Merge branch 'foreign/qu/norecovery-v7' into for-chris-4.6
[deliverable/linux.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 static int init_first_rw_device(struct btrfs_trans_handle *trans,
122 struct btrfs_root *root,
123 struct btrfs_device *device);
124 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
125 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
126 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
127 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
128 static void btrfs_close_one_device(struct btrfs_device *device);
129
130 DEFINE_MUTEX(uuid_mutex);
131 static LIST_HEAD(fs_uuids);
132 struct list_head *btrfs_get_fs_uuids(void)
133 {
134 return &fs_uuids;
135 }
136
137 static struct btrfs_fs_devices *__alloc_fs_devices(void)
138 {
139 struct btrfs_fs_devices *fs_devs;
140
141 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
142 if (!fs_devs)
143 return ERR_PTR(-ENOMEM);
144
145 mutex_init(&fs_devs->device_list_mutex);
146
147 INIT_LIST_HEAD(&fs_devs->devices);
148 INIT_LIST_HEAD(&fs_devs->resized_devices);
149 INIT_LIST_HEAD(&fs_devs->alloc_list);
150 INIT_LIST_HEAD(&fs_devs->list);
151
152 return fs_devs;
153 }
154
155 /**
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
158 * generated.
159 *
160 * Return: a pointer to a new &struct btrfs_fs_devices on success;
161 * ERR_PTR() on error. Returned struct is not linked onto any lists and
162 * can be destroyed with kfree() right away.
163 */
164 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
165 {
166 struct btrfs_fs_devices *fs_devs;
167
168 fs_devs = __alloc_fs_devices();
169 if (IS_ERR(fs_devs))
170 return fs_devs;
171
172 if (fsid)
173 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
174 else
175 generate_random_uuid(fs_devs->fsid);
176
177 return fs_devs;
178 }
179
180 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
181 {
182 struct btrfs_device *device;
183 WARN_ON(fs_devices->opened);
184 while (!list_empty(&fs_devices->devices)) {
185 device = list_entry(fs_devices->devices.next,
186 struct btrfs_device, dev_list);
187 list_del(&device->dev_list);
188 rcu_string_free(device->name);
189 kfree(device);
190 }
191 kfree(fs_devices);
192 }
193
194 static void btrfs_kobject_uevent(struct block_device *bdev,
195 enum kobject_action action)
196 {
197 int ret;
198
199 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
200 if (ret)
201 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
202 action,
203 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
204 &disk_to_dev(bdev->bd_disk)->kobj);
205 }
206
207 void btrfs_cleanup_fs_uuids(void)
208 {
209 struct btrfs_fs_devices *fs_devices;
210
211 while (!list_empty(&fs_uuids)) {
212 fs_devices = list_entry(fs_uuids.next,
213 struct btrfs_fs_devices, list);
214 list_del(&fs_devices->list);
215 free_fs_devices(fs_devices);
216 }
217 }
218
219 static struct btrfs_device *__alloc_device(void)
220 {
221 struct btrfs_device *dev;
222
223 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
224 if (!dev)
225 return ERR_PTR(-ENOMEM);
226
227 INIT_LIST_HEAD(&dev->dev_list);
228 INIT_LIST_HEAD(&dev->dev_alloc_list);
229 INIT_LIST_HEAD(&dev->resized_list);
230
231 spin_lock_init(&dev->io_lock);
232
233 spin_lock_init(&dev->reada_lock);
234 atomic_set(&dev->reada_in_flight, 0);
235 atomic_set(&dev->dev_stats_ccnt, 0);
236 btrfs_device_data_ordered_init(dev);
237 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
238 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
239
240 return dev;
241 }
242
243 static noinline struct btrfs_device *__find_device(struct list_head *head,
244 u64 devid, u8 *uuid)
245 {
246 struct btrfs_device *dev;
247
248 list_for_each_entry(dev, head, dev_list) {
249 if (dev->devid == devid &&
250 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
251 return dev;
252 }
253 }
254 return NULL;
255 }
256
257 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
258 {
259 struct btrfs_fs_devices *fs_devices;
260
261 list_for_each_entry(fs_devices, &fs_uuids, list) {
262 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
263 return fs_devices;
264 }
265 return NULL;
266 }
267
268 static int
269 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
270 int flush, struct block_device **bdev,
271 struct buffer_head **bh)
272 {
273 int ret;
274
275 *bdev = blkdev_get_by_path(device_path, flags, holder);
276
277 if (IS_ERR(*bdev)) {
278 ret = PTR_ERR(*bdev);
279 goto error;
280 }
281
282 if (flush)
283 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
284 ret = set_blocksize(*bdev, 4096);
285 if (ret) {
286 blkdev_put(*bdev, flags);
287 goto error;
288 }
289 invalidate_bdev(*bdev);
290 *bh = btrfs_read_dev_super(*bdev);
291 if (IS_ERR(*bh)) {
292 ret = PTR_ERR(*bh);
293 blkdev_put(*bdev, flags);
294 goto error;
295 }
296
297 return 0;
298
299 error:
300 *bdev = NULL;
301 *bh = NULL;
302 return ret;
303 }
304
305 static void requeue_list(struct btrfs_pending_bios *pending_bios,
306 struct bio *head, struct bio *tail)
307 {
308
309 struct bio *old_head;
310
311 old_head = pending_bios->head;
312 pending_bios->head = head;
313 if (pending_bios->tail)
314 tail->bi_next = old_head;
315 else
316 pending_bios->tail = tail;
317 }
318
319 /*
320 * we try to collect pending bios for a device so we don't get a large
321 * number of procs sending bios down to the same device. This greatly
322 * improves the schedulers ability to collect and merge the bios.
323 *
324 * But, it also turns into a long list of bios to process and that is sure
325 * to eventually make the worker thread block. The solution here is to
326 * make some progress and then put this work struct back at the end of
327 * the list if the block device is congested. This way, multiple devices
328 * can make progress from a single worker thread.
329 */
330 static noinline void run_scheduled_bios(struct btrfs_device *device)
331 {
332 struct bio *pending;
333 struct backing_dev_info *bdi;
334 struct btrfs_fs_info *fs_info;
335 struct btrfs_pending_bios *pending_bios;
336 struct bio *tail;
337 struct bio *cur;
338 int again = 0;
339 unsigned long num_run;
340 unsigned long batch_run = 0;
341 unsigned long limit;
342 unsigned long last_waited = 0;
343 int force_reg = 0;
344 int sync_pending = 0;
345 struct blk_plug plug;
346
347 /*
348 * this function runs all the bios we've collected for
349 * a particular device. We don't want to wander off to
350 * another device without first sending all of these down.
351 * So, setup a plug here and finish it off before we return
352 */
353 blk_start_plug(&plug);
354
355 bdi = blk_get_backing_dev_info(device->bdev);
356 fs_info = device->dev_root->fs_info;
357 limit = btrfs_async_submit_limit(fs_info);
358 limit = limit * 2 / 3;
359
360 loop:
361 spin_lock(&device->io_lock);
362
363 loop_lock:
364 num_run = 0;
365
366 /* take all the bios off the list at once and process them
367 * later on (without the lock held). But, remember the
368 * tail and other pointers so the bios can be properly reinserted
369 * into the list if we hit congestion
370 */
371 if (!force_reg && device->pending_sync_bios.head) {
372 pending_bios = &device->pending_sync_bios;
373 force_reg = 1;
374 } else {
375 pending_bios = &device->pending_bios;
376 force_reg = 0;
377 }
378
379 pending = pending_bios->head;
380 tail = pending_bios->tail;
381 WARN_ON(pending && !tail);
382
383 /*
384 * if pending was null this time around, no bios need processing
385 * at all and we can stop. Otherwise it'll loop back up again
386 * and do an additional check so no bios are missed.
387 *
388 * device->running_pending is used to synchronize with the
389 * schedule_bio code.
390 */
391 if (device->pending_sync_bios.head == NULL &&
392 device->pending_bios.head == NULL) {
393 again = 0;
394 device->running_pending = 0;
395 } else {
396 again = 1;
397 device->running_pending = 1;
398 }
399
400 pending_bios->head = NULL;
401 pending_bios->tail = NULL;
402
403 spin_unlock(&device->io_lock);
404
405 while (pending) {
406
407 rmb();
408 /* we want to work on both lists, but do more bios on the
409 * sync list than the regular list
410 */
411 if ((num_run > 32 &&
412 pending_bios != &device->pending_sync_bios &&
413 device->pending_sync_bios.head) ||
414 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
415 device->pending_bios.head)) {
416 spin_lock(&device->io_lock);
417 requeue_list(pending_bios, pending, tail);
418 goto loop_lock;
419 }
420
421 cur = pending;
422 pending = pending->bi_next;
423 cur->bi_next = NULL;
424
425 /*
426 * atomic_dec_return implies a barrier for waitqueue_active
427 */
428 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
429 waitqueue_active(&fs_info->async_submit_wait))
430 wake_up(&fs_info->async_submit_wait);
431
432 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
433
434 /*
435 * if we're doing the sync list, record that our
436 * plug has some sync requests on it
437 *
438 * If we're doing the regular list and there are
439 * sync requests sitting around, unplug before
440 * we add more
441 */
442 if (pending_bios == &device->pending_sync_bios) {
443 sync_pending = 1;
444 } else if (sync_pending) {
445 blk_finish_plug(&plug);
446 blk_start_plug(&plug);
447 sync_pending = 0;
448 }
449
450 btrfsic_submit_bio(cur->bi_rw, cur);
451 num_run++;
452 batch_run++;
453
454 cond_resched();
455
456 /*
457 * we made progress, there is more work to do and the bdi
458 * is now congested. Back off and let other work structs
459 * run instead
460 */
461 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
462 fs_info->fs_devices->open_devices > 1) {
463 struct io_context *ioc;
464
465 ioc = current->io_context;
466
467 /*
468 * the main goal here is that we don't want to
469 * block if we're going to be able to submit
470 * more requests without blocking.
471 *
472 * This code does two great things, it pokes into
473 * the elevator code from a filesystem _and_
474 * it makes assumptions about how batching works.
475 */
476 if (ioc && ioc->nr_batch_requests > 0 &&
477 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
478 (last_waited == 0 ||
479 ioc->last_waited == last_waited)) {
480 /*
481 * we want to go through our batch of
482 * requests and stop. So, we copy out
483 * the ioc->last_waited time and test
484 * against it before looping
485 */
486 last_waited = ioc->last_waited;
487 cond_resched();
488 continue;
489 }
490 spin_lock(&device->io_lock);
491 requeue_list(pending_bios, pending, tail);
492 device->running_pending = 1;
493
494 spin_unlock(&device->io_lock);
495 btrfs_queue_work(fs_info->submit_workers,
496 &device->work);
497 goto done;
498 }
499 /* unplug every 64 requests just for good measure */
500 if (batch_run % 64 == 0) {
501 blk_finish_plug(&plug);
502 blk_start_plug(&plug);
503 sync_pending = 0;
504 }
505 }
506
507 cond_resched();
508 if (again)
509 goto loop;
510
511 spin_lock(&device->io_lock);
512 if (device->pending_bios.head || device->pending_sync_bios.head)
513 goto loop_lock;
514 spin_unlock(&device->io_lock);
515
516 done:
517 blk_finish_plug(&plug);
518 }
519
520 static void pending_bios_fn(struct btrfs_work *work)
521 {
522 struct btrfs_device *device;
523
524 device = container_of(work, struct btrfs_device, work);
525 run_scheduled_bios(device);
526 }
527
528
529 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
530 {
531 struct btrfs_fs_devices *fs_devs;
532 struct btrfs_device *dev;
533
534 if (!cur_dev->name)
535 return;
536
537 list_for_each_entry(fs_devs, &fs_uuids, list) {
538 int del = 1;
539
540 if (fs_devs->opened)
541 continue;
542 if (fs_devs->seeding)
543 continue;
544
545 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
546
547 if (dev == cur_dev)
548 continue;
549 if (!dev->name)
550 continue;
551
552 /*
553 * Todo: This won't be enough. What if the same device
554 * comes back (with new uuid and) with its mapper path?
555 * But for now, this does help as mostly an admin will
556 * either use mapper or non mapper path throughout.
557 */
558 rcu_read_lock();
559 del = strcmp(rcu_str_deref(dev->name),
560 rcu_str_deref(cur_dev->name));
561 rcu_read_unlock();
562 if (!del)
563 break;
564 }
565
566 if (!del) {
567 /* delete the stale device */
568 if (fs_devs->num_devices == 1) {
569 btrfs_sysfs_remove_fsid(fs_devs);
570 list_del(&fs_devs->list);
571 free_fs_devices(fs_devs);
572 } else {
573 fs_devs->num_devices--;
574 list_del(&dev->dev_list);
575 rcu_string_free(dev->name);
576 kfree(dev);
577 }
578 break;
579 }
580 }
581 }
582
583 /*
584 * Add new device to list of registered devices
585 *
586 * Returns:
587 * 1 - first time device is seen
588 * 0 - device already known
589 * < 0 - error
590 */
591 static noinline int device_list_add(const char *path,
592 struct btrfs_super_block *disk_super,
593 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
594 {
595 struct btrfs_device *device;
596 struct btrfs_fs_devices *fs_devices;
597 struct rcu_string *name;
598 int ret = 0;
599 u64 found_transid = btrfs_super_generation(disk_super);
600
601 fs_devices = find_fsid(disk_super->fsid);
602 if (!fs_devices) {
603 fs_devices = alloc_fs_devices(disk_super->fsid);
604 if (IS_ERR(fs_devices))
605 return PTR_ERR(fs_devices);
606
607 list_add(&fs_devices->list, &fs_uuids);
608
609 device = NULL;
610 } else {
611 device = __find_device(&fs_devices->devices, devid,
612 disk_super->dev_item.uuid);
613 }
614
615 if (!device) {
616 if (fs_devices->opened)
617 return -EBUSY;
618
619 device = btrfs_alloc_device(NULL, &devid,
620 disk_super->dev_item.uuid);
621 if (IS_ERR(device)) {
622 /* we can safely leave the fs_devices entry around */
623 return PTR_ERR(device);
624 }
625
626 name = rcu_string_strdup(path, GFP_NOFS);
627 if (!name) {
628 kfree(device);
629 return -ENOMEM;
630 }
631 rcu_assign_pointer(device->name, name);
632
633 mutex_lock(&fs_devices->device_list_mutex);
634 list_add_rcu(&device->dev_list, &fs_devices->devices);
635 fs_devices->num_devices++;
636 mutex_unlock(&fs_devices->device_list_mutex);
637
638 ret = 1;
639 device->fs_devices = fs_devices;
640 } else if (!device->name || strcmp(device->name->str, path)) {
641 /*
642 * When FS is already mounted.
643 * 1. If you are here and if the device->name is NULL that
644 * means this device was missing at time of FS mount.
645 * 2. If you are here and if the device->name is different
646 * from 'path' that means either
647 * a. The same device disappeared and reappeared with
648 * different name. or
649 * b. The missing-disk-which-was-replaced, has
650 * reappeared now.
651 *
652 * We must allow 1 and 2a above. But 2b would be a spurious
653 * and unintentional.
654 *
655 * Further in case of 1 and 2a above, the disk at 'path'
656 * would have missed some transaction when it was away and
657 * in case of 2a the stale bdev has to be updated as well.
658 * 2b must not be allowed at all time.
659 */
660
661 /*
662 * For now, we do allow update to btrfs_fs_device through the
663 * btrfs dev scan cli after FS has been mounted. We're still
664 * tracking a problem where systems fail mount by subvolume id
665 * when we reject replacement on a mounted FS.
666 */
667 if (!fs_devices->opened && found_transid < device->generation) {
668 /*
669 * That is if the FS is _not_ mounted and if you
670 * are here, that means there is more than one
671 * disk with same uuid and devid.We keep the one
672 * with larger generation number or the last-in if
673 * generation are equal.
674 */
675 return -EEXIST;
676 }
677
678 name = rcu_string_strdup(path, GFP_NOFS);
679 if (!name)
680 return -ENOMEM;
681 rcu_string_free(device->name);
682 rcu_assign_pointer(device->name, name);
683 if (device->missing) {
684 fs_devices->missing_devices--;
685 device->missing = 0;
686 }
687 }
688
689 /*
690 * Unmount does not free the btrfs_device struct but would zero
691 * generation along with most of the other members. So just update
692 * it back. We need it to pick the disk with largest generation
693 * (as above).
694 */
695 if (!fs_devices->opened)
696 device->generation = found_transid;
697
698 /*
699 * if there is new btrfs on an already registered device,
700 * then remove the stale device entry.
701 */
702 btrfs_free_stale_device(device);
703
704 *fs_devices_ret = fs_devices;
705
706 return ret;
707 }
708
709 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
710 {
711 struct btrfs_fs_devices *fs_devices;
712 struct btrfs_device *device;
713 struct btrfs_device *orig_dev;
714
715 fs_devices = alloc_fs_devices(orig->fsid);
716 if (IS_ERR(fs_devices))
717 return fs_devices;
718
719 mutex_lock(&orig->device_list_mutex);
720 fs_devices->total_devices = orig->total_devices;
721
722 /* We have held the volume lock, it is safe to get the devices. */
723 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
724 struct rcu_string *name;
725
726 device = btrfs_alloc_device(NULL, &orig_dev->devid,
727 orig_dev->uuid);
728 if (IS_ERR(device))
729 goto error;
730
731 /*
732 * This is ok to do without rcu read locked because we hold the
733 * uuid mutex so nothing we touch in here is going to disappear.
734 */
735 if (orig_dev->name) {
736 name = rcu_string_strdup(orig_dev->name->str,
737 GFP_KERNEL);
738 if (!name) {
739 kfree(device);
740 goto error;
741 }
742 rcu_assign_pointer(device->name, name);
743 }
744
745 list_add(&device->dev_list, &fs_devices->devices);
746 device->fs_devices = fs_devices;
747 fs_devices->num_devices++;
748 }
749 mutex_unlock(&orig->device_list_mutex);
750 return fs_devices;
751 error:
752 mutex_unlock(&orig->device_list_mutex);
753 free_fs_devices(fs_devices);
754 return ERR_PTR(-ENOMEM);
755 }
756
757 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
758 {
759 struct btrfs_device *device, *next;
760 struct btrfs_device *latest_dev = NULL;
761
762 mutex_lock(&uuid_mutex);
763 again:
764 /* This is the initialized path, it is safe to release the devices. */
765 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
766 if (device->in_fs_metadata) {
767 if (!device->is_tgtdev_for_dev_replace &&
768 (!latest_dev ||
769 device->generation > latest_dev->generation)) {
770 latest_dev = device;
771 }
772 continue;
773 }
774
775 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
776 /*
777 * In the first step, keep the device which has
778 * the correct fsid and the devid that is used
779 * for the dev_replace procedure.
780 * In the second step, the dev_replace state is
781 * read from the device tree and it is known
782 * whether the procedure is really active or
783 * not, which means whether this device is
784 * used or whether it should be removed.
785 */
786 if (step == 0 || device->is_tgtdev_for_dev_replace) {
787 continue;
788 }
789 }
790 if (device->bdev) {
791 blkdev_put(device->bdev, device->mode);
792 device->bdev = NULL;
793 fs_devices->open_devices--;
794 }
795 if (device->writeable) {
796 list_del_init(&device->dev_alloc_list);
797 device->writeable = 0;
798 if (!device->is_tgtdev_for_dev_replace)
799 fs_devices->rw_devices--;
800 }
801 list_del_init(&device->dev_list);
802 fs_devices->num_devices--;
803 rcu_string_free(device->name);
804 kfree(device);
805 }
806
807 if (fs_devices->seed) {
808 fs_devices = fs_devices->seed;
809 goto again;
810 }
811
812 fs_devices->latest_bdev = latest_dev->bdev;
813
814 mutex_unlock(&uuid_mutex);
815 }
816
817 static void __free_device(struct work_struct *work)
818 {
819 struct btrfs_device *device;
820
821 device = container_of(work, struct btrfs_device, rcu_work);
822
823 if (device->bdev)
824 blkdev_put(device->bdev, device->mode);
825
826 rcu_string_free(device->name);
827 kfree(device);
828 }
829
830 static void free_device(struct rcu_head *head)
831 {
832 struct btrfs_device *device;
833
834 device = container_of(head, struct btrfs_device, rcu);
835
836 INIT_WORK(&device->rcu_work, __free_device);
837 schedule_work(&device->rcu_work);
838 }
839
840 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
841 {
842 struct btrfs_device *device, *tmp;
843
844 if (--fs_devices->opened > 0)
845 return 0;
846
847 mutex_lock(&fs_devices->device_list_mutex);
848 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
849 btrfs_close_one_device(device);
850 }
851 mutex_unlock(&fs_devices->device_list_mutex);
852
853 WARN_ON(fs_devices->open_devices);
854 WARN_ON(fs_devices->rw_devices);
855 fs_devices->opened = 0;
856 fs_devices->seeding = 0;
857
858 return 0;
859 }
860
861 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
862 {
863 struct btrfs_fs_devices *seed_devices = NULL;
864 int ret;
865
866 mutex_lock(&uuid_mutex);
867 ret = __btrfs_close_devices(fs_devices);
868 if (!fs_devices->opened) {
869 seed_devices = fs_devices->seed;
870 fs_devices->seed = NULL;
871 }
872 mutex_unlock(&uuid_mutex);
873
874 while (seed_devices) {
875 fs_devices = seed_devices;
876 seed_devices = fs_devices->seed;
877 __btrfs_close_devices(fs_devices);
878 free_fs_devices(fs_devices);
879 }
880 /*
881 * Wait for rcu kworkers under __btrfs_close_devices
882 * to finish all blkdev_puts so device is really
883 * free when umount is done.
884 */
885 rcu_barrier();
886 return ret;
887 }
888
889 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
890 fmode_t flags, void *holder)
891 {
892 struct request_queue *q;
893 struct block_device *bdev;
894 struct list_head *head = &fs_devices->devices;
895 struct btrfs_device *device;
896 struct btrfs_device *latest_dev = NULL;
897 struct buffer_head *bh;
898 struct btrfs_super_block *disk_super;
899 u64 devid;
900 int seeding = 1;
901 int ret = 0;
902
903 flags |= FMODE_EXCL;
904
905 list_for_each_entry(device, head, dev_list) {
906 if (device->bdev)
907 continue;
908 if (!device->name)
909 continue;
910
911 /* Just open everything we can; ignore failures here */
912 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
913 &bdev, &bh))
914 continue;
915
916 disk_super = (struct btrfs_super_block *)bh->b_data;
917 devid = btrfs_stack_device_id(&disk_super->dev_item);
918 if (devid != device->devid)
919 goto error_brelse;
920
921 if (memcmp(device->uuid, disk_super->dev_item.uuid,
922 BTRFS_UUID_SIZE))
923 goto error_brelse;
924
925 device->generation = btrfs_super_generation(disk_super);
926 if (!latest_dev ||
927 device->generation > latest_dev->generation)
928 latest_dev = device;
929
930 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
931 device->writeable = 0;
932 } else {
933 device->writeable = !bdev_read_only(bdev);
934 seeding = 0;
935 }
936
937 q = bdev_get_queue(bdev);
938 if (blk_queue_discard(q))
939 device->can_discard = 1;
940
941 device->bdev = bdev;
942 device->in_fs_metadata = 0;
943 device->mode = flags;
944
945 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
946 fs_devices->rotating = 1;
947
948 fs_devices->open_devices++;
949 if (device->writeable &&
950 device->devid != BTRFS_DEV_REPLACE_DEVID) {
951 fs_devices->rw_devices++;
952 list_add(&device->dev_alloc_list,
953 &fs_devices->alloc_list);
954 }
955 brelse(bh);
956 continue;
957
958 error_brelse:
959 brelse(bh);
960 blkdev_put(bdev, flags);
961 continue;
962 }
963 if (fs_devices->open_devices == 0) {
964 ret = -EINVAL;
965 goto out;
966 }
967 fs_devices->seeding = seeding;
968 fs_devices->opened = 1;
969 fs_devices->latest_bdev = latest_dev->bdev;
970 fs_devices->total_rw_bytes = 0;
971 out:
972 return ret;
973 }
974
975 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
976 fmode_t flags, void *holder)
977 {
978 int ret;
979
980 mutex_lock(&uuid_mutex);
981 if (fs_devices->opened) {
982 fs_devices->opened++;
983 ret = 0;
984 } else {
985 ret = __btrfs_open_devices(fs_devices, flags, holder);
986 }
987 mutex_unlock(&uuid_mutex);
988 return ret;
989 }
990
991 /*
992 * Look for a btrfs signature on a device. This may be called out of the mount path
993 * and we are not allowed to call set_blocksize during the scan. The superblock
994 * is read via pagecache
995 */
996 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
997 struct btrfs_fs_devices **fs_devices_ret)
998 {
999 struct btrfs_super_block *disk_super;
1000 struct block_device *bdev;
1001 struct page *page;
1002 void *p;
1003 int ret = -EINVAL;
1004 u64 devid;
1005 u64 transid;
1006 u64 total_devices;
1007 u64 bytenr;
1008 pgoff_t index;
1009
1010 /*
1011 * we would like to check all the supers, but that would make
1012 * a btrfs mount succeed after a mkfs from a different FS.
