7d725a9ce6708d91b9c155157f915ea8737a3073
[deliverable/linux.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43
44 static int init_first_rw_device(struct btrfs_trans_handle *trans,
45 struct btrfs_root *root,
46 struct btrfs_device *device);
47 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
48 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
49 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
51
52 static DEFINE_MUTEX(uuid_mutex);
53 static LIST_HEAD(fs_uuids);
54
55 static void lock_chunks(struct btrfs_root *root)
56 {
57 mutex_lock(&root->fs_info->chunk_mutex);
58 }
59
60 static void unlock_chunks(struct btrfs_root *root)
61 {
62 mutex_unlock(&root->fs_info->chunk_mutex);
63 }
64
65 static struct btrfs_fs_devices *__alloc_fs_devices(void)
66 {
67 struct btrfs_fs_devices *fs_devs;
68
69 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
70 if (!fs_devs)
71 return ERR_PTR(-ENOMEM);
72
73 mutex_init(&fs_devs->device_list_mutex);
74
75 INIT_LIST_HEAD(&fs_devs->devices);
76 INIT_LIST_HEAD(&fs_devs->alloc_list);
77 INIT_LIST_HEAD(&fs_devs->list);
78
79 return fs_devs;
80 }
81
82 /**
83 * alloc_fs_devices - allocate struct btrfs_fs_devices
84 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
85 * generated.
86 *
87 * Return: a pointer to a new &struct btrfs_fs_devices on success;
88 * ERR_PTR() on error. Returned struct is not linked onto any lists and
89 * can be destroyed with kfree() right away.
90 */
91 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
92 {
93 struct btrfs_fs_devices *fs_devs;
94
95 fs_devs = __alloc_fs_devices();
96 if (IS_ERR(fs_devs))
97 return fs_devs;
98
99 if (fsid)
100 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
101 else
102 generate_random_uuid(fs_devs->fsid);
103
104 return fs_devs;
105 }
106
107 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
108 {
109 struct btrfs_device *device;
110 WARN_ON(fs_devices->opened);
111 while (!list_empty(&fs_devices->devices)) {
112 device = list_entry(fs_devices->devices.next,
113 struct btrfs_device, dev_list);
114 list_del(&device->dev_list);
115 rcu_string_free(device->name);
116 kfree(device);
117 }
118 kfree(fs_devices);
119 }
120
121 static void btrfs_kobject_uevent(struct block_device *bdev,
122 enum kobject_action action)
123 {
124 int ret;
125
126 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
127 if (ret)
128 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
129 action,
130 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
131 &disk_to_dev(bdev->bd_disk)->kobj);
132 }
133
134 void btrfs_cleanup_fs_uuids(void)
135 {
136 struct btrfs_fs_devices *fs_devices;
137
138 while (!list_empty(&fs_uuids)) {
139 fs_devices = list_entry(fs_uuids.next,
140 struct btrfs_fs_devices, list);
141 list_del(&fs_devices->list);
142 free_fs_devices(fs_devices);
143 }
144 }
145
146 static struct btrfs_device *__alloc_device(void)
147 {
148 struct btrfs_device *dev;
149
150 dev = kzalloc(sizeof(*dev), GFP_NOFS);
151 if (!dev)
152 return ERR_PTR(-ENOMEM);
153
154 INIT_LIST_HEAD(&dev->dev_list);
155 INIT_LIST_HEAD(&dev->dev_alloc_list);
156
157 spin_lock_init(&dev->io_lock);
158
159 spin_lock_init(&dev->reada_lock);
160 atomic_set(&dev->reada_in_flight, 0);
161 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
162 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
163
164 return dev;
165 }
166
167 static noinline struct btrfs_device *__find_device(struct list_head *head,
168 u64 devid, u8 *uuid)
169 {
170 struct btrfs_device *dev;
171
172 list_for_each_entry(dev, head, dev_list) {
173 if (dev->devid == devid &&
174 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
175 return dev;
176 }
177 }
178 return NULL;
179 }
180
181 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
182 {
183 struct btrfs_fs_devices *fs_devices;
184
185 list_for_each_entry(fs_devices, &fs_uuids, list) {
186 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
187 return fs_devices;
188 }
189 return NULL;
190 }
191
192 static int
193 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
194 int flush, struct block_device **bdev,
195 struct buffer_head **bh)
196 {
197 int ret;
198
199 *bdev = blkdev_get_by_path(device_path, flags, holder);
200
201 if (IS_ERR(*bdev)) {
202 ret = PTR_ERR(*bdev);
203 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
204 goto error;
205 }
206
207 if (flush)
208 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
209 ret = set_blocksize(*bdev, 4096);
210 if (ret) {
211 blkdev_put(*bdev, flags);
212 goto error;
213 }
214 invalidate_bdev(*bdev);
215 *bh = btrfs_read_dev_super(*bdev);
216 if (!*bh) {
217 ret = -EINVAL;
218 blkdev_put(*bdev, flags);
219 goto error;
220 }
221
222 return 0;
223
224 error:
225 *bdev = NULL;
226 *bh = NULL;
227 return ret;
228 }
229
230 static void requeue_list(struct btrfs_pending_bios *pending_bios,
231 struct bio *head, struct bio *tail)
232 {
233
234 struct bio *old_head;
235
236 old_head = pending_bios->head;
237 pending_bios->head = head;
238 if (pending_bios->tail)
239 tail->bi_next = old_head;
240 else
241 pending_bios->tail = tail;
242 }
243
244 /*
245 * we try to collect pending bios for a device so we don't get a large
246 * number of procs sending bios down to the same device. This greatly
247 * improves the schedulers ability to collect and merge the bios.
248 *
249 * But, it also turns into a long list of bios to process and that is sure
250 * to eventually make the worker thread block. The solution here is to
251 * make some progress and then put this work struct back at the end of
252 * the list if the block device is congested. This way, multiple devices
253 * can make progress from a single worker thread.
254 */
255 static noinline void run_scheduled_bios(struct btrfs_device *device)
256 {
257 struct bio *pending;
258 struct backing_dev_info *bdi;
259 struct btrfs_fs_info *fs_info;
260 struct btrfs_pending_bios *pending_bios;
261 struct bio *tail;
262 struct bio *cur;
263 int again = 0;
264 unsigned long num_run;
265 unsigned long batch_run = 0;
266 unsigned long limit;
267 unsigned long last_waited = 0;
268 int force_reg = 0;
269 int sync_pending = 0;
270 struct blk_plug plug;
271
272 /*
273 * this function runs all the bios we've collected for
274 * a particular device. We don't want to wander off to
275 * another device without first sending all of these down.
276 * So, setup a plug here and finish it off before we return
277 */
278 blk_start_plug(&plug);
279
280 bdi = blk_get_backing_dev_info(device->bdev);
281 fs_info = device->dev_root->fs_info;
282 limit = btrfs_async_submit_limit(fs_info);
283 limit = limit * 2 / 3;
284
285 loop:
286 spin_lock(&device->io_lock);
287
288 loop_lock:
289 num_run = 0;
290
291 /* take all the bios off the list at once and process them
292 * later on (without the lock held). But, remember the
293 * tail and other pointers so the bios can be properly reinserted
294 * into the list if we hit congestion
295 */
296 if (!force_reg && device->pending_sync_bios.head) {
297 pending_bios = &device->pending_sync_bios;
298 force_reg = 1;
299 } else {
300 pending_bios = &device->pending_bios;
301 force_reg = 0;
302 }
303
304 pending = pending_bios->head;
305 tail = pending_bios->tail;
306 WARN_ON(pending && !tail);
307
308 /*
309 * if pending was null this time around, no bios need processing
310 * at all and we can stop. Otherwise it'll loop back up again
311 * and do an additional check so no bios are missed.
312 *
313 * device->running_pending is used to synchronize with the
314 * schedule_bio code.
315 */
316 if (device->pending_sync_bios.head == NULL &&
317 device->pending_bios.head == NULL) {
318 again = 0;
319 device->running_pending = 0;
320 } else {
321 again = 1;
322 device->running_pending = 1;
323 }
324
325 pending_bios->head = NULL;
326 pending_bios->tail = NULL;
327
328 spin_unlock(&device->io_lock);
329
330 while (pending) {
331
332 rmb();
333 /* we want to work on both lists, but do more bios on the
334 * sync list than the regular list
335 */
336 if ((num_run > 32 &&
337 pending_bios != &device->pending_sync_bios &&
338 device->pending_sync_bios.head) ||
339 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
340 device->pending_bios.head)) {
341 spin_lock(&device->io_lock);
342 requeue_list(pending_bios, pending, tail);
343 goto loop_lock;
344 }
345
346 cur = pending;
347 pending = pending->bi_next;
348 cur->bi_next = NULL;
349
350 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
351 waitqueue_active(&fs_info->async_submit_wait))
352 wake_up(&fs_info->async_submit_wait);
353
354 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
355
356 /*
357 * if we're doing the sync list, record that our
358 * plug has some sync requests on it
359 *
360 * If we're doing the regular list and there are
361 * sync requests sitting around, unplug before
362 * we add more
363 */
364 if (pending_bios == &device->pending_sync_bios) {
365 sync_pending = 1;
366 } else if (sync_pending) {
367 blk_finish_plug(&plug);
368 blk_start_plug(&plug);
369 sync_pending = 0;
370 }
371
372 btrfsic_submit_bio(cur->bi_rw, cur);
373 num_run++;
374 batch_run++;
375 if (need_resched())
376 cond_resched();
377
378 /*
379 * we made progress, there is more work to do and the bdi
380 * is now congested. Back off and let other work structs
381 * run instead
382 */
383 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
384 fs_info->fs_devices->open_devices > 1) {
385 struct io_context *ioc;
386
387 ioc = current->io_context;
388
389 /*
390 * the main goal here is that we don't want to
391 * block if we're going to be able to submit
392 * more requests without blocking.
393 *
394 * This code does two great things, it pokes into
395 * the elevator code from a filesystem _and_
396 * it makes assumptions about how batching works.
397 */
398 if (ioc && ioc->nr_batch_requests > 0 &&
399 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
400 (last_waited == 0 ||
401 ioc->last_waited == last_waited)) {
402 /*
403 * we want to go through our batch of
404 * requests and stop. So, we copy out
405 * the ioc->last_waited time and test
406 * against it before looping
407 */
408 last_waited = ioc->last_waited;
409 if (need_resched())
410 cond_resched();
411 continue;
412 }
413 spin_lock(&device->io_lock);
414 requeue_list(pending_bios, pending, tail);
415 device->running_pending = 1;
416
417 spin_unlock(&device->io_lock);
418 btrfs_queue_work(fs_info->submit_workers,
419 &device->work);
420 goto done;
421 }
422 /* unplug every 64 requests just for good measure */
423 if (batch_run % 64 == 0) {
424 blk_finish_plug(&plug);
425 blk_start_plug(&plug);
426 sync_pending = 0;
427 }
428 }
429
430 cond_resched();
431 if (again)
432 goto loop;
433
434 spin_lock(&device->io_lock);
435 if (device->pending_bios.head || device->pending_sync_bios.head)
436 goto loop_lock;
437 spin_unlock(&device->io_lock);
438
439 done:
440 blk_finish_plug(&plug);
441 }
442
443 static void pending_bios_fn(struct btrfs_work *work)
444 {
445 struct btrfs_device *device;
446
447 device = container_of(work, struct btrfs_device, work);
448 run_scheduled_bios(device);
449 }
450
451 /*
452 * Add new device to list of registered devices
453 *
454 * Returns:
455 * 1 - first time device is seen
456 * 0 - device already known
457 * < 0 - error
458 */
459 static noinline int device_list_add(const char *path,
460 struct btrfs_super_block *disk_super,
461 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
462 {
463 struct btrfs_device *device;
464 struct btrfs_fs_devices *fs_devices;
465 struct rcu_string *name;
466 int ret = 0;
467 u64 found_transid = btrfs_super_generation(disk_super);
468
469 fs_devices = find_fsid(disk_super->fsid);
470 if (!fs_devices) {
471 fs_devices = alloc_fs_devices(disk_super->fsid);
472 if (IS_ERR(fs_devices))
473 return PTR_ERR(fs_devices);
474
475 list_add(&fs_devices->list, &fs_uuids);
476 fs_devices->latest_devid = devid;
477 fs_devices->latest_trans = found_transid;
478
479 device = NULL;
480 } else {
481 device = __find_device(&fs_devices->devices, devid,
482 disk_super->dev_item.uuid);
483 }
484 if (!device) {
485 if (fs_devices->opened)
486 return -EBUSY;
487
488 device = btrfs_alloc_device(NULL, &devid,
489 disk_super->dev_item.uuid);
490 if (IS_ERR(device)) {
491 /* we can safely leave the fs_devices entry around */
492 return PTR_ERR(device);
493 }
494
495 name = rcu_string_strdup(path, GFP_NOFS);
496 if (!name) {
497 kfree(device);
498 return -ENOMEM;
499 }
500 rcu_assign_pointer(device->name, name);
501
502 mutex_lock(&fs_devices->device_list_mutex);
503 list_add_rcu(&device->dev_list, &fs_devices->devices);
504 fs_devices->num_devices++;
505 mutex_unlock(&fs_devices->device_list_mutex);
506
507 ret = 1;
508 device->fs_devices = fs_devices;
509 } else if (!device->name || strcmp(device->name->str, path)) {
510 name = rcu_string_strdup(path, GFP_NOFS);
511 if (!name)
512 return -ENOMEM;
513 rcu_string_free(device->name);
514 rcu_assign_pointer(device->name, name);
515 if (device->missing) {
516 fs_devices->missing_devices--;
517 device->missing = 0;
518 }
519 }
520
521 if (found_transid > fs_devices->latest_trans) {
522 fs_devices->latest_devid = devid;
523 fs_devices->latest_trans = found_transid;
524 }
525 *fs_devices_ret = fs_devices;
526
527 return ret;
528 }
529
530 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
531 {
532 struct btrfs_fs_devices *fs_devices;
533 struct btrfs_device *device;
534 struct btrfs_device *orig_dev;
535
536 fs_devices = alloc_fs_devices(orig->fsid);
537 if (IS_ERR(fs_devices))
538 return fs_devices;
539
540 fs_devices->latest_devid = orig->latest_devid;
541 fs_devices->latest_trans = orig->latest_trans;
542 fs_devices->total_devices = orig->total_devices;
543
544 /* We have held the volume lock, it is safe to get the devices. */
545 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
546 struct rcu_string *name;
547
548 device = btrfs_alloc_device(NULL, &orig_dev->devid,
549 orig_dev->uuid);
550 if (IS_ERR(device))
551 goto error;
552
553 /*
554 * This is ok to do without rcu read locked because we hold the
555 * uuid mutex so nothing we touch in here is going to disappear.
556 */
557 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
558 if (!name) {
559 kfree(device);
560 goto error;
561 }
562 rcu_assign_pointer(device->name, name);
563
564 list_add(&device->dev_list, &fs_devices->devices);
565 device->fs_devices = fs_devices;
566 fs_devices->num_devices++;
567 }
568 return fs_devices;
569 error:
570 free_fs_devices(fs_devices);
571 return ERR_PTR(-ENOMEM);
572 }
573
574 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
575 struct btrfs_fs_devices *fs_devices, int step)
576 {
577 struct btrfs_device *device, *next;
578
579 struct block_device *latest_bdev = NULL;
580 u64 latest_devid = 0;
581 u64 latest_transid = 0;
582
583 mutex_lock(&uuid_mutex);
584 again:
585 /* This is the initialized path, it is safe to release the devices. */
586 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
587 if (device->in_fs_metadata) {
588 if (!device->is_tgtdev_for_dev_replace &&
589 (!latest_transid ||
590 device->generation > latest_transid)) {
591 latest_devid = device->devid;
592 latest_transid = device->generation;
593 latest_bdev = device->bdev;
594 }
595 continue;
596 }
597
598 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
599 /*
600 * In the first step, keep the device which has
601 * the correct fsid and the devid that is used
602 * for the dev_replace procedure.
603 * In the second step, the dev_replace state is
604 * read from the device tree and it is known
605 * whether the procedure is really active or
606 * not, which means whether this device is
607 * used or whether it should be removed.
608 */
609 if (step == 0 || device->is_tgtdev_for_dev_replace) {
610 continue;
611 }
612 }
613 if (device->bdev) {
614 blkdev_put(device->bdev, device->mode);
615 device->bdev = NULL;
616 fs_devices->open_devices--;
617 }
618 if (device->writeable) {
619 list_del_init(&device->dev_alloc_list);
620 device->writeable = 0;
621 if (!device->is_tgtdev_for_dev_replace)
622 fs_devices->rw_devices--;
623 }
624 list_del_init(&device->dev_list);
625 fs_devices->num_devices--;
626 rcu_string_free(device->name);
627 kfree(device);
628 }
629
630 if (fs_devices->seed) {
631 fs_devices = fs_devices->seed;
632 goto again;
633 }
634
635 fs_devices->latest_bdev = latest_bdev;
636 fs_devices->latest_devid = latest_devid;
637 fs_devices->latest_trans = latest_transid;
638
639 mutex_unlock(&uuid_mutex);
640 }
641
642 static void __free_device(struct work_struct *work)
643 {
644 struct btrfs_device *device;
645
646 device = container_of(work, struct btrfs_device, rcu_work);
647
648 if (device->bdev)
649 blkdev_put(device->bdev, device->mode);
650
651 rcu_string_free(device->name);
652 kfree(device);
653 }
654
655 static void free_device(struct rcu_head *head)
656 {
657 struct btrfs_device *device;
658
659 device = container_of(head, struct btrfs_device, rcu);
660
661 INIT_WORK(&device->rcu_work, __free_device);
662 schedule_work(&device->rcu_work);
663 }
664
665 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
666 {
667 struct btrfs_device *device;
668
669 if (--fs_devices->opened > 0)
670 return 0;
671
672 mutex_lock(&fs_devices->device_list_mutex);
673 list_for_each_entry(device, &fs_devices->devices, dev_list) {
674 struct btrfs_device *new_device;
675 struct rcu_string *name;
676
677 if (device->bdev)
678 fs_devices->open_devices--;
679
680 if (device->writeable &&
681 device->devid != BTRFS_DEV_REPLACE_DEVID) {
682 list_del_init(&device->dev_alloc_list);
683 fs_devices->rw_devices--;
684 }
685
686 if (device->can_discard)
687 fs_devices->num_can_discard--;
688 if (device->missing)
689 fs_devices->missing_devices--;
690
691 new_device = btrfs_alloc_device(NULL, &device->devid,
692 device->uuid);
693 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
694
695 /* Safe because we are under uuid_mutex */
696 if (device->name) {
697 name = rcu_string_strdup(device->name->str, GFP_NOFS);
698 BUG_ON(!name); /* -ENOMEM */
699 rcu_assign_pointer(new_device->name, name);
700 }
701
702 list_replace_rcu(&device->dev_list, &new_device->dev_list);
703 new_device->fs_devices = device->fs_devices;
704
705 call_rcu(&device->rcu, free_device);
706 }
707 mutex_unlock(&fs_devices->device_list_mutex);
708
709 WARN_ON(fs_devices->open_devices);
710 WARN_ON(fs_devices->rw_devices);
711 fs_devices->opened = 0;
712 fs_devices->seeding = 0;
713
714 return 0;
715 }
716
717 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
718 {
719 struct btrfs_fs_devices *seed_devices = NULL;
720 int ret;
721
722 mutex_lock(&uuid_mutex);
723 ret = __btrfs_close_devices(fs_devices);
724 if (!fs_devices->opened) {
725 seed_devices = fs_devices->seed;
726 fs_devices->seed = NULL;
727 }
728 mutex_unlock(&uuid_mutex);
729
730 while (seed_devices) {
731 fs_devices = seed_devices;
732 seed_devices = fs_devices->seed;
733 __btrfs_close_devices(fs_devices);
734 free_fs_devices(fs_devices);
735 }
736 /*
737 * Wait for rcu kworkers under __btrfs_close_devices
738 * to finish all blkdev_puts so device is really
739 * free when umount is done.
740 */
741 rcu_barrier();
742 return ret;
743 }
744
745 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
746 fmode_t flags, void *holder)
747 {
748 struct request_queue *q;
749 struct block_device *bdev;
750 struct list_head *head = &fs_devices->devices;
751 struct btrfs_device *device;
752 struct block_device *latest_bdev = NULL;
753 struct buffer_head *bh;
754 struct btrfs_super_block *disk_super;
755 u64 latest_devid = 0;
756 u64 latest_transid = 0;
757 u64 devid;
758 int seeding = 1;
759 int ret = 0;
760
761 flags |= FMODE_EXCL;
762
763 list_for_each_entry(device, head, dev_list) {
764 if (device->bdev)
765 continue;
766 if (!device->name)
767 continue;
768
769 /* Just open everything we can; ignore failures here */
770 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
771 &bdev, &bh))
772 continue;
773
774 disk_super = (struct btrfs_super_block *)bh->b_data;
775 devid = btrfs_stack_device_id(&disk_super->dev_item);
776 if (devid != device->devid)
777 goto error_brelse;
778
779 if (memcmp(device->uuid, disk_super->dev_item.uuid,
780 BTRFS_UUID_SIZE))
781 goto error_brelse;
782
783 device->generation = btrfs_super_generation(disk_super);
784 if (!latest_transid || device->generation > latest_transid) {
785 latest_devid = devid;
786 latest_transid = device->generation;
787 latest_bdev = bdev;
788 }
789
790 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
791 device->writeable = 0;
792 } else {
793 device->writeable = !bdev_read_only(bdev);
794 seeding = 0;
795 }
796
797 q = bdev_get_queue(bdev);
798 if (blk_queue_discard(q)) {
799 device->can_discard = 1;
800 fs_devices->num_can_discard++;
801 }
802
803 device->bdev = bdev;
804 device->in_fs_metadata = 0;
805 device->mode = flags;
806
807 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
808 fs_devices->rotating = 1;
809
810 fs_devices->open_devices++;
811 if (device->writeable &&
812 device->devid != BTRFS_DEV_REPLACE_DEVID) {
813 fs_devices->rw_devices++;
814 list_add(&device->dev_alloc_list,
815 &fs_devices->alloc_list);
816 }
817 brelse(bh);
818 continue;
819
820 error_brelse:
821 brelse(bh);
822 blkdev_put(bdev, flags);
823 continue;
824 }
825 if (fs_devices->open_devices == 0) {
826 ret = -EINVAL;
827 goto out;
828 }
829 fs_devices->seeding = seeding;
830 fs_devices->opened = 1;
831 fs_devices->latest_bdev = latest_bdev;
832 fs_devices->latest_devid = latest_devid;
833 fs_devices->latest_trans = latest_transid;
834 fs_devices->total_rw_bytes = 0;
835 out:
836 return ret;
837 }
838
839 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
840 fmode_t flags, void *holder)
841 {
842 int ret;
843
844 mutex_lock(&uuid_mutex);
845 if (fs_devices->opened) {
846 fs_devices->opened++;
847 ret = 0;
848 } else {
849 ret = __btrfs_open_devices(fs_devices, flags, holder);
850 }
851 mutex_unlock(&uuid_mutex);
852 return ret;
853 }
854
855 /*
856 * Look for a btrfs signature on a device. This may be called out of the mount path
857 * and we are not allowed to call set_blocksize during the scan. The superblock
858 * is read via pagecache
859 */
860 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
861 struct btrfs_fs_devices **fs_devices_ret)
862 {
863 struct btrfs_super_block *disk_super;
864 struct block_device *bdev;
865 struct page *page;
866 void *p;
867 int ret = -EINVAL;
868 u64 devid;
869 u64 transid;
870 u64 total_devices;
871 u64 bytenr;
872 pgoff_t index;
873
874 /*
875 * we would like to check all the supers, but that would make
876 * a btrfs mount succeed after a mkfs from a different FS.
