bio->bi_end_io;
2212 multi->private = first_bio->bi_private;
2213 multi->orig_bio = first_bio;
2214 atomic_set(&multi->stripes_pending, multi->num_stripes);
2215
2216 while(dev_nr < total_devs) {
2217 if (total_devs > 1) {
2218 if (dev_nr < total_devs - 1) {
2219 bio = bio_clone(first_bio, GFP_NOFS);
2220 BUG_ON(!bio);
2221 } else {
2222 bio = first_bio;
2223 }
2224 bio->bi_private = multi;
2225 bio->bi_end_io = end_bio_multi_stripe;
2226 }
2227 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
2228 dev = multi->stripes[dev_nr].dev;
2229 if (dev && dev->bdev) {
2230 bio->bi_bdev = dev->bdev;
2231 if (async_submit)
2232 schedule_bio(root, dev, rw, bio);
2233 else
2234 submit_bio(rw, bio);
2235 } else {
2236 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
2237 bio->bi_sector = logical >> 9;
2238 bio_endio(bio, -EIO);
2239 }
2240 dev_nr++;
2241 }
2242 if (total_devs == 1)
2243 kfree(multi);
2244 return 0;
2245 }
2246
2247 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2248 u8 *uuid)
2249 {
2250 struct list_head *head = &root->fs_info->fs_devices->devices;
2251
2252 return __find_device(head, devid, uuid);
2253 }
2254
2255 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
2256 u64 devid, u8 *dev_uuid)
2257 {
2258 struct btrfs_device *device;
2259 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2260
2261 device = kzalloc(sizeof(*device), GFP_NOFS);
2262 list_add(&device->dev_list,
2263 &fs_devices->devices);
2264 list_add(&device->dev_alloc_list,
2265 &fs_devices->alloc_list);
2266 device->barriers = 1;
2267 device->dev_root = root->fs_info->dev_root;
2268 device->devid = devid;
2269 device->work.func = pending_bios_fn;
2270 fs_devices->num_devices++;
2271 spin_lock_init(&device->io_lock);
2272 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
2273 return device;
2274 }
2275
2276
2277 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
2278 struct extent_buffer *leaf,
2279 struct btrfs_chunk *chunk)
2280 {
2281 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2282 struct map_lookup *map;
2283 struct extent_map *em;
2284 u64 logical;
2285 u64 length;
2286 u64 devid;
2287 u8 uuid[BTRFS_UUID_SIZE];
2288 int num_stripes;
2289 int ret;
2290 int i;
2291
2292 logical = key->offset;
2293 length = btrfs_chunk_length(leaf, chunk);
2294
2295 spin_lock(&map_tree->map_tree.lock);
2296 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
2297 spin_unlock(&map_tree->map_tree.lock);
2298
2299 /* already mapped? */
2300 if (em && em->start <= logical && em->start + em->len > logical) {
2301 free_extent_map(em);
2302 return 0;
2303 } else if (em) {
2304 free_extent_map(em);
2305 }
2306
2307 map = kzalloc(sizeof(*map), GFP_NOFS);
2308 if (!map)
2309 return -ENOMEM;
2310
2311 em = alloc_extent_map(GFP_NOFS);
2312 if (!em)
2313 return -ENOMEM;
2314 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2315 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2316 if (!map) {
2317 free_extent_map(em);
2318 return -ENOMEM;
2319 }
2320
2321 em->bdev = (struct block_device *)map;
2322 em->start = logical;
2323 em->len = length;
2324 em->block_start = 0;
2325
2326 map->num_stripes = num_stripes;
2327 map->io_width = btrfs_chunk_io_width(leaf, chunk);
2328 map->io_align = btrfs_chunk_io_align(leaf, chunk);
2329 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
2330 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
2331 map->type = btrfs_chunk_type(leaf, chunk);
2332 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
2333 for (i = 0; i < num_stripes; i++) {
2334 map->stripes[i].physical =
2335 btrfs_stripe_offset_nr(leaf, chunk, i);
2336 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
2337 read_extent_buffer(leaf, uuid, (unsigned long)
2338 btrfs_stripe_dev_uuid_nr(chunk, i),
2339 BTRFS_UUID_SIZE);
2340 map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
2341
2342 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
2343 kfree(map);
2344 free_extent_map(em);
2345 return -EIO;
2346 }
2347 if (!map->stripes[i].dev) {
2348 map->stripes[i].dev =
2349 add_missing_dev(root, devid, uuid);
2350 if (!map->stripes[i].dev) {
2351 kfree(map);
2352 free_extent_map(em);
2353 return -EIO;
2354 }
2355 }
2356 map->stripes[i].dev->in_fs_metadata = 1;
2357 }
2358
2359 spin_lock(&map_tree->map_tree.lock);
2360 ret = add_extent_mapping(&map_tree->map_tree, em);
2361 spin_unlock(&map_tree->map_tree.lock);
2362 BUG_ON(ret);
2363 free_extent_map(em);
2364
2365 return 0;
2366 }
2367
2368 static int fill_device_from_item(struct extent_buffer *leaf,
2369 struct btrfs_dev_item *dev_item,
2370 struct btrfs_device *device)
2371 {
2372 unsigned long ptr;
2373
2374 device->devid = btrfs_device_id(leaf, dev_item);
2375 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
2376 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
2377 device->type = btrfs_device_type(leaf, dev_item);
