Btrfs: fix NULL pointer crash of deleting a seed device
[deliverable/linux.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43
44 static int init_first_rw_device(struct btrfs_trans_handle *trans,
45 struct btrfs_root *root,
46 struct btrfs_device *device);
47 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
48 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
49 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
51
52 static DEFINE_MUTEX(uuid_mutex);
53 static LIST_HEAD(fs_uuids);
54
55 static void lock_chunks(struct btrfs_root *root)
56 {
57 mutex_lock(&root->fs_info->chunk_mutex);
58 }
59
60 static void unlock_chunks(struct btrfs_root *root)
61 {
62 mutex_unlock(&root->fs_info->chunk_mutex);
63 }
64
65 static struct btrfs_fs_devices *__alloc_fs_devices(void)
66 {
67 struct btrfs_fs_devices *fs_devs;
68
69 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
70 if (!fs_devs)
71 return ERR_PTR(-ENOMEM);
72
73 mutex_init(&fs_devs->device_list_mutex);
74
75 INIT_LIST_HEAD(&fs_devs->devices);
76 INIT_LIST_HEAD(&fs_devs->alloc_list);
77 INIT_LIST_HEAD(&fs_devs->list);
78
79 return fs_devs;
80 }
81
82 /**
83 * alloc_fs_devices - allocate struct btrfs_fs_devices
84 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
85 * generated.
86 *
87 * Return: a pointer to a new &struct btrfs_fs_devices on success;
88 * ERR_PTR() on error. Returned struct is not linked onto any lists and
89 * can be destroyed with kfree() right away.
90 */
91 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
92 {
93 struct btrfs_fs_devices *fs_devs;
94
95 fs_devs = __alloc_fs_devices();
96 if (IS_ERR(fs_devs))
97 return fs_devs;
98
99 if (fsid)
100 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
101 else
102 generate_random_uuid(fs_devs->fsid);
103
104 return fs_devs;
105 }
106
107 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
108 {
109 struct btrfs_device *device;
110 WARN_ON(fs_devices->opened);
111 while (!list_empty(&fs_devices->devices)) {
112 device = list_entry(fs_devices->devices.next,
113 struct btrfs_device, dev_list);
114 list_del(&device->dev_list);
115 rcu_string_free(device->name);
116 kfree(device);
117 }
118 kfree(fs_devices);
119 }
120
121 static void btrfs_kobject_uevent(struct block_device *bdev,
122 enum kobject_action action)
123 {
124 int ret;
125
126 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
127 if (ret)
128 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
129 action,
130 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
131 &disk_to_dev(bdev->bd_disk)->kobj);
132 }
133
134 void btrfs_cleanup_fs_uuids(void)
135 {
136 struct btrfs_fs_devices *fs_devices;
137
138 while (!list_empty(&fs_uuids)) {
139 fs_devices = list_entry(fs_uuids.next,
140 struct btrfs_fs_devices, list);
141 list_del(&fs_devices->list);
142 free_fs_devices(fs_devices);
143 }
144 }
145
146 static struct btrfs_device *__alloc_device(void)
147 {
148 struct btrfs_device *dev;
149
150 dev = kzalloc(sizeof(*dev), GFP_NOFS);
151 if (!dev)
152 return ERR_PTR(-ENOMEM);
153
154 INIT_LIST_HEAD(&dev->dev_list);
155 INIT_LIST_HEAD(&dev->dev_alloc_list);
156
157 spin_lock_init(&dev->io_lock);
158
159 spin_lock_init(&dev->reada_lock);
160 atomic_set(&dev->reada_in_flight, 0);
161 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
162 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
163
164 return dev;
165 }
166
167 static noinline struct btrfs_device *__find_device(struct list_head *head,
168 u64 devid, u8 *uuid)
169 {
170 struct btrfs_device *dev;
171
172 list_for_each_entry(dev, head, dev_list) {
173 if (dev->devid == devid &&
174 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
175 return dev;
176 }
177 }
178 return NULL;
179 }
180
181 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
182 {
183 struct btrfs_fs_devices *fs_devices;
184
185 list_for_each_entry(fs_devices, &fs_uuids, list) {
186 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
187 return fs_devices;
188 }
189 return NULL;
190 }
191
192 static int
193 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
194 int flush, struct block_device **bdev,
195 struct buffer_head **bh)
196 {
197 int ret;
198
199 *bdev = blkdev_get_by_path(device_path, flags, holder);
200
201 if (IS_ERR(*bdev)) {
202 ret = PTR_ERR(*bdev);
203 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
204 goto error;
205 }
206
207 if (flush)
208 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
209 ret = set_blocksize(*bdev, 4096);
210 if (ret) {
211 blkdev_put(*bdev, flags);
212 goto error;
213 }
214 invalidate_bdev(*bdev);
215 *bh = btrfs_read_dev_super(*bdev);
216 if (!*bh) {
217 ret = -EINVAL;
218 blkdev_put(*bdev, flags);
219 goto error;
220 }
221
222 return 0;
223
224 error:
225 *bdev = NULL;
226 *bh = NULL;
227 return ret;
228 }
229
230 static void requeue_list(struct btrfs_pending_bios *pending_bios,
231 struct bio *head, struct bio *tail)
232 {
233
234 struct bio *old_head;
235
236 old_head = pending_bios->head;
237 pending_bios->head = head;
238 if (pending_bios->tail)
239 tail->bi_next = old_head;
240 else
241 pending_bios->tail = tail;
242 }
243
244 /*
245 * we try to collect pending bios for a device so we don't get a large
246 * number of procs sending bios down to the same device. This greatly
247 * improves the schedulers ability to collect and merge the bios.
248 *
249 * But, it also turns into a long list of bios to process and that is sure
250 * to eventually make the worker thread block. The solution here is to
251 * make some progress and then put this work struct back at the end of
252 * the list if the block device is congested. This way, multiple devices
253 * can make progress from a single worker thread.
254 */
255 static noinline void run_scheduled_bios(struct btrfs_device *device)
256 {
257 struct bio *pending;
258 struct backing_dev_info *bdi;
259 struct btrfs_fs_info *fs_info;
260 struct btrfs_pending_bios *pending_bios;
261 struct bio *tail;
262 struct bio *cur;
263 int again = 0;
264 unsigned long num_run;
265 unsigned long batch_run = 0;
266 unsigned long limit;
267 unsigned long last_waited = 0;
268 int force_reg = 0;
269 int sync_pending = 0;
270 struct blk_plug plug;
271
272 /*
273 * this function runs all the bios we've collected for
274 * a particular device. We don't want to wander off to
275 * another device without first sending all of these down.
276 * So, setup a plug here and finish it off before we return
277 */
278 blk_start_plug(&plug);
279
280 bdi = blk_get_backing_dev_info(device->bdev);
281 fs_info = device->dev_root->fs_info;
282 limit = btrfs_async_submit_limit(fs_info);
283 limit = limit * 2 / 3;
284
285 loop:
286 spin_lock(&device->io_lock);
287
288 loop_lock:
289 num_run = 0;
290
291 /* take all the bios off the list at once and process them
292 * later on (without the lock held). But, remember the
293 * tail and other pointers so the bios can be properly reinserted
294 * into the list if we hit congestion
295 */
296 if (!force_reg && device->pending_sync_bios.head) {
297 pending_bios = &device->pending_sync_bios;
298 force_reg = 1;
299 } else {
300 pending_bios = &device->pending_bios;
301 force_reg = 0;
302 }
303
304 pending = pending_bios->head;
305 tail = pending_bios->tail;
306 WARN_ON(pending && !tail);
307
308 /*
309 * if pending was null this time around, no bios need processing
310 * at all and we can stop. Otherwise it'll loop back up again
311 * and do an additional check so no bios are missed.
312 *
313 * device->running_pending is used to synchronize with the
314 * schedule_bio code.
315 */
316 if (device->pending_sync_bios.head == NULL &&
317 device->pending_bios.head == NULL) {
318 again = 0;
319 device->running_pending = 0;
320 } else {
321 again = 1;
322 device->running_pending = 1;
323 }
324
325 pending_bios->head = NULL;
326 pending_bios->tail = NULL;
327
328 spin_unlock(&device->io_lock);
329
330 while (pending) {
331
332 rmb();
333 /* we want to work on both lists, but do more bios on the
334 * sync list than the regular list
335 */
336 if ((num_run > 32 &&
337 pending_bios != &device->pending_sync_bios &&
338 device->pending_sync_bios.head) ||
339 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
340 device->pending_bios.head)) {
341 spin_lock(&device->io_lock);
342 requeue_list(pending_bios, pending, tail);
343 goto loop_lock;
344 }
345
346 cur = pending;
347 pending = pending->bi_next;
348 cur->bi_next = NULL;
349
350 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
351 waitqueue_active(&fs_info->async_submit_wait))
352 wake_up(&fs_info->async_submit_wait);
353
354 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
355
356 /*
357 * if we're doing the sync list, record that our
358 * plug has some sync requests on it
359 *
360 * If we're doing the regular list and there are
361 * sync requests sitting around, unplug before
362 * we add more
363 */
364 if (pending_bios == &device->pending_sync_bios) {
365 sync_pending = 1;
366 } else if (sync_pending) {
367 blk_finish_plug(&plug);
368 blk_start_plug(&plug);
369 sync_pending = 0;
370 }
371
372 btrfsic_submit_bio(cur->bi_rw, cur);
373 num_run++;
374 batch_run++;
375 if (need_resched())
376 cond_resched();
377
378 /*
379 * we made progress, there is more work to do and the bdi
380 * is now congested. Back off and let other work structs
381 * run instead
382 */
383 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
384 fs_info->fs_devices->open_devices > 1) {
385 struct io_context *ioc;
386
387 ioc = current->io_context;
388
389 /*
390 * the main goal here is that we don't want to
391 * block if we're going to be able to submit
392 * more requests without blocking.
393 *
394 * This code does two great things, it pokes into
395 * the elevator code from a filesystem _and_
396 * it makes assumptions about how batching works.
397 */
398 if (ioc && ioc->nr_batch_requests > 0 &&
399 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
400 (last_waited == 0 ||
401 ioc->last_waited == last_waited)) {
402 /*
403 * we want to go through our batch of
404 * requests and stop. So, we copy out
405 * the ioc->last_waited time and test
406 * against it before looping
407 */
408 last_waited = ioc->last_waited;
409 if (need_resched())
410 cond_resched();
411 continue;
412 }
413 spin_lock(&device->io_lock);
414 requeue_list(pending_bios, pending, tail);
415 device->running_pending = 1;
416
417 spin_unlock(&device->io_lock);
418 btrfs_queue_work(fs_info->submit_workers,
419 &device->work);
420 goto done;
421 }
422 /* unplug every 64 requests just for good measure */
423 if (batch_run % 64 == 0) {
424 blk_finish_plug(&plug);
425 blk_start_plug(&plug);
426 sync_pending = 0;
427 }
428 }
429
430 cond_resched();
431 if (again)
432 goto loop;
433
434 spin_lock(&device->io_lock);
435 if (device->pending_bios.head || device->pending_sync_bios.head)
436 goto loop_lock;
437 spin_unlock(&device->io_lock);
438
439 done:
440 blk_finish_plug(&plug);
441 }
442
443 static void pending_bios_fn(struct btrfs_work *work)
444 {
445 struct btrfs_device *device;
446
447 device = container_of(work, struct btrfs_device, work);
448 run_scheduled_bios(device);
449 }
450
451 /*
452 * Add new device to list of registered devices
453 *
454 * Returns:
455 * 1 - first time device is seen
456 * 0 - device already known
457 * < 0 - error
458 */
459 static noinline int device_list_add(const char *path,
460 struct btrfs_super_block *disk_super,
461 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
462 {
463 struct btrfs_device *device;
464 struct btrfs_fs_devices *fs_devices;
465 struct rcu_string *name;
466 int ret = 0;
467 u64 found_transid = btrfs_super_generation(disk_super);
468
469 fs_devices = find_fsid(disk_super->fsid);
470 if (!fs_devices) {
471 fs_devices = alloc_fs_devices(disk_super->fsid);
472 if (IS_ERR(fs_devices))
473 return PTR_ERR(fs_devices);
474
475 list_add(&fs_devices->list, &fs_uuids);
476 fs_devices->latest_devid = devid;
477 fs_devices->latest_trans = found_transid;
478
479 device = NULL;
480 } else {
481 device = __find_device(&fs_devices->devices, devid,
482 disk_super->dev_item.uuid);
483 }
484 if (!device) {
485 if (fs_devices->opened)
486 return -EBUSY;
487
488 device = btrfs_alloc_device(NULL, &devid,
489 disk_super->dev_item.uuid);
490 if (IS_ERR(device)) {
491 /* we can safely leave the fs_devices entry around */
492 return PTR_ERR(device);
493 }
494
495 name = rcu_string_strdup(path, GFP_NOFS);
496 if (!name) {
497 kfree(device);
498 return -ENOMEM;
499 }
500 rcu_assign_pointer(device->name, name);
501
502 mutex_lock(&fs_devices->device_list_mutex);
503 list_add_rcu(&device->dev_list, &fs_devices->devices);
504 fs_devices->num_devices++;
505 mutex_unlock(&fs_devices->device_list_mutex);
506
507 ret = 1;
508 device->fs_devices = fs_devices;
509 } else if (!device->name || strcmp(device->name->str, path)) {
510 name = rcu_string_strdup(path, GFP_NOFS);
511 if (!name)
512 return -ENOMEM;
513 rcu_string_free(device->name);
514 rcu_assign_pointer(device->name, name);
515 if (device->missing) {
516 fs_devices->missing_devices--;
517 device->missing = 0;
518 }
519 }
520
521 if (found_transid > fs_devices->latest_trans) {
522 fs_devices->latest_devid = devid;
523 fs_devices->latest_trans = found_transid;
524 }
525 *fs_devices_ret = fs_devices;
526
527 return ret;
528 }
529
530 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
531 {
532 struct btrfs_fs_devices *fs_devices;
533 struct btrfs_device *device;
534 struct btrfs_device *orig_dev;
535
536 fs_devices = alloc_fs_devices(orig->fsid);
537 if (IS_ERR(fs_devices))
538 return fs_devices;
539
540 fs_devices->latest_devid = orig->latest_devid;
541 fs_devices->latest_trans = orig->latest_trans;
542 fs_devices->total_devices = orig->total_devices;
543
544 /* We have held the volume lock, it is safe to get the devices. */
545 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
546 struct rcu_string *name;
547
548 device = btrfs_alloc_device(NULL, &orig_dev->devid,
549 orig_dev->uuid);
550 if (IS_ERR(device))
551 goto error;
552
553 /*
554 * This is ok to do without rcu read locked because we hold the
555 * uuid mutex so nothing we touch in here is going to disappear.
556 */
557 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
558 if (!name) {
559 kfree(device);
560 goto error;
561 }
562 rcu_assign_pointer(device->name, name);
563
564 list_add(&device->dev_list, &fs_devices->devices);
565 device->fs_devices = fs_devices;
566 fs_devices->num_devices++;
567 }
568 return fs_devices;
569 error:
570 free_fs_devices(fs_devices);
571 return ERR_PTR(-ENOMEM);
572 }
573
574 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
575 struct btrfs_fs_devices *fs_devices, int step)
576 {
577 struct btrfs_device *device, *next;
578
579 struct block_device *latest_bdev = NULL;
580 u64 latest_devid = 0;
581 u64 latest_transid = 0;
582
583 mutex_lock(&uuid_mutex);
584 again:
585 /* This is the initialized path, it is safe to release the devices. */
586 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
587 if (device->in_fs_metadata) {
588 if (!device->is_tgtdev_for_dev_replace &&
589 (!latest_transid ||
590 device->generation > latest_transid)) {
591 latest_devid = device->devid;
592 latest_transid = device->generation;
593 latest_bdev = device->bdev;
594 }
595 continue;
596 }
597
598 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
599 /*
600 * In the first step, keep the device which has
601 * the correct fsid and the devid that is used
602 * for the dev_replace procedure.
603 * In the second step, the dev_replace state is
604 * read from the device tree and it is known
605 * whether the procedure is really active or
606 * not, which means whether this device is
607 * used or whether it should be removed.
608 */
609 if (step == 0 || device->is_tgtdev_for_dev_replace) {
610 continue;
611 }
612 }
613 if (device->bdev) {
614 blkdev_put(device->bdev, device->mode);
615 device->bdev = NULL;
616 fs_devices->open_devices--;
617 }
618 if (device->writeable) {
619 list_del_init(&device->dev_alloc_list);
620 device->writeable = 0;
621 if (!device->is_tgtdev_for_dev_replace)
622 fs_devices->rw_devices--;
623 }
624 list_del_init(&device->dev_list);
625 fs_devices->num_devices--;
626 rcu_string_free(device->name);
627 kfree(device);
628 }
629
630 if (fs_devices->seed) {
631 fs_devices = fs_devices->seed;
632 goto again;
633 }
634
635 fs_devices->latest_bdev = latest_bdev;
636 fs_devices->latest_devid = latest_devid;
637 fs_devices->latest_trans = latest_transid;
638
639 mutex_unlock(&uuid_mutex);
640 }
641
642 static void __free_device(struct work_struct *work)
643 {
644 struct btrfs_device *device;
645
646 device = container_of(work, struct btrfs_device, rcu_work);
647
648 if (device->bdev)
649 blkdev_put(device->bdev, device->mode);
650
651 rcu_string_free(device->name);
652 kfree(device);
653 }
654
655 static void free_device(struct rcu_head *head)
656 {
657 struct btrfs_device *device;
658
659 device = container_of(head, struct btrfs_device, rcu);
660
661 INIT_WORK(&device->rcu_work, __free_device);
662 schedule_work(&device->rcu_work);
663 }
664
665 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
666 {
667 struct btrfs_device *device;
668
669 if (--fs_devices->opened > 0)
670 return 0;
671
672 mutex_lock(&fs_devices->device_list_mutex);
673 list_for_each_entry(device, &fs_devices->devices, dev_list) {
674 struct btrfs_device *new_device;
675 struct rcu_string *name;
676
677 if (device->bdev)
678 fs_devices->open_devices--;
679
680 if (device->writeable &&
681 device->devid != BTRFS_DEV_REPLACE_DEVID) {
682 list_del_init(&device->dev_alloc_list);
683 fs_devices->rw_devices--;
684 }
685
686 if (device->can_discard)
687 fs_devices->num_can_discard--;
688 if (device->missing)
689 fs_devices->missing_devices--;
690
691 new_device = btrfs_alloc_device(NULL, &device->devid,
692 device->uuid);
693 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
694
695 /* Safe because we are under uuid_mutex */
696 if (device->name) {
697 name = rcu_string_strdup(device->name->str, GFP_NOFS);
698 BUG_ON(!name); /* -ENOMEM */
699 rcu_assign_pointer(new_device->name, name);
700 }
701
702 list_replace_rcu(&device->dev_list, &new_device->dev_list);
703 new_device->fs_devices = device->fs_devices;
704
705 call_rcu(&device->rcu, free_device);
706 }
707 mutex_unlock(&fs_devices->device_list_mutex);
708
709 WARN_ON(fs_devices->open_devices);
710 WARN_ON(fs_devices->rw_devices);
711 fs_devices->opened = 0;
712 fs_devices->seeding = 0;
713
714 return 0;
715 }
716
717 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
718 {
719 struct btrfs_fs_devices *seed_devices = NULL;
720 int ret;
721
722 mutex_lock(&uuid_mutex);
723 ret = __btrfs_close_devices(fs_devices);
724 if (!fs_devices->opened) {
725 seed_devices = fs_devices->seed;
726 fs_devices->seed = NULL;
727 }
728 mutex_unlock(&uuid_mutex);
729
730 while (seed_devices) {
731 fs_devices = seed_devices;
732 seed_devices = fs_devices->seed;
733 __btrfs_close_devices(fs_devices);
734 free_fs_devices(fs_devices);
735 }
736 /*
737 * Wait for rcu kworkers under __btrfs_close_devices
738 * to finish all blkdev_puts so device is really
739 * free when umount is done.
740 */
741 rcu_barrier();
742 return ret;
743 }
744
745 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
746 fmode_t flags, void *holder)
747 {
748 struct request_queue *q;
749 struct block_device *bdev;
750 struct list_head *head = &fs_devices->devices;
751 struct btrfs_device *device;
752 struct block_device *latest_bdev = NULL;
753 struct buffer_head *bh;
754 struct btrfs_super_block *disk_super;
755 u64 latest_devid = 0;
756 u64 latest_transid = 0;
757 u64 devid;
758 int seeding = 1;
759 int ret = 0;
760
761 flags |= FMODE_EXCL;
762
763 list_for_each_entry(device, head, dev_list) {
764 if (device->bdev)
765 continue;
766 if (!device->name)
767 continue;
768
769 /* Just open everything we can; ignore failures here */
770 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
771 &bdev, &bh))
772 continue;
773
774 disk_super = (struct btrfs_super_block *)bh->b_data;
775 devid = btrfs_stack_device_id(&disk_super->dev_item);
776 if (devid != device->devid)
777 goto error_brelse;
778
779 if (memcmp(device->uuid, disk_super->dev_item.uuid,
780 BTRFS_UUID_SIZE))
781 goto error_brelse;
782
783 device->generation = btrfs_super_generation(disk_super);
784 if (!latest_transid || device->generation > latest_transid) {
785 latest_devid = devid;
786 latest_transid = device->generation;
787 latest_bdev = bdev;
788 }
789
790 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
791 device->writeable = 0;
792 } else {
793 device->writeable = !bdev_read_only(bdev);
794 seeding = 0;
795 }
796
797 q = bdev_get_queue(bdev);
798 if (blk_queue_discard(q)) {
799 device->can_discard = 1;
800 fs_devices->num_can_discard++;
801 }
802
803 device->bdev = bdev;
804 device->in_fs_metadata = 0;
805 device->mode = flags;
806
807 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
808 fs_devices->rotating = 1;
809
810 fs_devices->open_devices++;
811 if (device->writeable &&
812 device->devid != BTRFS_DEV_REPLACE_DEVID) {
813 fs_devices->rw_devices++;
814 list_add(&device->dev_alloc_list,
815 &fs_devices->alloc_list);
816 }
817 brelse(bh);
818 continue;
819
820 error_brelse:
821 brelse(bh);
822 blkdev_put(bdev, flags);
823 continue;
824 }
825 if (fs_devices->open_devices == 0) {
826 ret = -EINVAL;
827 goto out;
828 }
829 fs_devices->seeding = seeding;
830 fs_devices->opened = 1;
831 fs_devices->latest_bdev = latest_bdev;
832 fs_devices->latest_devid = latest_devid;
833 fs_devices->latest_trans = latest_transid;
834 fs_devices->total_rw_bytes = 0;
835 out:
836 return ret;
837 }
838
839 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
840 fmode_t flags, void *holder)
841 {
842 int ret;
843
844 mutex_lock(&uuid_mutex);
845 if (fs_devices->opened) {
846 fs_devices->opened++;
847 ret = 0;
848 } else {
849 ret = __btrfs_open_devices(fs_devices, flags, holder);
850 }
851 mutex_unlock(&uuid_mutex);
852 return ret;
853 }
854
855 /*
856 * Look for a btrfs signature on a device. This may be called out of the mount path
857 * and we are not allowed to call set_blocksize during the scan. The superblock
858 * is read via pagecache
859 */
860 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
861 struct btrfs_fs_devices **fs_devices_ret)
862 {
863 struct btrfs_super_block *disk_super;
864 struct block_device *bdev;
865 struct page *page;
866 void *p;
867 int ret = -EINVAL;
868 u64 devid;
869 u64 transid;
870 u64 total_devices;
871 u64 bytenr;
872 pgoff_t index;
873
874 /*
875 * we would like to check all the supers, but that would make
876 * a btrfs mount succeed after a mkfs from a different FS.