1013 * So, we need to add a special mount option to scan for
1014 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1015 */
1016 bytenr = btrfs_sb_offset(0);
1017 flags |= FMODE_EXCL;
1018 mutex_lock(&uuid_mutex);
1019
1020 bdev = blkdev_get_by_path(path, flags, holder);
1021
1022 if (IS_ERR(bdev)) {
1023 ret = PTR_ERR(bdev);
1024 goto error;
1025 }
1026
1027 /* make sure our super fits in the device */
1028 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
1029 goto error_bdev_put;
1030
1031 /* make sure our super fits in the page */
1032 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
1033 goto error_bdev_put;
1034
1035 /* make sure our super doesn't straddle pages on disk */
1036 index = bytenr >> PAGE_CACHE_SHIFT;
1037 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
1038 goto error_bdev_put;
1039
1040 /* pull in the page with our super */
1041 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1042 index, GFP_NOFS);
1043
1044 if (IS_ERR_OR_NULL(page))
1045 goto error_bdev_put;
1046
1047 p = kmap(page);
1048
1049 /* align our pointer to the offset of the super block */
1050 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
1051
1052 if (btrfs_super_bytenr(disk_super) != bytenr ||
1053 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1054 goto error_unmap;
1055
1056 devid = btrfs_stack_device_id(&disk_super->dev_item);
1057 transid = btrfs_super_generation(disk_super);
1058 total_devices = btrfs_super_num_devices(disk_super);
1059
1060 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1061 if (ret > 0) {
1062 if (disk_super->label[0]) {
1063 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1064 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1065 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1066 } else {
1067 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1068 }
1069
1070 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1071 ret = 0;
1072 }
1073 if (!ret && fs_devices_ret)
1074 (*fs_devices_ret)->total_devices = total_devices;
1075
1076 error_unmap:
1077 kunmap(page);
1078 page_cache_release(page);
1079
1080 error_bdev_put:
1081 blkdev_put(bdev, flags);
1082 error:
1083 mutex_unlock(&uuid_mutex);
1084 return ret;
1085 }
1086
1087 /* helper to account the used device space in the range */
1088 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1089 u64 end, u64 *length)
1090 {
1091 struct btrfs_key key;
1092 struct btrfs_root *root = device->dev_root;
1093 struct btrfs_dev_extent *dev_extent;
1094 struct btrfs_path *path;
1095 u64 extent_end;
1096 int ret;
1097 int slot;
1098 struct extent_buffer *l;
1099
1100 *length = 0;
1101
1102 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1103 return 0;
1104
1105 path = btrfs_alloc_path();
1106 if (!path)
1107 return -ENOMEM;
1108 path->reada = READA_FORWARD;
1109
1110 key.objectid = device->devid;
1111 key.offset = start;
1112 key.type = BTRFS_DEV_EXTENT_KEY;
1113
1114 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1115 if (ret < 0)
1116 goto out;
1117 if (ret > 0) {
1118 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1119 if (ret < 0)
1120 goto out;
1121 }
1122
1123 while (1) {
1124 l = path->nodes[0];
1125 slot = path->slots[0];
1126 if (slot >= btrfs_header_nritems(l)) {
1127 ret = btrfs_next_leaf(root, path);
1128 if (ret == 0)
1129 continue;
1130 if (ret < 0)
1131 goto out;
1132
1133 break;
1134 }
1135 btrfs_item_key_to_cpu(l, &key, slot);
1136
1137 if (key.objectid < device->devid)
1138 goto next;
1139
1140 if (key.objectid > device->devid)
1141 break;
1142
1143 if (key.type != BTRFS_DEV_EXTENT_KEY)
1144 goto next;
1145
1146 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1147 extent_end = key.offset + btrfs_dev_extent_length(l,
1148 dev_extent);
1149 if (key.offset <= start && extent_end > end) {
1150 *length = end - start + 1;
1151 break;
1152 } else if (key.offset <= start && extent_end > start)
1153 *length += extent_end - start;
1154 else if (key.offset > start && extent_end <= end)
1155 *length += extent_end - key.offset;
1156 else if (key.offset > start && key.offset <= end) {
1157 *length += end - key.offset + 1;
1158 break;
1159 } else if (key.offset > end)
1160 break;
1161
1162 next:
1163 path->slots[0]++;
1164 }
1165 ret = 0;
1166 out:
1167 btrfs_free_path(path);
1168 return ret;
1169 }
1170
1171 static int contains_pending_extent(struct btrfs_transaction *transaction,
1172 struct btrfs_device *device,
1173 u64 *start, u64 len)
1174 {
1175 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1176 struct extent_map *em;
1177 struct list_head *search_list = &fs_info->pinned_chunks;
1178 int ret = 0;
1179 u64 physical_start = *start;
1180
1181 if (transaction)
1182 search_list = &transaction->pending_chunks;
1183 again:
1184 list_for_each_entry(em, search_list, list) {
1185 struct map_lookup *map;
1186 int i;
1187
1188 map = em->map_lookup;
1189 for (i = 0; i < map->num_stripes; i++) {
1190 u64 end;
1191
1192 if (map->stripes[i].dev != device)
1193 continue;
1194 if (map->stripes[i].physical >= physical_start + len ||
1195 map->stripes[i].physical + em->orig_block_len <=
1196 physical_start)
1197 continue;
1198 /*
1199 * Make sure that while processing the pinned list we do
1200 * not override our *start with a lower value, because
1201 * we can have pinned chunks that fall within this
1202 * device hole and that have lower physical addresses
1203 * than the pending chunks we processed before. If we
1204 * do not take this special care we can end up getting
1205 * 2 pending chunks that start at the same physical
1206 * device offsets because the end offset of a pinned
1207 * chunk can be equal to the start offset of some
1208 * pending chunk.
1209 */
1210 end = map->stripes[i].physical + em->orig_block_len;
1211 if (end > *start) {
1212 *start = end;
1213 ret = 1;
1214 }
1215 }
1216 }
1217 if (search_list != &fs_info->pinned_chunks) {
1218 search_list = &fs_info->pinned_chunks;
1219 goto again;
1220 }
1221
1222 return ret;
1223 }
1224
1225
1226 /*
1227 * find_free_dev_extent_start - find free space in the specified device
1228 * @device: the device which we search the free space in
1229 * @num_bytes: the size of the free space that we need
1230 * @search_start: the position from which to begin the search
1231 * @start: store the start of the free space.
1232 * @len: the size of the free space. that we find, or the size
1233 * of the max free space if we don't find suitable free space
1234 *
1235 * this uses a pretty simple search, the expectation is that it is
1236 * called very infrequently and that a given device has a small number
1237 * of extents
1238 *
1239 * @start is used to store the start of the free space if we find. But if we
1240 * don't find suitable free space, it will be used to store the start position
1241 * of the max free space.
1242 *
1243 * @len is used to store the size of the free space that we find.
1244 * But if we don't find suitable free space, it is used to store the size of
1245 * the max free space.
1246 */
1247 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1248 struct btrfs_device *device, u64 num_bytes,
1249 u64 search_start, u64 *start, u64 *len)
1250 {
1251 struct btrfs_key key;
1252 struct btrfs_root *root = device->dev_root;
1253 struct btrfs_dev_extent *dev_extent;
1254 struct btrfs_path *path;
1255 u64 hole_size;
1256 u64 max_hole_start;
1257 u64 max_hole_size;
1258 u64 extent_end;
1259 u64 search_end = device->total_bytes;
1260 int ret;
1261 int slot;
1262 struct extent_buffer *l;
1263 u64 min_search_start;
1264
1265 /*
1266 * We don't want to overwrite the superblock on the drive nor any area
1267 * used by the boot loader (grub for example), so we make sure to start
1268 * at an offset of at least 1MB.
1269 */
1270 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1271 search_start = max(search_start, min_search_start);
1272
1273 path = btrfs_alloc_path();
1274 if (!path)
1275 return -ENOMEM;
1276
1277 max_hole_start = search_start;
1278 max_hole_size = 0;
1279
1280 again:
1281 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1282 ret = -ENOSPC;
1283 goto out;
1284 }
1285
1286 path->reada = READA_FORWARD;
1287 path->search_commit_root = 1;
1288 path->skip_locking = 1;
1289
1290 key.objectid = device->devid;
1291 key.offset = search_start;
1292 key.type = BTRFS_DEV_EXTENT_KEY;
1293
1294 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1295 if (ret < 0)
1296 goto out;
1297 if (ret > 0) {
1298 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1299 if (ret < 0)
1300 goto out;
1301 }
1302
1303 while (1) {
1304 l = path->nodes[0];
1305 slot = path->slots[0];
1306 if (slot >= btrfs_header_nritems(l)) {
1307 ret = btrfs_next_leaf(root, path);
1308 if (ret == 0)
1309 continue;
1310 if (ret < 0)
1311 goto out;
1312
1313 break;
1314 }
1315 btrfs_item_key_to_cpu(l, &key, slot);
1316
1317 if (key.objectid < device->devid)
1318 goto next;
1319
1320 if (key.objectid > device->devid)
1321 break;
1322
1323 if (key.type != BTRFS_DEV_EXTENT_KEY)
1324 goto next;
1325
1326 if (key.offset > search_start) {
1327 hole_size = key.offset - search_start;
1328
1329 /*
1330 * Have to check before we set max_hole_start, otherwise
1331 * we could end up sending back this offset anyway.
1332 */
1333 if (contains_pending_extent(transaction, device,
1334 &search_start,
1335 hole_size)) {
1336 if (key.offset >= search_start) {
1337 hole_size = key.offset - search_start;
1338 } else {
1339 WARN_ON_ONCE(1);
1340 hole_size = 0;
1341 }
1342 }
1343
1344 if (hole_size > max_hole_size) {
1345 max_hole_start = search_start;
1346 max_hole_size = hole_size;
1347 }
1348
1349 /*
1350 * If this free space is greater than which we need,
1351 * it must be the max free space that we have found
1352 * until now, so max_hole_start must point to the start
1353 * of this free space and the length of this free space
1354 * is stored in max_hole_size. Thus, we return
1355 * max_hole_start and max_hole_size and go back to the
1356 * caller.
1357 */
1358 if (hole_size >= num_bytes) {
1359 ret = 0;
1360 goto out;
1361 }
1362 }
1363
1364 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1365 extent_end = key.offset + btrfs_dev_extent_length(l,
1366 dev_extent);
1367 if (extent_end > search_start)
1368 search_start = extent_end;
1369 next:
1370 path->slots[0]++;
1371 cond_resched();
1372 }
1373
1374 /*
1375 * At this point, search_start should be the end of
1376 * allocated dev extents, and when shrinking the device,
1377 * search_end may be smaller than search_start.
1378 */
1379 if (search_end > search_start) {
1380 hole_size = search_end - search_start;
1381
1382 if (contains_pending_extent(transaction, device, &search_start,
1383 hole_size)) {
1384 btrfs_release_path(path);
1385 goto again;
1386 }
1387
1388 if (hole_size > max_hole_size) {
1389 max_hole_start = search_start;
1390 max_hole_size = hole_size;
1391 }
1392 }
1393
1394 /* See above. */
1395 if (max_hole_size < num_bytes)
1396 ret = -ENOSPC;
1397 else
1398 ret = 0;
1399
1400 out:
1401 btrfs_free_path(path);
1402 *start = max_hole_start;
1403 if (len)
1404 *len = max_hole_size;
1405 return ret;
1406 }
1407
1408 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1409 struct btrfs_device *device, u64 num_bytes,
1410 u64 *start, u64 *len)
1411 {
1412 /* FIXME use last free of some kind */
1413 return find_free_dev_extent_start(trans->transaction, device,
1414 num_bytes, 0, start, len);
1415 }
1416
1417 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1418 struct btrfs_device *device,
1419 u64 start, u64 *dev_extent_len)
1420 {
1421 int ret;
1422 struct btrfs_path *path;
1423 struct btrfs_root *root = device->dev_root;
1424 struct btrfs_key key;
1425 struct btrfs_key found_key;
1426 struct extent_buffer *leaf = NULL;
1427 struct btrfs_dev_extent *extent = NULL;
1428
1429 path = btrfs_alloc_path();
1430 if (!path)
1431 return -ENOMEM;
1432
1433 key.objectid = device->devid;
1434 key.offset = start;
1435 key.type = BTRFS_DEV_EXTENT_KEY;
1436 again:
1437 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1438 if (ret > 0) {
1439 ret = btrfs_previous_item(root, path, key.objectid,
1440 BTRFS_DEV_EXTENT_KEY);
1441 if (ret)
1442 goto out;
1443 leaf = path->nodes[0];
1444 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1445 extent = btrfs_item_ptr(leaf, path->slots[0],
1446 struct btrfs_dev_extent);
1447 BUG_ON(found_key.offset > start || found_key.offset +
1448 btrfs_dev_extent_length(leaf, extent) < start);
1449 key = found_key;
1450 btrfs_release_path(path);
1451 goto again;
1452 } else if (ret == 0) {
1453 leaf = path->nodes[0];
1454 extent = btrfs_item_ptr(leaf, path->slots[0],
1455 struct btrfs_dev_extent);
1456 } else {
1457 btrfs_std_error(root->fs_info, ret, "Slot search failed");
1458 goto out;
1459 }
1460
1461 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1462
1463 ret = btrfs_del_item(trans, root, path);
1464 if (ret) {
1465 btrfs_std_error(root->fs_info, ret,
1466 "Failed to remove dev extent item");
1467 } else {
1468 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1469 }
1470 out:
1471 btrfs_free_path(path);
1472 return ret;
1473 }
1474
1475 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1476 struct btrfs_device *device,
1477 u64 chunk_tree, u64 chunk_objectid,
1478 u64 chunk_offset, u64 start, u64 num_bytes)
1479 {
1480 int ret;
1481 struct btrfs_path *path;
1482 struct btrfs_root *root = device->dev_root;
1483 struct btrfs_dev_extent *extent;
1484 struct extent_buffer *leaf;
1485 struct btrfs_key key;
1486
1487 WARN_ON(!device->in_fs_metadata);
1488 WARN_ON(device->is_tgtdev_for_dev_replace);
1489 path = btrfs_alloc_path();
1490 if (!path)
1491 return -ENOMEM;
1492
1493 key.objectid = device->devid;
1494 key.offset = start;
1495 key.type = BTRFS_DEV_EXTENT_KEY;
1496 ret = btrfs_insert_empty_item(trans, root, path, &key,
1497 sizeof(*extent));
1498 if (ret)
1499 goto out;
1500
1501 leaf = path->nodes[0];
1502 extent = btrfs_item_ptr(leaf, path->slots[0],
1503 struct btrfs_dev_extent);
1504 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1505 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1506 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1507
1508 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1509 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1510
1511 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1512 btrfs_mark_buffer_dirty(leaf);
1513 out:
1514 btrfs_free_path(path);
1515 return ret;
1516 }
1517
1518 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1519 {
1520 struct extent_map_tree *em_tree;
1521 struct extent_map *em;
1522 struct rb_node *n;
1523 u64 ret = 0;
1524
1525 em_tree = &fs_info->mapping_tree.map_tree;
1526 read_lock(&em_tree->lock);
1527 n = rb_last(&em_tree->map);
1528 if (n) {
1529 em = rb_entry(n, struct extent_map, rb_node);
1530 ret = em->start + em->len;
1531 }
1532 read_unlock(&em_tree->lock);
1533
1534 return ret;
1535 }
1536
1537 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1538 u64 *devid_ret)
1539 {
1540 int ret;
1541 struct btrfs_key key;
1542 struct btrfs_key found_key;
1543 struct btrfs_path *path;
1544
1545 path = btrfs_alloc_path();
1546 if (!path)
1547 return -ENOMEM;
1548
1549 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1550 key.type = BTRFS_DEV_ITEM_KEY;
1551 key.offset = (u64)-1;
1552
1553 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1554 if (ret < 0)
1555 goto error;
1556
1557 BUG_ON(ret == 0); /* Corruption */
1558
1559 ret = btrfs_previous_item(fs_info->chunk_root, path,
1560 BTRFS_DEV_ITEMS_OBJECTID,
1561 BTRFS_DEV_ITEM_KEY);
1562 if (ret) {
1563 *devid_ret = 1;
1564 } else {
1565 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1566 path->slots[0]);
1567 *devid_ret = found_key.offset + 1;
1568 }
1569 ret = 0;
1570 error:
1571 btrfs_free_path(path);
1572 return ret;
1573 }
1574
1575 /*
1576 * the device information is stored in the chunk root
1577 * the btrfs_device struct should be fully filled in
1578 */
1579 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1580 struct btrfs_root *root,
1581 struct btrfs_device *device)
1582 {
1583 int ret;
1584 struct btrfs_path *path;
1585 struct btrfs_dev_item *dev_item;
1586 struct extent_buffer *leaf;
1587 struct btrfs_key key;
1588 unsigned long ptr;
1589
1590 root = root->fs_info->chunk_root;
1591
1592 path = btrfs_alloc_path();
1593 if (!path)
1594 return -ENOMEM;
1595
1596 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1597 key.type = BTRFS_DEV_ITEM_KEY;
1598 key.offset = device->devid;
1599
1600 ret = btrfs_insert_empty_item(trans, root, path, &key,
1601 sizeof(*dev_item));
1602 if (ret)
1603 goto out;
1604
1605 leaf = path->nodes[0];
1606 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1607
1608 btrfs_set_device_id(leaf, dev_item, device->devid);
1609 btrfs_set_device_generation(leaf, dev_item, 0);
1610 btrfs_set_device_type(leaf, dev_item, device->type);
1611 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1612 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1613 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1614 btrfs_set_device_total_bytes(leaf, dev_item,
1615 btrfs_device_get_disk_total_bytes(device));
1616 btrfs_set_device_bytes_used(leaf, dev_item,
1617 btrfs_device_get_bytes_used(device));
1618 btrfs_set_device_group(leaf, dev_item, 0);
1619 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1620 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1621 btrfs_set_device_start_offset(leaf, dev_item, 0);
1622
1623 ptr = btrfs_device_uuid(dev_item);
1624 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1625 ptr = btrfs_device_fsid(dev_item);
1626 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1627 btrfs_mark_buffer_dirty(leaf);
1628
1629 ret = 0;
1630 out:
1631 btrfs_free_path(path);
1632 return ret;
1633 }
1634
1635 /*
1636 * Function to update ctime/mtime for a given device path.
1637 * Mainly used for ctime/mtime based probe like libblkid.
1638 */
1639 static void update_dev_time(char *path_name)
1640 {
1641 struct file *filp;
1642
1643 filp = filp_open(path_name, O_RDWR, 0);
1644 if (IS_ERR(filp))
1645 return;
1646 file_update_time(filp);
1647 filp_close(filp, NULL);
1648 }
1649
1650 static int btrfs_rm_dev_item(struct btrfs_root *root,
1651 struct btrfs_device *device)
1652 {
1653 int ret;
1654 struct btrfs_path *path;
1655 struct btrfs_key key;
1656 struct btrfs_trans_handle *trans;
1657
1658 root = root->fs_info->chunk_root;
1659
1660 path = btrfs_alloc_path();
1661 if (!path)
1662 return -ENOMEM;
1663
1664 trans = btrfs_start_transaction(root, 0);
1665 if (IS_ERR(trans)) {
1666 btrfs_free_path(path);
1667 return PTR_ERR(trans);
1668 }
1669 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1670 key.type = BTRFS_DEV_ITEM_KEY;
1671 key.offset = device->devid;
1672
1673 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1674 if (ret < 0)
1675 goto out;
1676
1677 if (ret > 0) {
1678 ret = -ENOENT;
1679 goto out;
1680 }
1681
1682 ret = btrfs_del_item(trans, root, path);
1683 if (ret)
1684 goto out;
1685 out:
1686 btrfs_free_path(path);
1687 btrfs_commit_transaction(trans, root);
1688 return ret;
1689 }
1690
1691 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1692 {
1693 struct btrfs_device *device;
1694 struct btrfs_device *next_device;
1695 struct block_device *bdev;
1696 struct buffer_head *bh = NULL;
1697 struct btrfs_super_block *disk_super;
1698 struct btrfs_fs_devices *cur_devices;
1699 u64 all_avail;
1700 u64 devid;
1701 u64 num_devices;
1702 u8 *dev_uuid;
1703 unsigned seq;
1704 int ret = 0;
1705 bool clear_super = false;
1706
1707 mutex_lock(&uuid_mutex);
1708
1709 do {
1710 seq = read_seqbegin(&root->fs_info->profiles_lock);
1711
1712 all_avail = root->fs_info->avail_data_alloc_bits |
1713 root->fs_info->avail_system_alloc_bits |
1714 root->fs_info->avail_metadata_alloc_bits;
1715 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1716
1717 num_devices = root->fs_info->fs_devices->num_devices;
1718 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1719 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1720 WARN_ON(num_devices < 1);
1721 num_devices--;
1722 }
1723 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1724
1725 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1726 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1727 goto out;
1728 }
1729
1730 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1731 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1732 goto out;
1733 }
1734
1735 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1736 root->fs_info->fs_devices->rw_devices <= 2) {
1737 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1738 goto out;
1739 }
1740 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1741 root->fs_info->fs_devices->rw_devices <= 3) {
1742 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1743 goto out;
1744 }
1745
1746 if (strcmp(device_path, "missing") == 0) {
1747 struct list_head *devices;
1748 struct btrfs_device *tmp;
1749
1750 device = NULL;
1751 devices = &root->fs_info->fs_devices->devices;
1752 /*
1753 * It is safe to read the devices since the volume_mutex
1754 * is held.
1755 */
1756 list_for_each_entry(tmp, devices, dev_list) {
1757 if (tmp->in_fs_metadata &&
1758 !tmp->is_tgtdev_for_dev_replace &&
1759 !tmp->bdev) {
1760 device = tmp;
1761 break;
1762 }
1763 }
1764 bdev = NULL;
1765 bh = NULL;
1766 disk_super = NULL;
1767 if (!device) {
1768 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1769 goto out;
1770 }
1771 } else {
1772 ret = btrfs_get_bdev_and_sb(device_path,
1773 FMODE_WRITE | FMODE_EXCL,
1774 root->fs_info->bdev_holder, 0,
1775 &bdev, &bh);
1776 if (ret)
1777 goto out;
1778 disk_super = (struct btrfs_super_block *)bh->b_data;
1779 devid = btrfs_stack_device_id(&disk_super->dev_item);
1780 dev_uuid = disk_super->dev_item.uuid;
1781 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1782 disk_super->fsid);
1783 if (!device) {
1784 ret = -ENOENT;
1785 goto error_brelse;
1786 }
1787 }
1788
1789 if (device->is_tgtdev_for_dev_replace) {
1790 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1791 goto error_brelse;
1792 }
1793
1794 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1795 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1796 goto error_brelse;
1797 }
1798
1799 if (device->writeable) {
1800 lock_chunks(root);
1801 list_del_init(&device->dev_alloc_list);
1802 device->fs_devices->rw_devices--;
1803 unlock_chunks(root);
1804 clear_super = true;
1805 }
1806
1807 mutex_unlock(&uuid_mutex);
1808 ret = btrfs_shrink_device(device, 0);
1809 mutex_lock(&uuid_mutex);
1810 if (ret)
1811 goto error_undo;
1812
1813 /*
1814 * TODO: the superblock still includes this device in its num_devices
1815 * counter although write_all_supers() is not locked out. This
1816 * could give a filesystem state which requires a degraded mount.
1817 */
1818 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1819 if (ret)
1820 goto error_undo;
1821
1822 device->in_fs_metadata = 0;
1823 btrfs_scrub_cancel_dev(root->fs_info, device);
1824
1825 /*
1826 * the device list mutex makes sure that we don't change
1827 * the device list while someone else is writing out all
1828 * the device supers. Whoever is writing all supers, should
1829 * lock the device list mutex before getting the number of
1830 * devices in the super block (super_copy). Conversely,
1831 * whoever updates the number of devices in the super block
1832 * (super_copy) should hold the device list mutex.
