oprofile: introduce module_param oprofile.cpu_type
[deliverable/linux.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/iocontext.h>
24 #include <asm/div64.h>
25 #include "compat.h"
26 #include "ctree.h"
27 #include "extent_map.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "print-tree.h"
31 #include "volumes.h"
32 #include "async-thread.h"
33
34 struct map_lookup {
35 u64 type;
36 int io_align;
37 int io_width;
38 int stripe_len;
39 int sector_size;
40 int num_stripes;
41 int sub_stripes;
42 struct btrfs_bio_stripe stripes[];
43 };
44
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49
50 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
51 (sizeof(struct btrfs_bio_stripe) * (n)))
52
53 static DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55
56 void btrfs_lock_volumes(void)
57 {
58 mutex_lock(&uuid_mutex);
59 }
60
61 void btrfs_unlock_volumes(void)
62 {
63 mutex_unlock(&uuid_mutex);
64 }
65
66 static void lock_chunks(struct btrfs_root *root)
67 {
68 mutex_lock(&root->fs_info->chunk_mutex);
69 }
70
71 static void unlock_chunks(struct btrfs_root *root)
72 {
73 mutex_unlock(&root->fs_info->chunk_mutex);
74 }
75
76 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
77 {
78 struct btrfs_device *device;
79 WARN_ON(fs_devices->opened);
80 while (!list_empty(&fs_devices->devices)) {
81 device = list_entry(fs_devices->devices.next,
82 struct btrfs_device, dev_list);
83 list_del(&device->dev_list);
84 kfree(device->name);
85 kfree(device);
86 }
87 kfree(fs_devices);
88 }
89
90 int btrfs_cleanup_fs_uuids(void)
91 {
92 struct btrfs_fs_devices *fs_devices;
93
94 while (!list_empty(&fs_uuids)) {
95 fs_devices = list_entry(fs_uuids.next,
96 struct btrfs_fs_devices, list);
97 list_del(&fs_devices->list);
98 free_fs_devices(fs_devices);
99 }
100 return 0;
101 }
102
103 static noinline struct btrfs_device *__find_device(struct list_head *head,
104 u64 devid, u8 *uuid)
105 {
106 struct btrfs_device *dev;
107
108 list_for_each_entry(dev, head, dev_list) {
109 if (dev->devid == devid &&
110 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
111 return dev;
112 }
113 }
114 return NULL;
115 }
116
117 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
118 {
119 struct btrfs_fs_devices *fs_devices;
120
121 list_for_each_entry(fs_devices, &fs_uuids, list) {
122 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
123 return fs_devices;
124 }
125 return NULL;
126 }
127
128 static void requeue_list(struct btrfs_pending_bios *pending_bios,
129 struct bio *head, struct bio *tail)
130 {
131
132 struct bio *old_head;
133
134 old_head = pending_bios->head;
135 pending_bios->head = head;
136 if (pending_bios->tail)
137 tail->bi_next = old_head;
138 else
139 pending_bios->tail = tail;
140 }
141
142 /*
143 * we try to collect pending bios for a device so we don't get a large
144 * number of procs sending bios down to the same device. This greatly
145 * improves the schedulers ability to collect and merge the bios.
146 *
147 * But, it also turns into a long list of bios to process and that is sure
148 * to eventually make the worker thread block. The solution here is to
149 * make some progress and then put this work struct back at the end of
150 * the list if the block device is congested. This way, multiple devices
151 * can make progress from a single worker thread.
152 */
153 static noinline int run_scheduled_bios(struct btrfs_device *device)
154 {
155 struct bio *pending;
156 struct backing_dev_info *bdi;
157 struct btrfs_fs_info *fs_info;
158 struct btrfs_pending_bios *pending_bios;
159 struct bio *tail;
160 struct bio *cur;
161 int again = 0;
162 unsigned long num_run;
163 unsigned long num_sync_run;
164 unsigned long limit;
165 unsigned long last_waited = 0;
166
167 bdi = blk_get_backing_dev_info(device->bdev);
168 fs_info = device->dev_root->fs_info;
169 limit = btrfs_async_submit_limit(fs_info);
170 limit = limit * 2 / 3;
171
172 /* we want to make sure that every time we switch from the sync
173 * list to the normal list, we unplug
174 */
175 num_sync_run = 0;
176
177 loop:
178 spin_lock(&device->io_lock);
179 num_run = 0;
180
181 loop_lock:
182
183 /* take all the bios off the list at once and process them
184 * later on (without the lock held). But, remember the
185 * tail and other pointers so the bios can be properly reinserted
186 * into the list if we hit congestion
187 */
188 if (device->pending_sync_bios.head)
189 pending_bios = &device->pending_sync_bios;
190 else
191 pending_bios = &device->pending_bios;
192
193 pending = pending_bios->head;
194 tail = pending_bios->tail;
195 WARN_ON(pending && !tail);
196
197 /*
198 * if pending was null this time around, no bios need processing
199 * at all and we can stop. Otherwise it'll loop back up again
200 * and do an additional check so no bios are missed.
201 *
202 * device->running_pending is used to synchronize with the
203 * schedule_bio code.
204 */
205 if (device->pending_sync_bios.head == NULL &&
206 device->pending_bios.head == NULL) {
207 again = 0;
208 device->running_pending = 0;
209 } else {
210 again = 1;
211 device->running_pending = 1;
212 }
213
214 pending_bios->head = NULL;
215 pending_bios->tail = NULL;
216
217 spin_unlock(&device->io_lock);
218
219 /*
220 * if we're doing the regular priority list, make sure we unplug
221 * for any high prio bios we've sent down
222 */
223 if (pending_bios == &device->pending_bios && num_sync_run > 0) {
224 num_sync_run = 0;
225 blk_run_backing_dev(bdi, NULL);
226 }
227
228 while (pending) {
229
230 rmb();
231 if (pending_bios != &device->pending_sync_bios &&
232 device->pending_sync_bios.head &&
233 num_run > 16) {
234 cond_resched();
235 spin_lock(&device->io_lock);
236 requeue_list(pending_bios, pending, tail);
237 goto loop_lock;
238 }
239
240 cur = pending;
241 pending = pending->bi_next;
242 cur->bi_next = NULL;
243 atomic_dec(&fs_info->nr_async_bios);
244
245 if (atomic_read(&fs_info->nr_async_bios) < limit &&
246 waitqueue_active(&fs_info->async_submit_wait))
247 wake_up(&fs_info->async_submit_wait);
248
249 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
250 submit_bio(cur->bi_rw, cur);
251 num_run++;
252 if (bio_sync(cur))
253 num_sync_run++;
254
255 if (need_resched()) {
256 if (num_sync_run) {
257 blk_run_backing_dev(bdi, NULL);
258 num_sync_run = 0;
259 }
260 cond_resched();
261 }
262
263 /*
264 * we made progress, there is more work to do and the bdi
265 * is now congested. Back off and let other work structs
266 * run instead
267 */
268 if (pending && bdi_write_congested(bdi) && num_run > 16 &&
269 fs_info->fs_devices->open_devices > 1) {
270 struct io_context *ioc;
271
272 ioc = current->io_context;
273
274 /*
275 * the main goal here is that we don't want to
276 * block if we're going to be able to submit
277 * more requests without blocking.
278 *
279 * This code does two great things, it pokes into
280 * the elevator code from a filesystem _and_
281 * it makes assumptions about how batching works.
282 */
283 if (ioc && ioc->nr_batch_requests > 0 &&
284 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
285 (last_waited == 0 ||
286 ioc->last_waited == last_waited)) {
287 /*
288 * we want to go through our batch of
289 * requests and stop. So, we copy out
290 * the ioc->last_waited time and test
291 * against it before looping
292 */
293 last_waited = ioc->last_waited;
294 if (need_resched()) {
295 if (num_sync_run) {
296 blk_run_backing_dev(bdi, NULL);
297 num_sync_run = 0;
298 }
299 cond_resched();
300 }
301 continue;
302 }
303 spin_lock(&device->io_lock);
304 requeue_list(pending_bios, pending, tail);
305 device->running_pending = 1;
306
307 spin_unlock(&device->io_lock);
308 btrfs_requeue_work(&device->work);
309 goto done;
310 }
311 }
312
313 if (num_sync_run) {
314 num_sync_run = 0;
315 blk_run_backing_dev(bdi, NULL);
316 }
317
318 cond_resched();
319 if (again)
320 goto loop;
321
322 spin_lock(&device->io_lock);
323 if (device->pending_bios.head || device->pending_sync_bios.head)
324 goto loop_lock;
325 spin_unlock(&device->io_lock);
326
327 /*
328 * IO has already been through a long path to get here. Checksumming,
329 * async helper threads, perhaps compression. We've done a pretty
330 * good job of collecting a batch of IO and should just unplug
331 * the device right away.
332 *
333 * This will help anyone who is waiting on the IO, they might have
334 * already unplugged, but managed to do so before the bio they
335 * cared about found its way down here.