877 * So, we need to add a special mount option to scan for
878 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
879 */
880 bytenr = btrfs_sb_offset(0);
881 flags |= FMODE_EXCL;
882 mutex_lock(&uuid_mutex);
883
884 bdev = blkdev_get_by_path(path, flags, holder);
885
886 if (IS_ERR(bdev)) {
887 ret = PTR_ERR(bdev);
888 goto error;
889 }
890
891 /* make sure our super fits in the device */
892 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
893 goto error_bdev_put;
894
895 /* make sure our super fits in the page */
896 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
897 goto error_bdev_put;
898
899 /* make sure our super doesn't straddle pages on disk */
900 index = bytenr >> PAGE_CACHE_SHIFT;
901 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
902 goto error_bdev_put;
903
904 /* pull in the page with our super */
905 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
906 index, GFP_NOFS);
907
908 if (IS_ERR_OR_NULL(page))
909 goto error_bdev_put;
910
911 p = kmap(page);
912
913 /* align our pointer to the offset of the super block */
914 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
915
916 if (btrfs_super_bytenr(disk_super) != bytenr ||
917 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
918 goto error_unmap;
919
920 devid = btrfs_stack_device_id(&disk_super->dev_item);
921 transid = btrfs_super_generation(disk_super);
922 total_devices = btrfs_super_num_devices(disk_super);
923
924 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
925 if (ret > 0) {
926 if (disk_super->label[0]) {
927 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
928 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
929 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
930 } else {
931 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
932 }
933
934 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
935 ret = 0;
936 }
937 if (!ret && fs_devices_ret)
938 (*fs_devices_ret)->total_devices = total_devices;
939
940 error_unmap:
941 kunmap(page);
942 page_cache_release(page);
943
944 error_bdev_put:
945 blkdev_put(bdev, flags);
946 error:
947 mutex_unlock(&uuid_mutex);
948 return ret;
949 }
950
951 /* helper to account the used device space in the range */
952 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
953 u64 end, u64 *length)
954 {
955 struct btrfs_key key;
956 struct btrfs_root *root = device->dev_root;
957 struct btrfs_dev_extent *dev_extent;
958 struct btrfs_path *path;
959 u64 extent_end;
960 int ret;
961 int slot;
962 struct extent_buffer *l;
963
964 *length = 0;
965
966 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
967 return 0;
968
969 path = btrfs_alloc_path();
970 if (!path)
971 return -ENOMEM;
972 path->reada = 2;
973
974 key.objectid = device->devid;
975 key.offset = start;
976 key.type = BTRFS_DEV_EXTENT_KEY;
977
978 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
979 if (ret < 0)
980 goto out;
981 if (ret > 0) {
982 ret = btrfs_previous_item(root, path, key.objectid, key.type);
983 if (ret < 0)
984 goto out;
985 }
986
987 while (1) {
988 l = path->nodes[0];
989 slot = path->slots[0];
990 if (slot >= btrfs_header_nritems(l)) {
991 ret = btrfs_next_leaf(root, path);
992 if (ret == 0)
993 continue;
994 if (ret < 0)
995 goto out;
996
997 break;
998 }
999 btrfs_item_key_to_cpu(l, &key, slot);
1000
1001 if (key.objectid < device->devid)
1002 goto next;
1003
1004 if (key.objectid > device->devid)
1005 break;
1006
1007 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1008 goto next;
1009
1010 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1011 extent_end = key.offset + btrfs_dev_extent_length(l,
1012 dev_extent);
1013 if (key.offset <= start && extent_end > end) {
1014 *length = end - start + 1;
1015 break;
1016 } else if (key.offset <= start && extent_end > start)
1017 *length += extent_end - start;
1018 else if (key.offset > start && extent_end <= end)
1019 *length += extent_end - key.offset;
1020 else if (key.offset > start && key.offset <= end) {
1021 *length += end - key.offset + 1;
1022 break;
1023 } else if (key.offset > end)
1024 break;
1025
1026 next:
1027 path->slots[0]++;
1028 }
1029 ret = 0;
1030 out:
1031 btrfs_free_path(path);
1032 return ret;
1033 }
1034
1035 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1036 struct btrfs_device *device,
1037 u64 *start, u64 len)
1038 {
1039 struct extent_map *em;
1040 int ret = 0;
1041
1042 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1043 struct map_lookup *map;
1044 int i;
1045
1046 map = (struct map_lookup *)em->bdev;
1047 for (i = 0; i < map->num_stripes; i++) {
1048 if (map->stripes[i].dev != device)
1049 continue;
1050 if (map->stripes[i].physical >= *start + len ||
1051 map->stripes[i].physical + em->orig_block_len <=
1052 *start)
1053 continue;
1054 *start = map->stripes[i].physical +
1055 em->orig_block_len;
1056 ret = 1;
1057 }
1058 }
1059
1060 return ret;
1061 }
1062
1063
1064 /*
1065 * find_free_dev_extent - find free space in the specified device
1066 * @device: the device which we search the free space in
1067 * @num_bytes: the size of the free space that we need
1068 * @start: store the start of the free space.
1069 * @len: the size of the free space. that we find, or the size of the max
1070 * free space if we don't find suitable free space
1071 *
1072 * this uses a pretty simple search, the expectation is that it is
1073 * called very infrequently and that a given device has a small number
1074 * of extents
1075 *
1076 * @start is used to store the start of the free space if we find. But if we
1077 * don't find suitable free space, it will be used to store the start position
1078 * of the max free space.
1079 *
1080 * @len is used to store the size of the free space that we find.
1081 * But if we don't find suitable free space, it is used to store the size of
1082 * the max free space.
1083 */
1084 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1085 struct btrfs_device *device, u64 num_bytes,
1086 u64 *start, u64 *len)
1087 {
1088 struct btrfs_key key;
1089 struct btrfs_root *root = device->dev_root;
1090 struct btrfs_dev_extent *dev_extent;
1091 struct btrfs_path *path;
1092 u64 hole_size;
1093 u64 max_hole_start;
1094 u64 max_hole_size;
1095 u64 extent_end;
1096 u64 search_start;
1097 u64 search_end = device->total_bytes;
1098 int ret;
1099 int slot;
1100 struct extent_buffer *l;
1101
1102 /* FIXME use last free of some kind */
1103
1104 /* we don't want to overwrite the superblock on the drive,
1105 * so we make sure to start at an offset of at least 1MB
1106 */
1107 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1108
1109 path = btrfs_alloc_path();
1110 if (!path)
1111 return -ENOMEM;
1112 again:
1113 max_hole_start = search_start;
1114 max_hole_size = 0;
1115 hole_size = 0;
1116
1117 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1118 ret = -ENOSPC;
1119 goto out;
1120 }
1121
1122 path->reada = 2;
1123 path->search_commit_root = 1;
1124 path->skip_locking = 1;
1125
1126 key.objectid = device->devid;
1127 key.offset = search_start;
1128 key.type = BTRFS_DEV_EXTENT_KEY;
1129
1130 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1131 if (ret < 0)
1132 goto out;
1133 if (ret > 0) {
1134 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1135 if (ret < 0)
1136 goto out;
1137 }
1138
1139 while (1) {
1140 l = path->nodes[0];
1141 slot = path->slots[0];
1142 if (slot >= btrfs_header_nritems(l)) {
1143 ret = btrfs_next_leaf(root, path);
1144 if (ret == 0)
1145 continue;
1146 if (ret < 0)
1147 goto out;
1148
1149 break;
1150 }
1151 btrfs_item_key_to_cpu(l, &key, slot);
1152
1153 if (key.objectid < device->devid)
1154 goto next;
1155
1156 if (key.objectid > device->devid)
1157 break;
1158
1159 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1160 goto next;
1161
1162 if (key.offset > search_start) {
1163 hole_size = key.offset - search_start;
1164
1165 /*
1166 * Have to check before we set max_hole_start, otherwise
1167 * we could end up sending back this offset anyway.
1168 */
1169 if (contains_pending_extent(trans, device,
1170 &search_start,
1171 hole_size))
1172 hole_size = 0;
1173
1174 if (hole_size > max_hole_size) {
1175 max_hole_start = search_start;
1176 max_hole_size = hole_size;
1177 }
1178
1179 /*
1180 * If this free space is greater than which we need,
1181 * it must be the max free space that we have found
1182 * until now, so max_hole_start must point to the start
1183 * of this free space and the length of this free space
1184 * is stored in max_hole_size. Thus, we return
1185 * max_hole_start and max_hole_size and go back to the
1186 * caller.
1187 */
1188 if (hole_size >= num_bytes) {
1189 ret = 0;
1190 goto out;
1191 }
1192 }
1193
1194 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1195 extent_end = key.offset + btrfs_dev_extent_length(l,
1196 dev_extent);
1197 if (extent_end > search_start)
1198 search_start = extent_end;
1199 next:
1200 path->slots[0]++;
1201 cond_resched();
1202 }
1203
1204 /*
1205 * At this point, search_start should be the end of
1206 * allocated dev extents, and when shrinking the device,
1207 * search_end may be smaller than search_start.
1208 */
1209 if (search_end > search_start)
1210 hole_size = search_end - search_start;
1211
1212 if (hole_size > max_hole_size) {
1213 max_hole_start = search_start;
1214 max_hole_size = hole_size;
1215 }
1216
1217 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1218 btrfs_release_path(path);
1219 goto again;
1220 }
1221
1222 /* See above. */
1223 if (hole_size < num_bytes)
1224 ret = -ENOSPC;
1225 else
1226 ret = 0;
1227
1228 out:
1229 btrfs_free_path(path);
1230 *start = max_hole_start;
1231 if (len)
1232 *len = max_hole_size;
1233 return ret;
1234 }
1235
1236 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1237 struct btrfs_device *device,
1238 u64 start)
1239 {
1240 int ret;
1241 struct btrfs_path *path;
1242 struct btrfs_root *root = device->dev_root;
1243 struct btrfs_key key;
1244 struct btrfs_key found_key;
1245 struct extent_buffer *leaf = NULL;
1246 struct btrfs_dev_extent *extent = NULL;
1247
1248 path = btrfs_alloc_path();
1249 if (!path)
1250 return -ENOMEM;
1251
1252 key.objectid = device->devid;
1253 key.offset = start;
1254 key.type = BTRFS_DEV_EXTENT_KEY;
1255 again:
1256 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1257 if (ret > 0) {
1258 ret = btrfs_previous_item(root, path, key.objectid,
1259 BTRFS_DEV_EXTENT_KEY);
1260 if (ret)
1261 goto out;
1262 leaf = path->nodes[0];
1263 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1264 extent = btrfs_item_ptr(leaf, path->slots[0],
1265 struct btrfs_dev_extent);
1266 BUG_ON(found_key.offset > start || found_key.offset +
1267 btrfs_dev_extent_length(leaf, extent) < start);
1268 key = found_key;
1269 btrfs_release_path(path);
1270 goto again;
1271 } else if (ret == 0) {
1272 leaf = path->nodes[0];
1273 extent = btrfs_item_ptr(leaf, path->slots[0],
1274 struct btrfs_dev_extent);
1275 } else {
1276 btrfs_error(root->fs_info, ret, "Slot search failed");
1277 goto out;
1278 }
1279
1280 if (device->bytes_used > 0) {
1281 u64 len = btrfs_dev_extent_length(leaf, extent);
1282 device->bytes_used -= len;
1283 spin_lock(&root->fs_info->free_chunk_lock);
1284 root->fs_info->free_chunk_space += len;
1285 spin_unlock(&root->fs_info->free_chunk_lock);
1286 }
1287 ret = btrfs_del_item(trans, root, path);
1288 if (ret) {
1289 btrfs_error(root->fs_info, ret,
1290 "Failed to remove dev extent item");
1291 }
1292 out:
1293 btrfs_free_path(path);
1294 return ret;
1295 }
1296
1297 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1298 struct btrfs_device *device,
1299 u64 chunk_tree, u64 chunk_objectid,
1300 u64 chunk_offset, u64 start, u64 num_bytes)
1301 {
1302 int ret;
1303 struct btrfs_path *path;
1304 struct btrfs_root *root = device->dev_root;
1305 struct btrfs_dev_extent *extent;
1306 struct extent_buffer *leaf;
1307 struct btrfs_key key;
1308
1309 WARN_ON(!device->in_fs_metadata);
1310 WARN_ON(device->is_tgtdev_for_dev_replace);
1311 path = btrfs_alloc_path();
1312 if (!path)
1313 return -ENOMEM;
1314
1315 key.objectid = device->devid;
1316 key.offset = start;
1317 key.type = BTRFS_DEV_EXTENT_KEY;
1318 ret = btrfs_insert_empty_item(trans, root, path, &key,
1319 sizeof(*extent));
1320 if (ret)
1321 goto out;
1322
1323 leaf = path->nodes[0];
1324 extent = btrfs_item_ptr(leaf, path->slots[0],
1325 struct btrfs_dev_extent);
1326 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1327 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1328 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1329
1330 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1331 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1332
1333 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1334 btrfs_mark_buffer_dirty(leaf);
1335 out:
1336 btrfs_free_path(path);
1337 return ret;
1338 }
1339
1340 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1341 {
1342 struct extent_map_tree *em_tree;
1343 struct extent_map *em;
1344 struct rb_node *n;
1345 u64 ret = 0;
1346
1347 em_tree = &fs_info->mapping_tree.map_tree;
1348 read_lock(&em_tree->lock);
1349 n = rb_last(&em_tree->map);
1350 if (n) {
1351 em = rb_entry(n, struct extent_map, rb_node);
1352 ret = em->start + em->len;
1353 }
1354 read_unlock(&em_tree->lock);
1355
1356 return ret;
1357 }
1358
1359 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1360 u64 *devid_ret)
1361 {
1362 int ret;
1363 struct btrfs_key key;
1364 struct btrfs_key found_key;
1365 struct btrfs_path *path;
1366
1367 path = btrfs_alloc_path();
1368 if (!path)
1369 return -ENOMEM;
1370
1371 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1372 key.type = BTRFS_DEV_ITEM_KEY;
1373 key.offset = (u64)-1;
1374
1375 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1376 if (ret < 0)
1377 goto error;
1378
1379 BUG_ON(ret == 0); /* Corruption */
1380
1381 ret = btrfs_previous_item(fs_info->chunk_root, path,
1382 BTRFS_DEV_ITEMS_OBJECTID,
1383 BTRFS_DEV_ITEM_KEY);
1384 if (ret) {
1385 *devid_ret = 1;
1386 } else {
1387 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1388 path->slots[0]);
1389 *devid_ret = found_key.offset + 1;
1390 }
1391 ret = 0;
1392 error:
1393 btrfs_free_path(path);
1394 return ret;
1395 }
1396
1397 /*
1398 * the device information is stored in the chunk root
1399 * the btrfs_device struct should be fully filled in
1400 */
1401 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct btrfs_device *device)
1404 {
1405 int ret;
1406 struct btrfs_path *path;
1407 struct btrfs_dev_item *dev_item;
1408 struct extent_buffer *leaf;
1409 struct btrfs_key key;
1410 unsigned long ptr;
1411
1412 root = root->fs_info->chunk_root;
1413
1414 path = btrfs_alloc_path();
1415 if (!path)
1416 return -ENOMEM;
1417
1418 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1419 key.type = BTRFS_DEV_ITEM_KEY;
1420 key.offset = device->devid;
1421
1422 ret = btrfs_insert_empty_item(trans, root, path, &key,
1423 sizeof(*dev_item));
1424 if (ret)
1425 goto out;
1426
1427 leaf = path->nodes[0];
1428 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1429
1430 btrfs_set_device_id(leaf, dev_item, device->devid);
1431 btrfs_set_device_generation(leaf, dev_item, 0);
1432 btrfs_set_device_type(leaf, dev_item, device->type);
1433 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1434 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1435 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1436 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1437 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1438 btrfs_set_device_group(leaf, dev_item, 0);
1439 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1440 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1441 btrfs_set_device_start_offset(leaf, dev_item, 0);
1442
1443 ptr = btrfs_device_uuid(dev_item);
1444 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1445 ptr = btrfs_device_fsid(dev_item);
1446 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1447 btrfs_mark_buffer_dirty(leaf);
1448
1449 ret = 0;
1450 out:
1451 btrfs_free_path(path);
1452 return ret;
1453 }
1454
1455 /*
1456 * Function to update ctime/mtime for a given device path.
1457 * Mainly used for ctime/mtime based probe like libblkid.
1458 */
1459 static void update_dev_time(char *path_name)
1460 {
1461 struct file *filp;
1462
1463 filp = filp_open(path_name, O_RDWR, 0);
1464 if (!filp)
1465 return;
1466 file_update_time(filp);
1467 filp_close(filp, NULL);
1468 return;
1469 }
1470
1471 static int btrfs_rm_dev_item(struct btrfs_root *root,
1472 struct btrfs_device *device)
1473 {
1474 int ret;
1475 struct btrfs_path *path;
1476 struct btrfs_key key;
1477 struct btrfs_trans_handle *trans;
1478
1479 root = root->fs_info->chunk_root;
1480
1481 path = btrfs_alloc_path();
1482 if (!path)
1483 return -ENOMEM;
1484
1485 trans = btrfs_start_transaction(root, 0);
1486 if (IS_ERR(trans)) {
1487 btrfs_free_path(path);
1488 return PTR_ERR(trans);
1489 }
1490 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1491 key.type = BTRFS_DEV_ITEM_KEY;
1492 key.offset = device->devid;
1493 lock_chunks(root);
1494
1495 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1496 if (ret < 0)
1497 goto out;
1498
1499 if (ret > 0) {
1500 ret = -ENOENT;
1501 goto out;
1502 }
1503
1504 ret = btrfs_del_item(trans, root, path);
1505 if (ret)
1506 goto out;
1507 out:
1508 btrfs_free_path(path);
1509 unlock_chunks(root);
1510 btrfs_commit_transaction(trans, root);
1511 return ret;
1512 }
1513
1514 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1515 {
1516 struct btrfs_device *device;
1517 struct btrfs_device *next_device;
1518 struct block_device *bdev;
1519 struct buffer_head *bh = NULL;
1520 struct btrfs_super_block *disk_super;
1521 struct btrfs_fs_devices *cur_devices;
1522 u64 all_avail;
1523 u64 devid;
1524 u64 num_devices;
1525 u8 *dev_uuid;
1526 unsigned seq;
1527 int ret = 0;
1528 bool clear_super = false;
1529
1530 mutex_lock(&uuid_mutex);
1531
1532 do {
1533 seq = read_seqbegin(&root->fs_info->profiles_lock);
1534
1535 all_avail = root->fs_info->avail_data_alloc_bits |
1536 root->fs_info->avail_system_alloc_bits |
1537 root->fs_info->avail_metadata_alloc_bits;
1538 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1539
1540 num_devices = root->fs_info->fs_devices->num_devices;
1541 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1542 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1543 WARN_ON(num_devices < 1);
1544 num_devices--;
1545 }
1546 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1547
1548 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1549 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1550 goto out;
1551 }
1552
1553 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1554 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1555 goto out;
1556 }
1557
1558 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1559 root->fs_info->fs_devices->rw_devices <= 2) {
1560 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1561 goto out;
1562 }
1563 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1564 root->fs_info->fs_devices->rw_devices <= 3) {
1565 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1566 goto out;
1567 }
1568
1569 if (strcmp(device_path, "missing") == 0) {
1570 struct list_head *devices;
1571 struct btrfs_device *tmp;
1572
1573 device = NULL;
1574 devices = &root->fs_info->fs_devices->devices;
1575 /*
1576 * It is safe to read the devices since the volume_mutex
1577 * is held.
1578 */
1579 list_for_each_entry(tmp, devices, dev_list) {
1580 if (tmp->in_fs_metadata &&
1581 !tmp->is_tgtdev_for_dev_replace &&
1582 !tmp->bdev) {
1583 device = tmp;
1584 break;
1585 }
1586 }
1587 bdev = NULL;
1588 bh = NULL;
1589 disk_super = NULL;
1590 if (!device) {
1591 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1592 goto out;
1593 }
1594 } else {
1595 ret = btrfs_get_bdev_and_sb(device_path,
1596 FMODE_WRITE | FMODE_EXCL,
1597 root->fs_info->bdev_holder, 0,
1598 &bdev, &bh);
1599 if (ret)
1600 goto out;
1601 disk_super = (struct btrfs_super_block *)bh->b_data;
1602 devid = btrfs_stack_device_id(&disk_super->dev_item);
1603 dev_uuid = disk_super->dev_item.uuid;
1604 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1605 disk_super->fsid);
1606 if (!device) {
1607 ret = -ENOENT;
1608 goto error_brelse;
1609 }
1610 }
1611
1612 if (device->is_tgtdev_for_dev_replace) {
1613 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1614 goto error_brelse;
1615 }
1616
1617 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1618 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1619 goto error_brelse;
1620 }
1621
1622 if (device->writeable) {
1623 lock_chunks(root);
1624 list_del_init(&device->dev_alloc_list);
1625 unlock_chunks(root);
1626 root->fs_info->fs_devices->rw_devices--;
1627 clear_super = true;
1628 }
1629
1630 mutex_unlock(&uuid_mutex);
1631 ret = btrfs_shrink_device(device, 0);
1632 mutex_lock(&uuid_mutex);
1633 if (ret)
1634 goto error_undo;
1635
1636 /*
1637 * TODO: the superblock still includes this device in its num_devices
1638 * counter although write_all_supers() is not locked out. This
1639 * could give a filesystem state which requires a degraded mount.
1640 */
1641 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1642 if (ret)
1643 goto error_undo;
1644
1645 spin_lock(&root->fs_info->free_chunk_lock);
1646 root->fs_info->free_chunk_space = device->total_bytes -
1647 device->bytes_used;
1648 spin_unlock(&root->fs_info->free_chunk_lock);
1649
1650 device->in_fs_metadata = 0;
1651 btrfs_scrub_cancel_dev(root->fs_info, device);
1652
1653 /*
1654 * the device list mutex makes sure that we don't change
1655 * the device list while someone else is writing out all
1656 * the device supers. Whoever is writing all supers, should
1657 * lock the device list mutex before getting the number of
1658 * devices in the super block (super_copy). Conversely,
1659 * whoever updates the number of devices in the super block
1660 * (super_copy) should hold the device list mutex.
