Merge commit 'b8c93646fd5c' into omap-for-v4.3/fixes
[deliverable/linux.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52
53 DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55 struct list_head *btrfs_get_fs_uuids(void)
56 {
57 return &fs_uuids;
58 }
59
60 static struct btrfs_fs_devices *__alloc_fs_devices(void)
61 {
62 struct btrfs_fs_devices *fs_devs;
63
64 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
65 if (!fs_devs)
66 return ERR_PTR(-ENOMEM);
67
68 mutex_init(&fs_devs->device_list_mutex);
69
70 INIT_LIST_HEAD(&fs_devs->devices);
71 INIT_LIST_HEAD(&fs_devs->resized_devices);
72 INIT_LIST_HEAD(&fs_devs->alloc_list);
73 INIT_LIST_HEAD(&fs_devs->list);
74
75 return fs_devs;
76 }
77
78 /**
79 * alloc_fs_devices - allocate struct btrfs_fs_devices
80 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
81 * generated.
82 *
83 * Return: a pointer to a new &struct btrfs_fs_devices on success;
84 * ERR_PTR() on error. Returned struct is not linked onto any lists and
85 * can be destroyed with kfree() right away.
86 */
87 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
88 {
89 struct btrfs_fs_devices *fs_devs;
90
91 fs_devs = __alloc_fs_devices();
92 if (IS_ERR(fs_devs))
93 return fs_devs;
94
95 if (fsid)
96 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
97 else
98 generate_random_uuid(fs_devs->fsid);
99
100 return fs_devs;
101 }
102
103 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
104 {
105 struct btrfs_device *device;
106 WARN_ON(fs_devices->opened);
107 while (!list_empty(&fs_devices->devices)) {
108 device = list_entry(fs_devices->devices.next,
109 struct btrfs_device, dev_list);
110 list_del(&device->dev_list);
111 rcu_string_free(device->name);
112 kfree(device);
113 }
114 kfree(fs_devices);
115 }
116
117 static void btrfs_kobject_uevent(struct block_device *bdev,
118 enum kobject_action action)
119 {
120 int ret;
121
122 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
123 if (ret)
124 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
125 action,
126 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
127 &disk_to_dev(bdev->bd_disk)->kobj);
128 }
129
130 void btrfs_cleanup_fs_uuids(void)
131 {
132 struct btrfs_fs_devices *fs_devices;
133
134 while (!list_empty(&fs_uuids)) {
135 fs_devices = list_entry(fs_uuids.next,
136 struct btrfs_fs_devices, list);
137 list_del(&fs_devices->list);
138 free_fs_devices(fs_devices);
139 }
140 }
141
142 static struct btrfs_device *__alloc_device(void)
143 {
144 struct btrfs_device *dev;
145
146 dev = kzalloc(sizeof(*dev), GFP_NOFS);
147 if (!dev)
148 return ERR_PTR(-ENOMEM);
149
150 INIT_LIST_HEAD(&dev->dev_list);
151 INIT_LIST_HEAD(&dev->dev_alloc_list);
152 INIT_LIST_HEAD(&dev->resized_list);
153
154 spin_lock_init(&dev->io_lock);
155
156 spin_lock_init(&dev->reada_lock);
157 atomic_set(&dev->reada_in_flight, 0);
158 atomic_set(&dev->dev_stats_ccnt, 0);
159 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
160 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
161
162 return dev;
163 }
164
165 static noinline struct btrfs_device *__find_device(struct list_head *head,
166 u64 devid, u8 *uuid)
167 {
168 struct btrfs_device *dev;
169
170 list_for_each_entry(dev, head, dev_list) {
171 if (dev->devid == devid &&
172 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
173 return dev;
174 }
175 }
176 return NULL;
177 }
178
179 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
180 {
181 struct btrfs_fs_devices *fs_devices;
182
183 list_for_each_entry(fs_devices, &fs_uuids, list) {
184 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
185 return fs_devices;
186 }
187 return NULL;
188 }
189
190 static int
191 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
192 int flush, struct block_device **bdev,
193 struct buffer_head **bh)
194 {
195 int ret;
196
197 *bdev = blkdev_get_by_path(device_path, flags, holder);
198
199 if (IS_ERR(*bdev)) {
200 ret = PTR_ERR(*bdev);
201 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
202 goto error;
203 }
204
205 if (flush)
206 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
207 ret = set_blocksize(*bdev, 4096);
208 if (ret) {
209 blkdev_put(*bdev, flags);
210 goto error;
211 }
212 invalidate_bdev(*bdev);
213 *bh = btrfs_read_dev_super(*bdev);
214 if (!*bh) {
215 ret = -EINVAL;
216 blkdev_put(*bdev, flags);
217 goto error;
218 }
219
220 return 0;
221
222 error:
223 *bdev = NULL;
224 *bh = NULL;
225 return ret;
226 }
227
228 static void requeue_list(struct btrfs_pending_bios *pending_bios,
229 struct bio *head, struct bio *tail)
230 {
231
232 struct bio *old_head;
233
234 old_head = pending_bios->head;
235 pending_bios->head = head;
236 if (pending_bios->tail)
237 tail->bi_next = old_head;
238 else
239 pending_bios->tail = tail;
240 }
241
242 /*
243 * we try to collect pending bios for a device so we don't get a large
244 * number of procs sending bios down to the same device. This greatly
245 * improves the schedulers ability to collect and merge the bios.
246 *
247 * But, it also turns into a long list of bios to process and that is sure
248 * to eventually make the worker thread block. The solution here is to
249 * make some progress and then put this work struct back at the end of
250 * the list if the block device is congested. This way, multiple devices
251 * can make progress from a single worker thread.
252 */
253 static noinline void run_scheduled_bios(struct btrfs_device *device)
254 {
255 struct bio *pending;
256 struct backing_dev_info *bdi;
257 struct btrfs_fs_info *fs_info;
258 struct btrfs_pending_bios *pending_bios;
259 struct bio *tail;
260 struct bio *cur;
261 int again = 0;
262 unsigned long num_run;
263 unsigned long batch_run = 0;
264 unsigned long limit;
265 unsigned long last_waited = 0;
266 int force_reg = 0;
267 int sync_pending = 0;
268 struct blk_plug plug;
269
270 /*
271 * this function runs all the bios we've collected for
272 * a particular device. We don't want to wander off to
273 * another device without first sending all of these down.
274 * So, setup a plug here and finish it off before we return
275 */
276 blk_start_plug(&plug);
277
278 bdi = blk_get_backing_dev_info(device->bdev);
279 fs_info = device->dev_root->fs_info;
280 limit = btrfs_async_submit_limit(fs_info);
281 limit = limit * 2 / 3;
282
283 loop:
284 spin_lock(&device->io_lock);
285
286 loop_lock:
287 num_run = 0;
288
289 /* take all the bios off the list at once and process them
290 * later on (without the lock held). But, remember the
291 * tail and other pointers so the bios can be properly reinserted
292 * into the list if we hit congestion
293 */
294 if (!force_reg && device->pending_sync_bios.head) {
295 pending_bios = &device->pending_sync_bios;
296 force_reg = 1;
297 } else {
298 pending_bios = &device->pending_bios;
299 force_reg = 0;
300 }
301
302 pending = pending_bios->head;
303 tail = pending_bios->tail;
304 WARN_ON(pending && !tail);
305
306 /*
307 * if pending was null this time around, no bios need processing
308 * at all and we can stop. Otherwise it'll loop back up again
309 * and do an additional check so no bios are missed.
310 *
311 * device->running_pending is used to synchronize with the
312 * schedule_bio code.
313 */
314 if (device->pending_sync_bios.head == NULL &&
315 device->pending_bios.head == NULL) {
316 again = 0;
317 device->running_pending = 0;
318 } else {
319 again = 1;
320 device->running_pending = 1;
321 }
322
323 pending_bios->head = NULL;
324 pending_bios->tail = NULL;
325
326 spin_unlock(&device->io_lock);
327
328 while (pending) {
329
330 rmb();
331 /* we want to work on both lists, but do more bios on the
332 * sync list than the regular list
333 */
334 if ((num_run > 32 &&
335 pending_bios != &device->pending_sync_bios &&
336 device->pending_sync_bios.head) ||
337 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
338 device->pending_bios.head)) {
339 spin_lock(&device->io_lock);
340 requeue_list(pending_bios, pending, tail);
341 goto loop_lock;
342 }
343
344 cur = pending;
345 pending = pending->bi_next;
346 cur->bi_next = NULL;
347
348 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
349 waitqueue_active(&fs_info->async_submit_wait))
350 wake_up(&fs_info->async_submit_wait);
351
352 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
353
354 /*
355 * if we're doing the sync list, record that our
356 * plug has some sync requests on it
357 *
358 * If we're doing the regular list and there are
359 * sync requests sitting around, unplug before
360 * we add more
361 */
362 if (pending_bios == &device->pending_sync_bios) {
363 sync_pending = 1;
364 } else if (sync_pending) {
365 blk_finish_plug(&plug);
366 blk_start_plug(&plug);
367 sync_pending = 0;
368 }
369
370 btrfsic_submit_bio(cur->bi_rw, cur);
371 num_run++;
372 batch_run++;
373
374 cond_resched();
375
376 /*
377 * we made progress, there is more work to do and the bdi
378 * is now congested. Back off and let other work structs
379 * run instead
380 */
381 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
382 fs_info->fs_devices->open_devices > 1) {
383 struct io_context *ioc;
384
385 ioc = current->io_context;
386
387 /*
388 * the main goal here is that we don't want to
389 * block if we're going to be able to submit
390 * more requests without blocking.
391 *
392 * This code does two great things, it pokes into
393 * the elevator code from a filesystem _and_
394 * it makes assumptions about how batching works.