1833 */
1834
1835 cur_devices = device->fs_devices;
1836 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1837 list_del_rcu(&device->dev_list);
1838
1839 device->fs_devices->num_devices--;
1840 device->fs_devices->total_devices--;
1841
1842 if (device->missing)
1843 device->fs_devices->missing_devices--;
1844
1845 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1846 struct btrfs_device, dev_list);
1847 if (device->bdev == root->fs_info->sb->s_bdev)
1848 root->fs_info->sb->s_bdev = next_device->bdev;
1849 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1850 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1851
1852 if (device->bdev) {
1853 device->fs_devices->open_devices--;
1854 /* remove sysfs entry */
1855 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1856 }
1857
1858 call_rcu(&device->rcu, free_device);
1859
1860 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1861 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1862 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1863
1864 if (cur_devices->open_devices == 0) {
1865 struct btrfs_fs_devices *fs_devices;
1866 fs_devices = root->fs_info->fs_devices;
1867 while (fs_devices) {
1868 if (fs_devices->seed == cur_devices) {
1869 fs_devices->seed = cur_devices->seed;
1870 break;
1871 }
1872 fs_devices = fs_devices->seed;
1873 }
1874 cur_devices->seed = NULL;
1875 __btrfs_close_devices(cur_devices);
1876 free_fs_devices(cur_devices);
1877 }
1878
1879 root->fs_info->num_tolerated_disk_barrier_failures =
1880 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1881
1882 /*
1883 * at this point, the device is zero sized. We want to
1884 * remove it from the devices list and zero out the old super
1885 */
1886 if (clear_super && disk_super) {
1887 u64 bytenr;
1888 int i;
1889
1890 /* make sure this device isn't detected as part of
1891 * the FS anymore
1892 */
1893 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1894 set_buffer_dirty(bh);
1895 sync_dirty_buffer(bh);
1896
1897 /* clear the mirror copies of super block on the disk
1898 * being removed, 0th copy is been taken care above and
1899 * the below would take of the rest
1900 */
1901 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1902 bytenr = btrfs_sb_offset(i);
1903 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1904 i_size_read(bdev->bd_inode))
1905 break;
1906
1907 brelse(bh);
1908 bh = __bread(bdev, bytenr / 4096,
1909 BTRFS_SUPER_INFO_SIZE);
1910 if (!bh)
1911 continue;
1912
1913 disk_super = (struct btrfs_super_block *)bh->b_data;
1914
1915 if (btrfs_super_bytenr(disk_super) != bytenr ||
1916 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1917 continue;
1918 }
1919 memset(&disk_super->magic, 0,
1920 sizeof(disk_super->magic));
1921 set_buffer_dirty(bh);
1922 sync_dirty_buffer(bh);
1923 }
1924 }
1925
1926 ret = 0;
1927
1928 if (bdev) {
1929 /* Notify udev that device has changed */
1930 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1931
1932 /* Update ctime/mtime for device path for libblkid */
1933 update_dev_time(device_path);
1934 }
1935
1936 error_brelse:
1937 brelse(bh);
1938 if (bdev)
1939 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1940 out:
1941 mutex_unlock(&uuid_mutex);
1942 return ret;
1943 error_undo:
1944 if (device->writeable) {
1945 lock_chunks(root);
1946 list_add(&device->dev_alloc_list,
1947 &root->fs_info->fs_devices->alloc_list);
1948 device->fs_devices->rw_devices++;
1949 unlock_chunks(root);
1950 }
1951 goto error_brelse;
1952 }
1953
1954 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1955 struct btrfs_device *srcdev)
1956 {
1957 struct btrfs_fs_devices *fs_devices;
1958
1959 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1960
1961 /*
1962 * in case of fs with no seed, srcdev->fs_devices will point
1963 * to fs_devices of fs_info. However when the dev being replaced is
1964 * a seed dev it will point to the seed's local fs_devices. In short
1965 * srcdev will have its correct fs_devices in both the cases.
1966 */
1967 fs_devices = srcdev->fs_devices;
1968
1969 list_del_rcu(&srcdev->dev_list);
1970 list_del_rcu(&srcdev->dev_alloc_list);
1971 fs_devices->num_devices--;
1972 if (srcdev->missing)
1973 fs_devices->missing_devices--;
1974
1975 if (srcdev->writeable) {
1976 fs_devices->rw_devices--;
1977 /* zero out the old super if it is writable */
1978 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1979 }
1980
1981 if (srcdev->bdev)
1982 fs_devices->open_devices--;
1983 }
1984
1985 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1986 struct btrfs_device *srcdev)
1987 {
1988 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1989
1990 call_rcu(&srcdev->rcu, free_device);
1991
1992 /*
1993 * unless fs_devices is seed fs, num_devices shouldn't go
1994 * zero
1995 */
1996 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1997
1998 /* if this is no devs we rather delete the fs_devices */
1999 if (!fs_devices->num_devices) {
2000 struct btrfs_fs_devices *tmp_fs_devices;
2001
2002 tmp_fs_devices = fs_info->fs_devices;
2003 while (tmp_fs_devices) {
2004 if (tmp_fs_devices->seed == fs_devices) {
2005 tmp_fs_devices->seed = fs_devices->seed;
2006 break;
2007 }
2008 tmp_fs_devices = tmp_fs_devices->seed;
2009 }
2010 fs_devices->seed = NULL;
2011 __btrfs_close_devices(fs_devices);
2012 free_fs_devices(fs_devices);
2013 }
2014 }
2015
2016 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2017 struct btrfs_device *tgtdev)
2018 {
2019 struct btrfs_device *next_device;
2020
2021 mutex_lock(&uuid_mutex);
2022 WARN_ON(!tgtdev);
2023 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2024
2025 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2026
2027 if (tgtdev->bdev) {
2028 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2029 fs_info->fs_devices->open_devices--;
2030 }
2031 fs_info->fs_devices->num_devices--;
2032
2033 next_device = list_entry(fs_info->fs_devices->devices.next,
2034 struct btrfs_device, dev_list);
2035 if (tgtdev->bdev == fs_info->sb->s_bdev)
2036 fs_info->sb->s_bdev = next_device->bdev;
2037 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
2038 fs_info->fs_devices->latest_bdev = next_device->bdev;
2039 list_del_rcu(&tgtdev->dev_list);
2040
2041 call_rcu(&tgtdev->rcu, free_device);
2042
2043 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2044 mutex_unlock(&uuid_mutex);
2045 }
2046
2047 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2048 struct btrfs_device **device)
2049 {
2050 int ret = 0;
2051 struct btrfs_super_block *disk_super;
2052 u64 devid;
2053 u8 *dev_uuid;
2054 struct block_device *bdev;
2055 struct buffer_head *bh;
2056
2057 *device = NULL;
2058 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2059 root->fs_info->bdev_holder, 0, &bdev, &bh);
2060 if (ret)
2061 return ret;
2062 disk_super = (struct btrfs_super_block *)bh->b_data;
2063 devid = btrfs_stack_device_id(&disk_super->dev_item);
2064 dev_uuid = disk_super->dev_item.uuid;
2065 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2066 disk_super->fsid);
2067 brelse(bh);
2068 if (!*device)
2069 ret = -ENOENT;
2070 blkdev_put(bdev, FMODE_READ);
2071 return ret;
2072 }
2073
2074 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2075 char *device_path,
2076 struct btrfs_device **device)
2077 {
2078 *device = NULL;
2079 if (strcmp(device_path, "missing") == 0) {
2080 struct list_head *devices;
2081 struct btrfs_device *tmp;
2082
2083 devices = &root->fs_info->fs_devices->devices;
2084 /*
2085 * It is safe to read the devices since the volume_mutex
2086 * is held by the caller.
2087 */
2088 list_for_each_entry(tmp, devices, dev_list) {
2089 if (tmp->in_fs_metadata && !tmp->bdev) {
2090 *device = tmp;
2091 break;
2092 }
2093 }
2094
2095 if (!*device)
2096 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2097
2098 return 0;
2099 } else {
2100 return btrfs_find_device_by_path(root, device_path, device);
2101 }
2102 }
2103
2104 /*
2105 * does all the dirty work required for changing file system's UUID.
2106 */
2107 static int btrfs_prepare_sprout(struct btrfs_root *root)
2108 {
2109 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2110 struct btrfs_fs_devices *old_devices;
2111 struct btrfs_fs_devices *seed_devices;
2112 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2113 struct btrfs_device *device;
2114 u64 super_flags;
2115
2116 BUG_ON(!mutex_is_locked(&uuid_mutex));
2117 if (!fs_devices->seeding)
2118 return -EINVAL;
2119
2120 seed_devices = __alloc_fs_devices();
2121 if (IS_ERR(seed_devices))
2122 return PTR_ERR(seed_devices);
2123
2124 old_devices = clone_fs_devices(fs_devices);
2125 if (IS_ERR(old_devices)) {
2126 kfree(seed_devices);
2127 return PTR_ERR(old_devices);
2128 }
2129
2130 list_add(&old_devices->list, &fs_uuids);
2131
2132 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2133 seed_devices->opened = 1;
2134 INIT_LIST_HEAD(&seed_devices->devices);
2135 INIT_LIST_HEAD(&seed_devices->alloc_list);
2136 mutex_init(&seed_devices->device_list_mutex);
2137
2138 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2139 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2140 synchronize_rcu);
2141 list_for_each_entry(device, &seed_devices->devices, dev_list)
2142 device->fs_devices = seed_devices;
2143
2144 lock_chunks(root);
2145 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2146 unlock_chunks(root);
2147
2148 fs_devices->seeding = 0;
2149 fs_devices->num_devices = 0;
2150 fs_devices->open_devices = 0;
2151 fs_devices->missing_devices = 0;
2152 fs_devices->rotating = 0;
2153 fs_devices->seed = seed_devices;
2154
2155 generate_random_uuid(fs_devices->fsid);
2156 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2157 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2158 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2159
2160 super_flags = btrfs_super_flags(disk_super) &
2161 ~BTRFS_SUPER_FLAG_SEEDING;
2162 btrfs_set_super_flags(disk_super, super_flags);
2163
2164 return 0;
2165 }
2166
2167 /*
2168 * strore the expected generation for seed devices in device items.
2169 */
2170 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2171 struct btrfs_root *root)
2172 {
2173 struct btrfs_path *path;
2174 struct extent_buffer *leaf;
2175 struct btrfs_dev_item *dev_item;
2176 struct btrfs_device *device;
2177 struct btrfs_key key;
2178 u8 fs_uuid[BTRFS_UUID_SIZE];
2179 u8 dev_uuid[BTRFS_UUID_SIZE];
2180 u64 devid;
2181 int ret;
2182
2183 path = btrfs_alloc_path();
2184 if (!path)
2185 return -ENOMEM;
2186
2187 root = root->fs_info->chunk_root;
2188 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2189 key.offset = 0;
2190 key.type = BTRFS_DEV_ITEM_KEY;
2191
2192 while (1) {
2193 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2194 if (ret < 0)
2195 goto error;
2196
2197 leaf = path->nodes[0];
2198 next_slot:
2199 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2200 ret = btrfs_next_leaf(root, path);
2201 if (ret > 0)
2202 break;
2203 if (ret < 0)
2204 goto error;
2205 leaf = path->nodes[0];
2206 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2207 btrfs_release_path(path);
2208 continue;
2209 }
2210
2211 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2212 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2213 key.type != BTRFS_DEV_ITEM_KEY)
2214 break;
2215
2216 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2217 struct btrfs_dev_item);
2218 devid = btrfs_device_id(leaf, dev_item);
2219 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2220 BTRFS_UUID_SIZE);
2221 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2222 BTRFS_UUID_SIZE);
2223 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2224 fs_uuid);
2225 BUG_ON(!device); /* Logic error */
2226
2227 if (device->fs_devices->seeding) {
2228 btrfs_set_device_generation(leaf, dev_item,
2229 device->generation);
2230 btrfs_mark_buffer_dirty(leaf);
2231 }
2232
2233 path->slots[0]++;
2234 goto next_slot;
2235 }
2236 ret = 0;
2237 error:
2238 btrfs_free_path(path);
2239 return ret;
2240 }
2241
2242 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2243 {
2244 struct request_queue *q;
2245 struct btrfs_trans_handle *trans;
2246 struct btrfs_device *device;
2247 struct block_device *bdev;
2248 struct list_head *devices;
2249 struct super_block *sb = root->fs_info->sb;
2250 struct rcu_string *name;
2251 u64 tmp;
2252 int seeding_dev = 0;
2253 int ret = 0;
2254
2255 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2256 return -EROFS;
2257
2258 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2259 root->fs_info->bdev_holder);
2260 if (IS_ERR(bdev))
2261 return PTR_ERR(bdev);
2262
2263 if (root->fs_info->fs_devices->seeding) {
2264 seeding_dev = 1;
2265 down_write(&sb->s_umount);
2266 mutex_lock(&uuid_mutex);
2267 }
2268
2269 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2270
2271 devices = &root->fs_info->fs_devices->devices;
2272
2273 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2274 list_for_each_entry(device, devices, dev_list) {
2275 if (device->bdev == bdev) {
2276 ret = -EEXIST;
2277 mutex_unlock(
2278 &root->fs_info->fs_devices->device_list_mutex);
2279 goto error;
2280 }
2281 }
2282 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2283
2284 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2285 if (IS_ERR(device)) {
2286 /* we can safely leave the fs_devices entry around */
2287 ret = PTR_ERR(device);
2288 goto error;
2289 }
2290
2291 name = rcu_string_strdup(device_path, GFP_KERNEL);
2292 if (!name) {
2293 kfree(device);
2294 ret = -ENOMEM;
2295 goto error;
2296 }
2297 rcu_assign_pointer(device->name, name);
2298
2299 trans = btrfs_start_transaction(root, 0);
2300 if (IS_ERR(trans)) {
2301 rcu_string_free(device->name);
2302 kfree(device);
2303 ret = PTR_ERR(trans);
2304 goto error;
2305 }
2306
2307 q = bdev_get_queue(bdev);
2308 if (blk_queue_discard(q))
2309 device->can_discard = 1;
2310 device->writeable = 1;
2311 device->generation = trans->transid;
2312 device->io_width = root->sectorsize;
2313 device->io_align = root->sectorsize;
2314 device->sector_size = root->sectorsize;
2315 device->total_bytes = i_size_read(bdev->bd_inode);
2316 device->disk_total_bytes = device->total_bytes;
2317 device->commit_total_bytes = device->total_bytes;
2318 device->dev_root = root->fs_info->dev_root;
2319 device->bdev = bdev;
2320 device->in_fs_metadata = 1;
2321 device->is_tgtdev_for_dev_replace = 0;
2322 device->mode = FMODE_EXCL;
2323 device->dev_stats_valid = 1;
2324 set_blocksize(device->bdev, 4096);
2325
2326 if (seeding_dev) {
2327 sb->s_flags &= ~MS_RDONLY;
2328 ret = btrfs_prepare_sprout(root);
2329 BUG_ON(ret); /* -ENOMEM */
2330 }
2331
2332 device->fs_devices = root->fs_info->fs_devices;
2333
2334 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2335 lock_chunks(root);
2336 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2337 list_add(&device->dev_alloc_list,
2338 &root->fs_info->fs_devices->alloc_list);
2339 root->fs_info->fs_devices->num_devices++;
2340 root->fs_info->fs_devices->open_devices++;
2341 root->fs_info->fs_devices->rw_devices++;
2342 root->fs_info->fs_devices->total_devices++;
2343 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2344
2345 spin_lock(&root->fs_info->free_chunk_lock);
2346 root->fs_info->free_chunk_space += device->total_bytes;
2347 spin_unlock(&root->fs_info->free_chunk_lock);
2348
2349 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2350 root->fs_info->fs_devices->rotating = 1;
2351
2352 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2353 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2354 tmp + device->total_bytes);
2355
2356 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2357 btrfs_set_super_num_devices(root->fs_info->super_copy,
2358 tmp + 1);
2359
2360 /* add sysfs device entry */
2361 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2362
2363 /*
2364 * we've got more storage, clear any full flags on the space
2365 * infos
2366 */
2367 btrfs_clear_space_info_full(root->fs_info);
2368
2369 unlock_chunks(root);
2370 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2371
2372 if (seeding_dev) {
2373 lock_chunks(root);
2374 ret = init_first_rw_device(trans, root, device);
2375 unlock_chunks(root);
2376 if (ret) {
2377 btrfs_abort_transaction(trans, root, ret);
2378 goto error_trans;
2379 }
2380 }
2381
2382 ret = btrfs_add_device(trans, root, device);
2383 if (ret) {
2384 btrfs_abort_transaction(trans, root, ret);
2385 goto error_trans;
2386 }
2387
2388 if (seeding_dev) {
2389 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2390
2391 ret = btrfs_finish_sprout(trans, root);
2392 if (ret) {
2393 btrfs_abort_transaction(trans, root, ret);
2394 goto error_trans;
2395 }
2396
2397 /* Sprouting would change fsid of the mounted root,
2398 * so rename the fsid on the sysfs
2399 */
2400 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2401 root->fs_info->fsid);
2402 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2403 fsid_buf))
2404 btrfs_warn(root->fs_info,
2405 "sysfs: failed to create fsid for sprout");
2406 }
2407
2408 root->fs_info->num_tolerated_disk_barrier_failures =
2409 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2410 ret = btrfs_commit_transaction(trans, root);
2411
2412 if (seeding_dev) {
2413 mutex_unlock(&uuid_mutex);
2414 up_write(&sb->s_umount);
2415
2416 if (ret) /* transaction commit */
2417 return ret;
2418
2419 ret = btrfs_relocate_sys_chunks(root);
2420 if (ret < 0)
2421 btrfs_std_error(root->fs_info, ret,
2422 "Failed to relocate sys chunks after "
2423 "device initialization. This can be fixed "
2424 "using the \"btrfs balance\" command.");
2425 trans = btrfs_attach_transaction(root);
2426 if (IS_ERR(trans)) {
2427 if (PTR_ERR(trans) == -ENOENT)
2428 return 0;
2429 return PTR_ERR(trans);
2430 }
2431 ret = btrfs_commit_transaction(trans, root);
2432 }
2433
2434 /* Update ctime/mtime for libblkid */
2435 update_dev_time(device_path);
2436 return ret;
2437
2438 error_trans:
2439 btrfs_end_transaction(trans, root);
2440 rcu_string_free(device->name);
2441 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2442 kfree(device);
2443 error:
2444 blkdev_put(bdev, FMODE_EXCL);
2445 if (seeding_dev) {
2446 mutex_unlock(&uuid_mutex);
2447 up_write(&sb->s_umount);
2448 }
2449 return ret;
2450 }
2451
2452 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2453 struct btrfs_device *srcdev,
2454 struct btrfs_device **device_out)
2455 {
2456 struct request_queue *q;
2457 struct btrfs_device *device;
2458 struct block_device *bdev;
2459 struct btrfs_fs_info *fs_info = root->fs_info;
2460 struct list_head *devices;
2461 struct rcu_string *name;
2462 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2463 int ret = 0;
2464
2465 *device_out = NULL;
2466 if (fs_info->fs_devices->seeding) {
2467 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2468 return -EINVAL;
2469 }
2470
2471 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2472 fs_info->bdev_holder);
2473 if (IS_ERR(bdev)) {
2474 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2475 return PTR_ERR(bdev);
2476 }
2477
2478 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2479
2480 devices = &fs_info->fs_devices->devices;
2481 list_for_each_entry(device, devices, dev_list) {
2482 if (device->bdev == bdev) {
2483 btrfs_err(fs_info, "target device is in the filesystem!");
2484 ret = -EEXIST;
2485 goto error;
2486 }
2487 }
2488
2489
2490 if (i_size_read(bdev->bd_inode) <
2491 btrfs_device_get_total_bytes(srcdev)) {
2492 btrfs_err(fs_info, "target device is smaller than source device!");
2493 ret = -EINVAL;
2494 goto error;
2495 }
2496
2497
2498 device = btrfs_alloc_device(NULL, &devid, NULL);
2499 if (IS_ERR(device)) {
2500 ret = PTR_ERR(device);
2501 goto error;
2502 }
2503
2504 name = rcu_string_strdup(device_path, GFP_NOFS);
2505 if (!name) {
2506 kfree(device);
2507 ret = -ENOMEM;
2508 goto error;
2509 }
2510 rcu_assign_pointer(device->name, name);
2511
2512 q = bdev_get_queue(bdev);
2513 if (blk_queue_discard(q))
2514 device->can_discard = 1;
2515 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2516 device->writeable = 1;
2517 device->generation = 0;
2518 device->io_width = root->sectorsize;
2519 device->io_align = root->sectorsize;
2520 device->sector_size = root->sectorsize;
2521 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2522 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2523 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2524 ASSERT(list_empty(&srcdev->resized_list));
2525 device->commit_total_bytes = srcdev->commit_total_bytes;
2526 device->commit_bytes_used = device->bytes_used;
2527 device->dev_root = fs_info->dev_root;
2528 device->bdev = bdev;
2529 device->in_fs_metadata = 1;
2530 device->is_tgtdev_for_dev_replace = 1;
2531 device->mode = FMODE_EXCL;
2532 device->dev_stats_valid = 1;
2533 set_blocksize(device->bdev, 4096);
2534 device->fs_devices = fs_info->fs_devices;
2535 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2536 fs_info->fs_devices->num_devices++;
2537 fs_info->fs_devices->open_devices++;
2538 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2539
2540 *device_out = device;
2541 return ret;
2542
2543 error:
2544 blkdev_put(bdev, FMODE_EXCL);
2545 return ret;
2546 }
2547
2548 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2549 struct btrfs_device *tgtdev)
2550 {
2551 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2552 tgtdev->io_width = fs_info->dev_root->sectorsize;
2553 tgtdev->io_align = fs_info->dev_root->sectorsize;
2554 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2555 tgtdev->dev_root = fs_info->dev_root;
2556 tgtdev->in_fs_metadata = 1;
2557 }
2558
2559 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2560 struct btrfs_device *device)
2561 {
2562 int ret;
2563 struct btrfs_path *path;
2564 struct btrfs_root *root;
2565 struct btrfs_dev_item *dev_item;
2566 struct extent_buffer *leaf;
2567 struct btrfs_key key;
2568
2569 root = device->dev_root->fs_info->chunk_root;
2570
2571 path = btrfs_alloc_path();
2572 if (!path)
2573 return -ENOMEM;
2574
2575 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2576 key.type = BTRFS_DEV_ITEM_KEY;
2577 key.offset = device->devid;
2578
2579 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2580 if (ret < 0)
2581 goto out;
2582
2583 if (ret > 0) {
2584 ret = -ENOENT;
2585 goto out;
2586 }
2587
2588 leaf = path->nodes[0];
2589 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2590
2591 btrfs_set_device_id(leaf, dev_item, device->devid);
2592 btrfs_set_device_type(leaf, dev_item, device->type);
2593 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2594 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2595 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2596 btrfs_set_device_total_bytes(leaf, dev_item,
2597 btrfs_device_get_disk_total_bytes(device));
2598 btrfs_set_device_bytes_used(leaf, dev_item,
2599 btrfs_device_get_bytes_used(device));
2600 btrfs_mark_buffer_dirty(leaf);
2601
2602 out:
2603 btrfs_free_path(path);
2604 return ret;
2605 }
2606
2607 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2608 struct btrfs_device *device, u64 new_size)
2609 {
2610 struct btrfs_super_block *super_copy =
2611 device->dev_root->fs_info->super_copy;
2612 struct btrfs_fs_devices *fs_devices;
2613 u64 old_total;
2614 u64 diff;
2615
2616 if (!device->writeable)
2617 return -EACCES;
2618
2619 lock_chunks(device->dev_root);
2620 old_total = btrfs_super_total_bytes(super_copy);
2621 diff = new_size - device->total_bytes;
2622
2623 if (new_size <= device->total_bytes ||
2624 device->is_tgtdev_for_dev_replace) {
2625 unlock_chunks(device->dev_root);
2626 return -EINVAL;
2627 }
2628
2629 fs_devices = device->dev_root->fs_info->fs_devices;
2630
2631 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2632 device->fs_devices->total_rw_bytes += diff;
2633
2634 btrfs_device_set_total_bytes(device, new_size);
2635 btrfs_device_set_disk_total_bytes(device, new_size);
2636 btrfs_clear_space_info_full(device->dev_root->fs_info);
2637 if (list_empty(&device->resized_list))
2638 list_add_tail(&device->resized_list,
2639 &fs_devices->resized_devices);
2640 unlock_chunks(device->dev_root);
2641
2642 return btrfs_update_device(trans, device);
2643 }
2644
2645 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2646 struct btrfs_root *root, u64 chunk_objectid,
2647 u64 chunk_offset)
2648 {
2649 int ret;
2650 struct btrfs_path *path;
2651 struct btrfs_key key;
2652
2653 root = root->fs_info->chunk_root;
2654 path = btrfs_alloc_path();
2655 if (!path)
2656 return -ENOMEM;
2657
2658 key.objectid = chunk_objectid;
2659 key.offset = chunk_offset;
2660 key.type = BTRFS_CHUNK_ITEM_KEY;
2661
2662 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2663 if (ret < 0)
2664 goto out;
2665 else if (ret > 0) { /* Logic error or corruption */
2666 btrfs_std_error(root->fs_info, -ENOENT,
2667 "Failed lookup while freeing chunk.");
2668 ret = -ENOENT;
2669 goto out;
2670 }
2671
2672 ret = btrfs_del_item(trans, root, path);
2673 if (ret < 0)
2674 btrfs_std_error(root->fs_info, ret,
2675 "Failed to delete chunk item.");
2676 out:
2677 btrfs_free_path(path);
2678 return ret;
2679 }
2680
2681 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2682 chunk_offset)
2683 {
2684 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2685 struct btrfs_disk_key *disk_key;
2686 struct btrfs_chunk *chunk;
2687 u8 *ptr;
2688 int ret = 0;
2689 u32 num_stripes;
2690 u32 array_size;
2691 u32 len = 0;
2692 u32 cur;
2693 struct btrfs_key key;
2694
2695 lock_chunks(root);
2696 array_size = btrfs_super_sys_array_size(super_copy);
2697
2698 ptr = super_copy->sys_chunk_array;
2699 cur = 0;
2700
2701 while (cur < array_size) {
2702 disk_key = (struct btrfs_disk_key *)ptr;
2703 btrfs_disk_key_to_cpu(&key, disk_key);
2704
2705 len = sizeof(*disk_key);
2706
2707 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2708 chunk = (struct btrfs_chunk *)(ptr + len);
2709 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2710 len += btrfs_chunk_item_size(num_stripes);
2711 } else {
2712 ret = -EIO;
2713 break;
2714 }
2715 if (key.objectid == chunk_objectid &&
2716 key.offset == chunk_offset) {
2717 memmove(ptr, ptr + len, array_size - (cur + len));
2718 array_size -= len;
2719 btrfs_set_super_sys_array_size(super_copy, array_size);
2720 } else {
2721 ptr += len;
2722 cur += len;
2723 }
2724 }
2725 unlock_chunks(root);
2726 return ret;
2727 }
2728
2729 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2730 struct btrfs_root *root, u64 chunk_offset)
2731 {
2732 struct extent_map_tree *em_tree;
2733 struct extent_map *em;
2734 struct btrfs_root *extent_root = root->fs_info->extent_root;
2735 struct map_lookup *map;
2736 u64 dev_extent_len = 0;
2737 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2738 int i, ret = 0;
2739
2740 /* Just in case */
2741 root = root->fs_info->chunk_root;
2742 em_tree = &root->fs_info->mapping_tree.map_tree;
2743
2744 read_lock(&em_tree->lock);
2745 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2746 read_unlock(&em_tree->lock);
2747
2748 if (!em || em->start > chunk_offset ||
2749 em->start + em->len < chunk_offset) {
2750 /*
2751 * This is a logic error, but we don't want to just rely on the
2752 * user having built with ASSERT enabled, so if ASSERT doens't
2753 * do anything we still error out.