1661 */
1662
1663 cur_devices = device->fs_devices;
1664 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1665 list_del_rcu(&device->dev_list);
1666
1667 device->fs_devices->num_devices--;
1668 device->fs_devices->total_devices--;
1669
1670 if (device->missing)
1671 root->fs_info->fs_devices->missing_devices--;
1672
1673 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1674 struct btrfs_device, dev_list);
1675 if (device->bdev == root->fs_info->sb->s_bdev)
1676 root->fs_info->sb->s_bdev = next_device->bdev;
1677 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1678 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1679
1680 if (device->bdev)
1681 device->fs_devices->open_devices--;
1682
1683 call_rcu(&device->rcu, free_device);
1684
1685 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1686 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1687 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1688
1689 if (cur_devices->open_devices == 0) {
1690 struct btrfs_fs_devices *fs_devices;
1691 fs_devices = root->fs_info->fs_devices;
1692 while (fs_devices) {
1693 if (fs_devices->seed == cur_devices)
1694 break;
1695 fs_devices = fs_devices->seed;
1696 }
1697 fs_devices->seed = cur_devices->seed;
1698 cur_devices->seed = NULL;
1699 lock_chunks(root);
1700 __btrfs_close_devices(cur_devices);
1701 unlock_chunks(root);
1702 free_fs_devices(cur_devices);
1703 }
1704
1705 root->fs_info->num_tolerated_disk_barrier_failures =
1706 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1707
1708 /*
1709 * at this point, the device is zero sized. We want to
1710 * remove it from the devices list and zero out the old super
1711 */
1712 if (clear_super && disk_super) {
1713 u64 bytenr;
1714 int i;
1715
1716 /* make sure this device isn't detected as part of
1717 * the FS anymore
1718 */
1719 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1720 set_buffer_dirty(bh);
1721 sync_dirty_buffer(bh);
1722
1723 /* clear the mirror copies of super block on the disk
1724 * being removed, 0th copy is been taken care above and
1725 * the below would take of the rest
1726 */
1727 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1728 bytenr = btrfs_sb_offset(i);
1729 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1730 i_size_read(bdev->bd_inode))
1731 break;
1732
1733 brelse(bh);
1734 bh = __bread(bdev, bytenr / 4096,
1735 BTRFS_SUPER_INFO_SIZE);
1736 if (!bh)
1737 continue;
1738
1739 disk_super = (struct btrfs_super_block *)bh->b_data;
1740
1741 if (btrfs_super_bytenr(disk_super) != bytenr ||
1742 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1743 continue;
1744 }
1745 memset(&disk_super->magic, 0,
1746 sizeof(disk_super->magic));
1747 set_buffer_dirty(bh);
1748 sync_dirty_buffer(bh);
1749 }
1750 }
1751
1752 ret = 0;
1753
1754 if (bdev) {
1755 /* Notify udev that device has changed */
1756 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1757
1758 /* Update ctime/mtime for device path for libblkid */
1759 update_dev_time(device_path);
1760 }
1761
1762 error_brelse:
1763 brelse(bh);
1764 if (bdev)
1765 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1766 out:
1767 mutex_unlock(&uuid_mutex);
1768 return ret;
1769 error_undo:
1770 if (device->writeable) {
1771 lock_chunks(root);
1772 list_add(&device->dev_alloc_list,
1773 &root->fs_info->fs_devices->alloc_list);
1774 unlock_chunks(root);
1775 root->fs_info->fs_devices->rw_devices++;
1776 }
1777 goto error_brelse;
1778 }
1779
1780 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1781 struct btrfs_device *srcdev)
1782 {
1783 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1784
1785 list_del_rcu(&srcdev->dev_list);
1786 list_del_rcu(&srcdev->dev_alloc_list);
1787 fs_info->fs_devices->num_devices--;
1788 if (srcdev->missing) {
1789 fs_info->fs_devices->missing_devices--;
1790 fs_info->fs_devices->rw_devices++;
1791 }
1792 if (srcdev->can_discard)
1793 fs_info->fs_devices->num_can_discard--;
1794 if (srcdev->bdev) {
1795 fs_info->fs_devices->open_devices--;
1796
1797 /* zero out the old super */
1798 btrfs_scratch_superblock(srcdev);
1799 }
1800
1801 call_rcu(&srcdev->rcu, free_device);
1802 }
1803
1804 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1805 struct btrfs_device *tgtdev)
1806 {
1807 struct btrfs_device *next_device;
1808
1809 WARN_ON(!tgtdev);
1810 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1811 if (tgtdev->bdev) {
1812 btrfs_scratch_superblock(tgtdev);
1813 fs_info->fs_devices->open_devices--;
1814 }
1815 fs_info->fs_devices->num_devices--;
1816 if (tgtdev->can_discard)
1817 fs_info->fs_devices->num_can_discard++;
1818
1819 next_device = list_entry(fs_info->fs_devices->devices.next,
1820 struct btrfs_device, dev_list);
1821 if (tgtdev->bdev == fs_info->sb->s_bdev)
1822 fs_info->sb->s_bdev = next_device->bdev;
1823 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1824 fs_info->fs_devices->latest_bdev = next_device->bdev;
1825 list_del_rcu(&tgtdev->dev_list);
1826
1827 call_rcu(&tgtdev->rcu, free_device);
1828
1829 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1830 }
1831
1832 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1833 struct btrfs_device **device)
1834 {
1835 int ret = 0;
1836 struct btrfs_super_block *disk_super;
1837 u64 devid;
1838 u8 *dev_uuid;
1839 struct block_device *bdev;
1840 struct buffer_head *bh;
1841
1842 *device = NULL;
1843 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1844 root->fs_info->bdev_holder, 0, &bdev, &bh);
1845 if (ret)
1846 return ret;
1847 disk_super = (struct btrfs_super_block *)bh->b_data;
1848 devid = btrfs_stack_device_id(&disk_super->dev_item);
1849 dev_uuid = disk_super->dev_item.uuid;
1850 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1851 disk_super->fsid);
1852 brelse(bh);
1853 if (!*device)
1854 ret = -ENOENT;
1855 blkdev_put(bdev, FMODE_READ);
1856 return ret;
1857 }
1858
1859 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1860 char *device_path,
1861 struct btrfs_device **device)
1862 {
1863 *device = NULL;
1864 if (strcmp(device_path, "missing") == 0) {
1865 struct list_head *devices;
1866 struct btrfs_device *tmp;
1867
1868 devices = &root->fs_info->fs_devices->devices;
1869 /*
1870 * It is safe to read the devices since the volume_mutex
1871 * is held by the caller.
1872 */
1873 list_for_each_entry(tmp, devices, dev_list) {
1874 if (tmp->in_fs_metadata && !tmp->bdev) {
1875 *device = tmp;
1876 break;
1877 }
1878 }
1879
1880 if (!*device) {
1881 btrfs_err(root->fs_info, "no missing device found");
1882 return -ENOENT;
1883 }
1884
1885 return 0;
1886 } else {
1887 return btrfs_find_device_by_path(root, device_path, device);
1888 }
1889 }
1890
1891 /*
1892 * does all the dirty work required for changing file system's UUID.
1893 */
1894 static int btrfs_prepare_sprout(struct btrfs_root *root)
1895 {
1896 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1897 struct btrfs_fs_devices *old_devices;
1898 struct btrfs_fs_devices *seed_devices;
1899 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1900 struct btrfs_device *device;
1901 u64 super_flags;
1902
1903 BUG_ON(!mutex_is_locked(&uuid_mutex));
1904 if (!fs_devices->seeding)
1905 return -EINVAL;
1906
1907 seed_devices = __alloc_fs_devices();
1908 if (IS_ERR(seed_devices))
1909 return PTR_ERR(seed_devices);
1910
1911 old_devices = clone_fs_devices(fs_devices);
1912 if (IS_ERR(old_devices)) {
1913 kfree(seed_devices);
1914 return PTR_ERR(old_devices);
1915 }
1916
1917 list_add(&old_devices->list, &fs_uuids);
1918
1919 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1920 seed_devices->opened = 1;
1921 INIT_LIST_HEAD(&seed_devices->devices);
1922 INIT_LIST_HEAD(&seed_devices->alloc_list);
1923 mutex_init(&seed_devices->device_list_mutex);
1924
1925 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1926 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1927 synchronize_rcu);
1928
1929 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1930 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1931 device->fs_devices = seed_devices;
1932 }
1933
1934 fs_devices->seeding = 0;
1935 fs_devices->num_devices = 0;
1936 fs_devices->open_devices = 0;
1937 fs_devices->total_devices = 0;
1938 fs_devices->seed = seed_devices;
1939
1940 generate_random_uuid(fs_devices->fsid);
1941 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1942 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1943 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1944
1945 super_flags = btrfs_super_flags(disk_super) &
1946 ~BTRFS_SUPER_FLAG_SEEDING;
1947 btrfs_set_super_flags(disk_super, super_flags);
1948
1949 return 0;
1950 }
1951
1952 /*
1953 * strore the expected generation for seed devices in device items.
1954 */
1955 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1956 struct btrfs_root *root)
1957 {
1958 struct btrfs_path *path;
1959 struct extent_buffer *leaf;
1960 struct btrfs_dev_item *dev_item;
1961 struct btrfs_device *device;
1962 struct btrfs_key key;
1963 u8 fs_uuid[BTRFS_UUID_SIZE];
1964 u8 dev_uuid[BTRFS_UUID_SIZE];
1965 u64 devid;
1966 int ret;
1967
1968 path = btrfs_alloc_path();
1969 if (!path)
1970 return -ENOMEM;
1971
1972 root = root->fs_info->chunk_root;
1973 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1974 key.offset = 0;
1975 key.type = BTRFS_DEV_ITEM_KEY;
1976
1977 while (1) {
1978 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1979 if (ret < 0)
1980 goto error;
1981
1982 leaf = path->nodes[0];
1983 next_slot:
1984 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1985 ret = btrfs_next_leaf(root, path);
1986 if (ret > 0)
1987 break;
1988 if (ret < 0)
1989 goto error;
1990 leaf = path->nodes[0];
1991 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1992 btrfs_release_path(path);
1993 continue;
1994 }
1995
1996 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1997 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1998 key.type != BTRFS_DEV_ITEM_KEY)
1999 break;
2000
2001 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2002 struct btrfs_dev_item);
2003 devid = btrfs_device_id(leaf, dev_item);
2004 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2005 BTRFS_UUID_SIZE);
2006 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2007 BTRFS_UUID_SIZE);
2008 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2009 fs_uuid);
2010 BUG_ON(!device); /* Logic error */
2011
2012 if (device->fs_devices->seeding) {
2013 btrfs_set_device_generation(leaf, dev_item,
2014 device->generation);
2015 btrfs_mark_buffer_dirty(leaf);
2016 }
2017
2018 path->slots[0]++;
2019 goto next_slot;
2020 }
2021 ret = 0;
2022 error:
2023 btrfs_free_path(path);
2024 return ret;
2025 }
2026
2027 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2028 {
2029 struct request_queue *q;
2030 struct btrfs_trans_handle *trans;
2031 struct btrfs_device *device;
2032 struct block_device *bdev;
2033 struct list_head *devices;
2034 struct super_block *sb = root->fs_info->sb;
2035 struct rcu_string *name;
2036 u64 total_bytes;
2037 int seeding_dev = 0;
2038 int ret = 0;
2039
2040 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2041 return -EROFS;
2042
2043 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2044 root->fs_info->bdev_holder);
2045 if (IS_ERR(bdev))
2046 return PTR_ERR(bdev);
2047
2048 if (root->fs_info->fs_devices->seeding) {
2049 seeding_dev = 1;
2050 down_write(&sb->s_umount);
2051 mutex_lock(&uuid_mutex);
2052 }
2053
2054 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2055
2056 devices = &root->fs_info->fs_devices->devices;
2057
2058 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2059 list_for_each_entry(device, devices, dev_list) {
2060 if (device->bdev == bdev) {
2061 ret = -EEXIST;
2062 mutex_unlock(
2063 &root->fs_info->fs_devices->device_list_mutex);
2064 goto error;
2065 }
2066 }
2067 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2068
2069 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2070 if (IS_ERR(device)) {
2071 /* we can safely leave the fs_devices entry around */
2072 ret = PTR_ERR(device);
2073 goto error;
2074 }
2075
2076 name = rcu_string_strdup(device_path, GFP_NOFS);
2077 if (!name) {
2078 kfree(device);
2079 ret = -ENOMEM;
2080 goto error;
2081 }
2082 rcu_assign_pointer(device->name, name);
2083
2084 trans = btrfs_start_transaction(root, 0);
2085 if (IS_ERR(trans)) {
2086 rcu_string_free(device->name);
2087 kfree(device);
2088 ret = PTR_ERR(trans);
2089 goto error;
2090 }
2091
2092 lock_chunks(root);
2093
2094 q = bdev_get_queue(bdev);
2095 if (blk_queue_discard(q))
2096 device->can_discard = 1;
2097 device->writeable = 1;
2098 device->generation = trans->transid;
2099 device->io_width = root->sectorsize;
2100 device->io_align = root->sectorsize;
2101 device->sector_size = root->sectorsize;
2102 device->total_bytes = i_size_read(bdev->bd_inode);
2103 device->disk_total_bytes = device->total_bytes;
2104 device->dev_root = root->fs_info->dev_root;
2105 device->bdev = bdev;
2106 device->in_fs_metadata = 1;
2107 device->is_tgtdev_for_dev_replace = 0;
2108 device->mode = FMODE_EXCL;
2109 device->dev_stats_valid = 1;
2110 set_blocksize(device->bdev, 4096);
2111
2112 if (seeding_dev) {
2113 sb->s_flags &= ~MS_RDONLY;
2114 ret = btrfs_prepare_sprout(root);
2115 BUG_ON(ret); /* -ENOMEM */
2116 }
2117
2118 device->fs_devices = root->fs_info->fs_devices;
2119
2120 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2121 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2122 list_add(&device->dev_alloc_list,
2123 &root->fs_info->fs_devices->alloc_list);
2124 root->fs_info->fs_devices->num_devices++;
2125 root->fs_info->fs_devices->open_devices++;
2126 root->fs_info->fs_devices->rw_devices++;
2127 root->fs_info->fs_devices->total_devices++;
2128 if (device->can_discard)
2129 root->fs_info->fs_devices->num_can_discard++;
2130 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2131
2132 spin_lock(&root->fs_info->free_chunk_lock);
2133 root->fs_info->free_chunk_space += device->total_bytes;
2134 spin_unlock(&root->fs_info->free_chunk_lock);
2135
2136 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2137 root->fs_info->fs_devices->rotating = 1;
2138
2139 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2140 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2141 total_bytes + device->total_bytes);
2142
2143 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2144 btrfs_set_super_num_devices(root->fs_info->super_copy,
2145 total_bytes + 1);
2146 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2147
2148 if (seeding_dev) {
2149 ret = init_first_rw_device(trans, root, device);
2150 if (ret) {
2151 btrfs_abort_transaction(trans, root, ret);
2152 goto error_trans;
2153 }
2154 ret = btrfs_finish_sprout(trans, root);
2155 if (ret) {
2156 btrfs_abort_transaction(trans, root, ret);
2157 goto error_trans;
2158 }
2159 } else {
2160 ret = btrfs_add_device(trans, root, device);
2161 if (ret) {
2162 btrfs_abort_transaction(trans, root, ret);
2163 goto error_trans;
2164 }
2165 }
2166
2167 /*
2168 * we've got more storage, clear any full flags on the space
2169 * infos
2170 */
2171 btrfs_clear_space_info_full(root->fs_info);
2172
2173 unlock_chunks(root);
2174 root->fs_info->num_tolerated_disk_barrier_failures =
2175 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2176 ret = btrfs_commit_transaction(trans, root);
2177
2178 if (seeding_dev) {
2179 mutex_unlock(&uuid_mutex);
2180 up_write(&sb->s_umount);
2181
2182 if (ret) /* transaction commit */
2183 return ret;
2184
2185 ret = btrfs_relocate_sys_chunks(root);
2186 if (ret < 0)
2187 btrfs_error(root->fs_info, ret,
2188 "Failed to relocate sys chunks after "
2189 "device initialization. This can be fixed "
2190 "using the \"btrfs balance\" command.");
2191 trans = btrfs_attach_transaction(root);
2192 if (IS_ERR(trans)) {
2193 if (PTR_ERR(trans) == -ENOENT)
2194 return 0;
2195 return PTR_ERR(trans);
2196 }
2197 ret = btrfs_commit_transaction(trans, root);
2198 }
2199
2200 /* Update ctime/mtime for libblkid */
2201 update_dev_time(device_path);
2202 return ret;
2203
2204 error_trans:
2205 unlock_chunks(root);
2206 btrfs_end_transaction(trans, root);
2207 rcu_string_free(device->name);
2208 kfree(device);
2209 error:
2210 blkdev_put(bdev, FMODE_EXCL);
2211 if (seeding_dev) {
2212 mutex_unlock(&uuid_mutex);
2213 up_write(&sb->s_umount);
2214 }
2215 return ret;
2216 }
2217
2218 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2219 struct btrfs_device **device_out)
2220 {
2221 struct request_queue *q;
2222 struct btrfs_device *device;
2223 struct block_device *bdev;
2224 struct btrfs_fs_info *fs_info = root->fs_info;
2225 struct list_head *devices;
2226 struct rcu_string *name;
2227 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2228 int ret = 0;
2229
2230 *device_out = NULL;
2231 if (fs_info->fs_devices->seeding)
2232 return -EINVAL;
2233
2234 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2235 fs_info->bdev_holder);
2236 if (IS_ERR(bdev))
2237 return PTR_ERR(bdev);
2238
2239 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2240
2241 devices = &fs_info->fs_devices->devices;
2242 list_for_each_entry(device, devices, dev_list) {
2243 if (device->bdev == bdev) {
2244 ret = -EEXIST;
2245 goto error;
2246 }
2247 }
2248
2249 device = btrfs_alloc_device(NULL, &devid, NULL);
2250 if (IS_ERR(device)) {
2251 ret = PTR_ERR(device);
2252 goto error;
2253 }
2254
2255 name = rcu_string_strdup(device_path, GFP_NOFS);
2256 if (!name) {
2257 kfree(device);
2258 ret = -ENOMEM;
2259 goto error;
2260 }
2261 rcu_assign_pointer(device->name, name);
2262
2263 q = bdev_get_queue(bdev);
2264 if (blk_queue_discard(q))
2265 device->can_discard = 1;
2266 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2267 device->writeable = 1;
2268 device->generation = 0;
2269 device->io_width = root->sectorsize;
2270 device->io_align = root->sectorsize;
2271 device->sector_size = root->sectorsize;
2272 device->total_bytes = i_size_read(bdev->bd_inode);
2273 device->disk_total_bytes = device->total_bytes;
2274 device->dev_root = fs_info->dev_root;
2275 device->bdev = bdev;
2276 device->in_fs_metadata = 1;
2277 device->is_tgtdev_for_dev_replace = 1;
2278 device->mode = FMODE_EXCL;
2279 device->dev_stats_valid = 1;
2280 set_blocksize(device->bdev, 4096);
2281 device->fs_devices = fs_info->fs_devices;
2282 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2283 fs_info->fs_devices->num_devices++;
2284 fs_info->fs_devices->open_devices++;
2285 if (device->can_discard)
2286 fs_info->fs_devices->num_can_discard++;
2287 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2288
2289 *device_out = device;
2290 return ret;
2291
2292 error:
2293 blkdev_put(bdev, FMODE_EXCL);
2294 return ret;
2295 }
2296
2297 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2298 struct btrfs_device *tgtdev)
2299 {
2300 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2301 tgtdev->io_width = fs_info->dev_root->sectorsize;
2302 tgtdev->io_align = fs_info->dev_root->sectorsize;
2303 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2304 tgtdev->dev_root = fs_info->dev_root;
2305 tgtdev->in_fs_metadata = 1;
2306 }
2307
2308 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2309 struct btrfs_device *device)
2310 {
2311 int ret;
2312 struct btrfs_path *path;
2313 struct btrfs_root *root;
2314 struct btrfs_dev_item *dev_item;
2315 struct extent_buffer *leaf;
2316 struct btrfs_key key;
2317
2318 root = device->dev_root->fs_info->chunk_root;
2319
2320 path = btrfs_alloc_path();
2321 if (!path)
2322 return -ENOMEM;
2323
2324 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2325 key.type = BTRFS_DEV_ITEM_KEY;
2326 key.offset = device->devid;
2327
2328 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2329 if (ret < 0)
2330 goto out;
2331
2332 if (ret > 0) {
2333 ret = -ENOENT;
2334 goto out;
2335 }
2336
2337 leaf = path->nodes[0];
2338 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2339
2340 btrfs_set_device_id(leaf, dev_item, device->devid);
2341 btrfs_set_device_type(leaf, dev_item, device->type);
2342 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2343 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2344 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2345 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
2346 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2347 btrfs_mark_buffer_dirty(leaf);
2348
2349 out:
2350 btrfs_free_path(path);
2351 return ret;
2352 }
2353
2354 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
2355 struct btrfs_device *device, u64 new_size)
2356 {
2357 struct btrfs_super_block *super_copy =
2358 device->dev_root->fs_info->super_copy;
2359 u64 old_total = btrfs_super_total_bytes(super_copy);
2360 u64 diff = new_size - device->total_bytes;
2361
2362 if (!device->writeable)
2363 return -EACCES;
2364 if (new_size <= device->total_bytes ||
2365 device->is_tgtdev_for_dev_replace)
2366 return -EINVAL;
2367
2368 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2369 device->fs_devices->total_rw_bytes += diff;
2370
2371 device->total_bytes = new_size;
2372 device->disk_total_bytes = new_size;
2373 btrfs_clear_space_info_full(device->dev_root->fs_info);
2374
2375 return btrfs_update_device(trans, device);
2376 }
2377
2378 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2379 struct btrfs_device *device, u64 new_size)
2380 {
2381 int ret;
2382 lock_chunks(device->dev_root);
2383 ret = __btrfs_grow_device(trans, device, new_size);
2384 unlock_chunks(device->dev_root);
2385 return ret;
2386 }
2387
2388 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2389 struct btrfs_root *root,
2390 u64 chunk_tree, u64 chunk_objectid,
2391 u64 chunk_offset)
2392 {
2393 int ret;
2394 struct btrfs_path *path;
2395 struct btrfs_key key;
2396
2397 root = root->fs_info->chunk_root;
2398 path = btrfs_alloc_path();
2399 if (!path)
2400 return -ENOMEM;
2401
2402 key.objectid = chunk_objectid;
2403 key.offset = chunk_offset;
2404 key.type = BTRFS_CHUNK_ITEM_KEY;
2405
2406 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2407 if (ret < 0)
2408 goto out;
2409 else if (ret > 0) { /* Logic error or corruption */
2410 btrfs_error(root->fs_info, -ENOENT,
2411 "Failed lookup while freeing chunk.");
2412 ret = -ENOENT;
2413 goto out;