395 */
396 if (ioc && ioc->nr_batch_requests > 0 &&
397 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
398 (last_waited == 0 ||
399 ioc->last_waited == last_waited)) {
400 /*
401 * we want to go through our batch of
402 * requests and stop. So, we copy out
403 * the ioc->last_waited time and test
404 * against it before looping
405 */
406 last_waited = ioc->last_waited;
407 cond_resched();
408 continue;
409 }
410 spin_lock(&device->io_lock);
411 requeue_list(pending_bios, pending, tail);
412 device->running_pending = 1;
413
414 spin_unlock(&device->io_lock);
415 btrfs_queue_work(fs_info->submit_workers,
416 &device->work);
417 goto done;
418 }
419 /* unplug every 64 requests just for good measure */
420 if (batch_run % 64 == 0) {
421 blk_finish_plug(&plug);
422 blk_start_plug(&plug);
423 sync_pending = 0;
424 }
425 }
426
427 cond_resched();
428 if (again)
429 goto loop;
430
431 spin_lock(&device->io_lock);
432 if (device->pending_bios.head || device->pending_sync_bios.head)
433 goto loop_lock;
434 spin_unlock(&device->io_lock);
435
436 done:
437 blk_finish_plug(&plug);
438 }
439
440 static void pending_bios_fn(struct btrfs_work *work)
441 {
442 struct btrfs_device *device;
443
444 device = container_of(work, struct btrfs_device, work);
445 run_scheduled_bios(device);
446 }
447
448
449 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
450 {
451 struct btrfs_fs_devices *fs_devs;
452 struct btrfs_device *dev;
453
454 if (!cur_dev->name)
455 return;
456
457 list_for_each_entry(fs_devs, &fs_uuids, list) {
458 int del = 1;
459
460 if (fs_devs->opened)
461 continue;
462 if (fs_devs->seeding)
463 continue;
464
465 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
466
467 if (dev == cur_dev)
468 continue;
469 if (!dev->name)
470 continue;
471
472 /*
473 * Todo: This won't be enough. What if the same device
474 * comes back (with new uuid and) with its mapper path?
475 * But for now, this does help as mostly an admin will
476 * either use mapper or non mapper path throughout.
477 */
478 rcu_read_lock();
479 del = strcmp(rcu_str_deref(dev->name),
480 rcu_str_deref(cur_dev->name));
481 rcu_read_unlock();
482 if (!del)
483 break;
484 }
485
486 if (!del) {
487 /* delete the stale device */
488 if (fs_devs->num_devices == 1) {
489 btrfs_sysfs_remove_fsid(fs_devs);
490 list_del(&fs_devs->list);
491 free_fs_devices(fs_devs);
492 } else {
493 fs_devs->num_devices--;
494 list_del(&dev->dev_list);
495 rcu_string_free(dev->name);
496 kfree(dev);
497 }
498 break;
499 }
500 }
501 }
502
503 /*
504 * Add new device to list of registered devices
505 *
506 * Returns:
507 * 1 - first time device is seen
508 * 0 - device already known
509 * < 0 - error
510 */
511 static noinline int device_list_add(const char *path,
512 struct btrfs_super_block *disk_super,
513 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
514 {
515 struct btrfs_device *device;
516 struct btrfs_fs_devices *fs_devices;
517 struct rcu_string *name;
518 int ret = 0;
519 u64 found_transid = btrfs_super_generation(disk_super);
520
521 fs_devices = find_fsid(disk_super->fsid);
522 if (!fs_devices) {
523 fs_devices = alloc_fs_devices(disk_super->fsid);
524 if (IS_ERR(fs_devices))
525 return PTR_ERR(fs_devices);
526
527 list_add(&fs_devices->list, &fs_uuids);
528
529 device = NULL;
530 } else {
531 device = __find_device(&fs_devices->devices, devid,
532 disk_super->dev_item.uuid);
533 }
534
535 if (!device) {
536 if (fs_devices->opened)
537 return -EBUSY;
538
539 device = btrfs_alloc_device(NULL, &devid,
540 disk_super->dev_item.uuid);
541 if (IS_ERR(device)) {
542 /* we can safely leave the fs_devices entry around */
543 return PTR_ERR(device);
544 }
545
546 name = rcu_string_strdup(path, GFP_NOFS);
547 if (!name) {
548 kfree(device);
549 return -ENOMEM;
550 }
551 rcu_assign_pointer(device->name, name);
552
553 mutex_lock(&fs_devices->device_list_mutex);
554 list_add_rcu(&device->dev_list, &fs_devices->devices);
555 fs_devices->num_devices++;
556 mutex_unlock(&fs_devices->device_list_mutex);
557
558 ret = 1;
559 device->fs_devices = fs_devices;
560 } else if (!device->name || strcmp(device->name->str, path)) {
561 /*
562 * When FS is already mounted.
563 * 1. If you are here and if the device->name is NULL that
564 * means this device was missing at time of FS mount.
565 * 2. If you are here and if the device->name is different
566 * from 'path' that means either
567 * a. The same device disappeared and reappeared with
568 * different name. or
569 * b. The missing-disk-which-was-replaced, has
570 * reappeared now.
571 *
572 * We must allow 1 and 2a above. But 2b would be a spurious
573 * and unintentional.
574 *
575 * Further in case of 1 and 2a above, the disk at 'path'
576 * would have missed some transaction when it was away and
577 * in case of 2a the stale bdev has to be updated as well.
578 * 2b must not be allowed at all time.
579 */
580
581 /*
582 * For now, we do allow update to btrfs_fs_device through the
583 * btrfs dev scan cli after FS has been mounted. We're still
584 * tracking a problem where systems fail mount by subvolume id
585 * when we reject replacement on a mounted FS.
586 */
587 if (!fs_devices->opened && found_transid < device->generation) {
588 /*
589 * That is if the FS is _not_ mounted and if you
590 * are here, that means there is more than one
591 * disk with same uuid and devid.We keep the one
592 * with larger generation number or the last-in if
593 * generation are equal.
594 */
595 return -EEXIST;
596 }
597
598 name = rcu_string_strdup(path, GFP_NOFS);
599 if (!name)
600 return -ENOMEM;
601 rcu_string_free(device->name);
602 rcu_assign_pointer(device->name, name);
603 if (device->missing) {
604 fs_devices->missing_devices--;
605 device->missing = 0;
606 }
607 }
608
609 /*
610 * Unmount does not free the btrfs_device struct but would zero
611 * generation along with most of the other members. So just update
612 * it back. We need it to pick the disk with largest generation
613 * (as above).
614 */
615 if (!fs_devices->opened)
616 device->generation = found_transid;
617
618 /*
619 * if there is new btrfs on an already registered device,
620 * then remove the stale device entry.
621 */
622 btrfs_free_stale_device(device);
623
624 *fs_devices_ret = fs_devices;
625
626 return ret;
627 }
628
629 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
630 {
631 struct btrfs_fs_devices *fs_devices;
632 struct btrfs_device *device;
633 struct btrfs_device *orig_dev;
634
635 fs_devices = alloc_fs_devices(orig->fsid);
636 if (IS_ERR(fs_devices))
637 return fs_devices;
638
639 mutex_lock(&orig->device_list_mutex);
640 fs_devices->total_devices = orig->total_devices;
641
642 /* We have held the volume lock, it is safe to get the devices. */
643 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
644 struct rcu_string *name;
645
646 device = btrfs_alloc_device(NULL, &orig_dev->devid,
647 orig_dev->uuid);
648 if (IS_ERR(device))
649 goto error;
650
651 /*
652 * This is ok to do without rcu read locked because we hold the
653 * uuid mutex so nothing we touch in here is going to disappear.
654 */
655 if (orig_dev->name) {
656 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
657 if (!name) {
658 kfree(device);
659 goto error;
660 }
661 rcu_assign_pointer(device->name, name);
662 }
663
664 list_add(&device->dev_list, &fs_devices->devices);
665 device->fs_devices = fs_devices;
666 fs_devices->num_devices++;
667 }
668 mutex_unlock(&orig->device_list_mutex);
669 return fs_devices;
670 error:
671 mutex_unlock(&orig->device_list_mutex);
672 free_fs_devices(fs_devices);
673 return ERR_PTR(-ENOMEM);
674 }
675
676 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
677 {
678 struct btrfs_device *device, *next;
679 struct btrfs_device *latest_dev = NULL;
680
681 mutex_lock(&uuid_mutex);
682 again:
683 /* This is the initialized path, it is safe to release the devices. */
684 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
685 if (device->in_fs_metadata) {
686 if (!device->is_tgtdev_for_dev_replace &&
687 (!latest_dev ||
688 device->generation > latest_dev->generation)) {
689 latest_dev = device;
690 }
691 continue;
692 }
693
694 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
695 /*
696 * In the first step, keep the device which has
697 * the correct fsid and the devid that is used
698 * for the dev_replace procedure.
699 * In the second step, the dev_replace state is
700 * read from the device tree and it is known
701 * whether the procedure is really active or
702 * not, which means whether this device is
703 * used or whether it should be removed.