336 */
337 blk_run_backing_dev(bdi, NULL);
338 done:
339 return 0;
340 }
341
342 static void pending_bios_fn(struct btrfs_work *work)
343 {
344 struct btrfs_device *device;
345
346 device = container_of(work, struct btrfs_device, work);
347 run_scheduled_bios(device);
348 }
349
350 static noinline int device_list_add(const char *path,
351 struct btrfs_super_block *disk_super,
352 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
353 {
354 struct btrfs_device *device;
355 struct btrfs_fs_devices *fs_devices;
356 u64 found_transid = btrfs_super_generation(disk_super);
357
358 fs_devices = find_fsid(disk_super->fsid);
359 if (!fs_devices) {
360 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
361 if (!fs_devices)
362 return -ENOMEM;
363 INIT_LIST_HEAD(&fs_devices->devices);
364 INIT_LIST_HEAD(&fs_devices->alloc_list);
365 list_add(&fs_devices->list, &fs_uuids);
366 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
367 fs_devices->latest_devid = devid;
368 fs_devices->latest_trans = found_transid;
369 device = NULL;
370 } else {
371 device = __find_device(&fs_devices->devices, devid,
372 disk_super->dev_item.uuid);
373 }
374 if (!device) {
375 if (fs_devices->opened)
376 return -EBUSY;
377
378 device = kzalloc(sizeof(*device), GFP_NOFS);
379 if (!device) {
380 /* we can safely leave the fs_devices entry around */
381 return -ENOMEM;
382 }
383 device->devid = devid;
384 device->work.func = pending_bios_fn;
385 memcpy(device->uuid, disk_super->dev_item.uuid,
386 BTRFS_UUID_SIZE);
387 device->barriers = 1;
388 spin_lock_init(&device->io_lock);
389 device->name = kstrdup(path, GFP_NOFS);
390 if (!device->name) {
391 kfree(device);
392 return -ENOMEM;
393 }
394 INIT_LIST_HEAD(&device->dev_alloc_list);
395 list_add(&device->dev_list, &fs_devices->devices);
396 device->fs_devices = fs_devices;
397 fs_devices->num_devices++;
398 }
399
400 if (found_transid > fs_devices->latest_trans) {
401 fs_devices->latest_devid = devid;
402 fs_devices->latest_trans = found_transid;
403 }
404 *fs_devices_ret = fs_devices;
405 return 0;
406 }
407
408 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
409 {
410 struct btrfs_fs_devices *fs_devices;
411 struct btrfs_device *device;
412 struct btrfs_device *orig_dev;
413
414 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
415 if (!fs_devices)
416 return ERR_PTR(-ENOMEM);
417
418 INIT_LIST_HEAD(&fs_devices->devices);
419 INIT_LIST_HEAD(&fs_devices->alloc_list);
420 INIT_LIST_HEAD(&fs_devices->list);
421 fs_devices->latest_devid = orig->latest_devid;
422 fs_devices->latest_trans = orig->latest_trans;
423 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
424
425 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
426 device = kzalloc(sizeof(*device), GFP_NOFS);
427 if (!device)
428 goto error;
429
430 device->name = kstrdup(orig_dev->name, GFP_NOFS);
431 if (!device->name)
432 goto error;
433
434 device->devid = orig_dev->devid;
435 device->work.func = pending_bios_fn;
436 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
437 device->barriers = 1;
438 spin_lock_init(&device->io_lock);
439 INIT_LIST_HEAD(&device->dev_list);
440 INIT_LIST_HEAD(&device->dev_alloc_list);
441
442 list_add(&device->dev_list, &fs_devices->devices);
443 device->fs_devices = fs_devices;
444 fs_devices->num_devices++;
445 }
446 return fs_devices;
447 error:
448 free_fs_devices(fs_devices);
449 return ERR_PTR(-ENOMEM);
450 }
451
452 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
453 {
454 struct btrfs_device *device, *next;
455
456 mutex_lock(&uuid_mutex);
457 again:
458 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
459 if (device->in_fs_metadata)
460 continue;
461
462 if (device->bdev) {
463 close_bdev_exclusive(device->bdev, device->mode);
464 device->bdev = NULL;
465 fs_devices->open_devices--;
466 }
467 if (device->writeable) {
468 list_del_init(&device->dev_alloc_list);
469 device->writeable = 0;
470 fs_devices->rw_devices--;
471 }
472 list_del_init(&device->dev_list);
473 fs_devices->num_devices--;
474 kfree(device->name);
475 kfree(device);
476 }
477
478 if (fs_devices->seed) {
479 fs_devices = fs_devices->seed;
480 goto again;
481 }
482
483 mutex_unlock(&uuid_mutex);
484 return 0;
485 }
486
487 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
488 {
489 struct btrfs_device *device;
490
491 if (--fs_devices->opened > 0)
492 return 0;
493
494 list_for_each_entry(device, &fs_devices->devices, dev_list) {
495 if (device->bdev) {
496 close_bdev_exclusive(device->bdev, device->mode);
497 fs_devices->open_devices--;
498 }
499 if (device->writeable) {
500 list_del_init(&device->dev_alloc_list);
501 fs_devices->rw_devices--;
502 }
503
504 device->bdev = NULL;
505 device->writeable = 0;
506 device->in_fs_metadata = 0;
507 }
508 WARN_ON(fs_devices->open_devices);
509 WARN_ON(fs_devices->rw_devices);
510 fs_devices->opened = 0;
511 fs_devices->seeding = 0;
512
513 return 0;
514 }
515
516 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
517 {
518 struct btrfs_fs_devices *seed_devices = NULL;
519 int ret;
520
521 mutex_lock(&uuid_mutex);
522 ret = __btrfs_close_devices(fs_devices);
523 if (!fs_devices->opened) {
524 seed_devices = fs_devices->seed;
525 fs_devices->seed = NULL;
526 }
527 mutex_unlock(&uuid_mutex);
528
529 while (seed_devices) {
530 fs_devices = seed_devices;
531 seed_devices = fs_devices->seed;
532 __btrfs_close_devices(fs_devices);
533 free_fs_devices(fs_devices);
534 }
535 return ret;
536 }
537
538 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
539 fmode_t flags, void *holder)
540 {
541 struct block_device *bdev;
542 struct list_head *head = &fs_devices->devices;
543 struct btrfs_device *device;
544 struct block_device *latest_bdev = NULL;
545 struct buffer_head *bh;
546 struct btrfs_super_block *disk_super;
547 u64 latest_devid = 0;
548 u64 latest_transid = 0;
549 u64 devid;
550 int seeding = 1;
551 int ret = 0;
552
553 list_for_each_entry(device, head, dev_list) {
554 if (device->bdev)
555 continue;
556 if (!device->name)
557 continue;
558
559 bdev = open_bdev_exclusive(device->name, flags, holder);
560 if (IS_ERR(bdev)) {
561 printk(KERN_INFO "open %s failed\n", device->name);
562 goto error;
563 }
564 set_blocksize(bdev, 4096);
565
566 bh = btrfs_read_dev_super(bdev);
567 if (!bh)
568 goto error_close;
569
570 disk_super = (struct btrfs_super_block *)bh->b_data;
571 devid = le64_to_cpu(disk_super->dev_item.devid);
572 if (devid != device->devid)
573 goto error_brelse;
574
575 if (memcmp(device->uuid, disk_super->dev_item.uuid,
576 BTRFS_UUID_SIZE))
577 goto error_brelse;
578
579 device->generation = btrfs_super_generation(disk_super);
580 if (!latest_transid || device->generation > latest_transid) {
581 latest_devid = devid;
582 latest_transid = device->generation;
583 latest_bdev = bdev;
584 }
585
586 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
587 device->writeable = 0;
588 } else {
589 device->writeable = !bdev_read_only(bdev);
590 seeding = 0;
591 }
592
593 device->bdev = bdev;
594 device->in_fs_metadata = 0;
595 device->mode = flags;
596
597 fs_devices->open_devices++;
598 if (device->writeable) {
599 fs_devices->rw_devices++;
600 list_add(&device->dev_alloc_list,
601 &fs_devices->alloc_list);
602 }
603 continue;
604
605 error_brelse:
606 brelse(bh);
607 error_close:
608 close_bdev_exclusive(bdev, FMODE_READ);
609 error:
610 continue;
611 }
612 if (fs_devices->open_devices == 0) {
613 ret = -EIO;
614 goto out;
615 }
616 fs_devices->seeding = seeding;
617 fs_devices->opened = 1;
618 fs_devices->latest_bdev = latest_bdev;
619 fs_devices->latest_devid = latest_devid;
620 fs_devices->latest_trans = latest_transid;
621 fs_devices->total_rw_bytes = 0;
622 out:
623 return ret;
624 }
625
626 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
627 fmode_t flags, void *holder)
628 {
629 int ret;
630
631 mutex_lock(&uuid_mutex);
632 if (fs_devices->opened) {
633 fs_devices->opened++;
634 ret = 0;
635 } else {
636 ret = __btrfs_open_devices(fs_devices, flags, holder);
637 }
638 mutex_unlock(&uuid_mutex);
639 return ret;
640 }
641
642 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
643 struct btrfs_fs_devices **fs_devices_ret)
644 {
645 struct btrfs_super_block *disk_super;
646 struct block_device *bdev;
647 struct buffer_head *bh;
648 int ret;
649 u64 devid;
650 u64 transid;
651
652 mutex_lock(&uuid_mutex);
653
654 bdev = open_bdev_exclusive(path, flags, holder);
655
656 if (IS_ERR(bdev)) {
657 ret = PTR_ERR(bdev);
658 goto error;
659 }
660
661 ret = set_blocksize(bdev, 4096);
662 if (ret)
663 goto error_close;
664 bh = btrfs_read_dev_super(bdev);
665 if (!bh) {
666 ret = -EIO;
667 goto error_close;
668 }
669 disk_super = (struct btrfs_super_block *)bh->b_data;
670 devid = le64_to_cpu(disk_super->dev_item.devid);
671 transid = btrfs_super_generation(disk_super);
672 if (disk_super->label[0])
673 printk(KERN_INFO "device label %s ", disk_super->label);
674 else {
675 /* FIXME, make a readl uuid parser */
676 printk(KERN_INFO "device fsid %llx-%llx ",
677 *(unsigned long long *)disk_super->fsid,
678 *(unsigned long long *)(disk_super->fsid + 8));
679 }
680 printk(KERN_CONT "devid %llu transid %llu %s\n",
681 (unsigned long long)devid, (unsigned long long)transid, path);
682 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
683
684 brelse(bh);
685 error_close:
686 close_bdev_exclusive(bdev, flags);
687 error:
688 mutex_unlock(&uuid_mutex);
689 return ret;
690 }
691
692 /*
693 * this uses a pretty simple search, the expectation is that it is
694 * called very infrequently and that a given device has a small number
695 * of extents
696 */
697 static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans,
698 struct btrfs_device *device,
699 u64 num_bytes, u64 *start)
700 {
701 struct btrfs_key key;
702 struct btrfs_root *root = device->dev_root;
703 struct btrfs_dev_extent *dev_extent = NULL;
704 struct btrfs_path *path;
705 u64 hole_size = 0;
706 u64 last_byte = 0;
707 u64 search_start = 0;
708 u64 search_end = device->total_bytes;
709 int ret;
710 int slot = 0;
711 int start_found;
712 struct extent_buffer *l;
713
714 path = btrfs_alloc_path();
715 if (!path)
716 return -ENOMEM;
717 path->reada = 2;
718 start_found = 0;
719
720 /* FIXME use last free of some kind */
721
722 /* we don't want to overwrite the superblock on the drive,
723 * so we make sure to start at an offset of at least 1MB
724 */
725 search_start = max((u64)1024 * 1024, search_start);
726
727 if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
728 search_start = max(root->fs_info->alloc_start, search_start);
729
730 key.objectid = device->devid;
731 key.offset = search_start;
732 key.type = BTRFS_DEV_EXTENT_KEY;
733 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
734 if (ret < 0)
735 goto error;
736 ret = btrfs_previous_item(root, path, 0, key.type);
737 if (ret < 0)
738 goto error;
739 l = path->nodes[0];
740 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
741 while (1) {
742 l = path->nodes[0];
743 slot = path->slots[0];
744 if (slot >= btrfs_header_nritems(l)) {
745 ret = btrfs_next_leaf(root, path);
746 if (ret == 0)
747 continue;
748 if (ret < 0)
749 goto error;
750 no_more_items:
751 if (!start_found) {
752 if (search_start >= search_end) {
753 ret = -ENOSPC;
754 goto error;
755 }
756 *start = search_start;
757 start_found = 1;
758 goto check_pending;
759 }
760 *start = last_byte > search_start ?
