869864ddcc294ff1c2a0879aedd03654d5cda28a
[deliverable/linux.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <asm/div64.h>
24 #include "ctree.h"
25 #include "extent_map.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "print-tree.h"
29 #include "volumes.h"
30 #include "async-thread.h"
31
32 struct map_lookup {
33 u64 type;
34 int io_align;
35 int io_width;
36 int stripe_len;
37 int sector_size;
38 int num_stripes;
39 int sub_stripes;
40 struct btrfs_bio_stripe stripes[];
41 };
42
43 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
44 (sizeof(struct btrfs_bio_stripe) * (n)))
45
46 static DEFINE_MUTEX(uuid_mutex);
47 static LIST_HEAD(fs_uuids);
48
49 void btrfs_lock_volumes(void)
50 {
51 mutex_lock(&uuid_mutex);
52 }
53
54 void btrfs_unlock_volumes(void)
55 {
56 mutex_unlock(&uuid_mutex);
57 }
58
59 int btrfs_cleanup_fs_uuids(void)
60 {
61 struct btrfs_fs_devices *fs_devices;
62 struct list_head *uuid_cur;
63 struct list_head *devices_cur;
64 struct btrfs_device *dev;
65
66 list_for_each(uuid_cur, &fs_uuids) {
67 fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
68 list);
69 while(!list_empty(&fs_devices->devices)) {
70 devices_cur = fs_devices->devices.next;
71 dev = list_entry(devices_cur, struct btrfs_device,
72 dev_list);
73 if (dev->bdev) {
74 close_bdev_excl(dev->bdev);
75 fs_devices->open_devices--;
76 }
77 list_del(&dev->dev_list);
78 kfree(dev->name);
79 kfree(dev);
80 }
81 }
82 return 0;
83 }
84
85 static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
86 u8 *uuid)
87 {
88 struct btrfs_device *dev;
89 struct list_head *cur;
90
91 list_for_each(cur, head) {
92 dev = list_entry(cur, struct btrfs_device, dev_list);
93 if (dev->devid == devid &&
94 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
95 return dev;
96 }
97 }
98 return NULL;
99 }
100
101 static struct btrfs_fs_devices *find_fsid(u8 *fsid)
102 {
103 struct list_head *cur;
104 struct btrfs_fs_devices *fs_devices;
105
106 list_for_each(cur, &fs_uuids) {
107 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
108 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
109 return fs_devices;
110 }
111 return NULL;
112 }
113
114 /*
115 * we try to collect pending bios for a device so we don't get a large
116 * number of procs sending bios down to the same device. This greatly
117 * improves the schedulers ability to collect and merge the bios.
118 *
119 * But, it also turns into a long list of bios to process and that is sure
120 * to eventually make the worker thread block. The solution here is to
121 * make some progress and then put this work struct back at the end of
122 * the list if the block device is congested. This way, multiple devices
123 * can make progress from a single worker thread.
124 */
125 int run_scheduled_bios(struct btrfs_device *device)
126 {
127 struct bio *pending;
128 struct backing_dev_info *bdi;
129 struct bio *tail;
130 struct bio *cur;
131 int again = 0;
132 unsigned long num_run = 0;
133
134 bdi = device->bdev->bd_inode->i_mapping->backing_dev_info;
135 loop:
136 spin_lock(&device->io_lock);
137
138 /* take all the bios off the list at once and process them
139 * later on (without the lock held). But, remember the
140 * tail and other pointers so the bios can be properly reinserted
141 * into the list if we hit congestion
142 */
143 pending = device->pending_bios;
144 tail = device->pending_bio_tail;
145 WARN_ON(pending && !tail);
146 device->pending_bios = NULL;
147 device->pending_bio_tail = NULL;
148
149 /*
150 * if pending was null this time around, no bios need processing
151 * at all and we can stop. Otherwise it'll loop back up again
152 * and do an additional check so no bios are missed.
153 *
154 * device->running_pending is used to synchronize with the
155 * schedule_bio code.
156 */
157 if (pending) {
158 again = 1;
159 device->running_pending = 1;
160 } else {
161 again = 0;
162 device->running_pending = 0;
163 }
164 spin_unlock(&device->io_lock);
165
166 while(pending) {
167 cur = pending;
168 pending = pending->bi_next;
169 cur->bi_next = NULL;
170 atomic_dec(&device->dev_root->fs_info->nr_async_submits);
171 submit_bio(cur->bi_rw, cur);
172 num_run++;
173
174 /*
175 * we made progress, there is more work to do and the bdi
176 * is now congested. Back off and let other work structs
177 * run instead
178 */
179 if (pending && num_run && bdi_write_congested(bdi)) {
180 struct bio *old_head;
181
182 spin_lock(&device->io_lock);
183 old_head = device->pending_bios;
184 device->pending_bios = pending;
185 if (device->pending_bio_tail)
186 tail->bi_next = old_head;
187 else
188 device->pending_bio_tail = tail;
189
190 spin_unlock(&device->io_lock);
191 btrfs_requeue_work(&device->work);
192 goto done;
193 }
194 }
195 if (again)
196 goto loop;
197 done:
198 return 0;
199 }
200
201 void pending_bios_fn(struct btrfs_work *work)
202 {
203 struct btrfs_device *device;
204
205 device = container_of(work, struct btrfs_device, work);
206 run_scheduled_bios(device);
207 }
208
209 static int device_list_add(const char *path,
210 struct btrfs_super_block *disk_super,
211 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
212 {
213 struct btrfs_device *device;
214 struct btrfs_fs_devices *fs_devices;
215 u64 found_transid = btrfs_super_generation(disk_super);
216
217 fs_devices = find_fsid(disk_super->fsid);
218 if (!fs_devices) {
219 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
220 if (!fs_devices)
221 return -ENOMEM;
222 INIT_LIST_HEAD(&fs_devices->devices);
223 INIT_LIST_HEAD(&fs_devices->alloc_list);
224 list_add(&fs_devices->list, &fs_uuids);
225 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
226 fs_devices->latest_devid = devid;
227 fs_devices->latest_trans = found_transid;
228 device = NULL;
229 } else {
230 device = __find_device(&fs_devices->devices, devid,
231 disk_super->dev_item.uuid);
232 }
233 if (!device) {
234 device = kzalloc(sizeof(*device), GFP_NOFS);
235 if (!device) {
236 /* we can safely leave the fs_devices entry around */
237 return -ENOMEM;
238 }
239 device->devid = devid;
240 device->work.func = pending_bios_fn;
241 memcpy(device->uuid, disk_super->dev_item.uuid,
242 BTRFS_UUID_SIZE);
243 device->barriers = 1;
244 spin_lock_init(&device->io_lock);
245 device->name = kstrdup(path, GFP_NOFS);
246 if (!device->name) {
247 kfree(device);
248 return -ENOMEM;
249 }
250 list_add(&device->dev_list, &fs_devices->devices);
251 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
252 fs_devices->num_devices++;
253 }
254
255 if (found_transid > fs_devices->latest_trans) {
256 fs_devices->latest_devid = devid;
257 fs_devices->latest_trans = found_transid;
258 }
259 *fs_devices_ret = fs_devices;
260 return 0;
261 }
262
263 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
264 {
265 struct list_head *head = &fs_devices->devices;
266 struct list_head *cur;
267 struct btrfs_device *device;
268
269 mutex_lock(&uuid_mutex);
270 again:
271 list_for_each(cur, head) {
272 device = list_entry(cur, struct btrfs_device, dev_list);
273 if (!device->in_fs_metadata) {
274 if (device->bdev) {
275 close_bdev_excl(device->bdev);
276 fs_devices->open_devices--;
277 }
278 list_del(&device->dev_list);
279 list_del(&device->dev_alloc_list);
280 fs_devices->num_devices--;
281 kfree(device->name);
282 kfree(device);
283 goto again;
284 }
285 }
286 mutex_unlock(&uuid_mutex);
287 return 0;
288 }
289
290 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
291 {
292 struct list_head *head = &fs_devices->devices;
293 struct list_head *cur;
294 struct btrfs_device *device;
295
296 mutex_lock(&uuid_mutex);
297 list_for_each(cur, head) {
298 device = list_entry(cur, struct btrfs_device, dev_list);
299 if (device->bdev) {
300 close_bdev_excl(device->bdev);
301 fs_devices->open_devices--;
302 }
303 device->bdev = NULL;
304 device->in_fs_metadata = 0;
305 }
306 fs_devices->mounted = 0;
307 mutex_unlock(&uuid_mutex);
308 return 0;
309 }
310
311 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
312 int flags, void *holder)
313 {
314 struct block_device *bdev;
315 struct list_head *head = &fs_devices->devices;
316 struct list_head *cur;
317 struct btrfs_device *device;
318 struct block_device *latest_bdev = NULL;
319 struct buffer_head *bh;
320 struct btrfs_super_block *disk_super;
321 u64 latest_devid = 0;
322 u64 latest_transid = 0;
323 u64 transid;
324 u64 devid;
325 int ret = 0;
326
327 mutex_lock(&uuid_mutex);
328 if (fs_devices->mounted)
329 goto out;
330
331 list_for_each(cur, head) {
332 device = list_entry(cur, struct btrfs_device, dev_list);
333 if (device->bdev)
334 continue;
335
336 if (!device->name)
337 continue;
338
339 bdev = open_bdev_excl(device->name, flags, holder);
340
341 if (IS_ERR(bdev)) {
342 printk("open %s failed\n", device->name);
343 goto error;
344 }
345 set_blocksize(bdev, 4096);
346
347 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
348 if (!bh)
349 goto error_close;
350
351 disk_super = (struct btrfs_super_block *)bh->b_data;
352 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
353 sizeof(disk_super->magic)))
354 goto error_brelse;
355
356 devid = le64_to_cpu(disk_super->dev_item.devid);
357 if (devid != device->devid)