877 * So, we need to add a special mount option to scan for
878 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
879 */
880 bytenr = btrfs_sb_offset(0);
881 flags |= FMODE_EXCL;
882 mutex_lock(&uuid_mutex);
883
884 bdev = blkdev_get_by_path(path, flags, holder);
885
886 if (IS_ERR(bdev)) {
887 ret = PTR_ERR(bdev);
888 goto error;
889 }
890
891 /* make sure our super fits in the device */
892 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
893 goto error_bdev_put;
894
895 /* make sure our super fits in the page */
896 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
897 goto error_bdev_put;
898
899 /* make sure our super doesn't straddle pages on disk */
900 index = bytenr >> PAGE_CACHE_SHIFT;
901 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
902 goto error_bdev_put;
903
904 /* pull in the page with our super */
905 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
906 index, GFP_NOFS);
907
908 if (IS_ERR_OR_NULL(page))
909 goto error_bdev_put;
910
911 p = kmap(page);
912
913 /* align our pointer to the offset of the super block */
914 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
915
916 if (btrfs_super_bytenr(disk_super) != bytenr ||
917 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
918 goto error_unmap;
919
920 devid = btrfs_stack_device_id(&disk_super->dev_item);
921 transid = btrfs_super_generation(disk_super);
922 total_devices = btrfs_super_num_devices(disk_super);
923
924 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
925 if (ret > 0) {
926 if (disk_super->label[0]) {
927 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
928 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
929 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
930 } else {
931 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
932 }
933
934 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
935 ret = 0;
936 }
937 if (!ret && fs_devices_ret)
938 (*fs_devices_ret)->total_devices = total_devices;
939
940 error_unmap:
941 kunmap(page);
942 page_cache_release(page);
943
944 error_bdev_put:
945 blkdev_put(bdev, flags);
946 error:
947 mutex_unlock(&uuid_mutex);
948 return ret;
949 }
950
951 /* helper to account the used device space in the range */
952 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
953 u64 end, u64 *length)
954 {
955 struct btrfs_key key;
956 struct btrfs_root *root = device->dev_root;
957 struct btrfs_dev_extent *dev_extent;
958 struct btrfs_path *path;
959 u64 extent_end;
960 int ret;
961 int slot;
962 struct extent_buffer *l;
963
964 *length = 0;
965
966 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
967 return 0;
968
969 path = btrfs_alloc_path();
970 if (!path)
971 return -ENOMEM;
972 path->reada = 2;
973
974 key.objectid = device->devid;
975 key.offset = start;
976 key.type = BTRFS_DEV_EXTENT_KEY;
977
978 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
979 if (ret < 0)
980 goto out;
981 if (ret > 0) {
982 ret = btrfs_previous_item(root, path, key.objectid, key.type);
983 if (ret < 0)
984 goto out;
985 }
986
987 while (1) {
988 l = path->nodes[0];
989 slot = path->slots[0];
990 if (slot >= btrfs_header_nritems(l)) {
991 ret = btrfs_next_leaf(root, path);
992 if (ret == 0)
993 continue;
994 if (ret < 0)
995 goto out;
996
997 break;
998 }
999 btrfs_item_key_to_cpu(l, &key, slot);
1000
1001 if (key.objectid < device->devid)
1002 goto next;
1003
1004 if (key.objectid > device->devid)
1005 break;
1006
1007 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1008 goto next;
1009
1010 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1011 extent_end = key.offset + btrfs_dev_extent_length(l,
1012 dev_extent);
1013 if (key.offset <= start && extent_end > end) {
1014 *length = end - start + 1;
1015 break;
1016 } else if (key.offset <= start && extent_end > start)
1017 *length += extent_end - start;
1018 else if (key.offset > start && extent_end <= end)
1019 *length += extent_end - key.offset;
1020 else if (key.offset > start && key.offset <= end) {
1021 *length += end - key.offset + 1;
1022 break;
1023 } else if (key.offset > end)
1024 break;
1025
1026 next:
1027 path->slots[0]++;
1028 }
1029 ret = 0;
1030 out:
1031 btrfs_free_path(path);
1032 return ret;
1033 }
1034
1035 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1036 struct btrfs_device *device,
1037 u64 *start, u64 len)
1038 {
1039 struct extent_map *em;
1040 int ret = 0;
1041
1042 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1043 struct map_lookup *map;
1044 int i;
1045
1046 map = (struct map_lookup *)em->bdev;
1047 for (i = 0; i < map->num_stripes; i++) {
1048 if (map->stripes[i].dev != device)
1049 continue;
1050 if (map->stripes[i].physical >= *start + len ||
1051 map->stripes[i].physical + em->orig_block_len <=
1052 *start)
1053 continue;
1054 *start = map->stripes[i].physical +
1055 em->orig_block_len;
1056 ret = 1;
1057 }
1058 }
1059
1060 return ret;
1061 }
1062
1063
1064 /*
1065 * find_free_dev_extent - find free space in the specified device
1066 * @device: the device which we search the free space in
1067 * @num_bytes: the size of the free space that we need
1068 * @start: store the start of the free space.
1069 * @len: the size of the free space. that we find, or the size of the max
1070 * free space if we don't find suitable free space
1071 *
1072 * this uses a pretty simple search, the expectation is that it is
1073 * called very infrequently and that a given device has a small number
1074 * of extents
1075 *
1076 * @start is used to store the start of the free space if we find. But if we
1077 * don't find suitable free space, it will be used to store the start position
1078 * of the max free space.
1079 *
1080 * @len is used to store the size of the free space that we find.
1081 * But if we don't find suitable free space, it is used to store the size of
1082 * the max free space.
1083 */
1084 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1085 struct btrfs_device *device, u64 num_bytes,
1086 u64 *start, u64 *len)
1087 {
1088 struct btrfs_key key;
1089 struct btrfs_root *root = device->dev_root;
1090 struct btrfs_dev_extent *dev_extent;
1091 struct btrfs_path *path;
1092 u64 hole_size;
1093 u64 max_hole_start;
1094 u64 max_hole_size;
1095 u64 extent_end;
1096 u64 search_start;
1097 u64 search_end = device->total_bytes;
1098 int ret;
1099 int slot;
1100 struct extent_buffer *l;
1101
1102 /* FIXME use last free of some kind */
1103
1104 /* we don't want to overwrite the superblock on the drive,
1105 * so we make sure to start at an offset of at least 1MB
1106 */
1107 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1108
1109 path = btrfs_alloc_path();
1110 if (!path)
1111 return -ENOMEM;
1112 again:
1113 max_hole_start = search_start;
1114 max_hole_size = 0;
1115 hole_size = 0;
1116
1117 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1118 ret = -ENOSPC;
1119 goto out;
1120 }
1121
1122 path->reada = 2;
1123 path->search_commit_root = 1;
1124 path->skip_locking = 1;
1125
1126 key.objectid = device->devid;
1127 key.offset = search_start;
1128 key.type = BTRFS_DEV_EXTENT_KEY;
1129
1130 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1131 if (ret < 0)
1132 goto out;
1133 if (ret > 0) {
1134 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1135 if (ret < 0)
1136 goto out;
1137 }
1138
1139 while (1) {
1140 l = path->nodes[0];
1141 slot = path->slots[0];
1142 if (slot >= btrfs_header_nritems(l)) {
1143 ret = btrfs_next_leaf(root, path);
1144 if (ret == 0)
1145 continue;
1146 if (ret < 0)
1147 goto out;
1148
1149 break;
1150 }
1151 btrfs_item_key_to_cpu(l, &key, slot);
1152
1153 if (key.objectid < device->devid)
1154 goto next;
1155
1156 if (key.objectid > device->devid)
1157 break;
1158
1159 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1160 goto next;
1161
1162 if (key.offset > search_start) {
1163 hole_size = key.offset - search_start;
1164
1165 /*
1166 * Have to check before we set max_hole_start, otherwise
1167 * we could end up sending back this offset anyway.
1168 */
1169 if (contains_pending_extent(trans, device,
1170 &search_start,
1171 hole_size))
1172 hole_size = 0;
1173
1174 if (hole_size > max_hole_size) {
1175 max_hole_start = search_start;
1176 max_hole_size = hole_size;
1177 }
1178
1179 /*
1180 * If this free space is greater than which we need,
1181 * it must be the max free space that we have found
1182 * until now, so max_hole_start must point to the start
1183 * of this free space and the length of this free space
1184 * is stored in max_hole_size. Thus, we return
1185 * max_hole_start and max_hole_size and go back to the
1186 * caller.
1187 */
1188 if (hole_size >= num_bytes) {
1189 ret = 0;
1190 goto out;
1191 }
1192 }
1193
1194 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1195 extent_end = key.offset + btrfs_dev_extent_length(l,
1196 dev_extent);
1197 if (extent_end > search_start)
1198 search_start = extent_end;
1199 next:
1200 path->slots[0]++;
1201 cond_resched();
1202 }
1203
1204 /*
1205 * At this point, search_start should be the end of
1206 * allocated dev extents, and when shrinking the device,
1207 * search_end may be smaller than search_start.
1208 */
1209 if (search_end > search_start)
1210 hole_size = search_end - search_start;
1211
1212 if (hole_size > max_hole_size) {
1213 max_hole_start = search_start;
1214 max_hole_size = hole_size;
1215 }
1216
1217 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1218 btrfs_release_path(path);
1219 goto again;
1220 }
1221
1222 /* See above. */
1223 if (hole_size < num_bytes)
1224 ret = -ENOSPC;
1225 else
1226 ret = 0;
1227
1228 out:
1229 btrfs_free_path(path);
1230 *start = max_hole_start;
1231 if (len)
1232 *len = max_hole_size;
1233 return ret;
1234 }
1235
1236 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1237 struct btrfs_device *device,
1238 u64 start)
1239 {
1240 int ret;
1241 struct btrfs_path *path;
1242 struct btrfs_root *root = device->dev_root;
1243 struct btrfs_key key;
1244 struct btrfs_key found_key;
1245 struct extent_buffer *leaf = NULL;
1246 struct btrfs_dev_extent *extent = NULL;
1247
1248 path = btrfs_alloc_path();
1249 if (!path)
1250 return -ENOMEM;
1251
1252 key.objectid = device->devid;
1253 key.offset = start;
1254 key.type = BTRFS_DEV_EXTENT_KEY;
1255 again:
1256 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1257 if (ret > 0) {
1258 ret = btrfs_previous_item(root, path, key.objectid,
1259 BTRFS_DEV_EXTENT_KEY);
1260 if (ret)
1261 goto out;
1262 leaf = path->nodes[0];
1263 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1264 extent = btrfs_item_ptr(leaf, path->slots[0],
1265 struct btrfs_dev_extent);
1266 BUG_ON(found_key.offset > start || found_key.offset +
1267 btrfs_dev_extent_length(leaf, extent) < start);
1268 key = found_key;
1269 btrfs_release_path(path);
1270 goto again;
1271 } else if (ret == 0) {
1272 leaf = path->nodes[0];
1273 extent = btrfs_item_ptr(leaf, path->slots[0],
1274 struct btrfs_dev_extent);
1275 } else {
1276 btrfs_error(root->fs_info, ret, "Slot search failed");
1277 goto out;
1278 }
1279
1280 if (device->bytes_used > 0) {
1281 u64 len = btrfs_dev_extent_length(leaf, extent);
1282 device->bytes_used -= len;
1283 spin_lock(&root->fs_info->free_chunk_lock);
1284 root->fs_info->free_chunk_space += len;
1285 spin_unlock(&root->fs_info->free_chunk_lock);
1286 }
1287 ret = btrfs_del_item(trans, root, path);
1288 if (ret) {
1289 btrfs_error(root->fs_info, ret,
1290 "Failed to remove dev extent item");
1291 }
1292 out:
1293 btrfs_free_path(path);
1294 return ret;
1295 }
1296
1297 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1298 struct btrfs_device *device,
1299 u64 chunk_tree, u64 chunk_objectid,
1300 u64 chunk_offset, u64 start, u64 num_bytes)
1301 {
1302 int ret;
1303 struct btrfs_path *path;
1304 struct btrfs_root *root = device->dev_root;
1305 struct btrfs_dev_extent *extent;
1306 struct extent_buffer *leaf;
1307 struct btrfs_key key;
1308
1309 WARN_ON(!device->in_fs_metadata);
1310 WARN_ON(device->is_tgtdev_for_dev_replace);
1311 path = btrfs_alloc_path();
1312 if (!path)
1313 return -ENOMEM;
1314
1315 key.objectid = device->devid;
1316 key.offset = start;
1317 key.type = BTRFS_DEV_EXTENT_KEY;
1318 ret = btrfs_insert_empty_item(trans, root, path, &key,
1319 sizeof(*extent));
1320 if (ret)
1321 goto out;
1322
1323 leaf = path->nodes[0];
1324 extent = btrfs_item_ptr(leaf, path->slots[0],
1325 struct btrfs_dev_extent);
1326 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1327 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1328 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1329
1330 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1331 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1332
1333 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1334 btrfs_mark_buffer_dirty(leaf);
1335 out:
1336 btrfs_free_path(path);
1337 return ret;
1338 }
1339
1340 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1341 {
1342 struct extent_map_tree *em_tree;
1343 struct extent_map *em;
1344 struct rb_node *n;
1345 u64 ret = 0;
1346
1347 em_tree = &fs_info->mapping_tree.map_tree;
1348 read_lock(&em_tree->lock);
1349 n = rb_last(&em_tree->map);
1350 if (n) {
1351 em = rb_entry(n, struct extent_map, rb_node);
1352 ret = em->start + em->len;
1353 }
1354 read_unlock(&em_tree->lock);
1355
1356 return ret;
1357 }
1358
1359 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1360 u64 *devid_ret)
1361 {
1362 int ret;
1363 struct btrfs_key key;
1364 struct btrfs_key found_key;
1365 struct btrfs_path *path;
1366
1367 path = btrfs_alloc_path();
1368 if (!path)
1369 return -ENOMEM;
1370
1371 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1372 key.type = BTRFS_DEV_ITEM_KEY;
1373 key.offset = (u64)-1;
1374
1375 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1376 if (ret < 0)
1377 goto error;
1378
1379 BUG_ON(ret == 0); /* Corruption */
1380
1381 ret = btrfs_previous_item(fs_info->chunk_root, path,
1382 BTRFS_DEV_ITEMS_OBJECTID,
1383 BTRFS_DEV_ITEM_KEY);
1384 if (ret) {
1385 *devid_ret = 1;
1386 } else {
1387 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1388 path->slots[0]);
1389 *devid_ret = found_key.offset + 1;
1390 }
1391 ret = 0;
1392 error:
1393 btrfs_free_path(path);
1394 return ret;
1395 }
1396
1397 /*
1398 * the device information is stored in the chunk root
1399 * the btrfs_device struct should be fully filled in
1400 */
1401 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct btrfs_device *device)
1404 {
1405 int ret;
1406 struct btrfs_path *path;
1407 struct btrfs_dev_item *dev_item;
1408 struct extent_buffer *leaf;
1409 struct btrfs_key key;
1410 unsigned long ptr;
1411
1412 root = root->fs_info->chunk_root;
1413
1414 path = btrfs_alloc_path();
1415 if (!path)
1416 return -ENOMEM;
1417
1418 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1419 key.type = BTRFS_DEV_ITEM_KEY;
1420 key.offset = device->devid;
1421
1422 ret = btrfs_insert_empty_item(trans, root, path, &key,
1423 sizeof(*dev_item));
1424 if (ret)
1425 goto out;
1426
1427 leaf = path->nodes[0];
1428 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1429
1430 btrfs_set_device_id(leaf, dev_item, device->devid);
1431 btrfs_set_device_generation(leaf, dev_item, 0);
1432 btrfs_set_device_type(leaf, dev_item, device->type);
1433 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1434 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1435 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1436 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1437 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1438 btrfs_set_device_group(leaf, dev_item, 0);
1439 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1440 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1441 btrfs_set_device_start_offset(leaf, dev_item, 0);
1442
1443 ptr = btrfs_device_uuid(dev_item);
1444 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1445 ptr = btrfs_device_fsid(dev_item);
1446 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1447 btrfs_mark_buffer_dirty(leaf);
1448
1449 ret = 0;
1450 out:
1451 btrfs_free_path(path);
1452 return ret;
1453 }
1454
1455 /*
1456 * Function to update ctime/mtime for a given device path.
1457 * Mainly used for ctime/mtime based probe like libblkid.
1458 */
1459 static void update_dev_time(char *path_name)
1460 {
1461 struct file *filp;
1462
1463 filp = filp_open(path_name, O_RDWR, 0);
1464 if (!filp)
1465 return;
1466 file_update_time(filp);
1467 filp_close(filp, NULL);
1468 return;
1469 }
1470
1471 static int btrfs_rm_dev_item(struct btrfs_root *root,
1472 struct btrfs_device *device)
1473 {
1474 int ret;
1475 struct btrfs_path *path;
1476 struct btrfs_key key;
1477 struct btrfs_trans_handle *trans;
1478
1479 root = root->fs_info->chunk_root;
1480
1481 path = btrfs_alloc_path();
1482 if (!path)
1483 return -ENOMEM;
1484
1485 trans = btrfs_start_transaction(root, 0);
1486 if (IS_ERR(trans)) {
1487 btrfs_free_path(path);
1488 return PTR_ERR(trans);
1489 }
1490 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1491 key.type = BTRFS_DEV_ITEM_KEY;
1492 key.offset = device->devid;
1493 lock_chunks(root);
1494
1495 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1496 if (ret < 0)
1497 goto out;
1498
1499 if (ret > 0) {
1500 ret = -ENOENT;
1501 goto out;
1502 }
1503
1504 ret = btrfs_del_item(trans, root, path);
1505 if (ret)
1506 goto out;
1507 out:
1508 btrfs_free_path(path);
1509 unlock_chunks(root);
1510 btrfs_commit_transaction(trans, root);
1511 return ret;
1512 }
1513
1514 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1515 {
1516 struct btrfs_device *device;
1517 struct btrfs_device *next_device;
1518 struct block_device *bdev;
1519 struct buffer_head *bh = NULL;
1520 struct btrfs_super_block *disk_super;
1521 struct btrfs_fs_devices *cur_devices;
1522 u64 all_avail;
1523 u64 devid;
1524 u64 num_devices;
1525 u8 *dev_uuid;
1526 unsigned seq;
1527 int ret = 0;
1528 bool clear_super = false;
1529
1530 mutex_lock(&uuid_mutex);
1531
1532 do {
1533 seq = read_seqbegin(&root->fs_info->profiles_lock);
1534
1535 all_avail = root->fs_info->avail_data_alloc_bits |
1536 root->fs_info->avail_system_alloc_bits |
1537 root->fs_info->avail_metadata_alloc_bits;
1538 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1539
1540 num_devices = root->fs_info->fs_devices->num_devices;
1541 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1542 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1543 WARN_ON(num_devices < 1);
1544 num_devices--;
1545 }
1546 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1547
1548 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1549 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1550 goto out;
1551 }
1552
1553 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1554 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1555 goto out;
1556 }
1557
1558 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1559 root->fs_info->fs_devices->rw_devices <= 2) {
1560 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1561 goto out;
1562 }
1563 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1564 root->fs_info->fs_devices->rw_devices <= 3) {
1565 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1566 goto out;
1567 }
1568
1569 if (strcmp(device_path, "missing") == 0) {
1570 struct list_head *devices;
1571 struct btrfs_device *tmp;
1572
1573 device = NULL;
1574 devices = &root->fs_info->fs_devices->devices;
1575 /*
1576 * It is safe to read the devices since the volume_mutex
1577 * is held.
1578 */
1579 list_for_each_entry(tmp, devices, dev_list) {
1580 if (tmp->in_fs_metadata &&
1581 !tmp->is_tgtdev_for_dev_replace &&
1582 !tmp->bdev) {
1583 device = tmp;
1584 break;
1585 }
1586 }
1587 bdev = NULL;
1588 bh = NULL;
1589 disk_super = NULL;
1590 if (!device) {
1591 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1592 goto out;
1593 }
1594 } else {
1595 ret = btrfs_get_bdev_and_sb(device_path,
1596 FMODE_WRITE | FMODE_EXCL,
1597 root->fs_info->bdev_holder, 0,
1598 &bdev, &bh);
1599 if (ret)
1600 goto out;
1601 disk_super = (struct btrfs_super_block *)bh->b_data;
1602 devid = btrfs_stack_device_id(&disk_super->dev_item);
1603 dev_uuid = disk_super->dev_item.uuid;
1604 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1605 disk_super->fsid);
1606 if (!device) {
1607 ret = -ENOENT;
1608 goto error_brelse;
1609 }
1610 }
1611
1612 if (device->is_tgtdev_for_dev_replace) {
1613 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1614 goto error_brelse;
1615 }
1616
1617 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1618 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1619 goto error_brelse;
1620 }
1621
1622 if (device->writeable) {
1623 lock_chunks(root);
1624 list_del_init(&device->dev_alloc_list);
1625 unlock_chunks(root);
1626 root->fs_info->fs_devices->rw_devices--;
1627 clear_super = true;
1628 }
1629
1630 mutex_unlock(&uuid_mutex);
1631 ret = btrfs_shrink_device(device, 0);
1632 mutex_lock(&uuid_mutex);
1633 if (ret)
1634 goto error_undo;
1635
1636 /*
1637 * TODO: the superblock still includes this device in its num_devices
1638 * counter although write_all_supers() is not locked out. This
1639 * could give a filesystem state which requires a degraded mount.
1640 */
1641 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1642 if (ret)
1643 goto error_undo;
1644
1645 spin_lock(&root->fs_info->free_chunk_lock);
1646 root->fs_info->free_chunk_space = device->total_bytes -
1647 device->bytes_used;
1648 spin_unlock(&root->fs_info->free_chunk_lock);
1649
1650 device->in_fs_metadata = 0;
1651 btrfs_scrub_cancel_dev(root->fs_info, device);
1652
1653 /*
1654 * the device list mutex makes sure that we don't change
1655 * the device list while someone else is writing out all
1656 * the device supers. Whoever is writing all supers, should
1657 * lock the device list mutex before getting the number of
1658 * devices in the super block (super_copy). Conversely,
1659 * whoever updates the number of devices in the super block
1660 * (super_copy) should hold the device list mutex.