761 last_byte : search_start;
762 if (search_end <= *start) {
763 ret = -ENOSPC;
764 goto error;
765 }
766 goto check_pending;
767 }
768 btrfs_item_key_to_cpu(l, &key, slot);
769
770 if (key.objectid < device->devid)
771 goto next;
772
773 if (key.objectid > device->devid)
774 goto no_more_items;
775
776 if (key.offset >= search_start && key.offset > last_byte &&
777 start_found) {
778 if (last_byte < search_start)
779 last_byte = search_start;
780 hole_size = key.offset - last_byte;
781 if (key.offset > last_byte &&
782 hole_size >= num_bytes) {
783 *start = last_byte;
784 goto check_pending;
785 }
786 }
787 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
788 goto next;
789
790 start_found = 1;
791 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
792 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
793 next:
794 path->slots[0]++;
795 cond_resched();
796 }
797 check_pending:
798 /* we have to make sure we didn't find an extent that has already
799 * been allocated by the map tree or the original allocation
800 */
801 BUG_ON(*start < search_start);
802
803 if (*start + num_bytes > search_end) {
804 ret = -ENOSPC;
805 goto error;
806 }
807 /* check for pending inserts here */
808 ret = 0;
809
810 error:
811 btrfs_free_path(path);
812 return ret;
813 }
814
815 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
816 struct btrfs_device *device,
817 u64 start)
818 {
819 int ret;
820 struct btrfs_path *path;
821 struct btrfs_root *root = device->dev_root;
822 struct btrfs_key key;
823 struct btrfs_key found_key;
824 struct extent_buffer *leaf = NULL;
825 struct btrfs_dev_extent *extent = NULL;
826
827 path = btrfs_alloc_path();
828 if (!path)
829 return -ENOMEM;
830
831 key.objectid = device->devid;
832 key.offset = start;
833 key.type = BTRFS_DEV_EXTENT_KEY;
834
835 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
836 if (ret > 0) {
837 ret = btrfs_previous_item(root, path, key.objectid,
838 BTRFS_DEV_EXTENT_KEY);
839 BUG_ON(ret);
840 leaf = path->nodes[0];
841 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
842 extent = btrfs_item_ptr(leaf, path->slots[0],
843 struct btrfs_dev_extent);
844 BUG_ON(found_key.offset > start || found_key.offset +
845 btrfs_dev_extent_length(leaf, extent) < start);
846 ret = 0;
847 } else if (ret == 0) {
848 leaf = path->nodes[0];
849 extent = btrfs_item_ptr(leaf, path->slots[0],
850 struct btrfs_dev_extent);
851 }
852 BUG_ON(ret);
853
854 if (device->bytes_used > 0)
855 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
856 ret = btrfs_del_item(trans, root, path);
857 BUG_ON(ret);
858
859 btrfs_free_path(path);
860 return ret;
861 }
862
863 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
864 struct btrfs_device *device,
865 u64 chunk_tree, u64 chunk_objectid,
866 u64 chunk_offset, u64 start, u64 num_bytes)
867 {
868 int ret;
869 struct btrfs_path *path;
870 struct btrfs_root *root = device->dev_root;
871 struct btrfs_dev_extent *extent;
872 struct extent_buffer *leaf;
873 struct btrfs_key key;
874
875 WARN_ON(!device->in_fs_metadata);
876 path = btrfs_alloc_path();
877 if (!path)
878 return -ENOMEM;
879
880 key.objectid = device->devid;
881 key.offset = start;
882 key.type = BTRFS_DEV_EXTENT_KEY;
883 ret = btrfs_insert_empty_item(trans, root, path, &key,
884 sizeof(*extent));
885 BUG_ON(ret);
886
887 leaf = path->nodes[0];
888 extent = btrfs_item_ptr(leaf, path->slots[0],
889 struct btrfs_dev_extent);
890 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
891 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
892 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
893
894 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
895 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
896 BTRFS_UUID_SIZE);
897
898 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
899 btrfs_mark_buffer_dirty(leaf);
900 btrfs_free_path(path);
901 return ret;
902 }
903
904 static noinline int find_next_chunk(struct btrfs_root *root,
905 u64 objectid, u64 *offset)
906 {
907 struct btrfs_path *path;
908 int ret;
909 struct btrfs_key key;
910 struct btrfs_chunk *chunk;
911 struct btrfs_key found_key;
912
913 path = btrfs_alloc_path();
914 BUG_ON(!path);
915
916 key.objectid = objectid;
917 key.offset = (u64)-1;
918 key.type = BTRFS_CHUNK_ITEM_KEY;
919
920 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
921 if (ret < 0)
922 goto error;
923
924 BUG_ON(ret == 0);
925
926 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
927 if (ret) {
928 *offset = 0;
929 } else {
930 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
931 path->slots[0]);
932 if (found_key.objectid != objectid)
933 *offset = 0;
934 else {
935 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
936 struct btrfs_chunk);
937 *offset = found_key.offset +
938 btrfs_chunk_length(path->nodes[0], chunk);
939 }
940 }
941 ret = 0;
942 error:
943 btrfs_free_path(path);
944 return ret;
945 }
946
947 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
948 {
949 int ret;
950 struct btrfs_key key;
951 struct btrfs_key found_key;
952 struct btrfs_path *path;
953
954 root = root->fs_info->chunk_root;
955
956 path = btrfs_alloc_path();
957 if (!path)
958 return -ENOMEM;
959
960 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
961 key.type = BTRFS_DEV_ITEM_KEY;
962 key.offset = (u64)-1;
963
964 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
965 if (ret < 0)
966 goto error;
967
968 BUG_ON(ret == 0);
969
970 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
971 BTRFS_DEV_ITEM_KEY);
972 if (ret) {
973 *objectid = 1;
974 } else {
975 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
976 path->slots[0]);
977 *objectid = found_key.offset + 1;
978 }
979 ret = 0;
980 error:
981 btrfs_free_path(path);
982 return ret;
983 }
984
985 /*
986 * the device information is stored in the chunk root
987 * the btrfs_device struct should be fully filled in
988 */
989 int btrfs_add_device(struct btrfs_trans_handle *trans,
990 struct btrfs_root *root,
991 struct btrfs_device *device)
992 {
993 int ret;
994 struct btrfs_path *path;
995 struct btrfs_dev_item *dev_item;
996 struct extent_buffer *leaf;
997 struct btrfs_key key;
998 unsigned long ptr;
999
1000 root = root->fs_info->chunk_root;
1001
1002 path = btrfs_alloc_path();
1003 if (!path)
1004 return -ENOMEM;
1005
1006 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1007 key.type = BTRFS_DEV_ITEM_KEY;
1008 key.offset = device->devid;
1009
1010 ret = btrfs_insert_empty_item(trans, root, path, &key,
1011 sizeof(*dev_item));
1012 if (ret)
1013 goto out;
1014
1015 leaf = path->nodes[0];
1016 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1017
1018 btrfs_set_device_id(leaf, dev_item, device->devid);
1019 btrfs_set_device_generation(leaf, dev_item, 0);
1020 btrfs_set_device_type(leaf, dev_item, device->type);
1021 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1022 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1023 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1024 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1025 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1026 btrfs_set_device_group(leaf, dev_item, 0);
1027 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1028 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1029 btrfs_set_device_start_offset(leaf, dev_item, 0);
1030
1031 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1032 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1033 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1034 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1035 btrfs_mark_buffer_dirty(leaf);
1036
1037 ret = 0;
1038 out:
1039 btrfs_free_path(path);
1040 return ret;
1041 }
1042
1043 static int btrfs_rm_dev_item(struct btrfs_root *root,
1044 struct btrfs_device *device)
1045 {
1046 int ret;
1047 struct btrfs_path *path;
1048 struct btrfs_key key;
1049 struct btrfs_trans_handle *trans;
1050
1051 root = root->fs_info->chunk_root;
1052
1053 path = btrfs_alloc_path();
1054 if (!path)
1055 return -ENOMEM;
1056
1057 trans = btrfs_start_transaction(root, 1);
1058 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1059 key.type = BTRFS_DEV_ITEM_KEY;
1060 key.offset = device->devid;
1061 lock_chunks(root);
1062
1063 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1064 if (ret < 0)
1065 goto out;
1066
1067 if (ret > 0) {
1068 ret = -ENOENT;
1069 goto out;
1070 }
1071
1072 ret = btrfs_del_item(trans, root, path);
1073 if (ret)
1074 goto out;
1075 out:
1076 btrfs_free_path(path);
1077 unlock_chunks(root);
1078 btrfs_commit_transaction(trans, root);
1079 return ret;
1080 }
1081
1082 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1083 {
1084 struct btrfs_device *device;
1085 struct btrfs_device *next_device;
1086 struct block_device *bdev;
1087 struct buffer_head *bh = NULL;
1088 struct btrfs_super_block *disk_super;
1089 u64 all_avail;
1090 u64 devid;
1091 u64 num_devices;
1092 u8 *dev_uuid;
1093 int ret = 0;
1094
1095 mutex_lock(&uuid_mutex);
1096 mutex_lock(&root->fs_info->volume_mutex);
1097
1098 all_avail = root->fs_info->avail_data_alloc_bits |
1099 root->fs_info->avail_system_alloc_bits |
1100 root->fs_info->avail_metadata_alloc_bits;
1101
1102 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1103 root->fs_info->fs_devices->rw_devices <= 4) {
1104 printk(KERN_ERR "btrfs: unable to go below four devices "
1105 "on raid10\n");
1106 ret = -EINVAL;
1107 goto out;
1108 }
1109
1110 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1111 root->fs_info->fs_devices->rw_devices <= 2) {
1112 printk(KERN_ERR "btrfs: unable to go below two "
1113 "devices on raid1\n");
1114 ret = -EINVAL;
1115 goto out;
1116 }
1117
1118 if (strcmp(device_path, "missing") == 0) {
1119 struct list_head *devices;
1120 struct btrfs_device *tmp;
1121
1122 device = NULL;
1123 devices = &root->fs_info->fs_devices->devices;
1124 list_for_each_entry(tmp, devices, dev_list) {
1125 if (tmp->in_fs_metadata && !tmp->bdev) {
1126 device = tmp;
1127 break;
1128 }
1129 }
1130 bdev = NULL;
1131 bh = NULL;
1132 disk_super = NULL;
1133 if (!device) {
1134 printk(KERN_ERR "btrfs: no missing devices found to "
1135 "remove\n");
1136 goto out;
1137 }
1138 } else {
1139 bdev = open_bdev_exclusive(device_path, FMODE_READ,
1140 root->fs_info->bdev_holder);
1141 if (IS_ERR(bdev)) {
1142 ret = PTR_ERR(bdev);
1143 goto out;
1144 }
1145
1146 set_blocksize(bdev, 4096);
1147 bh = btrfs_read_dev_super(bdev);
1148 if (!bh) {
1149 ret = -EIO;
1150 goto error_close;
1151 }
1152 disk_super = (struct btrfs_super_block *)bh->b_data;
1153 devid = le64_to_cpu(disk_super->dev_item.devid);
1154 dev_uuid = disk_super->dev_item.uuid;
1155 device = btrfs_find_device(root, devid, dev_uuid,
1156 disk_super->fsid);
1157 if (!device) {
1158 ret = -ENOENT;
1159 goto error_brelse;
1160 }
1161 }
1162
1163 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1164 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1165 "device\n");
1166 ret = -EINVAL;
1167 goto error_brelse;
1168 }
1169
1170 if (device->writeable) {
1171 list_del_init(&device->dev_alloc_list);
1172 root->fs_info->fs_devices->rw_devices--;
1173 }
1174
1175 ret = btrfs_shrink_device(device, 0);
1176 if (ret)
1177 goto error_brelse;
1178
1179 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1180 if (ret)
1181 goto error_brelse;
1182
1183 device->in_fs_metadata = 0;
1184 list_del_init(&device->dev_list);
1185 device->fs_devices->num_devices--;
1186
1187 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1188 struct btrfs_device, dev_list);
1189 if (device->bdev == root->fs_info->sb->s_bdev)
1190 root->fs_info->sb->s_bdev = next_device->bdev;
1191 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1192 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1193
1194 if (device->bdev) {
1195 close_bdev_exclusive(device->bdev, device->mode);
1196 device->bdev = NULL;
1197 device->fs_devices->open_devices--;
1198 }
1199
1200 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1201 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1202
1203 if (device->fs_devices->open_devices == 0) {
1204 struct btrfs_fs_devices *fs_devices;
1205 fs_devices = root->fs_info->fs_devices;
1206 while (fs_devices) {
1207 if (fs_devices->seed == device->fs_devices)
1208 break;
1209 fs_devices = fs_devices->seed;
1210 }
1211 fs_devices->seed = device->fs_devices->seed;
1212 device->fs_devices->seed = NULL;
1213 __btrfs_close_devices(device->fs_devices);
1214 free_fs_devices(device->fs_devices);
1215 }
1216
1217 /*
1218 * at this point, the device is zero sized. We want to
1219 * remove it from the devices list and zero out the old super
1220 */
1221 if (device->writeable) {
1222 /* make sure this device isn't detected as part of
1223 * the FS anymore
1224 */
1225 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1226 set_buffer_dirty(bh);
1227 sync_dirty_buffer(bh);
1228 }
1229
1230 kfree(device->name);
1231 kfree(device);
1232 ret = 0;
1233
1234 error_brelse:
1235 brelse(bh);
1236 error_close:
1237 if (bdev)
1238 close_bdev_exclusive(bdev, FMODE_READ);
1239 out:
1240 mutex_unlock(&root->fs_info->volume_mutex);
1241 mutex_unlock(&uuid_mutex);
1242 return ret;
1243 }
1244
1245 /*
1246 * does all the dirty work required for changing file system's UUID.
1247 */
1248 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1249 struct btrfs_root *root)
1250 {
1251 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1252 struct btrfs_fs_devices *old_devices;
1253 struct btrfs_fs_devices *seed_devices;
1254 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1255 struct btrfs_device *device;
1256 u64 super_flags;
1257
1258 BUG_ON(!mutex_is_locked(&uuid_mutex));
1259 if (!fs_devices->seeding)
1260 return -EINVAL;
1261
1262 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1263 if (!seed_devices)
1264 return -ENOMEM;
1265
1266 old_devices = clone_fs_devices(fs_devices);
1267 if (IS_ERR(old_devices)) {
1268 kfree(seed_devices);
1269 return PTR_ERR(old_devices);
1270 }
1271
1272 list_add(&old_devices->list, &fs_uuids);
1273
1274 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1275 seed_devices->opened = 1;
1276 INIT_LIST_HEAD(&seed_devices->devices);
1277 INIT_LIST_HEAD(&seed_devices->alloc_list);
1278 list_splice_init(&fs_devices->devices, &seed_devices->devices);
1279 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1280 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1281 device->fs_devices = seed_devices;
1282 }
1283
1284 fs_devices->seeding = 0;
1285 fs_devices->num_devices = 0;
1286 fs_devices->open_devices = 0;
1287 fs_devices->seed = seed_devices;
1288
1289 generate_random_uuid(fs_devices->fsid);
1290 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1291 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1292 super_flags = btrfs_super_flags(disk_super) &
1293 ~BTRFS_SUPER_FLAG_SEEDING;
1294 btrfs_set_super_flags(disk_super, super_flags);
1295
1296 return 0;
1297 }
1298
1299 /*
1300 * strore the expected generation for seed devices in device items.