2414 }
2415
2416 ret = btrfs_del_item(trans, root, path);
2417 if (ret < 0)
2418 btrfs_error(root->fs_info, ret,
2419 "Failed to delete chunk item.");
2420 out:
2421 btrfs_free_path(path);
2422 return ret;
2423 }
2424
2425 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2426 chunk_offset)
2427 {
2428 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2429 struct btrfs_disk_key *disk_key;
2430 struct btrfs_chunk *chunk;
2431 u8 *ptr;
2432 int ret = 0;
2433 u32 num_stripes;
2434 u32 array_size;
2435 u32 len = 0;
2436 u32 cur;
2437 struct btrfs_key key;
2438
2439 array_size = btrfs_super_sys_array_size(super_copy);
2440
2441 ptr = super_copy->sys_chunk_array;
2442 cur = 0;
2443
2444 while (cur < array_size) {
2445 disk_key = (struct btrfs_disk_key *)ptr;
2446 btrfs_disk_key_to_cpu(&key, disk_key);
2447
2448 len = sizeof(*disk_key);
2449
2450 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2451 chunk = (struct btrfs_chunk *)(ptr + len);
2452 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2453 len += btrfs_chunk_item_size(num_stripes);
2454 } else {
2455 ret = -EIO;
2456 break;
2457 }
2458 if (key.objectid == chunk_objectid &&
2459 key.offset == chunk_offset) {
2460 memmove(ptr, ptr + len, array_size - (cur + len));
2461 array_size -= len;
2462 btrfs_set_super_sys_array_size(super_copy, array_size);
2463 } else {
2464 ptr += len;
2465 cur += len;
2466 }
2467 }
2468 return ret;
2469 }
2470
2471 static int btrfs_relocate_chunk(struct btrfs_root *root,
2472 u64 chunk_tree, u64 chunk_objectid,
2473 u64 chunk_offset)
2474 {
2475 struct extent_map_tree *em_tree;
2476 struct btrfs_root *extent_root;
2477 struct btrfs_trans_handle *trans;
2478 struct extent_map *em;
2479 struct map_lookup *map;
2480 int ret;
2481 int i;
2482
2483 root = root->fs_info->chunk_root;
2484 extent_root = root->fs_info->extent_root;
2485 em_tree = &root->fs_info->mapping_tree.map_tree;
2486
2487 ret = btrfs_can_relocate(extent_root, chunk_offset);
2488 if (ret)
2489 return -ENOSPC;
2490
2491 /* step one, relocate all the extents inside this chunk */
2492 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2493 if (ret)
2494 return ret;
2495
2496 trans = btrfs_start_transaction(root, 0);
2497 if (IS_ERR(trans)) {
2498 ret = PTR_ERR(trans);
2499 btrfs_std_error(root->fs_info, ret);
2500 return ret;
2501 }
2502
2503 lock_chunks(root);
2504
2505 /*
2506 * step two, delete the device extents and the
2507 * chunk tree entries
2508 */
2509 read_lock(&em_tree->lock);
2510 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2511 read_unlock(&em_tree->lock);
2512
2513 BUG_ON(!em || em->start > chunk_offset ||
2514 em->start + em->len < chunk_offset);
2515 map = (struct map_lookup *)em->bdev;
2516
2517 for (i = 0; i < map->num_stripes; i++) {
2518 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2519 map->stripes[i].physical);
2520 BUG_ON(ret);
2521
2522 if (map->stripes[i].dev) {
2523 ret = btrfs_update_device(trans, map->stripes[i].dev);
2524 BUG_ON(ret);
2525 }
2526 }
2527 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2528 chunk_offset);
2529
2530 BUG_ON(ret);
2531
2532 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2533
2534 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2535 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2536 BUG_ON(ret);
2537 }
2538
2539 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2540 BUG_ON(ret);
2541
2542 write_lock(&em_tree->lock);
2543 remove_extent_mapping(em_tree, em);
2544 write_unlock(&em_tree->lock);
2545
2546 kfree(map);
2547 em->bdev = NULL;
2548
2549 /* once for the tree */
2550 free_extent_map(em);
2551 /* once for us */
2552 free_extent_map(em);
2553
2554 unlock_chunks(root);
2555 btrfs_end_transaction(trans, root);
2556 return 0;
2557 }
2558
2559 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2560 {
2561 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2562 struct btrfs_path *path;
2563 struct extent_buffer *leaf;
2564 struct btrfs_chunk *chunk;
2565 struct btrfs_key key;
2566 struct btrfs_key found_key;
2567 u64 chunk_tree = chunk_root->root_key.objectid;
2568 u64 chunk_type;
2569 bool retried = false;
2570 int failed = 0;
2571 int ret;
2572
2573 path = btrfs_alloc_path();
2574 if (!path)
2575 return -ENOMEM;
2576
2577 again:
2578 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2579 key.offset = (u64)-1;
2580 key.type = BTRFS_CHUNK_ITEM_KEY;
2581
2582 while (1) {
2583 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2584 if (ret < 0)
2585 goto error;
2586 BUG_ON(ret == 0); /* Corruption */
2587
2588 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2589 key.type);
2590 if (ret < 0)
2591 goto error;
2592 if (ret > 0)
2593 break;
2594
2595 leaf = path->nodes[0];
2596 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2597
2598 chunk = btrfs_item_ptr(leaf, path->slots[0],
2599 struct btrfs_chunk);
2600 chunk_type = btrfs_chunk_type(leaf, chunk);
2601 btrfs_release_path(path);
2602
2603 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2604 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2605 found_key.objectid,
2606 found_key.offset);
2607 if (ret == -ENOSPC)
2608 failed++;
2609 else if (ret)
2610 BUG();
2611 }
2612
2613 if (found_key.offset == 0)
2614 break;
2615 key.offset = found_key.offset - 1;
2616 }
2617 ret = 0;
2618 if (failed && !retried) {
2619 failed = 0;
2620 retried = true;
2621 goto again;
2622 } else if (WARN_ON(failed && retried)) {
2623 ret = -ENOSPC;
2624 }
2625 error:
2626 btrfs_free_path(path);
2627 return ret;
2628 }
2629
2630 static int insert_balance_item(struct btrfs_root *root,
2631 struct btrfs_balance_control *bctl)
2632 {
2633 struct btrfs_trans_handle *trans;
2634 struct btrfs_balance_item *item;
2635 struct btrfs_disk_balance_args disk_bargs;
2636 struct btrfs_path *path;
2637 struct extent_buffer *leaf;
2638 struct btrfs_key key;
2639 int ret, err;
2640
2641 path = btrfs_alloc_path();
2642 if (!path)
2643 return -ENOMEM;
2644
2645 trans = btrfs_start_transaction(root, 0);
2646 if (IS_ERR(trans)) {
2647 btrfs_free_path(path);
2648 return PTR_ERR(trans);
2649 }
2650
2651 key.objectid = BTRFS_BALANCE_OBJECTID;
2652 key.type = BTRFS_BALANCE_ITEM_KEY;
2653 key.offset = 0;
2654
2655 ret = btrfs_insert_empty_item(trans, root, path, &key,
2656 sizeof(*item));
2657 if (ret)
2658 goto out;
2659
2660 leaf = path->nodes[0];
2661 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2662
2663 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2664
2665 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2666 btrfs_set_balance_data(leaf, item, &disk_bargs);
2667 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2668 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2669 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2670 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2671
2672 btrfs_set_balance_flags(leaf, item, bctl->flags);
2673
2674 btrfs_mark_buffer_dirty(leaf);
2675 out:
2676 btrfs_free_path(path);
2677 err = btrfs_commit_transaction(trans, root);
2678 if (err && !ret)
2679 ret = err;
2680 return ret;
2681 }
2682
2683 static int del_balance_item(struct btrfs_root *root)
2684 {
2685 struct btrfs_trans_handle *trans;
2686 struct btrfs_path *path;
2687 struct btrfs_key key;
2688 int ret, err;
2689
2690 path = btrfs_alloc_path();
2691 if (!path)
2692 return -ENOMEM;
2693
2694 trans = btrfs_start_transaction(root, 0);
2695 if (IS_ERR(trans)) {
2696 btrfs_free_path(path);
2697 return PTR_ERR(trans);
2698 }
2699
2700 key.objectid = BTRFS_BALANCE_OBJECTID;
2701 key.type = BTRFS_BALANCE_ITEM_KEY;
2702 key.offset = 0;
2703
2704 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2705 if (ret < 0)
2706 goto out;
2707 if (ret > 0) {
2708 ret = -ENOENT;
2709 goto out;
2710 }
2711
2712 ret = btrfs_del_item(trans, root, path);
2713 out:
2714 btrfs_free_path(path);
2715 err = btrfs_commit_transaction(trans, root);
2716 if (err && !ret)
2717 ret = err;
2718 return ret;
2719 }
2720
2721 /*
2722 * This is a heuristic used to reduce the number of chunks balanced on
2723 * resume after balance was interrupted.
2724 */
2725 static void update_balance_args(struct btrfs_balance_control *bctl)
2726 {
2727 /*
2728 * Turn on soft mode for chunk types that were being converted.
2729 */
2730 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2731 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2732 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2733 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2734 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2735 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2736
2737 /*
2738 * Turn on usage filter if is not already used. The idea is
2739 * that chunks that we have already balanced should be
2740 * reasonably full. Don't do it for chunks that are being
2741 * converted - that will keep us from relocating unconverted
2742 * (albeit full) chunks.
2743 */
2744 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2745 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2746 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2747 bctl->data.usage = 90;
2748 }
2749 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2750 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2751 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2752 bctl->sys.usage = 90;
2753 }
2754 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2755 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2756 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2757 bctl->meta.usage = 90;
2758 }
2759 }
2760
2761 /*
2762 * Should be called with both balance and volume mutexes held to
2763 * serialize other volume operations (add_dev/rm_dev/resize) with
2764 * restriper. Same goes for unset_balance_control.
2765 */
2766 static void set_balance_control(struct btrfs_balance_control *bctl)
2767 {
2768 struct btrfs_fs_info *fs_info = bctl->fs_info;
2769
2770 BUG_ON(fs_info->balance_ctl);
2771
2772 spin_lock(&fs_info->balance_lock);
2773 fs_info->balance_ctl = bctl;
2774 spin_unlock(&fs_info->balance_lock);
2775 }
2776
2777 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2778 {
2779 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2780
2781 BUG_ON(!fs_info->balance_ctl);
2782
2783 spin_lock(&fs_info->balance_lock);
2784 fs_info->balance_ctl = NULL;
2785 spin_unlock(&fs_info->balance_lock);
2786
2787 kfree(bctl);
2788 }
2789
2790 /*
2791 * Balance filters. Return 1 if chunk should be filtered out
2792 * (should not be balanced).
2793 */
2794 static int chunk_profiles_filter(u64 chunk_type,
2795 struct btrfs_balance_args *bargs)
2796 {
2797 chunk_type = chunk_to_extended(chunk_type) &
2798 BTRFS_EXTENDED_PROFILE_MASK;
2799
2800 if (bargs->profiles & chunk_type)
2801 return 0;
2802
2803 return 1;
2804 }
2805
2806 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2807 struct btrfs_balance_args *bargs)
2808 {
2809 struct btrfs_block_group_cache *cache;
2810 u64 chunk_used, user_thresh;
2811 int ret = 1;
2812
2813 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2814 chunk_used = btrfs_block_group_used(&cache->item);
2815
2816 if (bargs->usage == 0)
2817 user_thresh = 1;
2818 else if (bargs->usage > 100)
2819 user_thresh = cache->key.offset;
2820 else
2821 user_thresh = div_factor_fine(cache->key.offset,
2822 bargs->usage);
2823
2824 if (chunk_used < user_thresh)
2825 ret = 0;
2826
2827 btrfs_put_block_group(cache);
2828 return ret;
2829 }
2830
2831 static int chunk_devid_filter(struct extent_buffer *leaf,
2832 struct btrfs_chunk *chunk,
2833 struct btrfs_balance_args *bargs)
2834 {
2835 struct btrfs_stripe *stripe;
2836 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2837 int i;
2838
2839 for (i = 0; i < num_stripes; i++) {
2840 stripe = btrfs_stripe_nr(chunk, i);
2841 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2842 return 0;
2843 }
2844
2845 return 1;
2846 }
2847
2848 /* [pstart, pend) */
2849 static int chunk_drange_filter(struct extent_buffer *leaf,
2850 struct btrfs_chunk *chunk,
2851 u64 chunk_offset,
2852 struct btrfs_balance_args *bargs)
2853 {
2854 struct btrfs_stripe *stripe;
2855 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2856 u64 stripe_offset;
2857 u64 stripe_length;
2858 int factor;
2859 int i;
2860
2861 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2862 return 0;
2863
2864 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2865 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2866 factor = num_stripes / 2;
2867 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2868 factor = num_stripes - 1;
2869 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2870 factor = num_stripes - 2;
2871 } else {
2872 factor = num_stripes;
2873 }
2874
2875 for (i = 0; i < num_stripes; i++) {
2876 stripe = btrfs_stripe_nr(chunk, i);
2877 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2878 continue;
2879
2880 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2881 stripe_length = btrfs_chunk_length(leaf, chunk);
2882 do_div(stripe_length, factor);
2883
2884 if (stripe_offset < bargs->pend &&
2885 stripe_offset + stripe_length > bargs->pstart)
2886 return 0;
2887 }
2888
2889 return 1;
2890 }
2891
2892 /* [vstart, vend) */
2893 static int chunk_vrange_filter(struct extent_buffer *leaf,
2894 struct btrfs_chunk *chunk,
2895 u64 chunk_offset,
2896 struct btrfs_balance_args *bargs)
2897 {
2898 if (chunk_offset < bargs->vend &&
2899 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2900 /* at least part of the chunk is inside this vrange */
2901 return 0;
2902
2903 return 1;
2904 }
2905
2906 static int chunk_soft_convert_filter(u64 chunk_type,
2907 struct btrfs_balance_args *bargs)
2908 {
2909 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2910 return 0;
2911
2912 chunk_type = chunk_to_extended(chunk_type) &
2913 BTRFS_EXTENDED_PROFILE_MASK;
2914
2915 if (bargs->target == chunk_type)
2916 return 1;
2917
2918 return 0;
2919 }
2920
2921 static int should_balance_chunk(struct btrfs_root *root,
2922 struct extent_buffer *leaf,
2923 struct btrfs_chunk *chunk, u64 chunk_offset)
2924 {
2925 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2926 struct btrfs_balance_args *bargs = NULL;
2927 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2928
2929 /* type filter */
2930 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2931 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2932 return 0;
2933 }
2934
2935 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2936 bargs = &bctl->data;
2937 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2938 bargs = &bctl->sys;
2939 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2940 bargs = &bctl->meta;
2941
2942 /* profiles filter */
2943 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2944 chunk_profiles_filter(chunk_type, bargs)) {
2945 return 0;
2946 }
2947
2948 /* usage filter */
2949 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2950 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2951 return 0;
2952 }
2953
2954 /* devid filter */
2955 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2956 chunk_devid_filter(leaf, chunk, bargs)) {
2957 return 0;
2958 }
2959
2960 /* drange filter, makes sense only with devid filter */
2961 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2962 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2963 return 0;
2964 }
2965
2966 /* vrange filter */
2967 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2968 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2969 return 0;
2970 }
2971
2972 /* soft profile changing mode */
2973 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2974 chunk_soft_convert_filter(chunk_type, bargs)) {
2975 return 0;
2976 }
2977
2978 /*
2979 * limited by count, must be the last filter
2980 */
2981 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
2982 if (bargs->limit == 0)
2983 return 0;
2984 else
2985 bargs->limit--;
2986 }
2987
2988 return 1;
2989 }
2990
2991 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2992 {
2993 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2994 struct btrfs_root *chunk_root = fs_info->chunk_root;
2995 struct btrfs_root *dev_root = fs_info->dev_root;
2996 struct list_head *devices;
2997 struct btrfs_device *device;
2998 u64 old_size;
2999 u64 size_to_free;
3000 struct btrfs_chunk *chunk;
3001 struct btrfs_path *path;
3002 struct btrfs_key key;
3003 struct btrfs_key found_key;
3004 struct btrfs_trans_handle *trans;
3005 struct extent_buffer *leaf;
3006 int slot;
3007 int ret;
3008 int enospc_errors = 0;
3009 bool counting = true;
3010 u64 limit_data = bctl->data.limit;
3011 u64 limit_meta = bctl->meta.limit;
3012 u64 limit_sys = bctl->sys.limit;
3013
3014 /* step one make some room on all the devices */
3015 devices = &fs_info->fs_devices->devices;
3016 list_for_each_entry(device, devices, dev_list) {
3017 old_size = device->total_bytes;
3018 size_to_free = div_factor(old_size, 1);
3019 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3020 if (!device->writeable ||
3021 device->total_bytes - device->bytes_used > size_to_free ||
3022 device->is_tgtdev_for_dev_replace)
3023 continue;
3024
3025 ret = btrfs_shrink_device(device, old_size - size_to_free);
3026 if (ret == -ENOSPC)
3027 break;
3028 BUG_ON(ret);
3029
3030 trans = btrfs_start_transaction(dev_root, 0);
3031 BUG_ON(IS_ERR(trans));
3032
3033 ret = btrfs_grow_device(trans, device, old_size);
3034 BUG_ON(ret);
3035
3036 btrfs_end_transaction(trans, dev_root);
3037 }
3038
3039 /* step two, relocate all the chunks */
3040 path = btrfs_alloc_path();
3041 if (!path) {
3042 ret = -ENOMEM;
3043 goto error;
3044 }
3045
3046 /* zero out stat counters */
3047 spin_lock(&fs_info->balance_lock);
3048 memset(&bctl->stat, 0, sizeof(bctl->stat));
3049 spin_unlock(&fs_info->balance_lock);
3050 again:
3051 if (!counting) {
3052 bctl->data.limit = limit_data;
3053 bctl->meta.limit = limit_meta;
3054 bctl->sys.limit = limit_sys;
3055 }
3056 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3057 key.offset = (u64)-1;
3058 key.type = BTRFS_CHUNK_ITEM_KEY;
3059
3060 while (1) {
3061 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3062 atomic_read(&fs_info->balance_cancel_req)) {
3063 ret = -ECANCELED;
3064 goto error;
3065 }
3066
3067 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3068 if (ret < 0)
3069 goto error;
3070
3071 /*
3072 * this shouldn't happen, it means the last relocate
3073 * failed
3074 */
3075 if (ret == 0)
3076 BUG(); /* FIXME break ? */
3077
3078 ret = btrfs_previous_item(chunk_root, path, 0,
3079 BTRFS_CHUNK_ITEM_KEY);
3080 if (ret) {
3081 ret = 0;
3082 break;
3083 }
3084
3085 leaf = path->nodes[0];
3086 slot = path->slots[0];
3087 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3088
3089 if (found_key.objectid != key.objectid)
3090 break;
3091
3092 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3093
3094 if (!counting) {
3095 spin_lock(&fs_info->balance_lock);
3096 bctl->stat.considered++;
3097 spin_unlock(&fs_info->balance_lock);
3098 }
3099
3100 ret = should_balance_chunk(chunk_root, leaf, chunk,
3101 found_key.offset);
3102 btrfs_release_path(path);
3103 if (!ret)
3104 goto loop;
3105
3106 if (counting) {
3107 spin_lock(&fs_info->balance_lock);
3108 bctl->stat.expected++;
3109 spin_unlock(&fs_info->balance_lock);
3110 goto loop;
3111 }
3112
3113 ret = btrfs_relocate_chunk(chunk_root,
3114 chunk_root->root_key.objectid,
3115 found_key.objectid,
3116 found_key.offset);
3117 if (ret && ret != -ENOSPC)
3118 goto error;
3119 if (ret == -ENOSPC) {
3120 enospc_errors++;
3121 } else {
3122 spin_lock(&fs_info->balance_lock);
3123 bctl->stat.completed++;
3124 spin_unlock(&fs_info->balance_lock);
3125 }
3126 loop:
3127 if (found_key.offset == 0)
3128 break;
3129 key.offset = found_key.offset - 1;
3130 }
3131
3132 if (counting) {
3133 btrfs_release_path(path);
3134 counting = false;
3135 goto again;
3136 }
3137 error:
3138 btrfs_free_path(path);
3139 if (enospc_errors) {
3140 btrfs_info(fs_info, "%d enospc errors during balance",
3141 enospc_errors);
3142 if (!ret)
3143 ret = -ENOSPC;
3144 }
3145
3146 return ret;
3147 }
3148
3149 /**
3150 * alloc_profile_is_valid - see if a given profile is valid and reduced
3151 * @flags: profile to validate
3152 * @extended: if true @flags is treated as an extended profile
3153 */
3154 static int alloc_profile_is_valid(u64 flags, int extended)
3155 {
3156 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3157 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3158
3159 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3160
3161 /* 1) check that all other bits are zeroed */
3162 if (flags & ~mask)
3163 return 0;
3164
3165 /* 2) see if profile is reduced */
3166 if (flags == 0)
3167 return !extended; /* "0" is valid for usual profiles */
3168
3169 /* true if exactly one bit set */
3170 return (flags & (flags - 1)) == 0;
3171 }
3172
3173 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3174 {
3175 /* cancel requested || normal exit path */
3176 return atomic_read(&fs_info->balance_cancel_req) ||
3177 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3178 atomic_read(&fs_info->balance_cancel_req) == 0);
3179 }
3180
3181 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3182 {
3183 int ret;
3184
3185 unset_balance_control(fs_info);
3186 ret = del_balance_item(fs_info->tree_root);
3187 if (ret)
3188 btrfs_std_error(fs_info, ret);
3189
3190 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3191 }
3192
3193 /*
3194 * Should be called with both balance and volume mutexes held
3195 */
3196 int btrfs_balance(struct btrfs_balance_control *bctl,
3197 struct btrfs_ioctl_balance_args *bargs)
3198 {
3199 struct btrfs_fs_info *fs_info = bctl->fs_info;
3200 u64 allowed;
3201 int mixed = 0;
3202 int ret;
3203 u64 num_devices;
3204 unsigned seq;
3205
3206 if (btrfs_fs_closing(fs_info) ||
3207 atomic_read(&fs_info->balance_pause_req) ||
3208 atomic_read(&fs_info->balance_cancel_req)) {
3209 ret = -EINVAL;
3210 goto out;
3211 }
3212
3213 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3214 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3215 mixed = 1;
3216
3217 /*
3218 * In case of mixed groups both data and meta should be picked,
3219 * and identical options should be given for both of them.