2754 */
2755 ASSERT(0);
2756 if (em)
2757 free_extent_map(em);
2758 return -EINVAL;
2759 }
2760 map = em->map_lookup;
2761 lock_chunks(root->fs_info->chunk_root);
2762 check_system_chunk(trans, extent_root, map->type);
2763 unlock_chunks(root->fs_info->chunk_root);
2764
2765 for (i = 0; i < map->num_stripes; i++) {
2766 struct btrfs_device *device = map->stripes[i].dev;
2767 ret = btrfs_free_dev_extent(trans, device,
2768 map->stripes[i].physical,
2769 &dev_extent_len);
2770 if (ret) {
2771 btrfs_abort_transaction(trans, root, ret);
2772 goto out;
2773 }
2774
2775 if (device->bytes_used > 0) {
2776 lock_chunks(root);
2777 btrfs_device_set_bytes_used(device,
2778 device->bytes_used - dev_extent_len);
2779 spin_lock(&root->fs_info->free_chunk_lock);
2780 root->fs_info->free_chunk_space += dev_extent_len;
2781 spin_unlock(&root->fs_info->free_chunk_lock);
2782 btrfs_clear_space_info_full(root->fs_info);
2783 unlock_chunks(root);
2784 }
2785
2786 if (map->stripes[i].dev) {
2787 ret = btrfs_update_device(trans, map->stripes[i].dev);
2788 if (ret) {
2789 btrfs_abort_transaction(trans, root, ret);
2790 goto out;
2791 }
2792 }
2793 }
2794 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2795 if (ret) {
2796 btrfs_abort_transaction(trans, root, ret);
2797 goto out;
2798 }
2799
2800 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2801
2802 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2803 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2804 if (ret) {
2805 btrfs_abort_transaction(trans, root, ret);
2806 goto out;
2807 }
2808 }
2809
2810 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2811 if (ret) {
2812 btrfs_abort_transaction(trans, extent_root, ret);
2813 goto out;
2814 }
2815
2816 out:
2817 /* once for us */
2818 free_extent_map(em);
2819 return ret;
2820 }
2821
2822 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2823 {
2824 struct btrfs_root *extent_root;
2825 struct btrfs_trans_handle *trans;
2826 int ret;
2827
2828 root = root->fs_info->chunk_root;
2829 extent_root = root->fs_info->extent_root;
2830
2831 /*
2832 * Prevent races with automatic removal of unused block groups.
2833 * After we relocate and before we remove the chunk with offset
2834 * chunk_offset, automatic removal of the block group can kick in,
2835 * resulting in a failure when calling btrfs_remove_chunk() below.
2836 *
2837 * Make sure to acquire this mutex before doing a tree search (dev
2838 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2839 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2840 * we release the path used to search the chunk/dev tree and before
2841 * the current task acquires this mutex and calls us.
2842 */
2843 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2844
2845 ret = btrfs_can_relocate(extent_root, chunk_offset);
2846 if (ret)
2847 return -ENOSPC;
2848
2849 /* step one, relocate all the extents inside this chunk */
2850 btrfs_scrub_pause(root);
2851 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2852 btrfs_scrub_continue(root);
2853 if (ret)
2854 return ret;
2855
2856 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2857 chunk_offset);
2858 if (IS_ERR(trans)) {
2859 ret = PTR_ERR(trans);
2860 btrfs_std_error(root->fs_info, ret, NULL);
2861 return ret;
2862 }
2863
2864 /*
2865 * step two, delete the device extents and the
2866 * chunk tree entries
2867 */
2868 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2869 btrfs_end_transaction(trans, root);
2870 return ret;
2871 }
2872
2873 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2874 {
2875 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2876 struct btrfs_path *path;
2877 struct extent_buffer *leaf;
2878 struct btrfs_chunk *chunk;
2879 struct btrfs_key key;
2880 struct btrfs_key found_key;
2881 u64 chunk_type;
2882 bool retried = false;
2883 int failed = 0;
2884 int ret;
2885
2886 path = btrfs_alloc_path();
2887 if (!path)
2888 return -ENOMEM;
2889
2890 again:
2891 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2892 key.offset = (u64)-1;
2893 key.type = BTRFS_CHUNK_ITEM_KEY;
2894
2895 while (1) {
2896 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2897 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2898 if (ret < 0) {
2899 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2900 goto error;
2901 }
2902 BUG_ON(ret == 0); /* Corruption */
2903
2904 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2905 key.type);
2906 if (ret)
2907 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2908 if (ret < 0)
2909 goto error;
2910 if (ret > 0)
2911 break;
2912
2913 leaf = path->nodes[0];
2914 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2915
2916 chunk = btrfs_item_ptr(leaf, path->slots[0],
2917 struct btrfs_chunk);
2918 chunk_type = btrfs_chunk_type(leaf, chunk);
2919 btrfs_release_path(path);
2920
2921 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2922 ret = btrfs_relocate_chunk(chunk_root,
2923 found_key.offset);
2924 if (ret == -ENOSPC)
2925 failed++;
2926 else
2927 BUG_ON(ret);
2928 }
2929 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2930
2931 if (found_key.offset == 0)
2932 break;
2933 key.offset = found_key.offset - 1;
2934 }
2935 ret = 0;
2936 if (failed && !retried) {
2937 failed = 0;
2938 retried = true;
2939 goto again;
2940 } else if (WARN_ON(failed && retried)) {
2941 ret = -ENOSPC;
2942 }
2943 error:
2944 btrfs_free_path(path);
2945 return ret;
2946 }
2947
2948 static int insert_balance_item(struct btrfs_root *root,
2949 struct btrfs_balance_control *bctl)
2950 {
2951 struct btrfs_trans_handle *trans;
2952 struct btrfs_balance_item *item;
2953 struct btrfs_disk_balance_args disk_bargs;
2954 struct btrfs_path *path;
2955 struct extent_buffer *leaf;
2956 struct btrfs_key key;
2957 int ret, err;
2958
2959 path = btrfs_alloc_path();
2960 if (!path)
2961 return -ENOMEM;
2962
2963 trans = btrfs_start_transaction(root, 0);
2964 if (IS_ERR(trans)) {
2965 btrfs_free_path(path);
2966 return PTR_ERR(trans);
2967 }
2968
2969 key.objectid = BTRFS_BALANCE_OBJECTID;
2970 key.type = BTRFS_TEMPORARY_ITEM_KEY;
2971 key.offset = 0;
2972
2973 ret = btrfs_insert_empty_item(trans, root, path, &key,
2974 sizeof(*item));
2975 if (ret)
2976 goto out;
2977
2978 leaf = path->nodes[0];
2979 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2980
2981 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2982
2983 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2984 btrfs_set_balance_data(leaf, item, &disk_bargs);
2985 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2986 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2987 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2988 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2989
2990 btrfs_set_balance_flags(leaf, item, bctl->flags);
2991
2992 btrfs_mark_buffer_dirty(leaf);
2993 out:
2994 btrfs_free_path(path);
2995 err = btrfs_commit_transaction(trans, root);
2996 if (err && !ret)
2997 ret = err;
2998 return ret;
2999 }
3000
3001 static int del_balance_item(struct btrfs_root *root)
3002 {
3003 struct btrfs_trans_handle *trans;
3004 struct btrfs_path *path;
3005 struct btrfs_key key;
3006 int ret, err;
3007
3008 path = btrfs_alloc_path();
3009 if (!path)
3010 return -ENOMEM;
3011
3012 trans = btrfs_start_transaction(root, 0);
3013 if (IS_ERR(trans)) {
3014 btrfs_free_path(path);
3015 return PTR_ERR(trans);
3016 }
3017
3018 key.objectid = BTRFS_BALANCE_OBJECTID;
3019 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3020 key.offset = 0;
3021
3022 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3023 if (ret < 0)
3024 goto out;
3025 if (ret > 0) {
3026 ret = -ENOENT;
3027 goto out;
3028 }
3029
3030 ret = btrfs_del_item(trans, root, path);
3031 out:
3032 btrfs_free_path(path);
3033 err = btrfs_commit_transaction(trans, root);
3034 if (err && !ret)
3035 ret = err;
3036 return ret;
3037 }
3038
3039 /*
3040 * This is a heuristic used to reduce the number of chunks balanced on
3041 * resume after balance was interrupted.
3042 */
3043 static void update_balance_args(struct btrfs_balance_control *bctl)
3044 {
3045 /*
3046 * Turn on soft mode for chunk types that were being converted.
3047 */
3048 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3049 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3050 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3051 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3052 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3053 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3054
3055 /*
3056 * Turn on usage filter if is not already used. The idea is
3057 * that chunks that we have already balanced should be
3058 * reasonably full. Don't do it for chunks that are being
3059 * converted - that will keep us from relocating unconverted
3060 * (albeit full) chunks.
3061 */
3062 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3063 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3064 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3065 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3066 bctl->data.usage = 90;
3067 }
3068 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3069 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3070 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3071 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3072 bctl->sys.usage = 90;
3073 }
3074 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3075 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3076 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3077 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3078 bctl->meta.usage = 90;
3079 }
3080 }
3081
3082 /*
3083 * Should be called with both balance and volume mutexes held to
3084 * serialize other volume operations (add_dev/rm_dev/resize) with
3085 * restriper. Same goes for unset_balance_control.
3086 */
3087 static void set_balance_control(struct btrfs_balance_control *bctl)
3088 {
3089 struct btrfs_fs_info *fs_info = bctl->fs_info;
3090
3091 BUG_ON(fs_info->balance_ctl);
3092
3093 spin_lock(&fs_info->balance_lock);
3094 fs_info->balance_ctl = bctl;
3095 spin_unlock(&fs_info->balance_lock);
3096 }
3097
3098 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3099 {
3100 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3101
3102 BUG_ON(!fs_info->balance_ctl);
3103
3104 spin_lock(&fs_info->balance_lock);
3105 fs_info->balance_ctl = NULL;
3106 spin_unlock(&fs_info->balance_lock);
3107
3108 kfree(bctl);
3109 }
3110
3111 /*
3112 * Balance filters. Return 1 if chunk should be filtered out
3113 * (should not be balanced).
3114 */
3115 static int chunk_profiles_filter(u64 chunk_type,
3116 struct btrfs_balance_args *bargs)
3117 {
3118 chunk_type = chunk_to_extended(chunk_type) &
3119 BTRFS_EXTENDED_PROFILE_MASK;
3120
3121 if (bargs->profiles & chunk_type)
3122 return 0;
3123
3124 return 1;
3125 }
3126
3127 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3128 struct btrfs_balance_args *bargs)
3129 {
3130 struct btrfs_block_group_cache *cache;
3131 u64 chunk_used;
3132 u64 user_thresh_min;
3133 u64 user_thresh_max;
3134 int ret = 1;
3135
3136 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3137 chunk_used = btrfs_block_group_used(&cache->item);
3138
3139 if (bargs->usage_min == 0)
3140 user_thresh_min = 0;
3141 else
3142 user_thresh_min = div_factor_fine(cache->key.offset,
3143 bargs->usage_min);
3144
3145 if (bargs->usage_max == 0)
3146 user_thresh_max = 1;
3147 else if (bargs->usage_max > 100)
3148 user_thresh_max = cache->key.offset;
3149 else
3150 user_thresh_max = div_factor_fine(cache->key.offset,
3151 bargs->usage_max);
3152
3153 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3154 ret = 0;
3155
3156 btrfs_put_block_group(cache);
3157 return ret;
3158 }
3159
3160 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3161 u64 chunk_offset, struct btrfs_balance_args *bargs)
3162 {
3163 struct btrfs_block_group_cache *cache;
3164 u64 chunk_used, user_thresh;
3165 int ret = 1;
3166
3167 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3168 chunk_used = btrfs_block_group_used(&cache->item);
3169
3170 if (bargs->usage_min == 0)
3171 user_thresh = 1;
3172 else if (bargs->usage > 100)
3173 user_thresh = cache->key.offset;
3174 else
3175 user_thresh = div_factor_fine(cache->key.offset,
3176 bargs->usage);
3177
3178 if (chunk_used < user_thresh)
3179 ret = 0;
3180
3181 btrfs_put_block_group(cache);
3182 return ret;
3183 }
3184
3185 static int chunk_devid_filter(struct extent_buffer *leaf,
3186 struct btrfs_chunk *chunk,
3187 struct btrfs_balance_args *bargs)
3188 {
3189 struct btrfs_stripe *stripe;
3190 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3191 int i;
3192
3193 for (i = 0; i < num_stripes; i++) {
3194 stripe = btrfs_stripe_nr(chunk, i);
3195 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3196 return 0;
3197 }
3198
3199 return 1;
3200 }
3201
3202 /* [pstart, pend) */
3203 static int chunk_drange_filter(struct extent_buffer *leaf,
3204 struct btrfs_chunk *chunk,
3205 u64 chunk_offset,
3206 struct btrfs_balance_args *bargs)
3207 {
3208 struct btrfs_stripe *stripe;
3209 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3210 u64 stripe_offset;
3211 u64 stripe_length;
3212 int factor;
3213 int i;
3214
3215 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3216 return 0;
3217
3218 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3219 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3220 factor = num_stripes / 2;
3221 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3222 factor = num_stripes - 1;
3223 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3224 factor = num_stripes - 2;
3225 } else {
3226 factor = num_stripes;
3227 }
3228
3229 for (i = 0; i < num_stripes; i++) {
3230 stripe = btrfs_stripe_nr(chunk, i);
3231 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3232 continue;
3233
3234 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3235 stripe_length = btrfs_chunk_length(leaf, chunk);
3236 stripe_length = div_u64(stripe_length, factor);
3237
3238 if (stripe_offset < bargs->pend &&
3239 stripe_offset + stripe_length > bargs->pstart)
3240 return 0;
3241 }
3242
3243 return 1;
3244 }
3245
3246 /* [vstart, vend) */
3247 static int chunk_vrange_filter(struct extent_buffer *leaf,
3248 struct btrfs_chunk *chunk,
3249 u64 chunk_offset,
3250 struct btrfs_balance_args *bargs)
3251 {
3252 if (chunk_offset < bargs->vend &&
3253 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3254 /* at least part of the chunk is inside this vrange */
3255 return 0;
3256
3257 return 1;
3258 }
3259
3260 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3261 struct btrfs_chunk *chunk,
3262 struct btrfs_balance_args *bargs)
3263 {
3264 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3265
3266 if (bargs->stripes_min <= num_stripes
3267 && num_stripes <= bargs->stripes_max)
3268 return 0;
3269
3270 return 1;
3271 }
3272
3273 static int chunk_soft_convert_filter(u64 chunk_type,
3274 struct btrfs_balance_args *bargs)
3275 {
3276 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3277 return 0;
3278
3279 chunk_type = chunk_to_extended(chunk_type) &
3280 BTRFS_EXTENDED_PROFILE_MASK;
3281
3282 if (bargs->target == chunk_type)
3283 return 1;
3284
3285 return 0;
3286 }
3287
3288 static int should_balance_chunk(struct btrfs_root *root,
3289 struct extent_buffer *leaf,
3290 struct btrfs_chunk *chunk, u64 chunk_offset)
3291 {
3292 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3293 struct btrfs_balance_args *bargs = NULL;
3294 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3295
3296 /* type filter */
3297 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3298 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3299 return 0;
3300 }
3301
3302 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3303 bargs = &bctl->data;
3304 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3305 bargs = &bctl->sys;
3306 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3307 bargs = &bctl->meta;
3308
3309 /* profiles filter */
3310 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3311 chunk_profiles_filter(chunk_type, bargs)) {
3312 return 0;
3313 }
3314
3315 /* usage filter */
3316 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3317 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3318 return 0;
3319 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3320 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3321 return 0;
3322 }
3323
3324 /* devid filter */
3325 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3326 chunk_devid_filter(leaf, chunk, bargs)) {
3327 return 0;
3328 }
3329
3330 /* drange filter, makes sense only with devid filter */
3331 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3332 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3333 return 0;
3334 }
3335
3336 /* vrange filter */
3337 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3338 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3339 return 0;
3340 }
3341
3342 /* stripes filter */
3343 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3344 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3345 return 0;
3346 }
3347
3348 /* soft profile changing mode */
3349 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3350 chunk_soft_convert_filter(chunk_type, bargs)) {
3351 return 0;
3352 }
3353
3354 /*
3355 * limited by count, must be the last filter
3356 */
3357 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3358 if (bargs->limit == 0)
3359 return 0;
3360 else
3361 bargs->limit--;
3362 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3363 /*
3364 * Same logic as the 'limit' filter; the minimum cannot be
3365 * determined here because we do not have the global informatoin
3366 * about the count of all chunks that satisfy the filters.
3367 */
3368 if (bargs->limit_max == 0)
3369 return 0;
3370 else
3371 bargs->limit_max--;
3372 }
3373
3374 return 1;
3375 }
3376
3377 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3378 {
3379 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3380 struct btrfs_root *chunk_root = fs_info->chunk_root;
3381 struct btrfs_root *dev_root = fs_info->dev_root;
3382 struct list_head *devices;
3383 struct btrfs_device *device;
3384 u64 old_size;
3385 u64 size_to_free;
3386 u64 chunk_type;
3387 struct btrfs_chunk *chunk;
3388 struct btrfs_path *path;
3389 struct btrfs_key key;
3390 struct btrfs_key found_key;
3391 struct btrfs_trans_handle *trans;
3392 struct extent_buffer *leaf;
3393 int slot;
3394 int ret;
3395 int enospc_errors = 0;
3396 bool counting = true;
3397 /* The single value limit and min/max limits use the same bytes in the */
3398 u64 limit_data = bctl->data.limit;
3399 u64 limit_meta = bctl->meta.limit;
3400 u64 limit_sys = bctl->sys.limit;
3401 u32 count_data = 0;
3402 u32 count_meta = 0;
3403 u32 count_sys = 0;
3404 int chunk_reserved = 0;
3405
3406 /* step one make some room on all the devices */
3407 devices = &fs_info->fs_devices->devices;
3408 list_for_each_entry(device, devices, dev_list) {
3409 old_size = btrfs_device_get_total_bytes(device);
3410 size_to_free = div_factor(old_size, 1);
3411 size_to_free = min_t(u64, size_to_free, SZ_1M);
3412 if (!device->writeable ||
3413 btrfs_device_get_total_bytes(device) -
3414 btrfs_device_get_bytes_used(device) > size_to_free ||
3415 device->is_tgtdev_for_dev_replace)
3416 continue;
3417
3418 ret = btrfs_shrink_device(device, old_size - size_to_free);
3419 if (ret == -ENOSPC)
3420 break;
3421 BUG_ON(ret);
3422
3423 trans = btrfs_start_transaction(dev_root, 0);
3424 BUG_ON(IS_ERR(trans));
3425
3426 ret = btrfs_grow_device(trans, device, old_size);
3427 BUG_ON(ret);
3428
3429 btrfs_end_transaction(trans, dev_root);
3430 }
3431
3432 /* step two, relocate all the chunks */
3433 path = btrfs_alloc_path();
3434 if (!path) {
3435 ret = -ENOMEM;
3436 goto error;
3437 }
3438
3439 /* zero out stat counters */
3440 spin_lock(&fs_info->balance_lock);
3441 memset(&bctl->stat, 0, sizeof(bctl->stat));
3442 spin_unlock(&fs_info->balance_lock);
3443 again:
3444 if (!counting) {
3445 /*
3446 * The single value limit and min/max limits use the same bytes
3447 * in the
3448 */
3449 bctl->data.limit = limit_data;
3450 bctl->meta.limit = limit_meta;
3451 bctl->sys.limit = limit_sys;
3452 }
3453 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3454 key.offset = (u64)-1;
3455 key.type = BTRFS_CHUNK_ITEM_KEY;
3456
3457 while (1) {
3458 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3459 atomic_read(&fs_info->balance_cancel_req)) {
3460 ret = -ECANCELED;
3461 goto error;
3462 }
3463
3464 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3465 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3466 if (ret < 0) {
3467 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3468 goto error;
3469 }
3470
3471 /*
3472 * this shouldn't happen, it means the last relocate
3473 * failed
3474 */
3475 if (ret == 0)
3476 BUG(); /* FIXME break ? */
3477
3478 ret = btrfs_previous_item(chunk_root, path, 0,
3479 BTRFS_CHUNK_ITEM_KEY);
3480 if (ret) {
3481 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3482 ret = 0;
3483 break;
3484 }
3485
3486 leaf = path->nodes[0];
3487 slot = path->slots[0];
3488 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3489
3490 if (found_key.objectid != key.objectid) {
3491 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3492 break;
3493 }
3494
3495 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3496 chunk_type = btrfs_chunk_type(leaf, chunk);
3497
3498 if (!counting) {
3499 spin_lock(&fs_info->balance_lock);
3500 bctl->stat.considered++;
3501 spin_unlock(&fs_info->balance_lock);
3502 }
3503
3504 ret = should_balance_chunk(chunk_root, leaf, chunk,
3505 found_key.offset);
3506
3507 btrfs_release_path(path);
3508 if (!ret) {
3509 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3510 goto loop;
3511 }
3512
3513 if (counting) {
3514 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3515 spin_lock(&fs_info->balance_lock);
3516 bctl->stat.expected++;
3517 spin_unlock(&fs_info->balance_lock);
3518
3519 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3520 count_data++;
3521 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3522 count_sys++;
3523 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3524 count_meta++;
3525
3526 goto loop;
3527 }
3528
3529 /*
3530 * Apply limit_min filter, no need to check if the LIMITS
3531 * filter is used, limit_min is 0 by default
3532 */
3533 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3534 count_data < bctl->data.limit_min)
3535 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3536 count_meta < bctl->meta.limit_min)
3537 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3538 count_sys < bctl->sys.limit_min)) {
3539 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3540 goto loop;
3541 }
3542
3543 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) {
3544 trans = btrfs_start_transaction(chunk_root, 0);
3545 if (IS_ERR(trans)) {
3546 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3547 ret = PTR_ERR(trans);
3548 goto error;
3549 }
3550
3551 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3552 BTRFS_BLOCK_GROUP_DATA);
3553 btrfs_end_transaction(trans, chunk_root);
3554 if (ret < 0) {
3555 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3556 goto error;
3557 }
3558 chunk_reserved = 1;
3559 }
3560
3561 ret = btrfs_relocate_chunk(chunk_root,
3562 found_key.offset);
3563 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3564 if (ret && ret != -ENOSPC)
3565 goto error;
3566 if (ret == -ENOSPC) {
3567 enospc_errors++;
3568 } else {
3569 spin_lock(&fs_info->balance_lock);
3570 bctl->stat.completed++;
3571 spin_unlock(&fs_info->balance_lock);
3572 }
3573 loop:
3574 if (found_key.offset == 0)
3575 break;
3576 key.offset = found_key.offset - 1;
3577 }
3578
3579 if (counting) {
3580 btrfs_release_path(path);
3581 counting = false;
3582 goto again;
3583 }
3584 error:
3585 btrfs_free_path(path);
3586 if (enospc_errors) {
3587 btrfs_info(fs_info, "%d enospc errors during balance",
3588 enospc_errors);
3589 if (!ret)
3590 ret = -ENOSPC;
3591 }
3592
3593 return ret;
3594 }
3595
3596 /**
3597 * alloc_profile_is_valid - see if a given profile is valid and reduced
3598 * @flags: profile to validate
3599 * @extended: if true @flags is treated as an extended profile
3600 */
3601 static int alloc_profile_is_valid(u64 flags, int extended)
3602 {
3603 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3604 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3605
3606 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3607
3608 /* 1) check that all other bits are zeroed */
3609 if (flags & ~mask)
3610 return 0;
3611
3612 /* 2) see if profile is reduced */
3613 if (flags == 0)
3614 return !extended; /* "0" is valid for usual profiles */
3615
3616 /* true if exactly one bit set */
3617 return (flags & (flags - 1)) == 0;
3618 }
3619
3620 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3621 {
3622 /* cancel requested || normal exit path */
3623 return atomic_read(&fs_info->balance_cancel_req) ||
3624 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3625 atomic_read(&fs_info->balance_cancel_req) == 0);
3626 }
3627
3628 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3629 {
3630 int ret;
3631
3632 unset_balance_control(fs_info);
3633 ret = del_balance_item(fs_info->tree_root);
3634 if (ret)
3635 btrfs_std_error(fs_info, ret, NULL);
3636
3637 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3638 }
3639
3640 /* Non-zero return value signifies invalidity */
3641 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3642 u64 allowed)
3643 {
3644 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3645 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3646 (bctl_arg->target & ~allowed)));
3647 }
3648
3649 /*
3650 * Should be called with both balance and volume mutexes held
3651 */
3652 int btrfs_balance(struct btrfs_balance_control *bctl,
3653 struct btrfs_ioctl_balance_args *bargs)
3654 {
3655 struct btrfs_fs_info *fs_info = bctl->fs_info;
3656 u64 allowed;
3657 int mixed = 0;
3658 int ret;
3659 u64 num_devices;
3660 unsigned seq;
3661
3662 if (btrfs_fs_closing(fs_info) ||
3663 atomic_read(&fs_info->balance_pause_req) ||
3664 atomic_read(&fs_info->balance_cancel_req)) {
3665 ret = -EINVAL;
3666 goto out;
3667 }
3668
3669 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3670 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3671 mixed = 1;
3672
3673 /*
3674 * In case of mixed groups both data and meta should be picked,
3675 * and identical options should be given for both of them.