1301 */
1302 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1303 struct btrfs_root *root)
1304 {
1305 struct btrfs_path *path;
1306 struct extent_buffer *leaf;
1307 struct btrfs_dev_item *dev_item;
1308 struct btrfs_device *device;
1309 struct btrfs_key key;
1310 u8 fs_uuid[BTRFS_UUID_SIZE];
1311 u8 dev_uuid[BTRFS_UUID_SIZE];
1312 u64 devid;
1313 int ret;
1314
1315 path = btrfs_alloc_path();
1316 if (!path)
1317 return -ENOMEM;
1318
1319 root = root->fs_info->chunk_root;
1320 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1321 key.offset = 0;
1322 key.type = BTRFS_DEV_ITEM_KEY;
1323
1324 while (1) {
1325 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1326 if (ret < 0)
1327 goto error;
1328
1329 leaf = path->nodes[0];
1330 next_slot:
1331 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1332 ret = btrfs_next_leaf(root, path);
1333 if (ret > 0)
1334 break;
1335 if (ret < 0)
1336 goto error;
1337 leaf = path->nodes[0];
1338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1339 btrfs_release_path(root, path);
1340 continue;
1341 }
1342
1343 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1344 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1345 key.type != BTRFS_DEV_ITEM_KEY)
1346 break;
1347
1348 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1349 struct btrfs_dev_item);
1350 devid = btrfs_device_id(leaf, dev_item);
1351 read_extent_buffer(leaf, dev_uuid,
1352 (unsigned long)btrfs_device_uuid(dev_item),
1353 BTRFS_UUID_SIZE);
1354 read_extent_buffer(leaf, fs_uuid,
1355 (unsigned long)btrfs_device_fsid(dev_item),
1356 BTRFS_UUID_SIZE);
1357 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1358 BUG_ON(!device);
1359
1360 if (device->fs_devices->seeding) {
1361 btrfs_set_device_generation(leaf, dev_item,
1362 device->generation);
1363 btrfs_mark_buffer_dirty(leaf);
1364 }
1365
1366 path->slots[0]++;
1367 goto next_slot;
1368 }
1369 ret = 0;
1370 error:
1371 btrfs_free_path(path);
1372 return ret;
1373 }
1374
1375 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1376 {
1377 struct btrfs_trans_handle *trans;
1378 struct btrfs_device *device;
1379 struct block_device *bdev;
1380 struct list_head *devices;
1381 struct super_block *sb = root->fs_info->sb;
1382 u64 total_bytes;
1383 int seeding_dev = 0;
1384 int ret = 0;
1385
1386 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1387 return -EINVAL;
1388
1389 bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
1390 if (!bdev)
1391 return -EIO;
1392
1393 if (root->fs_info->fs_devices->seeding) {
1394 seeding_dev = 1;
1395 down_write(&sb->s_umount);
1396 mutex_lock(&uuid_mutex);
1397 }
1398
1399 filemap_write_and_wait(bdev->bd_inode->i_mapping);
1400 mutex_lock(&root->fs_info->volume_mutex);
1401
1402 devices = &root->fs_info->fs_devices->devices;
1403 list_for_each_entry(device, devices, dev_list) {
1404 if (device->bdev == bdev) {
1405 ret = -EEXIST;
1406 goto error;
1407 }
1408 }
1409
1410 device = kzalloc(sizeof(*device), GFP_NOFS);
1411 if (!device) {
1412 /* we can safely leave the fs_devices entry around */
1413 ret = -ENOMEM;
1414 goto error;
1415 }
1416
1417 device->name = kstrdup(device_path, GFP_NOFS);
1418 if (!device->name) {
1419 kfree(device);
1420 ret = -ENOMEM;
1421 goto error;
1422 }
1423
1424 ret = find_next_devid(root, &device->devid);
1425 if (ret) {
1426 kfree(device);
1427 goto error;
1428 }
1429
1430 trans = btrfs_start_transaction(root, 1);
1431 lock_chunks(root);
1432
1433 device->barriers = 1;
1434 device->writeable = 1;
1435 device->work.func = pending_bios_fn;
1436 generate_random_uuid(device->uuid);
1437 spin_lock_init(&device->io_lock);
1438 device->generation = trans->transid;
1439 device->io_width = root->sectorsize;
1440 device->io_align = root->sectorsize;
1441 device->sector_size = root->sectorsize;
1442 device->total_bytes = i_size_read(bdev->bd_inode);
1443 device->dev_root = root->fs_info->dev_root;
1444 device->bdev = bdev;
1445 device->in_fs_metadata = 1;
1446 device->mode = 0;
1447 set_blocksize(device->bdev, 4096);
1448
1449 if (seeding_dev) {
1450 sb->s_flags &= ~MS_RDONLY;
1451 ret = btrfs_prepare_sprout(trans, root);
1452 BUG_ON(ret);
1453 }
1454
1455 device->fs_devices = root->fs_info->fs_devices;
1456 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1457 list_add(&device->dev_alloc_list,
1458 &root->fs_info->fs_devices->alloc_list);
1459 root->fs_info->fs_devices->num_devices++;
1460 root->fs_info->fs_devices->open_devices++;
1461 root->fs_info->fs_devices->rw_devices++;
1462 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1463
1464 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1465 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1466 total_bytes + device->total_bytes);
1467
1468 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1469 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1470 total_bytes + 1);
1471
1472 if (seeding_dev) {
1473 ret = init_first_rw_device(trans, root, device);
1474 BUG_ON(ret);
1475 ret = btrfs_finish_sprout(trans, root);
1476 BUG_ON(ret);
1477 } else {
1478 ret = btrfs_add_device(trans, root, device);
1479 }
1480
1481 /*
1482 * we've got more storage, clear any full flags on the space
1483 * infos
1484 */
1485 btrfs_clear_space_info_full(root->fs_info);
1486
1487 unlock_chunks(root);
1488 btrfs_commit_transaction(trans, root);
1489
1490 if (seeding_dev) {
1491 mutex_unlock(&uuid_mutex);
1492 up_write(&sb->s_umount);
1493
1494 ret = btrfs_relocate_sys_chunks(root);
1495 BUG_ON(ret);
1496 }
1497 out:
1498 mutex_unlock(&root->fs_info->volume_mutex);
1499 return ret;
1500 error:
1501 close_bdev_exclusive(bdev, 0);
1502 if (seeding_dev) {
1503 mutex_unlock(&uuid_mutex);
1504 up_write(&sb->s_umount);
1505 }
1506 goto out;
1507 }
1508
1509 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1510 struct btrfs_device *device)
1511 {
1512 int ret;
1513 struct btrfs_path *path;
1514 struct btrfs_root *root;
1515 struct btrfs_dev_item *dev_item;
1516 struct extent_buffer *leaf;
1517 struct btrfs_key key;
1518
1519 root = device->dev_root->fs_info->chunk_root;
1520
1521 path = btrfs_alloc_path();
1522 if (!path)
1523 return -ENOMEM;
1524
1525 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1526 key.type = BTRFS_DEV_ITEM_KEY;
1527 key.offset = device->devid;
1528
1529 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1530 if (ret < 0)
1531 goto out;
1532
1533 if (ret > 0) {
1534 ret = -ENOENT;
1535 goto out;
1536 }
1537
1538 leaf = path->nodes[0];
1539 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1540
1541 btrfs_set_device_id(leaf, dev_item, device->devid);
1542 btrfs_set_device_type(leaf, dev_item, device->type);
1543 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1544 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1545 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1546 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1547 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1548 btrfs_mark_buffer_dirty(leaf);
1549
1550 out:
1551 btrfs_free_path(path);
1552 return ret;
1553 }
1554
1555 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1556 struct btrfs_device *device, u64 new_size)
1557 {
1558 struct btrfs_super_block *super_copy =
1559 &device->dev_root->fs_info->super_copy;
1560 u64 old_total = btrfs_super_total_bytes(super_copy);
1561 u64 diff = new_size - device->total_bytes;
1562
1563 if (!device->writeable)
1564 return -EACCES;
1565 if (new_size <= device->total_bytes)
1566 return -EINVAL;
1567
1568 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1569 device->fs_devices->total_rw_bytes += diff;
1570
1571 device->total_bytes = new_size;
1572 btrfs_clear_space_info_full(device->dev_root->fs_info);
1573
1574 return btrfs_update_device(trans, device);
1575 }
1576
1577 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1578 struct btrfs_device *device, u64 new_size)
1579 {
1580 int ret;
1581 lock_chunks(device->dev_root);
1582 ret = __btrfs_grow_device(trans, device, new_size);
1583 unlock_chunks(device->dev_root);
1584 return ret;
1585 }
1586
1587 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1588 struct btrfs_root *root,
1589 u64 chunk_tree, u64 chunk_objectid,
1590 u64 chunk_offset)
1591 {
1592 int ret;
1593 struct btrfs_path *path;
1594 struct btrfs_key key;
1595
1596 root = root->fs_info->chunk_root;
1597 path = btrfs_alloc_path();
1598 if (!path)
1599 return -ENOMEM;
1600
1601 key.objectid = chunk_objectid;
1602 key.offset = chunk_offset;
1603 key.type = BTRFS_CHUNK_ITEM_KEY;
1604
1605 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1606 BUG_ON(ret);
1607
1608 ret = btrfs_del_item(trans, root, path);
1609 BUG_ON(ret);
1610
1611 btrfs_free_path(path);
1612 return 0;
1613 }
1614
1615 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1616 chunk_offset)
1617 {
1618 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1619 struct btrfs_disk_key *disk_key;
1620 struct btrfs_chunk *chunk;
1621 u8 *ptr;
1622 int ret = 0;
1623 u32 num_stripes;
1624 u32 array_size;
1625 u32 len = 0;
1626 u32 cur;
1627 struct btrfs_key key;
1628
1629 array_size = btrfs_super_sys_array_size(super_copy);
1630
1631 ptr = super_copy->sys_chunk_array;
1632 cur = 0;
1633
1634 while (cur < array_size) {
1635 disk_key = (struct btrfs_disk_key *)ptr;
1636 btrfs_disk_key_to_cpu(&key, disk_key);
1637
1638 len = sizeof(*disk_key);
1639
1640 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1641 chunk = (struct btrfs_chunk *)(ptr + len);
1642 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1643 len += btrfs_chunk_item_size(num_stripes);
1644 } else {
1645 ret = -EIO;
1646 break;
1647 }
1648 if (key.objectid == chunk_objectid &&
1649 key.offset == chunk_offset) {
1650 memmove(ptr, ptr + len, array_size - (cur + len));
1651 array_size -= len;
1652 btrfs_set_super_sys_array_size(super_copy, array_size);
1653 } else {
1654 ptr += len;
1655 cur += len;
1656 }
1657 }
1658 return ret;
1659 }
1660
1661 static int btrfs_relocate_chunk(struct btrfs_root *root,
1662 u64 chunk_tree, u64 chunk_objectid,
1663 u64 chunk_offset)
1664 {
1665 struct extent_map_tree *em_tree;
1666 struct btrfs_root *extent_root;
1667 struct btrfs_trans_handle *trans;
1668 struct extent_map *em;
1669 struct map_lookup *map;
1670 int ret;
1671 int i;
1672
1673 printk(KERN_INFO "btrfs relocating chunk %llu\n",
1674 (unsigned long long)chunk_offset);
1675 root = root->fs_info->chunk_root;
1676 extent_root = root->fs_info->extent_root;
1677 em_tree = &root->fs_info->mapping_tree.map_tree;
1678
1679 /* step one, relocate all the extents inside this chunk */
1680 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1681 BUG_ON(ret);
1682
1683 trans = btrfs_start_transaction(root, 1);
1684 BUG_ON(!trans);
1685
1686 lock_chunks(root);
1687
1688 /*
1689 * step two, delete the device extents and the
1690 * chunk tree entries
1691 */
1692 spin_lock(&em_tree->lock);