1661 */
1662
1663 cur_devices = device->fs_devices;
1664 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1665 list_del_rcu(&device->dev_list);
1666
1667 device->fs_devices->num_devices--;
1668 device->fs_devices->total_devices--;
1669
1670 if (device->missing)
1671 root->fs_info->fs_devices->missing_devices--;
1672
1673 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1674 struct btrfs_device, dev_list);
1675 if (device->bdev == root->fs_info->sb->s_bdev)
1676 root->fs_info->sb->s_bdev = next_device->bdev;
1677 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1678 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1679
1680 if (device->bdev)
1681 device->fs_devices->open_devices--;
1682
1683 call_rcu(&device->rcu, free_device);
1684
1685 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1686 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1687 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1688
1689 if (cur_devices->open_devices == 0) {
1690 struct btrfs_fs_devices *fs_devices;
1691 fs_devices = root->fs_info->fs_devices;
1692 while (fs_devices) {
1693 if (fs_devices->seed == cur_devices)
1694 break;
1695 fs_devices = fs_devices->seed;
1696 }
1697 fs_devices->seed = cur_devices->seed;
1698 cur_devices->seed = NULL;
1699 lock_chunks(root);
1700 __btrfs_close_devices(cur_devices);
1701 unlock_chunks(root);
1702 free_fs_devices(cur_devices);
1703 }
1704
1705 root->fs_info->num_tolerated_disk_barrier_failures =
1706 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1707
1708 /*
1709 * at this point, the device is zero sized. We want to
1710 * remove it from the devices list and zero out the old super
1711 */
1712 if (clear_super && disk_super) {
1713 u64 bytenr;
1714 int i;
1715
1716 /* make sure this device isn't detected as part of
1717 * the FS anymore
1718 */
1719 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1720 set_buffer_dirty(bh);
1721 sync_dirty_buffer(bh);
1722
1723 /* clear the mirror copies of super block on the disk
1724 * being removed, 0th copy is been taken care above and
1725 * the below would take of the rest
1726 */
1727 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1728 bytenr = btrfs_sb_offset(i);
1729 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1730 i_size_read(bdev->bd_inode))
1731 break;
1732
1733 brelse(bh);
1734 bh = __bread(bdev, bytenr / 4096,
1735 BTRFS_SUPER_INFO_SIZE);
1736 if (!bh)
1737 continue;
1738
1739 disk_super = (struct btrfs_super_block *)bh->b_data;
1740
1741 if (btrfs_super_bytenr(disk_super) != bytenr ||
1742 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1743 continue;
1744 }
1745 memset(&disk_super->magic, 0,
1746 sizeof(disk_super->magic));
1747 set_buffer_dirty(bh);
1748 sync_dirty_buffer(bh);
1749 }
1750 }
1751
1752 ret = 0;
1753
1754 if (bdev) {
1755 /* Notify udev that device has changed */
1756 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1757
1758 /* Update ctime/mtime for device path for libblkid */
1759 update_dev_time(device_path);
1760 }
1761
1762 error_brelse:
1763 brelse(bh);
1764 if (bdev)
1765 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1766 out:
1767 mutex_unlock(&uuid_mutex);
1768 return ret;
1769 error_undo:
1770 if (device->writeable) {
1771 lock_chunks(root);
1772 list_add(&device->dev_alloc_list,
1773 &root->fs_info->fs_devices->alloc_list);
1774 unlock_chunks(root);
1775 root->fs_info->fs_devices->rw_devices++;
1776 }
1777 goto error_brelse;
1778 }
1779
1780 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1781 struct btrfs_device *srcdev)
1782 {
1783 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1784
1785 list_del_rcu(&srcdev->dev_list);
1786 list_del_rcu(&srcdev->dev_alloc_list);
1787 fs_info->fs_devices->num_devices--;
1788 if (srcdev->missing) {
1789 fs_info->fs_devices->missing_devices--;
1790 fs_info->fs_devices->rw_devices++;
1791 }
1792 if (srcdev->can_discard)
1793 fs_info->fs_devices->num_can_discard--;
1794 if (srcdev->bdev) {
1795 fs_info->fs_devices->open_devices--;
1796
1797 /* zero out the old super */
1798 btrfs_scratch_superblock(srcdev);
1799 }
1800
1801 call_rcu(&srcdev->rcu, free_device);
1802 }
1803
1804 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1805 struct btrfs_device *tgtdev)
1806 {
1807 struct btrfs_device *next_device;
1808
1809 WARN_ON(!tgtdev);
1810 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1811 if (tgtdev->bdev) {
1812 btrfs_scratch_superblock(tgtdev);
1813 fs_info->fs_devices->open_devices--;
1814 }
1815 fs_info->fs_devices->num_devices--;
1816 if (tgtdev->can_discard)
1817 fs_info->fs_devices->num_can_discard++;
1818
1819 next_device = list_entry(fs_info->fs_devices->devices.next,
1820 struct btrfs_device, dev_list);
1821 if (tgtdev->bdev == fs_info->sb->s_bdev)
1822 fs_info->sb->s_bdev = next_device->bdev;
1823 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1824 fs_info->fs_devices->latest_bdev = next_device->bdev;
1825 list_del_rcu(&tgtdev->dev_list);
1826
1827 call_rcu(&tgtdev->rcu, free_device);
1828
1829 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1830 }
1831
1832 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1833 struct btrfs_device **device)
1834 {
1835 int ret = 0;
1836 struct btrfs_super_block *disk_super;
1837 u64 devid;
1838 u8 *dev_uuid;
1839 struct block_device *bdev;
1840 struct buffer_head *bh;
1841
1842 *device = NULL;
1843 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1844 root->fs_info->bdev_holder, 0, &bdev, &bh);
1845 if (ret)
1846 return ret;
1847 disk_super = (struct btrfs_super_block *)bh->b_data;
1848 devid = btrfs_stack_device_id(&disk_super->dev_item);
1849 dev_uuid = disk_super->dev_item.uuid;
1850 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1851 disk_super->fsid);
1852 brelse(bh);
1853 if (!*device)
1854 ret = -ENOENT;
1855 blkdev_put(bdev, FMODE_READ);
1856 return ret;
1857 }
1858
1859 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1860 char *device_path,
1861 struct btrfs_device **device)
1862 {
1863 *device = NULL;
1864 if (strcmp(device_path, "missing") == 0) {
1865 struct list_head *devices;
1866 struct btrfs_device *tmp;
1867
1868 devices = &root->fs_info->fs_devices->devices;
1869 /*
1870 * It is safe to read the devices since the volume_mutex
1871 * is held by the caller.
1872 */
1873 list_for_each_entry(tmp, devices, dev_list) {
1874 if (tmp->in_fs_metadata && !tmp->bdev) {
1875 *device = tmp;
1876 break;
1877 }
1878 }
1879
1880 if (!*device) {
1881 btrfs_err(root->fs_info, "no missing device found");
1882 return -ENOENT;
1883 }
1884
1885 return 0;
1886 } else {
1887 return btrfs_find_device_by_path(root, device_path, device);
1888 }
1889 }
1890
1891 /*
1892 * does all the dirty work required for changing file system's UUID.
1893 */
1894 static int btrfs_prepare_sprout(struct btrfs_root *root)
1895 {
1896 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1897 struct btrfs_fs_devices *old_devices;
1898 struct btrfs_fs_devices *seed_devices;
1899 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1900 struct btrfs_device *device;
1901 u64 super_flags;
1902
1903 BUG_ON(!mutex_is_locked(&uuid_mutex));
1904 if (!fs_devices->seeding)
1905 return -EINVAL;
1906
1907 seed_devices = __alloc_fs_devices();
1908 if (IS_ERR(seed_devices))
1909 return PTR_ERR(seed_devices);
1910
1911 old_devices = clone_fs_devices(fs_devices);
1912 if (IS_ERR(old_devices)) {
1913 kfree(seed_devices);
1914 return PTR_ERR(old_devices);
1915 }
1916
1917 list_add(&old_devices->list, &fs_uuids);
1918
1919 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1920 seed_devices->opened = 1;
1921 INIT_LIST_HEAD(&seed_devices->devices);
1922 INIT_LIST_HEAD(&seed_devices->alloc_list);
1923 mutex_init(&seed_devices->device_list_mutex);
1924
1925 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1926 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1927 synchronize_rcu);
1928
1929 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1930 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1931 device->fs_devices = seed_devices;
1932 }
1933
1934 fs_devices->seeding = 0;
1935 fs_devices->num_devices = 0;
1936 fs_devices->open_devices = 0;
1937 fs_devices->seed = seed_devices;
1938
1939 generate_random_uuid(fs_devices->fsid);
1940 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1941 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1942 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1943
1944 super_flags = btrfs_super_flags(disk_super) &
1945 ~BTRFS_SUPER_FLAG_SEEDING;
1946 btrfs_set_super_flags(disk_super, super_flags);
1947
1948 return 0;
1949 }
1950
1951 /*
1952 * strore the expected generation for seed devices in device items.
1953 */
1954 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1955 struct btrfs_root *root)
1956 {
1957 struct btrfs_path *path;
1958 struct extent_buffer *leaf;
1959 struct btrfs_dev_item *dev_item;
1960 struct btrfs_device *device;
1961 struct btrfs_key key;
1962 u8 fs_uuid[BTRFS_UUID_SIZE];
1963 u8 dev_uuid[BTRFS_UUID_SIZE];
1964 u64 devid;
1965 int ret;
1966
1967 path = btrfs_alloc_path();
1968 if (!path)
1969 return -ENOMEM;
1970
1971 root = root->fs_info->chunk_root;
1972 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1973 key.offset = 0;
1974 key.type = BTRFS_DEV_ITEM_KEY;
1975
1976 while (1) {
1977 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1978 if (ret < 0)
1979 goto error;
1980
1981 leaf = path->nodes[0];
1982 next_slot:
1983 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1984 ret = btrfs_next_leaf(root, path);
1985 if (ret > 0)
1986 break;
1987 if (ret < 0)
1988 goto error;
1989 leaf = path->nodes[0];
1990 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1991 btrfs_release_path(path);
1992 continue;
1993 }
1994
1995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1996 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1997 key.type != BTRFS_DEV_ITEM_KEY)
1998 break;
1999
2000 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2001 struct btrfs_dev_item);
2002 devid = btrfs_device_id(leaf, dev_item);
2003 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2004 BTRFS_UUID_SIZE);
2005 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2006 BTRFS_UUID_SIZE);
2007 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2008 fs_uuid);
2009 BUG_ON(!device); /* Logic error */
2010
2011 if (device->fs_devices->seeding) {
2012 btrfs_set_device_generation(leaf, dev_item,
2013 device->generation);
2014 btrfs_mark_buffer_dirty(leaf);
2015 }
2016
2017 path->slots[0]++;
2018 goto next_slot;
2019 }
2020 ret = 0;
2021 error:
2022 btrfs_free_path(path);
2023 return ret;
2024 }
2025
2026 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2027 {
2028 struct request_queue *q;
2029 struct btrfs_trans_handle *trans;
2030 struct btrfs_device *device;
2031 struct block_device *bdev;
2032 struct list_head *devices;
2033 struct super_block *sb = root->fs_info->sb;
2034 struct rcu_string *name;
2035 u64 total_bytes;
2036 int seeding_dev = 0;
2037 int ret = 0;
2038
2039 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2040 return -EROFS;
2041
2042 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2043 root->fs_info->bdev_holder);
2044 if (IS_ERR(bdev))
2045 return PTR_ERR(bdev);
2046
2047 if (root->fs_info->fs_devices->seeding) {
2048 seeding_dev = 1;
2049 down_write(&sb->s_umount);
2050 mutex_lock(&uuid_mutex);
2051 }
2052
2053 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2054
2055 devices = &root->fs_info->fs_devices->devices;
2056
2057 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2058 list_for_each_entry(device, devices, dev_list) {
2059 if (device->bdev == bdev) {
2060 ret = -EEXIST;
2061 mutex_unlock(
2062 &root->fs_info->fs_devices->device_list_mutex);
2063 goto error;
2064 }
2065 }
2066 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2067
2068 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2069 if (IS_ERR(device)) {
2070 /* we can safely leave the fs_devices entry around */
2071 ret = PTR_ERR(device);
2072 goto error;
2073 }
2074
2075 name = rcu_string_strdup(device_path, GFP_NOFS);
2076 if (!name) {
2077 kfree(device);
2078 ret = -ENOMEM;
2079 goto error;
2080 }
2081 rcu_assign_pointer(device->name, name);
2082
2083 trans = btrfs_start_transaction(root, 0);
2084 if (IS_ERR(trans)) {
2085 rcu_string_free(device->name);
2086 kfree(device);
2087 ret = PTR_ERR(trans);
2088 goto error;
2089 }
2090
2091 lock_chunks(root);
2092
2093 q = bdev_get_queue(bdev);
2094 if (blk_queue_discard(q))
2095 device->can_discard = 1;
2096 device->writeable = 1;
2097 device->generation = trans->transid;
2098 device->io_width = root->sectorsize;
2099 device->io_align = root->sectorsize;
2100 device->sector_size = root->sectorsize;
2101 device->total_bytes = i_size_read(bdev->bd_inode);
2102 device->disk_total_bytes = device->total_bytes;
2103 device->dev_root = root->fs_info->dev_root;
2104 device->bdev = bdev;
2105 device->in_fs_metadata = 1;
2106 device->is_tgtdev_for_dev_replace = 0;
2107 device->mode = FMODE_EXCL;
2108 device->dev_stats_valid = 1;
2109 set_blocksize(device->bdev, 4096);
2110
2111 if (seeding_dev) {
2112 sb->s_flags &= ~MS_RDONLY;
2113 ret = btrfs_prepare_sprout(root);
2114 BUG_ON(ret); /* -ENOMEM */
2115 }
2116
2117 device->fs_devices = root->fs_info->fs_devices;
2118
2119 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2120 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2121 list_add(&device->dev_alloc_list,
2122 &root->fs_info->fs_devices->alloc_list);
2123 root->fs_info->fs_devices->num_devices++;
2124 root->fs_info->fs_devices->open_devices++;
2125 root->fs_info->fs_devices->rw_devices++;
2126 root->fs_info->fs_devices->total_devices++;
2127 if (device->can_discard)
2128 root->fs_info->fs_devices->num_can_discard++;
2129 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2130
2131 spin_lock(&root->fs_info->free_chunk_lock);
2132 root->fs_info->free_chunk_space += device->total_bytes;
2133 spin_unlock(&root->fs_info->free_chunk_lock);
2134
2135 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2136 root->fs_info->fs_devices->rotating = 1;
2137
2138 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2139 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2140 total_bytes + device->total_bytes);
2141
2142 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2143 btrfs_set_super_num_devices(root->fs_info->super_copy,
2144 total_bytes + 1);
2145 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2146
2147 if (seeding_dev) {
2148 ret = init_first_rw_device(trans, root, device);
2149 if (ret) {
2150 btrfs_abort_transaction(trans, root, ret);
2151 goto error_trans;
2152 }
2153 ret = btrfs_finish_sprout(trans, root);
2154 if (ret) {
2155 btrfs_abort_transaction(trans, root, ret);
2156 goto error_trans;
2157 }
2158 } else {
2159 ret = btrfs_add_device(trans, root, device);
2160 if (ret) {
2161 btrfs_abort_transaction(trans, root, ret);
2162 goto error_trans;
2163 }
2164 }
2165
2166 /*
2167 * we've got more storage, clear any full flags on the space
2168 * infos
2169 */
2170 btrfs_clear_space_info_full(root->fs_info);
2171
2172 unlock_chunks(root);
2173 root->fs_info->num_tolerated_disk_barrier_failures =
2174 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2175 ret = btrfs_commit_transaction(trans, root);
2176
2177 if (seeding_dev) {
2178 mutex_unlock(&uuid_mutex);
2179 up_write(&sb->s_umount);
2180
2181 if (ret) /* transaction commit */
2182 return ret;
2183
2184 ret = btrfs_relocate_sys_chunks(root);
2185 if (ret < 0)
2186 btrfs_error(root->fs_info, ret,
2187 "Failed to relocate sys chunks after "
2188 "device initialization. This can be fixed "
2189 "using the \"btrfs balance\" command.");
2190 trans = btrfs_attach_transaction(root);
2191 if (IS_ERR(trans)) {
2192 if (PTR_ERR(trans) == -ENOENT)
2193 return 0;
2194 return PTR_ERR(trans);
2195 }
2196 ret = btrfs_commit_transaction(trans, root);
2197 }
2198
2199 /* Update ctime/mtime for libblkid */
2200 update_dev_time(device_path);
2201 return ret;
2202
2203 error_trans:
2204 unlock_chunks(root);
2205 btrfs_end_transaction(trans, root);
2206 rcu_string_free(device->name);
2207 kfree(device);
2208 error:
2209 blkdev_put(bdev, FMODE_EXCL);
2210 if (seeding_dev) {
2211 mutex_unlock(&uuid_mutex);
2212 up_write(&sb->s_umount);
2213 }
2214 return ret;
2215 }
2216
2217 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2218 struct btrfs_device **device_out)
2219 {
2220 struct request_queue *q;
2221 struct btrfs_device *device;
2222 struct block_device *bdev;
2223 struct btrfs_fs_info *fs_info = root->fs_info;
2224 struct list_head *devices;
2225 struct rcu_string *name;
2226 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2227 int ret = 0;
2228
2229 *device_out = NULL;
2230 if (fs_info->fs_devices->seeding)
2231 return -EINVAL;
2232
2233 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2234 fs_info->bdev_holder);
2235 if (IS_ERR(bdev))
2236 return PTR_ERR(bdev);
2237
2238 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2239
2240 devices = &fs_info->fs_devices->devices;
2241 list_for_each_entry(device, devices, dev_list) {
2242 if (device->bdev == bdev) {
2243 ret = -EEXIST;
2244 goto error;
2245 }
2246 }
2247
2248 device = btrfs_alloc_device(NULL, &devid, NULL);
2249 if (IS_ERR(device)) {
2250 ret = PTR_ERR(device);
2251 goto error;
2252 }
2253
2254 name = rcu_string_strdup(device_path, GFP_NOFS);
2255 if (!name) {
2256 kfree(device);
2257 ret = -ENOMEM;
2258 goto error;
2259 }
2260 rcu_assign_pointer(device->name, name);
2261
2262 q = bdev_get_queue(bdev);
2263 if (blk_queue_discard(q))
2264 device->can_discard = 1;
2265 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2266 device->writeable = 1;
2267 device->generation = 0;
2268 device->io_width = root->sectorsize;
2269 device->io_align = root->sectorsize;
2270 device->sector_size = root->sectorsize;
2271 device->total_bytes = i_size_read(bdev->bd_inode);
2272 device->disk_total_bytes = device->total_bytes;
2273 device->dev_root = fs_info->dev_root;
2274 device->bdev = bdev;
2275 device->in_fs_metadata = 1;
2276 device->is_tgtdev_for_dev_replace = 1;
2277 device->mode = FMODE_EXCL;
2278 device->dev_stats_valid = 1;
2279 set_blocksize(device->bdev, 4096);
2280 device->fs_devices = fs_info->fs_devices;
2281 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2282 fs_info->fs_devices->num_devices++;
2283 fs_info->fs_devices->open_devices++;
2284 if (device->can_discard)
2285 fs_info->fs_devices->num_can_discard++;
2286 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2287
2288 *device_out = device;
2289 return ret;
2290
2291 error:
2292 blkdev_put(bdev, FMODE_EXCL);
2293 return ret;
2294 }
2295
2296 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2297 struct btrfs_device *tgtdev)
2298 {
2299 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2300 tgtdev->io_width = fs_info->dev_root->sectorsize;
2301 tgtdev->io_align = fs_info->dev_root->sectorsize;
2302 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2303 tgtdev->dev_root = fs_info->dev_root;
2304 tgtdev->in_fs_metadata = 1;
2305 }
2306
2307 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2308 struct btrfs_device *device)
2309 {
2310 int ret;
2311 struct btrfs_path *path;
2312 struct btrfs_root *root;
2313 struct btrfs_dev_item *dev_item;
2314 struct extent_buffer *leaf;
2315 struct btrfs_key key;
2316
2317 root = device->dev_root->fs_info->chunk_root;
2318
2319 path = btrfs_alloc_path();
2320 if (!path)
2321 return -ENOMEM;
2322
2323 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2324 key.type = BTRFS_DEV_ITEM_KEY;
2325 key.offset = device->devid;
2326
2327 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2328 if (ret < 0)
2329 goto out;
2330
2331 if (ret > 0) {
2332 ret = -ENOENT;
2333 goto out;
2334 }
2335
2336 leaf = path->nodes[0];
2337 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2338
2339 btrfs_set_device_id(leaf, dev_item, device->devid);
2340 btrfs_set_device_type(leaf, dev_item, device->type);
2341 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2342 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2343 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2344 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
2345 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2346 btrfs_mark_buffer_dirty(leaf);
2347
2348 out:
2349 btrfs_free_path(path);
2350 return ret;
2351 }
2352
2353 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
2354 struct btrfs_device *device, u64 new_size)
2355 {
2356 struct btrfs_super_block *super_copy =
2357 device->dev_root->fs_info->super_copy;
2358 u64 old_total = btrfs_super_total_bytes(super_copy);
2359 u64 diff = new_size - device->total_bytes;
2360
2361 if (!device->writeable)
2362 return -EACCES;
2363 if (new_size <= device->total_bytes ||
2364 device->is_tgtdev_for_dev_replace)
2365 return -EINVAL;
2366
2367 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2368 device->fs_devices->total_rw_bytes += diff;
2369
2370 device->total_bytes = new_size;
2371 device->disk_total_bytes = new_size;
2372 btrfs_clear_space_info_full(device->dev_root->fs_info);
2373
2374 return btrfs_update_device(trans, device);
2375 }
2376
2377 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2378 struct btrfs_device *device, u64 new_size)
2379 {
2380 int ret;
2381 lock_chunks(device->dev_root);
2382 ret = __btrfs_grow_device(trans, device, new_size);
2383 unlock_chunks(device->dev_root);
2384 return ret;
2385 }
2386
2387 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2388 struct btrfs_root *root,
2389 u64 chunk_tree, u64 chunk_objectid,
2390 u64 chunk_offset)
2391 {
2392 int ret;
2393 struct btrfs_path *path;
2394 struct btrfs_key key;
2395
2396 root = root->fs_info->chunk_root;
2397 path = btrfs_alloc_path();
2398 if (!path)
2399 return -ENOMEM;
2400
2401 key.objectid = chunk_objectid;
2402 key.offset = chunk_offset;
2403 key.type = BTRFS_CHUNK_ITEM_KEY;
2404
2405 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2406 if (ret < 0)
2407 goto out;
2408 else if (ret > 0) { /* Logic error or corruption */
2409 btrfs_error(root->fs_info, -ENOENT,
2410 "Failed lookup while freeing chunk.");
2411 ret = -ENOENT;
2412 goto out;
2413 }
2414