704 */
705 if (step == 0 || device->is_tgtdev_for_dev_replace) {
706 continue;
707 }
708 }
709 if (device->bdev) {
710 blkdev_put(device->bdev, device->mode);
711 device->bdev = NULL;
712 fs_devices->open_devices--;
713 }
714 if (device->writeable) {
715 list_del_init(&device->dev_alloc_list);
716 device->writeable = 0;
717 if (!device->is_tgtdev_for_dev_replace)
718 fs_devices->rw_devices--;
719 }
720 list_del_init(&device->dev_list);
721 fs_devices->num_devices--;
722 rcu_string_free(device->name);
723 kfree(device);
724 }
725
726 if (fs_devices->seed) {
727 fs_devices = fs_devices->seed;
728 goto again;
729 }
730
731 fs_devices->latest_bdev = latest_dev->bdev;
732
733 mutex_unlock(&uuid_mutex);
734 }
735
736 static void __free_device(struct work_struct *work)
737 {
738 struct btrfs_device *device;
739
740 device = container_of(work, struct btrfs_device, rcu_work);
741
742 if (device->bdev)
743 blkdev_put(device->bdev, device->mode);
744
745 rcu_string_free(device->name);
746 kfree(device);
747 }
748
749 static void free_device(struct rcu_head *head)
750 {
751 struct btrfs_device *device;
752
753 device = container_of(head, struct btrfs_device, rcu);
754
755 INIT_WORK(&device->rcu_work, __free_device);
756 schedule_work(&device->rcu_work);
757 }
758
759 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
760 {
761 struct btrfs_device *device, *tmp;
762
763 if (--fs_devices->opened > 0)
764 return 0;
765
766 mutex_lock(&fs_devices->device_list_mutex);
767 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
768 struct btrfs_device *new_device;
769 struct rcu_string *name;
770
771 if (device->bdev)
772 fs_devices->open_devices--;
773
774 if (device->writeable &&
775 device->devid != BTRFS_DEV_REPLACE_DEVID) {
776 list_del_init(&device->dev_alloc_list);
777 fs_devices->rw_devices--;
778 }
779
780 if (device->missing)
781 fs_devices->missing_devices--;
782
783 new_device = btrfs_alloc_device(NULL, &device->devid,
784 device->uuid);
785 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
786
787 /* Safe because we are under uuid_mutex */
788 if (device->name) {
789 name = rcu_string_strdup(device->name->str, GFP_NOFS);
790 BUG_ON(!name); /* -ENOMEM */
791 rcu_assign_pointer(new_device->name, name);
792 }
793
794 list_replace_rcu(&device->dev_list, &new_device->dev_list);
795 new_device->fs_devices = device->fs_devices;
796
797 call_rcu(&device->rcu, free_device);
798 }
799 mutex_unlock(&fs_devices->device_list_mutex);
800
801 WARN_ON(fs_devices->open_devices);
802 WARN_ON(fs_devices->rw_devices);
803 fs_devices->opened = 0;
804 fs_devices->seeding = 0;
805
806 return 0;
807 }
808
809 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
810 {
811 struct btrfs_fs_devices *seed_devices = NULL;
812 int ret;
813
814 mutex_lock(&uuid_mutex);
815 ret = __btrfs_close_devices(fs_devices);
816 if (!fs_devices->opened) {
817 seed_devices = fs_devices->seed;
818 fs_devices->seed = NULL;
819 }
820 mutex_unlock(&uuid_mutex);
821
822 while (seed_devices) {
823 fs_devices = seed_devices;
824 seed_devices = fs_devices->seed;
825 __btrfs_close_devices(fs_devices);
826 free_fs_devices(fs_devices);
827 }
828 /*
829 * Wait for rcu kworkers under __btrfs_close_devices
830 * to finish all blkdev_puts so device is really
831 * free when umount is done.
832 */
833 rcu_barrier();
834 return ret;
835 }
836
837 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
838 fmode_t flags, void *holder)
839 {
840 struct request_queue *q;
841 struct block_device *bdev;
842 struct list_head *head = &fs_devices->devices;
843 struct btrfs_device *device;
844 struct btrfs_device *latest_dev = NULL;
845 struct buffer_head *bh;
846 struct btrfs_super_block *disk_super;
847 u64 devid;
848 int seeding = 1;
849 int ret = 0;
850
851 flags |= FMODE_EXCL;
852
853 list_for_each_entry(device, head, dev_list) {
854 if (device->bdev)
855 continue;
856 if (!device->name)
857 continue;
858
859 /* Just open everything we can; ignore failures here */
860 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
861 &bdev, &bh))
862 continue;
863
864 disk_super = (struct btrfs_super_block *)bh->b_data;
865 devid = btrfs_stack_device_id(&disk_super->dev_item);
866 if (devid != device->devid)
867 goto error_brelse;
868
869 if (memcmp(device->uuid, disk_super->dev_item.uuid,
870 BTRFS_UUID_SIZE))
871 goto error_brelse;
872
873 device->generation = btrfs_super_generation(disk_super);
874 if (!latest_dev ||
875 device->generation > latest_dev->generation)
876 latest_dev = device;
877
878 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
879 device->writeable = 0;
880 } else {
881 device->writeable = !bdev_read_only(bdev);
882 seeding = 0;
883 }
884
885 q = bdev_get_queue(bdev);
886 if (blk_queue_discard(q))
887 device->can_discard = 1;
888
889 device->bdev = bdev;
890 device->in_fs_metadata = 0;
891 device->mode = flags;
892
893 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
894 fs_devices->rotating = 1;
895
896 fs_devices->open_devices++;
897 if (device->writeable &&
898 device->devid != BTRFS_DEV_REPLACE_DEVID) {
899 fs_devices->rw_devices++;
900 list_add(&device->dev_alloc_list,
901 &fs_devices->alloc_list);
902 }
903 brelse(bh);
904 continue;
905
906 error_brelse:
907 brelse(bh);
908 blkdev_put(bdev, flags);
909 continue;
910 }
911 if (fs_devices->open_devices == 0) {
912 ret = -EINVAL;
913 goto out;
914 }
915 fs_devices->seeding = seeding;
916 fs_devices->opened = 1;
917 fs_devices->latest_bdev = latest_dev->bdev;
918 fs_devices->total_rw_bytes = 0;
919 out:
920 return ret;
921 }
922
923 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
924 fmode_t flags, void *holder)
925 {
926 int ret;
927
928 mutex_lock(&uuid_mutex);
929 if (fs_devices->opened) {
930 fs_devices->opened++;
931 ret = 0;
932 } else {
933 ret = __btrfs_open_devices(fs_devices, flags, holder);
934 }
935 mutex_unlock(&uuid_mutex);
936 return ret;
937 }
938
939 /*
940 * Look for a btrfs signature on a device. This may be called out of the mount path
941 * and we are not allowed to call set_blocksize during the scan. The superblock
942 * is read via pagecache
943 */
944 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
945 struct btrfs_fs_devices **fs_devices_ret)
946 {
947 struct btrfs_super_block *disk_super;
948 struct block_device *bdev;
949 struct page *page;
950 void *p;
951 int ret = -EINVAL;
952 u64 devid;
953 u64 transid;
954 u64 total_devices;
955 u64 bytenr;
956 pgoff_t index;
957
958 /*
959 * we would like to check all the supers, but that would make
960 * a btrfs mount succeed after a mkfs from a different FS.
961 * So, we need to add a special mount option to scan for
962 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
963 */
964 bytenr = btrfs_sb_offset(0);
965 flags |= FMODE_EXCL;
966 mutex_lock(&uuid_mutex);
967
968 bdev = blkdev_get_by_path(path, flags, holder);
969
970 if (IS_ERR(bdev)) {
971 ret = PTR_ERR(bdev);
972 goto error;
973 }
974
975 /* make sure our super fits in the device */
976 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
977 goto error_bdev_put;
978
979 /* make sure our super fits in the page */
980 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
981 goto error_bdev_put;
982
983 /* make sure our super doesn't straddle pages on disk */
984 index = bytenr >> PAGE_CACHE_SHIFT;
985 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
986 goto error_bdev_put;
987
988 /* pull in the page with our super */
989 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
990 index, GFP_NOFS);
991
992 if (IS_ERR_OR_NULL(page))
993 goto error_bdev_put;
994
995 p = kmap(page);
996
997 /* align our pointer to the offset of the super block */
998 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
999
1000 if (btrfs_super_bytenr(disk_super) != bytenr ||
1001 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1002 goto error_unmap;
1003
1004 devid = btrfs_stack_device_id(&disk_super->dev_item);
1005 transid = btrfs_super_generation(disk_super);
1006 total_devices = btrfs_super_num_devices(disk_super);
1007
1008 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1009 if (ret > 0) {
1010 if (disk_super->label[0]) {
1011 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1012 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1013 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1014 } else {
1015 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1016 }
1017
1018 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1019 ret = 0;
1020 }
1021 if (!ret && fs_devices_ret)
1022 (*fs_devices_ret)->total_devices = total_devices;
1023
1024 error_unmap:
1025 kunmap(page);
1026 page_cache_release(page);
1027
1028 error_bdev_put:
1029 blkdev_put(bdev, flags);
1030 error:
1031 mutex_unlock(&uuid_mutex);
1032 return ret;
1033 }
1034
1035 /* helper to account the used device space in the range */
1036 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1037 u64 end, u64 *length)
1038 {
1039 struct btrfs_key key;
1040 struct btrfs_root *root = device->dev_root;
1041 struct btrfs_dev_extent *dev_extent;
1042 struct btrfs_path *path;
1043 u64 extent_end;
1044 int ret;
1045 int slot;
1046 struct extent_buffer *l;
1047
1048 *length = 0;
1049
1050 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1051 return 0;
1052
1053 path = btrfs_alloc_path();
1054 if (!path)
1055 return -ENOMEM;
1056 path->reada = 2;
1057
1058 key.objectid = device->devid;
1059 key.offset = start;
1060 key.type = BTRFS_DEV_EXTENT_KEY;
1061
1062 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1063 if (ret < 0)
1064 goto out;
1065 if (ret > 0) {
1066 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1067 if (ret < 0)
1068 goto out;
1069 }
1070
1071 while (1) {
1072 l = path->nodes[0];
1073 slot = path->slots[0];
1074 if (slot >= btrfs_header_nritems(l)) {
1075 ret = btrfs_next_leaf(root, path);
1076 if (ret == 0)
1077 continue;
1078 if (ret < 0)
1079 goto out;
1080
1081 break;
1082 }
1083 btrfs_item_key_to_cpu(l, &key, slot);
1084
1085 if (key.objectid < device->devid)
1086 goto next;
1087
1088 if (key.objectid > device->devid)
1089 break;
1090
1091 if (key.type != BTRFS_DEV_EXTENT_KEY)
1092 goto next;
1093
1094 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1095 extent_end = key.offset + btrfs_dev_extent_length(l,
1096 dev_extent);
1097 if (key.offset <= start && extent_end > end) {
1098 *length = end - start + 1;
1099 break;
1100 } else if (key.offset <= start && extent_end > start)
1101 *length += extent_end - start;
1102 else if (key.offset > start && extent_end <= end)
1103 *length += extent_end - key.offset;
1104 else if (key.offset > start && key.offset <= end) {
1105 *length += end - key.offset + 1;
1106 break;
1107 } else if (key.offset > end)
1108 break;
1109
1110 next:
1111 path->slots[0]++;
1112 }
1113 ret = 0;
1114 out:
1115 btrfs_free_path(path);
1116 return ret;
1117 }
1118
1119 static int contains_pending_extent(struct btrfs_transaction *transaction,
1120 struct btrfs_device *device,
1121 u64 *start, u64 len)
1122 {
1123 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1124 struct extent_map *em;
1125 struct list_head *search_list = &fs_info->pinned_chunks;
1126 int ret = 0;
1127 u64 physical_start = *start;
1128
1129 if (transaction)
1130 search_list = &transaction->pending_chunks;
1131 again:
1132 list_for_each_entry(em, search_list, list) {
1133 struct map_lookup *map;
1134 int i;
1135
1136 map = (struct map_lookup *)em->bdev;
1137 for (i = 0; i < map->num_stripes; i++) {
1138 u64 end;
1139
1140 if (map->stripes[i].dev != device)
1141 continue;
1142 if (map->stripes[i].physical >= physical_start + len ||
1143 map->stripes[i].physical + em->orig_block_len <=
1144 physical_start)
1145 continue;
1146 /*
1147 * Make sure that while processing the pinned list we do
1148 * not override our *start with a lower value, because
1149 * we can have pinned chunks that fall within this
1150 * device hole and that have lower physical addresses
1151 * than the pending chunks we processed before. If we
1152 * do not take this special care we can end up getting
1153 * 2 pending chunks that start at the same physical
1154 * device offsets because the end offset of a pinned
1155 * chunk can be equal to the start offset of some
1156 * pending chunk.