1693 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1694 spin_unlock(&em_tree->lock);
1695
1696 BUG_ON(em->start > chunk_offset ||
1697 em->start + em->len < chunk_offset);
1698 map = (struct map_lookup *)em->bdev;
1699
1700 for (i = 0; i < map->num_stripes; i++) {
1701 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1702 map->stripes[i].physical);
1703 BUG_ON(ret);
1704
1705 if (map->stripes[i].dev) {
1706 ret = btrfs_update_device(trans, map->stripes[i].dev);
1707 BUG_ON(ret);
1708 }
1709 }
1710 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1711 chunk_offset);
1712
1713 BUG_ON(ret);
1714
1715 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1716 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1717 BUG_ON(ret);
1718 }
1719
1720 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1721 BUG_ON(ret);
1722
1723 spin_lock(&em_tree->lock);
1724 remove_extent_mapping(em_tree, em);
1725 spin_unlock(&em_tree->lock);
1726
1727 kfree(map);
1728 em->bdev = NULL;
1729
1730 /* once for the tree */
1731 free_extent_map(em);
1732 /* once for us */
1733 free_extent_map(em);
1734
1735 unlock_chunks(root);
1736 btrfs_end_transaction(trans, root);
1737 return 0;
1738 }
1739
1740 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1741 {
1742 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1743 struct btrfs_path *path;
1744 struct extent_buffer *leaf;
1745 struct btrfs_chunk *chunk;
1746 struct btrfs_key key;
1747 struct btrfs_key found_key;
1748 u64 chunk_tree = chunk_root->root_key.objectid;
1749 u64 chunk_type;
1750 int ret;
1751
1752 path = btrfs_alloc_path();
1753 if (!path)
1754 return -ENOMEM;
1755
1756 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1757 key.offset = (u64)-1;
1758 key.type = BTRFS_CHUNK_ITEM_KEY;
1759
1760 while (1) {
1761 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1762 if (ret < 0)
1763 goto error;
1764 BUG_ON(ret == 0);
1765
1766 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1767 key.type);
1768 if (ret < 0)
1769 goto error;
1770 if (ret > 0)
1771 break;
1772
1773 leaf = path->nodes[0];
1774 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1775
1776 chunk = btrfs_item_ptr(leaf, path->slots[0],
1777 struct btrfs_chunk);
1778 chunk_type = btrfs_chunk_type(leaf, chunk);
1779 btrfs_release_path(chunk_root, path);
1780
1781 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1782 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1783 found_key.objectid,
1784 found_key.offset);
1785 BUG_ON(ret);
1786 }
1787
1788 if (found_key.offset == 0)
1789 break;
1790 key.offset = found_key.offset - 1;
1791 }
1792 ret = 0;
1793 error:
1794 btrfs_free_path(path);
1795 return ret;
1796 }
1797
1798 static u64 div_factor(u64 num, int factor)
1799 {
1800 if (factor == 10)
1801 return num;
1802 num *= factor;
1803 do_div(num, 10);
1804 return num;
1805 }
1806
1807 int btrfs_balance(struct btrfs_root *dev_root)
1808 {
1809 int ret;
1810 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1811 struct btrfs_device *device;
1812 u64 old_size;
1813 u64 size_to_free;
1814 struct btrfs_path *path;
1815 struct btrfs_key key;
1816 struct btrfs_chunk *chunk;
1817 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1818 struct btrfs_trans_handle *trans;
1819 struct btrfs_key found_key;
1820
1821 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
1822 return -EROFS;
1823
1824 mutex_lock(&dev_root->fs_info->volume_mutex);
1825 dev_root = dev_root->fs_info->dev_root;
1826
1827 /* step one make some room on all the devices */
1828 list_for_each_entry(device, devices, dev_list) {
1829 old_size = device->total_bytes;
1830 size_to_free = div_factor(old_size, 1);
1831 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1832 if (!device->writeable ||
1833 device->total_bytes - device->bytes_used > size_to_free)
1834 continue;
1835
1836 ret = btrfs_shrink_device(device, old_size - size_to_free);
1837 BUG_ON(ret);
1838
1839 trans = btrfs_start_transaction(dev_root, 1);
1840 BUG_ON(!trans);
1841
1842 ret = btrfs_grow_device(trans, device, old_size);
1843 BUG_ON(ret);
1844
1845 btrfs_end_transaction(trans, dev_root);
1846 }
1847
1848 /* step two, relocate all the chunks */
1849 path = btrfs_alloc_path();
1850 BUG_ON(!path);
1851
1852 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1853 key.offset = (u64)-1;
1854 key.type = BTRFS_CHUNK_ITEM_KEY;
1855
1856 while (1) {
1857 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1858 if (ret < 0)
1859 goto error;
1860
1861 /*
1862 * this shouldn't happen, it means the last relocate
1863 * failed
1864 */
1865 if (ret == 0)
1866 break;
1867
1868 ret = btrfs_previous_item(chunk_root, path, 0,
1869 BTRFS_CHUNK_ITEM_KEY);
1870 if (ret)
1871 break;
1872
1873 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1874 path->slots[0]);
1875 if (found_key.objectid != key.objectid)
1876 break;
1877
1878 chunk = btrfs_item_ptr(path->nodes[0],
1879 path->slots[0],
1880 struct btrfs_chunk);
1881 key.offset = found_key.offset;
1882 /* chunk zero is special */
1883 if (key.offset == 0)
1884 break;
1885
1886 btrfs_release_path(chunk_root, path);
1887 ret = btrfs_relocate_chunk(chunk_root,
1888 chunk_root->root_key.objectid,
1889 found_key.objectid,
1890 found_key.offset);
1891 BUG_ON(ret);
1892 }
1893 ret = 0;
1894 error:
1895 btrfs_free_path(path);
1896 mutex_unlock(&dev_root->fs_info->volume_mutex);
1897 return ret;
1898 }
1899
1900 /*
1901 * shrinking a device means finding all of the device extents past
1902 * the new size, and then following the back refs to the chunks.
1903 * The chunk relocation code actually frees the device extent
1904 */
1905 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1906 {
1907 struct btrfs_trans_handle *trans;
1908 struct btrfs_root *root = device->dev_root;
1909 struct btrfs_dev_extent *dev_extent = NULL;
1910 struct btrfs_path *path;
1911 u64 length;
1912 u64 chunk_tree;
1913 u64 chunk_objectid;
1914 u64 chunk_offset;
1915 int ret;
1916 int slot;
1917 struct extent_buffer *l;
1918 struct btrfs_key key;
1919 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1920 u64 old_total = btrfs_super_total_bytes(super_copy);
1921 u64 diff = device->total_bytes - new_size;
1922
1923 if (new_size >= device->total_bytes)
1924 return -EINVAL;
1925
1926 path = btrfs_alloc_path();
1927 if (!path)
1928 return -ENOMEM;
1929
1930 trans = btrfs_start_transaction(root, 1);
1931 if (!trans) {
1932 ret = -ENOMEM;
1933 goto done;
1934 }
1935
1936 path->reada = 2;
1937
1938 lock_chunks(root);
1939
1940 device->total_bytes = new_size;
1941 if (device->writeable)
1942 device->fs_devices->total_rw_bytes -= diff;
1943 unlock_chunks(root);
1944 btrfs_end_transaction(trans, root);
1945
1946 key.objectid = device->devid;
1947 key.offset = (u64)-1;
1948 key.type = BTRFS_DEV_EXTENT_KEY;
1949
1950 while (1) {
1951 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1952 if (ret < 0)
1953 goto done;
1954
1955 ret = btrfs_previous_item(root, path, 0, key.type);
1956 if (ret < 0)
1957 goto done;
1958 if (ret) {
1959 ret = 0;
1960 goto done;
1961 }
1962
1963 l = path->nodes[0];
1964 slot = path->slots[0];
1965 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
1966
1967 if (key.objectid != device->devid)
1968 goto done;
1969
1970 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1971 length = btrfs_dev_extent_length(l, dev_extent);
1972
1973 if (key.offset + length <= new_size)
1974 break;
1975
1976 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1977 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1978 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1979 btrfs_release_path(root, path);
1980
1981 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
1982 chunk_offset);
1983 if (ret)
1984 goto done;
1985 }
1986
1987 /* Shrinking succeeded, else we would be at "done". */
1988 trans = btrfs_start_transaction(root, 1);
1989 if (!trans) {
1990 ret = -ENOMEM;
1991 goto done;
1992 }
1993 lock_chunks(root);
1994
1995 device->disk_total_bytes = new_size;
1996 /* Now btrfs_update_device() will change the on-disk size. */
1997 ret = btrfs_update_device(trans, device);
1998 if (ret) {
1999 unlock_chunks(root);
2000 btrfs_end_transaction(trans, root);
2001 goto done;
2002 }
2003 WARN_ON(diff > old_total);
2004 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2005 unlock_chunks(root);
2006 btrfs_end_transaction(trans, root);
2007 done:
2008 btrfs_free_path(path);
2009 return ret;
2010 }
2011
2012 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2013 struct btrfs_root *root,
2014 struct btrfs_key *key,
2015 struct btrfs_chunk *chunk, int item_size)
2016 {
2017 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2018 struct btrfs_disk_key disk_key;
2019 u32 array_size;
2020 u8 *ptr;
2021
2022 array_size = btrfs_super_sys_array_size(super_copy);
2023 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2024 return -EFBIG;
2025
2026 ptr = super_copy->sys_chunk_array + array_size;
2027 btrfs_cpu_key_to_disk(&disk_key, key);
2028 memcpy(ptr, &disk_key, sizeof(disk_key));
2029 ptr += sizeof(disk_key);
2030 memcpy(ptr, chunk, item_size);
2031 item_size += sizeof(disk_key);
2032 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2033 return 0;
2034 }
2035
2036 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2037 int num_stripes, int sub_stripes)
2038 {
2039 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2040 return calc_size;
2041 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2042 return calc_size * (num_stripes / sub_stripes);
2043 else
2044 return calc_size * num_stripes;
2045 }
2046
2047 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2048 struct btrfs_root *extent_root,
2049 struct map_lookup **map_ret,
2050 u64 *num_bytes, u64 *stripe_size,
2051 u64 start, u64 type)
2052 {
2053 struct btrfs_fs_info *info = extent_root->fs_info;
2054 struct btrfs_device *device = NULL;
2055 struct btrfs_fs_devices *fs_devices = info->fs_devices;
2056 struct list_head *cur;
2057 struct map_lookup *map = NULL;
2058 struct extent_map_tree *em_tree;
2059 struct extent_map *em;
2060 struct list_head private_devs;
2061 int min_stripe_size = 1 * 1024 * 1024;
2062 u64 calc_size = 1024 * 1024 * 1024;
2063 u64 max_chunk_size = calc_size;
2064 u64 min_free;
2065 u64 avail;
2066 u64 max_avail = 0;
2067 u64 dev_offset;
2068 int num_stripes = 1;
2069 int min_stripes = 1;
2070 int sub_stripes = 0;
2071 int looped = 0;
2072 int ret;
2073 int index;
2074 int stripe_len = 64 * 1024;
2075
2076 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2077 (type & BTRFS_BLOCK_GROUP_DUP)) {
2078 WARN_ON(1);
2079 type &= ~BTRFS_BLOCK_GROUP_DUP;
2080 }
2081 if (list_empty(&fs_devices->alloc_list))
2082 return -ENOSPC;
2083
2084 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2085 num_stripes = fs_devices->rw_devices;
2086 min_stripes = 2;
2087 }
2088 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2089 num_stripes = 2;