358 goto error_brelse;
359
360 transid = btrfs_super_generation(disk_super);
361 if (!latest_transid || transid > latest_transid) {
362 latest_devid = devid;
363 latest_transid = transid;
364 latest_bdev = bdev;
365 }
366
367 device->bdev = bdev;
368 device->in_fs_metadata = 0;
369 fs_devices->open_devices++;
370 continue;
371
372 error_brelse:
373 brelse(bh);
374 error_close:
375 close_bdev_excl(bdev);
376 error:
377 continue;
378 }
379 if (fs_devices->open_devices == 0) {
380 ret = -EIO;
381 goto out;
382 }
383 fs_devices->mounted = 1;
384 fs_devices->latest_bdev = latest_bdev;
385 fs_devices->latest_devid = latest_devid;
386 fs_devices->latest_trans = latest_transid;
387 out:
388 mutex_unlock(&uuid_mutex);
389 return ret;
390 }
391
392 int btrfs_scan_one_device(const char *path, int flags, void *holder,
393 struct btrfs_fs_devices **fs_devices_ret)
394 {
395 struct btrfs_super_block *disk_super;
396 struct block_device *bdev;
397 struct buffer_head *bh;
398 int ret;
399 u64 devid;
400 u64 transid;
401
402 mutex_lock(&uuid_mutex);
403
404 bdev = open_bdev_excl(path, flags, holder);
405
406 if (IS_ERR(bdev)) {
407 ret = PTR_ERR(bdev);
408 goto error;
409 }
410
411 ret = set_blocksize(bdev, 4096);
412 if (ret)
413 goto error_close;
414 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
415 if (!bh) {
416 ret = -EIO;
417 goto error_close;
418 }
419 disk_super = (struct btrfs_super_block *)bh->b_data;
420 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
421 sizeof(disk_super->magic))) {
422 ret = -EINVAL;
423 goto error_brelse;
424 }
425 devid = le64_to_cpu(disk_super->dev_item.devid);
426 transid = btrfs_super_generation(disk_super);
427 if (disk_super->label[0])
428 printk("device label %s ", disk_super->label);
429 else {
430 /* FIXME, make a readl uuid parser */
431 printk("device fsid %llx-%llx ",
432 *(unsigned long long *)disk_super->fsid,
433 *(unsigned long long *)(disk_super->fsid + 8));
434 }
435 printk("devid %Lu transid %Lu %s\n", devid, transid, path);
436 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
437
438 error_brelse:
439 brelse(bh);
440 error_close:
441 close_bdev_excl(bdev);
442 error:
443 mutex_unlock(&uuid_mutex);
444 return ret;
445 }
446
447 /*
448 * this uses a pretty simple search, the expectation is that it is
449 * called very infrequently and that a given device has a small number
450 * of extents
451 */
452 static int find_free_dev_extent(struct btrfs_trans_handle *trans,
453 struct btrfs_device *device,
454 struct btrfs_path *path,
455 u64 num_bytes, u64 *start)
456 {
457 struct btrfs_key key;
458 struct btrfs_root *root = device->dev_root;
459 struct btrfs_dev_extent *dev_extent = NULL;
460 u64 hole_size = 0;
461 u64 last_byte = 0;
462 u64 search_start = 0;
463 u64 search_end = device->total_bytes;
464 int ret;
465 int slot = 0;
466 int start_found;
467 struct extent_buffer *l;
468
469 start_found = 0;
470 path->reada = 2;
471
472 /* FIXME use last free of some kind */
473
474 /* we don't want to overwrite the superblock on the drive,
475 * so we make sure to start at an offset of at least 1MB
476 */
477 search_start = max((u64)1024 * 1024, search_start);
478
479 if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
480 search_start = max(root->fs_info->alloc_start, search_start);
481
482 key.objectid = device->devid;
483 key.offset = search_start;
484 key.type = BTRFS_DEV_EXTENT_KEY;
485 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
486 if (ret < 0)
487 goto error;
488 ret = btrfs_previous_item(root, path, 0, key.type);
489 if (ret < 0)
490 goto error;
491 l = path->nodes[0];
492 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
493 while (1) {
494 l = path->nodes[0];
495 slot = path->slots[0];
496 if (slot >= btrfs_header_nritems(l)) {
497 ret = btrfs_next_leaf(root, path);
498 if (ret == 0)
499 continue;
500 if (ret < 0)
501 goto error;
502 no_more_items:
503 if (!start_found) {
504 if (search_start >= search_end) {
505 ret = -ENOSPC;
506 goto error;
507 }
508 *start = search_start;
509 start_found = 1;
510 goto check_pending;
511 }
512 *start = last_byte > search_start ?
513 last_byte : search_start;
514 if (search_end <= *start) {
515 ret = -ENOSPC;
516 goto error;
517 }
518 goto check_pending;
519 }
520 btrfs_item_key_to_cpu(l, &key, slot);
521
522 if (key.objectid < device->devid)
523 goto next;
524
525 if (key.objectid > device->devid)
526 goto no_more_items;
527
528 if (key.offset >= search_start && key.offset > last_byte &&
529 start_found) {
530 if (last_byte < search_start)
531 last_byte = search_start;
532 hole_size = key.offset - last_byte;
533 if (key.offset > last_byte &&
534 hole_size >= num_bytes) {
535 *start = last_byte;
536 goto check_pending;
537 }
538 }
539 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
540 goto next;
541 }
542
543 start_found = 1;
544 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
545 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
546 next:
547 path->slots[0]++;
548 cond_resched();
549 }
550 check_pending:
551 /* we have to make sure we didn't find an extent that has already
552 * been allocated by the map tree or the original allocation
553 */
554 btrfs_release_path(root, path);
555 BUG_ON(*start < search_start);
556
557 if (*start + num_bytes > search_end) {
558 ret = -ENOSPC;
559 goto error;
560 }
561 /* check for pending inserts here */
562 return 0;
563
564 error:
565 btrfs_release_path(root, path);
566 return ret;
567 }
568
569 int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
570 struct btrfs_device *device,
571 u64 start)
572 {
573 int ret;
574 struct btrfs_path *path;
575 struct btrfs_root *root = device->dev_root;
576 struct btrfs_key key;
577 struct btrfs_key found_key;
578 struct extent_buffer *leaf = NULL;
579 struct btrfs_dev_extent *extent = NULL;
580
581 path = btrfs_alloc_path();
582 if (!path)
583 return -ENOMEM;
584
585 key.objectid = device->devid;
586 key.offset = start;
587 key.type = BTRFS_DEV_EXTENT_KEY;
588
589 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
590 if (ret > 0) {
591 ret = btrfs_previous_item(root, path, key.objectid,
592 BTRFS_DEV_EXTENT_KEY);
593 BUG_ON(ret);
594 leaf = path->nodes[0];
595 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
596 extent = btrfs_item_ptr(leaf, path->slots[0],
597 struct btrfs_dev_extent);
598 BUG_ON(found_key.offset > start || found_key.offset +
599 btrfs_dev_extent_length(leaf, extent) < start);
600 ret = 0;
601 } else if (ret == 0) {
602 leaf = path->nodes[0];
603 extent = btrfs_item_ptr(leaf, path->slots[0],
604 struct btrfs_dev_extent);
605 }
606 BUG_ON(ret);
607
608 if (device->bytes_used > 0)
609 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
610 ret = btrfs_del_item(trans, root, path);
611 BUG_ON(ret);
612
613 btrfs_free_path(path);
614 return ret;
615 }
616
617 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
618 struct btrfs_device *device,
619 u64 chunk_tree, u64 chunk_objectid,
620 u64 chunk_offset,
621 u64 num_bytes, u64 *start)
622 {
623 int ret;
624 struct btrfs_path *path;
625 struct btrfs_root *root = device->dev_root;
626 struct btrfs_dev_extent *extent;
627 struct extent_buffer *leaf;
628 struct btrfs_key key;
629
630 WARN_ON(!device->in_fs_metadata);
631 path = btrfs_alloc_path();
632 if (!path)
633 return -ENOMEM;
634
635 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
636 if (ret) {
637 goto err;
638 }
639
640 key.objectid = device->devid;
641 key.offset = *start;
642 key.type = BTRFS_DEV_EXTENT_KEY;
643 ret = btrfs_insert_empty_item(trans, root, path, &key,
644 sizeof(*extent));
645 BUG_ON(ret);
646
647 leaf = path->nodes[0];
648 extent = btrfs_item_ptr(leaf, path->slots[0],
649 struct btrfs_dev_extent);
650 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
651 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
652 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
653
654 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
655 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
656 BTRFS_UUID_SIZE);
657
658 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
659 btrfs_mark_buffer_dirty(leaf);
660 err:
661 btrfs_free_path(path);
662 return ret;
663 }
664
665 static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
666 {
667 struct btrfs_path *path;
668 int ret;
669 struct btrfs_key key;
670 struct btrfs_chunk *chunk;
671 struct btrfs_key found_key;
672
673 path = btrfs_alloc_path();
674 BUG_ON(!path);
675
676 key.objectid = objectid;
677 key.offset = (u64)-1;
678 key.type = BTRFS_CHUNK_ITEM_KEY;
679
680 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
681 if (ret < 0)
682 goto error;
683
684 BUG_ON(ret == 0);
685
686 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
687 if (ret) {
688 *offset = 0;
689 } else {
690 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
691 path->slots[0]);
692 if (found_key.objectid != objectid)
693 *offset = 0;
694 else {
695 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
696 struct btrfs_chunk);
697 *offset = found_key.offset +
698 btrfs_chunk_length(path->nodes[0], chunk);
699 }
700 }
701 ret = 0;
702 error:
703 btrfs_free_path(path);
704 return ret;
705 }
706