2415 ret = btrfs_del_item(trans, root, path);
2416 if (ret < 0)
2417 btrfs_error(root->fs_info, ret,
2418 "Failed to delete chunk item.");
2419 out:
2420 btrfs_free_path(path);
2421 return ret;
2422 }
2423
2424 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2425 chunk_offset)
2426 {
2427 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2428 struct btrfs_disk_key *disk_key;
2429 struct btrfs_chunk *chunk;
2430 u8 *ptr;
2431 int ret = 0;
2432 u32 num_stripes;
2433 u32 array_size;
2434 u32 len = 0;
2435 u32 cur;
2436 struct btrfs_key key;
2437
2438 array_size = btrfs_super_sys_array_size(super_copy);
2439
2440 ptr = super_copy->sys_chunk_array;
2441 cur = 0;
2442
2443 while (cur < array_size) {
2444 disk_key = (struct btrfs_disk_key *)ptr;
2445 btrfs_disk_key_to_cpu(&key, disk_key);
2446
2447 len = sizeof(*disk_key);
2448
2449 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2450 chunk = (struct btrfs_chunk *)(ptr + len);
2451 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2452 len += btrfs_chunk_item_size(num_stripes);
2453 } else {
2454 ret = -EIO;
2455 break;
2456 }
2457 if (key.objectid == chunk_objectid &&
2458 key.offset == chunk_offset) {
2459 memmove(ptr, ptr + len, array_size - (cur + len));
2460 array_size -= len;
2461 btrfs_set_super_sys_array_size(super_copy, array_size);
2462 } else {
2463 ptr += len;
2464 cur += len;
2465 }
2466 }
2467 return ret;
2468 }
2469
2470 static int btrfs_relocate_chunk(struct btrfs_root *root,
2471 u64 chunk_tree, u64 chunk_objectid,
2472 u64 chunk_offset)
2473 {
2474 struct extent_map_tree *em_tree;
2475 struct btrfs_root *extent_root;
2476 struct btrfs_trans_handle *trans;
2477 struct extent_map *em;
2478 struct map_lookup *map;
2479 int ret;
2480 int i;
2481
2482 root = root->fs_info->chunk_root;
2483 extent_root = root->fs_info->extent_root;
2484 em_tree = &root->fs_info->mapping_tree.map_tree;
2485
2486 ret = btrfs_can_relocate(extent_root, chunk_offset);
2487 if (ret)
2488 return -ENOSPC;
2489
2490 /* step one, relocate all the extents inside this chunk */
2491 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2492 if (ret)
2493 return ret;
2494
2495 trans = btrfs_start_transaction(root, 0);
2496 if (IS_ERR(trans)) {
2497 ret = PTR_ERR(trans);
2498 btrfs_std_error(root->fs_info, ret);
2499 return ret;
2500 }
2501
2502 lock_chunks(root);
2503
2504 /*
2505 * step two, delete the device extents and the
2506 * chunk tree entries
2507 */
2508 read_lock(&em_tree->lock);
2509 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2510 read_unlock(&em_tree->lock);
2511
2512 BUG_ON(!em || em->start > chunk_offset ||
2513 em->start + em->len < chunk_offset);
2514 map = (struct map_lookup *)em->bdev;
2515
2516 for (i = 0; i < map->num_stripes; i++) {
2517 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2518 map->stripes[i].physical);
2519 BUG_ON(ret);
2520
2521 if (map->stripes[i].dev) {
2522 ret = btrfs_update_device(trans, map->stripes[i].dev);
2523 BUG_ON(ret);
2524 }
2525 }
2526 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2527 chunk_offset);
2528
2529 BUG_ON(ret);
2530
2531 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2532
2533 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2534 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2535 BUG_ON(ret);
2536 }
2537
2538 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2539 BUG_ON(ret);
2540
2541 write_lock(&em_tree->lock);
2542 remove_extent_mapping(em_tree, em);
2543 write_unlock(&em_tree->lock);
2544
2545 kfree(map);
2546 em->bdev = NULL;
2547
2548 /* once for the tree */
2549 free_extent_map(em);
2550 /* once for us */
2551 free_extent_map(em);
2552
2553 unlock_chunks(root);
2554 btrfs_end_transaction(trans, root);
2555 return 0;
2556 }
2557
2558 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2559 {
2560 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2561 struct btrfs_path *path;
2562 struct extent_buffer *leaf;
2563 struct btrfs_chunk *chunk;
2564 struct btrfs_key key;
2565 struct btrfs_key found_key;
2566 u64 chunk_tree = chunk_root->root_key.objectid;
2567 u64 chunk_type;
2568 bool retried = false;
2569 int failed = 0;
2570 int ret;
2571
2572 path = btrfs_alloc_path();
2573 if (!path)
2574 return -ENOMEM;
2575
2576 again:
2577 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2578 key.offset = (u64)-1;
2579 key.type = BTRFS_CHUNK_ITEM_KEY;
2580
2581 while (1) {
2582 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2583 if (ret < 0)
2584 goto error;
2585 BUG_ON(ret == 0); /* Corruption */
2586
2587 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2588 key.type);
2589 if (ret < 0)
2590 goto error;
2591 if (ret > 0)
2592 break;
2593
2594 leaf = path->nodes[0];
2595 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2596
2597 chunk = btrfs_item_ptr(leaf, path->slots[0],
2598 struct btrfs_chunk);
2599 chunk_type = btrfs_chunk_type(leaf, chunk);
2600 btrfs_release_path(path);
2601
2602 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2603 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2604 found_key.objectid,
2605 found_key.offset);
2606 if (ret == -ENOSPC)
2607 failed++;
2608 else if (ret)
2609 BUG();
2610 }
2611
2612 if (found_key.offset == 0)
2613 break;
2614 key.offset = found_key.offset - 1;
2615 }
2616 ret = 0;
2617 if (failed && !retried) {
2618 failed = 0;
2619 retried = true;
2620 goto again;
2621 } else if (WARN_ON(failed && retried)) {
2622 ret = -ENOSPC;
2623 }
2624 error:
2625 btrfs_free_path(path);
2626 return ret;
2627 }
2628
2629 static int insert_balance_item(struct btrfs_root *root,
2630 struct btrfs_balance_control *bctl)
2631 {
2632 struct btrfs_trans_handle *trans;
2633 struct btrfs_balance_item *item;
2634 struct btrfs_disk_balance_args disk_bargs;
2635 struct btrfs_path *path;
2636 struct extent_buffer *leaf;
2637 struct btrfs_key key;
2638 int ret, err;
2639
2640 path = btrfs_alloc_path();
2641 if (!path)
2642 return -ENOMEM;
2643
2644 trans = btrfs_start_transaction(root, 0);
2645 if (IS_ERR(trans)) {
2646 btrfs_free_path(path);
2647 return PTR_ERR(trans);
2648 }
2649
2650 key.objectid = BTRFS_BALANCE_OBJECTID;
2651 key.type = BTRFS_BALANCE_ITEM_KEY;
2652 key.offset = 0;
2653
2654 ret = btrfs_insert_empty_item(trans, root, path, &key,
2655 sizeof(*item));
2656 if (ret)
2657 goto out;
2658
2659 leaf = path->nodes[0];
2660 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2661
2662 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2663
2664 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2665 btrfs_set_balance_data(leaf, item, &disk_bargs);
2666 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2667 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2668 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2669 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2670
2671 btrfs_set_balance_flags(leaf, item, bctl->flags);
2672
2673 btrfs_mark_buffer_dirty(leaf);
2674 out:
2675 btrfs_free_path(path);
2676 err = btrfs_commit_transaction(trans, root);
2677 if (err && !ret)
2678 ret = err;
2679 return ret;
2680 }
2681
2682 static int del_balance_item(struct btrfs_root *root)
2683 {
2684 struct btrfs_trans_handle *trans;
2685 struct btrfs_path *path;
2686 struct btrfs_key key;
2687 int ret, err;
2688
2689 path = btrfs_alloc_path();
2690 if (!path)
2691 return -ENOMEM;
2692
2693 trans = btrfs_start_transaction(root, 0);
2694 if (IS_ERR(trans)) {
2695 btrfs_free_path(path);
2696 return PTR_ERR(trans);
2697 }
2698
2699 key.objectid = BTRFS_BALANCE_OBJECTID;
2700 key.type = BTRFS_BALANCE_ITEM_KEY;
2701 key.offset = 0;
2702
2703 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2704 if (ret < 0)
2705 goto out;
2706 if (ret > 0) {
2707 ret = -ENOENT;
2708 goto out;
2709 }
2710
2711 ret = btrfs_del_item(trans, root, path);
2712 out:
2713 btrfs_free_path(path);
2714 err = btrfs_commit_transaction(trans, root);
2715 if (err && !ret)
2716 ret = err;
2717 return ret;
2718 }
2719
2720 /*
2721 * This is a heuristic used to reduce the number of chunks balanced on
2722 * resume after balance was interrupted.
2723 */
2724 static void update_balance_args(struct btrfs_balance_control *bctl)
2725 {
2726 /*
2727 * Turn on soft mode for chunk types that were being converted.
2728 */
2729 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2730 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2731 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2732 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2733 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2734 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2735
2736 /*
2737 * Turn on usage filter if is not already used. The idea is
2738 * that chunks that we have already balanced should be
2739 * reasonably full. Don't do it for chunks that are being
2740 * converted - that will keep us from relocating unconverted
2741 * (albeit full) chunks.
2742 */
2743 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2744 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2745 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2746 bctl->data.usage = 90;
2747 }
2748 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2749 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2750 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2751 bctl->sys.usage = 90;
2752 }
2753 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2754 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2755 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2756 bctl->meta.usage = 90;
2757 }
2758 }
2759
2760 /*
2761 * Should be called with both balance and volume mutexes held to
2762 * serialize other volume operations (add_dev/rm_dev/resize) with
2763 * restriper. Same goes for unset_balance_control.
2764 */
2765 static void set_balance_control(struct btrfs_balance_control *bctl)
2766 {
2767 struct btrfs_fs_info *fs_info = bctl->fs_info;
2768
2769 BUG_ON(fs_info->balance_ctl);
2770
2771 spin_lock(&fs_info->balance_lock);
2772 fs_info->balance_ctl = bctl;
2773 spin_unlock(&fs_info->balance_lock);
2774 }
2775
2776 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2777 {
2778 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2779
2780 BUG_ON(!fs_info->balance_ctl);
2781
2782 spin_lock(&fs_info->balance_lock);
2783 fs_info->balance_ctl = NULL;
2784 spin_unlock(&fs_info->balance_lock);
2785
2786 kfree(bctl);
2787 }
2788
2789 /*
2790 * Balance filters. Return 1 if chunk should be filtered out
2791 * (should not be balanced).
2792 */
2793 static int chunk_profiles_filter(u64 chunk_type,
2794 struct btrfs_balance_args *bargs)
2795 {
2796 chunk_type = chunk_to_extended(chunk_type) &
2797 BTRFS_EXTENDED_PROFILE_MASK;
2798
2799 if (bargs->profiles & chunk_type)
2800 return 0;
2801
2802 return 1;
2803 }
2804
2805 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2806 struct btrfs_balance_args *bargs)
2807 {
2808 struct btrfs_block_group_cache *cache;
2809 u64 chunk_used, user_thresh;
2810 int ret = 1;
2811
2812 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2813 chunk_used = btrfs_block_group_used(&cache->item);
2814
2815 if (bargs->usage == 0)
2816 user_thresh = 1;
2817 else if (bargs->usage > 100)
2818 user_thresh = cache->key.offset;
2819 else
2820 user_thresh = div_factor_fine(cache->key.offset,
2821 bargs->usage);
2822
2823 if (chunk_used < user_thresh)
2824 ret = 0;
2825
2826 btrfs_put_block_group(cache);
2827 return ret;
2828 }
2829
2830 static int chunk_devid_filter(struct extent_buffer *leaf,
2831 struct btrfs_chunk *chunk,
2832 struct btrfs_balance_args *bargs)
2833 {
2834 struct btrfs_stripe *stripe;
2835 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2836 int i;
2837
2838 for (i = 0; i < num_stripes; i++) {
2839 stripe = btrfs_stripe_nr(chunk, i);
2840 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2841 return 0;
2842 }
2843
2844 return 1;
2845 }
2846
2847 /* [pstart, pend) */
2848 static int chunk_drange_filter(struct extent_buffer *leaf,
2849 struct btrfs_chunk *chunk,
2850 u64 chunk_offset,
2851 struct btrfs_balance_args *bargs)
2852 {
2853 struct btrfs_stripe *stripe;
2854 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2855 u64 stripe_offset;
2856 u64 stripe_length;
2857 int factor;
2858 int i;
2859
2860 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2861 return 0;
2862
2863 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2864 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2865 factor = num_stripes / 2;
2866 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2867 factor = num_stripes - 1;
2868 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2869 factor = num_stripes - 2;
2870 } else {
2871 factor = num_stripes;
2872 }
2873
2874 for (i = 0; i < num_stripes; i++) {
2875 stripe = btrfs_stripe_nr(chunk, i);
2876 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2877 continue;
2878
2879 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2880 stripe_length = btrfs_chunk_length(leaf, chunk);
2881 do_div(stripe_length, factor);
2882
2883 if (stripe_offset < bargs->pend &&
2884 stripe_offset + stripe_length > bargs->pstart)
2885 return 0;
2886 }
2887
2888 return 1;
2889 }
2890
2891 /* [vstart, vend) */
2892 static int chunk_vrange_filter(struct extent_buffer *leaf,
2893 struct btrfs_chunk *chunk,
2894 u64 chunk_offset,
2895 struct btrfs_balance_args *bargs)
2896 {
2897 if (chunk_offset < bargs->vend &&
2898 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2899 /* at least part of the chunk is inside this vrange */
2900 return 0;
2901
2902 return 1;
2903 }
2904
2905 static int chunk_soft_convert_filter(u64 chunk_type,
2906 struct btrfs_balance_args *bargs)
2907 {
2908 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2909 return 0;
2910
2911 chunk_type = chunk_to_extended(chunk_type) &
2912 BTRFS_EXTENDED_PROFILE_MASK;
2913
2914 if (bargs->target == chunk_type)
2915 return 1;
2916
2917 return 0;
2918 }
2919
2920 static int should_balance_chunk(struct btrfs_root *root,
2921 struct extent_buffer *leaf,
2922 struct btrfs_chunk *chunk, u64 chunk_offset)
2923 {
2924 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2925 struct btrfs_balance_args *bargs = NULL;
2926 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2927
2928 /* type filter */
2929 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2930 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2931 return 0;
2932 }
2933
2934 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2935 bargs = &bctl->data;
2936 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2937 bargs = &bctl->sys;
2938 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2939 bargs = &bctl->meta;
2940
2941 /* profiles filter */
2942 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2943 chunk_profiles_filter(chunk_type, bargs)) {
2944 return 0;
2945 }
2946
2947 /* usage filter */
2948 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2949 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2950 return 0;
2951 }
2952
2953 /* devid filter */
2954 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2955 chunk_devid_filter(leaf, chunk, bargs)) {
2956 return 0;
2957 }
2958
2959 /* drange filter, makes sense only with devid filter */
2960 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2961 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2962 return 0;
2963 }
2964
2965 /* vrange filter */
2966 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2967 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2968 return 0;
2969 }
2970
2971 /* soft profile changing mode */
2972 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2973 chunk_soft_convert_filter(chunk_type, bargs)) {
2974 return 0;
2975 }
2976
2977 /*
2978 * limited by count, must be the last filter
2979 */
2980 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
2981 if (bargs->limit == 0)
2982 return 0;
2983 else
2984 bargs->limit--;
2985 }
2986
2987 return 1;
2988 }
2989
2990 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2991 {
2992 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2993 struct btrfs_root *chunk_root = fs_info->chunk_root;
2994 struct btrfs_root *dev_root = fs_info->dev_root;
2995 struct list_head *devices;
2996 struct btrfs_device *device;
2997 u64 old_size;
2998 u64 size_to_free;
2999 struct btrfs_chunk *chunk;
3000 struct btrfs_path *path;
3001 struct btrfs_key key;
3002 struct btrfs_key found_key;
3003 struct btrfs_trans_handle *trans;
3004 struct extent_buffer *leaf;
3005 int slot;
3006 int ret;
3007 int enospc_errors = 0;
3008 bool counting = true;
3009 u64 limit_data = bctl->data.limit;
3010 u64 limit_meta = bctl->meta.limit;
3011 u64 limit_sys = bctl->sys.limit;
3012
3013 /* step one make some room on all the devices */
3014 devices = &fs_info->fs_devices->devices;
3015 list_for_each_entry(device, devices, dev_list) {
3016 old_size = device->total_bytes;
3017 size_to_free = div_factor(old_size, 1);
3018 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3019 if (!device->writeable ||
3020 device->total_bytes - device->bytes_used > size_to_free ||
3021 device->is_tgtdev_for_dev_replace)
3022 continue;
3023
3024 ret = btrfs_shrink_device(device, old_size - size_to_free);
3025 if (ret == -ENOSPC)
3026 break;
3027 BUG_ON(ret);
3028
3029 trans = btrfs_start_transaction(dev_root, 0);
3030 BUG_ON(IS_ERR(trans));
3031
3032 ret = btrfs_grow_device(trans, device, old_size);
3033 BUG_ON(ret);
3034
3035 btrfs_end_transaction(trans, dev_root);
3036 }
3037
3038 /* step two, relocate all the chunks */
3039 path = btrfs_alloc_path();
3040 if (!path) {
3041 ret = -ENOMEM;
3042 goto error;
3043 }
3044
3045 /* zero out stat counters */
3046 spin_lock(&fs_info->balance_lock);
3047 memset(&bctl->stat, 0, sizeof(bctl->stat));
3048 spin_unlock(&fs_info->balance_lock);
3049 again:
3050 if (!counting) {
3051 bctl->data.limit = limit_data;
3052 bctl->meta.limit = limit_meta;
3053 bctl->sys.limit = limit_sys;
3054 }
3055 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3056 key.offset = (u64)-1;
3057 key.type = BTRFS_CHUNK_ITEM_KEY;
3058
3059 while (1) {
3060 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3061 atomic_read(&fs_info->balance_cancel_req)) {
3062 ret = -ECANCELED;
3063 goto error;
3064 }
3065
3066 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3067 if (ret < 0)
3068 goto error;
3069
3070 /*
3071 * this shouldn't happen, it means the last relocate
3072 * failed
3073 */
3074 if (ret == 0)
3075 BUG(); /* FIXME break ? */
3076
3077 ret = btrfs_previous_item(chunk_root, path, 0,
3078 BTRFS_CHUNK_ITEM_KEY);
3079 if (ret) {
3080 ret = 0;
3081 break;
3082 }
3083
3084 leaf = path->nodes[0];
3085 slot = path->slots[0];
3086 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3087
3088 if (found_key.objectid != key.objectid)
3089 break;
3090
3091 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3092
3093 if (!counting) {
3094 spin_lock(&fs_info->balance_lock);
3095 bctl->stat.considered++;
3096 spin_unlock(&fs_info->balance_lock);
3097 }
3098
3099 ret = should_balance_chunk(chunk_root, leaf, chunk,
3100 found_key.offset);
3101 btrfs_release_path(path);
3102 if (!ret)
3103 goto loop;
3104
3105 if (counting) {
3106 spin_lock(&fs_info->balance_lock);
3107 bctl->stat.expected++;
3108 spin_unlock(&fs_info->balance_lock);
3109 goto loop;
3110 }
3111
3112 ret = btrfs_relocate_chunk(chunk_root,
3113 chunk_root->root_key.objectid,
3114 found_key.objectid,
3115 found_key.offset);
3116 if (ret && ret != -ENOSPC)
3117 goto error;
3118 if (ret == -ENOSPC) {
3119 enospc_errors++;
3120 } else {
3121 spin_lock(&fs_info->balance_lock);
3122 bctl->stat.completed++;
3123 spin_unlock(&fs_info->balance_lock);
3124 }
3125 loop:
3126 if (found_key.offset == 0)
3127 break;
3128 key.offset = found_key.offset - 1;
3129 }
3130
3131 if (counting) {
3132 btrfs_release_path(path);
3133 counting = false;
3134 goto again;
3135 }
3136 error:
3137 btrfs_free_path(path);
3138 if (enospc_errors) {
3139 btrfs_info(fs_info, "%d enospc errors during balance",
3140 enospc_errors);
3141 if (!ret)
3142 ret = -ENOSPC;
3143 }
3144
3145 return ret;
3146 }
3147
3148 /**
3149 * alloc_profile_is_valid - see if a given profile is valid and reduced
3150 * @flags: profile to validate
3151 * @extended: if true @flags is treated as an extended profile
3152 */
3153 static int alloc_profile_is_valid(u64 flags, int extended)
3154 {
3155 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3156 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3157
3158 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3159
3160 /* 1) check that all other bits are zeroed */
3161 if (flags & ~mask)
3162 return 0;
3163
3164 /* 2) see if profile is reduced */
3165 if (flags == 0)
3166 return !extended; /* "0" is valid for usual profiles */
3167
3168 /* true if exactly one bit set */
3169 return (flags & (flags - 1)) == 0;
3170 }
3171
3172 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3173 {
3174 /* cancel requested || normal exit path */
3175 return atomic_read(&fs_info->balance_cancel_req) ||
3176 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3177 atomic_read(&fs_info->balance_cancel_req) == 0);
3178 }
3179
3180 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3181 {
3182 int ret;
3183
3184 unset_balance_control(fs_info);
3185 ret = del_balance_item(fs_info->tree_root);
3186 if (ret)
3187 btrfs_std_error(fs_info, ret);
3188
3189 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3190 }
3191
3192 /*
3193 * Should be called with both balance and volume mutexes held
3194 */
3195 int btrfs_balance(struct btrfs_balance_control *bctl,
3196 struct btrfs_ioctl_balance_args *bargs)
3197 {
3198 struct btrfs_fs_info *fs_info = bctl->fs_info;
3199 u64 allowed;
3200 int mixed = 0;
3201 int ret;
3202 u64 num_devices;
3203 unsigned seq;
3204
3205 if (btrfs_fs_closing(fs_info) ||
3206 atomic_read(&fs_info->balance_pause_req) ||
3207 atomic_read(&fs_info->balance_cancel_req)) {
3208 ret = -EINVAL;
3209 goto out;
3210 }
3211
3212 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3213 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3214 mixed = 1;
3215
3216 /*
3217 * In case of mixed groups both data and meta should be picked,
3218 * and identical options should be given for both of them.