1157 */
1158 end = map->stripes[i].physical + em->orig_block_len;
1159 if (end > *start) {
1160 *start = end;
1161 ret = 1;
1162 }
1163 }
1164 }
1165 if (search_list != &fs_info->pinned_chunks) {
1166 search_list = &fs_info->pinned_chunks;
1167 goto again;
1168 }
1169
1170 return ret;
1171 }
1172
1173
1174 /*
1175 * find_free_dev_extent_start - find free space in the specified device
1176 * @device: the device which we search the free space in
1177 * @num_bytes: the size of the free space that we need
1178 * @search_start: the position from which to begin the search
1179 * @start: store the start of the free space.
1180 * @len: the size of the free space. that we find, or the size
1181 * of the max free space if we don't find suitable free space
1182 *
1183 * this uses a pretty simple search, the expectation is that it is
1184 * called very infrequently and that a given device has a small number
1185 * of extents
1186 *
1187 * @start is used to store the start of the free space if we find. But if we
1188 * don't find suitable free space, it will be used to store the start position
1189 * of the max free space.
1190 *
1191 * @len is used to store the size of the free space that we find.
1192 * But if we don't find suitable free space, it is used to store the size of
1193 * the max free space.
1194 */
1195 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1196 struct btrfs_device *device, u64 num_bytes,
1197 u64 search_start, u64 *start, u64 *len)
1198 {
1199 struct btrfs_key key;
1200 struct btrfs_root *root = device->dev_root;
1201 struct btrfs_dev_extent *dev_extent;
1202 struct btrfs_path *path;
1203 u64 hole_size;
1204 u64 max_hole_start;
1205 u64 max_hole_size;
1206 u64 extent_end;
1207 u64 search_end = device->total_bytes;
1208 int ret;
1209 int slot;
1210 struct extent_buffer *l;
1211
1212 path = btrfs_alloc_path();
1213 if (!path)
1214 return -ENOMEM;
1215
1216 max_hole_start = search_start;
1217 max_hole_size = 0;
1218
1219 again:
1220 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1221 ret = -ENOSPC;
1222 goto out;
1223 }
1224
1225 path->reada = 2;
1226 path->search_commit_root = 1;
1227 path->skip_locking = 1;
1228
1229 key.objectid = device->devid;
1230 key.offset = search_start;
1231 key.type = BTRFS_DEV_EXTENT_KEY;
1232
1233 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1234 if (ret < 0)
1235 goto out;
1236 if (ret > 0) {
1237 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1238 if (ret < 0)
1239 goto out;
1240 }
1241
1242 while (1) {
1243 l = path->nodes[0];
1244 slot = path->slots[0];
1245 if (slot >= btrfs_header_nritems(l)) {
1246 ret = btrfs_next_leaf(root, path);
1247 if (ret == 0)
1248 continue;
1249 if (ret < 0)
1250 goto out;
1251
1252 break;
1253 }
1254 btrfs_item_key_to_cpu(l, &key, slot);
1255
1256 if (key.objectid < device->devid)
1257 goto next;
1258
1259 if (key.objectid > device->devid)
1260 break;
1261
1262 if (key.type != BTRFS_DEV_EXTENT_KEY)
1263 goto next;
1264
1265 if (key.offset > search_start) {
1266 hole_size = key.offset - search_start;
1267
1268 /*
1269 * Have to check before we set max_hole_start, otherwise
1270 * we could end up sending back this offset anyway.
1271 */
1272 if (contains_pending_extent(transaction, device,
1273 &search_start,
1274 hole_size)) {
1275 if (key.offset >= search_start) {
1276 hole_size = key.offset - search_start;
1277 } else {
1278 WARN_ON_ONCE(1);
1279 hole_size = 0;
1280 }
1281 }
1282
1283 if (hole_size > max_hole_size) {
1284 max_hole_start = search_start;
1285 max_hole_size = hole_size;
1286 }
1287
1288 /*
1289 * If this free space is greater than which we need,
1290 * it must be the max free space that we have found
1291 * until now, so max_hole_start must point to the start
1292 * of this free space and the length of this free space
1293 * is stored in max_hole_size. Thus, we return
1294 * max_hole_start and max_hole_size and go back to the
1295 * caller.
1296 */
1297 if (hole_size >= num_bytes) {
1298 ret = 0;
1299 goto out;
1300 }
1301 }
1302
1303 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1304 extent_end = key.offset + btrfs_dev_extent_length(l,
1305 dev_extent);
1306 if (extent_end > search_start)
1307 search_start = extent_end;
1308 next:
1309 path->slots[0]++;
1310 cond_resched();
1311 }
1312
1313 /*
1314 * At this point, search_start should be the end of
1315 * allocated dev extents, and when shrinking the device,
1316 * search_end may be smaller than search_start.
1317 */
1318 if (search_end > search_start) {
1319 hole_size = search_end - search_start;
1320
1321 if (contains_pending_extent(transaction, device, &search_start,
1322 hole_size)) {
1323 btrfs_release_path(path);
1324 goto again;
1325 }
1326
1327 if (hole_size > max_hole_size) {
1328 max_hole_start = search_start;
1329 max_hole_size = hole_size;
1330 }
1331 }
1332
1333 /* See above. */
1334 if (max_hole_size < num_bytes)
1335 ret = -ENOSPC;
1336 else
1337 ret = 0;
1338
1339 out:
1340 btrfs_free_path(path);
1341 *start = max_hole_start;
1342 if (len)
1343 *len = max_hole_size;
1344 return ret;
1345 }
1346
1347 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1348 struct btrfs_device *device, u64 num_bytes,
1349 u64 *start, u64 *len)
1350 {
1351 struct btrfs_root *root = device->dev_root;
1352 u64 search_start;
1353
1354 /* FIXME use last free of some kind */
1355
1356 /*
1357 * we don't want to overwrite the superblock on the drive,
1358 * so we make sure to start at an offset of at least 1MB
1359 */
1360 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1361 return find_free_dev_extent_start(trans->transaction, device,
1362 num_bytes, search_start, start, len);
1363 }
1364
1365 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1366 struct btrfs_device *device,
1367 u64 start, u64 *dev_extent_len)
1368 {
1369 int ret;
1370 struct btrfs_path *path;
1371 struct btrfs_root *root = device->dev_root;
1372 struct btrfs_key key;
1373 struct btrfs_key found_key;
1374 struct extent_buffer *leaf = NULL;
1375 struct btrfs_dev_extent *extent = NULL;
1376
1377 path = btrfs_alloc_path();
1378 if (!path)
1379 return -ENOMEM;
1380
1381 key.objectid = device->devid;
1382 key.offset = start;
1383 key.type = BTRFS_DEV_EXTENT_KEY;
1384 again:
1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386 if (ret > 0) {
1387 ret = btrfs_previous_item(root, path, key.objectid,
1388 BTRFS_DEV_EXTENT_KEY);
1389 if (ret)
1390 goto out;
1391 leaf = path->nodes[0];
1392 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1393 extent = btrfs_item_ptr(leaf, path->slots[0],
1394 struct btrfs_dev_extent);
1395 BUG_ON(found_key.offset > start || found_key.offset +
1396 btrfs_dev_extent_length(leaf, extent) < start);
1397 key = found_key;
1398 btrfs_release_path(path);
1399 goto again;
1400 } else if (ret == 0) {
1401 leaf = path->nodes[0];
1402 extent = btrfs_item_ptr(leaf, path->slots[0],
1403 struct btrfs_dev_extent);
1404 } else {
1405 btrfs_error(root->fs_info, ret, "Slot search failed");
1406 goto out;
1407 }
1408
1409 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1410
1411 ret = btrfs_del_item(trans, root, path);
1412 if (ret) {
1413 btrfs_error(root->fs_info, ret,
1414 "Failed to remove dev extent item");
1415 } else {
1416 trans->transaction->have_free_bgs = 1;
1417 }
1418 out:
1419 btrfs_free_path(path);
1420 return ret;
1421 }
1422
1423 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1424 struct btrfs_device *device,
1425 u64 chunk_tree, u64 chunk_objectid,
1426 u64 chunk_offset, u64 start, u64 num_bytes)
1427 {
1428 int ret;
1429 struct btrfs_path *path;
1430 struct btrfs_root *root = device->dev_root;
1431 struct btrfs_dev_extent *extent;
1432 struct extent_buffer *leaf;
1433 struct btrfs_key key;
1434
1435 WARN_ON(!device->in_fs_metadata);
1436 WARN_ON(device->is_tgtdev_for_dev_replace);
1437 path = btrfs_alloc_path();
1438 if (!path)
1439 return -ENOMEM;
1440
1441 key.objectid = device->devid;
1442 key.offset = start;
1443 key.type = BTRFS_DEV_EXTENT_KEY;
1444 ret = btrfs_insert_empty_item(trans, root, path, &key,
1445 sizeof(*extent));
1446 if (ret)
1447 goto out;
1448
1449 leaf = path->nodes[0];
1450 extent = btrfs_item_ptr(leaf, path->slots[0],
1451 struct btrfs_dev_extent);
1452 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1453 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1454 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1455
1456 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1457 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1458