707 static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
708 u64 *objectid)
709 {
710 int ret;
711 struct btrfs_key key;
712 struct btrfs_key found_key;
713
714 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
715 key.type = BTRFS_DEV_ITEM_KEY;
716 key.offset = (u64)-1;
717
718 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
719 if (ret < 0)
720 goto error;
721
722 BUG_ON(ret == 0);
723
724 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
725 BTRFS_DEV_ITEM_KEY);
726 if (ret) {
727 *objectid = 1;
728 } else {
729 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
730 path->slots[0]);
731 *objectid = found_key.offset + 1;
732 }
733 ret = 0;
734 error:
735 btrfs_release_path(root, path);
736 return ret;
737 }
738
739 /*
740 * the device information is stored in the chunk root
741 * the btrfs_device struct should be fully filled in
742 */
743 int btrfs_add_device(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root,
745 struct btrfs_device *device)
746 {
747 int ret;
748 struct btrfs_path *path;
749 struct btrfs_dev_item *dev_item;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 unsigned long ptr;
753 u64 free_devid = 0;
754
755 root = root->fs_info->chunk_root;
756
757 path = btrfs_alloc_path();
758 if (!path)
759 return -ENOMEM;
760
761 ret = find_next_devid(root, path, &free_devid);
762 if (ret)
763 goto out;
764
765 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
766 key.type = BTRFS_DEV_ITEM_KEY;
767 key.offset = free_devid;
768
769 ret = btrfs_insert_empty_item(trans, root, path, &key,
770 sizeof(*dev_item));
771 if (ret)
772 goto out;
773
774 leaf = path->nodes[0];
775 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
776
777 device->devid = free_devid;
778 btrfs_set_device_id(leaf, dev_item, device->devid);
779 btrfs_set_device_type(leaf, dev_item, device->type);
780 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
781 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
782 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
783 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
784 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
785 btrfs_set_device_group(leaf, dev_item, 0);
786 btrfs_set_device_seek_speed(leaf, dev_item, 0);
787 btrfs_set_device_bandwidth(leaf, dev_item, 0);
788
789 ptr = (unsigned long)btrfs_device_uuid(dev_item);
790 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
791 btrfs_mark_buffer_dirty(leaf);
792 ret = 0;
793
794 out:
795 btrfs_free_path(path);
796 return ret;
797 }
798
799 static int btrfs_rm_dev_item(struct btrfs_root *root,
800 struct btrfs_device *device)
801 {
802 int ret;
803 struct btrfs_path *path;
804 struct block_device *bdev = device->bdev;
805 struct btrfs_device *next_dev;
806 struct btrfs_key key;
807 u64 total_bytes;
808 struct btrfs_fs_devices *fs_devices;
809 struct btrfs_trans_handle *trans;
810
811 root = root->fs_info->chunk_root;
812
813 path = btrfs_alloc_path();
814 if (!path)
815 return -ENOMEM;
816
817 trans = btrfs_start_transaction(root, 1);
818 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
819 key.type = BTRFS_DEV_ITEM_KEY;
820 key.offset = device->devid;
821
822 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
823 if (ret < 0)
824 goto out;
825
826 if (ret > 0) {
827 ret = -ENOENT;
828 goto out;
829 }
830
831 ret = btrfs_del_item(trans, root, path);
832 if (ret)
833 goto out;
834
835 /*
836 * at this point, the device is zero sized. We want to
837 * remove it from the devices list and zero out the old super
838 */
839 list_del_init(&device->dev_list);
840 list_del_init(&device->dev_alloc_list);
841 fs_devices = root->fs_info->fs_devices;
842
843 next_dev = list_entry(fs_devices->devices.next, struct btrfs_device,
844 dev_list);
845 if (bdev == root->fs_info->sb->s_bdev)
846 root->fs_info->sb->s_bdev = next_dev->bdev;
847 if (bdev == fs_devices->latest_bdev)
848 fs_devices->latest_bdev = next_dev->bdev;
849
850 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
851 btrfs_set_super_num_devices(&root->fs_info->super_copy,
852 total_bytes - 1);
853 out:
854 btrfs_free_path(path);
855 btrfs_commit_transaction(trans, root);
856 return ret;
857 }
858
859 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
860 {
861 struct btrfs_device *device;
862 struct block_device *bdev;
863 struct buffer_head *bh = NULL;
864 struct btrfs_super_block *disk_super;
865 u64 all_avail;
866 u64 devid;
867 int ret = 0;
868
869 mutex_lock(&root->fs_info->alloc_mutex);
870 mutex_lock(&root->fs_info->chunk_mutex);
871 mutex_lock(&uuid_mutex);
872
873 all_avail = root->fs_info->avail_data_alloc_bits |
874 root->fs_info->avail_system_alloc_bits |
875 root->fs_info->avail_metadata_alloc_bits;
876
877 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
878 btrfs_super_num_devices(&root->fs_info->super_copy) <= 4) {
879 printk("btrfs: unable to go below four devices on raid10\n");
880 ret = -EINVAL;
881 goto out;
882 }
883
884 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
885 btrfs_super_num_devices(&root->fs_info->super_copy) <= 2) {
886 printk("btrfs: unable to go below two devices on raid1\n");
887 ret = -EINVAL;
888 goto out;
889 }
890
891 if (strcmp(device_path, "missing") == 0) {
892 struct list_head *cur;
893 struct list_head *devices;
894 struct btrfs_device *tmp;
895
896 device = NULL;
897 devices = &root->fs_info->fs_devices->devices;
898 list_for_each(cur, devices) {
899 tmp = list_entry(cur, struct btrfs_device, dev_list);
900 if (tmp->in_fs_metadata && !tmp->bdev) {
901 device = tmp;
902 break;
903 }
904 }
905 bdev = NULL;
906 bh = NULL;
907 disk_super = NULL;
908 if (!device) {
909 printk("btrfs: no missing devices found to remove\n");
910 goto out;
911 }
912
913 } else {
914 bdev = open_bdev_excl(device_path, 0,
915 root->fs_info->bdev_holder);
916 if (IS_ERR(bdev)) {
917 ret = PTR_ERR(bdev);
918 goto out;
919 }
920
921 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
922 if (!bh) {
923 ret = -EIO;
924 goto error_close;
925 }
926 disk_super = (struct btrfs_super_block *)bh->b_data;
927 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
928 sizeof(disk_super->magic))) {
929 ret = -ENOENT;
930 goto error_brelse;
931 }
932 if (memcmp(disk_super->fsid, root->fs_info->fsid,
933 BTRFS_FSID_SIZE)) {
934 ret = -ENOENT;
935 goto error_brelse;
936 }
937 devid = le64_to_cpu(disk_super->dev_item.devid);
938 device = btrfs_find_device(root, devid, NULL);
939 if (!device) {
940 ret = -ENOENT;
941 goto error_brelse;
942 }
943
944 }
945 root->fs_info->fs_devices->num_devices--;
946 root->fs_info->fs_devices->open_devices--;
947
948 ret = btrfs_shrink_device(device, 0);
949 if (ret)
950 goto error_brelse;
951
952
953 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
954 if (ret)
955 goto error_brelse;
956
957 if (bh) {
958 /* make sure this device isn't detected as part of
959 * the FS anymore
960 */
961 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
962 set_buffer_dirty(bh);
963 sync_dirty_buffer(bh);
964
965 brelse(bh);
966 }
967
968 if (device->bdev) {
969 /* one close for the device struct or super_block */
970 close_bdev_excl(device->bdev);
971 }
972 if (bdev) {
973 /* one close for us */
974 close_bdev_excl(bdev);
975 }
976 kfree(device->name);
977 kfree(device);
978 ret = 0;
979 goto out;
980
981 error_brelse:
982 brelse(bh);
983 error_close:
984 if (bdev)
985 close_bdev_excl(bdev);
986 out:
987 mutex_unlock(&uuid_mutex);
988 mutex_unlock(&root->fs_info->chunk_mutex);
989 mutex_unlock(&root->fs_info->alloc_mutex);
990 return ret;
991 }
992
993 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
994 {
995 struct btrfs_trans_handle *trans;
996 struct btrfs_device *device;
997 struct block_device *bdev;
998 struct list_head *cur;
999 struct list_head *devices;
1000 u64 total_bytes;
1001 int ret = 0;
1002
1003
1004 bdev = open_bdev_excl(device_path, 0, root->fs_info->bdev_holder);
1005 if (!bdev) {
1006 return -EIO;
1007 }
1008
1009 mutex_lock(&root->fs_info->alloc_mutex);
1010 mutex_lock(&root->fs_info->chunk_mutex);
1011
1012 trans = btrfs_start_transaction(root, 1);
1013 devices = &root->fs_info->fs_devices->devices;
1014 list_for_each(cur, devices) {
1015 device = list_entry(cur, struct btrfs_device, dev_list);
1016 if (device->bdev == bdev) {
1017 ret = -EEXIST;
1018 goto out;
1019 }
1020 }
1021
1022 device = kzalloc(sizeof(*device), GFP_NOFS);
1023 if (!device) {
1024 /* we can safely leave the fs_devices entry around */
1025 ret = -ENOMEM;
1026 goto out_close_bdev;
1027 }
1028
1029 device->barriers = 1;
1030 device->work.func = pending_bios_fn;
1031 generate_random_uuid(device->uuid);
1032 spin_lock_init(&device->io_lock);
1033 device->name = kstrdup(device_path, GFP_NOFS);
1034 if (!device->name) {
1035 kfree(device);
1036 goto out_close_bdev;
1037 }
1038 device->io_width = root->sectorsize;
1039 device->io_align = root->sectorsize;
1040 device->sector_size = root->sectorsize;
1041 device->total_bytes = i_size_read(bdev->bd_inode);
1042 device->dev_root = root->fs_info->dev_root;
1043 device->bdev = bdev;
1044 device->in_fs_metadata = 1;
1045
1046 ret = btrfs_add_device(trans, root, device);
1047 if (ret)
1048 goto out_close_bdev;
1049