3219 */
3220 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3221 if (mixed && (bctl->flags & allowed)) {
3222 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3223 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3224 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3225 btrfs_err(fs_info, "with mixed groups data and "
3226 "metadata balance options must be the same");
3227 ret = -EINVAL;
3228 goto out;
3229 }
3230 }
3231
3232 num_devices = fs_info->fs_devices->num_devices;
3233 btrfs_dev_replace_lock(&fs_info->dev_replace);
3234 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3235 BUG_ON(num_devices < 1);
3236 num_devices--;
3237 }
3238 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3239 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3240 if (num_devices == 1)
3241 allowed |= BTRFS_BLOCK_GROUP_DUP;
3242 else if (num_devices > 1)
3243 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3244 if (num_devices > 2)
3245 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3246 if (num_devices > 3)
3247 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3248 BTRFS_BLOCK_GROUP_RAID6);
3249 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3250 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3251 (bctl->data.target & ~allowed))) {
3252 btrfs_err(fs_info, "unable to start balance with target "
3253 "data profile %llu",
3254 bctl->data.target);
3255 ret = -EINVAL;
3256 goto out;
3257 }
3258 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3259 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3260 (bctl->meta.target & ~allowed))) {
3261 btrfs_err(fs_info,
3262 "unable to start balance with target metadata profile %llu",
3263 bctl->meta.target);
3264 ret = -EINVAL;
3265 goto out;
3266 }
3267 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3268 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3269 (bctl->sys.target & ~allowed))) {
3270 btrfs_err(fs_info,
3271 "unable to start balance with target system profile %llu",
3272 bctl->sys.target);
3273 ret = -EINVAL;
3274 goto out;
3275 }
3276
3277 /* allow dup'ed data chunks only in mixed mode */
3278 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3279 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3280 btrfs_err(fs_info, "dup for data is not allowed");
3281 ret = -EINVAL;
3282 goto out;
3283 }
3284
3285 /* allow to reduce meta or sys integrity only if force set */
3286 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3287 BTRFS_BLOCK_GROUP_RAID10 |
3288 BTRFS_BLOCK_GROUP_RAID5 |
3289 BTRFS_BLOCK_GROUP_RAID6;
3290 do {
3291 seq = read_seqbegin(&fs_info->profiles_lock);
3292
3293 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3294 (fs_info->avail_system_alloc_bits & allowed) &&
3295 !(bctl->sys.target & allowed)) ||
3296 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3297 (fs_info->avail_metadata_alloc_bits & allowed) &&
3298 !(bctl->meta.target & allowed))) {
3299 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3300 btrfs_info(fs_info, "force reducing metadata integrity");
3301 } else {
3302 btrfs_err(fs_info, "balance will reduce metadata "
3303 "integrity, use force if you want this");
3304 ret = -EINVAL;
3305 goto out;
3306 }
3307 }
3308 } while (read_seqretry(&fs_info->profiles_lock, seq));
3309
3310 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3311 int num_tolerated_disk_barrier_failures;
3312 u64 target = bctl->sys.target;
3313
3314 num_tolerated_disk_barrier_failures =
3315 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3316 if (num_tolerated_disk_barrier_failures > 0 &&
3317 (target &
3318 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3319 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3320 num_tolerated_disk_barrier_failures = 0;
3321 else if (num_tolerated_disk_barrier_failures > 1 &&
3322 (target &
3323 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3324 num_tolerated_disk_barrier_failures = 1;
3325
3326 fs_info->num_tolerated_disk_barrier_failures =
3327 num_tolerated_disk_barrier_failures;
3328 }
3329
3330 ret = insert_balance_item(fs_info->tree_root, bctl);
3331 if (ret && ret != -EEXIST)
3332 goto out;
3333
3334 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3335 BUG_ON(ret == -EEXIST);
3336 set_balance_control(bctl);
3337 } else {
3338 BUG_ON(ret != -EEXIST);
3339 spin_lock(&fs_info->balance_lock);
3340 update_balance_args(bctl);
3341 spin_unlock(&fs_info->balance_lock);
3342 }
3343
3344 atomic_inc(&fs_info->balance_running);
3345 mutex_unlock(&fs_info->balance_mutex);
3346
3347 ret = __btrfs_balance(fs_info);
3348
3349 mutex_lock(&fs_info->balance_mutex);
3350 atomic_dec(&fs_info->balance_running);
3351
3352 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3353 fs_info->num_tolerated_disk_barrier_failures =
3354 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3355 }
3356
3357 if (bargs) {
3358 memset(bargs, 0, sizeof(*bargs));
3359 update_ioctl_balance_args(fs_info, 0, bargs);
3360 }
3361
3362 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3363 balance_need_close(fs_info)) {
3364 __cancel_balance(fs_info);
3365 }
3366
3367 wake_up(&fs_info->balance_wait_q);
3368
3369 return ret;
3370 out:
3371 if (bctl->flags & BTRFS_BALANCE_RESUME)
3372 __cancel_balance(fs_info);
3373 else {
3374 kfree(bctl);
3375 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3376 }
3377 return ret;
3378 }
3379
3380 static int balance_kthread(void *data)
3381 {
3382 struct btrfs_fs_info *fs_info = data;
3383 int ret = 0;
3384
3385 mutex_lock(&fs_info->volume_mutex);
3386 mutex_lock(&fs_info->balance_mutex);
3387
3388 if (fs_info->balance_ctl) {
3389 btrfs_info(fs_info, "continuing balance");
3390 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3391 }
3392
3393 mutex_unlock(&fs_info->balance_mutex);
3394 mutex_unlock(&fs_info->volume_mutex);
3395
3396 return ret;
3397 }
3398
3399 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3400 {
3401 struct task_struct *tsk;
3402
3403 spin_lock(&fs_info->balance_lock);
3404 if (!fs_info->balance_ctl) {
3405 spin_unlock(&fs_info->balance_lock);
3406 return 0;
3407 }
3408 spin_unlock(&fs_info->balance_lock);
3409
3410 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3411 btrfs_info(fs_info, "force skipping balance");
3412 return 0;
3413 }
3414
3415 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3416 return PTR_ERR_OR_ZERO(tsk);
3417 }
3418
3419 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3420 {
3421 struct btrfs_balance_control *bctl;
3422 struct btrfs_balance_item *item;
3423 struct btrfs_disk_balance_args disk_bargs;
3424 struct btrfs_path *path;
3425 struct extent_buffer *leaf;
3426 struct btrfs_key key;
3427 int ret;
3428
3429 path = btrfs_alloc_path();
3430 if (!path)
3431 return -ENOMEM;
3432
3433 key.objectid = BTRFS_BALANCE_OBJECTID;
3434 key.type = BTRFS_BALANCE_ITEM_KEY;
3435 key.offset = 0;
3436
3437 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3438 if (ret < 0)
3439 goto out;
3440 if (ret > 0) { /* ret = -ENOENT; */
3441 ret = 0;
3442 goto out;
3443 }
3444
3445 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3446 if (!bctl) {
3447 ret = -ENOMEM;
3448 goto out;
3449 }
3450
3451 leaf = path->nodes[0];
3452 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3453
3454 bctl->fs_info = fs_info;
3455 bctl->flags = btrfs_balance_flags(leaf, item);
3456 bctl->flags |= BTRFS_BALANCE_RESUME;
3457
3458 btrfs_balance_data(leaf, item, &disk_bargs);
3459 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3460 btrfs_balance_meta(leaf, item, &disk_bargs);
3461 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3462 btrfs_balance_sys(leaf, item, &disk_bargs);
3463 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3464
3465 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3466
3467 mutex_lock(&fs_info->volume_mutex);
3468 mutex_lock(&fs_info->balance_mutex);
3469
3470 set_balance_control(bctl);
3471
3472 mutex_unlock(&fs_info->balance_mutex);
3473 mutex_unlock(&fs_info->volume_mutex);
3474 out:
3475 btrfs_free_path(path);
3476 return ret;
3477 }
3478
3479 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3480 {
3481 int ret = 0;
3482
3483 mutex_lock(&fs_info->balance_mutex);
3484 if (!fs_info->balance_ctl) {
3485 mutex_unlock(&fs_info->balance_mutex);
3486 return -ENOTCONN;
3487 }
3488
3489 if (atomic_read(&fs_info->balance_running)) {
3490 atomic_inc(&fs_info->balance_pause_req);
3491 mutex_unlock(&fs_info->balance_mutex);
3492
3493 wait_event(fs_info->balance_wait_q,
3494 atomic_read(&fs_info->balance_running) == 0);
3495
3496 mutex_lock(&fs_info->balance_mutex);
3497 /* we are good with balance_ctl ripped off from under us */
3498 BUG_ON(atomic_read(&fs_info->balance_running));
3499 atomic_dec(&fs_info->balance_pause_req);
3500 } else {
3501 ret = -ENOTCONN;
3502 }
3503
3504 mutex_unlock(&fs_info->balance_mutex);
3505 return ret;
3506 }
3507
3508 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3509 {
3510 if (fs_info->sb->s_flags & MS_RDONLY)
3511 return -EROFS;
3512
3513 mutex_lock(&fs_info->balance_mutex);
3514 if (!fs_info->balance_ctl) {
3515 mutex_unlock(&fs_info->balance_mutex);
3516 return -ENOTCONN;
3517 }
3518
3519 atomic_inc(&fs_info->balance_cancel_req);
3520 /*
3521 * if we are running just wait and return, balance item is
3522 * deleted in btrfs_balance in this case
3523 */
3524 if (atomic_read(&fs_info->balance_running)) {
3525 mutex_unlock(&fs_info->balance_mutex);
3526 wait_event(fs_info->balance_wait_q,
3527 atomic_read(&fs_info->balance_running) == 0);
3528 mutex_lock(&fs_info->balance_mutex);
3529 } else {
3530 /* __cancel_balance needs volume_mutex */
3531 mutex_unlock(&fs_info->balance_mutex);
3532 mutex_lock(&fs_info->volume_mutex);
3533 mutex_lock(&fs_info->balance_mutex);
3534
3535 if (fs_info->balance_ctl)
3536 __cancel_balance(fs_info);
3537
3538 mutex_unlock(&fs_info->volume_mutex);
3539 }
3540
3541 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3542 atomic_dec(&fs_info->balance_cancel_req);
3543 mutex_unlock(&fs_info->balance_mutex);
3544 return 0;
3545 }
3546
3547 static int btrfs_uuid_scan_kthread(void *data)
3548 {
3549 struct btrfs_fs_info *fs_info = data;
3550 struct btrfs_root *root = fs_info->tree_root;
3551 struct btrfs_key key;
3552 struct btrfs_key max_key;
3553 struct btrfs_path *path = NULL;
3554 int ret = 0;
3555 struct extent_buffer *eb;
3556 int slot;
3557 struct btrfs_root_item root_item;
3558 u32 item_size;
3559 struct btrfs_trans_handle *trans = NULL;
3560
3561 path = btrfs_alloc_path();
3562 if (!path) {
3563 ret = -ENOMEM;
3564 goto out;
3565 }
3566
3567 key.objectid = 0;
3568 key.type = BTRFS_ROOT_ITEM_KEY;
3569 key.offset = 0;
3570
3571 max_key.objectid = (u64)-1;
3572 max_key.type = BTRFS_ROOT_ITEM_KEY;
3573 max_key.offset = (u64)-1;
3574
3575 path->keep_locks = 1;
3576
3577 while (1) {
3578 ret = btrfs_search_forward(root, &key, path, 0);
3579 if (ret) {
3580 if (ret > 0)
3581 ret = 0;
3582 break;
3583 }
3584
3585 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3586 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3587 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3588 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3589 goto skip;
3590
3591 eb = path->nodes[0];
3592 slot = path->slots[0];
3593 item_size = btrfs_item_size_nr(eb, slot);
3594 if (item_size < sizeof(root_item))
3595 goto skip;
3596
3597 read_extent_buffer(eb, &root_item,
3598 btrfs_item_ptr_offset(eb, slot),
3599 (int)sizeof(root_item));
3600 if (btrfs_root_refs(&root_item) == 0)
3601 goto skip;
3602
3603 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3604 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3605 if (trans)
3606 goto update_tree;
3607
3608 btrfs_release_path(path);
3609 /*
3610 * 1 - subvol uuid item
3611 * 1 - received_subvol uuid item
3612 */
3613 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3614 if (IS_ERR(trans)) {
3615 ret = PTR_ERR(trans);
3616 break;
3617 }
3618 continue;
3619 } else {
3620 goto skip;
3621 }
3622 update_tree:
3623 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3624 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3625 root_item.uuid,
3626 BTRFS_UUID_KEY_SUBVOL,
3627 key.objectid);
3628 if (ret < 0) {
3629 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3630 ret);
3631 break;
3632 }
3633 }
3634
3635 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3636 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3637 root_item.received_uuid,
3638 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3639 key.objectid);
3640 if (ret < 0) {
3641 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3642 ret);
3643 break;
3644 }
3645 }
3646
3647 skip:
3648 if (trans) {
3649 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3650 trans = NULL;
3651 if (ret)
3652 break;
3653 }
3654
3655 btrfs_release_path(path);
3656 if (key.offset < (u64)-1) {
3657 key.offset++;
3658 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3659 key.offset = 0;
3660 key.type = BTRFS_ROOT_ITEM_KEY;
3661 } else if (key.objectid < (u64)-1) {
3662 key.offset = 0;
3663 key.type = BTRFS_ROOT_ITEM_KEY;
3664 key.objectid++;
3665 } else {
3666 break;
3667 }
3668 cond_resched();
3669 }
3670
3671 out:
3672 btrfs_free_path(path);
3673 if (trans && !IS_ERR(trans))
3674 btrfs_end_transaction(trans, fs_info->uuid_root);
3675 if (ret)
3676 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3677 else
3678 fs_info->update_uuid_tree_gen = 1;
3679 up(&fs_info->uuid_tree_rescan_sem);
3680 return 0;
3681 }
3682
3683 /*
3684 * Callback for btrfs_uuid_tree_iterate().
3685 * returns:
3686 * 0 check succeeded, the entry is not outdated.
3687 * < 0 if an error occured.
3688 * > 0 if the check failed, which means the caller shall remove the entry.
3689 */
3690 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3691 u8 *uuid, u8 type, u64 subid)
3692 {
3693 struct btrfs_key key;
3694 int ret = 0;
3695 struct btrfs_root *subvol_root;
3696
3697 if (type != BTRFS_UUID_KEY_SUBVOL &&
3698 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3699 goto out;
3700
3701 key.objectid = subid;
3702 key.type = BTRFS_ROOT_ITEM_KEY;
3703 key.offset = (u64)-1;
3704 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3705 if (IS_ERR(subvol_root)) {
3706 ret = PTR_ERR(subvol_root);
3707 if (ret == -ENOENT)
3708 ret = 1;
3709 goto out;
3710 }
3711
3712 switch (type) {
3713 case BTRFS_UUID_KEY_SUBVOL:
3714 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3715 ret = 1;
3716 break;
3717 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3718 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3719 BTRFS_UUID_SIZE))
3720 ret = 1;
3721 break;
3722 }
3723
3724 out:
3725 return ret;
3726 }
3727
3728 static int btrfs_uuid_rescan_kthread(void *data)
3729 {
3730 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3731 int ret;
3732
3733 /*
3734 * 1st step is to iterate through the existing UUID tree and
3735 * to delete all entries that contain outdated data.
3736 * 2nd step is to add all missing entries to the UUID tree.
3737 */
3738 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3739 if (ret < 0) {
3740 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3741 up(&fs_info->uuid_tree_rescan_sem);
3742 return ret;
3743 }
3744 return btrfs_uuid_scan_kthread(data);
3745 }
3746
3747 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3748 {
3749 struct btrfs_trans_handle *trans;
3750 struct btrfs_root *tree_root = fs_info->tree_root;
3751 struct btrfs_root *uuid_root;
3752 struct task_struct *task;
3753 int ret;
3754
3755 /*
3756 * 1 - root node
3757 * 1 - root item
3758 */
3759 trans = btrfs_start_transaction(tree_root, 2);
3760 if (IS_ERR(trans))
3761 return PTR_ERR(trans);
3762
3763 uuid_root = btrfs_create_tree(trans, fs_info,
3764 BTRFS_UUID_TREE_OBJECTID);
3765 if (IS_ERR(uuid_root)) {
3766 btrfs_abort_transaction(trans, tree_root,
3767 PTR_ERR(uuid_root));
3768 return PTR_ERR(uuid_root);
3769 }
3770
3771 fs_info->uuid_root = uuid_root;
3772
3773 ret = btrfs_commit_transaction(trans, tree_root);
3774 if (ret)
3775 return ret;
3776
3777 down(&fs_info->uuid_tree_rescan_sem);
3778 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3779 if (IS_ERR(task)) {
3780 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3781 btrfs_warn(fs_info, "failed to start uuid_scan task");
3782 up(&fs_info->uuid_tree_rescan_sem);
3783 return PTR_ERR(task);
3784 }
3785
3786 return 0;
3787 }
3788
3789 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3790 {
3791 struct task_struct *task;
3792
3793 down(&fs_info->uuid_tree_rescan_sem);
3794 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3795 if (IS_ERR(task)) {
3796 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3797 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3798 up(&fs_info->uuid_tree_rescan_sem);
3799 return PTR_ERR(task);
3800 }
3801
3802 return 0;
3803 }
3804
3805 /*
3806 * shrinking a device means finding all of the device extents past
3807 * the new size, and then following the back refs to the chunks.
3808 * The chunk relocation code actually frees the device extent
3809 */
3810 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3811 {
3812 struct btrfs_trans_handle *trans;
3813 struct btrfs_root *root = device->dev_root;
3814 struct btrfs_dev_extent *dev_extent = NULL;
3815 struct btrfs_path *path;
3816 u64 length;
3817 u64 chunk_tree;
3818 u64 chunk_objectid;
3819 u64 chunk_offset;
3820 int ret;
3821 int slot;
3822 int failed = 0;
3823 bool retried = false;
3824 struct extent_buffer *l;
3825 struct btrfs_key key;
3826 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3827 u64 old_total = btrfs_super_total_bytes(super_copy);
3828 u64 old_size = device->total_bytes;
3829 u64 diff = device->total_bytes - new_size;
3830
3831 if (device->is_tgtdev_for_dev_replace)
3832 return -EINVAL;
3833
3834 path = btrfs_alloc_path();
3835 if (!path)
3836 return -ENOMEM;
3837
3838 path->reada = 2;
3839
3840 lock_chunks(root);
3841
3842 device->total_bytes = new_size;
3843 if (device->writeable) {
3844 device->fs_devices->total_rw_bytes -= diff;
3845 spin_lock(&root->fs_info->free_chunk_lock);
3846 root->fs_info->free_chunk_space -= diff;
3847 spin_unlock(&root->fs_info->free_chunk_lock);
3848 }
3849 unlock_chunks(root);
3850
3851 again:
3852 key.objectid = device->devid;
3853 key.offset = (u64)-1;
3854 key.type = BTRFS_DEV_EXTENT_KEY;
3855
3856 do {
3857 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3858 if (ret < 0)
3859 goto done;
3860
3861 ret = btrfs_previous_item(root, path, 0, key.type);
3862 if (ret < 0)
3863 goto done;
3864 if (ret) {
3865 ret = 0;
3866 btrfs_release_path(path);
3867 break;
3868 }
3869
3870 l = path->nodes[0];
3871 slot = path->slots[0];
3872 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3873
3874 if (key.objectid != device->devid) {
3875 btrfs_release_path(path);
3876 break;
3877 }
3878
3879 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3880 length = btrfs_dev_extent_length(l, dev_extent);
3881
3882 if (key.offset + length <= new_size) {
3883 btrfs_release_path(path);
3884 break;
3885 }
3886
3887 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3888 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3889 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3890 btrfs_release_path(path);
3891
3892 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3893 chunk_offset);
3894 if (ret && ret != -ENOSPC)
3895 goto done;
3896 if (ret == -ENOSPC)
3897 failed++;
3898 } while (key.offset-- > 0);
3899
3900 if (failed && !retried) {
3901 failed = 0;
3902 retried = true;
3903 goto again;
3904 } else if (failed && retried) {
3905 ret = -ENOSPC;
3906 lock_chunks(root);
3907
3908 device->total_bytes = old_size;
3909 if (device->writeable)
3910 device->fs_devices->total_rw_bytes += diff;
3911 spin_lock(&root->fs_info->free_chunk_lock);
3912 root->fs_info->free_chunk_space += diff;
3913 spin_unlock(&root->fs_info->free_chunk_lock);
3914 unlock_chunks(root);
3915 goto done;
3916 }
3917
3918 /* Shrinking succeeded, else we would be at "done". */
3919 trans = btrfs_start_transaction(root, 0);
3920 if (IS_ERR(trans)) {
3921 ret = PTR_ERR(trans);
3922 goto done;
3923 }
3924
3925 lock_chunks(root);
3926
3927 device->disk_total_bytes = new_size;
3928 /* Now btrfs_update_device() will change the on-disk size. */
3929 ret = btrfs_update_device(trans, device);
3930 if (ret) {
3931 unlock_chunks(root);
3932 btrfs_end_transaction(trans, root);
3933 goto done;
3934 }
3935 WARN_ON(diff > old_total);
3936 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3937 unlock_chunks(root);
3938 btrfs_end_transaction(trans, root);
3939 done:
3940 btrfs_free_path(path);
3941 return ret;
3942 }
3943
3944 static int btrfs_add_system_chunk(struct btrfs_root *root,
3945 struct btrfs_key *key,
3946 struct btrfs_chunk *chunk, int item_size)
3947 {
3948 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3949 struct btrfs_disk_key disk_key;
3950 u32 array_size;
3951 u8 *ptr;
3952
3953 array_size = btrfs_super_sys_array_size(super_copy);
3954 if (array_size + item_size + sizeof(disk_key)
3955 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3956 return -EFBIG;
3957
3958 ptr = super_copy->sys_chunk_array + array_size;
3959 btrfs_cpu_key_to_disk(&disk_key, key);
3960 memcpy(ptr, &disk_key, sizeof(disk_key));
3961 ptr += sizeof(disk_key);
3962 memcpy(ptr, chunk, item_size);
3963 item_size += sizeof(disk_key);
3964 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3965 return 0;
3966 }
3967
3968 /*
3969 * sort the devices in descending order by max_avail, total_avail
3970 */
3971 static int btrfs_cmp_device_info(const void *a, const void *b)
3972 {
3973 const struct btrfs_device_info *di_a = a;
3974 const struct btrfs_device_info *di_b = b;
3975
3976 if (di_a->max_avail > di_b->max_avail)
3977 return -1;
3978 if (di_a->max_avail < di_b->max_avail)
3979 return 1;
3980 if (di_a->total_avail > di_b->total_avail)
3981 return -1;
3982 if (di_a->total_avail < di_b->total_avail)
3983 return 1;
3984 return 0;
3985 }
3986
3987 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
3988 [BTRFS_RAID_RAID10] = {
3989 .sub_stripes = 2,
3990 .dev_stripes = 1,
3991 .devs_max = 0, /* 0 == as many as possible */
3992 .devs_min = 4,
3993 .devs_increment = 2,
3994 .ncopies = 2,
3995 },
3996 [BTRFS_RAID_RAID1] = {
3997 .sub_stripes = 1,
3998 .dev_stripes = 1,
3999 .devs_max = 2,
4000 .devs_min = 2,
4001 .devs_increment = 2,
4002 .ncopies = 2,
4003 },
4004 [BTRFS_RAID_DUP] = {
4005 .sub_stripes = 1,
4006 .dev_stripes = 2,
4007 .devs_max = 1,
4008 .devs_min = 1,
4009 .devs_increment = 1,
4010 .ncopies = 2,
4011 },
4012 [BTRFS_RAID_RAID0] = {
4013 .sub_stripes = 1,
4014 .dev_stripes = 1,
4015 .devs_max = 0,
4016 .devs_min = 2,
4017 .devs_increment = 1,
4018 .ncopies = 1,
4019 },
4020 [BTRFS_RAID_SINGLE] = {
4021 .sub_stripes = 1,
4022 .dev_stripes = 1,
4023 .devs_max = 1,
4024 .devs_min = 1,
4025 .devs_increment = 1,
4026 .ncopies = 1,
4027 },
4028 [BTRFS_RAID_RAID5] = {
4029 .sub_stripes = 1,
4030 .dev_stripes = 1,
4031 .devs_max = 0,
4032 .devs_min = 2,
4033 .devs_increment = 1,
4034 .ncopies = 2,
4035 },
4036 [BTRFS_RAID_RAID6] = {
4037 .sub_stripes = 1,
4038 .dev_stripes = 1,
4039 .devs_max = 0,
4040 .devs_min = 3,
4041 .devs_increment = 1,
4042 .ncopies = 3,
4043 },
4044 };
4045
4046 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4047 {
4048 /* TODO allow them to set a preferred stripe size */
4049 return 64 * 1024;
4050 }
4051
4052 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4053 {
4054 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
4055 return;
4056
4057 btrfs_set_fs_incompat(info, RAID56);
4058 }
4059
4060 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4061 - sizeof(struct btrfs_item) \
4062 - sizeof(struct btrfs_chunk)) \
4063 / sizeof(struct btrfs_stripe) + 1)
4064
4065 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4066 - 2 * sizeof(struct btrfs_disk_key) \
4067 - 2 * sizeof(struct btrfs_chunk)) \
4068 / sizeof(struct btrfs_stripe) + 1)
4069
4070 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4071 struct btrfs_root *extent_root, u64 start,
4072 u64 type)
4073 {
4074 struct btrfs_fs_info *info = extent_root->fs_info;
4075 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4076 struct list_head *cur;
4077 struct map_lookup *map = NULL;
4078 struct extent_map_tree *em_tree;
4079 struct extent_map *em;
4080 struct btrfs_device_info *devices_info = NULL;
4081 u64 total_avail;
4082 int num_stripes; /* total number of stripes to allocate */
4083 int data_stripes; /* number of stripes that count for
4084 block group size */
4085 int sub_stripes; /* sub_stripes info for map */
4086 int dev_stripes; /* stripes per dev */
4087 int devs_max; /* max devs to use */
4088 int devs_min; /* min devs needed */
4089 int devs_increment; /* ndevs has to be a multiple of this */
4090 int ncopies; /* how many copies to data has */
4091 int ret;
4092 u64 max_stripe_size;
4093 u64 max_chunk_size;
4094 u64 stripe_size;
4095 u64 num_bytes;
4096 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4097 int ndevs;
4098 int i;
4099 int j;
4100 int index;
4101
4102 BUG_ON(!alloc_profile_is_valid(type, 0));
4103
4104 if (list_empty(&fs_devices->alloc_list))
4105 return -ENOSPC;
4106
4107 index = __get_raid_index(type);
4108
4109 sub_stripes = btrfs_raid_array[index].sub_stripes;
4110 dev_stripes = btrfs_raid_array[index].dev_stripes;
4111 devs_max = btrfs_raid_array[index].devs_max;
4112 devs_min = btrfs_raid_array[index].devs_min;
4113 devs_increment = btrfs_raid_array[index].devs_increment;
4114 ncopies = btrfs_raid_array[index].ncopies;
4115
4116 if (type & BTRFS_BLOCK_GROUP_DATA) {
4117 max_stripe_size = 1024 * 1024 * 1024;
4118 max_chunk_size = 10 * max_stripe_size;
4119 if (!devs_max)
4120 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4121 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4122 /* for larger filesystems, use larger metadata chunks */
4123 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4124 max_stripe_size = 1024 * 1024 * 1024;
4125 else
4126 max_stripe_size = 256 * 1024 * 1024;
4127 max_chunk_size = max_stripe_size;
4128 if (!devs_max)
4129 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4130 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4131 max_stripe_size = 32 * 1024 * 1024;
4132 max_chunk_size = 2 * max_stripe_size;
4133 if (!devs_max)
4134 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4135 } else {
4136 btrfs_err(info, "invalid chunk type 0x%llx requested",
4137 type);
4138 BUG_ON(1);
4139 }
4140
4141 /* we don't want a chunk larger than 10% of writeable space */
4142 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4143 max_chunk_size);
4144
4145 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4146 GFP_NOFS);
4147 if (!devices_info)
4148 return -ENOMEM;
4149
4150 cur = fs_devices->alloc_list.next;
4151
4152 /*
4153 * in the first pass through the devices list, we gather information
4154 * about the available holes on each device.