1459 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1460 btrfs_mark_buffer_dirty(leaf);
1461 out:
1462 btrfs_free_path(path);
1463 return ret;
1464 }
1465
1466 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1467 {
1468 struct extent_map_tree *em_tree;
1469 struct extent_map *em;
1470 struct rb_node *n;
1471 u64 ret = 0;
1472
1473 em_tree = &fs_info->mapping_tree.map_tree;
1474 read_lock(&em_tree->lock);
1475 n = rb_last(&em_tree->map);
1476 if (n) {
1477 em = rb_entry(n, struct extent_map, rb_node);
1478 ret = em->start + em->len;
1479 }
1480 read_unlock(&em_tree->lock);
1481
1482 return ret;
1483 }
1484
1485 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1486 u64 *devid_ret)
1487 {
1488 int ret;
1489 struct btrfs_key key;
1490 struct btrfs_key found_key;
1491 struct btrfs_path *path;
1492
1493 path = btrfs_alloc_path();
1494 if (!path)
1495 return -ENOMEM;
1496
1497 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1498 key.type = BTRFS_DEV_ITEM_KEY;
1499 key.offset = (u64)-1;
1500
1501 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1502 if (ret < 0)
1503 goto error;
1504
1505 BUG_ON(ret == 0); /* Corruption */
1506
1507 ret = btrfs_previous_item(fs_info->chunk_root, path,
1508 BTRFS_DEV_ITEMS_OBJECTID,
1509 BTRFS_DEV_ITEM_KEY);
1510 if (ret) {
1511 *devid_ret = 1;
1512 } else {
1513 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1514 path->slots[0]);
1515 *devid_ret = found_key.offset + 1;
1516 }
1517 ret = 0;
1518 error:
1519 btrfs_free_path(path);
1520 return ret;
1521 }
1522
1523 /*
1524 * the device information is stored in the chunk root
1525 * the btrfs_device struct should be fully filled in
1526 */
1527 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1528 struct btrfs_root *root,
1529 struct btrfs_device *device)
1530 {
1531 int ret;
1532 struct btrfs_path *path;
1533 struct btrfs_dev_item *dev_item;
1534 struct extent_buffer *leaf;
1535 struct btrfs_key key;
1536 unsigned long ptr;
1537
1538 root = root->fs_info->chunk_root;
1539
1540 path = btrfs_alloc_path();
1541 if (!path)
1542 return -ENOMEM;
1543
1544 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1545 key.type = BTRFS_DEV_ITEM_KEY;
1546 key.offset = device->devid;
1547
1548 ret = btrfs_insert_empty_item(trans, root, path, &key,
1549 sizeof(*dev_item));
1550 if (ret)
1551 goto out;
1552
1553 leaf = path->nodes[0];
1554 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1555
1556 btrfs_set_device_id(leaf, dev_item, device->devid);
1557 btrfs_set_device_generation(leaf, dev_item, 0);
1558 btrfs_set_device_type(leaf, dev_item, device->type);
1559 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1560 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1561 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1562 btrfs_set_device_total_bytes(leaf, dev_item,
1563 btrfs_device_get_disk_total_bytes(device));
1564 btrfs_set_device_bytes_used(leaf, dev_item,
1565 btrfs_device_get_bytes_used(device));
1566 btrfs_set_device_group(leaf, dev_item, 0);
1567 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1568 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1569 btrfs_set_device_start_offset(leaf, dev_item, 0);
1570
1571 ptr = btrfs_device_uuid(dev_item);
1572 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1573 ptr = btrfs_device_fsid(dev_item);
1574 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1575 btrfs_mark_buffer_dirty(leaf);
1576
1577 ret = 0;
1578 out:
1579 btrfs_free_path(path);
1580 return ret;
1581 }
1582
1583 /*
1584 * Function to update ctime/mtime for a given device path.
1585 * Mainly used for ctime/mtime based probe like libblkid.
1586 */
1587 static void update_dev_time(char *path_name)
1588 {
1589 struct file *filp;
1590
1591 filp = filp_open(path_name, O_RDWR, 0);
1592 if (IS_ERR(filp))
1593 return;
1594 file_update_time(filp);
1595 filp_close(filp, NULL);
1596 return;
1597 }
1598
1599 static int btrfs_rm_dev_item(struct btrfs_root *root,
1600 struct btrfs_device *device)
1601 {
1602 int ret;
1603 struct btrfs_path *path;
1604 struct btrfs_key key;
1605 struct btrfs_trans_handle *trans;
1606
1607 root = root->fs_info->chunk_root;
1608
1609 path = btrfs_alloc_path();
1610 if (!path)
1611 return -ENOMEM;
1612
1613 trans = btrfs_start_transaction(root, 0);
1614 if (IS_ERR(trans)) {
1615 btrfs_free_path(path);
1616 return PTR_ERR(trans);
1617 }
1618 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1619 key.type = BTRFS_DEV_ITEM_KEY;
1620 key.offset = device->devid;
1621
1622 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1623 if (ret < 0)
1624 goto out;
1625
1626 if (ret > 0) {
1627 ret = -ENOENT;
1628 goto out;
1629 }
1630
1631 ret = btrfs_del_item(trans, root, path);
1632 if (ret)
1633 goto out;
1634 out:
1635 btrfs_free_path(path);
1636 btrfs_commit_transaction(trans, root);
1637 return ret;
1638 }
1639
1640 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1641 {
1642 struct btrfs_device *device;
1643 struct btrfs_device *next_device;
1644 struct block_device *bdev;
1645 struct buffer_head *bh = NULL;
1646 struct btrfs_super_block *disk_super;
1647 struct btrfs_fs_devices *cur_devices;
1648 u64 all_avail;
1649 u64 devid;
1650 u64 num_devices;
1651 u8 *dev_uuid;
1652 unsigned seq;
1653 int ret = 0;
1654 bool clear_super = false;
1655
1656 mutex_lock(&uuid_mutex);
1657
1658 do {
1659 seq = read_seqbegin(&root->fs_info->profiles_lock);
1660
1661 all_avail = root->fs_info->avail_data_alloc_bits |
1662 root->fs_info->avail_system_alloc_bits |
1663 root->fs_info->avail_metadata_alloc_bits;
1664 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1665
1666 num_devices = root->fs_info->fs_devices->num_devices;
1667 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1668 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1669 WARN_ON(num_devices < 1);
1670 num_devices--;
1671 }
1672 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1673
1674 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1675 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1676 goto out;
1677 }
1678
1679 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1680 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1681 goto out;
1682 }
1683
1684 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1685 root->fs_info->fs_devices->rw_devices <= 2) {
1686 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1687 goto out;
1688 }
1689 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1690 root->fs_info->fs_devices->rw_devices <= 3) {
1691 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1692 goto out;
1693 }
1694
1695 if (strcmp(device_path, "missing") == 0) {
1696 struct list_head *devices;
1697 struct btrfs_device *tmp;
1698
1699 device = NULL;
1700 devices = &root->fs_info->fs_devices->devices;
1701 /*
1702 * It is safe to read the devices since the volume_mutex
1703 * is held.
1704 */
1705 list_for_each_entry(tmp, devices, dev_list) {
1706 if (tmp->in_fs_metadata &&
1707 !tmp->is_tgtdev_for_dev_replace &&
1708 !tmp->bdev) {
1709 device = tmp;
1710 break;
1711 }
1712 }
1713 bdev = NULL;
1714 bh = NULL;
1715 disk_super = NULL;
1716 if (!device) {
1717 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1718 goto out;
1719 }
1720 } else {
1721 ret = btrfs_get_bdev_and_sb(device_path,
1722 FMODE_WRITE | FMODE_EXCL,
1723 root->fs_info->bdev_holder, 0,
1724 &bdev, &bh);
1725 if (ret)
1726 goto out;
1727 disk_super = (struct btrfs_super_block *)bh->b_data;
1728 devid = btrfs_stack_device_id(&disk_super->dev_item);
1729 dev_uuid = disk_super->dev_item.uuid;
1730 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1731 disk_super->fsid);
1732 if (!device) {
1733 ret = -ENOENT;
1734 goto error_brelse;
1735 }
1736 }
1737
1738 if (device->is_tgtdev_for_dev_replace) {
1739 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1740 goto error_brelse;
1741 }
1742
1743 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1744 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1745 goto error_brelse;
1746 }
1747
1748 if (device->writeable) {
1749 lock_chunks(root);
1750 list_del_init(&device->dev_alloc_list);
1751 device->fs_devices->rw_devices--;
1752 unlock_chunks(root);
1753 clear_super = true;
1754 }
1755
1756 mutex_unlock(&uuid_mutex);
1757 ret = btrfs_shrink_device(device, 0);
1758 mutex_lock(&uuid_mutex);
1759 if (ret)
1760 goto error_undo;
1761
1762 /*
1763 * TODO: the superblock still includes this device in its num_devices
1764 * counter although write_all_supers() is not locked out. This
1765 * could give a filesystem state which requires a degraded mount.