3220 */
3221 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3222 if (mixed && (bctl->flags & allowed)) {
3223 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3224 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3225 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3226 btrfs_err(fs_info, "with mixed groups data and "
3227 "metadata balance options must be the same");
3228 ret = -EINVAL;
3229 goto out;
3230 }
3231 }
3232
3233 num_devices = fs_info->fs_devices->num_devices;
3234 btrfs_dev_replace_lock(&fs_info->dev_replace);
3235 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3236 BUG_ON(num_devices < 1);
3237 num_devices--;
3238 }
3239 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3240 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3241 if (num_devices == 1)
3242 allowed |= BTRFS_BLOCK_GROUP_DUP;
3243 else if (num_devices > 1)
3244 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3245 if (num_devices > 2)
3246 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3247 if (num_devices > 3)
3248 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3249 BTRFS_BLOCK_GROUP_RAID6);
3250 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3251 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3252 (bctl->data.target & ~allowed))) {
3253 btrfs_err(fs_info, "unable to start balance with target "
3254 "data profile %llu",
3255 bctl->data.target);
3256 ret = -EINVAL;
3257 goto out;
3258 }
3259 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3260 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3261 (bctl->meta.target & ~allowed))) {
3262 btrfs_err(fs_info,
3263 "unable to start balance with target metadata profile %llu",
3264 bctl->meta.target);
3265 ret = -EINVAL;
3266 goto out;
3267 }
3268 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3269 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3270 (bctl->sys.target & ~allowed))) {
3271 btrfs_err(fs_info,
3272 "unable to start balance with target system profile %llu",
3273 bctl->sys.target);
3274 ret = -EINVAL;
3275 goto out;
3276 }
3277
3278 /* allow dup'ed data chunks only in mixed mode */
3279 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3280 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3281 btrfs_err(fs_info, "dup for data is not allowed");
3282 ret = -EINVAL;
3283 goto out;
3284 }
3285
3286 /* allow to reduce meta or sys integrity only if force set */
3287 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3288 BTRFS_BLOCK_GROUP_RAID10 |
3289 BTRFS_BLOCK_GROUP_RAID5 |
3290 BTRFS_BLOCK_GROUP_RAID6;
3291 do {
3292 seq = read_seqbegin(&fs_info->profiles_lock);
3293
3294 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3295 (fs_info->avail_system_alloc_bits & allowed) &&
3296 !(bctl->sys.target & allowed)) ||
3297 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3298 (fs_info->avail_metadata_alloc_bits & allowed) &&
3299 !(bctl->meta.target & allowed))) {
3300 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3301 btrfs_info(fs_info, "force reducing metadata integrity");
3302 } else {
3303 btrfs_err(fs_info, "balance will reduce metadata "
3304 "integrity, use force if you want this");
3305 ret = -EINVAL;
3306 goto out;
3307 }
3308 }
3309 } while (read_seqretry(&fs_info->profiles_lock, seq));
3310
3311 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3312 int num_tolerated_disk_barrier_failures;
3313 u64 target = bctl->sys.target;
3314
3315 num_tolerated_disk_barrier_failures =
3316 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3317 if (num_tolerated_disk_barrier_failures > 0 &&
3318 (target &
3319 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3320 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3321 num_tolerated_disk_barrier_failures = 0;
3322 else if (num_tolerated_disk_barrier_failures > 1 &&
3323 (target &
3324 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3325 num_tolerated_disk_barrier_failures = 1;
3326
3327 fs_info->num_tolerated_disk_barrier_failures =
3328 num_tolerated_disk_barrier_failures;
3329 }
3330
3331 ret = insert_balance_item(fs_info->tree_root, bctl);
3332 if (ret && ret != -EEXIST)
3333 goto out;
3334
3335 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3336 BUG_ON(ret == -EEXIST);
3337 set_balance_control(bctl);
3338 } else {
3339 BUG_ON(ret != -EEXIST);
3340 spin_lock(&fs_info->balance_lock);
3341 update_balance_args(bctl);
3342 spin_unlock(&fs_info->balance_lock);
3343 }
3344
3345 atomic_inc(&fs_info->balance_running);
3346 mutex_unlock(&fs_info->balance_mutex);
3347
3348 ret = __btrfs_balance(fs_info);
3349
3350 mutex_lock(&fs_info->balance_mutex);
3351 atomic_dec(&fs_info->balance_running);
3352
3353 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3354 fs_info->num_tolerated_disk_barrier_failures =
3355 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3356 }
3357
3358 if (bargs) {
3359 memset(bargs, 0, sizeof(*bargs));
3360 update_ioctl_balance_args(fs_info, 0, bargs);
3361 }
3362
3363 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3364 balance_need_close(fs_info)) {
3365 __cancel_balance(fs_info);
3366 }
3367
3368 wake_up(&fs_info->balance_wait_q);
3369
3370 return ret;
3371 out:
3372 if (bctl->flags & BTRFS_BALANCE_RESUME)
3373 __cancel_balance(fs_info);
3374 else {
3375 kfree(bctl);
3376 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3377 }
3378 return ret;
3379 }
3380
3381 static int balance_kthread(void *data)
3382 {
3383 struct btrfs_fs_info *fs_info = data;
3384 int ret = 0;
3385
3386 mutex_lock(&fs_info->volume_mutex);
3387 mutex_lock(&fs_info->balance_mutex);
3388
3389 if (fs_info->balance_ctl) {
3390 btrfs_info(fs_info, "continuing balance");
3391 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3392 }
3393
3394 mutex_unlock(&fs_info->balance_mutex);
3395 mutex_unlock(&fs_info->volume_mutex);
3396
3397 return ret;
3398 }
3399
3400 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3401 {
3402 struct task_struct *tsk;
3403
3404 spin_lock(&fs_info->balance_lock);
3405 if (!fs_info->balance_ctl) {
3406 spin_unlock(&fs_info->balance_lock);
3407 return 0;
3408 }
3409 spin_unlock(&fs_info->balance_lock);
3410
3411 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3412 btrfs_info(fs_info, "force skipping balance");
3413 return 0;
3414 }
3415
3416 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3417 return PTR_ERR_OR_ZERO(tsk);
3418 }
3419
3420 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3421 {
3422 struct btrfs_balance_control *bctl;
3423 struct btrfs_balance_item *item;
3424 struct btrfs_disk_balance_args disk_bargs;
3425 struct btrfs_path *path;
3426 struct extent_buffer *leaf;
3427 struct btrfs_key key;
3428 int ret;
3429
3430 path = btrfs_alloc_path();
3431 if (!path)
3432 return -ENOMEM;
3433
3434 key.objectid = BTRFS_BALANCE_OBJECTID;
3435 key.type = BTRFS_BALANCE_ITEM_KEY;
3436 key.offset = 0;
3437
3438 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3439 if (ret < 0)
3440 goto out;
3441 if (ret > 0) { /* ret = -ENOENT; */
3442 ret = 0;
3443 goto out;
3444 }
3445
3446 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3447 if (!bctl) {
3448 ret = -ENOMEM;
3449 goto out;
3450 }
3451
3452 leaf = path->nodes[0];
3453 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3454
3455 bctl->fs_info = fs_info;
3456 bctl->flags = btrfs_balance_flags(leaf, item);
3457 bctl->flags |= BTRFS_BALANCE_RESUME;
3458
3459 btrfs_balance_data(leaf, item, &disk_bargs);
3460 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3461 btrfs_balance_meta(leaf, item, &disk_bargs);
3462 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3463 btrfs_balance_sys(leaf, item, &disk_bargs);
3464 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3465
3466 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3467
3468 mutex_lock(&fs_info->volume_mutex);
3469 mutex_lock(&fs_info->balance_mutex);
3470
3471 set_balance_control(bctl);
3472
3473 mutex_unlock(&fs_info->balance_mutex);
3474 mutex_unlock(&fs_info->volume_mutex);
3475 out:
3476 btrfs_free_path(path);
3477 return ret;
3478 }
3479
3480 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3481 {
3482 int ret = 0;
3483
3484 mutex_lock(&fs_info->balance_mutex);
3485 if (!fs_info->balance_ctl) {
3486 mutex_unlock(&fs_info->balance_mutex);
3487 return -ENOTCONN;
3488 }
3489
3490 if (atomic_read(&fs_info->balance_running)) {
3491 atomic_inc(&fs_info->balance_pause_req);
3492 mutex_unlock(&fs_info->balance_mutex);
3493
3494 wait_event(fs_info->balance_wait_q,
3495 atomic_read(&fs_info->balance_running) == 0);
3496
3497 mutex_lock(&fs_info->balance_mutex);
3498 /* we are good with balance_ctl ripped off from under us */
3499 BUG_ON(atomic_read(&fs_info->balance_running));
3500 atomic_dec(&fs_info->balance_pause_req);
3501 } else {
3502 ret = -ENOTCONN;
3503 }
3504
3505 mutex_unlock(&fs_info->balance_mutex);
3506 return ret;
3507 }
3508
3509 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3510 {
3511 if (fs_info->sb->s_flags & MS_RDONLY)
3512 return -EROFS;
3513
3514 mutex_lock(&fs_info->balance_mutex);
3515 if (!fs_info->balance_ctl) {
3516 mutex_unlock(&fs_info->balance_mutex);
3517 return -ENOTCONN;
3518 }
3519
3520 atomic_inc(&fs_info->balance_cancel_req);
3521 /*
3522 * if we are running just wait and return, balance item is
3523 * deleted in btrfs_balance in this case
3524 */
3525 if (atomic_read(&fs_info->balance_running)) {
3526 mutex_unlock(&fs_info->balance_mutex);
3527 wait_event(fs_info->balance_wait_q,
3528 atomic_read(&fs_info->balance_running) == 0);
3529 mutex_lock(&fs_info->balance_mutex);
3530 } else {
3531 /* __cancel_balance needs volume_mutex */
3532 mutex_unlock(&fs_info->balance_mutex);
3533 mutex_lock(&fs_info->volume_mutex);
3534 mutex_lock(&fs_info->balance_mutex);
3535
3536 if (fs_info->balance_ctl)
3537 __cancel_balance(fs_info);
3538
3539 mutex_unlock(&fs_info->volume_mutex);
3540 }
3541
3542 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3543 atomic_dec(&fs_info->balance_cancel_req);
3544 mutex_unlock(&fs_info->balance_mutex);
3545 return 0;
3546 }
3547
3548 static int btrfs_uuid_scan_kthread(void *data)
3549 {
3550 struct btrfs_fs_info *fs_info = data;
3551 struct btrfs_root *root = fs_info->tree_root;
3552 struct btrfs_key key;
3553 struct btrfs_key max_key;
3554 struct btrfs_path *path = NULL;
3555 int ret = 0;
3556 struct extent_buffer *eb;
3557 int slot;
3558 struct btrfs_root_item root_item;
3559 u32 item_size;
3560 struct btrfs_trans_handle *trans = NULL;
3561
3562 path = btrfs_alloc_path();
3563 if (!path) {
3564 ret = -ENOMEM;
3565 goto out;
3566 }
3567
3568 key.objectid = 0;
3569 key.type = BTRFS_ROOT_ITEM_KEY;
3570 key.offset = 0;
3571
3572 max_key.objectid = (u64)-1;
3573 max_key.type = BTRFS_ROOT_ITEM_KEY;
3574 max_key.offset = (u64)-1;
3575
3576 path->keep_locks = 1;
3577
3578 while (1) {
3579 ret = btrfs_search_forward(root, &key, path, 0);
3580 if (ret) {
3581 if (ret > 0)
3582 ret = 0;
3583 break;
3584 }
3585
3586 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3587 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3588 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3589 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3590 goto skip;
3591
3592 eb = path->nodes[0];
3593 slot = path->slots[0];
3594 item_size = btrfs_item_size_nr(eb, slot);
3595 if (item_size < sizeof(root_item))
3596 goto skip;
3597
3598 read_extent_buffer(eb, &root_item,
3599 btrfs_item_ptr_offset(eb, slot),
3600 (int)sizeof(root_item));
3601 if (btrfs_root_refs(&root_item) == 0)
3602 goto skip;
3603
3604 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3605 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3606 if (trans)
3607 goto update_tree;
3608
3609 btrfs_release_path(path);
3610 /*
3611 * 1 - subvol uuid item
3612 * 1 - received_subvol uuid item
3613 */
3614 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3615 if (IS_ERR(trans)) {
3616 ret = PTR_ERR(trans);
3617 break;
3618 }
3619 continue;
3620 } else {
3621 goto skip;
3622 }
3623 update_tree:
3624 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3625 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3626 root_item.uuid,
3627 BTRFS_UUID_KEY_SUBVOL,
3628 key.objectid);
3629 if (ret < 0) {
3630 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3631 ret);
3632 break;
3633 }
3634 }
3635
3636 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3637 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3638 root_item.received_uuid,
3639 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3640 key.objectid);
3641 if (ret < 0) {
3642 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3643 ret);
3644 break;
3645 }
3646 }
3647
3648 skip:
3649 if (trans) {
3650 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3651 trans = NULL;
3652 if (ret)
3653 break;
3654 }
3655
3656 btrfs_release_path(path);
3657 if (key.offset < (u64)-1) {
3658 key.offset++;
3659 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3660 key.offset = 0;
3661 key.type = BTRFS_ROOT_ITEM_KEY;
3662 } else if (key.objectid < (u64)-1) {
3663 key.offset = 0;
3664 key.type = BTRFS_ROOT_ITEM_KEY;
3665 key.objectid++;
3666 } else {
3667 break;
3668 }
3669 cond_resched();
3670 }
3671
3672 out:
3673 btrfs_free_path(path);
3674 if (trans && !IS_ERR(trans))
3675 btrfs_end_transaction(trans, fs_info->uuid_root);
3676 if (ret)
3677 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3678 else
3679 fs_info->update_uuid_tree_gen = 1;
3680 up(&fs_info->uuid_tree_rescan_sem);
3681 return 0;
3682 }
3683
3684 /*
3685 * Callback for btrfs_uuid_tree_iterate().
3686 * returns:
3687 * 0 check succeeded, the entry is not outdated.
3688 * < 0 if an error occured.
3689 * > 0 if the check failed, which means the caller shall remove the entry.
3690 */
3691 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3692 u8 *uuid, u8 type, u64 subid)
3693 {
3694 struct btrfs_key key;
3695 int ret = 0;
3696 struct btrfs_root *subvol_root;
3697
3698 if (type != BTRFS_UUID_KEY_SUBVOL &&
3699 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3700 goto out;
3701
3702 key.objectid = subid;
3703 key.type = BTRFS_ROOT_ITEM_KEY;
3704 key.offset = (u64)-1;
3705 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3706 if (IS_ERR(subvol_root)) {
3707 ret = PTR_ERR(subvol_root);
3708 if (ret == -ENOENT)
3709 ret = 1;
3710 goto out;
3711 }
3712
3713 switch (type) {
3714 case BTRFS_UUID_KEY_SUBVOL:
3715 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3716 ret = 1;
3717 break;
3718 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3719 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3720 BTRFS_UUID_SIZE))
3721 ret = 1;
3722 break;
3723 }
3724
3725 out:
3726 return ret;
3727 }
3728
3729 static int btrfs_uuid_rescan_kthread(void *data)
3730 {
3731 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3732 int ret;
3733
3734 /*
3735 * 1st step is to iterate through the existing UUID tree and
3736 * to delete all entries that contain outdated data.
3737 * 2nd step is to add all missing entries to the UUID tree.
3738 */
3739 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3740 if (ret < 0) {
3741 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3742 up(&fs_info->uuid_tree_rescan_sem);
3743 return ret;
3744 }
3745 return btrfs_uuid_scan_kthread(data);
3746 }
3747
3748 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3749 {
3750 struct btrfs_trans_handle *trans;
3751 struct btrfs_root *tree_root = fs_info->tree_root;
3752 struct btrfs_root *uuid_root;
3753 struct task_struct *task;
3754 int ret;
3755
3756 /*
3757 * 1 - root node
3758 * 1 - root item
3759 */
3760 trans = btrfs_start_transaction(tree_root, 2);
3761 if (IS_ERR(trans))
3762 return PTR_ERR(trans);
3763
3764 uuid_root = btrfs_create_tree(trans, fs_info,
3765 BTRFS_UUID_TREE_OBJECTID);
3766 if (IS_ERR(uuid_root)) {
3767 btrfs_abort_transaction(trans, tree_root,
3768 PTR_ERR(uuid_root));
3769 return PTR_ERR(uuid_root);
3770 }
3771
3772 fs_info->uuid_root = uuid_root;
3773
3774 ret = btrfs_commit_transaction(trans, tree_root);
3775 if (ret)
3776 return ret;
3777
3778 down(&fs_info->uuid_tree_rescan_sem);
3779 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3780 if (IS_ERR(task)) {
3781 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3782 btrfs_warn(fs_info, "failed to start uuid_scan task");
3783 up(&fs_info->uuid_tree_rescan_sem);
3784 return PTR_ERR(task);
3785 }
3786
3787 return 0;
3788 }
3789
3790 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3791 {
3792 struct task_struct *task;
3793
3794 down(&fs_info->uuid_tree_rescan_sem);
3795 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3796 if (IS_ERR(task)) {
3797 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3798 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3799 up(&fs_info->uuid_tree_rescan_sem);
3800 return PTR_ERR(task);
3801 }
3802
3803 return 0;
3804 }
3805
3806 /*
3807 * shrinking a device means finding all of the device extents past
3808 * the new size, and then following the back refs to the chunks.
3809 * The chunk relocation code actually frees the device extent
3810 */
3811 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3812 {
3813 struct btrfs_trans_handle *trans;
3814 struct btrfs_root *root = device->dev_root;
3815 struct btrfs_dev_extent *dev_extent = NULL;
3816 struct btrfs_path *path;
3817 u64 length;
3818 u64 chunk_tree;
3819 u64 chunk_objectid;
3820 u64 chunk_offset;
3821 int ret;
3822 int slot;
3823 int failed = 0;
3824 bool retried = false;
3825 struct extent_buffer *l;
3826 struct btrfs_key key;
3827 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3828 u64 old_total = btrfs_super_total_bytes(super_copy);
3829 u64 old_size = device->total_bytes;
3830 u64 diff = device->total_bytes - new_size;
3831
3832 if (device->is_tgtdev_for_dev_replace)
3833 return -EINVAL;
3834
3835 path = btrfs_alloc_path();
3836 if (!path)
3837 return -ENOMEM;
3838
3839 path->reada = 2;
3840
3841 lock_chunks(root);
3842
3843 device->total_bytes = new_size;
3844 if (device->writeable) {
3845 device->fs_devices->total_rw_bytes -= diff;
3846 spin_lock(&root->fs_info->free_chunk_lock);
3847 root->fs_info->free_chunk_space -= diff;
3848 spin_unlock(&root->fs_info->free_chunk_lock);
3849 }
3850 unlock_chunks(root);
3851
3852 again:
3853 key.objectid = device->devid;
3854 key.offset = (u64)-1;
3855 key.type = BTRFS_DEV_EXTENT_KEY;
3856
3857 do {
3858 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3859 if (ret < 0)
3860 goto done;
3861
3862 ret = btrfs_previous_item(root, path, 0, key.type);
3863 if (ret < 0)
3864 goto done;
3865 if (ret) {
3866 ret = 0;
3867 btrfs_release_path(path);
3868 break;
3869 }
3870
3871 l = path->nodes[0];
3872 slot = path->slots[0];
3873 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3874
3875 if (key.objectid != device->devid) {
3876 btrfs_release_path(path);
3877 break;
3878 }
3879
3880 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3881 length = btrfs_dev_extent_length(l, dev_extent);
3882
3883 if (key.offset + length <= new_size) {
3884 btrfs_release_path(path);
3885 break;
3886 }
3887
3888 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3889 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3890 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3891 btrfs_release_path(path);
3892
3893 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3894 chunk_offset);
3895 if (ret && ret != -ENOSPC)
3896 goto done;
3897 if (ret == -ENOSPC)
3898 failed++;
3899 } while (key.offset-- > 0);
3900
3901 if (failed && !retried) {
3902 failed = 0;
3903 retried = true;
3904 goto again;
3905 } else if (failed && retried) {
3906 ret = -ENOSPC;
3907 lock_chunks(root);
3908
3909 device->total_bytes = old_size;
3910 if (device->writeable)
3911 device->fs_devices->total_rw_bytes += diff;
3912 spin_lock(&root->fs_info->free_chunk_lock);
3913 root->fs_info->free_chunk_space += diff;
3914 spin_unlock(&root->fs_info->free_chunk_lock);
3915 unlock_chunks(root);
3916 goto done;
3917 }
3918
3919 /* Shrinking succeeded, else we would be at "done". */
3920 trans = btrfs_start_transaction(root, 0);
3921 if (IS_ERR(trans)) {
3922 ret = PTR_ERR(trans);
3923 goto done;
3924 }
3925
3926 lock_chunks(root);
3927
3928 device->disk_total_bytes = new_size;
3929 /* Now btrfs_update_device() will change the on-disk size. */
3930 ret = btrfs_update_device(trans, device);
3931 if (ret) {
3932 unlock_chunks(root);
3933 btrfs_end_transaction(trans, root);
3934 goto done;
3935 }
3936 WARN_ON(diff > old_total);
3937 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3938 unlock_chunks(root);
3939 btrfs_end_transaction(trans, root);
3940 done:
3941 btrfs_free_path(path);
3942 return ret;
3943 }
3944
3945 static int btrfs_add_system_chunk(struct btrfs_root *root,
3946 struct btrfs_key *key,
3947 struct btrfs_chunk *chunk, int item_size)
3948 {
3949 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3950 struct btrfs_disk_key disk_key;
3951 u32 array_size;
3952 u8 *ptr;
3953
3954 array_size = btrfs_super_sys_array_size(super_copy);
3955 if (array_size + item_size + sizeof(disk_key)
3956 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3957 return -EFBIG;
3958
3959 ptr = super_copy->sys_chunk_array + array_size;
3960 btrfs_cpu_key_to_disk(&disk_key, key);
3961 memcpy(ptr, &disk_key, sizeof(disk_key));
3962 ptr += sizeof(disk_key);
3963 memcpy(ptr, chunk, item_size);
3964 item_size += sizeof(disk_key);
3965 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3966 return 0;
3967 }
3968
3969 /*
3970 * sort the devices in descending order by max_avail, total_avail
3971 */
3972 static int btrfs_cmp_device_info(const void *a, const void *b)
3973 {
3974 const struct btrfs_device_info *di_a = a;
3975 const struct btrfs_device_info *di_b = b;
3976
3977 if (di_a->max_avail > di_b->max_avail)
3978 return -1;
3979 if (di_a->max_avail < di_b->max_avail)
3980 return 1;
3981 if (di_a->total_avail > di_b->total_avail)
3982 return -1;
3983 if (di_a->total_avail < di_b->total_avail)
3984 return 1;
3985 return 0;
3986 }
3987
3988 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
3989 [BTRFS_RAID_RAID10] = {
3990 .sub_stripes = 2,
3991 .dev_stripes = 1,
3992 .devs_max = 0, /* 0 == as many as possible */
3993 .devs_min = 4,
3994 .devs_increment = 2,
3995 .ncopies = 2,
3996 },
3997 [BTRFS_RAID_RAID1] = {
3998 .sub_stripes = 1,
3999 .dev_stripes = 1,
4000 .devs_max = 2,
4001 .devs_min = 2,
4002 .devs_increment = 2,
4003 .ncopies = 2,
4004 },
4005 [BTRFS_RAID_DUP] = {
4006 .sub_stripes = 1,
4007 .dev_stripes = 2,
4008 .devs_max = 1,
4009 .devs_min = 1,
4010 .devs_increment = 1,
4011 .ncopies = 2,
4012 },
4013 [BTRFS_RAID_RAID0] = {
4014 .sub_stripes = 1,
4015 .dev_stripes = 1,
4016 .devs_max = 0,
4017 .devs_min = 2,
4018 .devs_increment = 1,
4019 .ncopies = 1,
4020 },
4021 [BTRFS_RAID_SINGLE] = {
4022 .sub_stripes = 1,
4023 .dev_stripes = 1,
4024 .devs_max = 1,
4025 .devs_min = 1,
4026 .devs_increment = 1,
4027 .ncopies = 1,
4028 },
4029 [BTRFS_RAID_RAID5] = {
4030 .sub_stripes = 1,
4031 .dev_stripes = 1,
4032 .devs_max = 0,
4033 .devs_min = 2,
4034 .devs_increment = 1,
4035 .ncopies = 2,
4036 },
4037 [BTRFS_RAID_RAID6] = {
4038 .sub_stripes = 1,
4039 .dev_stripes = 1,
4040 .devs_max = 0,
4041 .devs_min = 3,
4042 .devs_increment = 1,
4043 .ncopies = 3,
4044 },
4045 };
4046
4047 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4048 {
4049 /* TODO allow them to set a preferred stripe size */
4050 return 64 * 1024;
4051 }
4052
4053 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4054 {
4055 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
4056 return;
4057
4058 btrfs_set_fs_incompat(info, RAID56);
4059 }
4060
4061 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4062 - sizeof(struct btrfs_item) \
4063 - sizeof(struct btrfs_chunk)) \
4064 / sizeof(struct btrfs_stripe) + 1)
4065
4066 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4067 - 2 * sizeof(struct btrfs_disk_key) \
4068 - 2 * sizeof(struct btrfs_chunk)) \
4069 / sizeof(struct btrfs_stripe) + 1)
4070
4071 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4072 struct btrfs_root *extent_root, u64 start,
4073 u64 type)
4074 {
4075 struct btrfs_fs_info *info = extent_root->fs_info;
4076 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4077 struct list_head *cur;
4078 struct map_lookup *map = NULL;
4079 struct extent_map_tree *em_tree;
4080 struct extent_map *em;
4081 struct btrfs_device_info *devices_info = NULL;
4082 u64 total_avail;
4083 int num_stripes; /* total number of stripes to allocate */
4084 int data_stripes; /* number of stripes that count for
4085 block group size */
4086 int sub_stripes; /* sub_stripes info for map */
4087 int dev_stripes; /* stripes per dev */
4088 int devs_max; /* max devs to use */
4089 int devs_min; /* min devs needed */
4090 int devs_increment; /* ndevs has to be a multiple of this */
4091 int ncopies; /* how many copies to data has */
4092 int ret;
4093 u64 max_stripe_size;
4094 u64 max_chunk_size;
4095 u64 stripe_size;
4096 u64 num_bytes;
4097 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4098 int ndevs;
4099 int i;
4100 int j;
4101 int index;
4102
4103 BUG_ON(!alloc_profile_is_valid(type, 0));
4104
4105 if (list_empty(&fs_devices->alloc_list))
4106 return -ENOSPC;
4107
4108 index = __get_raid_index(type);
4109
4110 sub_stripes = btrfs_raid_array[index].sub_stripes;
4111 dev_stripes = btrfs_raid_array[index].dev_stripes;
4112 devs_max = btrfs_raid_array[index].devs_max;
4113 devs_min = btrfs_raid_array[index].devs_min;
4114 devs_increment = btrfs_raid_array[index].devs_increment;
4115 ncopies = btrfs_raid_array[index].ncopies;
4116
4117 if (type & BTRFS_BLOCK_GROUP_DATA) {
4118 max_stripe_size = 1024 * 1024 * 1024;
4119 max_chunk_size = 10 * max_stripe_size;
4120 if (!devs_max)
4121 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4122 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4123 /* for larger filesystems, use larger metadata chunks */
4124 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4125 max_stripe_size = 1024 * 1024 * 1024;
4126 else
4127 max_stripe_size = 256 * 1024 * 1024;
4128 max_chunk_size = max_stripe_size;
4129 if (!devs_max)
4130 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4131 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4132 max_stripe_size = 32 * 1024 * 1024;
4133 max_chunk_size = 2 * max_stripe_size;
4134 if (!devs_max)
4135 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4136 } else {
4137 btrfs_err(info, "invalid chunk type 0x%llx requested\n",
4138 type);
4139 BUG_ON(1);
4140 }
4141
4142 /* we don't want a chunk larger than 10% of writeable space */
4143 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4144 max_chunk_size);
4145
4146 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4147 GFP_NOFS);
4148 if (!devices_info)
4149 return -ENOMEM;
4150
4151 cur = fs_devices->alloc_list.next;
4152
4153 /*
4154 * in the first pass through the devices list, we gather information
4155 * about the available holes on each device.