2378 device->io_align = btrfs_device_io_align(leaf, dev_item);
2379 device->io_width = btrfs_device_io_width(leaf, dev_item);
2380 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
2381
2382 ptr = (unsigned long)btrfs_device_uuid(dev_item);
2383 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2384
2385 return 0;
2386 }
2387
2388 static int read_one_dev(struct btrfs_root *root,
2389 struct extent_buffer *leaf,
2390 struct btrfs_dev_item *dev_item)
2391 {
2392 struct btrfs_device *device;
2393 u64 devid;
2394 int ret;
2395 u8 dev_uuid[BTRFS_UUID_SIZE];
2396
2397 devid = btrfs_device_id(leaf, dev_item);
2398 read_extent_buffer(leaf, dev_uuid,
2399 (unsigned long)btrfs_device_uuid(dev_item),
2400 BTRFS_UUID_SIZE);
2401 device = btrfs_find_device(root, devid, dev_uuid);
2402 if (!device) {
2403 printk("warning devid %Lu missing\n", devid);
2404 device = add_missing_dev(root, devid, dev_uuid);
2405 if (!device)
2406 return -ENOMEM;
2407 }
2408
2409 fill_device_from_item(leaf, dev_item, device);
2410 device->dev_root = root->fs_info->dev_root;
2411 device->in_fs_metadata = 1;
2412 ret = 0;
2413 #if 0
2414 ret = btrfs_open_device(device);
2415 if (ret) {
2416 kfree(device);
2417 }
2418 #endif
2419 return ret;
2420 }
2421
2422 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
2423 {
2424 struct btrfs_dev_item *dev_item;
2425
2426 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
2427 dev_item);
2428 return read_one_dev(root, buf, dev_item);
2429 }
2430
2431 int btrfs_read_sys_array(struct btrfs_root *root)
2432 {
2433 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2434 struct extent_buffer *sb;
2435 struct btrfs_disk_key *disk_key;
2436 struct btrfs_chunk *chunk;
2437 u8 *ptr;
2438 unsigned long sb_ptr;
2439 int ret = 0;
2440 u32 num_stripes;
2441 u32 array_size;
2442 u32 len = 0;
2443 u32 cur;
2444 struct btrfs_key key;
2445
2446 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
2447 BTRFS_SUPER_INFO_SIZE);
2448 if (!sb)
2449 return -ENOMEM;
2450 btrfs_set_buffer_uptodate(sb);
2451 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
2452 array_size = btrfs_super_sys_array_size(super_copy);
2453
2454 ptr = super_copy->sys_chunk_array;
2455 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
2456 cur = 0;
2457
2458 while (cur < array_size) {
2459 disk_key = (struct btrfs_disk_key *)ptr;
2460 btrfs_disk_key_to_cpu(&key, disk_key);
2461
2462 len = sizeof(*disk_key); ptr += len;
2463 sb_ptr += len;
2464 cur += len;
2465
2466 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2467 chunk = (struct btrfs_chunk *)sb_ptr;
2468 ret = read_one_chunk(root, &key, sb, chunk);
2469 if (ret)
2470 break;
2471 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
2472 len = btrfs_chunk_item_size(num_stripes);
2473 } else {
2474 ret = -EIO;
2475 break;
2476 }
2477 ptr += len;
2478 sb_ptr += len;
2479 cur += len;
2480 }
2481 free_extent_buffer(sb);
2482 return ret;
2483 }
2484
2485 int btrfs_read_chunk_tree(struct btrfs_root *root)
2486 {
2487 struct btrfs_path *path;
2488 struct extent_buffer *leaf;
2489 struct btrfs_key key;
2490 struct btrfs_key found_key;
2491 int ret;
2492 int slot;
2493
2494 root = root->fs_info->chunk_root;
2495
2496 path = btrfs_alloc_path();
2497 if (!path)
2498 return -ENOMEM;
2499
2500 /* first we search for all of the device items, and then we
2501 * read in all of the chunk items. This way we can create chunk
2502 * mappings that reference all of the devices that are afound
2503 */
2504 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2505 key.offset = 0;
2506 key.type = 0;
2507 again:
2508 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2509 while(1) {
2510 leaf = path->nodes[0];
2511 slot = path->slots[0];
2512 if (slot >= btrfs_header_nritems(leaf)) {
2513 ret = btrfs_next_leaf(root, path);
2514 if (ret == 0)
2515 continue;
2516 if (ret < 0)
2517 goto error;
2518 break;
2519 }
2520 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2521 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
2522 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
2523 break;
2524 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
2525 struct btrfs_dev_item *dev_item;
2526 dev_item = btrfs_item_ptr(leaf, slot,
2527 struct btrfs_dev_item);
2528 ret = read_one_dev(root, leaf, dev_item);
2529 BUG_ON(ret);
2530 }
2531 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
2532 struct btrfs_chunk *chunk;
2533 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2534 ret = read_one_chunk(root, &found_key, leaf, chunk);
2535 }
2536 path->slots[0]++;
2537 }
2538 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
2539 key.objectid = 0;
2540 btrfs_release_path(root, path);
2541 goto again;
2542 }
2543
2544 btrfs_free_path(path);
2545 ret = 0;
2546 error:
2547 return ret;
2548 }
This page took 0.083305 seconds and 4 git commands to generate.