1050 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1051 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1052 total_bytes + device->total_bytes);
1053
1054 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1055 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1056 total_bytes + 1);
1057
1058 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1059 list_add(&device->dev_alloc_list,
1060 &root->fs_info->fs_devices->alloc_list);
1061 root->fs_info->fs_devices->num_devices++;
1062 root->fs_info->fs_devices->open_devices++;
1063 out:
1064 btrfs_end_transaction(trans, root);
1065 mutex_unlock(&root->fs_info->chunk_mutex);
1066 mutex_unlock(&root->fs_info->alloc_mutex);
1067
1068 return ret;
1069
1070 out_close_bdev:
1071 close_bdev_excl(bdev);
1072 goto out;
1073 }
1074
1075 int btrfs_update_device(struct btrfs_trans_handle *trans,
1076 struct btrfs_device *device)
1077 {
1078 int ret;
1079 struct btrfs_path *path;
1080 struct btrfs_root *root;
1081 struct btrfs_dev_item *dev_item;
1082 struct extent_buffer *leaf;
1083 struct btrfs_key key;
1084
1085 root = device->dev_root->fs_info->chunk_root;
1086
1087 path = btrfs_alloc_path();
1088 if (!path)
1089 return -ENOMEM;
1090
1091 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1092 key.type = BTRFS_DEV_ITEM_KEY;
1093 key.offset = device->devid;
1094
1095 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1096 if (ret < 0)
1097 goto out;
1098
1099 if (ret > 0) {
1100 ret = -ENOENT;
1101 goto out;
1102 }
1103
1104 leaf = path->nodes[0];
1105 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1106
1107 btrfs_set_device_id(leaf, dev_item, device->devid);
1108 btrfs_set_device_type(leaf, dev_item, device->type);
1109 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1110 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1111 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1112 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1113 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1114 btrfs_mark_buffer_dirty(leaf);
1115
1116 out:
1117 btrfs_free_path(path);
1118 return ret;
1119 }
1120
1121 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1122 struct btrfs_device *device, u64 new_size)
1123 {
1124 struct btrfs_super_block *super_copy =
1125 &device->dev_root->fs_info->super_copy;
1126 u64 old_total = btrfs_super_total_bytes(super_copy);
1127 u64 diff = new_size - device->total_bytes;
1128
1129 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1130 return btrfs_update_device(trans, device);
1131 }
1132
1133 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1134 struct btrfs_root *root,
1135 u64 chunk_tree, u64 chunk_objectid,
1136 u64 chunk_offset)
1137 {
1138 int ret;
1139 struct btrfs_path *path;
1140 struct btrfs_key key;
1141
1142 root = root->fs_info->chunk_root;
1143 path = btrfs_alloc_path();
1144 if (!path)
1145 return -ENOMEM;
1146
1147 key.objectid = chunk_objectid;
1148 key.offset = chunk_offset;
1149 key.type = BTRFS_CHUNK_ITEM_KEY;
1150
1151 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1152 BUG_ON(ret);
1153
1154 ret = btrfs_del_item(trans, root, path);
1155 BUG_ON(ret);
1156
1157 btrfs_free_path(path);
1158 return 0;
1159 }
1160
1161 int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1162 chunk_offset)
1163 {
1164 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1165 struct btrfs_disk_key *disk_key;
1166 struct btrfs_chunk *chunk;
1167 u8 *ptr;
1168 int ret = 0;
1169 u32 num_stripes;
1170 u32 array_size;
1171 u32 len = 0;
1172 u32 cur;
1173 struct btrfs_key key;
1174
1175 array_size = btrfs_super_sys_array_size(super_copy);
1176
1177 ptr = super_copy->sys_chunk_array;
1178 cur = 0;
1179
1180 while (cur < array_size) {
1181 disk_key = (struct btrfs_disk_key *)ptr;
1182 btrfs_disk_key_to_cpu(&key, disk_key);
1183
1184 len = sizeof(*disk_key);
1185
1186 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1187 chunk = (struct btrfs_chunk *)(ptr + len);
1188 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1189 len += btrfs_chunk_item_size(num_stripes);
1190 } else {
1191 ret = -EIO;
1192 break;
1193 }
1194 if (key.objectid == chunk_objectid &&
1195 key.offset == chunk_offset) {
1196 memmove(ptr, ptr + len, array_size - (cur + len));
1197 array_size -= len;
1198 btrfs_set_super_sys_array_size(super_copy, array_size);
1199 } else {
1200 ptr += len;
1201 cur += len;
1202 }
1203 }
1204 return ret;
1205 }
1206
1207
1208 int btrfs_relocate_chunk(struct btrfs_root *root,
1209 u64 chunk_tree, u64 chunk_objectid,
1210 u64 chunk_offset)
1211 {
1212 struct extent_map_tree *em_tree;
1213 struct btrfs_root *extent_root;
1214 struct btrfs_trans_handle *trans;
1215 struct extent_map *em;
1216 struct map_lookup *map;
1217 int ret;
1218 int i;
1219
1220 printk("btrfs relocating chunk %llu\n",
1221 (unsigned long long)chunk_offset);
1222 root = root->fs_info->chunk_root;
1223 extent_root = root->fs_info->extent_root;
1224 em_tree = &root->fs_info->mapping_tree.map_tree;
1225
1226 /* step one, relocate all the extents inside this chunk */
1227 ret = btrfs_shrink_extent_tree(extent_root, chunk_offset);
1228 BUG_ON(ret);
1229
1230 trans = btrfs_start_transaction(root, 1);
1231 BUG_ON(!trans);
1232
1233 /*
1234 * step two, delete the device extents and the
1235 * chunk tree entries
1236 */
1237 spin_lock(&em_tree->lock);
1238 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1239 spin_unlock(&em_tree->lock);
1240
1241 BUG_ON(em->start > chunk_offset ||
1242 em->start + em->len < chunk_offset);
1243 map = (struct map_lookup *)em->bdev;
1244
1245 for (i = 0; i < map->num_stripes; i++) {
1246 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1247 map->stripes[i].physical);
1248 BUG_ON(ret);
1249
1250 if (map->stripes[i].dev) {
1251 ret = btrfs_update_device(trans, map->stripes[i].dev);
1252 BUG_ON(ret);
1253 }
1254 }
1255 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1256 chunk_offset);
1257
1258 BUG_ON(ret);
1259
1260 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1261 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1262 BUG_ON(ret);
1263 }
1264
1265 spin_lock(&em_tree->lock);
1266 remove_extent_mapping(em_tree, em);
1267 kfree(map);
1268 em->bdev = NULL;
1269
1270 /* once for the tree */
1271 free_extent_map(em);
1272 spin_unlock(&em_tree->lock);
1273
1274 /* once for us */
1275 free_extent_map(em);
1276
1277 btrfs_end_transaction(trans, root);
1278 return 0;
1279 }
1280
1281 static u64 div_factor(u64 num, int factor)
1282 {
1283 if (factor == 10)
1284 return num;
1285 num *= factor;
1286 do_div(num, 10);
1287 return num;
1288 }
1289
1290
1291 int btrfs_balance(struct btrfs_root *dev_root)
1292 {
1293 int ret;
1294 struct list_head *cur;
1295 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1296 struct btrfs_device *device;
1297 u64 old_size;
1298 u64 size_to_free;
1299 struct btrfs_path *path;
1300 struct btrfs_key key;
1301 struct btrfs_chunk *chunk;
1302 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1303 struct btrfs_trans_handle *trans;
1304 struct btrfs_key found_key;
1305
1306
1307 BUG(); /* FIXME, needs locking */
1308
1309 dev_root = dev_root->fs_info->dev_root;
1310
1311 /* step one make some room on all the devices */
1312 list_for_each(cur, devices) {
1313 device = list_entry(cur, struct btrfs_device, dev_list);
1314 old_size = device->total_bytes;
1315 size_to_free = div_factor(old_size, 1);
1316 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1317 if (device->total_bytes - device->bytes_used > size_to_free)
1318 continue;
1319
1320 ret = btrfs_shrink_device(device, old_size - size_to_free);
1321 BUG_ON(ret);
1322
1323 trans = btrfs_start_transaction(dev_root, 1);
1324 BUG_ON(!trans);
1325
1326 ret = btrfs_grow_device(trans, device, old_size);
1327 BUG_ON(ret);
1328
1329 btrfs_end_transaction(trans, dev_root);
1330 }
1331
1332 /* step two, relocate all the chunks */
1333 path = btrfs_alloc_path();
1334 BUG_ON(!path);
1335
1336 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1337 key.offset = (u64)-1;
1338 key.type = BTRFS_CHUNK_ITEM_KEY;
1339
1340 while(1) {
1341 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1342 if (ret < 0)
1343 goto error;
1344
1345 /*
1346 * this shouldn't happen, it means the last relocate
1347 * failed
1348 */
1349 if (ret == 0)
1350 break;
1351
1352 ret = btrfs_previous_item(chunk_root, path, 0,
1353 BTRFS_CHUNK_ITEM_KEY);
1354 if (ret) {
1355 break;
1356 }
1357 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1358 path->slots[0]);
1359 if (found_key.objectid != key.objectid)
1360 break;
1361 chunk = btrfs_item_ptr(path->nodes[0],
1362 path->slots[0],
1363 struct btrfs_chunk);
1364 key.offset = found_key.offset;
1365 /* chunk zero is special */
1366 if (key.offset == 0)
1367 break;
1368
1369 ret = btrfs_relocate_chunk(chunk_root,
1370 chunk_root->root_key.objectid,
1371 found_key.objectid,
1372 found_key.offset);
1373 BUG_ON(ret);
1374 btrfs_release_path(chunk_root, path);
1375 }
1376 ret = 0;
1377 error:
1378 btrfs_free_path(path);
1379 return ret;
1380 }
1381
1382 /*
1383 * shrinking a device means finding all of the device extents past
1384 * the new size, and then following the back refs to the chunks.