1766 */
1767 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1768 if (ret)
1769 goto error_undo;
1770
1771 device->in_fs_metadata = 0;
1772 btrfs_scrub_cancel_dev(root->fs_info, device);
1773
1774 /*
1775 * the device list mutex makes sure that we don't change
1776 * the device list while someone else is writing out all
1777 * the device supers. Whoever is writing all supers, should
1778 * lock the device list mutex before getting the number of
1779 * devices in the super block (super_copy). Conversely,
1780 * whoever updates the number of devices in the super block
1781 * (super_copy) should hold the device list mutex.
1782 */
1783
1784 cur_devices = device->fs_devices;
1785 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1786 list_del_rcu(&device->dev_list);
1787
1788 device->fs_devices->num_devices--;
1789 device->fs_devices->total_devices--;
1790
1791 if (device->missing)
1792 device->fs_devices->missing_devices--;
1793
1794 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1795 struct btrfs_device, dev_list);
1796 if (device->bdev == root->fs_info->sb->s_bdev)
1797 root->fs_info->sb->s_bdev = next_device->bdev;
1798 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1799 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1800
1801 if (device->bdev) {
1802 device->fs_devices->open_devices--;
1803 /* remove sysfs entry */
1804 btrfs_kobj_rm_device(root->fs_info->fs_devices, device);
1805 }
1806
1807 call_rcu(&device->rcu, free_device);
1808
1809 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1810 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1811 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1812
1813 if (cur_devices->open_devices == 0) {
1814 struct btrfs_fs_devices *fs_devices;
1815 fs_devices = root->fs_info->fs_devices;
1816 while (fs_devices) {
1817 if (fs_devices->seed == cur_devices) {
1818 fs_devices->seed = cur_devices->seed;
1819 break;
1820 }
1821 fs_devices = fs_devices->seed;
1822 }
1823 cur_devices->seed = NULL;
1824 __btrfs_close_devices(cur_devices);
1825 free_fs_devices(cur_devices);
1826 }
1827
1828 root->fs_info->num_tolerated_disk_barrier_failures =
1829 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1830
1831 /*
1832 * at this point, the device is zero sized. We want to
1833 * remove it from the devices list and zero out the old super
1834 */
1835 if (clear_super && disk_super) {
1836 u64 bytenr;
1837 int i;
1838
1839 /* make sure this device isn't detected as part of
1840 * the FS anymore
1841 */
1842 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1843 set_buffer_dirty(bh);
1844 sync_dirty_buffer(bh);
1845
1846 /* clear the mirror copies of super block on the disk
1847 * being removed, 0th copy is been taken care above and
1848 * the below would take of the rest
1849 */
1850 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1851 bytenr = btrfs_sb_offset(i);
1852 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1853 i_size_read(bdev->bd_inode))
1854 break;
1855
1856 brelse(bh);
1857 bh = __bread(bdev, bytenr / 4096,
1858 BTRFS_SUPER_INFO_SIZE);
1859 if (!bh)
1860 continue;
1861
1862 disk_super = (struct btrfs_super_block *)bh->b_data;
1863
1864 if (btrfs_super_bytenr(disk_super) != bytenr ||
1865 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1866 continue;
1867 }
1868 memset(&disk_super->magic, 0,
1869 sizeof(disk_super->magic));
1870 set_buffer_dirty(bh);
1871 sync_dirty_buffer(bh);
1872 }
1873 }
1874
1875 ret = 0;
1876
1877 if (bdev) {
1878 /* Notify udev that device has changed */
1879 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1880
1881 /* Update ctime/mtime for device path for libblkid */
1882 update_dev_time(device_path);
1883 }
1884
1885 error_brelse:
1886 brelse(bh);
1887 if (bdev)
1888 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1889 out:
1890 mutex_unlock(&uuid_mutex);
1891 return ret;
1892 error_undo:
1893 if (device->writeable) {
1894 lock_chunks(root);
1895 list_add(&device->dev_alloc_list,
1896 &root->fs_info->fs_devices->alloc_list);
1897 device->fs_devices->rw_devices++;
1898 unlock_chunks(root);
1899 }
1900 goto error_brelse;
1901 }
1902
1903 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1904 struct btrfs_device *srcdev)
1905 {
1906 struct btrfs_fs_devices *fs_devices;
1907
1908 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1909
1910 /*
1911 * in case of fs with no seed, srcdev->fs_devices will point
1912 * to fs_devices of fs_info. However when the dev being replaced is
1913 * a seed dev it will point to the seed's local fs_devices. In short
1914 * srcdev will have its correct fs_devices in both the cases.
1915 */
1916 fs_devices = srcdev->fs_devices;
1917
1918 list_del_rcu(&srcdev->dev_list);
1919 list_del_rcu(&srcdev->dev_alloc_list);
1920 fs_devices->num_devices--;
1921 if (srcdev->missing)
1922 fs_devices->missing_devices--;
1923
1924 if (srcdev->writeable) {
1925 fs_devices->rw_devices--;
1926 /* zero out the old super if it is writable */
1927 btrfs_scratch_superblock(srcdev);
1928 }
1929
1930 if (srcdev->bdev)
1931 fs_devices->open_devices--;
1932 }
1933
1934 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1935 struct btrfs_device *srcdev)
1936 {
1937 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1938
1939 call_rcu(&srcdev->rcu, free_device);
1940
1941 /*
1942 * unless fs_devices is seed fs, num_devices shouldn't go
1943 * zero
1944 */
1945 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1946
1947 /* if this is no devs we rather delete the fs_devices */
1948 if (!fs_devices->num_devices) {
1949 struct btrfs_fs_devices *tmp_fs_devices;
1950
1951 tmp_fs_devices = fs_info->fs_devices;
1952 while (tmp_fs_devices) {
1953 if (tmp_fs_devices->seed == fs_devices) {
1954 tmp_fs_devices->seed = fs_devices->seed;
1955 break;
1956 }
1957 tmp_fs_devices = tmp_fs_devices->seed;
1958 }
1959 fs_devices->seed = NULL;
1960 __btrfs_close_devices(fs_devices);
1961 free_fs_devices(fs_devices);
1962 }
1963 }
1964
1965 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1966 struct btrfs_device *tgtdev)
1967 {
1968 struct btrfs_device *next_device;
1969
1970 mutex_lock(&uuid_mutex);
1971 WARN_ON(!tgtdev);
1972 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1973
1974 btrfs_kobj_rm_device(fs_info->fs_devices, tgtdev);
1975
1976 if (tgtdev->bdev) {
1977 btrfs_scratch_superblock(tgtdev);
1978 fs_info->fs_devices->open_devices--;
1979 }
1980 fs_info->fs_devices->num_devices--;
1981
1982 next_device = list_entry(fs_info->fs_devices->devices.next,
1983 struct btrfs_device, dev_list);
1984 if (tgtdev->bdev == fs_info->sb->s_bdev)
1985 fs_info->sb->s_bdev = next_device->bdev;
1986 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1987 fs_info->fs_devices->latest_bdev = next_device->bdev;
1988 list_del_rcu(&tgtdev->dev_list);
1989
1990 call_rcu(&tgtdev->rcu, free_device);
1991
1992 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1993 mutex_unlock(&uuid_mutex);
1994 }
1995
1996 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1997 struct btrfs_device **device)
1998 {
1999 int ret = 0;
2000 struct btrfs_super_block *disk_super;
2001 u64 devid;
2002 u8 *dev_uuid;
2003 struct block_device *bdev;
2004 struct buffer_head *bh;
2005
2006 *device = NULL;
2007 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2008 root->fs_info->bdev_holder, 0, &bdev, &bh);
2009 if (ret)
2010 return ret;
2011 disk_super = (struct btrfs_super_block *)bh->b_data;
2012 devid = btrfs_stack_device_id(&disk_super->dev_item);
2013 dev_uuid = disk_super->dev_item.uuid;
2014 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2015 disk_super->fsid);
2016 brelse(bh);
2017 if (!*device)
2018 ret = -ENOENT;
2019 blkdev_put(bdev, FMODE_READ);
2020 return ret;
2021 }
2022
2023 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2024 char *device_path,
2025 struct btrfs_device **device)
2026 {
2027 *device = NULL;
2028 if (strcmp(device_path, "missing") == 0) {
2029 struct list_head *devices;
2030 struct btrfs_device *tmp;
2031
2032 devices = &root->fs_info->fs_devices->devices;
2033 /*
2034 * It is safe to read the devices since the volume_mutex
2035 * is held by the caller.
2036 */
2037 list_for_each_entry(tmp, devices, dev_list) {
2038 if (tmp->in_fs_metadata && !tmp->bdev) {
2039 *device = tmp;
2040 break;
2041 }
2042 }
2043
2044 if (!*device) {
2045 btrfs_err(root->fs_info, "no missing device found");
2046 return -ENOENT;
2047 }
2048
2049 return 0;
2050 } else {
2051 return btrfs_find_device_by_path(root, device_path, device);
2052 }
2053 }
2054
2055 /*
2056 * does all the dirty work required for changing file system's UUID.