3676 */
3677 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3678 if (mixed && (bctl->flags & allowed)) {
3679 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3680 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3681 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3682 btrfs_err(fs_info, "with mixed groups data and "
3683 "metadata balance options must be the same");
3684 ret = -EINVAL;
3685 goto out;
3686 }
3687 }
3688
3689 num_devices = fs_info->fs_devices->num_devices;
3690 btrfs_dev_replace_lock(&fs_info->dev_replace);
3691 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3692 BUG_ON(num_devices < 1);
3693 num_devices--;
3694 }
3695 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3696 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3697 if (num_devices == 1)
3698 allowed |= BTRFS_BLOCK_GROUP_DUP;
3699 else if (num_devices > 1)
3700 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3701 if (num_devices > 2)
3702 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3703 if (num_devices > 3)
3704 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3705 BTRFS_BLOCK_GROUP_RAID6);
3706 if (validate_convert_profile(&bctl->data, allowed)) {
3707 btrfs_err(fs_info, "unable to start balance with target "
3708 "data profile %llu",
3709 bctl->data.target);
3710 ret = -EINVAL;
3711 goto out;
3712 }
3713 if (validate_convert_profile(&bctl->meta, allowed)) {
3714 btrfs_err(fs_info,
3715 "unable to start balance with target metadata profile %llu",
3716 bctl->meta.target);
3717 ret = -EINVAL;
3718 goto out;
3719 }
3720 if (validate_convert_profile(&bctl->sys, allowed)) {
3721 btrfs_err(fs_info,
3722 "unable to start balance with target system profile %llu",
3723 bctl->sys.target);
3724 ret = -EINVAL;
3725 goto out;
3726 }
3727
3728 /* allow to reduce meta or sys integrity only if force set */
3729 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3730 BTRFS_BLOCK_GROUP_RAID10 |
3731 BTRFS_BLOCK_GROUP_RAID5 |
3732 BTRFS_BLOCK_GROUP_RAID6;
3733 do {
3734 seq = read_seqbegin(&fs_info->profiles_lock);
3735
3736 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3737 (fs_info->avail_system_alloc_bits & allowed) &&
3738 !(bctl->sys.target & allowed)) ||
3739 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3740 (fs_info->avail_metadata_alloc_bits & allowed) &&
3741 !(bctl->meta.target & allowed))) {
3742 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3743 btrfs_info(fs_info, "force reducing metadata integrity");
3744 } else {
3745 btrfs_err(fs_info, "balance will reduce metadata "
3746 "integrity, use force if you want this");
3747 ret = -EINVAL;
3748 goto out;
3749 }
3750 }
3751 } while (read_seqretry(&fs_info->profiles_lock, seq));
3752
3753 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3754 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3755 btrfs_warn(fs_info,
3756 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3757 bctl->meta.target, bctl->data.target);
3758 }
3759
3760 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3761 fs_info->num_tolerated_disk_barrier_failures = min(
3762 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3763 btrfs_get_num_tolerated_disk_barrier_failures(
3764 bctl->sys.target));
3765 }
3766
3767 ret = insert_balance_item(fs_info->tree_root, bctl);
3768 if (ret && ret != -EEXIST)
3769 goto out;
3770
3771 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3772 BUG_ON(ret == -EEXIST);
3773 set_balance_control(bctl);
3774 } else {
3775 BUG_ON(ret != -EEXIST);
3776 spin_lock(&fs_info->balance_lock);
3777 update_balance_args(bctl);
3778 spin_unlock(&fs_info->balance_lock);
3779 }
3780
3781 atomic_inc(&fs_info->balance_running);
3782 mutex_unlock(&fs_info->balance_mutex);
3783
3784 ret = __btrfs_balance(fs_info);
3785
3786 mutex_lock(&fs_info->balance_mutex);
3787 atomic_dec(&fs_info->balance_running);
3788
3789 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3790 fs_info->num_tolerated_disk_barrier_failures =
3791 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3792 }
3793
3794 if (bargs) {
3795 memset(bargs, 0, sizeof(*bargs));
3796 update_ioctl_balance_args(fs_info, 0, bargs);
3797 }
3798
3799 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3800 balance_need_close(fs_info)) {
3801 __cancel_balance(fs_info);
3802 }
3803
3804 wake_up(&fs_info->balance_wait_q);
3805
3806 return ret;
3807 out:
3808 if (bctl->flags & BTRFS_BALANCE_RESUME)
3809 __cancel_balance(fs_info);
3810 else {
3811 kfree(bctl);
3812 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3813 }
3814 return ret;
3815 }
3816
3817 static int balance_kthread(void *data)
3818 {
3819 struct btrfs_fs_info *fs_info = data;
3820 int ret = 0;
3821
3822 mutex_lock(&fs_info->volume_mutex);
3823 mutex_lock(&fs_info->balance_mutex);
3824
3825 if (fs_info->balance_ctl) {
3826 btrfs_info(fs_info, "continuing balance");
3827 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3828 }
3829
3830 mutex_unlock(&fs_info->balance_mutex);
3831 mutex_unlock(&fs_info->volume_mutex);
3832
3833 return ret;
3834 }
3835
3836 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3837 {
3838 struct task_struct *tsk;
3839
3840 spin_lock(&fs_info->balance_lock);
3841 if (!fs_info->balance_ctl) {
3842 spin_unlock(&fs_info->balance_lock);
3843 return 0;
3844 }
3845 spin_unlock(&fs_info->balance_lock);
3846
3847 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3848 btrfs_info(fs_info, "force skipping balance");
3849 return 0;
3850 }
3851
3852 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3853 return PTR_ERR_OR_ZERO(tsk);
3854 }
3855
3856 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3857 {
3858 struct btrfs_balance_control *bctl;
3859 struct btrfs_balance_item *item;
3860 struct btrfs_disk_balance_args disk_bargs;
3861 struct btrfs_path *path;
3862 struct extent_buffer *leaf;
3863 struct btrfs_key key;
3864 int ret;
3865
3866 path = btrfs_alloc_path();
3867 if (!path)
3868 return -ENOMEM;
3869
3870 key.objectid = BTRFS_BALANCE_OBJECTID;
3871 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3872 key.offset = 0;
3873
3874 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3875 if (ret < 0)
3876 goto out;
3877 if (ret > 0) { /* ret = -ENOENT; */
3878 ret = 0;
3879 goto out;
3880 }
3881
3882 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3883 if (!bctl) {
3884 ret = -ENOMEM;
3885 goto out;
3886 }
3887
3888 leaf = path->nodes[0];
3889 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3890
3891 bctl->fs_info = fs_info;
3892 bctl->flags = btrfs_balance_flags(leaf, item);
3893 bctl->flags |= BTRFS_BALANCE_RESUME;
3894
3895 btrfs_balance_data(leaf, item, &disk_bargs);
3896 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3897 btrfs_balance_meta(leaf, item, &disk_bargs);
3898 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3899 btrfs_balance_sys(leaf, item, &disk_bargs);
3900 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3901
3902 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3903
3904 mutex_lock(&fs_info->volume_mutex);
3905 mutex_lock(&fs_info->balance_mutex);
3906
3907 set_balance_control(bctl);
3908
3909 mutex_unlock(&fs_info->balance_mutex);
3910 mutex_unlock(&fs_info->volume_mutex);
3911 out:
3912 btrfs_free_path(path);
3913 return ret;
3914 }
3915
3916 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3917 {
3918 int ret = 0;
3919
3920 mutex_lock(&fs_info->balance_mutex);
3921 if (!fs_info->balance_ctl) {
3922 mutex_unlock(&fs_info->balance_mutex);
3923 return -ENOTCONN;
3924 }
3925
3926 if (atomic_read(&fs_info->balance_running)) {
3927 atomic_inc(&fs_info->balance_pause_req);
3928 mutex_unlock(&fs_info->balance_mutex);
3929
3930 wait_event(fs_info->balance_wait_q,
3931 atomic_read(&fs_info->balance_running) == 0);
3932
3933 mutex_lock(&fs_info->balance_mutex);
3934 /* we are good with balance_ctl ripped off from under us */
3935 BUG_ON(atomic_read(&fs_info->balance_running));
3936 atomic_dec(&fs_info->balance_pause_req);
3937 } else {
3938 ret = -ENOTCONN;
3939 }
3940
3941 mutex_unlock(&fs_info->balance_mutex);
3942 return ret;
3943 }
3944
3945 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3946 {
3947 if (fs_info->sb->s_flags & MS_RDONLY)
3948 return -EROFS;
3949
3950 mutex_lock(&fs_info->balance_mutex);
3951 if (!fs_info->balance_ctl) {
3952 mutex_unlock(&fs_info->balance_mutex);
3953 return -ENOTCONN;
3954 }
3955
3956 atomic_inc(&fs_info->balance_cancel_req);
3957 /*
3958 * if we are running just wait and return, balance item is
3959 * deleted in btrfs_balance in this case
3960 */
3961 if (atomic_read(&fs_info->balance_running)) {
3962 mutex_unlock(&fs_info->balance_mutex);
3963 wait_event(fs_info->balance_wait_q,
3964 atomic_read(&fs_info->balance_running) == 0);
3965 mutex_lock(&fs_info->balance_mutex);
3966 } else {
3967 /* __cancel_balance needs volume_mutex */
3968 mutex_unlock(&fs_info->balance_mutex);
3969 mutex_lock(&fs_info->volume_mutex);
3970 mutex_lock(&fs_info->balance_mutex);
3971
3972 if (fs_info->balance_ctl)
3973 __cancel_balance(fs_info);
3974
3975 mutex_unlock(&fs_info->volume_mutex);
3976 }
3977
3978 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3979 atomic_dec(&fs_info->balance_cancel_req);
3980 mutex_unlock(&fs_info->balance_mutex);
3981 return 0;
3982 }
3983
3984 static int btrfs_uuid_scan_kthread(void *data)
3985 {
3986 struct btrfs_fs_info *fs_info = data;
3987 struct btrfs_root *root = fs_info->tree_root;
3988 struct btrfs_key key;
3989 struct btrfs_key max_key;
3990 struct btrfs_path *path = NULL;
3991 int ret = 0;
3992 struct extent_buffer *eb;
3993 int slot;
3994 struct btrfs_root_item root_item;
3995 u32 item_size;
3996 struct btrfs_trans_handle *trans = NULL;
3997
3998 path = btrfs_alloc_path();
3999 if (!path) {
4000 ret = -ENOMEM;
4001 goto out;
4002 }
4003
4004 key.objectid = 0;
4005 key.type = BTRFS_ROOT_ITEM_KEY;
4006 key.offset = 0;
4007
4008 max_key.objectid = (u64)-1;
4009 max_key.type = BTRFS_ROOT_ITEM_KEY;
4010 max_key.offset = (u64)-1;
4011
4012 while (1) {
4013 ret = btrfs_search_forward(root, &key, path, 0);
4014 if (ret) {
4015 if (ret > 0)
4016 ret = 0;
4017 break;
4018 }
4019
4020 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4021 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4022 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4023 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4024 goto skip;
4025
4026 eb = path->nodes[0];
4027 slot = path->slots[0];
4028 item_size = btrfs_item_size_nr(eb, slot);
4029 if (item_size < sizeof(root_item))
4030 goto skip;
4031
4032 read_extent_buffer(eb, &root_item,
4033 btrfs_item_ptr_offset(eb, slot),
4034 (int)sizeof(root_item));
4035 if (btrfs_root_refs(&root_item) == 0)
4036 goto skip;
4037
4038 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4039 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4040 if (trans)
4041 goto update_tree;
4042
4043 btrfs_release_path(path);
4044 /*
4045 * 1 - subvol uuid item
4046 * 1 - received_subvol uuid item
4047 */
4048 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4049 if (IS_ERR(trans)) {
4050 ret = PTR_ERR(trans);
4051 break;
4052 }
4053 continue;
4054 } else {
4055 goto skip;
4056 }
4057 update_tree:
4058 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4059 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4060 root_item.uuid,
4061 BTRFS_UUID_KEY_SUBVOL,
4062 key.objectid);
4063 if (ret < 0) {
4064 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4065 ret);
4066 break;
4067 }
4068 }
4069
4070 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4071 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4072 root_item.received_uuid,
4073 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4074 key.objectid);
4075 if (ret < 0) {
4076 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4077 ret);
4078 break;
4079 }
4080 }
4081
4082 skip:
4083 if (trans) {
4084 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4085 trans = NULL;
4086 if (ret)
4087 break;
4088 }
4089
4090 btrfs_release_path(path);
4091 if (key.offset < (u64)-1) {
4092 key.offset++;
4093 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4094 key.offset = 0;
4095 key.type = BTRFS_ROOT_ITEM_KEY;
4096 } else if (key.objectid < (u64)-1) {
4097 key.offset = 0;
4098 key.type = BTRFS_ROOT_ITEM_KEY;
4099 key.objectid++;
4100 } else {
4101 break;
4102 }
4103 cond_resched();
4104 }
4105
4106 out:
4107 btrfs_free_path(path);
4108 if (trans && !IS_ERR(trans))
4109 btrfs_end_transaction(trans, fs_info->uuid_root);
4110 if (ret)
4111 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4112 else
4113 fs_info->update_uuid_tree_gen = 1;
4114 up(&fs_info->uuid_tree_rescan_sem);
4115 return 0;
4116 }
4117
4118 /*
4119 * Callback for btrfs_uuid_tree_iterate().
4120 * returns:
4121 * 0 check succeeded, the entry is not outdated.
4122 * < 0 if an error occured.
4123 * > 0 if the check failed, which means the caller shall remove the entry.
4124 */
4125 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4126 u8 *uuid, u8 type, u64 subid)
4127 {
4128 struct btrfs_key key;
4129 int ret = 0;
4130 struct btrfs_root *subvol_root;
4131
4132 if (type != BTRFS_UUID_KEY_SUBVOL &&
4133 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4134 goto out;
4135
4136 key.objectid = subid;
4137 key.type = BTRFS_ROOT_ITEM_KEY;
4138 key.offset = (u64)-1;
4139 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4140 if (IS_ERR(subvol_root)) {
4141 ret = PTR_ERR(subvol_root);
4142 if (ret == -ENOENT)
4143 ret = 1;
4144 goto out;
4145 }
4146
4147 switch (type) {
4148 case BTRFS_UUID_KEY_SUBVOL:
4149 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4150 ret = 1;
4151 break;
4152 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4153 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4154 BTRFS_UUID_SIZE))
4155 ret = 1;
4156 break;
4157 }
4158
4159 out:
4160 return ret;
4161 }
4162
4163 static int btrfs_uuid_rescan_kthread(void *data)
4164 {
4165 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4166 int ret;
4167
4168 /*
4169 * 1st step is to iterate through the existing UUID tree and
4170 * to delete all entries that contain outdated data.
4171 * 2nd step is to add all missing entries to the UUID tree.
4172 */
4173 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4174 if (ret < 0) {
4175 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4176 up(&fs_info->uuid_tree_rescan_sem);
4177 return ret;
4178 }
4179 return btrfs_uuid_scan_kthread(data);
4180 }
4181
4182 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4183 {
4184 struct btrfs_trans_handle *trans;
4185 struct btrfs_root *tree_root = fs_info->tree_root;
4186 struct btrfs_root *uuid_root;
4187 struct task_struct *task;
4188 int ret;
4189
4190 /*
4191 * 1 - root node
4192 * 1 - root item
4193 */
4194 trans = btrfs_start_transaction(tree_root, 2);
4195 if (IS_ERR(trans))
4196 return PTR_ERR(trans);
4197
4198 uuid_root = btrfs_create_tree(trans, fs_info,
4199 BTRFS_UUID_TREE_OBJECTID);
4200 if (IS_ERR(uuid_root)) {
4201 ret = PTR_ERR(uuid_root);
4202 btrfs_abort_transaction(trans, tree_root, ret);
4203 return ret;
4204 }
4205
4206 fs_info->uuid_root = uuid_root;
4207
4208 ret = btrfs_commit_transaction(trans, tree_root);
4209 if (ret)
4210 return ret;
4211
4212 down(&fs_info->uuid_tree_rescan_sem);
4213 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4214 if (IS_ERR(task)) {
4215 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4216 btrfs_warn(fs_info, "failed to start uuid_scan task");
4217 up(&fs_info->uuid_tree_rescan_sem);
4218 return PTR_ERR(task);
4219 }
4220
4221 return 0;
4222 }
4223
4224 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4225 {
4226 struct task_struct *task;
4227
4228 down(&fs_info->uuid_tree_rescan_sem);
4229 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4230 if (IS_ERR(task)) {
4231 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4232 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4233 up(&fs_info->uuid_tree_rescan_sem);
4234 return PTR_ERR(task);
4235 }
4236
4237 return 0;
4238 }
4239
4240 /*
4241 * shrinking a device means finding all of the device extents past
4242 * the new size, and then following the back refs to the chunks.
4243 * The chunk relocation code actually frees the device extent
4244 */
4245 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4246 {
4247 struct btrfs_trans_handle *trans;
4248 struct btrfs_root *root = device->dev_root;
4249 struct btrfs_dev_extent *dev_extent = NULL;
4250 struct btrfs_path *path;
4251 u64 length;
4252 u64 chunk_offset;
4253 int ret;
4254 int slot;
4255 int failed = 0;
4256 bool retried = false;
4257 bool checked_pending_chunks = false;
4258 struct extent_buffer *l;
4259 struct btrfs_key key;
4260 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4261 u64 old_total = btrfs_super_total_bytes(super_copy);
4262 u64 old_size = btrfs_device_get_total_bytes(device);
4263 u64 diff = old_size - new_size;
4264
4265 if (device->is_tgtdev_for_dev_replace)
4266 return -EINVAL;
4267
4268 path = btrfs_alloc_path();
4269 if (!path)
4270 return -ENOMEM;
4271
4272 path->reada = READA_FORWARD;
4273
4274 lock_chunks(root);
4275
4276 btrfs_device_set_total_bytes(device, new_size);
4277 if (device->writeable) {
4278 device->fs_devices->total_rw_bytes -= diff;
4279 spin_lock(&root->fs_info->free_chunk_lock);
4280 root->fs_info->free_chunk_space -= diff;
4281 spin_unlock(&root->fs_info->free_chunk_lock);
4282 }
4283 unlock_chunks(root);
4284
4285 again:
4286 key.objectid = device->devid;
4287 key.offset = (u64)-1;
4288 key.type = BTRFS_DEV_EXTENT_KEY;
4289
4290 do {
4291 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4292 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4293 if (ret < 0) {
4294 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4295 goto done;
4296 }
4297
4298 ret = btrfs_previous_item(root, path, 0, key.type);
4299 if (ret)
4300 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4301 if (ret < 0)
4302 goto done;
4303 if (ret) {
4304 ret = 0;
4305 btrfs_release_path(path);
4306 break;
4307 }
4308
4309 l = path->nodes[0];
4310 slot = path->slots[0];
4311 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4312
4313 if (key.objectid != device->devid) {
4314 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4315 btrfs_release_path(path);
4316 break;
4317 }
4318
4319 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4320 length = btrfs_dev_extent_length(l, dev_extent);
4321
4322 if (key.offset + length <= new_size) {
4323 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4324 btrfs_release_path(path);
4325 break;
4326 }
4327
4328 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4329 btrfs_release_path(path);
4330
4331 ret = btrfs_relocate_chunk(root, chunk_offset);
4332 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4333 if (ret && ret != -ENOSPC)
4334 goto done;
4335 if (ret == -ENOSPC)
4336 failed++;
4337 } while (key.offset-- > 0);
4338
4339 if (failed && !retried) {
4340 failed = 0;
4341 retried = true;
4342 goto again;
4343 } else if (failed && retried) {
4344 ret = -ENOSPC;
4345 goto done;
4346 }
4347
4348 /* Shrinking succeeded, else we would be at "done". */
4349 trans = btrfs_start_transaction(root, 0);
4350 if (IS_ERR(trans)) {
4351 ret = PTR_ERR(trans);
4352 goto done;
4353 }
4354
4355 lock_chunks(root);
4356
4357 /*
4358 * We checked in the above loop all device extents that were already in
4359 * the device tree. However before we have updated the device's
4360 * total_bytes to the new size, we might have had chunk allocations that
4361 * have not complete yet (new block groups attached to transaction
4362 * handles), and therefore their device extents were not yet in the
4363 * device tree and we missed them in the loop above. So if we have any
4364 * pending chunk using a device extent that overlaps the device range
4365 * that we can not use anymore, commit the current transaction and
4366 * repeat the search on the device tree - this way we guarantee we will
4367 * not have chunks using device extents that end beyond 'new_size'.
4368 */
4369 if (!checked_pending_chunks) {
4370 u64 start = new_size;
4371 u64 len = old_size - new_size;
4372
4373 if (contains_pending_extent(trans->transaction, device,
4374 &start, len)) {
4375 unlock_chunks(root);
4376 checked_pending_chunks = true;
4377 failed = 0;
4378 retried = false;
4379 ret = btrfs_commit_transaction(trans, root);
4380 if (ret)
4381 goto done;
4382 goto again;
4383 }
4384 }
4385
4386 btrfs_device_set_disk_total_bytes(device, new_size);
4387 if (list_empty(&device->resized_list))
4388 list_add_tail(&device->resized_list,
4389 &root->fs_info->fs_devices->resized_devices);
4390
4391 WARN_ON(diff > old_total);
4392 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4393 unlock_chunks(root);
4394
4395 /* Now btrfs_update_device() will change the on-disk size. */
4396 ret = btrfs_update_device(trans, device);
4397 btrfs_end_transaction(trans, root);
4398 done:
4399 btrfs_free_path(path);
4400 if (ret) {
4401 lock_chunks(root);
4402 btrfs_device_set_total_bytes(device, old_size);
4403 if (device->writeable)
4404 device->fs_devices->total_rw_bytes += diff;
4405 spin_lock(&root->fs_info->free_chunk_lock);
4406 root->fs_info->free_chunk_space += diff;
4407 spin_unlock(&root->fs_info->free_chunk_lock);
4408 unlock_chunks(root);
4409 }
4410 return ret;
4411 }
4412
4413 static int btrfs_add_system_chunk(struct btrfs_root *root,
4414 struct btrfs_key *key,
4415 struct btrfs_chunk *chunk, int item_size)
4416 {
4417 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4418 struct btrfs_disk_key disk_key;
4419 u32 array_size;
4420 u8 *ptr;
4421
4422 lock_chunks(root);
4423 array_size = btrfs_super_sys_array_size(super_copy);
4424 if (array_size + item_size + sizeof(disk_key)
4425 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4426 unlock_chunks(root);
4427 return -EFBIG;
4428 }
4429
4430 ptr = super_copy->sys_chunk_array + array_size;
4431 btrfs_cpu_key_to_disk(&disk_key, key);
4432 memcpy(ptr, &disk_key, sizeof(disk_key));
4433 ptr += sizeof(disk_key);
4434 memcpy(ptr, chunk, item_size);
4435 item_size += sizeof(disk_key);
4436 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4437 unlock_chunks(root);
4438
4439 return 0;
4440 }
4441
4442 /*
4443 * sort the devices in descending order by max_avail, total_avail
4444 */
4445 static int btrfs_cmp_device_info(const void *a, const void *b)
4446 {
4447 const struct btrfs_device_info *di_a = a;
4448 const struct btrfs_device_info *di_b = b;
4449
4450 if (di_a->max_avail > di_b->max_avail)
4451 return -1;
4452 if (di_a->max_avail < di_b->max_avail)
4453 return 1;
4454 if (di_a->total_avail > di_b->total_avail)
4455 return -1;
4456 if (di_a->total_avail < di_b->total_avail)
4457 return 1;
4458 return 0;
4459 }
4460
4461 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4462 {
4463 /* TODO allow them to set a preferred stripe size */
4464 return SZ_64K;
4465 }
4466
4467 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4468 {
4469 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4470 return;
4471
4472 btrfs_set_fs_incompat(info, RAID56);
4473 }
4474
4475 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4476 - sizeof(struct btrfs_item) \
4477 - sizeof(struct btrfs_chunk)) \
4478 / sizeof(struct btrfs_stripe) + 1)
4479
4480 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4481 - 2 * sizeof(struct btrfs_disk_key) \
4482 - 2 * sizeof(struct btrfs_chunk)) \
4483 / sizeof(struct btrfs_stripe) + 1)
4484
4485 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4486 struct btrfs_root *extent_root, u64 start,
4487 u64 type)
4488 {
4489 struct btrfs_fs_info *info = extent_root->fs_info;
4490 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4491 struct list_head *cur;
4492 struct map_lookup *map = NULL;
4493 struct extent_map_tree *em_tree;
4494 struct extent_map *em;
4495 struct btrfs_device_info *devices_info = NULL;
4496 u64 total_avail;
4497 int num_stripes; /* total number of stripes to allocate */
4498 int data_stripes; /* number of stripes that count for
4499 block group size */
4500 int sub_stripes; /* sub_stripes info for map */
4501 int dev_stripes; /* stripes per dev */
4502 int devs_max; /* max devs to use */
4503 int devs_min; /* min devs needed */
4504 int devs_increment; /* ndevs has to be a multiple of this */
4505 int ncopies; /* how many copies to data has */
4506 int ret;
4507 u64 max_stripe_size;
4508 u64 max_chunk_size;
4509 u64 stripe_size;
4510 u64 num_bytes;
4511 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4512 int ndevs;
4513 int i;
4514 int j;
4515 int index;
4516
4517 BUG_ON(!alloc_profile_is_valid(type, 0));
4518
4519 if (list_empty(&fs_devices->alloc_list))
4520 return -ENOSPC;
4521
4522 index = __get_raid_index(type);
4523
4524 sub_stripes = btrfs_raid_array[index].sub_stripes;
4525 dev_stripes = btrfs_raid_array[index].dev_stripes;
4526 devs_max = btrfs_raid_array[index].devs_max;
4527 devs_min = btrfs_raid_array[index].devs_min;
4528 devs_increment = btrfs_raid_array[index].devs_increment;
4529 ncopies = btrfs_raid_array[index].ncopies;
4530
4531 if (type & BTRFS_BLOCK_GROUP_DATA) {
4532 max_stripe_size = SZ_1G;
4533 max_chunk_size = 10 * max_stripe_size;
4534 if (!devs_max)
4535 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4536 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4537 /* for larger filesystems, use larger metadata chunks */
4538 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4539 max_stripe_size = SZ_1G;
4540 else
4541 max_stripe_size = SZ_256M;
4542 max_chunk_size = max_stripe_size;
4543 if (!devs_max)
4544 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4545 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4546 max_stripe_size = SZ_32M;
4547 max_chunk_size = 2 * max_stripe_size;
4548 if (!devs_max)
4549 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4550 } else {
4551 btrfs_err(info, "invalid chunk type 0x%llx requested",
4552 type);
4553 BUG_ON(1);
4554 }
4555
4556 /* we don't want a chunk larger than 10% of writeable space */
4557 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4558 max_chunk_size);
4559
4560 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4561 GFP_NOFS);
4562 if (!devices_info)
4563 return -ENOMEM;
4564
4565 cur = fs_devices->alloc_list.next;
4566
4567 /*
4568 * in the first pass through the devices list, we gather information
4569 * about the available holes on each device.