1385 * The chunk relocation code actually frees the device extent
1386 */
1387 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1388 {
1389 struct btrfs_trans_handle *trans;
1390 struct btrfs_root *root = device->dev_root;
1391 struct btrfs_dev_extent *dev_extent = NULL;
1392 struct btrfs_path *path;
1393 u64 length;
1394 u64 chunk_tree;
1395 u64 chunk_objectid;
1396 u64 chunk_offset;
1397 int ret;
1398 int slot;
1399 struct extent_buffer *l;
1400 struct btrfs_key key;
1401 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1402 u64 old_total = btrfs_super_total_bytes(super_copy);
1403 u64 diff = device->total_bytes - new_size;
1404
1405
1406 path = btrfs_alloc_path();
1407 if (!path)
1408 return -ENOMEM;
1409
1410 trans = btrfs_start_transaction(root, 1);
1411 if (!trans) {
1412 ret = -ENOMEM;
1413 goto done;
1414 }
1415
1416 path->reada = 2;
1417
1418 device->total_bytes = new_size;
1419 ret = btrfs_update_device(trans, device);
1420 if (ret) {
1421 btrfs_end_transaction(trans, root);
1422 goto done;
1423 }
1424 WARN_ON(diff > old_total);
1425 btrfs_set_super_total_bytes(super_copy, old_total - diff);
1426 btrfs_end_transaction(trans, root);
1427
1428 key.objectid = device->devid;
1429 key.offset = (u64)-1;
1430 key.type = BTRFS_DEV_EXTENT_KEY;
1431
1432 while (1) {
1433 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1434 if (ret < 0)
1435 goto done;
1436
1437 ret = btrfs_previous_item(root, path, 0, key.type);
1438 if (ret < 0)
1439 goto done;
1440 if (ret) {
1441 ret = 0;
1442 goto done;
1443 }
1444
1445 l = path->nodes[0];
1446 slot = path->slots[0];
1447 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
1448
1449 if (key.objectid != device->devid)
1450 goto done;
1451
1452 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1453 length = btrfs_dev_extent_length(l, dev_extent);
1454
1455 if (key.offset + length <= new_size)
1456 goto done;
1457
1458 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1459 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1460 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1461 btrfs_release_path(root, path);
1462
1463 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
1464 chunk_offset);
1465 if (ret)
1466 goto done;
1467 }
1468
1469 done:
1470 btrfs_free_path(path);
1471 return ret;
1472 }
1473
1474 int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
1475 struct btrfs_root *root,
1476 struct btrfs_key *key,
1477 struct btrfs_chunk *chunk, int item_size)
1478 {
1479 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1480 struct btrfs_disk_key disk_key;
1481 u32 array_size;
1482 u8 *ptr;
1483
1484 array_size = btrfs_super_sys_array_size(super_copy);
1485 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
1486 return -EFBIG;
1487
1488 ptr = super_copy->sys_chunk_array + array_size;
1489 btrfs_cpu_key_to_disk(&disk_key, key);
1490 memcpy(ptr, &disk_key, sizeof(disk_key));
1491 ptr += sizeof(disk_key);
1492 memcpy(ptr, chunk, item_size);
1493 item_size += sizeof(disk_key);
1494 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
1495 return 0;
1496 }
1497
1498 static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
1499 int sub_stripes)
1500 {
1501 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
1502 return calc_size;
1503 else if (type & BTRFS_BLOCK_GROUP_RAID10)
1504 return calc_size * (num_stripes / sub_stripes);
1505 else
1506 return calc_size * num_stripes;
1507 }
1508
1509
1510 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
1511 struct btrfs_root *extent_root, u64 *start,
1512 u64 *num_bytes, u64 type)
1513 {
1514 u64 dev_offset;
1515 struct btrfs_fs_info *info = extent_root->fs_info;
1516 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
1517 struct btrfs_path *path;
1518 struct btrfs_stripe *stripes;
1519 struct btrfs_device *device = NULL;
1520 struct btrfs_chunk *chunk;
1521 struct list_head private_devs;
1522 struct list_head *dev_list;
1523 struct list_head *cur;
1524 struct extent_map_tree *em_tree;
1525 struct map_lookup *map;
1526 struct extent_map *em;
1527 int min_stripe_size = 1 * 1024 * 1024;
1528 u64 physical;
1529 u64 calc_size = 1024 * 1024 * 1024;
1530 u64 max_chunk_size = calc_size;
1531 u64 min_free;
1532 u64 avail;
1533 u64 max_avail = 0;
1534 u64 percent_max;
1535 int num_stripes = 1;
1536 int min_stripes = 1;
1537 int sub_stripes = 0;
1538 int looped = 0;
1539 int ret;
1540 int index;
1541 int stripe_len = 64 * 1024;
1542 struct btrfs_key key;
1543
1544 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
1545 (type & BTRFS_BLOCK_GROUP_DUP)) {
1546 WARN_ON(1);
1547 type &= ~BTRFS_BLOCK_GROUP_DUP;
1548 }
1549 dev_list = &extent_root->fs_info->fs_devices->alloc_list;
1550 if (list_empty(dev_list))
1551 return -ENOSPC;
1552
1553 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
1554 num_stripes = extent_root->fs_info->fs_devices->open_devices;
1555 min_stripes = 2;
1556 }
1557 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
1558 num_stripes = 2;
1559 min_stripes = 2;
1560 }
1561 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
1562 num_stripes = min_t(u64, 2,
1563 extent_root->fs_info->fs_devices->open_devices);
1564 if (num_stripes < 2)
1565 return -ENOSPC;
1566 min_stripes = 2;
1567 }
1568 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
1569 num_stripes = extent_root->fs_info->fs_devices->open_devices;
1570 if (num_stripes < 4)
1571 return -ENOSPC;
1572 num_stripes &= ~(u32)1;
1573 sub_stripes = 2;
1574 min_stripes = 4;
1575 }
1576
1577 if (type & BTRFS_BLOCK_GROUP_DATA) {
1578 max_chunk_size = 10 * calc_size;
1579 min_stripe_size = 64 * 1024 * 1024;
1580 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1581 max_chunk_size = 4 * calc_size;
1582 min_stripe_size = 32 * 1024 * 1024;
1583 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1584 calc_size = 8 * 1024 * 1024;
1585 max_chunk_size = calc_size * 2;
1586 min_stripe_size = 1 * 1024 * 1024;
1587 }
1588
1589 path = btrfs_alloc_path();
1590 if (!path)
1591 return -ENOMEM;
1592
1593 /* we don't want a chunk larger than 10% of the FS */
1594 percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
1595 max_chunk_size = min(percent_max, max_chunk_size);
1596
1597 again:
1598 if (calc_size * num_stripes > max_chunk_size) {
1599 calc_size = max_chunk_size;
1600 do_div(calc_size, num_stripes);
1601 do_div(calc_size, stripe_len);
1602 calc_size *= stripe_len;
1603 }
1604 /* we don't want tiny stripes */
1605 calc_size = max_t(u64, min_stripe_size, calc_size);
1606
1607 do_div(calc_size, stripe_len);
1608 calc_size *= stripe_len;
1609
1610 INIT_LIST_HEAD(&private_devs);
1611 cur = dev_list->next;
1612 index = 0;
1613
1614 if (type & BTRFS_BLOCK_GROUP_DUP)
1615 min_free = calc_size * 2;
1616 else
1617 min_free = calc_size;
1618
1619 /* we add 1MB because we never use the first 1MB of the device */
1620 min_free += 1024 * 1024;
1621
1622 /* build a private list of devices we will allocate from */
1623 while(index < num_stripes) {
1624 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
1625
1626 if (device->total_bytes > device->bytes_used)
1627 avail = device->total_bytes - device->bytes_used;
1628 else
1629 avail = 0;
1630 cur = cur->next;
1631
1632 if (device->in_fs_metadata && avail >= min_free) {
1633 u64 ignored_start = 0;
1634 ret = find_free_dev_extent(trans, device, path,
1635 min_free,
1636 &ignored_start);
1637 if (ret == 0) {
1638 list_move_tail(&device->dev_alloc_list,
1639 &private_devs);
1640 index++;
1641 if (type & BTRFS_BLOCK_GROUP_DUP)
1642 index++;
1643 }
1644 } else if (device->in_fs_metadata && avail > max_avail)
1645 max_avail = avail;
1646 if (cur == dev_list)
1647 break;
1648 }
1649 if (index < num_stripes) {
1650 list_splice(&private_devs, dev_list);
1651 if (index >= min_stripes) {
1652 num_stripes = index;
1653 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
1654 num_stripes /= sub_stripes;
1655 num_stripes *= sub_stripes;
1656 }
1657 looped = 1;
1658 goto again;
1659 }
1660 if (!looped && max_avail > 0) {
1661 looped = 1;
1662 calc_size = max_avail;