4156 */
4157 ndevs = 0;
4158 while (cur != &fs_devices->alloc_list) {
4159 struct btrfs_device *device;
4160 u64 max_avail;
4161 u64 dev_offset;
4162
4163 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4164
4165 cur = cur->next;
4166
4167 if (!device->writeable) {
4168 WARN(1, KERN_ERR
4169 "BTRFS: read-only device in alloc_list\n");
4170 continue;
4171 }
4172
4173 if (!device->in_fs_metadata ||
4174 device->is_tgtdev_for_dev_replace)
4175 continue;
4176
4177 if (device->total_bytes > device->bytes_used)
4178 total_avail = device->total_bytes - device->bytes_used;
4179 else
4180 total_avail = 0;
4181
4182 /* If there is no space on this device, skip it. */
4183 if (total_avail == 0)
4184 continue;
4185
4186 ret = find_free_dev_extent(trans, device,
4187 max_stripe_size * dev_stripes,
4188 &dev_offset, &max_avail);
4189 if (ret && ret != -ENOSPC)
4190 goto error;
4191
4192 if (ret == 0)
4193 max_avail = max_stripe_size * dev_stripes;
4194
4195 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4196 continue;
4197
4198 if (ndevs == fs_devices->rw_devices) {
4199 WARN(1, "%s: found more than %llu devices\n",
4200 __func__, fs_devices->rw_devices);
4201 break;
4202 }
4203 devices_info[ndevs].dev_offset = dev_offset;
4204 devices_info[ndevs].max_avail = max_avail;
4205 devices_info[ndevs].total_avail = total_avail;
4206 devices_info[ndevs].dev = device;
4207 ++ndevs;
4208 }
4209
4210 /*
4211 * now sort the devices by hole size / available space
4212 */
4213 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4214 btrfs_cmp_device_info, NULL);
4215
4216 /* round down to number of usable stripes */
4217 ndevs -= ndevs % devs_increment;
4218
4219 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4220 ret = -ENOSPC;
4221 goto error;
4222 }
4223
4224 if (devs_max && ndevs > devs_max)
4225 ndevs = devs_max;
4226 /*
4227 * the primary goal is to maximize the number of stripes, so use as many
4228 * devices as possible, even if the stripes are not maximum sized.
4229 */
4230 stripe_size = devices_info[ndevs-1].max_avail;
4231 num_stripes = ndevs * dev_stripes;
4232
4233 /*
4234 * this will have to be fixed for RAID1 and RAID10 over
4235 * more drives
4236 */
4237 data_stripes = num_stripes / ncopies;
4238
4239 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4240 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4241 btrfs_super_stripesize(info->super_copy));
4242 data_stripes = num_stripes - 1;
4243 }
4244 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4245 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4246 btrfs_super_stripesize(info->super_copy));
4247 data_stripes = num_stripes - 2;
4248 }
4249
4250 /*
4251 * Use the number of data stripes to figure out how big this chunk
4252 * is really going to be in terms of logical address space,
4253 * and compare that answer with the max chunk size
4254 */
4255 if (stripe_size * data_stripes > max_chunk_size) {
4256 u64 mask = (1ULL << 24) - 1;
4257 stripe_size = max_chunk_size;
4258 do_div(stripe_size, data_stripes);
4259
4260 /* bump the answer up to a 16MB boundary */
4261 stripe_size = (stripe_size + mask) & ~mask;
4262
4263 /* but don't go higher than the limits we found
4264 * while searching for free extents
4265 */
4266 if (stripe_size > devices_info[ndevs-1].max_avail)
4267 stripe_size = devices_info[ndevs-1].max_avail;
4268 }
4269
4270 do_div(stripe_size, dev_stripes);
4271
4272 /* align to BTRFS_STRIPE_LEN */
4273 do_div(stripe_size, raid_stripe_len);
4274 stripe_size *= raid_stripe_len;
4275
4276 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4277 if (!map) {
4278 ret = -ENOMEM;
4279 goto error;
4280 }
4281 map->num_stripes = num_stripes;
4282
4283 for (i = 0; i < ndevs; ++i) {
4284 for (j = 0; j < dev_stripes; ++j) {
4285 int s = i * dev_stripes + j;
4286 map->stripes[s].dev = devices_info[i].dev;
4287 map->stripes[s].physical = devices_info[i].dev_offset +
4288 j * stripe_size;
4289 }
4290 }
4291 map->sector_size = extent_root->sectorsize;
4292 map->stripe_len = raid_stripe_len;
4293 map->io_align = raid_stripe_len;
4294 map->io_width = raid_stripe_len;
4295 map->type = type;
4296 map->sub_stripes = sub_stripes;
4297
4298 num_bytes = stripe_size * data_stripes;
4299
4300 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4301
4302 em = alloc_extent_map();
4303 if (!em) {
4304 ret = -ENOMEM;
4305 goto error;
4306 }
4307 em->bdev = (struct block_device *)map;
4308 em->start = start;
4309 em->len = num_bytes;
4310 em->block_start = 0;
4311 em->block_len = em->len;
4312 em->orig_block_len = stripe_size;
4313
4314 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4315 write_lock(&em_tree->lock);
4316 ret = add_extent_mapping(em_tree, em, 0);
4317 if (!ret) {
4318 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4319 atomic_inc(&em->refs);
4320 }
4321 write_unlock(&em_tree->lock);
4322 if (ret) {
4323 free_extent_map(em);
4324 goto error;
4325 }
4326
4327 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4328 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4329 start, num_bytes);
4330 if (ret)
4331 goto error_del_extent;
4332
4333 free_extent_map(em);
4334 check_raid56_incompat_flag(extent_root->fs_info, type);
4335
4336 kfree(devices_info);
4337 return 0;
4338
4339 error_del_extent:
4340 write_lock(&em_tree->lock);
4341 remove_extent_mapping(em_tree, em);
4342 write_unlock(&em_tree->lock);
4343
4344 /* One for our allocation */
4345 free_extent_map(em);
4346 /* One for the tree reference */
4347 free_extent_map(em);
4348 error:
4349 kfree(map);
4350 kfree(devices_info);
4351 return ret;
4352 }
4353
4354 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4355 struct btrfs_root *extent_root,
4356 u64 chunk_offset, u64 chunk_size)
4357 {
4358 struct btrfs_key key;
4359 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4360 struct btrfs_device *device;
4361 struct btrfs_chunk *chunk;
4362 struct btrfs_stripe *stripe;
4363 struct extent_map_tree *em_tree;
4364 struct extent_map *em;
4365 struct map_lookup *map;
4366 size_t item_size;
4367 u64 dev_offset;
4368 u64 stripe_size;
4369 int i = 0;
4370 int ret;
4371
4372 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4373 read_lock(&em_tree->lock);
4374 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4375 read_unlock(&em_tree->lock);
4376
4377 if (!em) {
4378 btrfs_crit(extent_root->fs_info, "unable to find logical "
4379 "%Lu len %Lu", chunk_offset, chunk_size);
4380 return -EINVAL;
4381 }
4382
4383 if (em->start != chunk_offset || em->len != chunk_size) {
4384 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4385 " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset,
4386 chunk_size, em->start, em->len);
4387 free_extent_map(em);
4388 return -EINVAL;
4389 }
4390
4391 map = (struct map_lookup *)em->bdev;
4392 item_size = btrfs_chunk_item_size(map->num_stripes);
4393 stripe_size = em->orig_block_len;
4394
4395 chunk = kzalloc(item_size, GFP_NOFS);
4396 if (!chunk) {
4397 ret = -ENOMEM;
4398 goto out;
4399 }
4400
4401 for (i = 0; i < map->num_stripes; i++) {
4402 device = map->stripes[i].dev;
4403 dev_offset = map->stripes[i].physical;
4404
4405 device->bytes_used += stripe_size;
4406 ret = btrfs_update_device(trans, device);
4407 if (ret)
4408 goto out;
4409 ret = btrfs_alloc_dev_extent(trans, device,
4410 chunk_root->root_key.objectid,
4411 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4412 chunk_offset, dev_offset,
4413 stripe_size);
4414 if (ret)
4415 goto out;
4416 }
4417
4418 spin_lock(&extent_root->fs_info->free_chunk_lock);
4419 extent_root->fs_info->free_chunk_space -= (stripe_size *
4420 map->num_stripes);
4421 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4422
4423 stripe = &chunk->stripe;
4424 for (i = 0; i < map->num_stripes; i++) {
4425 device = map->stripes[i].dev;
4426 dev_offset = map->stripes[i].physical;
4427
4428 btrfs_set_stack_stripe_devid(stripe, device->devid);
4429 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4430 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4431 stripe++;
4432 }
4433
4434 btrfs_set_stack_chunk_length(chunk, chunk_size);
4435 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4436 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4437 btrfs_set_stack_chunk_type(chunk, map->type);
4438 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4439 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4440 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4441 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4442 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4443
4444 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4445 key.type = BTRFS_CHUNK_ITEM_KEY;
4446 key.offset = chunk_offset;
4447
4448 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4449 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4450 /*
4451 * TODO: Cleanup of inserted chunk root in case of
4452 * failure.
4453 */
4454 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4455 item_size);
4456 }
4457
4458 out:
4459 kfree(chunk);
4460 free_extent_map(em);
4461 return ret;
4462 }
4463
4464 /*
4465 * Chunk allocation falls into two parts. The first part does works
4466 * that make the new allocated chunk useable, but not do any operation
4467 * that modifies the chunk tree. The second part does the works that
4468 * require modifying the chunk tree. This division is important for the
4469 * bootstrap process of adding storage to a seed btrfs.
4470 */
4471 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4472 struct btrfs_root *extent_root, u64 type)
4473 {
4474 u64 chunk_offset;
4475
4476 chunk_offset = find_next_chunk(extent_root->fs_info);
4477 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4478 }
4479
4480 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4481 struct btrfs_root *root,
4482 struct btrfs_device *device)
4483 {
4484 u64 chunk_offset;
4485 u64 sys_chunk_offset;
4486 u64 alloc_profile;
4487 struct btrfs_fs_info *fs_info = root->fs_info;
4488 struct btrfs_root *extent_root = fs_info->extent_root;
4489 int ret;
4490
4491 chunk_offset = find_next_chunk(fs_info);
4492 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4493 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4494 alloc_profile);
4495 if (ret)
4496 return ret;
4497
4498 sys_chunk_offset = find_next_chunk(root->fs_info);
4499 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4500 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4501 alloc_profile);
4502 if (ret) {
4503 btrfs_abort_transaction(trans, root, ret);
4504 goto out;
4505 }
4506
4507 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
4508 if (ret)
4509 btrfs_abort_transaction(trans, root, ret);
4510 out:
4511 return ret;
4512 }
4513
4514 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4515 {
4516 struct extent_map *em;
4517 struct map_lookup *map;
4518 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4519 int readonly = 0;
4520 int i;
4521
4522 read_lock(&map_tree->map_tree.lock);
4523 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4524 read_unlock(&map_tree->map_tree.lock);
4525 if (!em)
4526 return 1;
4527
4528 if (btrfs_test_opt(root, DEGRADED)) {
4529 free_extent_map(em);
4530 return 0;
4531 }
4532
4533 map = (struct map_lookup *)em->bdev;
4534 for (i = 0; i < map->num_stripes; i++) {
4535 if (!map->stripes[i].dev->writeable) {
4536 readonly = 1;
4537 break;
4538 }
4539 }
4540 free_extent_map(em);
4541 return readonly;
4542 }
4543
4544 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4545 {
4546 extent_map_tree_init(&tree->map_tree);
4547 }
4548
4549 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4550 {
4551 struct extent_map *em;
4552
4553 while (1) {
4554 write_lock(&tree->map_tree.lock);
4555 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4556 if (em)
4557 remove_extent_mapping(&tree->map_tree, em);
4558 write_unlock(&tree->map_tree.lock);
4559 if (!em)
4560 break;
4561 kfree(em->bdev);
4562 /* once for us */
4563 free_extent_map(em);
4564 /* once for the tree */
4565 free_extent_map(em);
4566 }
4567 }
4568
4569 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4570 {
4571 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4572 struct extent_map *em;
4573 struct map_lookup *map;
4574 struct extent_map_tree *em_tree = &map_tree->map_tree;
4575 int ret;
4576
4577 read_lock(&em_tree->lock);
4578 em = lookup_extent_mapping(em_tree, logical, len);
4579 read_unlock(&em_tree->lock);
4580
4581 /*
4582 * We could return errors for these cases, but that could get ugly and
4583 * we'd probably do the same thing which is just not do anything else
4584 * and exit, so return 1 so the callers don't try to use other copies.
4585 */
4586 if (!em) {
4587 btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical,
4588 logical+len);
4589 return 1;
4590 }
4591
4592 if (em->start > logical || em->start + em->len < logical) {
4593 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4594 "%Lu-%Lu\n", logical, logical+len, em->start,
4595 em->start + em->len);
4596 free_extent_map(em);
4597 return 1;
4598 }
4599
4600 map = (struct map_lookup *)em->bdev;
4601 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4602 ret = map->num_stripes;
4603 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4604 ret = map->sub_stripes;
4605 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4606 ret = 2;
4607 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4608 ret = 3;
4609 else
4610 ret = 1;
4611 free_extent_map(em);
4612
4613 btrfs_dev_replace_lock(&fs_info->dev_replace);
4614 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4615 ret++;
4616 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4617
4618 return ret;
4619 }
4620
4621 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4622 struct btrfs_mapping_tree *map_tree,
4623 u64 logical)
4624 {
4625 struct extent_map *em;
4626 struct map_lookup *map;
4627 struct extent_map_tree *em_tree = &map_tree->map_tree;
4628 unsigned long len = root->sectorsize;
4629
4630 read_lock(&em_tree->lock);
4631 em = lookup_extent_mapping(em_tree, logical, len);
4632 read_unlock(&em_tree->lock);
4633 BUG_ON(!em);
4634
4635 BUG_ON(em->start > logical || em->start + em->len < logical);
4636 map = (struct map_lookup *)em->bdev;
4637 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4638 BTRFS_BLOCK_GROUP_RAID6)) {
4639 len = map->stripe_len * nr_data_stripes(map);
4640 }
4641 free_extent_map(em);
4642 return len;
4643 }
4644
4645 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4646 u64 logical, u64 len, int mirror_num)
4647 {
4648 struct extent_map *em;
4649 struct map_lookup *map;
4650 struct extent_map_tree *em_tree = &map_tree->map_tree;
4651 int ret = 0;
4652
4653 read_lock(&em_tree->lock);
4654 em = lookup_extent_mapping(em_tree, logical, len);
4655 read_unlock(&em_tree->lock);
4656 BUG_ON(!em);
4657
4658 BUG_ON(em->start > logical || em->start + em->len < logical);
4659 map = (struct map_lookup *)em->bdev;
4660 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4661 BTRFS_BLOCK_GROUP_RAID6))
4662 ret = 1;
4663 free_extent_map(em);
4664 return ret;
4665 }
4666
4667 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4668 struct map_lookup *map, int first, int num,
4669 int optimal, int dev_replace_is_ongoing)
4670 {
4671 int i;
4672 int tolerance;
4673 struct btrfs_device *srcdev;
4674
4675 if (dev_replace_is_ongoing &&
4676 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4677 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4678 srcdev = fs_info->dev_replace.srcdev;
4679 else
4680 srcdev = NULL;
4681
4682 /*
4683 * try to avoid the drive that is the source drive for a
4684 * dev-replace procedure, only choose it if no other non-missing
4685 * mirror is available
4686 */
4687 for (tolerance = 0; tolerance < 2; tolerance++) {
4688 if (map->stripes[optimal].dev->bdev &&
4689 (tolerance || map->stripes[optimal].dev != srcdev))
4690 return optimal;
4691 for (i = first; i < first + num; i++) {
4692 if (map->stripes[i].dev->bdev &&
4693 (tolerance || map->stripes[i].dev != srcdev))
4694 return i;
4695 }
4696 }
4697
4698 /* we couldn't find one that doesn't fail. Just return something
4699 * and the io error handling code will clean up eventually
4700 */
4701 return optimal;
4702 }
4703
4704 static inline int parity_smaller(u64 a, u64 b)
4705 {
4706 return a > b;
4707 }
4708
4709 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4710 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4711 {
4712 struct btrfs_bio_stripe s;
4713 int i;
4714 u64 l;
4715 int again = 1;
4716
4717 while (again) {
4718 again = 0;
4719 for (i = 0; i < bbio->num_stripes - 1; i++) {
4720 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4721 s = bbio->stripes[i];
4722 l = raid_map[i];
4723 bbio->stripes[i] = bbio->stripes[i+1];
4724 raid_map[i] = raid_map[i+1];
4725 bbio->stripes[i+1] = s;
4726 raid_map[i+1] = l;
4727 again = 1;
4728 }
4729 }
4730 }
4731 }
4732
4733 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4734 u64 logical, u64 *length,
4735 struct btrfs_bio **bbio_ret,
4736 int mirror_num, u64 **raid_map_ret)
4737 {
4738 struct extent_map *em;
4739 struct map_lookup *map;
4740 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4741 struct extent_map_tree *em_tree = &map_tree->map_tree;
4742 u64 offset;
4743 u64 stripe_offset;
4744 u64 stripe_end_offset;
4745 u64 stripe_nr;
4746 u64 stripe_nr_orig;
4747 u64 stripe_nr_end;
4748 u64 stripe_len;
4749 u64 *raid_map = NULL;
4750 int stripe_index;
4751 int i;
4752 int ret = 0;
4753 int num_stripes;
4754 int max_errors = 0;
4755 struct btrfs_bio *bbio = NULL;
4756 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4757 int dev_replace_is_ongoing = 0;
4758 int num_alloc_stripes;
4759 int patch_the_first_stripe_for_dev_replace = 0;
4760 u64 physical_to_patch_in_first_stripe = 0;
4761 u64 raid56_full_stripe_start = (u64)-1;
4762
4763 read_lock(&em_tree->lock);
4764 em = lookup_extent_mapping(em_tree, logical, *length);
4765 read_unlock(&em_tree->lock);
4766
4767 if (!em) {
4768 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4769 logical, *length);
4770 return -EINVAL;
4771 }
4772
4773 if (em->start > logical || em->start + em->len < logical) {
4774 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4775 "found %Lu-%Lu\n", logical, em->start,
4776 em->start + em->len);
4777 free_extent_map(em);
4778 return -EINVAL;
4779 }
4780
4781 map = (struct map_lookup *)em->bdev;
4782 offset = logical - em->start;
4783
4784 stripe_len = map->stripe_len;
4785 stripe_nr = offset;
4786 /*
4787 * stripe_nr counts the total number of stripes we have to stride
4788 * to get to this block
4789 */
4790 do_div(stripe_nr, stripe_len);
4791
4792 stripe_offset = stripe_nr * stripe_len;
4793 BUG_ON(offset < stripe_offset);
4794
4795 /* stripe_offset is the offset of this block in its stripe*/
4796 stripe_offset = offset - stripe_offset;
4797
4798 /* if we're here for raid56, we need to know the stripe aligned start */
4799 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4800 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4801 raid56_full_stripe_start = offset;
4802
4803 /* allow a write of a full stripe, but make sure we don't
4804 * allow straddling of stripes
4805 */
4806 do_div(raid56_full_stripe_start, full_stripe_len);
4807 raid56_full_stripe_start *= full_stripe_len;
4808 }
4809
4810 if (rw & REQ_DISCARD) {
4811 /* we don't discard raid56 yet */
4812 if (map->type &
4813 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4814 ret = -EOPNOTSUPP;
4815 goto out;
4816 }
4817 *length = min_t(u64, em->len - offset, *length);
4818 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4819 u64 max_len;
4820 /* For writes to RAID[56], allow a full stripeset across all disks.
4821 For other RAID types and for RAID[56] reads, just allow a single
4822 stripe (on a single disk). */
4823 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4824 (rw & REQ_WRITE)) {
4825 max_len = stripe_len * nr_data_stripes(map) -
4826 (offset - raid56_full_stripe_start);
4827 } else {
4828 /* we limit the length of each bio to what fits in a stripe */
4829 max_len = stripe_len - stripe_offset;
4830 }
4831 *length = min_t(u64, em->len - offset, max_len);
4832 } else {
4833 *length = em->len - offset;
4834 }
4835
4836 /* This is for when we're called from btrfs_merge_bio_hook() and all
4837 it cares about is the length */
4838 if (!bbio_ret)
4839 goto out;
4840
4841 btrfs_dev_replace_lock(dev_replace);
4842 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4843 if (!dev_replace_is_ongoing)
4844 btrfs_dev_replace_unlock(dev_replace);
4845
4846 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4847 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4848 dev_replace->tgtdev != NULL) {
4849 /*
4850 * in dev-replace case, for repair case (that's the only
4851 * case where the mirror is selected explicitly when
4852 * calling btrfs_map_block), blocks left of the left cursor
4853 * can also be read from the target drive.
4854 * For REQ_GET_READ_MIRRORS, the target drive is added as
4855 * the last one to the array of stripes. For READ, it also
4856 * needs to be supported using the same mirror number.
4857 * If the requested block is not left of the left cursor,
4858 * EIO is returned. This can happen because btrfs_num_copies()
4859 * returns one more in the dev-replace case.