2090 min_stripes = 2;
2091 }
2092 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2093 num_stripes = min_t(u64, 2, fs_devices->rw_devices);
2094 if (num_stripes < 2)
2095 return -ENOSPC;
2096 min_stripes = 2;
2097 }
2098 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2099 num_stripes = fs_devices->rw_devices;
2100 if (num_stripes < 4)
2101 return -ENOSPC;
2102 num_stripes &= ~(u32)1;
2103 sub_stripes = 2;
2104 min_stripes = 4;
2105 }
2106
2107 if (type & BTRFS_BLOCK_GROUP_DATA) {
2108 max_chunk_size = 10 * calc_size;
2109 min_stripe_size = 64 * 1024 * 1024;
2110 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2111 max_chunk_size = 4 * calc_size;
2112 min_stripe_size = 32 * 1024 * 1024;
2113 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2114 calc_size = 8 * 1024 * 1024;
2115 max_chunk_size = calc_size * 2;
2116 min_stripe_size = 1 * 1024 * 1024;
2117 }
2118
2119 /* we don't want a chunk larger than 10% of writeable space */
2120 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2121 max_chunk_size);
2122
2123 again:
2124 if (!map || map->num_stripes != num_stripes) {
2125 kfree(map);
2126 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2127 if (!map)
2128 return -ENOMEM;
2129 map->num_stripes = num_stripes;
2130 }
2131
2132 if (calc_size * num_stripes > max_chunk_size) {
2133 calc_size = max_chunk_size;
2134 do_div(calc_size, num_stripes);
2135 do_div(calc_size, stripe_len);
2136 calc_size *= stripe_len;
2137 }
2138 /* we don't want tiny stripes */
2139 calc_size = max_t(u64, min_stripe_size, calc_size);
2140
2141 do_div(calc_size, stripe_len);
2142 calc_size *= stripe_len;
2143
2144 cur = fs_devices->alloc_list.next;
2145 index = 0;
2146
2147 if (type & BTRFS_BLOCK_GROUP_DUP)
2148 min_free = calc_size * 2;
2149 else
2150 min_free = calc_size;
2151
2152 /*
2153 * we add 1MB because we never use the first 1MB of the device, unless
2154 * we've looped, then we are likely allocating the maximum amount of
2155 * space left already
2156 */
2157 if (!looped)
2158 min_free += 1024 * 1024;
2159
2160 INIT_LIST_HEAD(&private_devs);
2161 while (index < num_stripes) {
2162 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2163 BUG_ON(!device->writeable);
2164 if (device->total_bytes > device->bytes_used)
2165 avail = device->total_bytes - device->bytes_used;
2166 else
2167 avail = 0;
2168 cur = cur->next;
2169
2170 if (device->in_fs_metadata && avail >= min_free) {
2171 ret = find_free_dev_extent(trans, device,
2172 min_free, &dev_offset);
2173 if (ret == 0) {
2174 list_move_tail(&device->dev_alloc_list,
2175 &private_devs);
2176 map->stripes[index].dev = device;
2177 map->stripes[index].physical = dev_offset;
2178 index++;
2179 if (type & BTRFS_BLOCK_GROUP_DUP) {
2180 map->stripes[index].dev = device;
2181 map->stripes[index].physical =
2182 dev_offset + calc_size;
2183 index++;
2184 }
2185 }
2186 } else if (device->in_fs_metadata && avail > max_avail)
2187 max_avail = avail;
2188 if (cur == &fs_devices->alloc_list)
2189 break;
2190 }
2191 list_splice(&private_devs, &fs_devices->alloc_list);
2192 if (index < num_stripes) {
2193 if (index >= min_stripes) {
2194 num_stripes = index;
2195 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2196 num_stripes /= sub_stripes;
2197 num_stripes *= sub_stripes;
2198 }
2199 looped = 1;
2200 goto again;
2201 }
2202 if (!looped && max_avail > 0) {
2203 looped = 1;
2204 calc_size = max_avail;
2205 goto again;
2206 }
2207 kfree(map);
2208 return -ENOSPC;
2209 }
2210 map->sector_size = extent_root->sectorsize;
2211 map->stripe_len = stripe_len;
2212 map->io_align = stripe_len;
2213 map->io_width = stripe_len;
2214 map->type = type;
2215 map->num_stripes = num_stripes;
2216 map->sub_stripes = sub_stripes;
2217
2218 *map_ret = map;
2219 *stripe_size = calc_size;
2220 *num_bytes = chunk_bytes_by_type(type, calc_size,
2221 num_stripes, sub_stripes);
2222
2223 em = alloc_extent_map(GFP_NOFS);
2224 if (!em) {
2225 kfree(map);
2226 return -ENOMEM;
2227 }
2228 em->bdev = (struct block_device *)map;
2229 em->start = start;
2230 em->len = *num_bytes;
2231 em->block_start = 0;
2232 em->block_len = em->len;
2233
2234 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2235 spin_lock(&em_tree->lock);
2236 ret = add_extent_mapping(em_tree, em);
2237 spin_unlock(&em_tree->lock);
2238 BUG_ON(ret);
2239 free_extent_map(em);
2240
2241 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2242 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2243 start, *num_bytes);
2244 BUG_ON(ret);
2245
2246 index = 0;
2247 while (index < map->num_stripes) {
2248 device = map->stripes[index].dev;
2249 dev_offset = map->stripes[index].physical;
2250
2251 ret = btrfs_alloc_dev_extent(trans, device,
2252 info->chunk_root->root_key.objectid,
2253 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2254 start, dev_offset, calc_size);
2255 BUG_ON(ret);
2256 index++;
2257 }
2258
2259 return 0;
2260 }
2261
2262 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2263 struct btrfs_root *extent_root,
2264 struct map_lookup *map, u64 chunk_offset,
2265 u64 chunk_size, u64 stripe_size)
2266 {
2267 u64 dev_offset;
2268 struct btrfs_key key;
2269 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2270 struct btrfs_device *device;
2271 struct btrfs_chunk *chunk;
2272 struct btrfs_stripe *stripe;
2273 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2274 int index = 0;
2275 int ret;
2276
2277 chunk = kzalloc(item_size, GFP_NOFS);
2278 if (!chunk)
2279 return -ENOMEM;
2280
2281 index = 0;
2282 while (index < map->num_stripes) {
2283 device = map->stripes[index].dev;
2284 device->bytes_used += stripe_size;
2285 ret = btrfs_update_device(trans, device);
2286 BUG_ON(ret);
2287 index++;
2288 }
2289
2290 index = 0;
2291 stripe = &chunk->stripe;
2292 while (index < map->num_stripes) {
2293 device = map->stripes[index].dev;
2294 dev_offset = map->stripes[index].physical;
2295
2296 btrfs_set_stack_stripe_devid(stripe, device->devid);
2297 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2298 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2299 stripe++;
2300 index++;
2301 }
2302
2303 btrfs_set_stack_chunk_length(chunk, chunk_size);
2304 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2305 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2306 btrfs_set_stack_chunk_type(chunk, map->type);
2307 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2308 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2309 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2310 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2311 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2312
2313 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2314 key.type = BTRFS_CHUNK_ITEM_KEY;
2315 key.offset = chunk_offset;
2316
2317 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2318 BUG_ON(ret);
2319
2320 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2321 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2322 item_size);
2323 BUG_ON(ret);
2324 }
2325 kfree(chunk);
2326 return 0;
2327 }
2328
2329 /*
2330 * Chunk allocation falls into two parts. The first part does works
2331 * that make the new allocated chunk useable, but not do any operation
2332 * that modifies the chunk tree. The second part does the works that
2333 * require modifying the chunk tree. This division is important for the
2334 * bootstrap process of adding storage to a seed btrfs.
2335 */
2336 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2337 struct btrfs_root *extent_root, u64 type)
2338 {
2339 u64 chunk_offset;
2340 u64 chunk_size;
2341 u64 stripe_size;
2342 struct map_lookup *map;
2343 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2344 int ret;
2345
2346 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2347 &chunk_offset);
2348 if (ret)
2349 return ret;
2350
2351 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2352 &stripe_size, chunk_offset, type);
2353 if (ret)
2354 return ret;
2355
2356 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2357 chunk_size, stripe_size);
2358 BUG_ON(ret);
2359 return 0;
2360 }
2361
2362 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2363 struct btrfs_root *root,
2364 struct btrfs_device *device)
2365 {
2366 u64 chunk_offset;
2367 u64 sys_chunk_offset;
2368 u64 chunk_size;
2369 u64 sys_chunk_size;
2370 u64 stripe_size;
2371 u64 sys_stripe_size;
2372 u64 alloc_profile;
2373 struct map_lookup *map;
2374 struct map_lookup *sys_map;
2375 struct btrfs_fs_info *fs_info = root->fs_info;
2376 struct btrfs_root *extent_root = fs_info->extent_root;
2377 int ret;
2378
2379 ret = find_next_chunk(fs_info->chunk_root,
2380 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2381 BUG_ON(ret);
2382
2383 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2384 (fs_info->metadata_alloc_profile &
2385 fs_info->avail_metadata_alloc_bits);
2386 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2387
2388 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2389 &stripe_size, chunk_offset, alloc_profile);
2390 BUG_ON(ret);
2391
2392 sys_chunk_offset = chunk_offset + chunk_size;
2393
2394 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2395 (fs_info->system_alloc_profile &
2396 fs_info->avail_system_alloc_bits);
2397 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2398
2399 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2400 &sys_chunk_size, &sys_stripe_size,
2401 sys_chunk_offset, alloc_profile);
2402 BUG_ON(ret);
2403
2404 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2405 BUG_ON(ret);
2406
2407 /*
2408 * Modifying chunk tree needs allocating new blocks from both
2409 * system block group and metadata block group. So we only can
2410 * do operations require modifying the chunk tree after both
2411 * block groups were created.
2412 */
2413 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2414 chunk_size, stripe_size);
2415 BUG_ON(ret);
2416
2417 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2418 sys_chunk_offset, sys_chunk_size,
2419 sys_stripe_size);
2420 BUG_ON(ret);
2421 return 0;
2422 }
2423
2424 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2425 {
2426 struct extent_map *em;
2427 struct map_lookup *map;
2428 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2429 int readonly = 0;
2430 int i;
2431
2432 spin_lock(&map_tree->map_tree.lock);
2433 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2434 spin_unlock(&map_tree->map_tree.lock);
2435 if (!em)
2436 return 1;
2437
2438 map = (struct map_lookup *)em->bdev;
2439 for (i = 0; i < map->num_stripes; i++) {
2440 if (!map->stripes[i].dev->writeable) {
2441 readonly = 1;
2442 break;
2443 }
2444 }
2445 free_extent_map(em);
2446 return readonly;
2447 }
2448
2449 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2450 {
2451 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2452 }