1663 goto again;
1664 }
1665 btrfs_free_path(path);
1666 return -ENOSPC;
1667 }
1668 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1669 key.type = BTRFS_CHUNK_ITEM_KEY;
1670 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1671 &key.offset);
1672 if (ret) {
1673 btrfs_free_path(path);
1674 return ret;
1675 }
1676
1677 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
1678 if (!chunk) {
1679 btrfs_free_path(path);
1680 return -ENOMEM;
1681 }
1682
1683 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1684 if (!map) {
1685 kfree(chunk);
1686 btrfs_free_path(path);
1687 return -ENOMEM;
1688 }
1689 btrfs_free_path(path);
1690 path = NULL;
1691
1692 stripes = &chunk->stripe;
1693 *num_bytes = chunk_bytes_by_type(type, calc_size,
1694 num_stripes, sub_stripes);
1695
1696 index = 0;
1697 while(index < num_stripes) {
1698 struct btrfs_stripe *stripe;
1699 BUG_ON(list_empty(&private_devs));
1700 cur = private_devs.next;
1701 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
1702
1703 /* loop over this device again if we're doing a dup group */
1704 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
1705 (index == num_stripes - 1))
1706 list_move_tail(&device->dev_alloc_list, dev_list);
1707
1708 ret = btrfs_alloc_dev_extent(trans, device,
1709 info->chunk_root->root_key.objectid,
1710 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
1711 calc_size, &dev_offset);
1712 BUG_ON(ret);
1713 device->bytes_used += calc_size;
1714 ret = btrfs_update_device(trans, device);
1715 BUG_ON(ret);
1716
1717 map->stripes[index].dev = device;
1718 map->stripes[index].physical = dev_offset;
1719 stripe = stripes + index;
1720 btrfs_set_stack_stripe_devid(stripe, device->devid);
1721 btrfs_set_stack_stripe_offset(stripe, dev_offset);
1722 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
1723 physical = dev_offset;
1724 index++;
1725 }
1726 BUG_ON(!list_empty(&private_devs));
1727
1728 /* key was set above */
1729 btrfs_set_stack_chunk_length(chunk, *num_bytes);
1730 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
1731 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
1732 btrfs_set_stack_chunk_type(chunk, type);
1733 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
1734 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
1735 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
1736 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
1737 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
1738 map->sector_size = extent_root->sectorsize;
1739 map->stripe_len = stripe_len;
1740 map->io_align = stripe_len;
1741 map->io_width = stripe_len;
1742 map->type = type;
1743 map->num_stripes = num_stripes;
1744 map->sub_stripes = sub_stripes;
1745
1746 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1747 btrfs_chunk_item_size(num_stripes));
1748 BUG_ON(ret);
1749 *start = key.offset;;
1750
1751 em = alloc_extent_map(GFP_NOFS);
1752 if (!em)
1753 return -ENOMEM;
1754 em->bdev = (struct block_device *)map;
1755 em->start = key.offset;
1756 em->len = *num_bytes;
1757 em->block_start = 0;
1758
1759 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1760 ret = btrfs_add_system_chunk(trans, chunk_root, &key,
1761 chunk, btrfs_chunk_item_size(num_stripes));
1762 BUG_ON(ret);
1763 }
1764 kfree(chunk);
1765
1766 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
1767 spin_lock(&em_tree->lock);
1768 ret = add_extent_mapping(em_tree, em);
1769 spin_unlock(&em_tree->lock);
1770 BUG_ON(ret);
1771 free_extent_map(em);
1772 return ret;
1773 }
1774
1775 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
1776 {
1777 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
1778 }
1779
1780 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
1781 {
1782 struct extent_map *em;
1783
1784 while(1) {
1785 spin_lock(&tree->map_tree.lock);
1786 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
1787 if (em)
1788 remove_extent_mapping(&tree->map_tree, em);
1789 spin_unlock(&tree->map_tree.lock);
1790 if (!em)
1791 break;
1792 kfree(em->bdev);
1793 /* once for us */
1794 free_extent_map(em);
1795 /* once for the tree */
1796 free_extent_map(em);
1797 }
1798 }
1799
1800 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
1801 {
1802 struct extent_map *em;
1803 struct map_lookup *map;
1804 struct extent_map_tree *em_tree = &map_tree->map_tree;
1805 int ret;
1806
1807 spin_lock(&em_tree->lock);
1808 em = lookup_extent_mapping(em_tree, logical, len);
1809 spin_unlock(&em_tree->lock);
1810 BUG_ON(!em);
1811
1812 BUG_ON(em->start > logical || em->start + em->len < logical);
1813 map = (struct map_lookup *)em->bdev;
1814 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
1815 ret = map->num_stripes;
1816 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1817 ret = map->sub_stripes;
1818 else
1819 ret = 1;
1820 free_extent_map(em);
1821 return ret;
1822 }
1823
1824 static int find_live_mirror(struct map_lookup *map, int first, int num,
1825 int optimal)
1826 {
1827 int i;
1828 if (map->stripes[optimal].dev->bdev)
1829 return optimal;
1830 for (i = first; i < first + num; i++) {
1831 if (map->stripes[i].dev->bdev)
1832 return i;
1833 }
1834 /* we couldn't find one that doesn't fail. Just return something
1835 * and the io error handling code will clean up eventually
1836 */
1837 return optimal;
1838 }
1839
1840 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1841 u64 logical, u64 *length,
1842 struct btrfs_multi_bio **multi_ret,
1843 int mirror_num, struct page *unplug_page)
1844 {
1845 struct extent_map *em;
1846 struct map_lookup *map;
1847 struct extent_map_tree *em_tree = &map_tree->map_tree;
1848 u64 offset;
1849 u64 stripe_offset;
1850 u64 stripe_nr;
1851 int stripes_allocated = 8;
1852 int stripes_required = 1;
1853 int stripe_index;
1854 int i;
1855 int num_stripes;
1856 int max_errors = 0;
1857 struct btrfs_multi_bio *multi = NULL;
1858
1859 if (multi_ret && !(rw & (1 << BIO_RW))) {
1860 stripes_allocated = 1;
1861 }
1862 again:
1863 if (multi_ret) {
1864 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
1865 GFP_NOFS);
1866 if (!multi)
1867 return -ENOMEM;
1868
1869 atomic_set(&multi->error, 0);
1870 }
1871
1872 spin_lock(&em_tree->lock);
1873 em = lookup_extent_mapping(em_tree, logical, *length);
1874 spin_unlock(&em_tree->lock);
1875
1876 if (!em && unplug_page)
1877 return 0;
1878
1879 if (!em) {
1880 printk("unable to find logical %Lu len %Lu\n", logical, *length);
1881 BUG();
1882 }
1883
1884 BUG_ON(em->start > logical || em->start + em->len < logical);
1885 map = (struct map_lookup *)em->bdev;
1886 offset = logical - em->start;
1887
1888 if (mirror_num > map->num_stripes)
1889 mirror_num = 0;
1890
1891 /* if our multi bio struct is too small, back off and try again */
1892 if (rw & (1 << BIO_RW)) {
1893 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
1894 BTRFS_BLOCK_GROUP_DUP)) {
1895 stripes_required = map->num_stripes;
1896 max_errors = 1;
1897 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1898 stripes_required = map->sub_stripes;
1899 max_errors = 1;
1900 }
1901 }
1902 if (multi_ret && rw == WRITE &&
1903 stripes_allocated < stripes_required) {
1904 stripes_allocated = map->num_stripes;
1905 free_extent_map(em);
1906 kfree(multi);
1907 goto again;
1908 }
1909 stripe_nr = offset;
1910 /*
1911 * stripe_nr counts the total number of stripes we have to stride
1912 * to get to this block
1913 */
1914 do_div(stripe_nr, map->stripe_len);
1915
1916 stripe_offset = stripe_nr * map->stripe_len;
1917 BUG_ON(offset < stripe_offset);
1918
1919 /* stripe_offset is the offset of this block in its stripe*/
1920 stripe_offset = offset - stripe_offset;
1921
1922 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
1923 BTRFS_BLOCK_GROUP_RAID10 |
1924 BTRFS_BLOCK_GROUP_DUP)) {
1925 /* we limit the length of each bio to what fits in a stripe */
1926 *length = min_t(u64, em->len - offset,
1927 map->stripe_len - stripe_offset);
1928 } else {
1929 *length = em->len - offset;
1930 }
1931
1932 if (!multi_ret && !unplug_page)
1933 goto out;
1934
1935 num_stripes = 1;