4860 */
4861 u64 tmp_length = *length;
4862 struct btrfs_bio *tmp_bbio = NULL;
4863 int tmp_num_stripes;
4864 u64 srcdev_devid = dev_replace->srcdev->devid;
4865 int index_srcdev = 0;
4866 int found = 0;
4867 u64 physical_of_found = 0;
4868
4869 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
4870 logical, &tmp_length, &tmp_bbio, 0, NULL);
4871 if (ret) {
4872 WARN_ON(tmp_bbio != NULL);
4873 goto out;
4874 }
4875
4876 tmp_num_stripes = tmp_bbio->num_stripes;
4877 if (mirror_num > tmp_num_stripes) {
4878 /*
4879 * REQ_GET_READ_MIRRORS does not contain this
4880 * mirror, that means that the requested area
4881 * is not left of the left cursor
4882 */
4883 ret = -EIO;
4884 kfree(tmp_bbio);
4885 goto out;
4886 }
4887
4888 /*
4889 * process the rest of the function using the mirror_num
4890 * of the source drive. Therefore look it up first.
4891 * At the end, patch the device pointer to the one of the
4892 * target drive.
4893 */
4894 for (i = 0; i < tmp_num_stripes; i++) {
4895 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4896 /*
4897 * In case of DUP, in order to keep it
4898 * simple, only add the mirror with the
4899 * lowest physical address
4900 */
4901 if (found &&
4902 physical_of_found <=
4903 tmp_bbio->stripes[i].physical)
4904 continue;
4905 index_srcdev = i;
4906 found = 1;
4907 physical_of_found =
4908 tmp_bbio->stripes[i].physical;
4909 }
4910 }
4911
4912 if (found) {
4913 mirror_num = index_srcdev + 1;
4914 patch_the_first_stripe_for_dev_replace = 1;
4915 physical_to_patch_in_first_stripe = physical_of_found;
4916 } else {
4917 WARN_ON(1);
4918 ret = -EIO;
4919 kfree(tmp_bbio);
4920 goto out;
4921 }
4922
4923 kfree(tmp_bbio);
4924 } else if (mirror_num > map->num_stripes) {
4925 mirror_num = 0;
4926 }
4927
4928 num_stripes = 1;
4929 stripe_index = 0;
4930 stripe_nr_orig = stripe_nr;
4931 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
4932 do_div(stripe_nr_end, map->stripe_len);
4933 stripe_end_offset = stripe_nr_end * map->stripe_len -
4934 (offset + *length);
4935
4936 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4937 if (rw & REQ_DISCARD)
4938 num_stripes = min_t(u64, map->num_stripes,
4939 stripe_nr_end - stripe_nr_orig);
4940 stripe_index = do_div(stripe_nr, map->num_stripes);
4941 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
4942 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
4943 num_stripes = map->num_stripes;
4944 else if (mirror_num)
4945 stripe_index = mirror_num - 1;
4946 else {
4947 stripe_index = find_live_mirror(fs_info, map, 0,
4948 map->num_stripes,
4949 current->pid % map->num_stripes,
4950 dev_replace_is_ongoing);
4951 mirror_num = stripe_index + 1;
4952 }
4953
4954 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
4955 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
4956 num_stripes = map->num_stripes;
4957 } else if (mirror_num) {
4958 stripe_index = mirror_num - 1;
4959 } else {
4960 mirror_num = 1;
4961 }
4962
4963 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4964 int factor = map->num_stripes / map->sub_stripes;
4965
4966 stripe_index = do_div(stripe_nr, factor);
4967 stripe_index *= map->sub_stripes;
4968
4969 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
4970 num_stripes = map->sub_stripes;
4971 else if (rw & REQ_DISCARD)
4972 num_stripes = min_t(u64, map->sub_stripes *
4973 (stripe_nr_end - stripe_nr_orig),
4974 map->num_stripes);
4975 else if (mirror_num)
4976 stripe_index += mirror_num - 1;
4977 else {
4978 int old_stripe_index = stripe_index;
4979 stripe_index = find_live_mirror(fs_info, map,
4980 stripe_index,
4981 map->sub_stripes, stripe_index +
4982 current->pid % map->sub_stripes,
4983 dev_replace_is_ongoing);
4984 mirror_num = stripe_index - old_stripe_index + 1;
4985 }
4986
4987 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4988 BTRFS_BLOCK_GROUP_RAID6)) {
4989 u64 tmp;
4990
4991 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4992 && raid_map_ret) {
4993 int i, rot;
4994
4995 /* push stripe_nr back to the start of the full stripe */
4996 stripe_nr = raid56_full_stripe_start;
4997 do_div(stripe_nr, stripe_len);
4998
4999 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5000
5001 /* RAID[56] write or recovery. Return all stripes */
5002 num_stripes = map->num_stripes;
5003 max_errors = nr_parity_stripes(map);
5004
5005 raid_map = kmalloc_array(num_stripes, sizeof(u64),
5006 GFP_NOFS);
5007 if (!raid_map) {
5008 ret = -ENOMEM;
5009 goto out;
5010 }
5011
5012 /* Work out the disk rotation on this stripe-set */
5013 tmp = stripe_nr;
5014 rot = do_div(tmp, num_stripes);
5015
5016 /* Fill in the logical address of each stripe */
5017 tmp = stripe_nr * nr_data_stripes(map);
5018 for (i = 0; i < nr_data_stripes(map); i++)
5019 raid_map[(i+rot) % num_stripes] =
5020 em->start + (tmp + i) * map->stripe_len;
5021
5022 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5023 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5024 raid_map[(i+rot+1) % num_stripes] =
5025 RAID6_Q_STRIPE;
5026
5027 *length = map->stripe_len;
5028 stripe_index = 0;
5029 stripe_offset = 0;
5030 } else {
5031 /*
5032 * Mirror #0 or #1 means the original data block.
5033 * Mirror #2 is RAID5 parity block.
5034 * Mirror #3 is RAID6 Q block.
5035 */
5036 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5037 if (mirror_num > 1)
5038 stripe_index = nr_data_stripes(map) +
5039 mirror_num - 2;
5040
5041 /* We distribute the parity blocks across stripes */
5042 tmp = stripe_nr + stripe_index;
5043 stripe_index = do_div(tmp, map->num_stripes);
5044 }
5045 } else {
5046 /*
5047 * after this do_div call, stripe_nr is the number of stripes
5048 * on this device we have to walk to find the data, and
5049 * stripe_index is the number of our device in the stripe array
5050 */
5051 stripe_index = do_div(stripe_nr, map->num_stripes);
5052 mirror_num = stripe_index + 1;
5053 }
5054 BUG_ON(stripe_index >= map->num_stripes);
5055
5056 num_alloc_stripes = num_stripes;
5057 if (dev_replace_is_ongoing) {
5058 if (rw & (REQ_WRITE | REQ_DISCARD))
5059 num_alloc_stripes <<= 1;
5060 if (rw & REQ_GET_READ_MIRRORS)
5061 num_alloc_stripes++;
5062 }
5063 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
5064 if (!bbio) {
5065 kfree(raid_map);
5066 ret = -ENOMEM;
5067 goto out;
5068 }
5069 atomic_set(&bbio->error, 0);
5070
5071 if (rw & REQ_DISCARD) {
5072 int factor = 0;
5073 int sub_stripes = 0;
5074 u64 stripes_per_dev = 0;
5075 u32 remaining_stripes = 0;
5076 u32 last_stripe = 0;
5077
5078 if (map->type &
5079 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5080 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5081 sub_stripes = 1;
5082 else
5083 sub_stripes = map->sub_stripes;
5084
5085 factor = map->num_stripes / sub_stripes;
5086 stripes_per_dev = div_u64_rem(stripe_nr_end -
5087 stripe_nr_orig,
5088 factor,
5089 &remaining_stripes);
5090 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5091 last_stripe *= sub_stripes;
5092 }
5093
5094 for (i = 0; i < num_stripes; i++) {
5095 bbio->stripes[i].physical =
5096 map->stripes[stripe_index].physical +
5097 stripe_offset + stripe_nr * map->stripe_len;
5098 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5099
5100 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5101 BTRFS_BLOCK_GROUP_RAID10)) {
5102 bbio->stripes[i].length = stripes_per_dev *
5103 map->stripe_len;
5104
5105 if (i / sub_stripes < remaining_stripes)
5106 bbio->stripes[i].length +=
5107 map->stripe_len;
5108
5109 /*
5110 * Special for the first stripe and
5111 * the last stripe:
5112 *
5113 * |-------|...|-------|
5114 * |----------|
5115 * off end_off
5116 */
5117 if (i < sub_stripes)
5118 bbio->stripes[i].length -=
5119 stripe_offset;
5120
5121 if (stripe_index >= last_stripe &&
5122 stripe_index <= (last_stripe +
5123 sub_stripes - 1))
5124 bbio->stripes[i].length -=
5125 stripe_end_offset;
5126
5127 if (i == sub_stripes - 1)
5128 stripe_offset = 0;
5129 } else
5130 bbio->stripes[i].length = *length;
5131
5132 stripe_index++;
5133 if (stripe_index == map->num_stripes) {
5134 /* This could only happen for RAID0/10 */
5135 stripe_index = 0;
5136 stripe_nr++;
5137 }
5138 }
5139 } else {
5140 for (i = 0; i < num_stripes; i++) {
5141 bbio->stripes[i].physical =
5142 map->stripes[stripe_index].physical +
5143 stripe_offset +
5144 stripe_nr * map->stripe_len;
5145 bbio->stripes[i].dev =
5146 map->stripes[stripe_index].dev;
5147 stripe_index++;
5148 }
5149 }
5150
5151 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
5152 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5153 BTRFS_BLOCK_GROUP_RAID10 |
5154 BTRFS_BLOCK_GROUP_RAID5 |
5155 BTRFS_BLOCK_GROUP_DUP)) {
5156 max_errors = 1;
5157 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5158 max_errors = 2;
5159 }
5160 }
5161
5162 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5163 dev_replace->tgtdev != NULL) {
5164 int index_where_to_add;
5165 u64 srcdev_devid = dev_replace->srcdev->devid;
5166
5167 /*
5168 * duplicate the write operations while the dev replace
5169 * procedure is running. Since the copying of the old disk
5170 * to the new disk takes place at run time while the
5171 * filesystem is mounted writable, the regular write
5172 * operations to the old disk have to be duplicated to go
5173 * to the new disk as well.
5174 * Note that device->missing is handled by the caller, and
5175 * that the write to the old disk is already set up in the
5176 * stripes array.
5177 */
5178 index_where_to_add = num_stripes;
5179 for (i = 0; i < num_stripes; i++) {
5180 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5181 /* write to new disk, too */
5182 struct btrfs_bio_stripe *new =
5183 bbio->stripes + index_where_to_add;
5184 struct btrfs_bio_stripe *old =
5185 bbio->stripes + i;
5186
5187 new->physical = old->physical;
5188 new->length = old->length;
5189 new->dev = dev_replace->tgtdev;
5190 index_where_to_add++;
5191 max_errors++;
5192 }
5193 }
5194 num_stripes = index_where_to_add;
5195 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5196 dev_replace->tgtdev != NULL) {
5197 u64 srcdev_devid = dev_replace->srcdev->devid;
5198 int index_srcdev = 0;
5199 int found = 0;
5200 u64 physical_of_found = 0;
5201
5202 /*
5203 * During the dev-replace procedure, the target drive can
5204 * also be used to read data in case it is needed to repair
5205 * a corrupt block elsewhere. This is possible if the
5206 * requested area is left of the left cursor. In this area,
5207 * the target drive is a full copy of the source drive.
5208 */
5209 for (i = 0; i < num_stripes; i++) {
5210 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5211 /*
5212 * In case of DUP, in order to keep it
5213 * simple, only add the mirror with the
5214 * lowest physical address
5215 */
5216 if (found &&
5217 physical_of_found <=
5218 bbio->stripes[i].physical)
5219 continue;
5220 index_srcdev = i;
5221 found = 1;
5222 physical_of_found = bbio->stripes[i].physical;
5223 }
5224 }
5225 if (found) {
5226 u64 length = map->stripe_len;
5227
5228 if (physical_of_found + length <=
5229 dev_replace->cursor_left) {
5230 struct btrfs_bio_stripe *tgtdev_stripe =
5231 bbio->stripes + num_stripes;
5232
5233 tgtdev_stripe->physical = physical_of_found;
5234 tgtdev_stripe->length =
5235 bbio->stripes[index_srcdev].length;
5236 tgtdev_stripe->dev = dev_replace->tgtdev;
5237
5238 num_stripes++;
5239 }
5240 }
5241 }
5242
5243 *bbio_ret = bbio;
5244 bbio->num_stripes = num_stripes;
5245 bbio->max_errors = max_errors;
5246 bbio->mirror_num = mirror_num;
5247
5248 /*
5249 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5250 * mirror_num == num_stripes + 1 && dev_replace target drive is
5251 * available as a mirror
5252 */
5253 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5254 WARN_ON(num_stripes > 1);
5255 bbio->stripes[0].dev = dev_replace->tgtdev;
5256 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5257 bbio->mirror_num = map->num_stripes + 1;
5258 }
5259 if (raid_map) {
5260 sort_parity_stripes(bbio, raid_map);
5261 *raid_map_ret = raid_map;
5262 }
5263 out:
5264 if (dev_replace_is_ongoing)
5265 btrfs_dev_replace_unlock(dev_replace);
5266 free_extent_map(em);
5267 return ret;
5268 }
5269
5270 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5271 u64 logical, u64 *length,
5272 struct btrfs_bio **bbio_ret, int mirror_num)
5273 {
5274 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5275 mirror_num, NULL);
5276 }
5277
5278 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5279 u64 chunk_start, u64 physical, u64 devid,
5280 u64 **logical, int *naddrs, int *stripe_len)
5281 {
5282 struct extent_map_tree *em_tree = &map_tree->map_tree;
5283 struct extent_map *em;
5284 struct map_lookup *map;
5285 u64 *buf;
5286 u64 bytenr;
5287 u64 length;
5288 u64 stripe_nr;
5289 u64 rmap_len;
5290 int i, j, nr = 0;
5291
5292 read_lock(&em_tree->lock);
5293 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5294 read_unlock(&em_tree->lock);
5295
5296 if (!em) {
5297 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5298 chunk_start);
5299 return -EIO;
5300 }
5301
5302 if (em->start != chunk_start) {
5303 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5304 em->start, chunk_start);
5305 free_extent_map(em);
5306 return -EIO;
5307 }
5308 map = (struct map_lookup *)em->bdev;
5309
5310 length = em->len;
5311 rmap_len = map->stripe_len;
5312
5313 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5314 do_div(length, map->num_stripes / map->sub_stripes);
5315 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5316 do_div(length, map->num_stripes);
5317 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5318 BTRFS_BLOCK_GROUP_RAID6)) {
5319 do_div(length, nr_data_stripes(map));
5320 rmap_len = map->stripe_len * nr_data_stripes(map);
5321 }
5322
5323 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
5324 BUG_ON(!buf); /* -ENOMEM */
5325
5326 for (i = 0; i < map->num_stripes; i++) {
5327 if (devid && map->stripes[i].dev->devid != devid)
5328 continue;
5329 if (map->stripes[i].physical > physical ||
5330 map->stripes[i].physical + length <= physical)
5331 continue;
5332
5333 stripe_nr = physical - map->stripes[i].physical;
5334 do_div(stripe_nr, map->stripe_len);
5335
5336 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5337 stripe_nr = stripe_nr * map->num_stripes + i;
5338 do_div(stripe_nr, map->sub_stripes);
5339 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5340 stripe_nr = stripe_nr * map->num_stripes + i;
5341 } /* else if RAID[56], multiply by nr_data_stripes().
5342 * Alternatively, just use rmap_len below instead of
5343 * map->stripe_len */
5344
5345 bytenr = chunk_start + stripe_nr * rmap_len;
5346 WARN_ON(nr >= map->num_stripes);
5347 for (j = 0; j < nr; j++) {
5348 if (buf[j] == bytenr)
5349 break;
5350 }
5351 if (j == nr) {
5352 WARN_ON(nr >= map->num_stripes);
5353 buf[nr++] = bytenr;
5354 }
5355 }
5356
5357 *logical = buf;
5358 *naddrs = nr;
5359 *stripe_len = rmap_len;
5360
5361 free_extent_map(em);
5362 return 0;
5363 }
5364
5365 static void btrfs_end_bio(struct bio *bio, int err)
5366 {
5367 struct btrfs_bio *bbio = bio->bi_private;
5368 struct btrfs_device *dev = bbio->stripes[0].dev;
5369 int is_orig_bio = 0;
5370
5371 if (err) {
5372 atomic_inc(&bbio->error);
5373 if (err == -EIO || err == -EREMOTEIO) {
5374 unsigned int stripe_index =
5375 btrfs_io_bio(bio)->stripe_index;
5376
5377 BUG_ON(stripe_index >= bbio->num_stripes);
5378 dev = bbio->stripes[stripe_index].dev;
5379 if (dev->bdev) {
5380 if (bio->bi_rw & WRITE)
5381 btrfs_dev_stat_inc(dev,
5382 BTRFS_DEV_STAT_WRITE_ERRS);
5383 else
5384 btrfs_dev_stat_inc(dev,
5385 BTRFS_DEV_STAT_READ_ERRS);
5386 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5387 btrfs_dev_stat_inc(dev,
5388 BTRFS_DEV_STAT_FLUSH_ERRS);
5389 btrfs_dev_stat_print_on_error(dev);
5390 }
5391 }
5392 }
5393
5394 if (bio == bbio->orig_bio)
5395 is_orig_bio = 1;
5396
5397 btrfs_bio_counter_dec(bbio->fs_info);
5398
5399 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5400 if (!is_orig_bio) {
5401 bio_put(bio);
5402 bio = bbio->orig_bio;
5403 }
5404
5405 /*
5406 * We have original bio now. So increment bi_remaining to
5407 * account for it in endio
5408 */
5409 atomic_inc(&bio->bi_remaining);
5410
5411 bio->bi_private = bbio->private;
5412 bio->bi_end_io = bbio->end_io;
5413 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5414 /* only send an error to the higher layers if it is
5415 * beyond the tolerance of the btrfs bio
5416 */
5417 if (atomic_read(&bbio->error) > bbio->max_errors) {
5418 err = -EIO;
5419 } else {
5420 /*
5421 * this bio is actually up to date, we didn't
5422 * go over the max number of errors
5423 */
5424 set_bit(BIO_UPTODATE, &bio->bi_flags);
5425 err = 0;
5426 }
5427 kfree(bbio);
5428
5429 bio_endio(bio, err);
5430 } else if (!is_orig_bio) {
5431 bio_put(bio);
5432 }
5433 }
5434
5435 /*
5436 * see run_scheduled_bios for a description of why bios are collected for
5437 * async submit.
5438 *
5439 * This will add one bio to the pending list for a device and make sure
5440 * the work struct is scheduled.
5441 */
5442 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5443 struct btrfs_device *device,
5444 int rw, struct bio *bio)
5445 {
5446 int should_queue = 1;
5447 struct btrfs_pending_bios *pending_bios;
5448
5449 if (device->missing || !device->bdev) {
5450 bio_endio(bio, -EIO);
5451 return;
5452 }
5453
5454 /* don't bother with additional async steps for reads, right now */
5455 if (!(rw & REQ_WRITE)) {
5456 bio_get(bio);
5457 btrfsic_submit_bio(rw, bio);
5458 bio_put(bio);
5459 return;
5460 }
5461
5462 /*
5463 * nr_async_bios allows us to reliably return congestion to the
5464 * higher layers. Otherwise, the async bio makes it appear we have
5465 * made progress against dirty pages when we've really just put it
5466 * on a queue for later
5467 */
5468 atomic_inc(&root->fs_info->nr_async_bios);
5469 WARN_ON(bio->bi_next);
5470 bio->bi_next = NULL;
5471 bio->bi_rw |= rw;
5472
5473 spin_lock(&device->io_lock);
5474 if (bio->bi_rw & REQ_SYNC)
5475 pending_bios = &device->pending_sync_bios;
5476 else
5477 pending_bios = &device->pending_bios;
5478
5479 if (pending_bios->tail)
5480 pending_bios->tail->bi_next = bio;
5481
5482 pending_bios->tail = bio;
5483 if (!pending_bios->head)
5484 pending_bios->head = bio;
5485 if (device->running_pending)
5486 should_queue = 0;
5487
5488 spin_unlock(&device->io_lock);
5489
5490 if (should_queue)
5491 btrfs_queue_work(root->fs_info->submit_workers,
5492 &device->work);
5493 }
5494
5495 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5496 sector_t sector)
5497 {
5498 struct bio_vec *prev;
5499 struct request_queue *q = bdev_get_queue(bdev);
5500 unsigned int max_sectors = queue_max_sectors(q);
5501 struct bvec_merge_data bvm = {
5502 .bi_bdev = bdev,
5503 .bi_sector = sector,
5504 .bi_rw = bio->bi_rw,
5505 };
5506
5507 if (WARN_ON(bio->bi_vcnt == 0))
5508 return 1;
5509
5510 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5511 if (bio_sectors(bio) > max_sectors)
5512 return 0;
5513
5514 if (!q->merge_bvec_fn)
5515 return 1;
5516
5517 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5518 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5519 return 0;
5520 return 1;
5521 }
5522
5523 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5524 struct bio *bio, u64 physical, int dev_nr,
5525 int rw, int async)
5526 {
5527 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5528
5529 bio->bi_private = bbio;
5530 btrfs_io_bio(bio)->stripe_index = dev_nr;
5531 bio->bi_end_io = btrfs_end_bio;
5532 bio->bi_iter.bi_sector = physical >> 9;
5533 #ifdef DEBUG
5534 {
5535 struct rcu_string *name;
5536
5537 rcu_read_lock();
5538 name = rcu_dereference(dev->name);
5539 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5540 "(%s id %llu), size=%u\n", rw,
5541 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5542 name->str, dev->devid, bio->bi_size);
5543 rcu_read_unlock();
5544 }
5545 #endif
5546 bio->bi_bdev = dev->bdev;
5547
5548 btrfs_bio_counter_inc_noblocked(root->fs_info);
5549
5550 if (async)
5551 btrfs_schedule_bio(root, dev, rw, bio);
5552 else
5553 btrfsic_submit_bio(rw, bio);
5554 }
5555
5556 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5557 struct bio *first_bio, struct btrfs_device *dev,
5558 int dev_nr, int rw, int async)
5559 {
5560 struct bio_vec *bvec = first_bio->bi_io_vec;
5561 struct bio *bio;
5562 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5563 u64 physical = bbio->stripes[dev_nr].physical;
5564
5565 again:
5566 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5567 if (!bio)
5568 return -ENOMEM;
5569
5570 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5571 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5572 bvec->bv_offset) < bvec->bv_len) {
5573 u64 len = bio->bi_iter.bi_size;
5574
5575 atomic_inc(&bbio->stripes_pending);
5576 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5577 rw, async);
5578 physical += len;
5579 goto again;
5580 }
5581 bvec++;
5582 }
5583
5584 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5585 return 0;
5586 }
5587
5588 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5589 {
5590 atomic_inc(&bbio->error);
5591 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5592 bio->bi_private = bbio->private;
5593 bio->bi_end_io = bbio->end_io;
5594 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5595 bio->bi_iter.bi_sector = logical >> 9;
5596 kfree(bbio);
5597 bio_endio(bio, -EIO);
5598 }
5599 }
5600
5601 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5602 int mirror_num, int async_submit)
5603 {
5604 struct btrfs_device *dev;
5605 struct bio *first_bio = bio;
5606 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5607 u64 length = 0;
5608 u64 map_length;
5609 u64 *raid_map = NULL;
5610 int ret;
5611 int dev_nr = 0;
5612 int total_devs = 1;
5613 struct btrfs_bio *bbio = NULL;
5614
5615 length = bio->bi_iter.bi_size;
5616 map_length = length;
5617
5618 btrfs_bio_counter_inc_blocked(root->fs_info);
5619 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5620 mirror_num, &raid_map);
5621 if (ret) {
5622 btrfs_bio_counter_dec(root->fs_info);
5623 return ret;
5624 }
5625
5626 total_devs = bbio->num_stripes;
5627 bbio->orig_bio = first_bio;
5628 bbio->private = first_bio->bi_private;
5629 bbio->end_io = first_bio->bi_end_io;
5630 bbio->fs_info = root->fs_info;
5631 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5632
5633 if (raid_map) {
5634 /* In this case, map_length has been set to the length of
5635 a single stripe; not the whole write */
5636 if (rw & WRITE) {
5637 ret = raid56_parity_write(root, bio, bbio,
5638 raid_map, map_length);
5639 } else {
5640 ret = raid56_parity_recover(root, bio, bbio,
5641 raid_map, map_length,
5642 mirror_num);
5643 }
5644 /*
5645 * FIXME, replace dosen't support raid56 yet, please fix
5646 * it in the future.