4155 */
4156 ndevs = 0;
4157 while (cur != &fs_devices->alloc_list) {
4158 struct btrfs_device *device;
4159 u64 max_avail;
4160 u64 dev_offset;
4161
4162 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4163
4164 cur = cur->next;
4165
4166 if (!device->writeable) {
4167 WARN(1, KERN_ERR
4168 "BTRFS: read-only device in alloc_list\n");
4169 continue;
4170 }
4171
4172 if (!device->in_fs_metadata ||
4173 device->is_tgtdev_for_dev_replace)
4174 continue;
4175
4176 if (device->total_bytes > device->bytes_used)
4177 total_avail = device->total_bytes - device->bytes_used;
4178 else
4179 total_avail = 0;
4180
4181 /* If there is no space on this device, skip it. */
4182 if (total_avail == 0)
4183 continue;
4184
4185 ret = find_free_dev_extent(trans, device,
4186 max_stripe_size * dev_stripes,
4187 &dev_offset, &max_avail);
4188 if (ret && ret != -ENOSPC)
4189 goto error;
4190
4191 if (ret == 0)
4192 max_avail = max_stripe_size * dev_stripes;
4193
4194 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4195 continue;
4196
4197 if (ndevs == fs_devices->rw_devices) {
4198 WARN(1, "%s: found more than %llu devices\n",
4199 __func__, fs_devices->rw_devices);
4200 break;
4201 }
4202 devices_info[ndevs].dev_offset = dev_offset;
4203 devices_info[ndevs].max_avail = max_avail;
4204 devices_info[ndevs].total_avail = total_avail;
4205 devices_info[ndevs].dev = device;
4206 ++ndevs;
4207 }
4208
4209 /*
4210 * now sort the devices by hole size / available space
4211 */
4212 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4213 btrfs_cmp_device_info, NULL);
4214
4215 /* round down to number of usable stripes */
4216 ndevs -= ndevs % devs_increment;
4217
4218 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4219 ret = -ENOSPC;
4220 goto error;
4221 }
4222
4223 if (devs_max && ndevs > devs_max)
4224 ndevs = devs_max;
4225 /*
4226 * the primary goal is to maximize the number of stripes, so use as many
4227 * devices as possible, even if the stripes are not maximum sized.
4228 */
4229 stripe_size = devices_info[ndevs-1].max_avail;
4230 num_stripes = ndevs * dev_stripes;
4231
4232 /*
4233 * this will have to be fixed for RAID1 and RAID10 over
4234 * more drives
4235 */
4236 data_stripes = num_stripes / ncopies;
4237
4238 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4239 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4240 btrfs_super_stripesize(info->super_copy));
4241 data_stripes = num_stripes - 1;
4242 }
4243 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4244 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4245 btrfs_super_stripesize(info->super_copy));
4246 data_stripes = num_stripes - 2;
4247 }
4248
4249 /*
4250 * Use the number of data stripes to figure out how big this chunk
4251 * is really going to be in terms of logical address space,
4252 * and compare that answer with the max chunk size
4253 */
4254 if (stripe_size * data_stripes > max_chunk_size) {
4255 u64 mask = (1ULL << 24) - 1;
4256 stripe_size = max_chunk_size;
4257 do_div(stripe_size, data_stripes);
4258
4259 /* bump the answer up to a 16MB boundary */
4260 stripe_size = (stripe_size + mask) & ~mask;
4261
4262 /* but don't go higher than the limits we found
4263 * while searching for free extents
4264 */
4265 if (stripe_size > devices_info[ndevs-1].max_avail)
4266 stripe_size = devices_info[ndevs-1].max_avail;
4267 }
4268
4269 do_div(stripe_size, dev_stripes);
4270
4271 /* align to BTRFS_STRIPE_LEN */
4272 do_div(stripe_size, raid_stripe_len);
4273 stripe_size *= raid_stripe_len;
4274
4275 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4276 if (!map) {
4277 ret = -ENOMEM;
4278 goto error;
4279 }
4280 map->num_stripes = num_stripes;
4281
4282 for (i = 0; i < ndevs; ++i) {
4283 for (j = 0; j < dev_stripes; ++j) {
4284 int s = i * dev_stripes + j;
4285 map->stripes[s].dev = devices_info[i].dev;
4286 map->stripes[s].physical = devices_info[i].dev_offset +
4287 j * stripe_size;
4288 }
4289 }
4290 map->sector_size = extent_root->sectorsize;
4291 map->stripe_len = raid_stripe_len;
4292 map->io_align = raid_stripe_len;
4293 map->io_width = raid_stripe_len;
4294 map->type = type;
4295 map->sub_stripes = sub_stripes;
4296
4297 num_bytes = stripe_size * data_stripes;
4298
4299 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4300
4301 em = alloc_extent_map();
4302 if (!em) {
4303 ret = -ENOMEM;
4304 goto error;
4305 }
4306 em->bdev = (struct block_device *)map;
4307 em->start = start;
4308 em->len = num_bytes;
4309 em->block_start = 0;
4310 em->block_len = em->len;
4311 em->orig_block_len = stripe_size;
4312
4313 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4314 write_lock(&em_tree->lock);
4315 ret = add_extent_mapping(em_tree, em, 0);
4316 if (!ret) {
4317 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4318 atomic_inc(&em->refs);
4319 }
4320 write_unlock(&em_tree->lock);
4321 if (ret) {
4322 free_extent_map(em);
4323 goto error;
4324 }
4325
4326 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4327 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4328 start, num_bytes);
4329 if (ret)
4330 goto error_del_extent;
4331
4332 free_extent_map(em);
4333 check_raid56_incompat_flag(extent_root->fs_info, type);
4334
4335 kfree(devices_info);
4336 return 0;
4337
4338 error_del_extent:
4339 write_lock(&em_tree->lock);
4340 remove_extent_mapping(em_tree, em);
4341 write_unlock(&em_tree->lock);
4342
4343 /* One for our allocation */
4344 free_extent_map(em);
4345 /* One for the tree reference */
4346 free_extent_map(em);
4347 error:
4348 kfree(map);
4349 kfree(devices_info);
4350 return ret;
4351 }
4352
4353 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4354 struct btrfs_root *extent_root,
4355 u64 chunk_offset, u64 chunk_size)
4356 {
4357 struct btrfs_key key;
4358 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4359 struct btrfs_device *device;
4360 struct btrfs_chunk *chunk;
4361 struct btrfs_stripe *stripe;
4362 struct extent_map_tree *em_tree;
4363 struct extent_map *em;
4364 struct map_lookup *map;
4365 size_t item_size;
4366 u64 dev_offset;
4367 u64 stripe_size;
4368 int i = 0;
4369 int ret;
4370
4371 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4372 read_lock(&em_tree->lock);
4373 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4374 read_unlock(&em_tree->lock);
4375
4376 if (!em) {
4377 btrfs_crit(extent_root->fs_info, "unable to find logical "
4378 "%Lu len %Lu", chunk_offset, chunk_size);
4379 return -EINVAL;
4380 }
4381
4382 if (em->start != chunk_offset || em->len != chunk_size) {
4383 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4384 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4385 chunk_size, em->start, em->len);
4386 free_extent_map(em);
4387 return -EINVAL;
4388 }
4389
4390 map = (struct map_lookup *)em->bdev;
4391 item_size = btrfs_chunk_item_size(map->num_stripes);
4392 stripe_size = em->orig_block_len;
4393
4394 chunk = kzalloc(item_size, GFP_NOFS);
4395 if (!chunk) {
4396 ret = -ENOMEM;
4397 goto out;
4398 }
4399
4400 for (i = 0; i < map->num_stripes; i++) {
4401 device = map->stripes[i].dev;
4402 dev_offset = map->stripes[i].physical;
4403
4404 device->bytes_used += stripe_size;
4405 ret = btrfs_update_device(trans, device);
4406 if (ret)
4407 goto out;
4408 ret = btrfs_alloc_dev_extent(trans, device,
4409 chunk_root->root_key.objectid,
4410 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4411 chunk_offset, dev_offset,
4412 stripe_size);
4413 if (ret)
4414 goto out;
4415 }
4416
4417 spin_lock(&extent_root->fs_info->free_chunk_lock);
4418 extent_root->fs_info->free_chunk_space -= (stripe_size *
4419 map->num_stripes);
4420 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4421
4422 stripe = &chunk->stripe;
4423 for (i = 0; i < map->num_stripes; i++) {
4424 device = map->stripes[i].dev;
4425 dev_offset = map->stripes[i].physical;
4426
4427 btrfs_set_stack_stripe_devid(stripe, device->devid);
4428 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4429 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4430 stripe++;
4431 }
4432
4433 btrfs_set_stack_chunk_length(chunk, chunk_size);
4434 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4435 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4436 btrfs_set_stack_chunk_type(chunk, map->type);
4437 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4438 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4439 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4440 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4441 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4442
4443 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4444 key.type = BTRFS_CHUNK_ITEM_KEY;
4445 key.offset = chunk_offset;
4446
4447 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4448 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4449 /*
4450 * TODO: Cleanup of inserted chunk root in case of
4451 * failure.
4452 */
4453 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4454 item_size);
4455 }
4456
4457 out:
4458 kfree(chunk);
4459 free_extent_map(em);
4460 return ret;
4461 }
4462
4463 /*
4464 * Chunk allocation falls into two parts. The first part does works
4465 * that make the new allocated chunk useable, but not do any operation
4466 * that modifies the chunk tree. The second part does the works that
4467 * require modifying the chunk tree. This division is important for the
4468 * bootstrap process of adding storage to a seed btrfs.
4469 */
4470 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4471 struct btrfs_root *extent_root, u64 type)
4472 {
4473 u64 chunk_offset;
4474
4475 chunk_offset = find_next_chunk(extent_root->fs_info);
4476 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4477 }
4478
4479 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4480 struct btrfs_root *root,
4481 struct btrfs_device *device)
4482 {
4483 u64 chunk_offset;
4484 u64 sys_chunk_offset;
4485 u64 alloc_profile;
4486 struct btrfs_fs_info *fs_info = root->fs_info;
4487 struct btrfs_root *extent_root = fs_info->extent_root;
4488 int ret;
4489
4490 chunk_offset = find_next_chunk(fs_info);
4491 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4492 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4493 alloc_profile);
4494 if (ret)
4495 return ret;
4496
4497 sys_chunk_offset = find_next_chunk(root->fs_info);
4498 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4499 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4500 alloc_profile);
4501 if (ret) {
4502 btrfs_abort_transaction(trans, root, ret);
4503 goto out;
4504 }
4505
4506 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
4507 if (ret)
4508 btrfs_abort_transaction(trans, root, ret);
4509 out:
4510 return ret;
4511 }
4512
4513 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4514 {
4515 struct extent_map *em;
4516 struct map_lookup *map;
4517 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4518 int readonly = 0;
4519 int i;
4520
4521 read_lock(&map_tree->map_tree.lock);
4522 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4523 read_unlock(&map_tree->map_tree.lock);
4524 if (!em)
4525 return 1;
4526
4527 if (btrfs_test_opt(root, DEGRADED)) {
4528 free_extent_map(em);
4529 return 0;
4530 }
4531
4532 map = (struct map_lookup *)em->bdev;
4533 for (i = 0; i < map->num_stripes; i++) {
4534 if (!map->stripes[i].dev->writeable) {
4535 readonly = 1;
4536 break;
4537 }
4538 }
4539 free_extent_map(em);
4540 return readonly;
4541 }
4542
4543 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4544 {
4545 extent_map_tree_init(&tree->map_tree);
4546 }
4547
4548 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4549 {
4550 struct extent_map *em;
4551
4552 while (1) {
4553 write_lock(&tree->map_tree.lock);
4554 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4555 if (em)
4556 remove_extent_mapping(&tree->map_tree, em);
4557 write_unlock(&tree->map_tree.lock);
4558 if (!em)
4559 break;
4560 kfree(em->bdev);
4561 /* once for us */
4562 free_extent_map(em);
4563 /* once for the tree */
4564 free_extent_map(em);
4565 }
4566 }
4567
4568 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4569 {
4570 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4571 struct extent_map *em;
4572 struct map_lookup *map;
4573 struct extent_map_tree *em_tree = &map_tree->map_tree;
4574 int ret;
4575
4576 read_lock(&em_tree->lock);
4577 em = lookup_extent_mapping(em_tree, logical, len);
4578 read_unlock(&em_tree->lock);
4579
4580 /*
4581 * We could return errors for these cases, but that could get ugly and
4582 * we'd probably do the same thing which is just not do anything else
4583 * and exit, so return 1 so the callers don't try to use other copies.
4584 */
4585 if (!em) {
4586 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4587 logical+len);
4588 return 1;
4589 }
4590
4591 if (em->start > logical || em->start + em->len < logical) {
4592 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4593 "%Lu-%Lu", logical, logical+len, em->start,
4594 em->start + em->len);
4595 free_extent_map(em);
4596 return 1;
4597 }
4598
4599 map = (struct map_lookup *)em->bdev;
4600 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4601 ret = map->num_stripes;
4602 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4603 ret = map->sub_stripes;
4604 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4605 ret = 2;
4606 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4607 ret = 3;
4608 else
4609 ret = 1;
4610 free_extent_map(em);
4611
4612 btrfs_dev_replace_lock(&fs_info->dev_replace);
4613 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4614 ret++;
4615 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4616
4617 return ret;
4618 }
4619
4620 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4621 struct btrfs_mapping_tree *map_tree,
4622 u64 logical)
4623 {
4624 struct extent_map *em;
4625 struct map_lookup *map;
4626 struct extent_map_tree *em_tree = &map_tree->map_tree;
4627 unsigned long len = root->sectorsize;
4628
4629 read_lock(&em_tree->lock);
4630 em = lookup_extent_mapping(em_tree, logical, len);
4631 read_unlock(&em_tree->lock);
4632 BUG_ON(!em);
4633
4634 BUG_ON(em->start > logical || em->start + em->len < logical);
4635 map = (struct map_lookup *)em->bdev;
4636 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4637 BTRFS_BLOCK_GROUP_RAID6)) {
4638 len = map->stripe_len * nr_data_stripes(map);
4639 }
4640 free_extent_map(em);
4641 return len;
4642 }
4643
4644 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4645 u64 logical, u64 len, int mirror_num)
4646 {
4647 struct extent_map *em;
4648 struct map_lookup *map;
4649 struct extent_map_tree *em_tree = &map_tree->map_tree;
4650 int ret = 0;
4651
4652 read_lock(&em_tree->lock);
4653 em = lookup_extent_mapping(em_tree, logical, len);
4654 read_unlock(&em_tree->lock);
4655 BUG_ON(!em);
4656
4657 BUG_ON(em->start > logical || em->start + em->len < logical);
4658 map = (struct map_lookup *)em->bdev;
4659 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4660 BTRFS_BLOCK_GROUP_RAID6))
4661 ret = 1;
4662 free_extent_map(em);
4663 return ret;
4664 }
4665
4666 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4667 struct map_lookup *map, int first, int num,
4668 int optimal, int dev_replace_is_ongoing)
4669 {
4670 int i;
4671 int tolerance;
4672 struct btrfs_device *srcdev;
4673
4674 if (dev_replace_is_ongoing &&
4675 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4676 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4677 srcdev = fs_info->dev_replace.srcdev;
4678 else
4679 srcdev = NULL;
4680
4681 /*
4682 * try to avoid the drive that is the source drive for a
4683 * dev-replace procedure, only choose it if no other non-missing
4684 * mirror is available
4685 */
4686 for (tolerance = 0; tolerance < 2; tolerance++) {
4687 if (map->stripes[optimal].dev->bdev &&
4688 (tolerance || map->stripes[optimal].dev != srcdev))
4689 return optimal;
4690 for (i = first; i < first + num; i++) {
4691 if (map->stripes[i].dev->bdev &&
4692 (tolerance || map->stripes[i].dev != srcdev))
4693 return i;
4694 }
4695 }
4696
4697 /* we couldn't find one that doesn't fail. Just return something
4698 * and the io error handling code will clean up eventually
4699 */
4700 return optimal;
4701 }
4702
4703 static inline int parity_smaller(u64 a, u64 b)
4704 {
4705 return a > b;
4706 }
4707
4708 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4709 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4710 {
4711 struct btrfs_bio_stripe s;
4712 int i;
4713 u64 l;
4714 int again = 1;
4715
4716 while (again) {
4717 again = 0;
4718 for (i = 0; i < bbio->num_stripes - 1; i++) {
4719 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4720 s = bbio->stripes[i];
4721 l = raid_map[i];
4722 bbio->stripes[i] = bbio->stripes[i+1];
4723 raid_map[i] = raid_map[i+1];
4724 bbio->stripes[i+1] = s;
4725 raid_map[i+1] = l;
4726 again = 1;
4727 }
4728 }
4729 }
4730 }
4731
4732 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4733 u64 logical, u64 *length,
4734 struct btrfs_bio **bbio_ret,
4735 int mirror_num, u64 **raid_map_ret)
4736 {
4737 struct extent_map *em;
4738 struct map_lookup *map;
4739 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4740 struct extent_map_tree *em_tree = &map_tree->map_tree;
4741 u64 offset;
4742 u64 stripe_offset;
4743 u64 stripe_end_offset;
4744 u64 stripe_nr;
4745 u64 stripe_nr_orig;
4746 u64 stripe_nr_end;
4747 u64 stripe_len;
4748 u64 *raid_map = NULL;
4749 int stripe_index;
4750 int i;
4751 int ret = 0;
4752 int num_stripes;
4753 int max_errors = 0;
4754 struct btrfs_bio *bbio = NULL;
4755 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4756 int dev_replace_is_ongoing = 0;
4757 int num_alloc_stripes;
4758 int patch_the_first_stripe_for_dev_replace = 0;
4759 u64 physical_to_patch_in_first_stripe = 0;
4760 u64 raid56_full_stripe_start = (u64)-1;
4761
4762 read_lock(&em_tree->lock);
4763 em = lookup_extent_mapping(em_tree, logical, *length);
4764 read_unlock(&em_tree->lock);
4765
4766 if (!em) {
4767 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4768 logical, *length);
4769 return -EINVAL;
4770 }
4771
4772 if (em->start > logical || em->start + em->len < logical) {
4773 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4774 "found %Lu-%Lu", logical, em->start,
4775 em->start + em->len);
4776 free_extent_map(em);
4777 return -EINVAL;
4778 }
4779
4780 map = (struct map_lookup *)em->bdev;
4781 offset = logical - em->start;
4782
4783 stripe_len = map->stripe_len;
4784 stripe_nr = offset;
4785 /*
4786 * stripe_nr counts the total number of stripes we have to stride
4787 * to get to this block
4788 */
4789 do_div(stripe_nr, stripe_len);
4790
4791 stripe_offset = stripe_nr * stripe_len;
4792 BUG_ON(offset < stripe_offset);
4793
4794 /* stripe_offset is the offset of this block in its stripe*/
4795 stripe_offset = offset - stripe_offset;
4796
4797 /* if we're here for raid56, we need to know the stripe aligned start */
4798 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4799 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4800 raid56_full_stripe_start = offset;
4801
4802 /* allow a write of a full stripe, but make sure we don't
4803 * allow straddling of stripes
4804 */
4805 do_div(raid56_full_stripe_start, full_stripe_len);
4806 raid56_full_stripe_start *= full_stripe_len;
4807 }
4808
4809 if (rw & REQ_DISCARD) {
4810 /* we don't discard raid56 yet */
4811 if (map->type &
4812 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4813 ret = -EOPNOTSUPP;
4814 goto out;
4815 }
4816 *length = min_t(u64, em->len - offset, *length);
4817 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4818 u64 max_len;
4819 /* For writes to RAID[56], allow a full stripeset across all disks.
4820 For other RAID types and for RAID[56] reads, just allow a single
4821 stripe (on a single disk). */
4822 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4823 (rw & REQ_WRITE)) {
4824 max_len = stripe_len * nr_data_stripes(map) -
4825 (offset - raid56_full_stripe_start);
4826 } else {
4827 /* we limit the length of each bio to what fits in a stripe */
4828 max_len = stripe_len - stripe_offset;
4829 }
4830 *length = min_t(u64, em->len - offset, max_len);
4831 } else {
4832 *length = em->len - offset;
4833 }
4834
4835 /* This is for when we're called from btrfs_merge_bio_hook() and all
4836 it cares about is the length */
4837 if (!bbio_ret)
4838 goto out;
4839
4840 btrfs_dev_replace_lock(dev_replace);
4841 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4842 if (!dev_replace_is_ongoing)
4843 btrfs_dev_replace_unlock(dev_replace);
4844
4845 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4846 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4847 dev_replace->tgtdev != NULL) {
4848 /*
4849 * in dev-replace case, for repair case (that's the only
4850 * case where the mirror is selected explicitly when
4851 * calling btrfs_map_block), blocks left of the left cursor
4852 * can also be read from the target drive.
4853 * For REQ_GET_READ_MIRRORS, the target drive is added as
4854 * the last one to the array of stripes. For READ, it also
4855 * needs to be supported using the same mirror number.
4856 * If the requested block is not left of the left cursor,
4857 * EIO is returned. This can happen because btrfs_num_copies()
4858 * returns one more in the dev-replace case.