1936 stripe_index = 0;
1937 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1938 if (unplug_page || (rw & (1 << BIO_RW)))
1939 num_stripes = map->num_stripes;
1940 else if (mirror_num)
1941 stripe_index = mirror_num - 1;
1942 else {
1943 stripe_index = find_live_mirror(map, 0,
1944 map->num_stripes,
1945 current->pid % map->num_stripes);
1946 }
1947
1948 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1949 if (rw & (1 << BIO_RW))
1950 num_stripes = map->num_stripes;
1951 else if (mirror_num)
1952 stripe_index = mirror_num - 1;
1953
1954 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1955 int factor = map->num_stripes / map->sub_stripes;
1956
1957 stripe_index = do_div(stripe_nr, factor);
1958 stripe_index *= map->sub_stripes;
1959
1960 if (unplug_page || (rw & (1 << BIO_RW)))
1961 num_stripes = map->sub_stripes;
1962 else if (mirror_num)
1963 stripe_index += mirror_num - 1;
1964 else {
1965 stripe_index = find_live_mirror(map, stripe_index,
1966 map->sub_stripes, stripe_index +
1967 current->pid % map->sub_stripes);
1968 }
1969 } else {
1970 /*
1971 * after this do_div call, stripe_nr is the number of stripes
1972 * on this device we have to walk to find the data, and
1973 * stripe_index is the number of our device in the stripe array
1974 */
1975 stripe_index = do_div(stripe_nr, map->num_stripes);
1976 }
1977 BUG_ON(stripe_index >= map->num_stripes);
1978
1979 for (i = 0; i < num_stripes; i++) {
1980 if (unplug_page) {
1981 struct btrfs_device *device;
1982 struct backing_dev_info *bdi;
1983
1984 device = map->stripes[stripe_index].dev;
1985 if (device->bdev) {
1986 bdi = blk_get_backing_dev_info(device->bdev);
1987 if (bdi->unplug_io_fn) {
1988 bdi->unplug_io_fn(bdi, unplug_page);
1989 }
1990 }
1991 } else {
1992 multi->stripes[i].physical =
1993 map->stripes[stripe_index].physical +
1994 stripe_offset + stripe_nr * map->stripe_len;
1995 multi->stripes[i].dev = map->stripes[stripe_index].dev;
1996 }
1997 stripe_index++;
1998 }
1999 if (multi_ret) {
2000 *multi_ret = multi;
2001 multi->num_stripes = num_stripes;
2002 multi->max_errors = max_errors;
2003 }
2004 out:
2005 free_extent_map(em);
2006 return 0;
2007 }
2008
2009 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2010 u64 logical, u64 *length,
2011 struct btrfs_multi_bio **multi_ret, int mirror_num)
2012 {
2013 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2014 mirror_num, NULL);
2015 }
2016
2017 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2018 u64 logical, struct page *page)
2019 {
2020 u64 length = PAGE_CACHE_SIZE;
2021 return __btrfs_map_block(map_tree, READ, logical, &length,
2022 NULL, 0, page);
2023 }
2024
2025
2026 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
2027 static void end_bio_multi_stripe(struct bio *bio, int err)
2028 #else
2029 static int end_bio_multi_stripe(struct bio *bio,
2030 unsigned int bytes_done, int err)
2031 #endif
2032 {
2033 struct btrfs_multi_bio *multi = bio->bi_private;
2034
2035 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2036 if (bio->bi_size)
2037 return 1;
2038 #endif
2039 if (err)
2040 atomic_inc(&multi->error);
2041
2042 if (atomic_dec_and_test(&multi->stripes_pending)) {
2043 bio->bi_private = multi->private;
2044 bio->bi_end_io = multi->end_io;
2045 /* only send an error to the higher layers if it is
2046 * beyond the tolerance of the multi-bio
2047 */
2048 if (atomic_read(&multi->error) > multi->max_errors) {
2049 err = -EIO;
2050 } else if (err) {
2051 /*
2052 * this bio is actually up to date, we didn't
2053 * go over the max number of errors
2054 */
2055 set_bit(BIO_UPTODATE, &bio->bi_flags);
2056 err = 0;
2057 }
2058 kfree(multi);
2059
2060 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2061 bio_endio(bio, bio->bi_size, err);
2062 #else
2063 bio_endio(bio, err);
2064 #endif
2065 } else {
2066 bio_put(bio);
2067 }
2068 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2069 return 0;
2070 #endif
2071 }
2072
2073 struct async_sched {
2074 struct bio *bio;
2075 int rw;
2076 struct btrfs_fs_info *info;
2077 struct btrfs_work work;
2078 };
2079
2080 /*
2081 * see run_scheduled_bios for a description of why bios are collected for
2082 * async submit.
2083 *
2084 * This will add one bio to the pending list for a device and make sure
2085 * the work struct is scheduled.
2086 */
2087 int schedule_bio(struct btrfs_root *root, struct btrfs_device *device,
2088 int rw, struct bio *bio)
2089 {
2090 int should_queue = 1;
2091
2092 /* don't bother with additional async steps for reads, right now */
2093 if (!(rw & (1 << BIO_RW))) {
2094 submit_bio(rw, bio);
2095 return 0;
2096 }
2097
2098 /*
2099 * nr_async_sumbits allows us to reliably return congestion to the
2100 * higher layers. Otherwise, the async bio makes it appear we have
2101 * made progress against dirty pages when we've really just put it
2102 * on a queue for later
2103 */
2104 atomic_inc(&root->fs_info->nr_async_submits);
2105 bio->bi_next = NULL;
2106 bio->bi_rw |= rw;
2107
2108 spin_lock(&device->io_lock);
2109
2110 if (device->pending_bio_tail)
2111 device->pending_bio_tail->bi_next = bio;
2112
2113 device->pending_bio_tail = bio;
2114 if (!device->pending_bios)
2115 device->pending_bios = bio;
2116 if (device->running_pending)
2117 should_queue = 0;
2118
2119 spin_unlock(&device->io_lock);
2120
2121 if (should_queue)
2122 btrfs_queue_worker(&root->fs_info->submit_workers,
2123 &device->work);
2124 return 0;
2125 }
2126
2127 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
2128 int mirror_num, int async_submit)
2129 {
2130 struct btrfs_mapping_tree *map_tree;
2131 struct btrfs_device *dev;
2132 struct bio *first_bio = bio;
2133 u64 logical = bio->bi_sector << 9;
2134 u64 length = 0;
2135 u64 map_length;
2136 struct btrfs_multi_bio *multi = NULL;
2137 int ret;
2138 int dev_nr = 0;
2139 int total_devs = 1;
2140
2141 length = bio->bi_size;
2142 map_tree = &root->fs_info->mapping_tree;
2143 map_length = length;
2144
2145 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2146 mirror_num);
2147 BUG_ON(ret);
2148
2149 total_devs = multi->num_stripes;
2150 if (map_length < length) {
2151 printk("mapping failed logical %Lu bio len %Lu "
2152 "len %Lu\n", logical, length, map_length);
2153 BUG();
2154 }
2155 multi->end_io = first_bio->bi_end_io;
2156 multi->private = first_bio->bi_private;
2157 atomic_set(&multi->stripes_pending, multi->num_stripes);
2158
2159 while(dev_nr < total_devs) {
2160 if (total_devs > 1) {
2161 if (dev_nr < total_devs - 1) {
2162 bio = bio_clone(first_bio, GFP_NOFS);
2163 BUG_ON(!bio);
2164 } else {
2165 bio = first_bio;
2166 }
2167 bio->bi_private = multi;
2168 bio->bi_end_io = end_bio_multi_stripe;
2169 }
2170 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
2171 dev = multi->stripes[dev_nr].dev;
2172 if (dev && dev->bdev) {
2173 bio->bi_bdev = dev->bdev;
2174 if (async_submit)
2175 schedule_bio(root, dev, rw, bio);
2176 else
2177 submit_bio(rw, bio);
2178 } else {
2179 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
2180 bio->bi_sector = logical >> 9;
2181 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2182 bio_endio(bio, bio->bi_size, -EIO);
2183 #else
2184 bio_endio(bio, -EIO);
2185 #endif
2186 }
2187 dev_nr++;
2188 }
2189 if (total_devs == 1)
2190 kfree(multi);
2191 return 0;
2192 }
2193
2194 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2195 u8 *uuid)
2196 {
2197 struct list_head *head = &root->fs_info->fs_devices->devices;
2198
2199 return __find_device(head, devid, uuid);
2200 }
2201
2202 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
2203 u64 devid, u8 *dev_uuid)
2204 {
2205 struct btrfs_device *device;
2206 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2207
2208 device = kzalloc(sizeof(*device), GFP_NOFS);
2209 list_add(&device->dev_list,
2210 &fs_devices->devices);
2211 list_add(&device->dev_alloc_list,
2212 &fs_devices->alloc_list);
2213 device->barriers = 1;
2214 device->dev_root = root->fs_info->dev_root;
2215 device->devid = devid;
2216 device->work.func = pending_bios_fn;
2217 fs_devices->num_devices++;