4570 */
4571 ndevs = 0;
4572 while (cur != &fs_devices->alloc_list) {
4573 struct btrfs_device *device;
4574 u64 max_avail;
4575 u64 dev_offset;
4576
4577 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4578
4579 cur = cur->next;
4580
4581 if (!device->writeable) {
4582 WARN(1, KERN_ERR
4583 "BTRFS: read-only device in alloc_list\n");
4584 continue;
4585 }
4586
4587 if (!device->in_fs_metadata ||
4588 device->is_tgtdev_for_dev_replace)
4589 continue;
4590
4591 if (device->total_bytes > device->bytes_used)
4592 total_avail = device->total_bytes - device->bytes_used;
4593 else
4594 total_avail = 0;
4595
4596 /* If there is no space on this device, skip it. */
4597 if (total_avail == 0)
4598 continue;
4599
4600 ret = find_free_dev_extent(trans, device,
4601 max_stripe_size * dev_stripes,
4602 &dev_offset, &max_avail);
4603 if (ret && ret != -ENOSPC)
4604 goto error;
4605
4606 if (ret == 0)
4607 max_avail = max_stripe_size * dev_stripes;
4608
4609 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4610 continue;
4611
4612 if (ndevs == fs_devices->rw_devices) {
4613 WARN(1, "%s: found more than %llu devices\n",
4614 __func__, fs_devices->rw_devices);
4615 break;
4616 }
4617 devices_info[ndevs].dev_offset = dev_offset;
4618 devices_info[ndevs].max_avail = max_avail;
4619 devices_info[ndevs].total_avail = total_avail;
4620 devices_info[ndevs].dev = device;
4621 ++ndevs;
4622 }
4623
4624 /*
4625 * now sort the devices by hole size / available space
4626 */
4627 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4628 btrfs_cmp_device_info, NULL);
4629
4630 /* round down to number of usable stripes */
4631 ndevs -= ndevs % devs_increment;
4632
4633 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4634 ret = -ENOSPC;
4635 goto error;
4636 }
4637
4638 if (devs_max && ndevs > devs_max)
4639 ndevs = devs_max;
4640 /*
4641 * the primary goal is to maximize the number of stripes, so use as many
4642 * devices as possible, even if the stripes are not maximum sized.
4643 */
4644 stripe_size = devices_info[ndevs-1].max_avail;
4645 num_stripes = ndevs * dev_stripes;
4646
4647 /*
4648 * this will have to be fixed for RAID1 and RAID10 over
4649 * more drives
4650 */
4651 data_stripes = num_stripes / ncopies;
4652
4653 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4654 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4655 btrfs_super_stripesize(info->super_copy));
4656 data_stripes = num_stripes - 1;
4657 }
4658 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4659 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4660 btrfs_super_stripesize(info->super_copy));
4661 data_stripes = num_stripes - 2;
4662 }
4663
4664 /*
4665 * Use the number of data stripes to figure out how big this chunk
4666 * is really going to be in terms of logical address space,
4667 * and compare that answer with the max chunk size
4668 */
4669 if (stripe_size * data_stripes > max_chunk_size) {
4670 u64 mask = (1ULL << 24) - 1;
4671
4672 stripe_size = div_u64(max_chunk_size, data_stripes);
4673
4674 /* bump the answer up to a 16MB boundary */
4675 stripe_size = (stripe_size + mask) & ~mask;
4676
4677 /* but don't go higher than the limits we found
4678 * while searching for free extents
4679 */
4680 if (stripe_size > devices_info[ndevs-1].max_avail)
4681 stripe_size = devices_info[ndevs-1].max_avail;
4682 }
4683
4684 stripe_size = div_u64(stripe_size, dev_stripes);
4685
4686 /* align to BTRFS_STRIPE_LEN */
4687 stripe_size = div_u64(stripe_size, raid_stripe_len);
4688 stripe_size *= raid_stripe_len;
4689
4690 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4691 if (!map) {
4692 ret = -ENOMEM;
4693 goto error;
4694 }
4695 map->num_stripes = num_stripes;
4696
4697 for (i = 0; i < ndevs; ++i) {
4698 for (j = 0; j < dev_stripes; ++j) {
4699 int s = i * dev_stripes + j;
4700 map->stripes[s].dev = devices_info[i].dev;
4701 map->stripes[s].physical = devices_info[i].dev_offset +
4702 j * stripe_size;
4703 }
4704 }
4705 map->sector_size = extent_root->sectorsize;
4706 map->stripe_len = raid_stripe_len;
4707 map->io_align = raid_stripe_len;
4708 map->io_width = raid_stripe_len;
4709 map->type = type;
4710 map->sub_stripes = sub_stripes;
4711
4712 num_bytes = stripe_size * data_stripes;
4713
4714 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4715
4716 em = alloc_extent_map();
4717 if (!em) {
4718 kfree(map);
4719 ret = -ENOMEM;
4720 goto error;
4721 }
4722 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4723 em->map_lookup = map;
4724 em->start = start;
4725 em->len = num_bytes;
4726 em->block_start = 0;
4727 em->block_len = em->len;
4728 em->orig_block_len = stripe_size;
4729
4730 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4731 write_lock(&em_tree->lock);
4732 ret = add_extent_mapping(em_tree, em, 0);
4733 if (!ret) {
4734 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4735 atomic_inc(&em->refs);
4736 }
4737 write_unlock(&em_tree->lock);
4738 if (ret) {
4739 free_extent_map(em);
4740 goto error;
4741 }
4742
4743 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4744 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4745 start, num_bytes);
4746 if (ret)
4747 goto error_del_extent;
4748
4749 for (i = 0; i < map->num_stripes; i++) {
4750 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4751 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4752 }
4753
4754 spin_lock(&extent_root->fs_info->free_chunk_lock);
4755 extent_root->fs_info->free_chunk_space -= (stripe_size *
4756 map->num_stripes);
4757 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4758
4759 free_extent_map(em);
4760 check_raid56_incompat_flag(extent_root->fs_info, type);
4761
4762 kfree(devices_info);
4763 return 0;
4764
4765 error_del_extent:
4766 write_lock(&em_tree->lock);
4767 remove_extent_mapping(em_tree, em);
4768 write_unlock(&em_tree->lock);
4769
4770 /* One for our allocation */
4771 free_extent_map(em);
4772 /* One for the tree reference */
4773 free_extent_map(em);
4774 /* One for the pending_chunks list reference */
4775 free_extent_map(em);
4776 error:
4777 kfree(devices_info);
4778 return ret;
4779 }
4780
4781 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4782 struct btrfs_root *extent_root,
4783 u64 chunk_offset, u64 chunk_size)
4784 {
4785 struct btrfs_key key;
4786 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4787 struct btrfs_device *device;
4788 struct btrfs_chunk *chunk;
4789 struct btrfs_stripe *stripe;
4790 struct extent_map_tree *em_tree;
4791 struct extent_map *em;
4792 struct map_lookup *map;
4793 size_t item_size;
4794 u64 dev_offset;
4795 u64 stripe_size;
4796 int i = 0;
4797 int ret = 0;
4798
4799 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4800 read_lock(&em_tree->lock);
4801 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4802 read_unlock(&em_tree->lock);
4803
4804 if (!em) {
4805 btrfs_crit(extent_root->fs_info, "unable to find logical "
4806 "%Lu len %Lu", chunk_offset, chunk_size);
4807 return -EINVAL;
4808 }
4809
4810 if (em->start != chunk_offset || em->len != chunk_size) {
4811 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4812 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4813 chunk_size, em->start, em->len);
4814 free_extent_map(em);
4815 return -EINVAL;
4816 }
4817
4818 map = em->map_lookup;
4819 item_size = btrfs_chunk_item_size(map->num_stripes);
4820 stripe_size = em->orig_block_len;
4821
4822 chunk = kzalloc(item_size, GFP_NOFS);
4823 if (!chunk) {
4824 ret = -ENOMEM;
4825 goto out;
4826 }
4827
4828 /*
4829 * Take the device list mutex to prevent races with the final phase of
4830 * a device replace operation that replaces the device object associated
4831 * with the map's stripes, because the device object's id can change
4832 * at any time during that final phase of the device replace operation
4833 * (dev-replace.c:btrfs_dev_replace_finishing()).
4834 */
4835 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4836 for (i = 0; i < map->num_stripes; i++) {
4837 device = map->stripes[i].dev;
4838 dev_offset = map->stripes[i].physical;
4839
4840 ret = btrfs_update_device(trans, device);
4841 if (ret)
4842 break;
4843 ret = btrfs_alloc_dev_extent(trans, device,
4844 chunk_root->root_key.objectid,
4845 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4846 chunk_offset, dev_offset,
4847 stripe_size);
4848 if (ret)
4849 break;
4850 }
4851 if (ret) {
4852 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4853 goto out;
4854 }
4855
4856 stripe = &chunk->stripe;
4857 for (i = 0; i < map->num_stripes; i++) {
4858 device = map->stripes[i].dev;
4859 dev_offset = map->stripes[i].physical;
4860
4861 btrfs_set_stack_stripe_devid(stripe, device->devid);
4862 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4863 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4864 stripe++;
4865 }
4866 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4867
4868 btrfs_set_stack_chunk_length(chunk, chunk_size);
4869 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4870 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4871 btrfs_set_stack_chunk_type(chunk, map->type);
4872 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4873 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4874 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4875 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4876 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4877
4878 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4879 key.type = BTRFS_CHUNK_ITEM_KEY;
4880 key.offset = chunk_offset;
4881
4882 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4883 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4884 /*
4885 * TODO: Cleanup of inserted chunk root in case of
4886 * failure.
4887 */
4888 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4889 item_size);
4890 }
4891
4892 out:
4893 kfree(chunk);
4894 free_extent_map(em);
4895 return ret;
4896 }
4897
4898 /*
4899 * Chunk allocation falls into two parts. The first part does works
4900 * that make the new allocated chunk useable, but not do any operation
4901 * that modifies the chunk tree. The second part does the works that
4902 * require modifying the chunk tree. This division is important for the
4903 * bootstrap process of adding storage to a seed btrfs.
4904 */
4905 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4906 struct btrfs_root *extent_root, u64 type)
4907 {
4908 u64 chunk_offset;
4909
4910 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4911 chunk_offset = find_next_chunk(extent_root->fs_info);
4912 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4913 }
4914
4915 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4916 struct btrfs_root *root,
4917 struct btrfs_device *device)
4918 {
4919 u64 chunk_offset;
4920 u64 sys_chunk_offset;
4921 u64 alloc_profile;
4922 struct btrfs_fs_info *fs_info = root->fs_info;
4923 struct btrfs_root *extent_root = fs_info->extent_root;
4924 int ret;
4925
4926 chunk_offset = find_next_chunk(fs_info);
4927 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4928 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4929 alloc_profile);
4930 if (ret)
4931 return ret;
4932
4933 sys_chunk_offset = find_next_chunk(root->fs_info);
4934 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4935 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4936 alloc_profile);
4937 return ret;
4938 }
4939
4940 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4941 {
4942 int max_errors;
4943
4944 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4945 BTRFS_BLOCK_GROUP_RAID10 |
4946 BTRFS_BLOCK_GROUP_RAID5 |
4947 BTRFS_BLOCK_GROUP_DUP)) {
4948 max_errors = 1;
4949 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4950 max_errors = 2;
4951 } else {
4952 max_errors = 0;
4953 }
4954
4955 return max_errors;
4956 }
4957
4958 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4959 {
4960 struct extent_map *em;
4961 struct map_lookup *map;
4962 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4963 int readonly = 0;
4964 int miss_ndevs = 0;
4965 int i;
4966
4967 read_lock(&map_tree->map_tree.lock);
4968 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4969 read_unlock(&map_tree->map_tree.lock);
4970 if (!em)
4971 return 1;
4972
4973 map = em->map_lookup;
4974 for (i = 0; i < map->num_stripes; i++) {
4975 if (map->stripes[i].dev->missing) {
4976 miss_ndevs++;
4977 continue;
4978 }
4979
4980 if (!map->stripes[i].dev->writeable) {
4981 readonly = 1;
4982 goto end;
4983 }
4984 }
4985
4986 /*
4987 * If the number of missing devices is larger than max errors,
4988 * we can not write the data into that chunk successfully, so
4989 * set it readonly.
4990 */
4991 if (miss_ndevs > btrfs_chunk_max_errors(map))
4992 readonly = 1;
4993 end:
4994 free_extent_map(em);
4995 return readonly;
4996 }
4997
4998 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4999 {
5000 extent_map_tree_init(&tree->map_tree);
5001 }
5002
5003 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5004 {
5005 struct extent_map *em;
5006
5007 while (1) {
5008 write_lock(&tree->map_tree.lock);
5009 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5010 if (em)
5011 remove_extent_mapping(&tree->map_tree, em);
5012 write_unlock(&tree->map_tree.lock);
5013 if (!em)
5014 break;
5015 /* once for us */
5016 free_extent_map(em);
5017 /* once for the tree */
5018 free_extent_map(em);
5019 }
5020 }
5021
5022 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5023 {
5024 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5025 struct extent_map *em;
5026 struct map_lookup *map;
5027 struct extent_map_tree *em_tree = &map_tree->map_tree;
5028 int ret;
5029
5030 read_lock(&em_tree->lock);
5031 em = lookup_extent_mapping(em_tree, logical, len);
5032 read_unlock(&em_tree->lock);
5033
5034 /*
5035 * We could return errors for these cases, but that could get ugly and
5036 * we'd probably do the same thing which is just not do anything else
5037 * and exit, so return 1 so the callers don't try to use other copies.
5038 */
5039 if (!em) {
5040 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5041 logical+len);
5042 return 1;
5043 }
5044
5045 if (em->start > logical || em->start + em->len < logical) {
5046 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
5047 "%Lu-%Lu", logical, logical+len, em->start,
5048 em->start + em->len);
5049 free_extent_map(em);
5050 return 1;
5051 }
5052
5053 map = em->map_lookup;
5054 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5055 ret = map->num_stripes;
5056 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5057 ret = map->sub_stripes;
5058 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5059 ret = 2;
5060 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5061 ret = 3;
5062 else
5063 ret = 1;
5064 free_extent_map(em);
5065
5066 btrfs_dev_replace_lock(&fs_info->dev_replace);
5067 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5068 ret++;
5069 btrfs_dev_replace_unlock(&fs_info->dev_replace);
5070
5071 return ret;
5072 }
5073
5074 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5075 struct btrfs_mapping_tree *map_tree,
5076 u64 logical)
5077 {
5078 struct extent_map *em;
5079 struct map_lookup *map;
5080 struct extent_map_tree *em_tree = &map_tree->map_tree;
5081 unsigned long len = root->sectorsize;
5082
5083 read_lock(&em_tree->lock);
5084 em = lookup_extent_mapping(em_tree, logical, len);
5085 read_unlock(&em_tree->lock);
5086 BUG_ON(!em);
5087
5088 BUG_ON(em->start > logical || em->start + em->len < logical);
5089 map = em->map_lookup;
5090 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5091 len = map->stripe_len * nr_data_stripes(map);
5092 free_extent_map(em);
5093 return len;
5094 }
5095
5096 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5097 u64 logical, u64 len, int mirror_num)
5098 {
5099 struct extent_map *em;
5100 struct map_lookup *map;
5101 struct extent_map_tree *em_tree = &map_tree->map_tree;
5102 int ret = 0;
5103
5104 read_lock(&em_tree->lock);
5105 em = lookup_extent_mapping(em_tree, logical, len);
5106 read_unlock(&em_tree->lock);
5107 BUG_ON(!em);
5108
5109 BUG_ON(em->start > logical || em->start + em->len < logical);
5110 map = em->map_lookup;
5111 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5112 ret = 1;
5113 free_extent_map(em);
5114 return ret;
5115 }
5116
5117 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5118 struct map_lookup *map, int first, int num,
5119 int optimal, int dev_replace_is_ongoing)
5120 {
5121 int i;
5122 int tolerance;
5123 struct btrfs_device *srcdev;
5124
5125 if (dev_replace_is_ongoing &&
5126 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5127 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5128 srcdev = fs_info->dev_replace.srcdev;
5129 else
5130 srcdev = NULL;
5131
5132 /*
5133 * try to avoid the drive that is the source drive for a
5134 * dev-replace procedure, only choose it if no other non-missing
5135 * mirror is available
5136 */
5137 for (tolerance = 0; tolerance < 2; tolerance++) {
5138 if (map->stripes[optimal].dev->bdev &&
5139 (tolerance || map->stripes[optimal].dev != srcdev))
5140 return optimal;
5141 for (i = first; i < first + num; i++) {
5142 if (map->stripes[i].dev->bdev &&
5143 (tolerance || map->stripes[i].dev != srcdev))
5144 return i;
5145 }
5146 }
5147
5148 /* we couldn't find one that doesn't fail. Just return something
5149 * and the io error handling code will clean up eventually
5150 */
5151 return optimal;
5152 }
5153
5154 static inline int parity_smaller(u64 a, u64 b)
5155 {
5156 return a > b;
5157 }
5158
5159 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5160 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5161 {
5162 struct btrfs_bio_stripe s;
5163 int i;
5164 u64 l;
5165 int again = 1;
5166
5167 while (again) {
5168 again = 0;
5169 for (i = 0; i < num_stripes - 1; i++) {
5170 if (parity_smaller(bbio->raid_map[i],
5171 bbio->raid_map[i+1])) {
5172 s = bbio->stripes[i];
5173 l = bbio->raid_map[i];
5174 bbio->stripes[i] = bbio->stripes[i+1];
5175 bbio->raid_map[i] = bbio->raid_map[i+1];
5176 bbio->stripes[i+1] = s;
5177 bbio->raid_map[i+1] = l;
5178
5179 again = 1;
5180 }
5181 }
5182 }
5183 }
5184
5185 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5186 {
5187 struct btrfs_bio *bbio = kzalloc(
5188 /* the size of the btrfs_bio */
5189 sizeof(struct btrfs_bio) +
5190 /* plus the variable array for the stripes */
5191 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5192 /* plus the variable array for the tgt dev */
5193 sizeof(int) * (real_stripes) +
5194 /*
5195 * plus the raid_map, which includes both the tgt dev
5196 * and the stripes
5197 */
5198 sizeof(u64) * (total_stripes),
5199 GFP_NOFS|__GFP_NOFAIL);
5200
5201 atomic_set(&bbio->error, 0);
5202 atomic_set(&bbio->refs, 1);
5203
5204 return bbio;
5205 }
5206
5207 void btrfs_get_bbio(struct btrfs_bio *bbio)
5208 {
5209 WARN_ON(!atomic_read(&bbio->refs));
5210 atomic_inc(&bbio->refs);
5211 }
5212
5213 void btrfs_put_bbio(struct btrfs_bio *bbio)
5214 {
5215 if (!bbio)
5216 return;
5217 if (atomic_dec_and_test(&bbio->refs))
5218 kfree(bbio);
5219 }
5220
5221 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5222 u64 logical, u64 *length,
5223 struct btrfs_bio **bbio_ret,
5224 int mirror_num, int need_raid_map)
5225 {
5226 struct extent_map *em;
5227 struct map_lookup *map;
5228 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5229 struct extent_map_tree *em_tree = &map_tree->map_tree;
5230 u64 offset;
5231 u64 stripe_offset;
5232 u64 stripe_end_offset;
5233 u64 stripe_nr;
5234 u64 stripe_nr_orig;
5235 u64 stripe_nr_end;
5236 u64 stripe_len;
5237 u32 stripe_index;
5238 int i;
5239 int ret = 0;
5240 int num_stripes;
5241 int max_errors = 0;
5242 int tgtdev_indexes = 0;
5243 struct btrfs_bio *bbio = NULL;
5244 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5245 int dev_replace_is_ongoing = 0;
5246 int num_alloc_stripes;
5247 int patch_the_first_stripe_for_dev_replace = 0;
5248 u64 physical_to_patch_in_first_stripe = 0;
5249 u64 raid56_full_stripe_start = (u64)-1;
5250
5251 read_lock(&em_tree->lock);
5252 em = lookup_extent_mapping(em_tree, logical, *length);
5253 read_unlock(&em_tree->lock);
5254
5255 if (!em) {
5256 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5257 logical, *length);
5258 return -EINVAL;
5259 }
5260
5261 if (em->start > logical || em->start + em->len < logical) {
5262 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5263 "found %Lu-%Lu", logical, em->start,
5264 em->start + em->len);
5265 free_extent_map(em);
5266 return -EINVAL;
5267 }
5268
5269 map = em->map_lookup;
5270 offset = logical - em->start;
5271
5272 stripe_len = map->stripe_len;
5273 stripe_nr = offset;
5274 /*
5275 * stripe_nr counts the total number of stripes we have to stride
5276 * to get to this block
5277 */
5278 stripe_nr = div64_u64(stripe_nr, stripe_len);
5279
5280 stripe_offset = stripe_nr * stripe_len;
5281 BUG_ON(offset < stripe_offset);
5282
5283 /* stripe_offset is the offset of this block in its stripe*/
5284 stripe_offset = offset - stripe_offset;
5285
5286 /* if we're here for raid56, we need to know the stripe aligned start */
5287 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5288 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5289 raid56_full_stripe_start = offset;
5290
5291 /* allow a write of a full stripe, but make sure we don't
5292 * allow straddling of stripes
5293 */
5294 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5295 full_stripe_len);
5296 raid56_full_stripe_start *= full_stripe_len;
5297 }
5298
5299 if (rw & REQ_DISCARD) {
5300 /* we don't discard raid56 yet */
5301 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5302 ret = -EOPNOTSUPP;
5303 goto out;
5304 }
5305 *length = min_t(u64, em->len - offset, *length);
5306 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5307 u64 max_len;
5308 /* For writes to RAID[56], allow a full stripeset across all disks.
5309 For other RAID types and for RAID[56] reads, just allow a single
5310 stripe (on a single disk). */
5311 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5312 (rw & REQ_WRITE)) {
5313 max_len = stripe_len * nr_data_stripes(map) -
5314 (offset - raid56_full_stripe_start);
5315 } else {
5316 /* we limit the length of each bio to what fits in a stripe */
5317 max_len = stripe_len - stripe_offset;
5318 }
5319 *length = min_t(u64, em->len - offset, max_len);
5320 } else {
5321 *length = em->len - offset;
5322 }
5323
5324 /* This is for when we're called from btrfs_merge_bio_hook() and all
5325 it cares about is the length */
5326 if (!bbio_ret)
5327 goto out;
5328
5329 btrfs_dev_replace_lock(dev_replace);
5330 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5331 if (!dev_replace_is_ongoing)
5332 btrfs_dev_replace_unlock(dev_replace);
5333
5334 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5335 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5336 dev_replace->tgtdev != NULL) {
5337 /*
5338 * in dev-replace case, for repair case (that's the only
5339 * case where the mirror is selected explicitly when
5340 * calling btrfs_map_block), blocks left of the left cursor
5341 * can also be read from the target drive.
5342 * For REQ_GET_READ_MIRRORS, the target drive is added as
5343 * the last one to the array of stripes. For READ, it also
5344 * needs to be supported using the same mirror number.