5647 */
5648 btrfs_bio_counter_dec(root->fs_info);
5649 return ret;
5650 }
5651
5652 if (map_length < length) {
5653 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5654 logical, length, map_length);
5655 BUG();
5656 }
5657
5658 while (dev_nr < total_devs) {
5659 dev = bbio->stripes[dev_nr].dev;
5660 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5661 bbio_error(bbio, first_bio, logical);
5662 dev_nr++;
5663 continue;
5664 }
5665
5666 /*
5667 * Check and see if we're ok with this bio based on it's size
5668 * and offset with the given device.
5669 */
5670 if (!bio_size_ok(dev->bdev, first_bio,
5671 bbio->stripes[dev_nr].physical >> 9)) {
5672 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5673 dev_nr, rw, async_submit);
5674 BUG_ON(ret);
5675 dev_nr++;
5676 continue;
5677 }
5678
5679 if (dev_nr < total_devs - 1) {
5680 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5681 BUG_ON(!bio); /* -ENOMEM */
5682 } else {
5683 bio = first_bio;
5684 }
5685
5686 submit_stripe_bio(root, bbio, bio,
5687 bbio->stripes[dev_nr].physical, dev_nr, rw,
5688 async_submit);
5689 dev_nr++;
5690 }
5691 btrfs_bio_counter_dec(root->fs_info);
5692 return 0;
5693 }
5694
5695 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5696 u8 *uuid, u8 *fsid)
5697 {
5698 struct btrfs_device *device;
5699 struct btrfs_fs_devices *cur_devices;
5700
5701 cur_devices = fs_info->fs_devices;
5702 while (cur_devices) {
5703 if (!fsid ||
5704 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5705 device = __find_device(&cur_devices->devices,
5706 devid, uuid);
5707 if (device)
5708 return device;
5709 }
5710 cur_devices = cur_devices->seed;
5711 }
5712 return NULL;
5713 }
5714
5715 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5716 u64 devid, u8 *dev_uuid)
5717 {
5718 struct btrfs_device *device;
5719 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5720
5721 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5722 if (IS_ERR(device))
5723 return NULL;
5724
5725 list_add(&device->dev_list, &fs_devices->devices);
5726 device->fs_devices = fs_devices;
5727 fs_devices->num_devices++;
5728
5729 device->missing = 1;
5730 fs_devices->missing_devices++;
5731
5732 return device;
5733 }
5734
5735 /**
5736 * btrfs_alloc_device - allocate struct btrfs_device
5737 * @fs_info: used only for generating a new devid, can be NULL if
5738 * devid is provided (i.e. @devid != NULL).
5739 * @devid: a pointer to devid for this device. If NULL a new devid
5740 * is generated.
5741 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5742 * is generated.
5743 *
5744 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5745 * on error. Returned struct is not linked onto any lists and can be
5746 * destroyed with kfree() right away.
5747 */
5748 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5749 const u64 *devid,
5750 const u8 *uuid)
5751 {
5752 struct btrfs_device *dev;
5753 u64 tmp;
5754
5755 if (WARN_ON(!devid && !fs_info))
5756 return ERR_PTR(-EINVAL);
5757
5758 dev = __alloc_device();
5759 if (IS_ERR(dev))
5760 return dev;
5761
5762 if (devid)
5763 tmp = *devid;
5764 else {
5765 int ret;
5766
5767 ret = find_next_devid(fs_info, &tmp);
5768 if (ret) {
5769 kfree(dev);
5770 return ERR_PTR(ret);
5771 }
5772 }
5773 dev->devid = tmp;
5774
5775 if (uuid)
5776 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5777 else
5778 generate_random_uuid(dev->uuid);
5779
5780 btrfs_init_work(&dev->work, pending_bios_fn, NULL, NULL);
5781
5782 return dev;
5783 }
5784
5785 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5786 struct extent_buffer *leaf,
5787 struct btrfs_chunk *chunk)
5788 {
5789 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5790 struct map_lookup *map;
5791 struct extent_map *em;
5792 u64 logical;
5793 u64 length;
5794 u64 devid;
5795 u8 uuid[BTRFS_UUID_SIZE];
5796 int num_stripes;
5797 int ret;
5798 int i;
5799
5800 logical = key->offset;
5801 length = btrfs_chunk_length(leaf, chunk);
5802
5803 read_lock(&map_tree->map_tree.lock);
5804 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
5805 read_unlock(&map_tree->map_tree.lock);
5806
5807 /* already mapped? */
5808 if (em && em->start <= logical && em->start + em->len > logical) {
5809 free_extent_map(em);
5810 return 0;
5811 } else if (em) {
5812 free_extent_map(em);
5813 }
5814
5815 em = alloc_extent_map();
5816 if (!em)
5817 return -ENOMEM;
5818 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5819 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5820 if (!map) {
5821 free_extent_map(em);
5822 return -ENOMEM;
5823 }
5824
5825 em->bdev = (struct block_device *)map;
5826 em->start = logical;
5827 em->len = length;
5828 em->orig_start = 0;
5829 em->block_start = 0;
5830 em->block_len = em->len;
5831
5832 map->num_stripes = num_stripes;
5833 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5834 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5835 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5836 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5837 map->type = btrfs_chunk_type(leaf, chunk);
5838 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
5839 for (i = 0; i < num_stripes; i++) {
5840 map->stripes[i].physical =
5841 btrfs_stripe_offset_nr(leaf, chunk, i);
5842 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
5843 read_extent_buffer(leaf, uuid, (unsigned long)
5844 btrfs_stripe_dev_uuid_nr(chunk, i),
5845 BTRFS_UUID_SIZE);
5846 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5847 uuid, NULL);
5848 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
5849 kfree(map);
5850 free_extent_map(em);
5851 return -EIO;
5852 }
5853 if (!map->stripes[i].dev) {
5854 map->stripes[i].dev =
5855 add_missing_dev(root, devid, uuid);
5856 if (!map->stripes[i].dev) {
5857 kfree(map);
5858 free_extent_map(em);
5859 return -EIO;
5860 }
5861 }
5862 map->stripes[i].dev->in_fs_metadata = 1;
5863 }
5864
5865 write_lock(&map_tree->map_tree.lock);
5866 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
5867 write_unlock(&map_tree->map_tree.lock);
5868 BUG_ON(ret); /* Tree corruption */
5869 free_extent_map(em);
5870
5871 return 0;
5872 }
5873
5874 static void fill_device_from_item(struct extent_buffer *leaf,
5875 struct btrfs_dev_item *dev_item,
5876 struct btrfs_device *device)
5877 {
5878 unsigned long ptr;
5879
5880 device->devid = btrfs_device_id(leaf, dev_item);
5881 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5882 device->total_bytes = device->disk_total_bytes;
5883 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5884 device->type = btrfs_device_type(leaf, dev_item);
5885 device->io_align = btrfs_device_io_align(leaf, dev_item);
5886 device->io_width = btrfs_device_io_width(leaf, dev_item);
5887 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
5888 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
5889 device->is_tgtdev_for_dev_replace = 0;
5890
5891 ptr = btrfs_device_uuid(dev_item);
5892 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
5893 }
5894
5895 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5896 {
5897 struct btrfs_fs_devices *fs_devices;
5898 int ret;
5899
5900 BUG_ON(!mutex_is_locked(&uuid_mutex));
5901
5902 fs_devices = root->fs_info->fs_devices->seed;
5903 while (fs_devices) {
5904 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5905 ret = 0;
5906 goto out;
5907 }
5908 fs_devices = fs_devices->seed;
5909 }
5910
5911 fs_devices = find_fsid(fsid);
5912 if (!fs_devices) {
5913 ret = -ENOENT;
5914 goto out;
5915 }
5916
5917 fs_devices = clone_fs_devices(fs_devices);
5918 if (IS_ERR(fs_devices)) {
5919 ret = PTR_ERR(fs_devices);
5920 goto out;
5921 }
5922
5923 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
5924 root->fs_info->bdev_holder);
5925 if (ret) {
5926 free_fs_devices(fs_devices);
5927 goto out;
5928 }
5929
5930 if (!fs_devices->seeding) {
5931 __btrfs_close_devices(fs_devices);
5932 free_fs_devices(fs_devices);
5933 ret = -EINVAL;
5934 goto out;
5935 }
5936
5937 fs_devices->seed = root->fs_info->fs_devices->seed;
5938 root->fs_info->fs_devices->seed = fs_devices;
5939 out:
5940 return ret;
5941 }
5942
5943 static int read_one_dev(struct btrfs_root *root,
5944 struct extent_buffer *leaf,
5945 struct btrfs_dev_item *dev_item)
5946 {
5947 struct btrfs_device *device;
5948 u64 devid;
5949 int ret;
5950 u8 fs_uuid[BTRFS_UUID_SIZE];
5951 u8 dev_uuid[BTRFS_UUID_SIZE];
5952
5953 devid = btrfs_device_id(leaf, dev_item);
5954 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
5955 BTRFS_UUID_SIZE);
5956 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
5957 BTRFS_UUID_SIZE);
5958
5959 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5960 ret = open_seed_devices(root, fs_uuid);
5961 if (ret && !btrfs_test_opt(root, DEGRADED))
5962 return ret;
5963 }
5964
5965 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5966 if (!device || !device->bdev) {
5967 if (!btrfs_test_opt(root, DEGRADED))
5968 return -EIO;
5969
5970 if (!device) {
5971 btrfs_warn(root->fs_info, "devid %llu missing", devid);
5972 device = add_missing_dev(root, devid, dev_uuid);
5973 if (!device)
5974 return -ENOMEM;
5975 } else if (!device->missing) {
5976 /*
5977 * this happens when a device that was properly setup
5978 * in the device info lists suddenly goes bad.
5979 * device->bdev is NULL, and so we have to set
5980 * device->missing to one here
5981 */
5982 root->fs_info->fs_devices->missing_devices++;
5983 device->missing = 1;
5984 }
5985 }
5986
5987 if (device->fs_devices != root->fs_info->fs_devices) {
5988 BUG_ON(device->writeable);
5989 if (device->generation !=
5990 btrfs_device_generation(leaf, dev_item))
5991 return -EINVAL;
5992 }
5993
5994 fill_device_from_item(leaf, dev_item, device);
5995 device->in_fs_metadata = 1;
5996 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
5997 device->fs_devices->total_rw_bytes += device->total_bytes;
5998 spin_lock(&root->fs_info->free_chunk_lock);
5999 root->fs_info->free_chunk_space += device->total_bytes -
6000 device->bytes_used;
6001 spin_unlock(&root->fs_info->free_chunk_lock);
6002 }
6003 ret = 0;
6004 return ret;
6005 }
6006
6007 int btrfs_read_sys_array(struct btrfs_root *root)
6008 {
6009 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6010 struct extent_buffer *sb;
6011 struct btrfs_disk_key *disk_key;
6012 struct btrfs_chunk *chunk;
6013 u8 *ptr;
6014 unsigned long sb_ptr;
6015 int ret = 0;
6016 u32 num_stripes;
6017 u32 array_size;
6018 u32 len = 0;
6019 u32 cur;
6020 struct btrfs_key key;
6021
6022 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
6023 BTRFS_SUPER_INFO_SIZE);
6024 if (!sb)
6025 return -ENOMEM;
6026 btrfs_set_buffer_uptodate(sb);
6027 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6028 /*
6029 * The sb extent buffer is artifical and just used to read the system array.
6030 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6031 * pages up-to-date when the page is larger: extent does not cover the
6032 * whole page and consequently check_page_uptodate does not find all
6033 * the page's extents up-to-date (the hole beyond sb),
6034 * write_extent_buffer then triggers a WARN_ON.
6035 *
6036 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6037 * but sb spans only this function. Add an explicit SetPageUptodate call
6038 * to silence the warning eg. on PowerPC 64.
6039 */
6040 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6041 SetPageUptodate(sb->pages[0]);
6042
6043 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6044 array_size = btrfs_super_sys_array_size(super_copy);
6045
6046 ptr = super_copy->sys_chunk_array;
6047 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
6048 cur = 0;
6049
6050 while (cur < array_size) {
6051 disk_key = (struct btrfs_disk_key *)ptr;
6052 btrfs_disk_key_to_cpu(&key, disk_key);
6053
6054 len = sizeof(*disk_key); ptr += len;
6055 sb_ptr += len;
6056 cur += len;
6057
6058 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6059 chunk = (struct btrfs_chunk *)sb_ptr;
6060 ret = read_one_chunk(root, &key, sb, chunk);
6061 if (ret)
6062 break;
6063 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6064 len = btrfs_chunk_item_size(num_stripes);
6065 } else {
6066 ret = -EIO;
6067 break;
6068 }
6069 ptr += len;
6070 sb_ptr += len;
6071 cur += len;
6072 }
6073 free_extent_buffer(sb);
6074 return ret;
6075 }
6076
6077 int btrfs_read_chunk_tree(struct btrfs_root *root)
6078 {
6079 struct btrfs_path *path;
6080 struct extent_buffer *leaf;
6081 struct btrfs_key key;
6082 struct btrfs_key found_key;
6083 int ret;
6084 int slot;
6085
6086 root = root->fs_info->chunk_root;
6087
6088 path = btrfs_alloc_path();
6089 if (!path)
6090 return -ENOMEM;
6091
6092 mutex_lock(&uuid_mutex);
6093 lock_chunks(root);
6094
6095 /*
6096 * Read all device items, and then all the chunk items. All
6097 * device items are found before any chunk item (their object id
6098 * is smaller than the lowest possible object id for a chunk
6099 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6100 */
6101 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6102 key.offset = 0;
6103 key.type = 0;
6104 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6105 if (ret < 0)
6106 goto error;
6107 while (1) {
6108 leaf = path->nodes[0];
6109 slot = path->slots[0];
6110 if (slot >= btrfs_header_nritems(leaf)) {
6111 ret = btrfs_next_leaf(root, path);
6112 if (ret == 0)
6113 continue;
6114 if (ret < 0)
6115 goto error;
6116 break;
6117 }
6118 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6119 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6120 struct btrfs_dev_item *dev_item;
6121 dev_item = btrfs_item_ptr(leaf, slot,
6122 struct btrfs_dev_item);
6123 ret = read_one_dev(root, leaf, dev_item);
6124 if (ret)
6125 goto error;
6126 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6127 struct btrfs_chunk *chunk;
6128 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6129 ret = read_one_chunk(root, &found_key, leaf, chunk);
6130 if (ret)
6131 goto error;
6132 }
6133 path->slots[0]++;
6134 }
6135 ret = 0;
6136 error:
6137 unlock_chunks(root);
6138 mutex_unlock(&uuid_mutex);
6139
6140 btrfs_free_path(path);
6141 return ret;
6142 }
6143
6144 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6145 {
6146 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6147 struct btrfs_device *device;
6148
6149 while (fs_devices) {
6150 mutex_lock(&fs_devices->device_list_mutex);
6151 list_for_each_entry(device, &fs_devices->devices, dev_list)
6152 device->dev_root = fs_info->dev_root;
6153 mutex_unlock(&fs_devices->device_list_mutex);
6154
6155 fs_devices = fs_devices->seed;
6156 }
6157 }
6158
6159 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6160 {
6161 int i;
6162
6163 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6164 btrfs_dev_stat_reset(dev, i);
6165 }
6166
6167 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6168 {
6169 struct btrfs_key key;
6170 struct btrfs_key found_key;
6171 struct btrfs_root *dev_root = fs_info->dev_root;
6172 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6173 struct extent_buffer *eb;
6174 int slot;
6175 int ret = 0;
6176 struct btrfs_device *device;
6177 struct btrfs_path *path = NULL;
6178 int i;
6179
6180 path = btrfs_alloc_path();
6181 if (!path) {
6182 ret = -ENOMEM;
6183 goto out;
6184 }
6185
6186 mutex_lock(&fs_devices->device_list_mutex);
6187 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6188 int item_size;
6189 struct btrfs_dev_stats_item *ptr;
6190
6191 key.objectid = 0;
6192 key.type = BTRFS_DEV_STATS_KEY;
6193 key.offset = device->devid;
6194 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6195 if (ret) {
6196 __btrfs_reset_dev_stats(device);
6197 device->dev_stats_valid = 1;
6198 btrfs_release_path(path);
6199 continue;
6200 }
6201 slot = path->slots[0];
6202 eb = path->nodes[0];
6203 btrfs_item_key_to_cpu(eb, &found_key, slot);
6204 item_size = btrfs_item_size_nr(eb, slot);
6205
6206 ptr = btrfs_item_ptr(eb, slot,
6207 struct btrfs_dev_stats_item);
6208
6209 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6210 if (item_size >= (1 + i) * sizeof(__le64))
6211 btrfs_dev_stat_set(device, i,
6212 btrfs_dev_stats_value(eb, ptr, i));
6213 else
6214 btrfs_dev_stat_reset(device, i);
6215 }
6216
6217 device->dev_stats_valid = 1;
6218 btrfs_dev_stat_print_on_load(device);
6219 btrfs_release_path(path);
6220 }
6221 mutex_unlock(&fs_devices->device_list_mutex);
6222
6223 out:
6224 btrfs_free_path(path);
6225 return ret < 0 ? ret : 0;
6226 }
6227
6228 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6229 struct btrfs_root *dev_root,
6230 struct btrfs_device *device)
6231 {
6232 struct btrfs_path *path;
6233 struct btrfs_key key;
6234 struct extent_buffer *eb;
6235 struct btrfs_dev_stats_item *ptr;
6236 int ret;
6237 int i;
6238
6239 key.objectid = 0;
6240 key.type = BTRFS_DEV_STATS_KEY;
6241 key.offset = device->devid;
6242
6243 path = btrfs_alloc_path();
6244 BUG_ON(!path);
6245 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6246 if (ret < 0) {
6247 printk_in_rcu(KERN_WARNING "BTRFS: "
6248 "error %d while searching for dev_stats item for device %s!\n",
6249 ret, rcu_str_deref(device->name));
6250 goto out;
6251 }
6252
6253 if (ret == 0 &&
6254 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6255 /* need to delete old one and insert a new one */
6256 ret = btrfs_del_item(trans, dev_root, path);
6257 if (ret != 0) {
6258 printk_in_rcu(KERN_WARNING "BTRFS: "
6259 "delete too small dev_stats item for device %s failed %d!\n",
6260 rcu_str_deref(device->name), ret);
6261 goto out;
6262 }
6263 ret = 1;
6264 }
6265
6266 if (ret == 1) {
6267 /* need to insert a new item */
6268 btrfs_release_path(path);
6269 ret = btrfs_insert_empty_item(trans, dev_root, path,
6270 &key, sizeof(*ptr));
6271 if (ret < 0) {
6272 printk_in_rcu(KERN_WARNING "BTRFS: "
6273 "insert dev_stats item for device %s failed %d!\n",
6274 rcu_str_deref(device->name), ret);
6275 goto out;
6276 }
6277 }
6278
6279 eb = path->nodes[0];
6280 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6281 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6282 btrfs_set_dev_stats_value(eb, ptr, i,
6283 btrfs_dev_stat_read(device, i));
6284 btrfs_mark_buffer_dirty(eb);
6285
6286 out:
6287 btrfs_free_path(path);
6288 return ret;
6289 }
6290
6291 /*
6292 * called from commit_transaction. Writes all changed device stats to disk.
6293 */
6294 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6295 struct btrfs_fs_info *fs_info)
6296 {
6297 struct btrfs_root *dev_root = fs_info->dev_root;
6298 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6299 struct btrfs_device *device;
6300 int ret = 0;
6301
6302 mutex_lock(&fs_devices->device_list_mutex);
6303 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6304 if (!device->dev_stats_valid || !device->dev_stats_dirty)
6305 continue;
6306
6307 ret = update_dev_stat_item(trans, dev_root, device);
6308 if (!ret)
6309 device->dev_stats_dirty = 0;
6310 }
6311 mutex_unlock(&fs_devices->device_list_mutex);
6312
6313 return ret;
6314 }
6315
6316 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6317 {
6318 btrfs_dev_stat_inc(dev, index);
6319 btrfs_dev_stat_print_on_error(dev);
6320 }
6321
6322 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6323 {
6324 if (!dev->dev_stats_valid)
6325 return;
6326 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6327 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6328 rcu_str_deref(dev->name),
6329 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6330 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6331 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6332 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6333 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6334 }
6335
6336 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6337 {
6338 int i;
6339
6340 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6341 if (btrfs_dev_stat_read(dev, i) != 0)
6342 break;
6343 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6344 return; /* all values == 0, suppress message */
6345
6346 printk_in_rcu(KERN_INFO "BTRFS: "
6347 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6348 rcu_str_deref(dev->name),
6349 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6350 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6351 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6352 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6353 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6354 }
6355
6356 int btrfs_get_dev_stats(struct btrfs_root *root,
6357 struct btrfs_ioctl_get_dev_stats *stats)
6358 {
6359 struct btrfs_device *dev;
6360 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6361 int i;
6362
6363 mutex_lock(&fs_devices->device_list_mutex);
6364 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6365 mutex_unlock(&fs_devices->device_list_mutex);
6366
6367 if (!dev) {
6368 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6369 return -ENODEV;
6370 } else if (!dev->dev_stats_valid) {
6371 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6372 return -ENODEV;
6373 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6374 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6375 if (stats->nr_items > i)
6376 stats->values[i] =
6377 btrfs_dev_stat_read_and_reset(dev, i);
6378 else
6379 btrfs_dev_stat_reset(dev, i);
6380 }
6381 } else {
6382 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6383 if (stats->nr_items > i)
6384 stats->values[i] = btrfs_dev_stat_read(dev, i);
6385 }
6386 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6387 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6388 return 0;
6389 }
6390
6391 int btrfs_scratch_superblock(struct btrfs_device *device)
6392 {
6393 struct buffer_head *bh;
6394 struct btrfs_super_block *disk_super;
6395
6396 bh = btrfs_read_dev_super(device->bdev);
6397 if (!bh)
6398 return -EINVAL;
6399 disk_super = (struct btrfs_super_block *)bh->b_data;
6400
6401 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6402 set_buffer_dirty(bh);
6403 sync_dirty_buffer(bh);
6404 brelse(bh);
6405
6406 return 0;
6407 }
This page took 0.157439 seconds and 6 git commands to generate.