2453
2454 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2455 {
2456 struct extent_map *em;
2457
2458 while (1) {
2459 spin_lock(&tree->map_tree.lock);
2460 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2461 if (em)
2462 remove_extent_mapping(&tree->map_tree, em);
2463 spin_unlock(&tree->map_tree.lock);
2464 if (!em)
2465 break;
2466 kfree(em->bdev);
2467 /* once for us */
2468 free_extent_map(em);
2469 /* once for the tree */
2470 free_extent_map(em);
2471 }
2472 }
2473
2474 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2475 {
2476 struct extent_map *em;
2477 struct map_lookup *map;
2478 struct extent_map_tree *em_tree = &map_tree->map_tree;
2479 int ret;
2480
2481 spin_lock(&em_tree->lock);
2482 em = lookup_extent_mapping(em_tree, logical, len);
2483 spin_unlock(&em_tree->lock);
2484 BUG_ON(!em);
2485
2486 BUG_ON(em->start > logical || em->start + em->len < logical);
2487 map = (struct map_lookup *)em->bdev;
2488 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2489 ret = map->num_stripes;
2490 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2491 ret = map->sub_stripes;
2492 else
2493 ret = 1;
2494 free_extent_map(em);
2495 return ret;
2496 }
2497
2498 static int find_live_mirror(struct map_lookup *map, int first, int num,
2499 int optimal)
2500 {
2501 int i;
2502 if (map->stripes[optimal].dev->bdev)
2503 return optimal;
2504 for (i = first; i < first + num; i++) {
2505 if (map->stripes[i].dev->bdev)
2506 return i;
2507 }
2508 /* we couldn't find one that doesn't fail. Just return something
2509 * and the io error handling code will clean up eventually
2510 */
2511 return optimal;
2512 }
2513
2514 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2515 u64 logical, u64 *length,
2516 struct btrfs_multi_bio **multi_ret,
2517 int mirror_num, struct page *unplug_page)
2518 {
2519 struct extent_map *em;
2520 struct map_lookup *map;
2521 struct extent_map_tree *em_tree = &map_tree->map_tree;
2522 u64 offset;
2523 u64 stripe_offset;
2524 u64 stripe_nr;
2525 int stripes_allocated = 8;
2526 int stripes_required = 1;
2527 int stripe_index;
2528 int i;
2529 int num_stripes;
2530 int max_errors = 0;
2531 struct btrfs_multi_bio *multi = NULL;
2532
2533 if (multi_ret && !(rw & (1 << BIO_RW)))
2534 stripes_allocated = 1;
2535 again:
2536 if (multi_ret) {
2537 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2538 GFP_NOFS);
2539 if (!multi)
2540 return -ENOMEM;
2541
2542 atomic_set(&multi->error, 0);
2543 }
2544
2545 spin_lock(&em_tree->lock);
2546 em = lookup_extent_mapping(em_tree, logical, *length);
2547 spin_unlock(&em_tree->lock);
2548
2549 if (!em && unplug_page)
2550 return 0;
2551
2552 if (!em) {
2553 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2554 (unsigned long long)logical,
2555 (unsigned long long)*length);
2556 BUG();
2557 }
2558
2559 BUG_ON(em->start > logical || em->start + em->len < logical);
2560 map = (struct map_lookup *)em->bdev;
2561 offset = logical - em->start;
2562
2563 if (mirror_num > map->num_stripes)
2564 mirror_num = 0;
2565
2566 /* if our multi bio struct is too small, back off and try again */
2567 if (rw & (1 << BIO_RW)) {
2568 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2569 BTRFS_BLOCK_GROUP_DUP)) {
2570 stripes_required = map->num_stripes;
2571 max_errors = 1;
2572 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2573 stripes_required = map->sub_stripes;
2574 max_errors = 1;
2575 }
2576 }
2577 if (multi_ret && (rw & (1 << BIO_RW)) &&
2578 stripes_allocated < stripes_required) {
2579 stripes_allocated = map->num_stripes;
2580 free_extent_map(em);
2581 kfree(multi);
2582 goto again;
2583 }
2584 stripe_nr = offset;
2585 /*
2586 * stripe_nr counts the total number of stripes we have to stride
2587 * to get to this block
2588 */
2589 do_div(stripe_nr, map->stripe_len);
2590
2591 stripe_offset = stripe_nr * map->stripe_len;
2592 BUG_ON(offset < stripe_offset);
2593
2594 /* stripe_offset is the offset of this block in its stripe*/
2595 stripe_offset = offset - stripe_offset;
2596
2597 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2598 BTRFS_BLOCK_GROUP_RAID10 |
2599 BTRFS_BLOCK_GROUP_DUP)) {
2600 /* we limit the length of each bio to what fits in a stripe */
2601 *length = min_t(u64, em->len - offset,
2602 map->stripe_len - stripe_offset);
2603 } else {
2604 *length = em->len - offset;
2605 }
2606
2607 if (!multi_ret && !unplug_page)
2608 goto out;
2609
2610 num_stripes = 1;
2611 stripe_index = 0;
2612 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2613 if (unplug_page || (rw & (1 << BIO_RW)))
2614 num_stripes = map->num_stripes;
2615 else if (mirror_num)
2616 stripe_index = mirror_num - 1;
2617 else {
2618 stripe_index = find_live_mirror(map, 0,
2619 map->num_stripes,
2620 current->pid % map->num_stripes);
2621 }
2622
2623 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2624 if (rw & (1 << BIO_RW))
2625 num_stripes = map->num_stripes;
2626 else if (mirror_num)
2627 stripe_index = mirror_num - 1;
2628
2629 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2630 int factor = map->num_stripes / map->sub_stripes;
2631
2632 stripe_index = do_div(stripe_nr, factor);
2633 stripe_index *= map->sub_stripes;
2634
2635 if (unplug_page || (rw & (1 << BIO_RW)))
2636 num_stripes = map->sub_stripes;
2637 else if (mirror_num)
2638 stripe_index += mirror_num - 1;
2639 else {
2640 stripe_index = find_live_mirror(map, stripe_index,
2641 map->sub_stripes, stripe_index +
2642 current->pid % map->sub_stripes);
2643 }
2644 } else {
2645 /*
2646 * after this do_div call, stripe_nr is the number of stripes
2647 * on this device we have to walk to find the data, and
2648 * stripe_index is the number of our device in the stripe array
2649 */
2650 stripe_index = do_div(stripe_nr, map->num_stripes);
2651 }
2652 BUG_ON(stripe_index >= map->num_stripes);
2653
2654 for (i = 0; i < num_stripes; i++) {
2655 if (unplug_page) {
2656 struct btrfs_device *device;
2657 struct backing_dev_info *bdi;
2658
2659 device = map->stripes[stripe_index].dev;
2660 if (device->bdev) {
2661 bdi = blk_get_backing_dev_info(device->bdev);
2662 if (bdi->unplug_io_fn)
2663 bdi->unplug_io_fn(bdi, unplug_page);
2664 }
2665 } else {
2666 multi->stripes[i].physical =
2667 map->stripes[stripe_index].physical +
2668 stripe_offset + stripe_nr * map->stripe_len;
2669 multi->stripes[i].dev = map->stripes[stripe_index].dev;
2670 }
2671 stripe_index++;
2672 }
2673 if (multi_ret) {
2674 *multi_ret = multi;
2675 multi->num_stripes = num_stripes;
2676 multi->max_errors = max_errors;
2677 }
2678 out:
2679 free_extent_map(em);
2680 return 0;
2681 }
2682
2683 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2684 u64 logical, u64 *length,
2685 struct btrfs_multi_bio **multi_ret, int mirror_num)
2686 {
2687 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2688 mirror_num, NULL);
2689 }
2690
2691 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
2692 u64 chunk_start, u64 physical, u64 devid,
2693 u64 **logical, int *naddrs, int *stripe_len)
2694 {
2695 struct extent_map_tree *em_tree = &map_tree->map_tree;
2696 struct extent_map *em;
2697 struct map_lookup *map;
2698 u64 *buf;
2699 u64 bytenr;
2700 u64 length;
2701 u64 stripe_nr;
2702 int i, j, nr = 0;
2703
2704 spin_lock(&em_tree->lock);
2705 em = lookup_extent_mapping(em_tree, chunk_start, 1);
2706 spin_unlock(&em_tree->lock);
2707
2708 BUG_ON(!em || em->start != chunk_start);
2709 map = (struct map_lookup *)em->bdev;
2710
2711 length = em->len;
2712 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2713 do_div(length, map->num_stripes / map->sub_stripes);
2714 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
2715 do_div(length, map->num_stripes);
2716
2717 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
2718 BUG_ON(!buf);
2719
2720 for (i = 0; i < map->num_stripes; i++) {
2721 if (devid && map->stripes[i].dev->devid != devid)
2722 continue;
2723 if (map->stripes[i].physical > physical ||
2724 map->stripes[i].physical + length <= physical)
2725 continue;
2726
2727 stripe_nr = physical - map->stripes[i].physical;
2728 do_div(stripe_nr, map->stripe_len);
2729
2730 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2731 stripe_nr = stripe_nr * map->num_stripes + i;
2732 do_div(stripe_nr, map->sub_stripes);
2733 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2734 stripe_nr = stripe_nr * map->num_stripes + i;
2735 }
2736 bytenr = chunk_start + stripe_nr * map->stripe_len;
2737 WARN_ON(nr >= map->num_stripes);
2738 for (j = 0; j < nr; j++) {
2739 if (buf[j] == bytenr)
2740 break;
2741 }
2742 if (j == nr) {
2743 WARN_ON(nr >= map->num_stripes);
2744 buf[nr++] = bytenr;
2745 }
2746 }
2747
2748 for (i = 0; i > nr; i++) {
2749 struct btrfs_multi_bio *multi;
2750 struct btrfs_bio_stripe *stripe;
2751 int ret;
2752
2753 length = 1;
2754 ret = btrfs_map_block(map_tree, WRITE, buf[i],
2755 &length, &multi, 0);
2756 BUG_ON(ret);
2757
2758 stripe = multi->stripes;
2759 for (j = 0; j < multi->num_stripes; j++) {
2760 if (stripe->physical >= physical &&
2761 physical < stripe->physical + length)
2762 break;
2763 }
2764 BUG_ON(j >= multi->num_stripes);
2765 kfree(multi);
2766 }
2767
2768 *logical = buf;
2769 *naddrs = nr;
2770 *stripe_len = map->stripe_len;
2771
2772 free_extent_map(em);
2773 return 0;
2774 }
2775
2776 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2777 u64 logical, struct page *page)
2778 {
2779 u64 length = PAGE_CACHE_SIZE;
2780 return __btrfs_map_block(map_tree, READ, logical, &length,
2781 NULL, 0, page);
2782 }
2783
2784 static void end_bio_multi_stripe(struct bio *bio, int err)
2785 {
2786 struct btrfs_multi_bio *multi = bio->bi_private;
2787 int is_orig_bio = 0;
2788
2789 if (err)
2790 atomic_inc(&multi->error);
2791
2792 if (bio == multi->orig_bio)
2793 is_orig_bio = 1;
2794
2795 if (atomic_dec_and_test(&multi->stripes_pending)) {
2796 if (!is_orig_bio) {
2797 bio_put(bio);
2798 bio = multi->orig_bio;
2799 }
2800 bio->bi_private = multi->private;
2801 bio->bi_end_io = multi->end_io;
2802 /* only send an error to the higher layers if it is
2803 * beyond the tolerance of the multi-bio
2804 */
2805 if (atomic_read(&multi->error) > multi->max_errors) {
2806 err = -EIO;
2807 } else if (err) {
2808 /*
2809 * this bio is actually up to date, we didn't
2810 * go over the max number of errors
2811 */
2812 set_bit(BIO_UPTODATE, &bio->bi_flags);
2813 err = 0;
2814 }
2815 kfree(multi);
2816
2817 bio_endio(bio, err);
2818 } else if (!is_orig_bio) {
2819 bio_put(bio);
2820 }
2821 }
2822
2823 struct async_sched {
2824 struct bio *bio;
2825 int rw;
2826 struct btrfs_fs_info *info;
2827 struct btrfs_work work;
2828 };
2829
2830 /*
2831 * see run_scheduled_bios for a description of why bios are collected for
2832 * async submit.
2833 *
2834 * This will add one bio to the pending list for a device and make sure
2835 * the work struct is scheduled.