5345 * If the requested block is not left of the left cursor,
5346 * EIO is returned. This can happen because btrfs_num_copies()
5347 * returns one more in the dev-replace case.
5348 */
5349 u64 tmp_length = *length;
5350 struct btrfs_bio *tmp_bbio = NULL;
5351 int tmp_num_stripes;
5352 u64 srcdev_devid = dev_replace->srcdev->devid;
5353 int index_srcdev = 0;
5354 int found = 0;
5355 u64 physical_of_found = 0;
5356
5357 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5358 logical, &tmp_length, &tmp_bbio, 0, 0);
5359 if (ret) {
5360 WARN_ON(tmp_bbio != NULL);
5361 goto out;
5362 }
5363
5364 tmp_num_stripes = tmp_bbio->num_stripes;
5365 if (mirror_num > tmp_num_stripes) {
5366 /*
5367 * REQ_GET_READ_MIRRORS does not contain this
5368 * mirror, that means that the requested area
5369 * is not left of the left cursor
5370 */
5371 ret = -EIO;
5372 btrfs_put_bbio(tmp_bbio);
5373 goto out;
5374 }
5375
5376 /*
5377 * process the rest of the function using the mirror_num
5378 * of the source drive. Therefore look it up first.
5379 * At the end, patch the device pointer to the one of the
5380 * target drive.
5381 */
5382 for (i = 0; i < tmp_num_stripes; i++) {
5383 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5384 continue;
5385
5386 /*
5387 * In case of DUP, in order to keep it simple, only add
5388 * the mirror with the lowest physical address
5389 */
5390 if (found &&
5391 physical_of_found <= tmp_bbio->stripes[i].physical)
5392 continue;
5393
5394 index_srcdev = i;
5395 found = 1;
5396 physical_of_found = tmp_bbio->stripes[i].physical;
5397 }
5398
5399 btrfs_put_bbio(tmp_bbio);
5400
5401 if (!found) {
5402 WARN_ON(1);
5403 ret = -EIO;
5404 goto out;
5405 }
5406
5407 mirror_num = index_srcdev + 1;
5408 patch_the_first_stripe_for_dev_replace = 1;
5409 physical_to_patch_in_first_stripe = physical_of_found;
5410 } else if (mirror_num > map->num_stripes) {
5411 mirror_num = 0;
5412 }
5413
5414 num_stripes = 1;
5415 stripe_index = 0;
5416 stripe_nr_orig = stripe_nr;
5417 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5418 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5419 stripe_end_offset = stripe_nr_end * map->stripe_len -
5420 (offset + *length);
5421
5422 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5423 if (rw & REQ_DISCARD)
5424 num_stripes = min_t(u64, map->num_stripes,
5425 stripe_nr_end - stripe_nr_orig);
5426 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5427 &stripe_index);
5428 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5429 mirror_num = 1;
5430 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5431 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5432 num_stripes = map->num_stripes;
5433 else if (mirror_num)
5434 stripe_index = mirror_num - 1;
5435 else {
5436 stripe_index = find_live_mirror(fs_info, map, 0,
5437 map->num_stripes,
5438 current->pid % map->num_stripes,
5439 dev_replace_is_ongoing);
5440 mirror_num = stripe_index + 1;
5441 }
5442
5443 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5444 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5445 num_stripes = map->num_stripes;
5446 } else if (mirror_num) {
5447 stripe_index = mirror_num - 1;
5448 } else {
5449 mirror_num = 1;
5450 }
5451
5452 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5453 u32 factor = map->num_stripes / map->sub_stripes;
5454
5455 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5456 stripe_index *= map->sub_stripes;
5457
5458 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5459 num_stripes = map->sub_stripes;
5460 else if (rw & REQ_DISCARD)
5461 num_stripes = min_t(u64, map->sub_stripes *
5462 (stripe_nr_end - stripe_nr_orig),
5463 map->num_stripes);
5464 else if (mirror_num)
5465 stripe_index += mirror_num - 1;
5466 else {
5467 int old_stripe_index = stripe_index;
5468 stripe_index = find_live_mirror(fs_info, map,
5469 stripe_index,
5470 map->sub_stripes, stripe_index +
5471 current->pid % map->sub_stripes,
5472 dev_replace_is_ongoing);
5473 mirror_num = stripe_index - old_stripe_index + 1;
5474 }
5475
5476 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5477 if (need_raid_map &&
5478 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5479 mirror_num > 1)) {
5480 /* push stripe_nr back to the start of the full stripe */
5481 stripe_nr = div_u64(raid56_full_stripe_start,
5482 stripe_len * nr_data_stripes(map));
5483
5484 /* RAID[56] write or recovery. Return all stripes */
5485 num_stripes = map->num_stripes;
5486 max_errors = nr_parity_stripes(map);
5487
5488 *length = map->stripe_len;
5489 stripe_index = 0;
5490 stripe_offset = 0;
5491 } else {
5492 /*
5493 * Mirror #0 or #1 means the original data block.
5494 * Mirror #2 is RAID5 parity block.
5495 * Mirror #3 is RAID6 Q block.
5496 */
5497 stripe_nr = div_u64_rem(stripe_nr,
5498 nr_data_stripes(map), &stripe_index);
5499 if (mirror_num > 1)
5500 stripe_index = nr_data_stripes(map) +
5501 mirror_num - 2;
5502
5503 /* We distribute the parity blocks across stripes */
5504 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5505 &stripe_index);
5506 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5507 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5508 mirror_num = 1;
5509 }
5510 } else {
5511 /*
5512 * after this, stripe_nr is the number of stripes on this
5513 * device we have to walk to find the data, and stripe_index is
5514 * the number of our device in the stripe array
5515 */
5516 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5517 &stripe_index);
5518 mirror_num = stripe_index + 1;
5519 }
5520 BUG_ON(stripe_index >= map->num_stripes);
5521
5522 num_alloc_stripes = num_stripes;
5523 if (dev_replace_is_ongoing) {
5524 if (rw & (REQ_WRITE | REQ_DISCARD))
5525 num_alloc_stripes <<= 1;
5526 if (rw & REQ_GET_READ_MIRRORS)
5527 num_alloc_stripes++;
5528 tgtdev_indexes = num_stripes;
5529 }
5530
5531 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5532 if (!bbio) {
5533 ret = -ENOMEM;
5534 goto out;
5535 }
5536 if (dev_replace_is_ongoing)
5537 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5538
5539 /* build raid_map */
5540 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5541 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5542 mirror_num > 1)) {
5543 u64 tmp;
5544 unsigned rot;
5545
5546 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5547 sizeof(struct btrfs_bio_stripe) *
5548 num_alloc_stripes +
5549 sizeof(int) * tgtdev_indexes);
5550
5551 /* Work out the disk rotation on this stripe-set */
5552 div_u64_rem(stripe_nr, num_stripes, &rot);
5553
5554 /* Fill in the logical address of each stripe */
5555 tmp = stripe_nr * nr_data_stripes(map);
5556 for (i = 0; i < nr_data_stripes(map); i++)
5557 bbio->raid_map[(i+rot) % num_stripes] =
5558 em->start + (tmp + i) * map->stripe_len;
5559
5560 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5561 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5562 bbio->raid_map[(i+rot+1) % num_stripes] =
5563 RAID6_Q_STRIPE;
5564 }
5565
5566 if (rw & REQ_DISCARD) {
5567 u32 factor = 0;
5568 u32 sub_stripes = 0;
5569 u64 stripes_per_dev = 0;
5570 u32 remaining_stripes = 0;
5571 u32 last_stripe = 0;
5572
5573 if (map->type &
5574 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5575 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5576 sub_stripes = 1;
5577 else
5578 sub_stripes = map->sub_stripes;
5579
5580 factor = map->num_stripes / sub_stripes;
5581 stripes_per_dev = div_u64_rem(stripe_nr_end -
5582 stripe_nr_orig,
5583 factor,
5584 &remaining_stripes);
5585 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5586 last_stripe *= sub_stripes;
5587 }
5588
5589 for (i = 0; i < num_stripes; i++) {
5590 bbio->stripes[i].physical =
5591 map->stripes[stripe_index].physical +
5592 stripe_offset + stripe_nr * map->stripe_len;
5593 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5594
5595 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5596 BTRFS_BLOCK_GROUP_RAID10)) {
5597 bbio->stripes[i].length = stripes_per_dev *
5598 map->stripe_len;
5599
5600 if (i / sub_stripes < remaining_stripes)
5601 bbio->stripes[i].length +=
5602 map->stripe_len;
5603
5604 /*
5605 * Special for the first stripe and
5606 * the last stripe:
5607 *
5608 * |-------|...|-------|
5609 * |----------|
5610 * off end_off
5611 */
5612 if (i < sub_stripes)
5613 bbio->stripes[i].length -=
5614 stripe_offset;
5615
5616 if (stripe_index >= last_stripe &&
5617 stripe_index <= (last_stripe +
5618 sub_stripes - 1))
5619 bbio->stripes[i].length -=
5620 stripe_end_offset;
5621
5622 if (i == sub_stripes - 1)
5623 stripe_offset = 0;
5624 } else
5625 bbio->stripes[i].length = *length;
5626
5627 stripe_index++;
5628 if (stripe_index == map->num_stripes) {
5629 /* This could only happen for RAID0/10 */
5630 stripe_index = 0;
5631 stripe_nr++;
5632 }
5633 }
5634 } else {
5635 for (i = 0; i < num_stripes; i++) {
5636 bbio->stripes[i].physical =
5637 map->stripes[stripe_index].physical +
5638 stripe_offset +
5639 stripe_nr * map->stripe_len;
5640 bbio->stripes[i].dev =
5641 map->stripes[stripe_index].dev;
5642 stripe_index++;
5643 }
5644 }
5645
5646 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5647 max_errors = btrfs_chunk_max_errors(map);
5648
5649 if (bbio->raid_map)
5650 sort_parity_stripes(bbio, num_stripes);
5651
5652 tgtdev_indexes = 0;
5653 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5654 dev_replace->tgtdev != NULL) {
5655 int index_where_to_add;
5656 u64 srcdev_devid = dev_replace->srcdev->devid;
5657
5658 /*
5659 * duplicate the write operations while the dev replace
5660 * procedure is running. Since the copying of the old disk
5661 * to the new disk takes place at run time while the
5662 * filesystem is mounted writable, the regular write
5663 * operations to the old disk have to be duplicated to go
5664 * to the new disk as well.
5665 * Note that device->missing is handled by the caller, and
5666 * that the write to the old disk is already set up in the
5667 * stripes array.
5668 */
5669 index_where_to_add = num_stripes;
5670 for (i = 0; i < num_stripes; i++) {
5671 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5672 /* write to new disk, too */
5673 struct btrfs_bio_stripe *new =
5674 bbio->stripes + index_where_to_add;
5675 struct btrfs_bio_stripe *old =
5676 bbio->stripes + i;
5677
5678 new->physical = old->physical;
5679 new->length = old->length;
5680 new->dev = dev_replace->tgtdev;
5681 bbio->tgtdev_map[i] = index_where_to_add;
5682 index_where_to_add++;
5683 max_errors++;
5684 tgtdev_indexes++;
5685 }
5686 }
5687 num_stripes = index_where_to_add;
5688 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5689 dev_replace->tgtdev != NULL) {
5690 u64 srcdev_devid = dev_replace->srcdev->devid;
5691 int index_srcdev = 0;
5692 int found = 0;
5693 u64 physical_of_found = 0;
5694
5695 /*
5696 * During the dev-replace procedure, the target drive can
5697 * also be used to read data in case it is needed to repair
5698 * a corrupt block elsewhere. This is possible if the
5699 * requested area is left of the left cursor. In this area,
5700 * the target drive is a full copy of the source drive.
5701 */
5702 for (i = 0; i < num_stripes; i++) {
5703 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5704 /*
5705 * In case of DUP, in order to keep it
5706 * simple, only add the mirror with the
5707 * lowest physical address
5708 */
5709 if (found &&
5710 physical_of_found <=
5711 bbio->stripes[i].physical)
5712 continue;
5713 index_srcdev = i;
5714 found = 1;
5715 physical_of_found = bbio->stripes[i].physical;
5716 }
5717 }
5718 if (found) {
5719 if (physical_of_found + map->stripe_len <=
5720 dev_replace->cursor_left) {
5721 struct btrfs_bio_stripe *tgtdev_stripe =
5722 bbio->stripes + num_stripes;
5723
5724 tgtdev_stripe->physical = physical_of_found;
5725 tgtdev_stripe->length =
5726 bbio->stripes[index_srcdev].length;
5727 tgtdev_stripe->dev = dev_replace->tgtdev;
5728 bbio->tgtdev_map[index_srcdev] = num_stripes;
5729
5730 tgtdev_indexes++;
5731 num_stripes++;
5732 }
5733 }
5734 }
5735
5736 *bbio_ret = bbio;
5737 bbio->map_type = map->type;
5738 bbio->num_stripes = num_stripes;
5739 bbio->max_errors = max_errors;
5740 bbio->mirror_num = mirror_num;
5741 bbio->num_tgtdevs = tgtdev_indexes;
5742
5743 /*
5744 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5745 * mirror_num == num_stripes + 1 && dev_replace target drive is
5746 * available as a mirror
5747 */
5748 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5749 WARN_ON(num_stripes > 1);
5750 bbio->stripes[0].dev = dev_replace->tgtdev;
5751 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5752 bbio->mirror_num = map->num_stripes + 1;
5753 }
5754 out:
5755 if (dev_replace_is_ongoing)
5756 btrfs_dev_replace_unlock(dev_replace);
5757 free_extent_map(em);
5758 return ret;
5759 }
5760
5761 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5762 u64 logical, u64 *length,
5763 struct btrfs_bio **bbio_ret, int mirror_num)
5764 {
5765 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5766 mirror_num, 0);
5767 }
5768
5769 /* For Scrub/replace */
5770 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5771 u64 logical, u64 *length,
5772 struct btrfs_bio **bbio_ret, int mirror_num,
5773 int need_raid_map)
5774 {
5775 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5776 mirror_num, need_raid_map);
5777 }
5778
5779 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5780 u64 chunk_start, u64 physical, u64 devid,
5781 u64 **logical, int *naddrs, int *stripe_len)
5782 {
5783 struct extent_map_tree *em_tree = &map_tree->map_tree;
5784 struct extent_map *em;
5785 struct map_lookup *map;
5786 u64 *buf;
5787 u64 bytenr;
5788 u64 length;
5789 u64 stripe_nr;
5790 u64 rmap_len;
5791 int i, j, nr = 0;
5792
5793 read_lock(&em_tree->lock);
5794 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5795 read_unlock(&em_tree->lock);
5796
5797 if (!em) {
5798 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5799 chunk_start);
5800 return -EIO;
5801 }
5802
5803 if (em->start != chunk_start) {
5804 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5805 em->start, chunk_start);
5806 free_extent_map(em);
5807 return -EIO;
5808 }
5809 map = em->map_lookup;
5810
5811 length = em->len;
5812 rmap_len = map->stripe_len;
5813
5814 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5815 length = div_u64(length, map->num_stripes / map->sub_stripes);
5816 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5817 length = div_u64(length, map->num_stripes);
5818 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5819 length = div_u64(length, nr_data_stripes(map));
5820 rmap_len = map->stripe_len * nr_data_stripes(map);
5821 }
5822
5823 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5824 BUG_ON(!buf); /* -ENOMEM */
5825
5826 for (i = 0; i < map->num_stripes; i++) {
5827 if (devid && map->stripes[i].dev->devid != devid)
5828 continue;
5829 if (map->stripes[i].physical > physical ||
5830 map->stripes[i].physical + length <= physical)
5831 continue;
5832
5833 stripe_nr = physical - map->stripes[i].physical;
5834 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5835
5836 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5837 stripe_nr = stripe_nr * map->num_stripes + i;
5838 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5839 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5840 stripe_nr = stripe_nr * map->num_stripes + i;
5841 } /* else if RAID[56], multiply by nr_data_stripes().
5842 * Alternatively, just use rmap_len below instead of
5843 * map->stripe_len */
5844
5845 bytenr = chunk_start + stripe_nr * rmap_len;
5846 WARN_ON(nr >= map->num_stripes);
5847 for (j = 0; j < nr; j++) {
5848 if (buf[j] == bytenr)
5849 break;
5850 }
5851 if (j == nr) {
5852 WARN_ON(nr >= map->num_stripes);
5853 buf[nr++] = bytenr;
5854 }
5855 }
5856
5857 *logical = buf;
5858 *naddrs = nr;
5859 *stripe_len = rmap_len;
5860
5861 free_extent_map(em);
5862 return 0;
5863 }
5864
5865 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5866 {
5867 bio->bi_private = bbio->private;
5868 bio->bi_end_io = bbio->end_io;
5869 bio_endio(bio);
5870
5871 btrfs_put_bbio(bbio);
5872 }
5873
5874 static void btrfs_end_bio(struct bio *bio)
5875 {
5876 struct btrfs_bio *bbio = bio->bi_private;
5877 int is_orig_bio = 0;
5878
5879 if (bio->bi_error) {
5880 atomic_inc(&bbio->error);
5881 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5882 unsigned int stripe_index =
5883 btrfs_io_bio(bio)->stripe_index;
5884 struct btrfs_device *dev;
5885
5886 BUG_ON(stripe_index >= bbio->num_stripes);
5887 dev = bbio->stripes[stripe_index].dev;
5888 if (dev->bdev) {
5889 if (bio->bi_rw & WRITE)
5890 btrfs_dev_stat_inc(dev,
5891 BTRFS_DEV_STAT_WRITE_ERRS);
5892 else
5893 btrfs_dev_stat_inc(dev,
5894 BTRFS_DEV_STAT_READ_ERRS);
5895 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5896 btrfs_dev_stat_inc(dev,
5897 BTRFS_DEV_STAT_FLUSH_ERRS);
5898 btrfs_dev_stat_print_on_error(dev);
5899 }
5900 }
5901 }
5902
5903 if (bio == bbio->orig_bio)
5904 is_orig_bio = 1;
5905
5906 btrfs_bio_counter_dec(bbio->fs_info);
5907
5908 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5909 if (!is_orig_bio) {
5910 bio_put(bio);
5911 bio = bbio->orig_bio;
5912 }
5913
5914 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5915 /* only send an error to the higher layers if it is
5916 * beyond the tolerance of the btrfs bio
5917 */
5918 if (atomic_read(&bbio->error) > bbio->max_errors) {
5919 bio->bi_error = -EIO;
5920 } else {
5921 /*
5922 * this bio is actually up to date, we didn't
5923 * go over the max number of errors
5924 */
5925 bio->bi_error = 0;
5926 }
5927
5928 btrfs_end_bbio(bbio, bio);
5929 } else if (!is_orig_bio) {
5930 bio_put(bio);
5931 }
5932 }
5933
5934 /*
5935 * see run_scheduled_bios for a description of why bios are collected for
5936 * async submit.
5937 *
5938 * This will add one bio to the pending list for a device and make sure
5939 * the work struct is scheduled.
5940 */
5941 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5942 struct btrfs_device *device,
5943 int rw, struct bio *bio)
5944 {
5945 int should_queue = 1;
5946 struct btrfs_pending_bios *pending_bios;
5947
5948 if (device->missing || !device->bdev) {
5949 bio_io_error(bio);
5950 return;
5951 }
5952
5953 /* don't bother with additional async steps for reads, right now */
5954 if (!(rw & REQ_WRITE)) {
5955 bio_get(bio);
5956 btrfsic_submit_bio(rw, bio);
5957 bio_put(bio);
5958 return;
5959 }
5960
5961 /*
5962 * nr_async_bios allows us to reliably return congestion to the
5963 * higher layers. Otherwise, the async bio makes it appear we have
5964 * made progress against dirty pages when we've really just put it
5965 * on a queue for later
5966 */
5967 atomic_inc(&root->fs_info->nr_async_bios);
5968 WARN_ON(bio->bi_next);
5969 bio->bi_next = NULL;
5970 bio->bi_rw |= rw;
5971
5972 spin_lock(&device->io_lock);
5973 if (bio->bi_rw & REQ_SYNC)
5974 pending_bios = &device->pending_sync_bios;
5975 else
5976 pending_bios = &device->pending_bios;
5977
5978 if (pending_bios->tail)
5979 pending_bios->tail->bi_next = bio;
5980
5981 pending_bios->tail = bio;
5982 if (!pending_bios->head)
5983 pending_bios->head = bio;
5984 if (device->running_pending)
5985 should_queue = 0;
5986
5987 spin_unlock(&device->io_lock);
5988
5989 if (should_queue)
5990 btrfs_queue_work(root->fs_info->submit_workers,
5991 &device->work);
5992 }
5993
5994 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5995 struct bio *bio, u64 physical, int dev_nr,
5996 int rw, int async)
5997 {
5998 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5999
6000 bio->bi_private = bbio;
6001 btrfs_io_bio(bio)->stripe_index = dev_nr;
6002 bio->bi_end_io = btrfs_end_bio;
6003 bio->bi_iter.bi_sector = physical >> 9;
6004 #ifdef DEBUG
6005 {
6006 struct rcu_string *name;
6007
6008 rcu_read_lock();
6009 name = rcu_dereference(dev->name);
6010 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
6011 "(%s id %llu), size=%u\n", rw,
6012 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6013 name->str, dev->devid, bio->bi_iter.bi_size);
6014 rcu_read_unlock();
6015 }
6016 #endif
6017 bio->bi_bdev = dev->bdev;
6018
6019 btrfs_bio_counter_inc_noblocked(root->fs_info);
6020
6021 if (async)
6022 btrfs_schedule_bio(root, dev, rw, bio);
6023 else
6024 btrfsic_submit_bio(rw, bio);
6025 }
6026
6027 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6028 {
6029 atomic_inc(&bbio->error);
6030 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6031 /* Shoud be the original bio. */
6032 WARN_ON(bio != bbio->orig_bio);
6033
6034 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6035 bio->bi_iter.bi_sector = logical >> 9;
6036 bio->bi_error = -EIO;
6037 btrfs_end_bbio(bbio, bio);
6038 }
6039 }
6040
6041 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
6042 int mirror_num, int async_submit)
6043 {
6044 struct btrfs_device *dev;
6045 struct bio *first_bio = bio;
6046 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6047 u64 length = 0;
6048 u64 map_length;
6049 int ret;
6050 int dev_nr;
6051 int total_devs;
6052 struct btrfs_bio *bbio = NULL;
6053
6054 length = bio->bi_iter.bi_size;
6055 map_length = length;
6056
6057 btrfs_bio_counter_inc_blocked(root->fs_info);
6058 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
6059 mirror_num, 1);
6060 if (ret) {
6061 btrfs_bio_counter_dec(root->fs_info);
6062 return ret;
6063 }
6064
6065 total_devs = bbio->num_stripes;
6066 bbio->orig_bio = first_bio;
6067 bbio->private = first_bio->bi_private;
6068 bbio->end_io = first_bio->bi_end_io;
6069 bbio->fs_info = root->fs_info;
6070 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6071
6072 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6073 ((rw & WRITE) || (mirror_num > 1))) {
6074 /* In this case, map_length has been set to the length of
6075 a single stripe; not the whole write */
6076 if (rw & WRITE) {
6077 ret = raid56_parity_write(root, bio, bbio, map_length);
6078 } else {
6079 ret = raid56_parity_recover(root, bio, bbio, map_length,
6080 mirror_num, 1);
6081 }
6082
6083 btrfs_bio_counter_dec(root->fs_info);
6084 return ret;
6085 }
6086
6087 if (map_length < length) {
6088 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6089 logical, length, map_length);
6090 BUG();
6091 }
6092
6093 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6094 dev = bbio->stripes[dev_nr].dev;
6095 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6096 bbio_error(bbio, first_bio, logical);
6097 continue;
6098 }
6099
6100 if (dev_nr < total_devs - 1) {
6101 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6102 BUG_ON(!bio); /* -ENOMEM */
6103 } else
6104 bio = first_bio;
6105
6106 submit_stripe_bio(root, bbio, bio,
6107 bbio->stripes[dev_nr].physical, dev_nr, rw,
6108 async_submit);
6109 }
6110 btrfs_bio_counter_dec(root->fs_info);
6111 return 0;
6112 }
6113
6114 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6115 u8 *uuid, u8 *fsid)
6116 {
6117 struct btrfs_device *device;
6118 struct btrfs_fs_devices *cur_devices;
6119
6120 cur_devices = fs_info->fs_devices;
6121 while (cur_devices) {
6122 if (!fsid ||
6123 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6124 device = __find_device(&cur_devices->devices,
6125 devid, uuid);
6126 if (device)
6127 return device;
6128 }
6129 cur_devices = cur_devices->seed;
6130 }
6131 return NULL;
6132 }
6133
6134 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6135 struct btrfs_fs_devices *fs_devices,
6136 u64 devid, u8 *dev_uuid)
6137 {
6138 struct btrfs_device *device;
6139
6140 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6141 if (IS_ERR(device))
6142 return NULL;
6143
6144 list_add(&device->dev_list, &fs_devices->devices);
6145 device->fs_devices = fs_devices;
6146 fs_devices->num_devices++;
6147
6148 device->missing = 1;
6149 fs_devices->missing_devices++;
6150
6151 return device;
6152 }
6153
6154 /**
6155 * btrfs_alloc_device - allocate struct btrfs_device
6156 * @fs_info: used only for generating a new devid, can be NULL if
6157 * devid is provided (i.e. @devid != NULL).