2218 spin_lock_init(&device->io_lock);
2219 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
2220 return device;
2221 }
2222
2223
2224 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
2225 struct extent_buffer *leaf,
2226 struct btrfs_chunk *chunk)
2227 {
2228 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2229 struct map_lookup *map;
2230 struct extent_map *em;
2231 u64 logical;
2232 u64 length;
2233 u64 devid;
2234 u8 uuid[BTRFS_UUID_SIZE];
2235 int num_stripes;
2236 int ret;
2237 int i;
2238
2239 logical = key->offset;
2240 length = btrfs_chunk_length(leaf, chunk);
2241
2242 spin_lock(&map_tree->map_tree.lock);
2243 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
2244 spin_unlock(&map_tree->map_tree.lock);
2245
2246 /* already mapped? */
2247 if (em && em->start <= logical && em->start + em->len > logical) {
2248 free_extent_map(em);
2249 return 0;
2250 } else if (em) {
2251 free_extent_map(em);
2252 }
2253
2254 map = kzalloc(sizeof(*map), GFP_NOFS);
2255 if (!map)
2256 return -ENOMEM;
2257
2258 em = alloc_extent_map(GFP_NOFS);
2259 if (!em)
2260 return -ENOMEM;
2261 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2262 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2263 if (!map) {
2264 free_extent_map(em);
2265 return -ENOMEM;
2266 }
2267
2268 em->bdev = (struct block_device *)map;
2269 em->start = logical;
2270 em->len = length;
2271 em->block_start = 0;
2272
2273 map->num_stripes = num_stripes;
2274 map->io_width = btrfs_chunk_io_width(leaf, chunk);
2275 map->io_align = btrfs_chunk_io_align(leaf, chunk);
2276 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
2277 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
2278 map->type = btrfs_chunk_type(leaf, chunk);
2279 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
2280 for (i = 0; i < num_stripes; i++) {
2281 map->stripes[i].physical =
2282 btrfs_stripe_offset_nr(leaf, chunk, i);
2283 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
2284 read_extent_buffer(leaf, uuid, (unsigned long)
2285 btrfs_stripe_dev_uuid_nr(chunk, i),
2286 BTRFS_UUID_SIZE);
2287 map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
2288
2289 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
2290 kfree(map);
2291 free_extent_map(em);
2292 return -EIO;
2293 }
2294 if (!map->stripes[i].dev) {
2295 map->stripes[i].dev =
2296 add_missing_dev(root, devid, uuid);
2297 if (!map->stripes[i].dev) {
2298 kfree(map);
2299 free_extent_map(em);
2300 return -EIO;
2301 }
2302 }
2303 map->stripes[i].dev->in_fs_metadata = 1;
2304 }
2305
2306 spin_lock(&map_tree->map_tree.lock);
2307 ret = add_extent_mapping(&map_tree->map_tree, em);
2308 spin_unlock(&map_tree->map_tree.lock);
2309 BUG_ON(ret);
2310 free_extent_map(em);
2311
2312 return 0;
2313 }
2314
2315 static int fill_device_from_item(struct extent_buffer *leaf,
2316 struct btrfs_dev_item *dev_item,
2317 struct btrfs_device *device)
2318 {
2319 unsigned long ptr;
2320
2321 device->devid = btrfs_device_id(leaf, dev_item);
2322 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
2323 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
2324 device->type = btrfs_device_type(leaf, dev_item);
2325 device->io_align = btrfs_device_io_align(leaf, dev_item);
2326 device->io_width = btrfs_device_io_width(leaf, dev_item);
2327 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
2328
2329 ptr = (unsigned long)btrfs_device_uuid(dev_item);
2330 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2331
2332 return 0;
2333 }
2334
2335 static int read_one_dev(struct btrfs_root *root,
2336 struct extent_buffer *leaf,
2337 struct btrfs_dev_item *dev_item)
2338 {
2339 struct btrfs_device *device;
2340 u64 devid;
2341 int ret;
2342 u8 dev_uuid[BTRFS_UUID_SIZE];
2343
2344 devid = btrfs_device_id(leaf, dev_item);
2345 read_extent_buffer(leaf, dev_uuid,
2346 (unsigned long)btrfs_device_uuid(dev_item),
2347 BTRFS_UUID_SIZE);
2348 device = btrfs_find_device(root, devid, dev_uuid);
2349 if (!device) {
2350 printk("warning devid %Lu missing\n", devid);
2351 device = add_missing_dev(root, devid, dev_uuid);
2352 if (!device)
2353 return -ENOMEM;
2354 }
2355
2356 fill_device_from_item(leaf, dev_item, device);
2357 device->dev_root = root->fs_info->dev_root;
2358 device->in_fs_metadata = 1;
2359 ret = 0;
2360 #if 0
2361 ret = btrfs_open_device(device);
2362 if (ret) {
2363 kfree(device);
2364 }
2365 #endif
2366 return ret;
2367 }
2368
2369 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
2370 {
2371 struct btrfs_dev_item *dev_item;
2372
2373 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
2374 dev_item);
2375 return read_one_dev(root, buf, dev_item);
2376 }
2377
2378 int btrfs_read_sys_array(struct btrfs_root *root)
2379 {
2380 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2381 struct extent_buffer *sb;
2382 struct btrfs_disk_key *disk_key;
2383 struct btrfs_chunk *chunk;
2384 u8 *ptr;
2385 unsigned long sb_ptr;
2386 int ret = 0;
2387 u32 num_stripes;
2388 u32 array_size;
2389 u32 len = 0;
2390 u32 cur;
2391 struct btrfs_key key;
2392
2393 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
2394 BTRFS_SUPER_INFO_SIZE);
2395 if (!sb)
2396 return -ENOMEM;
2397 btrfs_set_buffer_uptodate(sb);
2398 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
2399 array_size = btrfs_super_sys_array_size(super_copy);
2400
2401 ptr = super_copy->sys_chunk_array;
2402 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
2403 cur = 0;
2404
2405 while (cur < array_size) {
2406 disk_key = (struct btrfs_disk_key *)ptr;
2407 btrfs_disk_key_to_cpu(&key, disk_key);
2408
2409 len = sizeof(*disk_key); ptr += len;
2410 sb_ptr += len;
2411 cur += len;
2412
2413 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2414 chunk = (struct btrfs_chunk *)sb_ptr;
2415 ret = read_one_chunk(root, &key, sb, chunk);
2416 if (ret)
2417 break;
2418 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
2419 len = btrfs_chunk_item_size(num_stripes);
2420 } else {
2421 ret = -EIO;
2422 break;
2423 }
2424 ptr += len;
2425 sb_ptr += len;
2426 cur += len;
2427 }
2428 free_extent_buffer(sb);
2429 return ret;
2430 }
2431
2432 int btrfs_read_chunk_tree(struct btrfs_root *root)
2433 {
2434 struct btrfs_path *path;
2435 struct extent_buffer *leaf;
2436 struct btrfs_key key;
2437 struct btrfs_key found_key;
2438 int ret;
2439 int slot;
2440
2441 root = root->fs_info->chunk_root;
2442
2443 path = btrfs_alloc_path();
2444 if (!path)
2445 return -ENOMEM;
2446
2447 /* first we search for all of the device items, and then we
2448 * read in all of the chunk items. This way we can create chunk
2449 * mappings that reference all of the devices that are afound
2450 */
2451 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2452 key.offset = 0;
2453 key.type = 0;
2454 again:
2455 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2456 while(1) {
2457 leaf = path->nodes[0];
2458 slot = path->slots[0];
2459 if (slot >= btrfs_header_nritems(leaf)) {
2460 ret = btrfs_next_leaf(root, path);
2461 if (ret == 0)
2462 continue;
2463 if (ret < 0)
2464 goto error;
2465 break;
2466 }
2467 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2468 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
2469 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
2470 break;
2471 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
2472 struct btrfs_dev_item *dev_item;
2473 dev_item = btrfs_item_ptr(leaf, slot,
2474 struct btrfs_dev_item);
2475 ret = read_one_dev(root, leaf, dev_item);
2476 BUG_ON(ret);
2477 }
2478 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
2479 struct btrfs_chunk *chunk;
2480 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2481 ret = read_one_chunk(root, &found_key, leaf, chunk);
2482 }
2483 path->slots[0]++;
2484 }
2485 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
2486 key.objectid = 0;
2487 btrfs_release_path(root, path);
2488 goto again;
2489 }
2490
2491 btrfs_free_path(path);
2492 ret = 0;
2493 error:
2494 return ret;
2495 }
2496
This page took 0.077187 seconds and 4 git commands to generate.