2057 */
2058 static int btrfs_prepare_sprout(struct btrfs_root *root)
2059 {
2060 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2061 struct btrfs_fs_devices *old_devices;
2062 struct btrfs_fs_devices *seed_devices;
2063 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2064 struct btrfs_device *device;
2065 u64 super_flags;
2066
2067 BUG_ON(!mutex_is_locked(&uuid_mutex));
2068 if (!fs_devices->seeding)
2069 return -EINVAL;
2070
2071 seed_devices = __alloc_fs_devices();
2072 if (IS_ERR(seed_devices))
2073 return PTR_ERR(seed_devices);
2074
2075 old_devices = clone_fs_devices(fs_devices);
2076 if (IS_ERR(old_devices)) {
2077 kfree(seed_devices);
2078 return PTR_ERR(old_devices);
2079 }
2080
2081 list_add(&old_devices->list, &fs_uuids);
2082
2083 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2084 seed_devices->opened = 1;
2085 INIT_LIST_HEAD(&seed_devices->devices);
2086 INIT_LIST_HEAD(&seed_devices->alloc_list);
2087 mutex_init(&seed_devices->device_list_mutex);
2088
2089 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2090 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2091 synchronize_rcu);
2092 list_for_each_entry(device, &seed_devices->devices, dev_list)
2093 device->fs_devices = seed_devices;
2094
2095 lock_chunks(root);
2096 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2097 unlock_chunks(root);
2098
2099 fs_devices->seeding = 0;
2100 fs_devices->num_devices = 0;
2101 fs_devices->open_devices = 0;
2102 fs_devices->missing_devices = 0;
2103 fs_devices->rotating = 0;
2104 fs_devices->seed = seed_devices;
2105
2106 generate_random_uuid(fs_devices->fsid);
2107 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2108 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2109 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2110
2111 super_flags = btrfs_super_flags(disk_super) &
2112 ~BTRFS_SUPER_FLAG_SEEDING;
2113 btrfs_set_super_flags(disk_super, super_flags);
2114
2115 return 0;
2116 }
2117
2118 /*
2119 * strore the expected generation for seed devices in device items.
2120 */
2121 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2122 struct btrfs_root *root)
2123 {
2124 struct btrfs_path *path;
2125 struct extent_buffer *leaf;
2126 struct btrfs_dev_item *dev_item;
2127 struct btrfs_device *device;
2128 struct btrfs_key key;
2129 u8 fs_uuid[BTRFS_UUID_SIZE];
2130 u8 dev_uuid[BTRFS_UUID_SIZE];
2131 u64 devid;
2132 int ret;
2133
2134 path = btrfs_alloc_path();
2135 if (!path)
2136 return -ENOMEM;
2137
2138 root = root->fs_info->chunk_root;
2139 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2140 key.offset = 0;
2141 key.type = BTRFS_DEV_ITEM_KEY;
2142
2143 while (1) {
2144 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2145 if (ret < 0)
2146 goto error;
2147
2148 leaf = path->nodes[0];
2149 next_slot:
2150 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2151 ret = btrfs_next_leaf(root, path);
2152 if (ret > 0)
2153 break;
2154 if (ret < 0)
2155 goto error;
2156 leaf = path->nodes[0];
2157 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2158 btrfs_release_path(path);
2159 continue;
2160 }
2161
2162 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2163 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2164 key.type != BTRFS_DEV_ITEM_KEY)
2165 break;
2166
2167 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2168 struct btrfs_dev_item);
2169 devid = btrfs_device_id(leaf, dev_item);
2170 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2171 BTRFS_UUID_SIZE);
2172 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2173 BTRFS_UUID_SIZE);
2174 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2175 fs_uuid);
2176 BUG_ON(!device); /* Logic error */
2177
2178 if (device->fs_devices->seeding) {
2179 btrfs_set_device_generation(leaf, dev_item,
2180 device->generation);
2181 btrfs_mark_buffer_dirty(leaf);
2182 }
2183
2184 path->slots[0]++;
2185 goto next_slot;
2186 }
2187 ret = 0;
2188 error:
2189 btrfs_free_path(path);
2190 return ret;
2191 }
2192
2193 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2194 {
2195 struct request_queue *q;
2196 struct btrfs_trans_handle *trans;
2197 struct btrfs_device *device;
2198 struct block_device *bdev;
2199 struct list_head *devices;
2200 struct super_block *sb = root->fs_info->sb;
2201 struct rcu_string *name;
2202 u64 tmp;
2203 int seeding_dev = 0;
2204 int ret = 0;
2205
2206 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2207 return -EROFS;
2208
2209 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2210 root->fs_info->bdev_holder);
2211 if (IS_ERR(bdev))
2212 return PTR_ERR(bdev);
2213
2214 if (root->fs_info->fs_devices->seeding) {
2215 seeding_dev = 1;
2216 down_write(&sb->s_umount);
2217 mutex_lock(&uuid_mutex);
2218 }
2219
2220 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2221
2222 devices = &root->fs_info->fs_devices->devices;
2223
2224 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2225 list_for_each_entry(device, devices, dev_list) {
2226 if (device->bdev == bdev) {
2227 ret = -EEXIST;
2228 mutex_unlock(
2229 &root->fs_info->fs_devices->device_list_mutex);
2230 goto error;
2231 }
2232 }
2233 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2234
2235 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2236 if (IS_ERR(device)) {
2237 /* we can safely leave the fs_devices entry around */
2238 ret = PTR_ERR(device);
2239 goto error;
2240 }
2241
2242 name = rcu_string_strdup(device_path, GFP_NOFS);
2243 if (!name) {
2244 kfree(device);
2245 ret = -ENOMEM;
2246 goto error;
2247 }
2248 rcu_assign_pointer(device->name, name);
2249
2250 trans = btrfs_start_transaction(root, 0);
2251 if (IS_ERR(trans)) {
2252 rcu_string_free(device->name);
2253 kfree(device);
2254 ret = PTR_ERR(trans);
2255 goto error;
2256 }
2257
2258 q = bdev_get_queue(bdev);
2259 if (blk_queue_discard(q))
2260 device->can_discard = 1;
2261 device->writeable = 1;
2262 device->generation = trans->transid;
2263 device->io_width = root->sectorsize;
2264 device->io_align = root->sectorsize;
2265 device->sector_size = root->sectorsize;
2266 device->total_bytes = i_size_read(bdev->bd_inode);
2267 device->disk_total_bytes = device->total_bytes;
2268 device->commit_total_bytes = device->total_bytes;
2269 device->dev_root = root->fs_info->dev_root;
2270 device->bdev = bdev;
2271 device->in_fs_metadata = 1;
2272 device->is_tgtdev_for_dev_replace = 0;
2273 device->mode = FMODE_EXCL;
2274 device->dev_stats_valid = 1;
2275 set_blocksize(device->bdev, 4096);
2276
2277 if (seeding_dev) {
2278 sb->s_flags &= ~MS_RDONLY;
2279 ret = btrfs_prepare_sprout(root);
2280 BUG_ON(ret); /* -ENOMEM */
2281 }
2282
2283 device->fs_devices = root->fs_info->fs_devices;
2284
2285 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2286 lock_chunks(root);
2287 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2288 list_add(&device->dev_alloc_list,
2289 &root->fs_info->fs_devices->alloc_list);
2290 root->fs_info->fs_devices->num_devices++;
2291 root->fs_info->fs_devices->open_devices++;
2292 root->fs_info->fs_devices->rw_devices++;
2293 root->fs_info->fs_devices->total_devices++;
2294 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2295
2296 spin_lock(&root->fs_info->free_chunk_lock);
2297 root->fs_info->free_chunk_space += device->total_bytes;
2298 spin_unlock(&root->fs_info->free_chunk_lock);
2299
2300 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2301 root->fs_info->fs_devices->rotating = 1;
2302
2303 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2304 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2305 tmp + device->total_bytes);
2306
2307 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2308 btrfs_set_super_num_devices(root->fs_info->super_copy,
2309 tmp + 1);
2310
2311 /* add sysfs device entry */
2312 btrfs_kobj_add_device(root->fs_info->fs_devices, device);
2313
2314 /*
2315 * we've got more storage, clear any full flags on the space
2316 * infos
2317 */
2318 btrfs_clear_space_info_full(root->fs_info);
2319
2320 unlock_chunks(root);
2321 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2322
2323 if (seeding_dev) {
2324 lock_chunks(root);
2325 ret = init_first_rw_device(trans, root, device);
2326 unlock_chunks(root);
2327 if (ret) {
2328 btrfs_abort_transaction(trans, root, ret);
2329 goto error_trans;
2330 }
2331 }
2332
2333 ret = btrfs_add_device(trans, root, device);
2334 if (ret) {
2335 btrfs_abort_transaction(trans, root, ret);
2336 goto error_trans;
2337 }
2338
2339 if (seeding_dev) {
2340 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2341
2342 ret = btrfs_finish_sprout(trans, root);
2343 if (ret) {
2344 btrfs_abort_transaction(trans, root, ret);
2345 goto error_trans;
2346 }
2347
2348 /* Sprouting would change fsid of the mounted root,
2349 * so rename the fsid on the sysfs
2350 */
2351 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2352 root->fs_info->fsid);
2353 if (kobject_rename(&root->fs_info->fs_devices->super_kobj,
2354 fsid_buf))
2355 pr_warn("BTRFS: sysfs: failed to create fsid for sprout\n");
2356 }
2357
2358 root->fs_info->num_tolerated_disk_barrier_failures =
2359 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2360 ret = btrfs_commit_transaction(trans, root);
2361
2362 if (seeding_dev) {
2363 mutex_unlock(&uuid_mutex);
2364 up_write(&sb->s_umount);
2365
2366 if (ret) /* transaction commit */
2367 return ret;
2368
2369 ret = btrfs_relocate_sys_chunks(root);
2370 if (ret < 0)
2371 btrfs_error(root->fs_info, ret,
2372 "Failed to relocate sys chunks after "
2373 "device initialization. This can be fixed "