2836 */
2837 static noinline int schedule_bio(struct btrfs_root *root,
2838 struct btrfs_device *device,
2839 int rw, struct bio *bio)
2840 {
2841 int should_queue = 1;
2842 struct btrfs_pending_bios *pending_bios;
2843
2844 /* don't bother with additional async steps for reads, right now */
2845 if (!(rw & (1 << BIO_RW))) {
2846 bio_get(bio);
2847 submit_bio(rw, bio);
2848 bio_put(bio);
2849 return 0;
2850 }
2851
2852 /*
2853 * nr_async_bios allows us to reliably return congestion to the
2854 * higher layers. Otherwise, the async bio makes it appear we have
2855 * made progress against dirty pages when we've really just put it
2856 * on a queue for later
2857 */
2858 atomic_inc(&root->fs_info->nr_async_bios);
2859 WARN_ON(bio->bi_next);
2860 bio->bi_next = NULL;
2861 bio->bi_rw |= rw;
2862
2863 spin_lock(&device->io_lock);
2864 if (bio_sync(bio))
2865 pending_bios = &device->pending_sync_bios;
2866 else
2867 pending_bios = &device->pending_bios;
2868
2869 if (pending_bios->tail)
2870 pending_bios->tail->bi_next = bio;
2871
2872 pending_bios->tail = bio;
2873 if (!pending_bios->head)
2874 pending_bios->head = bio;
2875 if (device->running_pending)
2876 should_queue = 0;
2877
2878 spin_unlock(&device->io_lock);
2879
2880 if (should_queue)
2881 btrfs_queue_worker(&root->fs_info->submit_workers,
2882 &device->work);
2883 return 0;
2884 }
2885
2886 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
2887 int mirror_num, int async_submit)
2888 {
2889 struct btrfs_mapping_tree *map_tree;
2890 struct btrfs_device *dev;
2891 struct bio *first_bio = bio;
2892 u64 logical = (u64)bio->bi_sector << 9;
2893 u64 length = 0;
2894 u64 map_length;
2895 struct btrfs_multi_bio *multi = NULL;
2896 int ret;
2897 int dev_nr = 0;
2898 int total_devs = 1;
2899
2900 length = bio->bi_size;
2901 map_tree = &root->fs_info->mapping_tree;
2902 map_length = length;
2903
2904 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2905 mirror_num);
2906 BUG_ON(ret);
2907
2908 total_devs = multi->num_stripes;
2909 if (map_length < length) {
2910 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
2911 "len %llu\n", (unsigned long long)logical,
2912 (unsigned long long)length,
2913 (unsigned long long)map_length);
2914 BUG();
2915 }
2916 multi->end_io = first_bio->bi_end_io;
2917 multi->private = first_bio->bi_private;
2918 multi->orig_bio = first_bio;
2919 atomic_set(&multi->stripes_pending, multi->num_stripes);
2920
2921 while (dev_nr < total_devs) {
2922 if (total_devs > 1) {
2923 if (dev_nr < total_devs - 1) {
2924 bio = bio_clone(first_bio, GFP_NOFS);
2925 BUG_ON(!bio);
2926 } else {
2927 bio = first_bio;
2928 }
2929 bio->bi_private = multi;
2930 bio->bi_end_io = end_bio_multi_stripe;
2931 }
2932 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
2933 dev = multi->stripes[dev_nr].dev;
2934 BUG_ON(rw == WRITE && !dev->writeable);
2935 if (dev && dev->bdev) {
2936 bio->bi_bdev = dev->bdev;
2937 if (async_submit)
2938 schedule_bio(root, dev, rw, bio);
2939 else
2940 submit_bio(rw, bio);
2941 } else {
2942 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
2943 bio->bi_sector = logical >> 9;
2944 bio_endio(bio, -EIO);
2945 }
2946 dev_nr++;
2947 }
2948 if (total_devs == 1)
2949 kfree(multi);
2950 return 0;
2951 }
2952
2953 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2954 u8 *uuid, u8 *fsid)
2955 {
2956 struct btrfs_device *device;
2957 struct btrfs_fs_devices *cur_devices;
2958
2959 cur_devices = root->fs_info->fs_devices;
2960 while (cur_devices) {
2961 if (!fsid ||
2962 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
2963 device = __find_device(&cur_devices->devices,
2964 devid, uuid);
2965 if (device)
2966 return device;
2967 }
2968 cur_devices = cur_devices->seed;
2969 }
2970 return NULL;
2971 }
2972
2973 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
2974 u64 devid, u8 *dev_uuid)
2975 {
2976 struct btrfs_device *device;
2977 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2978
2979 device = kzalloc(sizeof(*device), GFP_NOFS);
2980 if (!device)
2981 return NULL;
2982 list_add(&device->dev_list,
2983 &fs_devices->devices);
2984 device->barriers = 1;
2985 device->dev_root = root->fs_info->dev_root;
2986 device->devid = devid;
2987 device->work.func = pending_bios_fn;
2988 device->fs_devices = fs_devices;
2989 fs_devices->num_devices++;
2990 spin_lock_init(&device->io_lock);
2991 INIT_LIST_HEAD(&device->dev_alloc_list);
2992 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
2993 return device;
2994 }
2995
2996 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
2997 struct extent_buffer *leaf,
2998 struct btrfs_chunk *chunk)
2999 {
3000 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3001 struct map_lookup *map;
3002 struct extent_map *em;
3003 u64 logical;
3004 u64 length;
3005 u64 devid;
3006 u8 uuid[BTRFS_UUID_SIZE];
3007 int num_stripes;
3008 int ret;
3009 int i;
3010
3011 logical = key->offset;
3012 length = btrfs_chunk_length(leaf, chunk);
3013
3014 spin_lock(&map_tree->map_tree.lock);
3015 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3016 spin_unlock(&map_tree->map_tree.lock);
3017
3018 /* already mapped? */
3019 if (em && em->start <= logical && em->start + em->len > logical) {
3020 free_extent_map(em);
3021 return 0;
3022 } else if (em) {
3023 free_extent_map(em);
3024 }
3025
3026 em = alloc_extent_map(GFP_NOFS);
3027 if (!em)
3028 return -ENOMEM;
3029 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3030 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3031 if (!map) {
3032 free_extent_map(em);
3033 return -ENOMEM;
3034 }
3035
3036 em->bdev = (struct block_device *)map;
3037 em->start = logical;
3038 em->len = length;
3039 em->block_start = 0;
3040 em->block_len = em->len;
3041
3042 map->num_stripes = num_stripes;
3043 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3044 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3045 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3046 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3047 map->type = btrfs_chunk_type(leaf, chunk);
3048 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3049 for (i = 0; i < num_stripes; i++) {
3050 map->stripes[i].physical =
3051 btrfs_stripe_offset_nr(leaf, chunk, i);
3052 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3053 read_extent_buffer(leaf, uuid, (unsigned long)
3054 btrfs_stripe_dev_uuid_nr(chunk, i),
3055 BTRFS_UUID_SIZE);
3056 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3057 NULL);
3058 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3059 kfree(map);
3060 free_extent_map(em);
3061 return -EIO;
3062 }
3063 if (!map->stripes[i].dev) {
3064 map->stripes[i].dev =
3065 add_missing_dev(root, devid, uuid);
3066 if (!map->stripes[i].dev) {
3067 kfree(map);
3068 free_extent_map(em);
3069 return -EIO;
3070 }
3071 }
3072 map->stripes[i].dev->in_fs_metadata = 1;
3073 }
3074
3075 spin_lock(&map_tree->map_tree.lock);
3076 ret = add_extent_mapping(&map_tree->map_tree, em);
3077 spin_unlock(&map_tree->map_tree.lock);
3078 BUG_ON(ret);
3079 free_extent_map(em);
3080
3081 return 0;
3082 }
3083
3084 static int fill_device_from_item(struct extent_buffer *leaf,
3085 struct btrfs_dev_item *dev_item,
3086 struct btrfs_device *device)
3087 {
3088 unsigned long ptr;
3089
3090 device->devid = btrfs_device_id(leaf, dev_item);
3091 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3092 device->total_bytes = device->disk_total_bytes;
3093 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3094 device->type = btrfs_device_type(leaf, dev_item);
3095 device->io_align = btrfs_device_io_align(leaf, dev_item);
3096 device->io_width = btrfs_device_io_width(leaf, dev_item);
3097 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3098
3099 ptr = (unsigned long)btrfs_device_uuid(dev_item);
3100 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3101
3102 return 0;
3103 }
3104
3105 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3106 {
3107 struct btrfs_fs_devices *fs_devices;
3108 int ret;
3109
3110 mutex_lock(&uuid_mutex);
3111
3112 fs_devices = root->fs_info->fs_devices->seed;
3113 while (fs_devices) {
3114 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3115 ret = 0;
3116 goto out;
3117 }
3118 fs_devices = fs_devices->seed;
3119 }
3120
3121 fs_devices = find_fsid(fsid);
3122 if (!fs_devices) {
3123 ret = -ENOENT;
3124 goto out;
3125 }
3126
3127 fs_devices = clone_fs_devices(fs_devices);
3128 if (IS_ERR(fs_devices)) {
3129 ret = PTR_ERR(fs_devices);
3130 goto out;
3131 }
3132
3133 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3134 root->fs_info->bdev_holder);
3135 if (ret)
3136 goto out;
3137
3138 if (!fs_devices->seeding) {
3139 __btrfs_close_devices(fs_devices);
3140 free_fs_devices(fs_devices);
3141 ret = -EINVAL;
3142 goto out;
3143 }
3144
3145 fs_devices->seed = root->fs_info->fs_devices->seed;
3146 root->fs_info->fs_devices->seed = fs_devices;
3147 out:
3148 mutex_unlock(&uuid_mutex);
3149 return ret;
3150 }
3151
3152 static int read_one_dev(struct btrfs_root *root,
3153 struct extent_buffer *leaf,
3154 struct btrfs_dev_item *dev_item)
3155 {
3156 struct btrfs_device *device;
3157 u64 devid;
3158 int ret;
3159 u8 fs_uuid[BTRFS_UUID_SIZE];
3160 u8 dev_uuid[BTRFS_UUID_SIZE];
3161
3162 devid = btrfs_device_id(leaf, dev_item);
3163 read_extent_buffer(leaf, dev_uuid,
3164 (unsigned long)btrfs_device_uuid(dev_item),
3165 BTRFS_UUID_SIZE);
3166 read_extent_buffer(leaf, fs_uuid,
3167 (unsigned long)btrfs_device_fsid(dev_item),
3168 BTRFS_UUID_SIZE);
3169
3170 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3171 ret = open_seed_devices(root, fs_uuid);
3172 if (ret && !btrfs_test_opt(root, DEGRADED))
3173 return ret;
3174 }
3175
3176 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3177 if (!device || !device->bdev) {
3178 if (!btrfs_test_opt(root, DEGRADED))
3179 return -EIO;
3180
3181 if (!device) {
3182 printk(KERN_WARNING "warning devid %llu missing\n",
3183 (unsigned long long)devid);
3184 device = add_missing_dev(root, devid, dev_uuid);
3185 if (!device)
3186 return -ENOMEM;
3187 }
3188 }
3189
3190 if (device->fs_devices != root->fs_info->fs_devices) {
3191 BUG_ON(device->writeable);
3192 if (device->generation !=
3193 btrfs_device_generation(leaf, dev_item))
3194 return -EINVAL;
3195 }
3196
3197 fill_device_from_item(leaf, dev_item, device);
3198 device->dev_root = root->fs_info->dev_root;
3199 device->in_fs_metadata = 1;
3200 if (device->writeable)
3201 device->fs_devices->total_rw_bytes += device->total_bytes;
3202 ret = 0;
3203 return ret;
3204 }
3205
3206 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3207 {
3208 struct btrfs_dev_item *dev_item;
3209
3210 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3211 dev_item);
3212 return read_one_dev(root, buf, dev_item);
3213 }
3214
3215 int btrfs_read_sys_array(struct btrfs_root *root)
3216 {
3217 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3218 struct extent_buffer *sb;
3219 struct btrfs_disk_key *disk_key;
3220 struct btrfs_chunk *chunk;
3221 u8 *ptr;
3222 unsigned long sb_ptr;
3223 int ret = 0;
3224 u32 num_stripes;
3225 u32 array_size;
3226 u32 len = 0;
3227 u32 cur;
3228 struct btrfs_key key;
3229
3230 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3231 BTRFS_SUPER_INFO_SIZE);
3232 if (!sb)
3233 return -ENOMEM;
3234 btrfs_set_buffer_uptodate(sb);
3235 btrfs_set_buffer_lockdep_class(sb, 0);
3236
3237 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3238 array_size = btrfs_super_sys_array_size(super_copy);
3239
3240 ptr = super_copy->sys_chunk_array;
3241 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3242 cur = 0;
3243
3244 while (cur < array_size) {
3245 disk_key = (struct btrfs_disk_key *)ptr;
3246 btrfs_disk_key_to_cpu(&key, disk_key);
3247
3248 len = sizeof(*disk_key); ptr += len;
3249 sb_ptr += len;
3250 cur += len;
3251
3252 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3253 chunk = (struct btrfs_chunk *)sb_ptr;
3254 ret = read_one_chunk(root, &key, sb, chunk);
3255 if (ret)
3256 break;
3257 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3258 len = btrfs_chunk_item_size(num_stripes);
3259 } else {
3260 ret = -EIO;
3261 break;
3262 }
3263 ptr += len;
3264 sb_ptr += len;
3265 cur += len;
3266 }
3267 free_extent_buffer(sb);
3268 return ret;
3269 }
3270
3271 int btrfs_read_chunk_tree(struct btrfs_root *root)
3272 {
3273 struct btrfs_path *path;
3274 struct extent_buffer *leaf;
3275 struct btrfs_key key;
3276 struct btrfs_key found_key;
3277 int ret;
3278 int slot;
3279
3280 root = root->fs_info->chunk_root;
3281
3282 path = btrfs_alloc_path();
3283 if (!path)
3284 return -ENOMEM;
3285
3286 /* first we search for all of the device items, and then we
3287 * read in all of the chunk items. This way we can create chunk
3288 * mappings that reference all of the devices that are afound
3289 */
3290 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3291 key.offset = 0;
3292 key.type = 0;
3293 again:
3294 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3295 while (1) {
3296 leaf = path->nodes[0];
3297 slot = path->slots[0];
3298 if (slot >= btrfs_header_nritems(leaf)) {
3299 ret = btrfs_next_leaf(root, path);
3300 if (ret == 0)
3301 continue;
3302 if (ret < 0)
3303 goto error;
3304 break;
3305 }
3306 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3307 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3308 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3309 break;
3310 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3311 struct btrfs_dev_item *dev_item;
3312 dev_item = btrfs_item_ptr(leaf, slot,
3313 struct btrfs_dev_item);
3314 ret = read_one_dev(root, leaf, dev_item);
3315 if (ret)
3316 goto error;
3317 }
3318 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3319 struct btrfs_chunk *chunk;
3320 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3321 ret = read_one_chunk(root, &found_key, leaf, chunk);
3322 if (ret)
3323 goto error;
3324 }
3325 path->slots[0]++;
3326 }
3327 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3328 key.objectid = 0;
3329 btrfs_release_path(root, path);
3330 goto again;
3331 }
3332 ret = 0;
3333 error:
3334 btrfs_free_path(path);
3335 return ret;
3336 }
This page took 0.110924 seconds and 5 git commands to generate.