4859 */
4860 u64 tmp_length = *length;
4861 struct btrfs_bio *tmp_bbio = NULL;
4862 int tmp_num_stripes;
4863 u64 srcdev_devid = dev_replace->srcdev->devid;
4864 int index_srcdev = 0;
4865 int found = 0;
4866 u64 physical_of_found = 0;
4867
4868 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
4869 logical, &tmp_length, &tmp_bbio, 0, NULL);
4870 if (ret) {
4871 WARN_ON(tmp_bbio != NULL);
4872 goto out;
4873 }
4874
4875 tmp_num_stripes = tmp_bbio->num_stripes;
4876 if (mirror_num > tmp_num_stripes) {
4877 /*
4878 * REQ_GET_READ_MIRRORS does not contain this
4879 * mirror, that means that the requested area
4880 * is not left of the left cursor
4881 */
4882 ret = -EIO;
4883 kfree(tmp_bbio);
4884 goto out;
4885 }
4886
4887 /*
4888 * process the rest of the function using the mirror_num
4889 * of the source drive. Therefore look it up first.
4890 * At the end, patch the device pointer to the one of the
4891 * target drive.
4892 */
4893 for (i = 0; i < tmp_num_stripes; i++) {
4894 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4895 /*
4896 * In case of DUP, in order to keep it
4897 * simple, only add the mirror with the
4898 * lowest physical address
4899 */
4900 if (found &&
4901 physical_of_found <=
4902 tmp_bbio->stripes[i].physical)
4903 continue;
4904 index_srcdev = i;
4905 found = 1;
4906 physical_of_found =
4907 tmp_bbio->stripes[i].physical;
4908 }
4909 }
4910
4911 if (found) {
4912 mirror_num = index_srcdev + 1;
4913 patch_the_first_stripe_for_dev_replace = 1;
4914 physical_to_patch_in_first_stripe = physical_of_found;
4915 } else {
4916 WARN_ON(1);
4917 ret = -EIO;
4918 kfree(tmp_bbio);
4919 goto out;
4920 }
4921
4922 kfree(tmp_bbio);
4923 } else if (mirror_num > map->num_stripes) {
4924 mirror_num = 0;
4925 }
4926
4927 num_stripes = 1;
4928 stripe_index = 0;
4929 stripe_nr_orig = stripe_nr;
4930 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
4931 do_div(stripe_nr_end, map->stripe_len);
4932 stripe_end_offset = stripe_nr_end * map->stripe_len -
4933 (offset + *length);
4934
4935 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4936 if (rw & REQ_DISCARD)
4937 num_stripes = min_t(u64, map->num_stripes,
4938 stripe_nr_end - stripe_nr_orig);
4939 stripe_index = do_div(stripe_nr, map->num_stripes);
4940 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
4941 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
4942 num_stripes = map->num_stripes;
4943 else if (mirror_num)
4944 stripe_index = mirror_num - 1;
4945 else {
4946 stripe_index = find_live_mirror(fs_info, map, 0,
4947 map->num_stripes,
4948 current->pid % map->num_stripes,
4949 dev_replace_is_ongoing);
4950 mirror_num = stripe_index + 1;
4951 }
4952
4953 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
4954 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
4955 num_stripes = map->num_stripes;
4956 } else if (mirror_num) {
4957 stripe_index = mirror_num - 1;
4958 } else {
4959 mirror_num = 1;
4960 }
4961
4962 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4963 int factor = map->num_stripes / map->sub_stripes;
4964
4965 stripe_index = do_div(stripe_nr, factor);
4966 stripe_index *= map->sub_stripes;
4967
4968 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
4969 num_stripes = map->sub_stripes;
4970 else if (rw & REQ_DISCARD)
4971 num_stripes = min_t(u64, map->sub_stripes *
4972 (stripe_nr_end - stripe_nr_orig),
4973 map->num_stripes);
4974 else if (mirror_num)
4975 stripe_index += mirror_num - 1;
4976 else {
4977 int old_stripe_index = stripe_index;
4978 stripe_index = find_live_mirror(fs_info, map,
4979 stripe_index,
4980 map->sub_stripes, stripe_index +
4981 current->pid % map->sub_stripes,
4982 dev_replace_is_ongoing);
4983 mirror_num = stripe_index - old_stripe_index + 1;
4984 }
4985
4986 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4987 BTRFS_BLOCK_GROUP_RAID6)) {
4988 u64 tmp;
4989
4990 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4991 && raid_map_ret) {
4992 int i, rot;
4993
4994 /* push stripe_nr back to the start of the full stripe */
4995 stripe_nr = raid56_full_stripe_start;
4996 do_div(stripe_nr, stripe_len);
4997
4998 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4999
5000 /* RAID[56] write or recovery. Return all stripes */
5001 num_stripes = map->num_stripes;
5002 max_errors = nr_parity_stripes(map);
5003
5004 raid_map = kmalloc_array(num_stripes, sizeof(u64),
5005 GFP_NOFS);
5006 if (!raid_map) {
5007 ret = -ENOMEM;
5008 goto out;
5009 }
5010
5011 /* Work out the disk rotation on this stripe-set */
5012 tmp = stripe_nr;
5013 rot = do_div(tmp, num_stripes);
5014
5015 /* Fill in the logical address of each stripe */
5016 tmp = stripe_nr * nr_data_stripes(map);
5017 for (i = 0; i < nr_data_stripes(map); i++)
5018 raid_map[(i+rot) % num_stripes] =
5019 em->start + (tmp + i) * map->stripe_len;
5020
5021 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5022 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5023 raid_map[(i+rot+1) % num_stripes] =
5024 RAID6_Q_STRIPE;
5025
5026 *length = map->stripe_len;
5027 stripe_index = 0;
5028 stripe_offset = 0;
5029 } else {
5030 /*
5031 * Mirror #0 or #1 means the original data block.
5032 * Mirror #2 is RAID5 parity block.
5033 * Mirror #3 is RAID6 Q block.
5034 */
5035 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5036 if (mirror_num > 1)
5037 stripe_index = nr_data_stripes(map) +
5038 mirror_num - 2;
5039
5040 /* We distribute the parity blocks across stripes */
5041 tmp = stripe_nr + stripe_index;
5042 stripe_index = do_div(tmp, map->num_stripes);
5043 }
5044 } else {
5045 /*
5046 * after this do_div call, stripe_nr is the number of stripes
5047 * on this device we have to walk to find the data, and
5048 * stripe_index is the number of our device in the stripe array
5049 */
5050 stripe_index = do_div(stripe_nr, map->num_stripes);
5051 mirror_num = stripe_index + 1;
5052 }
5053 BUG_ON(stripe_index >= map->num_stripes);
5054
5055 num_alloc_stripes = num_stripes;
5056 if (dev_replace_is_ongoing) {
5057 if (rw & (REQ_WRITE | REQ_DISCARD))
5058 num_alloc_stripes <<= 1;
5059 if (rw & REQ_GET_READ_MIRRORS)
5060 num_alloc_stripes++;
5061 }
5062 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
5063 if (!bbio) {
5064 kfree(raid_map);
5065 ret = -ENOMEM;
5066 goto out;
5067 }
5068 atomic_set(&bbio->error, 0);
5069
5070 if (rw & REQ_DISCARD) {
5071 int factor = 0;
5072 int sub_stripes = 0;
5073 u64 stripes_per_dev = 0;
5074 u32 remaining_stripes = 0;
5075 u32 last_stripe = 0;
5076
5077 if (map->type &
5078 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5079 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5080 sub_stripes = 1;
5081 else
5082 sub_stripes = map->sub_stripes;
5083
5084 factor = map->num_stripes / sub_stripes;
5085 stripes_per_dev = div_u64_rem(stripe_nr_end -
5086 stripe_nr_orig,
5087 factor,
5088 &remaining_stripes);
5089 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5090 last_stripe *= sub_stripes;
5091 }
5092
5093 for (i = 0; i < num_stripes; i++) {
5094 bbio->stripes[i].physical =
5095 map->stripes[stripe_index].physical +
5096 stripe_offset + stripe_nr * map->stripe_len;
5097 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5098
5099 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5100 BTRFS_BLOCK_GROUP_RAID10)) {
5101 bbio->stripes[i].length = stripes_per_dev *
5102 map->stripe_len;
5103
5104 if (i / sub_stripes < remaining_stripes)
5105 bbio->stripes[i].length +=
5106 map->stripe_len;
5107
5108 /*
5109 * Special for the first stripe and
5110 * the last stripe:
5111 *
5112 * |-------|...|-------|
5113 * |----------|
5114 * off end_off
5115 */
5116 if (i < sub_stripes)
5117 bbio->stripes[i].length -=
5118 stripe_offset;
5119
5120 if (stripe_index >= last_stripe &&
5121 stripe_index <= (last_stripe +
5122 sub_stripes - 1))
5123 bbio->stripes[i].length -=
5124 stripe_end_offset;
5125
5126 if (i == sub_stripes - 1)
5127 stripe_offset = 0;
5128 } else
5129 bbio->stripes[i].length = *length;
5130
5131 stripe_index++;
5132 if (stripe_index == map->num_stripes) {
5133 /* This could only happen for RAID0/10 */
5134 stripe_index = 0;
5135 stripe_nr++;
5136 }
5137 }
5138 } else {
5139 for (i = 0; i < num_stripes; i++) {
5140 bbio->stripes[i].physical =
5141 map->stripes[stripe_index].physical +
5142 stripe_offset +
5143 stripe_nr * map->stripe_len;
5144 bbio->stripes[i].dev =
5145 map->stripes[stripe_index].dev;
5146 stripe_index++;
5147 }
5148 }
5149
5150 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
5151 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5152 BTRFS_BLOCK_GROUP_RAID10 |
5153 BTRFS_BLOCK_GROUP_RAID5 |
5154 BTRFS_BLOCK_GROUP_DUP)) {
5155 max_errors = 1;
5156 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5157 max_errors = 2;
5158 }
5159 }
5160
5161 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5162 dev_replace->tgtdev != NULL) {
5163 int index_where_to_add;
5164 u64 srcdev_devid = dev_replace->srcdev->devid;
5165
5166 /*
5167 * duplicate the write operations while the dev replace
5168 * procedure is running. Since the copying of the old disk
5169 * to the new disk takes place at run time while the
5170 * filesystem is mounted writable, the regular write
5171 * operations to the old disk have to be duplicated to go
5172 * to the new disk as well.
5173 * Note that device->missing is handled by the caller, and
5174 * that the write to the old disk is already set up in the
5175 * stripes array.
5176 */
5177 index_where_to_add = num_stripes;
5178 for (i = 0; i < num_stripes; i++) {
5179 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5180 /* write to new disk, too */
5181 struct btrfs_bio_stripe *new =
5182 bbio->stripes + index_where_to_add;
5183 struct btrfs_bio_stripe *old =
5184 bbio->stripes + i;
5185
5186 new->physical = old->physical;
5187 new->length = old->length;
5188 new->dev = dev_replace->tgtdev;
5189 index_where_to_add++;
5190 max_errors++;
5191 }
5192 }
5193 num_stripes = index_where_to_add;
5194 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5195 dev_replace->tgtdev != NULL) {
5196 u64 srcdev_devid = dev_replace->srcdev->devid;
5197 int index_srcdev = 0;
5198 int found = 0;
5199 u64 physical_of_found = 0;
5200
5201 /*
5202 * During the dev-replace procedure, the target drive can
5203 * also be used to read data in case it is needed to repair
5204 * a corrupt block elsewhere. This is possible if the
5205 * requested area is left of the left cursor. In this area,
5206 * the target drive is a full copy of the source drive.
5207 */
5208 for (i = 0; i < num_stripes; i++) {
5209 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5210 /*
5211 * In case of DUP, in order to keep it
5212 * simple, only add the mirror with the
5213 * lowest physical address
5214 */
5215 if (found &&
5216 physical_of_found <=
5217 bbio->stripes[i].physical)
5218 continue;
5219 index_srcdev = i;
5220 found = 1;
5221 physical_of_found = bbio->stripes[i].physical;
5222 }
5223 }
5224 if (found) {
5225 u64 length = map->stripe_len;
5226
5227 if (physical_of_found + length <=
5228 dev_replace->cursor_left) {
5229 struct btrfs_bio_stripe *tgtdev_stripe =
5230 bbio->stripes + num_stripes;
5231
5232 tgtdev_stripe->physical = physical_of_found;
5233 tgtdev_stripe->length =
5234 bbio->stripes[index_srcdev].length;
5235 tgtdev_stripe->dev = dev_replace->tgtdev;
5236
5237 num_stripes++;
5238 }
5239 }
5240 }
5241
5242 *bbio_ret = bbio;
5243 bbio->num_stripes = num_stripes;
5244 bbio->max_errors = max_errors;
5245 bbio->mirror_num = mirror_num;
5246
5247 /*
5248 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5249 * mirror_num == num_stripes + 1 && dev_replace target drive is
5250 * available as a mirror
5251 */
5252 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5253 WARN_ON(num_stripes > 1);
5254 bbio->stripes[0].dev = dev_replace->tgtdev;
5255 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5256 bbio->mirror_num = map->num_stripes + 1;
5257 }
5258 if (raid_map) {
5259 sort_parity_stripes(bbio, raid_map);
5260 *raid_map_ret = raid_map;
5261 }
5262 out:
5263 if (dev_replace_is_ongoing)
5264 btrfs_dev_replace_unlock(dev_replace);
5265 free_extent_map(em);
5266 return ret;
5267 }
5268
5269 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5270 u64 logical, u64 *length,
5271 struct btrfs_bio **bbio_ret, int mirror_num)
5272 {
5273 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5274 mirror_num, NULL);
5275 }
5276
5277 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5278 u64 chunk_start, u64 physical, u64 devid,
5279 u64 **logical, int *naddrs, int *stripe_len)
5280 {
5281 struct extent_map_tree *em_tree = &map_tree->map_tree;
5282 struct extent_map *em;
5283 struct map_lookup *map;
5284 u64 *buf;
5285 u64 bytenr;
5286 u64 length;
5287 u64 stripe_nr;
5288 u64 rmap_len;
5289 int i, j, nr = 0;
5290
5291 read_lock(&em_tree->lock);
5292 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5293 read_unlock(&em_tree->lock);
5294
5295 if (!em) {
5296 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5297 chunk_start);
5298 return -EIO;
5299 }
5300
5301 if (em->start != chunk_start) {
5302 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5303 em->start, chunk_start);
5304 free_extent_map(em);
5305 return -EIO;
5306 }
5307 map = (struct map_lookup *)em->bdev;
5308
5309 length = em->len;
5310 rmap_len = map->stripe_len;
5311
5312 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5313 do_div(length, map->num_stripes / map->sub_stripes);
5314 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5315 do_div(length, map->num_stripes);
5316 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5317 BTRFS_BLOCK_GROUP_RAID6)) {
5318 do_div(length, nr_data_stripes(map));
5319 rmap_len = map->stripe_len * nr_data_stripes(map);
5320 }
5321
5322 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
5323 BUG_ON(!buf); /* -ENOMEM */
5324
5325 for (i = 0; i < map->num_stripes; i++) {
5326 if (devid && map->stripes[i].dev->devid != devid)
5327 continue;
5328 if (map->stripes[i].physical > physical ||
5329 map->stripes[i].physical + length <= physical)
5330 continue;
5331
5332 stripe_nr = physical - map->stripes[i].physical;
5333 do_div(stripe_nr, map->stripe_len);
5334
5335 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5336 stripe_nr = stripe_nr * map->num_stripes + i;
5337 do_div(stripe_nr, map->sub_stripes);
5338 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5339 stripe_nr = stripe_nr * map->num_stripes + i;
5340 } /* else if RAID[56], multiply by nr_data_stripes().
5341 * Alternatively, just use rmap_len below instead of
5342 * map->stripe_len */
5343
5344 bytenr = chunk_start + stripe_nr * rmap_len;
5345 WARN_ON(nr >= map->num_stripes);
5346 for (j = 0; j < nr; j++) {
5347 if (buf[j] == bytenr)
5348 break;
5349 }
5350 if (j == nr) {
5351 WARN_ON(nr >= map->num_stripes);
5352 buf[nr++] = bytenr;
5353 }
5354 }
5355
5356 *logical = buf;
5357 *naddrs = nr;
5358 *stripe_len = rmap_len;
5359
5360 free_extent_map(em);
5361 return 0;
5362 }
5363
5364 static void btrfs_end_bio(struct bio *bio, int err)
5365 {
5366 struct btrfs_bio *bbio = bio->bi_private;
5367 struct btrfs_device *dev = bbio->stripes[0].dev;
5368 int is_orig_bio = 0;
5369
5370 if (err) {
5371 atomic_inc(&bbio->error);
5372 if (err == -EIO || err == -EREMOTEIO) {
5373 unsigned int stripe_index =
5374 btrfs_io_bio(bio)->stripe_index;
5375
5376 BUG_ON(stripe_index >= bbio->num_stripes);
5377 dev = bbio->stripes[stripe_index].dev;
5378 if (dev->bdev) {
5379 if (bio->bi_rw & WRITE)
5380 btrfs_dev_stat_inc(dev,
5381 BTRFS_DEV_STAT_WRITE_ERRS);
5382 else
5383 btrfs_dev_stat_inc(dev,
5384 BTRFS_DEV_STAT_READ_ERRS);
5385 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5386 btrfs_dev_stat_inc(dev,
5387 BTRFS_DEV_STAT_FLUSH_ERRS);
5388 btrfs_dev_stat_print_on_error(dev);
5389 }
5390 }
5391 }
5392
5393 if (bio == bbio->orig_bio)
5394 is_orig_bio = 1;
5395
5396 btrfs_bio_counter_dec(bbio->fs_info);
5397
5398 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5399 if (!is_orig_bio) {
5400 bio_put(bio);
5401 bio = bbio->orig_bio;
5402 }
5403
5404 /*
5405 * We have original bio now. So increment bi_remaining to
5406 * account for it in endio
5407 */
5408 atomic_inc(&bio->bi_remaining);
5409
5410 bio->bi_private = bbio->private;
5411 bio->bi_end_io = bbio->end_io;
5412 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5413 /* only send an error to the higher layers if it is
5414 * beyond the tolerance of the btrfs bio
5415 */
5416 if (atomic_read(&bbio->error) > bbio->max_errors) {
5417 err = -EIO;
5418 } else {
5419 /*
5420 * this bio is actually up to date, we didn't
5421 * go over the max number of errors
5422 */
5423 set_bit(BIO_UPTODATE, &bio->bi_flags);
5424 err = 0;
5425 }
5426 kfree(bbio);
5427
5428 bio_endio(bio, err);
5429 } else if (!is_orig_bio) {
5430 bio_put(bio);
5431 }
5432 }
5433
5434 /*
5435 * see run_scheduled_bios for a description of why bios are collected for
5436 * async submit.
5437 *
5438 * This will add one bio to the pending list for a device and make sure
5439 * the work struct is scheduled.
5440 */
5441 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5442 struct btrfs_device *device,
5443 int rw, struct bio *bio)
5444 {
5445 int should_queue = 1;
5446 struct btrfs_pending_bios *pending_bios;
5447
5448 if (device->missing || !device->bdev) {
5449 bio_endio(bio, -EIO);
5450 return;
5451 }
5452
5453 /* don't bother with additional async steps for reads, right now */
5454 if (!(rw & REQ_WRITE)) {
5455 bio_get(bio);
5456 btrfsic_submit_bio(rw, bio);
5457 bio_put(bio);
5458 return;
5459 }
5460
5461 /*
5462 * nr_async_bios allows us to reliably return congestion to the
5463 * higher layers. Otherwise, the async bio makes it appear we have
5464 * made progress against dirty pages when we've really just put it
5465 * on a queue for later
5466 */
5467 atomic_inc(&root->fs_info->nr_async_bios);
5468 WARN_ON(bio->bi_next);
5469 bio->bi_next = NULL;
5470 bio->bi_rw |= rw;
5471
5472 spin_lock(&device->io_lock);
5473 if (bio->bi_rw & REQ_SYNC)
5474 pending_bios = &device->pending_sync_bios;
5475 else
5476 pending_bios = &device->pending_bios;
5477
5478 if (pending_bios->tail)
5479 pending_bios->tail->bi_next = bio;
5480
5481 pending_bios->tail = bio;
5482 if (!pending_bios->head)
5483 pending_bios->head = bio;
5484 if (device->running_pending)
5485 should_queue = 0;
5486
5487 spin_unlock(&device->io_lock);
5488
5489 if (should_queue)
5490 btrfs_queue_work(root->fs_info->submit_workers,
5491 &device->work);
5492 }
5493
5494 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5495 sector_t sector)
5496 {
5497 struct bio_vec *prev;
5498 struct request_queue *q = bdev_get_queue(bdev);
5499 unsigned int max_sectors = queue_max_sectors(q);
5500 struct bvec_merge_data bvm = {
5501 .bi_bdev = bdev,
5502 .bi_sector = sector,
5503 .bi_rw = bio->bi_rw,
5504 };
5505
5506 if (WARN_ON(bio->bi_vcnt == 0))
5507 return 1;
5508
5509 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5510 if (bio_sectors(bio) > max_sectors)
5511 return 0;
5512
5513 if (!q->merge_bvec_fn)
5514 return 1;
5515
5516 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5517 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5518 return 0;
5519 return 1;
5520 }
5521
5522 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5523 struct bio *bio, u64 physical, int dev_nr,
5524 int rw, int async)
5525 {
5526 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5527
5528 bio->bi_private = bbio;
5529 btrfs_io_bio(bio)->stripe_index = dev_nr;
5530 bio->bi_end_io = btrfs_end_bio;
5531 bio->bi_iter.bi_sector = physical >> 9;
5532 #ifdef DEBUG
5533 {
5534 struct rcu_string *name;
5535
5536 rcu_read_lock();
5537 name = rcu_dereference(dev->name);
5538 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5539 "(%s id %llu), size=%u\n", rw,
5540 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5541 name->str, dev->devid, bio->bi_size);
5542 rcu_read_unlock();
5543 }
5544 #endif
5545 bio->bi_bdev = dev->bdev;
5546
5547 btrfs_bio_counter_inc_noblocked(root->fs_info);
5548
5549 if (async)
5550 btrfs_schedule_bio(root, dev, rw, bio);
5551 else
5552 btrfsic_submit_bio(rw, bio);
5553 }
5554
5555 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5556 struct bio *first_bio, struct btrfs_device *dev,
5557 int dev_nr, int rw, int async)
5558 {
5559 struct bio_vec *bvec = first_bio->bi_io_vec;
5560 struct bio *bio;
5561 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5562 u64 physical = bbio->stripes[dev_nr].physical;
5563
5564 again:
5565 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5566 if (!bio)
5567 return -ENOMEM;
5568
5569 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5570 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5571 bvec->bv_offset) < bvec->bv_len) {
5572 u64 len = bio->bi_iter.bi_size;
5573
5574 atomic_inc(&bbio->stripes_pending);
5575 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5576 rw, async);
5577 physical += len;
5578 goto again;
5579 }
5580 bvec++;
5581 }
5582
5583 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5584 return 0;
5585 }
5586
5587 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5588 {
5589 atomic_inc(&bbio->error);
5590 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5591 bio->bi_private = bbio->private;
5592 bio->bi_end_io = bbio->end_io;
5593 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5594 bio->bi_iter.bi_sector = logical >> 9;
5595 kfree(bbio);
5596 bio_endio(bio, -EIO);
5597 }
5598 }
5599
5600 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5601 int mirror_num, int async_submit)
5602 {
5603 struct btrfs_device *dev;
5604 struct bio *first_bio = bio;
5605 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5606 u64 length = 0;
5607 u64 map_length;
5608 u64 *raid_map = NULL;
5609 int ret;
5610 int dev_nr = 0;
5611 int total_devs = 1;
5612 struct btrfs_bio *bbio = NULL;
5613
5614 length = bio->bi_iter.bi_size;
5615 map_length = length;
5616
5617 btrfs_bio_counter_inc_blocked(root->fs_info);
5618 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5619 mirror_num, &raid_map);
5620 if (ret) {
5621 btrfs_bio_counter_dec(root->fs_info);
5622 return ret;
5623 }
5624
5625 total_devs = bbio->num_stripes;
5626 bbio->orig_bio = first_bio;
5627 bbio->private = first_bio->bi_private;
5628 bbio->end_io = first_bio->bi_end_io;
5629 bbio->fs_info = root->fs_info;
5630 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5631
5632 if (raid_map) {
5633 /* In this case, map_length has been set to the length of
5634 a single stripe; not the whole write */
5635 if (rw & WRITE) {
5636 ret = raid56_parity_write(root, bio, bbio,
5637 raid_map, map_length);
5638 } else {
5639 ret = raid56_parity_recover(root, bio, bbio,
5640 raid_map, map_length,
5641 mirror_num);
5642 }
5643 /*
5644 * FIXME, replace dosen't support raid56 yet, please fix
5645 * it in the future.