6158 * @devid: a pointer to devid for this device. If NULL a new devid
6159 * is generated.
6160 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6161 * is generated.
6162 *
6163 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6164 * on error. Returned struct is not linked onto any lists and can be
6165 * destroyed with kfree() right away.
6166 */
6167 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6168 const u64 *devid,
6169 const u8 *uuid)
6170 {
6171 struct btrfs_device *dev;
6172 u64 tmp;
6173
6174 if (WARN_ON(!devid && !fs_info))
6175 return ERR_PTR(-EINVAL);
6176
6177 dev = __alloc_device();
6178 if (IS_ERR(dev))
6179 return dev;
6180
6181 if (devid)
6182 tmp = *devid;
6183 else {
6184 int ret;
6185
6186 ret = find_next_devid(fs_info, &tmp);
6187 if (ret) {
6188 kfree(dev);
6189 return ERR_PTR(ret);
6190 }
6191 }
6192 dev->devid = tmp;
6193
6194 if (uuid)
6195 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6196 else
6197 generate_random_uuid(dev->uuid);
6198
6199 btrfs_init_work(&dev->work, btrfs_submit_helper,
6200 pending_bios_fn, NULL, NULL);
6201
6202 return dev;
6203 }
6204
6205 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6206 struct extent_buffer *leaf,
6207 struct btrfs_chunk *chunk)
6208 {
6209 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6210 struct map_lookup *map;
6211 struct extent_map *em;
6212 u64 logical;
6213 u64 length;
6214 u64 stripe_len;
6215 u64 devid;
6216 u8 uuid[BTRFS_UUID_SIZE];
6217 int num_stripes;
6218 int ret;
6219 int i;
6220
6221 logical = key->offset;
6222 length = btrfs_chunk_length(leaf, chunk);
6223 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6224 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6225 /* Validation check */
6226 if (!num_stripes) {
6227 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6228 num_stripes);
6229 return -EIO;
6230 }
6231 if (!IS_ALIGNED(logical, root->sectorsize)) {
6232 btrfs_err(root->fs_info,
6233 "invalid chunk logical %llu", logical);
6234 return -EIO;
6235 }
6236 if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6237 btrfs_err(root->fs_info,
6238 "invalid chunk length %llu", length);
6239 return -EIO;
6240 }
6241 if (!is_power_of_2(stripe_len)) {
6242 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6243 stripe_len);
6244 return -EIO;
6245 }
6246 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6247 btrfs_chunk_type(leaf, chunk)) {
6248 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6249 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6250 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6251 btrfs_chunk_type(leaf, chunk));
6252 return -EIO;
6253 }
6254
6255 read_lock(&map_tree->map_tree.lock);
6256 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6257 read_unlock(&map_tree->map_tree.lock);
6258
6259 /* already mapped? */
6260 if (em && em->start <= logical && em->start + em->len > logical) {
6261 free_extent_map(em);
6262 return 0;
6263 } else if (em) {
6264 free_extent_map(em);
6265 }
6266
6267 em = alloc_extent_map();
6268 if (!em)
6269 return -ENOMEM;
6270 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6271 if (!map) {
6272 free_extent_map(em);
6273 return -ENOMEM;
6274 }
6275
6276 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6277 em->map_lookup = map;
6278 em->start = logical;
6279 em->len = length;
6280 em->orig_start = 0;
6281 em->block_start = 0;
6282 em->block_len = em->len;
6283
6284 map->num_stripes = num_stripes;
6285 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6286 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6287 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6288 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6289 map->type = btrfs_chunk_type(leaf, chunk);
6290 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6291 for (i = 0; i < num_stripes; i++) {
6292 map->stripes[i].physical =
6293 btrfs_stripe_offset_nr(leaf, chunk, i);
6294 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6295 read_extent_buffer(leaf, uuid, (unsigned long)
6296 btrfs_stripe_dev_uuid_nr(chunk, i),
6297 BTRFS_UUID_SIZE);
6298 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6299 uuid, NULL);
6300 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6301 free_extent_map(em);
6302 return -EIO;
6303 }
6304 if (!map->stripes[i].dev) {
6305 map->stripes[i].dev =
6306 add_missing_dev(root, root->fs_info->fs_devices,
6307 devid, uuid);
6308 if (!map->stripes[i].dev) {
6309 free_extent_map(em);
6310 return -EIO;
6311 }
6312 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6313 devid, uuid);
6314 }
6315 map->stripes[i].dev->in_fs_metadata = 1;
6316 }
6317
6318 write_lock(&map_tree->map_tree.lock);
6319 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6320 write_unlock(&map_tree->map_tree.lock);
6321 BUG_ON(ret); /* Tree corruption */
6322 free_extent_map(em);
6323
6324 return 0;
6325 }
6326
6327 static void fill_device_from_item(struct extent_buffer *leaf,
6328 struct btrfs_dev_item *dev_item,
6329 struct btrfs_device *device)
6330 {
6331 unsigned long ptr;
6332
6333 device->devid = btrfs_device_id(leaf, dev_item);
6334 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6335 device->total_bytes = device->disk_total_bytes;
6336 device->commit_total_bytes = device->disk_total_bytes;
6337 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6338 device->commit_bytes_used = device->bytes_used;
6339 device->type = btrfs_device_type(leaf, dev_item);
6340 device->io_align = btrfs_device_io_align(leaf, dev_item);
6341 device->io_width = btrfs_device_io_width(leaf, dev_item);
6342 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6343 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6344 device->is_tgtdev_for_dev_replace = 0;
6345
6346 ptr = btrfs_device_uuid(dev_item);
6347 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6348 }
6349
6350 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6351 u8 *fsid)
6352 {
6353 struct btrfs_fs_devices *fs_devices;
6354 int ret;
6355
6356 BUG_ON(!mutex_is_locked(&uuid_mutex));
6357
6358 fs_devices = root->fs_info->fs_devices->seed;
6359 while (fs_devices) {
6360 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6361 return fs_devices;
6362
6363 fs_devices = fs_devices->seed;
6364 }
6365
6366 fs_devices = find_fsid(fsid);
6367 if (!fs_devices) {
6368 if (!btrfs_test_opt(root, DEGRADED))
6369 return ERR_PTR(-ENOENT);
6370
6371 fs_devices = alloc_fs_devices(fsid);
6372 if (IS_ERR(fs_devices))
6373 return fs_devices;
6374
6375 fs_devices->seeding = 1;
6376 fs_devices->opened = 1;
6377 return fs_devices;
6378 }
6379
6380 fs_devices = clone_fs_devices(fs_devices);
6381 if (IS_ERR(fs_devices))
6382 return fs_devices;
6383
6384 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6385 root->fs_info->bdev_holder);
6386 if (ret) {
6387 free_fs_devices(fs_devices);
6388 fs_devices = ERR_PTR(ret);
6389 goto out;
6390 }
6391
6392 if (!fs_devices->seeding) {
6393 __btrfs_close_devices(fs_devices);
6394 free_fs_devices(fs_devices);
6395 fs_devices = ERR_PTR(-EINVAL);
6396 goto out;
6397 }
6398
6399 fs_devices->seed = root->fs_info->fs_devices->seed;
6400 root->fs_info->fs_devices->seed = fs_devices;
6401 out:
6402 return fs_devices;
6403 }
6404
6405 static int read_one_dev(struct btrfs_root *root,
6406 struct extent_buffer *leaf,
6407 struct btrfs_dev_item *dev_item)
6408 {
6409 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6410 struct btrfs_device *device;
6411 u64 devid;
6412 int ret;
6413 u8 fs_uuid[BTRFS_UUID_SIZE];
6414 u8 dev_uuid[BTRFS_UUID_SIZE];
6415
6416 devid = btrfs_device_id(leaf, dev_item);
6417 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6418 BTRFS_UUID_SIZE);
6419 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6420 BTRFS_UUID_SIZE);
6421
6422 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6423 fs_devices = open_seed_devices(root, fs_uuid);
6424 if (IS_ERR(fs_devices))
6425 return PTR_ERR(fs_devices);
6426 }
6427
6428 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6429 if (!device) {
6430 if (!btrfs_test_opt(root, DEGRADED))
6431 return -EIO;
6432
6433 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6434 if (!device)
6435 return -ENOMEM;
6436 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6437 devid, dev_uuid);
6438 } else {
6439 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6440 return -EIO;
6441
6442 if(!device->bdev && !device->missing) {
6443 /*
6444 * this happens when a device that was properly setup
6445 * in the device info lists suddenly goes bad.
6446 * device->bdev is NULL, and so we have to set
6447 * device->missing to one here
6448 */
6449 device->fs_devices->missing_devices++;
6450 device->missing = 1;
6451 }
6452
6453 /* Move the device to its own fs_devices */
6454 if (device->fs_devices != fs_devices) {
6455 ASSERT(device->missing);
6456
6457 list_move(&device->dev_list, &fs_devices->devices);
6458 device->fs_devices->num_devices--;
6459 fs_devices->num_devices++;
6460
6461 device->fs_devices->missing_devices--;
6462 fs_devices->missing_devices++;
6463
6464 device->fs_devices = fs_devices;
6465 }
6466 }
6467
6468 if (device->fs_devices != root->fs_info->fs_devices) {
6469 BUG_ON(device->writeable);
6470 if (device->generation !=
6471 btrfs_device_generation(leaf, dev_item))
6472 return -EINVAL;
6473 }
6474
6475 fill_device_from_item(leaf, dev_item, device);
6476 device->in_fs_metadata = 1;
6477 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6478 device->fs_devices->total_rw_bytes += device->total_bytes;
6479 spin_lock(&root->fs_info->free_chunk_lock);
6480 root->fs_info->free_chunk_space += device->total_bytes -
6481 device->bytes_used;
6482 spin_unlock(&root->fs_info->free_chunk_lock);
6483 }
6484 ret = 0;
6485 return ret;
6486 }
6487
6488 int btrfs_read_sys_array(struct btrfs_root *root)
6489 {
6490 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6491 struct extent_buffer *sb;
6492 struct btrfs_disk_key *disk_key;
6493 struct btrfs_chunk *chunk;
6494 u8 *array_ptr;
6495 unsigned long sb_array_offset;
6496 int ret = 0;
6497 u32 num_stripes;
6498 u32 array_size;
6499 u32 len = 0;
6500 u32 cur_offset;
6501 struct btrfs_key key;
6502
6503 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6504 /*
6505 * This will create extent buffer of nodesize, superblock size is
6506 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6507 * overallocate but we can keep it as-is, only the first page is used.
6508 */
6509 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6510 if (!sb)
6511 return -ENOMEM;
6512 set_extent_buffer_uptodate(sb);
6513 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6514 /*
6515 * The sb extent buffer is artifical and just used to read the system array.
6516 * set_extent_buffer_uptodate() call does not properly mark all it's
6517 * pages up-to-date when the page is larger: extent does not cover the
6518 * whole page and consequently check_page_uptodate does not find all
6519 * the page's extents up-to-date (the hole beyond sb),
6520 * write_extent_buffer then triggers a WARN_ON.
6521 *
6522 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6523 * but sb spans only this function. Add an explicit SetPageUptodate call
6524 * to silence the warning eg. on PowerPC 64.
6525 */
6526 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6527 SetPageUptodate(sb->pages[0]);
6528
6529 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6530 array_size = btrfs_super_sys_array_size(super_copy);
6531
6532 array_ptr = super_copy->sys_chunk_array;
6533 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6534 cur_offset = 0;
6535
6536 while (cur_offset < array_size) {
6537 disk_key = (struct btrfs_disk_key *)array_ptr;
6538 len = sizeof(*disk_key);
6539 if (cur_offset + len > array_size)
6540 goto out_short_read;
6541
6542 btrfs_disk_key_to_cpu(&key, disk_key);
6543
6544 array_ptr += len;
6545 sb_array_offset += len;
6546 cur_offset += len;
6547
6548 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6549 chunk = (struct btrfs_chunk *)sb_array_offset;
6550 /*
6551 * At least one btrfs_chunk with one stripe must be
6552 * present, exact stripe count check comes afterwards
6553 */
6554 len = btrfs_chunk_item_size(1);
6555 if (cur_offset + len > array_size)
6556 goto out_short_read;
6557
6558 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6559 if (!num_stripes) {
6560 printk(KERN_ERR
6561 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6562 num_stripes, cur_offset);
6563 ret = -EIO;
6564 break;
6565 }
6566
6567 len = btrfs_chunk_item_size(num_stripes);
6568 if (cur_offset + len > array_size)
6569 goto out_short_read;
6570
6571 ret = read_one_chunk(root, &key, sb, chunk);
6572 if (ret)
6573 break;
6574 } else {
6575 printk(KERN_ERR
6576 "BTRFS: unexpected item type %u in sys_array at offset %u\n",
6577 (u32)key.type, cur_offset);
6578 ret = -EIO;
6579 break;
6580 }
6581 array_ptr += len;
6582 sb_array_offset += len;
6583 cur_offset += len;
6584 }
6585 free_extent_buffer(sb);
6586 return ret;
6587
6588 out_short_read:
6589 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6590 len, cur_offset);
6591 free_extent_buffer(sb);
6592 return -EIO;
6593 }
6594
6595 int btrfs_read_chunk_tree(struct btrfs_root *root)
6596 {
6597 struct btrfs_path *path;
6598 struct extent_buffer *leaf;
6599 struct btrfs_key key;
6600 struct btrfs_key found_key;
6601 int ret;
6602 int slot;
6603
6604 root = root->fs_info->chunk_root;
6605
6606 path = btrfs_alloc_path();
6607 if (!path)
6608 return -ENOMEM;
6609
6610 mutex_lock(&uuid_mutex);
6611 lock_chunks(root);
6612
6613 /*
6614 * Read all device items, and then all the chunk items. All
6615 * device items are found before any chunk item (their object id
6616 * is smaller than the lowest possible object id for a chunk
6617 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6618 */
6619 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6620 key.offset = 0;
6621 key.type = 0;
6622 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6623 if (ret < 0)
6624 goto error;
6625 while (1) {
6626 leaf = path->nodes[0];
6627 slot = path->slots[0];
6628 if (slot >= btrfs_header_nritems(leaf)) {
6629 ret = btrfs_next_leaf(root, path);
6630 if (ret == 0)
6631 continue;
6632 if (ret < 0)
6633 goto error;
6634 break;
6635 }
6636 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6637 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6638 struct btrfs_dev_item *dev_item;
6639 dev_item = btrfs_item_ptr(leaf, slot,
6640 struct btrfs_dev_item);
6641 ret = read_one_dev(root, leaf, dev_item);
6642 if (ret)
6643 goto error;
6644 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6645 struct btrfs_chunk *chunk;
6646 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6647 ret = read_one_chunk(root, &found_key, leaf, chunk);
6648 if (ret)
6649 goto error;
6650 }
6651 path->slots[0]++;
6652 }
6653 ret = 0;
6654 error:
6655 unlock_chunks(root);
6656 mutex_unlock(&uuid_mutex);
6657
6658 btrfs_free_path(path);
6659 return ret;
6660 }
6661
6662 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6663 {
6664 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6665 struct btrfs_device *device;
6666
6667 while (fs_devices) {
6668 mutex_lock(&fs_devices->device_list_mutex);
6669 list_for_each_entry(device, &fs_devices->devices, dev_list)
6670 device->dev_root = fs_info->dev_root;
6671 mutex_unlock(&fs_devices->device_list_mutex);
6672
6673 fs_devices = fs_devices->seed;
6674 }
6675 }
6676
6677 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6678 {
6679 int i;
6680
6681 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6682 btrfs_dev_stat_reset(dev, i);
6683 }
6684
6685 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6686 {
6687 struct btrfs_key key;
6688 struct btrfs_key found_key;
6689 struct btrfs_root *dev_root = fs_info->dev_root;
6690 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6691 struct extent_buffer *eb;
6692 int slot;
6693 int ret = 0;
6694 struct btrfs_device *device;
6695 struct btrfs_path *path = NULL;
6696 int i;
6697
6698 path = btrfs_alloc_path();
6699 if (!path) {
6700 ret = -ENOMEM;
6701 goto out;
6702 }
6703
6704 mutex_lock(&fs_devices->device_list_mutex);
6705 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6706 int item_size;
6707 struct btrfs_dev_stats_item *ptr;
6708
6709 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6710 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6711 key.offset = device->devid;
6712 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6713 if (ret) {
6714 __btrfs_reset_dev_stats(device);
6715 device->dev_stats_valid = 1;
6716 btrfs_release_path(path);
6717 continue;
6718 }
6719 slot = path->slots[0];
6720 eb = path->nodes[0];
6721 btrfs_item_key_to_cpu(eb, &found_key, slot);
6722 item_size = btrfs_item_size_nr(eb, slot);
6723
6724 ptr = btrfs_item_ptr(eb, slot,
6725 struct btrfs_dev_stats_item);
6726
6727 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6728 if (item_size >= (1 + i) * sizeof(__le64))
6729 btrfs_dev_stat_set(device, i,
6730 btrfs_dev_stats_value(eb, ptr, i));
6731 else
6732 btrfs_dev_stat_reset(device, i);
6733 }
6734
6735 device->dev_stats_valid = 1;
6736 btrfs_dev_stat_print_on_load(device);
6737 btrfs_release_path(path);
6738 }
6739 mutex_unlock(&fs_devices->device_list_mutex);
6740
6741 out:
6742 btrfs_free_path(path);
6743 return ret < 0 ? ret : 0;
6744 }
6745
6746 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6747 struct btrfs_root *dev_root,
6748 struct btrfs_device *device)
6749 {
6750 struct btrfs_path *path;
6751 struct btrfs_key key;
6752 struct extent_buffer *eb;
6753 struct btrfs_dev_stats_item *ptr;
6754 int ret;
6755 int i;
6756
6757 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6758 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6759 key.offset = device->devid;
6760
6761 path = btrfs_alloc_path();
6762 BUG_ON(!path);
6763 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6764 if (ret < 0) {
6765 btrfs_warn_in_rcu(dev_root->fs_info,
6766 "error %d while searching for dev_stats item for device %s",
6767 ret, rcu_str_deref(device->name));
6768 goto out;
6769 }
6770
6771 if (ret == 0 &&
6772 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6773 /* need to delete old one and insert a new one */
6774 ret = btrfs_del_item(trans, dev_root, path);
6775 if (ret != 0) {
6776 btrfs_warn_in_rcu(dev_root->fs_info,
6777 "delete too small dev_stats item for device %s failed %d",
6778 rcu_str_deref(device->name), ret);
6779 goto out;
6780 }
6781 ret = 1;
6782 }
6783
6784 if (ret == 1) {
6785 /* need to insert a new item */
6786 btrfs_release_path(path);
6787 ret = btrfs_insert_empty_item(trans, dev_root, path,
6788 &key, sizeof(*ptr));
6789 if (ret < 0) {
6790 btrfs_warn_in_rcu(dev_root->fs_info,
6791 "insert dev_stats item for device %s failed %d",
6792 rcu_str_deref(device->name), ret);
6793 goto out;
6794 }
6795 }
6796
6797 eb = path->nodes[0];
6798 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6799 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6800 btrfs_set_dev_stats_value(eb, ptr, i,
6801 btrfs_dev_stat_read(device, i));
6802 btrfs_mark_buffer_dirty(eb);
6803
6804 out:
6805 btrfs_free_path(path);
6806 return ret;
6807 }
6808
6809 /*
6810 * called from commit_transaction. Writes all changed device stats to disk.
6811 */
6812 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6813 struct btrfs_fs_info *fs_info)
6814 {
6815 struct btrfs_root *dev_root = fs_info->dev_root;
6816 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6817 struct btrfs_device *device;
6818 int stats_cnt;
6819 int ret = 0;
6820
6821 mutex_lock(&fs_devices->device_list_mutex);
6822 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6823 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6824 continue;
6825
6826 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6827 ret = update_dev_stat_item(trans, dev_root, device);
6828 if (!ret)
6829 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6830 }
6831 mutex_unlock(&fs_devices->device_list_mutex);
6832
6833 return ret;
6834 }
6835
6836 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6837 {
6838 btrfs_dev_stat_inc(dev, index);
6839 btrfs_dev_stat_print_on_error(dev);
6840 }
6841
6842 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6843 {
6844 if (!dev->dev_stats_valid)
6845 return;
6846 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6847 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6848 rcu_str_deref(dev->name),
6849 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6850 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6851 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6852 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6853 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6854 }
6855
6856 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6857 {
6858 int i;
6859
6860 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6861 if (btrfs_dev_stat_read(dev, i) != 0)
6862 break;
6863 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6864 return; /* all values == 0, suppress message */
6865
6866 btrfs_info_in_rcu(dev->dev_root->fs_info,
6867 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6868 rcu_str_deref(dev->name),
6869 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6870 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6871 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6872 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6873 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6874 }
6875
6876 int btrfs_get_dev_stats(struct btrfs_root *root,
6877 struct btrfs_ioctl_get_dev_stats *stats)
6878 {
6879 struct btrfs_device *dev;
6880 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6881 int i;
6882
6883 mutex_lock(&fs_devices->device_list_mutex);
6884 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6885 mutex_unlock(&fs_devices->device_list_mutex);
6886
6887 if (!dev) {
6888 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6889 return -ENODEV;
6890 } else if (!dev->dev_stats_valid) {
6891 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6892 return -ENODEV;
6893 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6894 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6895 if (stats->nr_items > i)
6896 stats->values[i] =
6897 btrfs_dev_stat_read_and_reset(dev, i);
6898 else
6899 btrfs_dev_stat_reset(dev, i);
6900 }
6901 } else {
6902 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6903 if (stats->nr_items > i)
6904 stats->values[i] = btrfs_dev_stat_read(dev, i);
6905 }
6906 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6907 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6908 return 0;
6909 }
6910
6911 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
6912 {
6913 struct buffer_head *bh;
6914 struct btrfs_super_block *disk_super;
6915 int copy_num;
6916
6917 if (!bdev)
6918 return;
6919
6920 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6921 copy_num++) {
6922
6923 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6924 continue;
6925
6926 disk_super = (struct btrfs_super_block *)bh->b_data;
6927
6928 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6929 set_buffer_dirty(bh);
6930 sync_dirty_buffer(bh);
6931 brelse(bh);
6932 }
6933
6934 /* Notify udev that device has changed */
6935 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
6936
6937 /* Update ctime/mtime for device path for libblkid */
6938 update_dev_time(device_path);
6939 }
6940
6941 /*
6942 * Update the size of all devices, which is used for writing out the
6943 * super blocks.
6944 */
6945 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6946 {
6947 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6948 struct btrfs_device *curr, *next;
6949
6950 if (list_empty(&fs_devices->resized_devices))
6951 return;
6952
6953 mutex_lock(&fs_devices->device_list_mutex);
6954 lock_chunks(fs_info->dev_root);
6955 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6956 resized_list) {
6957 list_del_init(&curr->resized_list);
6958 curr->commit_total_bytes = curr->disk_total_bytes;
6959 }
6960 unlock_chunks(fs_info->dev_root);
6961 mutex_unlock(&fs_devices->device_list_mutex);
6962 }
6963
6964 /* Must be invoked during the transaction commit */
6965 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6966 struct btrfs_transaction *transaction)
6967 {
6968 struct extent_map *em;
6969 struct map_lookup *map;
6970 struct btrfs_device *dev;
6971 int i;
6972
6973 if (list_empty(&transaction->pending_chunks))
6974 return;
6975
6976 /* In order to kick the device replace finish process */
6977 lock_chunks(root);
6978 list_for_each_entry(em, &transaction->pending_chunks, list) {
6979 map = em->map_lookup;
6980
6981 for (i = 0; i < map->num_stripes; i++) {
6982 dev = map->stripes[i].dev;
6983 dev->commit_bytes_used = dev->bytes_used;
6984 }
6985 }
6986 unlock_chunks(root);
6987 }
6988
6989 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6990 {
6991 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6992 while (fs_devices) {
6993 fs_devices->fs_info = fs_info;
6994 fs_devices = fs_devices->seed;
6995 }
6996 }
6997
6998 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6999 {
7000 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7001 while (fs_devices) {
7002 fs_devices->fs_info = NULL;
7003 fs_devices = fs_devices->seed;
7004 }
7005 }
7006
7007 static void btrfs_close_one_device(struct btrfs_device *device)
7008 {
7009 struct btrfs_fs_devices *fs_devices = device->fs_devices;
7010 struct btrfs_device *new_device;
7011 struct rcu_string *name;
7012
7013 if (device->bdev)
7014 fs_devices->open_devices--;
7015
7016 if (device->writeable &&
7017 device->devid != BTRFS_DEV_REPLACE_DEVID) {
7018 list_del_init(&device->dev_alloc_list);
7019 fs_devices->rw_devices--;
7020 }
7021
7022 if (device->missing)
7023 fs_devices->missing_devices--;
7024
7025 new_device = btrfs_alloc_device(NULL, &device->devid,
7026 device->uuid);
7027 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
7028
7029 /* Safe because we are under uuid_mutex */
7030 if (device->name) {
7031 name = rcu_string_strdup(device->name->str, GFP_NOFS);
7032 BUG_ON(!name); /* -ENOMEM */
7033 rcu_assign_pointer(new_device->name, name);
7034 }
7035
7036 list_replace_rcu(&device->dev_list, &new_device->dev_list);
7037 new_device->fs_devices = device->fs_devices;
7038
7039 call_rcu(&device->rcu, free_device);
7040 }
This page took 0.164959 seconds and 6 git commands to generate.