5646 */
5647 btrfs_bio_counter_dec(root->fs_info);
5648 return ret;
5649 }
5650
5651 if (map_length < length) {
5652 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5653 logical, length, map_length);
5654 BUG();
5655 }
5656
5657 while (dev_nr < total_devs) {
5658 dev = bbio->stripes[dev_nr].dev;
5659 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5660 bbio_error(bbio, first_bio, logical);
5661 dev_nr++;
5662 continue;
5663 }
5664
5665 /*
5666 * Check and see if we're ok with this bio based on it's size
5667 * and offset with the given device.
5668 */
5669 if (!bio_size_ok(dev->bdev, first_bio,
5670 bbio->stripes[dev_nr].physical >> 9)) {
5671 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5672 dev_nr, rw, async_submit);
5673 BUG_ON(ret);
5674 dev_nr++;
5675 continue;
5676 }
5677
5678 if (dev_nr < total_devs - 1) {
5679 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5680 BUG_ON(!bio); /* -ENOMEM */
5681 } else {
5682 bio = first_bio;
5683 }
5684
5685 submit_stripe_bio(root, bbio, bio,
5686 bbio->stripes[dev_nr].physical, dev_nr, rw,
5687 async_submit);
5688 dev_nr++;
5689 }
5690 btrfs_bio_counter_dec(root->fs_info);
5691 return 0;
5692 }
5693
5694 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5695 u8 *uuid, u8 *fsid)
5696 {
5697 struct btrfs_device *device;
5698 struct btrfs_fs_devices *cur_devices;
5699
5700 cur_devices = fs_info->fs_devices;
5701 while (cur_devices) {
5702 if (!fsid ||
5703 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5704 device = __find_device(&cur_devices->devices,
5705 devid, uuid);
5706 if (device)
5707 return device;
5708 }
5709 cur_devices = cur_devices->seed;
5710 }
5711 return NULL;
5712 }
5713
5714 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5715 u64 devid, u8 *dev_uuid)
5716 {
5717 struct btrfs_device *device;
5718 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5719
5720 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5721 if (IS_ERR(device))
5722 return NULL;
5723
5724 list_add(&device->dev_list, &fs_devices->devices);
5725 device->fs_devices = fs_devices;
5726 fs_devices->num_devices++;
5727
5728 device->missing = 1;
5729 fs_devices->missing_devices++;
5730
5731 return device;
5732 }
5733
5734 /**
5735 * btrfs_alloc_device - allocate struct btrfs_device
5736 * @fs_info: used only for generating a new devid, can be NULL if
5737 * devid is provided (i.e. @devid != NULL).
5738 * @devid: a pointer to devid for this device. If NULL a new devid
5739 * is generated.
5740 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5741 * is generated.
5742 *
5743 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5744 * on error. Returned struct is not linked onto any lists and can be
5745 * destroyed with kfree() right away.
5746 */
5747 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5748 const u64 *devid,
5749 const u8 *uuid)
5750 {
5751 struct btrfs_device *dev;
5752 u64 tmp;
5753
5754 if (WARN_ON(!devid && !fs_info))
5755 return ERR_PTR(-EINVAL);
5756
5757 dev = __alloc_device();
5758 if (IS_ERR(dev))
5759 return dev;
5760
5761 if (devid)
5762 tmp = *devid;
5763 else {
5764 int ret;
5765
5766 ret = find_next_devid(fs_info, &tmp);
5767 if (ret) {
5768 kfree(dev);
5769 return ERR_PTR(ret);
5770 }
5771 }
5772 dev->devid = tmp;
5773
5774 if (uuid)
5775 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5776 else
5777 generate_random_uuid(dev->uuid);
5778
5779 btrfs_init_work(&dev->work, pending_bios_fn, NULL, NULL);
5780
5781 return dev;
5782 }
5783
5784 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5785 struct extent_buffer *leaf,
5786 struct btrfs_chunk *chunk)
5787 {
5788 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5789 struct map_lookup *map;
5790 struct extent_map *em;
5791 u64 logical;
5792 u64 length;
5793 u64 devid;
5794 u8 uuid[BTRFS_UUID_SIZE];
5795 int num_stripes;
5796 int ret;
5797 int i;
5798
5799 logical = key->offset;
5800 length = btrfs_chunk_length(leaf, chunk);
5801
5802 read_lock(&map_tree->map_tree.lock);
5803 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
5804 read_unlock(&map_tree->map_tree.lock);
5805
5806 /* already mapped? */
5807 if (em && em->start <= logical && em->start + em->len > logical) {
5808 free_extent_map(em);
5809 return 0;
5810 } else if (em) {
5811 free_extent_map(em);
5812 }
5813
5814 em = alloc_extent_map();
5815 if (!em)
5816 return -ENOMEM;
5817 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5818 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5819 if (!map) {
5820 free_extent_map(em);
5821 return -ENOMEM;
5822 }
5823
5824 em->bdev = (struct block_device *)map;
5825 em->start = logical;
5826 em->len = length;
5827 em->orig_start = 0;
5828 em->block_start = 0;
5829 em->block_len = em->len;
5830
5831 map->num_stripes = num_stripes;
5832 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5833 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5834 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5835 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5836 map->type = btrfs_chunk_type(leaf, chunk);
5837 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
5838 for (i = 0; i < num_stripes; i++) {
5839 map->stripes[i].physical =
5840 btrfs_stripe_offset_nr(leaf, chunk, i);
5841 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
5842 read_extent_buffer(leaf, uuid, (unsigned long)
5843 btrfs_stripe_dev_uuid_nr(chunk, i),
5844 BTRFS_UUID_SIZE);
5845 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5846 uuid, NULL);
5847 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
5848 kfree(map);
5849 free_extent_map(em);
5850 return -EIO;
5851 }
5852 if (!map->stripes[i].dev) {
5853 map->stripes[i].dev =
5854 add_missing_dev(root, devid, uuid);
5855 if (!map->stripes[i].dev) {
5856 kfree(map);
5857 free_extent_map(em);
5858 return -EIO;
5859 }
5860 }
5861 map->stripes[i].dev->in_fs_metadata = 1;
5862 }
5863
5864 write_lock(&map_tree->map_tree.lock);
5865 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
5866 write_unlock(&map_tree->map_tree.lock);
5867 BUG_ON(ret); /* Tree corruption */
5868 free_extent_map(em);
5869
5870 return 0;
5871 }
5872
5873 static void fill_device_from_item(struct extent_buffer *leaf,
5874 struct btrfs_dev_item *dev_item,
5875 struct btrfs_device *device)
5876 {
5877 unsigned long ptr;
5878
5879 device->devid = btrfs_device_id(leaf, dev_item);
5880 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5881 device->total_bytes = device->disk_total_bytes;
5882 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5883 device->type = btrfs_device_type(leaf, dev_item);
5884 device->io_align = btrfs_device_io_align(leaf, dev_item);
5885 device->io_width = btrfs_device_io_width(leaf, dev_item);
5886 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
5887 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
5888 device->is_tgtdev_for_dev_replace = 0;
5889
5890 ptr = btrfs_device_uuid(dev_item);
5891 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
5892 }
5893
5894 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5895 {
5896 struct btrfs_fs_devices *fs_devices;
5897 int ret;
5898
5899 BUG_ON(!mutex_is_locked(&uuid_mutex));
5900
5901 fs_devices = root->fs_info->fs_devices->seed;
5902 while (fs_devices) {
5903 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5904 ret = 0;
5905 goto out;
5906 }
5907 fs_devices = fs_devices->seed;
5908 }
5909
5910 fs_devices = find_fsid(fsid);
5911 if (!fs_devices) {
5912 ret = -ENOENT;
5913 goto out;
5914 }
5915
5916 fs_devices = clone_fs_devices(fs_devices);
5917 if (IS_ERR(fs_devices)) {
5918 ret = PTR_ERR(fs_devices);
5919 goto out;
5920 }
5921
5922 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
5923 root->fs_info->bdev_holder);
5924 if (ret) {
5925 free_fs_devices(fs_devices);
5926 goto out;
5927 }
5928
5929 if (!fs_devices->seeding) {
5930 __btrfs_close_devices(fs_devices);
5931 free_fs_devices(fs_devices);
5932 ret = -EINVAL;
5933 goto out;
5934 }
5935
5936 fs_devices->seed = root->fs_info->fs_devices->seed;
5937 root->fs_info->fs_devices->seed = fs_devices;
5938 out:
5939 return ret;
5940 }
5941
5942 static int read_one_dev(struct btrfs_root *root,
5943 struct extent_buffer *leaf,
5944 struct btrfs_dev_item *dev_item)
5945 {
5946 struct btrfs_device *device;
5947 u64 devid;
5948 int ret;
5949 u8 fs_uuid[BTRFS_UUID_SIZE];
5950 u8 dev_uuid[BTRFS_UUID_SIZE];
5951
5952 devid = btrfs_device_id(leaf, dev_item);
5953 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
5954 BTRFS_UUID_SIZE);
5955 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
5956 BTRFS_UUID_SIZE);
5957
5958 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5959 ret = open_seed_devices(root, fs_uuid);
5960 if (ret && !btrfs_test_opt(root, DEGRADED))
5961 return ret;
5962 }
5963
5964 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5965 if (!device || !device->bdev) {
5966 if (!btrfs_test_opt(root, DEGRADED))
5967 return -EIO;
5968
5969 if (!device) {
5970 btrfs_warn(root->fs_info, "devid %llu missing", devid);
5971 device = add_missing_dev(root, devid, dev_uuid);
5972 if (!device)
5973 return -ENOMEM;
5974 } else if (!device->missing) {
5975 /*
5976 * this happens when a device that was properly setup
5977 * in the device info lists suddenly goes bad.
5978 * device->bdev is NULL, and so we have to set
5979 * device->missing to one here
5980 */
5981 root->fs_info->fs_devices->missing_devices++;
5982 device->missing = 1;
5983 }
5984 }
5985
5986 if (device->fs_devices != root->fs_info->fs_devices) {
5987 BUG_ON(device->writeable);
5988 if (device->generation !=
5989 btrfs_device_generation(leaf, dev_item))
5990 return -EINVAL;
5991 }
5992
5993 fill_device_from_item(leaf, dev_item, device);
5994 device->in_fs_metadata = 1;
5995 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
5996 device->fs_devices->total_rw_bytes += device->total_bytes;
5997 spin_lock(&root->fs_info->free_chunk_lock);
5998 root->fs_info->free_chunk_space += device->total_bytes -
5999 device->bytes_used;
6000 spin_unlock(&root->fs_info->free_chunk_lock);
6001 }
6002 ret = 0;
6003 return ret;
6004 }
6005
6006 int btrfs_read_sys_array(struct btrfs_root *root)
6007 {
6008 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6009 struct extent_buffer *sb;
6010 struct btrfs_disk_key *disk_key;
6011 struct btrfs_chunk *chunk;
6012 u8 *ptr;
6013 unsigned long sb_ptr;
6014 int ret = 0;
6015 u32 num_stripes;
6016 u32 array_size;
6017 u32 len = 0;
6018 u32 cur;
6019 struct btrfs_key key;
6020
6021 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
6022 BTRFS_SUPER_INFO_SIZE);
6023 if (!sb)
6024 return -ENOMEM;
6025 btrfs_set_buffer_uptodate(sb);
6026 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6027 /*
6028 * The sb extent buffer is artifical and just used to read the system array.
6029 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6030 * pages up-to-date when the page is larger: extent does not cover the
6031 * whole page and consequently check_page_uptodate does not find all
6032 * the page's extents up-to-date (the hole beyond sb),
6033 * write_extent_buffer then triggers a WARN_ON.
6034 *
6035 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6036 * but sb spans only this function. Add an explicit SetPageUptodate call
6037 * to silence the warning eg. on PowerPC 64.
6038 */
6039 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6040 SetPageUptodate(sb->pages[0]);
6041
6042 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6043 array_size = btrfs_super_sys_array_size(super_copy);
6044
6045 ptr = super_copy->sys_chunk_array;
6046 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
6047 cur = 0;
6048
6049 while (cur < array_size) {
6050 disk_key = (struct btrfs_disk_key *)ptr;
6051 btrfs_disk_key_to_cpu(&key, disk_key);
6052
6053 len = sizeof(*disk_key); ptr += len;
6054 sb_ptr += len;
6055 cur += len;
6056
6057 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6058 chunk = (struct btrfs_chunk *)sb_ptr;
6059 ret = read_one_chunk(root, &key, sb, chunk);
6060 if (ret)
6061 break;
6062 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6063 len = btrfs_chunk_item_size(num_stripes);
6064 } else {
6065 ret = -EIO;
6066 break;
6067 }
6068 ptr += len;
6069 sb_ptr += len;
6070 cur += len;
6071 }
6072 free_extent_buffer(sb);
6073 return ret;
6074 }
6075
6076 int btrfs_read_chunk_tree(struct btrfs_root *root)
6077 {
6078 struct btrfs_path *path;
6079 struct extent_buffer *leaf;
6080 struct btrfs_key key;
6081 struct btrfs_key found_key;
6082 int ret;
6083 int slot;
6084
6085 root = root->fs_info->chunk_root;
6086
6087 path = btrfs_alloc_path();
6088 if (!path)
6089 return -ENOMEM;
6090
6091 mutex_lock(&uuid_mutex);
6092 lock_chunks(root);
6093
6094 /*
6095 * Read all device items, and then all the chunk items. All
6096 * device items are found before any chunk item (their object id
6097 * is smaller than the lowest possible object id for a chunk
6098 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6099 */
6100 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6101 key.offset = 0;
6102 key.type = 0;
6103 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6104 if (ret < 0)
6105 goto error;
6106 while (1) {
6107 leaf = path->nodes[0];
6108 slot = path->slots[0];
6109 if (slot >= btrfs_header_nritems(leaf)) {
6110 ret = btrfs_next_leaf(root, path);
6111 if (ret == 0)
6112 continue;
6113 if (ret < 0)
6114 goto error;
6115 break;
6116 }
6117 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6118 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6119 struct btrfs_dev_item *dev_item;
6120 dev_item = btrfs_item_ptr(leaf, slot,
6121 struct btrfs_dev_item);
6122 ret = read_one_dev(root, leaf, dev_item);
6123 if (ret)
6124 goto error;
6125 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6126 struct btrfs_chunk *chunk;
6127 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6128 ret = read_one_chunk(root, &found_key, leaf, chunk);
6129 if (ret)
6130 goto error;
6131 }
6132 path->slots[0]++;
6133 }
6134 ret = 0;
6135 error:
6136 unlock_chunks(root);
6137 mutex_unlock(&uuid_mutex);
6138
6139 btrfs_free_path(path);
6140 return ret;
6141 }
6142
6143 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6144 {
6145 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6146 struct btrfs_device *device;
6147
6148 while (fs_devices) {
6149 mutex_lock(&fs_devices->device_list_mutex);
6150 list_for_each_entry(device, &fs_devices->devices, dev_list)
6151 device->dev_root = fs_info->dev_root;
6152 mutex_unlock(&fs_devices->device_list_mutex);
6153
6154 fs_devices = fs_devices->seed;
6155 }
6156 }
6157
6158 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6159 {
6160 int i;
6161
6162 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6163 btrfs_dev_stat_reset(dev, i);
6164 }
6165
6166 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6167 {
6168 struct btrfs_key key;
6169 struct btrfs_key found_key;
6170 struct btrfs_root *dev_root = fs_info->dev_root;
6171 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6172 struct extent_buffer *eb;
6173 int slot;
6174 int ret = 0;
6175 struct btrfs_device *device;
6176 struct btrfs_path *path = NULL;
6177 int i;
6178
6179 path = btrfs_alloc_path();
6180 if (!path) {
6181 ret = -ENOMEM;
6182 goto out;
6183 }
6184
6185 mutex_lock(&fs_devices->device_list_mutex);
6186 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6187 int item_size;
6188 struct btrfs_dev_stats_item *ptr;
6189
6190 key.objectid = 0;
6191 key.type = BTRFS_DEV_STATS_KEY;
6192 key.offset = device->devid;
6193 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6194 if (ret) {
6195 __btrfs_reset_dev_stats(device);
6196 device->dev_stats_valid = 1;
6197 btrfs_release_path(path);
6198 continue;
6199 }
6200 slot = path->slots[0];
6201 eb = path->nodes[0];
6202 btrfs_item_key_to_cpu(eb, &found_key, slot);
6203 item_size = btrfs_item_size_nr(eb, slot);
6204
6205 ptr = btrfs_item_ptr(eb, slot,
6206 struct btrfs_dev_stats_item);
6207
6208 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6209 if (item_size >= (1 + i) * sizeof(__le64))
6210 btrfs_dev_stat_set(device, i,
6211 btrfs_dev_stats_value(eb, ptr, i));
6212 else
6213 btrfs_dev_stat_reset(device, i);
6214 }
6215
6216 device->dev_stats_valid = 1;
6217 btrfs_dev_stat_print_on_load(device);
6218 btrfs_release_path(path);
6219 }
6220 mutex_unlock(&fs_devices->device_list_mutex);
6221
6222 out:
6223 btrfs_free_path(path);
6224 return ret < 0 ? ret : 0;
6225 }
6226
6227 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6228 struct btrfs_root *dev_root,
6229 struct btrfs_device *device)
6230 {
6231 struct btrfs_path *path;
6232 struct btrfs_key key;
6233 struct extent_buffer *eb;
6234 struct btrfs_dev_stats_item *ptr;
6235 int ret;
6236 int i;
6237
6238 key.objectid = 0;
6239 key.type = BTRFS_DEV_STATS_KEY;
6240 key.offset = device->devid;
6241
6242 path = btrfs_alloc_path();
6243 BUG_ON(!path);
6244 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6245 if (ret < 0) {
6246 printk_in_rcu(KERN_WARNING "BTRFS: "
6247 "error %d while searching for dev_stats item for device %s!\n",
6248 ret, rcu_str_deref(device->name));
6249 goto out;
6250 }
6251
6252 if (ret == 0 &&
6253 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6254 /* need to delete old one and insert a new one */
6255 ret = btrfs_del_item(trans, dev_root, path);
6256 if (ret != 0) {
6257 printk_in_rcu(KERN_WARNING "BTRFS: "
6258 "delete too small dev_stats item for device %s failed %d!\n",
6259 rcu_str_deref(device->name), ret);
6260 goto out;
6261 }
6262 ret = 1;
6263 }
6264
6265 if (ret == 1) {
6266 /* need to insert a new item */
6267 btrfs_release_path(path);
6268 ret = btrfs_insert_empty_item(trans, dev_root, path,
6269 &key, sizeof(*ptr));
6270 if (ret < 0) {
6271 printk_in_rcu(KERN_WARNING "BTRFS: "
6272 "insert dev_stats item for device %s failed %d!\n",
6273 rcu_str_deref(device->name), ret);
6274 goto out;
6275 }
6276 }
6277
6278 eb = path->nodes[0];
6279 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6280 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6281 btrfs_set_dev_stats_value(eb, ptr, i,
6282 btrfs_dev_stat_read(device, i));
6283 btrfs_mark_buffer_dirty(eb);
6284
6285 out:
6286 btrfs_free_path(path);
6287 return ret;
6288 }
6289
6290 /*
6291 * called from commit_transaction. Writes all changed device stats to disk.
6292 */
6293 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6294 struct btrfs_fs_info *fs_info)
6295 {
6296 struct btrfs_root *dev_root = fs_info->dev_root;
6297 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6298 struct btrfs_device *device;
6299 int ret = 0;
6300
6301 mutex_lock(&fs_devices->device_list_mutex);
6302 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6303 if (!device->dev_stats_valid || !device->dev_stats_dirty)
6304 continue;
6305
6306 ret = update_dev_stat_item(trans, dev_root, device);
6307 if (!ret)
6308 device->dev_stats_dirty = 0;
6309 }
6310 mutex_unlock(&fs_devices->device_list_mutex);
6311
6312 return ret;
6313 }
6314
6315 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6316 {
6317 btrfs_dev_stat_inc(dev, index);
6318 btrfs_dev_stat_print_on_error(dev);
6319 }
6320
6321 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6322 {
6323 if (!dev->dev_stats_valid)
6324 return;
6325 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6326 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6327 rcu_str_deref(dev->name),
6328 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6329 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6330 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6331 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6332 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6333 }
6334
6335 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6336 {
6337 int i;
6338
6339 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6340 if (btrfs_dev_stat_read(dev, i) != 0)
6341 break;
6342 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6343 return; /* all values == 0, suppress message */
6344
6345 printk_in_rcu(KERN_INFO "BTRFS: "
6346 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6347 rcu_str_deref(dev->name),
6348 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6349 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6350 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6351 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6352 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6353 }
6354
6355 int btrfs_get_dev_stats(struct btrfs_root *root,
6356 struct btrfs_ioctl_get_dev_stats *stats)
6357 {
6358 struct btrfs_device *dev;
6359 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6360 int i;
6361
6362 mutex_lock(&fs_devices->device_list_mutex);
6363 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6364 mutex_unlock(&fs_devices->device_list_mutex);
6365
6366 if (!dev) {
6367 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6368 return -ENODEV;
6369 } else if (!dev->dev_stats_valid) {
6370 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6371 return -ENODEV;
6372 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6373 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6374 if (stats->nr_items > i)
6375 stats->values[i] =
6376 btrfs_dev_stat_read_and_reset(dev, i);
6377 else
6378 btrfs_dev_stat_reset(dev, i);
6379 }
6380 } else {
6381 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6382 if (stats->nr_items > i)
6383 stats->values[i] = btrfs_dev_stat_read(dev, i);
6384 }
6385 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6386 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6387 return 0;
6388 }
6389
6390 int btrfs_scratch_superblock(struct btrfs_device *device)
6391 {
6392 struct buffer_head *bh;
6393 struct btrfs_super_block *disk_super;
6394
6395 bh = btrfs_read_dev_super(device->bdev);
6396 if (!bh)
6397 return -EINVAL;
6398 disk_super = (struct btrfs_super_block *)bh->b_data;
6399
6400 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6401 set_buffer_dirty(bh);
6402 sync_dirty_buffer(bh);
6403 brelse(bh);
6404
6405 return 0;
6406 }
This page took 0.282879 seconds and 5 git commands to generate.