2374 "using the \"btrfs balance\" command.");
2375 trans = btrfs_attach_transaction(root);
2376 if (IS_ERR(trans)) {
2377 if (PTR_ERR(trans) == -ENOENT)
2378 return 0;
2379 return PTR_ERR(trans);
2380 }
2381 ret = btrfs_commit_transaction(trans, root);
2382 }
2383
2384 /* Update ctime/mtime for libblkid */
2385 update_dev_time(device_path);
2386 return ret;
2387
2388 error_trans:
2389 btrfs_end_transaction(trans, root);
2390 rcu_string_free(device->name);
2391 btrfs_kobj_rm_device(root->fs_info->fs_devices, device);
2392 kfree(device);
2393 error:
2394 blkdev_put(bdev, FMODE_EXCL);
2395 if (seeding_dev) {
2396 mutex_unlock(&uuid_mutex);
2397 up_write(&sb->s_umount);
2398 }
2399 return ret;
2400 }
2401
2402 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2403 struct btrfs_device *srcdev,
2404 struct btrfs_device **device_out)
2405 {
2406 struct request_queue *q;
2407 struct btrfs_device *device;
2408 struct block_device *bdev;
2409 struct btrfs_fs_info *fs_info = root->fs_info;
2410 struct list_head *devices;
2411 struct rcu_string *name;
2412 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2413 int ret = 0;
2414
2415 *device_out = NULL;
2416 if (fs_info->fs_devices->seeding) {
2417 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2418 return -EINVAL;
2419 }
2420
2421 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2422 fs_info->bdev_holder);
2423 if (IS_ERR(bdev)) {
2424 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2425 return PTR_ERR(bdev);
2426 }
2427
2428 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2429
2430 devices = &fs_info->fs_devices->devices;
2431 list_for_each_entry(device, devices, dev_list) {
2432 if (device->bdev == bdev) {
2433 btrfs_err(fs_info, "target device is in the filesystem!");
2434 ret = -EEXIST;
2435 goto error;
2436 }
2437 }
2438
2439
2440 if (i_size_read(bdev->bd_inode) <
2441 btrfs_device_get_total_bytes(srcdev)) {
2442 btrfs_err(fs_info, "target device is smaller than source device!");
2443 ret = -EINVAL;
2444 goto error;
2445 }
2446
2447
2448 device = btrfs_alloc_device(NULL, &devid, NULL);
2449 if (IS_ERR(device)) {
2450 ret = PTR_ERR(device);
2451 goto error;
2452 }
2453
2454 name = rcu_string_strdup(device_path, GFP_NOFS);
2455 if (!name) {
2456 kfree(device);
2457 ret = -ENOMEM;
2458 goto error;
2459 }
2460 rcu_assign_pointer(device->name, name);
2461
2462 q = bdev_get_queue(bdev);
2463 if (blk_queue_discard(q))
2464 device->can_discard = 1;
2465 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2466 device->writeable = 1;
2467 device->generation = 0;
2468 device->io_width = root->sectorsize;
2469 device->io_align = root->sectorsize;
2470 device->sector_size = root->sectorsize;
2471 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2472 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2473 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2474 ASSERT(list_empty(&srcdev->resized_list));
2475 device->commit_total_bytes = srcdev->commit_total_bytes;
2476 device->commit_bytes_used = device->bytes_used;
2477 device->dev_root = fs_info->dev_root;
2478 device->bdev = bdev;
2479 device->in_fs_metadata = 1;
2480 device->is_tgtdev_for_dev_replace = 1;
2481 device->mode = FMODE_EXCL;
2482 device->dev_stats_valid = 1;
2483 set_blocksize(device->bdev, 4096);
2484 device->fs_devices = fs_info->fs_devices;
2485 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2486 fs_info->fs_devices->num_devices++;
2487 fs_info->fs_devices->open_devices++;
2488 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2489
2490 *device_out = device;
2491 return ret;
2492
2493 error:
2494 blkdev_put(bdev, FMODE_EXCL);
2495 return ret;
2496 }
2497
2498 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2499 struct btrfs_device *tgtdev)
2500 {
2501 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2502 tgtdev->io_width = fs_info->dev_root->sectorsize;
2503 tgtdev->io_align = fs_info->dev_root->sectorsize;
2504 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2505 tgtdev->dev_root = fs_info->dev_root;
2506 tgtdev->in_fs_metadata = 1;
2507 }
2508
2509 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2510 struct btrfs_device *device)
2511 {
2512 int ret;
2513 struct btrfs_path *path;
2514 struct btrfs_root *root;
2515 struct btrfs_dev_item *dev_item;
2516 struct extent_buffer *leaf;
2517 struct btrfs_key key;
2518
2519 root = device->dev_root->fs_info->chunk_root;
2520
2521 path = btrfs_alloc_path();
2522 if (!path)
2523 return -ENOMEM;
2524
2525 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2526 key.type = BTRFS_DEV_ITEM_KEY;
2527 key.offset = device->devid;
2528
2529 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2530 if (ret < 0)
2531 goto out;
2532
2533 if (ret > 0) {
2534 ret = -ENOENT;
2535 goto out;
2536 }
2537
2538 leaf = path->nodes[0];
2539 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2540
2541 btrfs_set_device_id(leaf, dev_item, device->devid);
2542 btrfs_set_device_type(leaf, dev_item, device->type);
2543 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2544 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2545 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2546 btrfs_set_device_total_bytes(leaf, dev_item,
2547 btrfs_device_get_disk_total_bytes(device));
2548 btrfs_set_device_bytes_used(leaf, dev_item,
2549 btrfs_device_get_bytes_used(device));
2550 btrfs_mark_buffer_dirty(leaf);
2551
2552 out:
2553 btrfs_free_path(path);
2554 return ret;
2555 }
2556
2557 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2558 struct btrfs_device *device, u64 new_size)
2559 {
2560 struct btrfs_super_block *super_copy =
2561 device->dev_root->fs_info->super_copy;
2562 struct btrfs_fs_devices *fs_devices;
2563 u64 old_total;
2564 u64 diff;
2565
2566 if (!device->writeable)
2567 return -EACCES;
2568
2569 lock_chunks(device->dev_root);
2570 old_total = btrfs_super_total_bytes(super_copy);
2571 diff = new_size - device->total_bytes;
2572
2573 if (new_size <= device->total_bytes ||
2574 device->is_tgtdev_for_dev_replace) {
2575 unlock_chunks(device->dev_root);
2576 return -EINVAL;
2577 }
2578
2579 fs_devices = device->dev_root->fs_info->fs_devices;
2580
2581 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2582 device->fs_devices->total_rw_bytes += diff;
2583
2584 btrfs_device_set_total_bytes(device, new_size);
2585 btrfs_device_set_disk_total_bytes(device, new_size);
2586 btrfs_clear_space_info_full(device->dev_root->fs_info);
2587 if (list_empty(&device->resized_list))
2588 list_add_tail(&device->resized_list,
2589 &fs_devices->resized_devices);
2590 unlock_chunks(device->dev_root);
2591
2592 return btrfs_update_device(trans, device);
2593 }
2594
2595 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2596 struct btrfs_root *root, u64 chunk_objectid,
2597 u64 chunk_offset)
2598 {
2599 int ret;
2600 struct btrfs_path *path;
2601 struct btrfs_key key;
2602
2603 root = root->fs_info->chunk_root;
2604 path = btrfs_alloc_path();
2605 if (!path)
2606 return -ENOMEM;
2607
2608 key.objectid = chunk_objectid;
2609 key.offset = chunk_offset;
2610 key.type = BTRFS_CHUNK_ITEM_KEY;
2611
2612 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2613 if (ret < 0)
2614 goto out;
2615 else if (ret > 0) { /* Logic error or corruption */
2616 btrfs_error(root->fs_info, -ENOENT,
2617 "Failed lookup while freeing chunk.");
2618 ret = -ENOENT;
2619 goto out;
2620 }
2621
2622 ret = btrfs_del_item(trans, root, path);
2623 if (ret < 0)
2624 btrfs_error(root->fs_info, ret,
2625 "Failed to delete chunk item.");
2626 out:
2627 btrfs_free_path(path);
2628 return ret;
2629 }
2630
2631 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2632 chunk_offset)
2633 {
2634 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2635 struct btrfs_disk_key *disk_key;
2636 struct btrfs_chunk *chunk;
2637 u8 *ptr;
2638 int ret = 0;
2639 u32 num_stripes;
2640 u32 array_size;
2641 u32 len = 0;
2642 u32 cur;
2643 struct btrfs_key key;
2644
2645 lock_chunks(root);
2646 array_size = btrfs_super_sys_array_size(super_copy);
2647
2648 ptr = super_copy->sys_chunk_array;
2649 cur = 0;
2650
2651 while (cur < array_size) {
2652 disk_key = (struct btrfs_disk_key *)ptr;
2653 btrfs_disk_key_to_cpu(&key, disk_key);
2654
2655 len = sizeof(*disk_key);
2656
2657 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2658 chunk = (struct btrfs_chunk *)(ptr + len);
2659 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2660 len += btrfs_chunk_item_size(num_stripes);
2661 } else {
2662 ret = -EIO;
2663 break;
2664 }
2665 if (key.objectid == chunk_objectid &&
2666 key.offset == chunk_offset) {
2667 memmove(ptr, ptr + len, array_size - (cur + len));
2668 array_size -= len;
2669 btrfs_set_super_sys_array_size(super_copy, array_size);
2670 } else {
2671 ptr += len;
2672 cur += len;
2673 }
2674 }
2675 unlock_chunks(root);
2676 return ret;
2677 }
2678
2679 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2680 struct btrfs_root *root, u64 chunk_offset)
2681 {
2682 struct extent_map_tree *em_tree;
2683 struct extent_map *em;
2684 struct btrfs_root *extent_root = root->fs_info->extent_root;
2685 struct map_lookup *map;
2686 u64 dev_extent_len = 0;
2687 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2688 int i, ret = 0;
2689
2690 /* Just in case */
2691 root = root->fs_info->chunk_root;
2692 em_tree = &root->fs_info->mapping_tree.map_tree;
2693
2694 read_lock(&em_tree->lock);
2695 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2696 read_unlock(&em_tree->lock);
2697
2698 if (!em || em->start > chunk_offset ||
2699 em->start + em->len < chunk_offset) {
2700 /*
2701 * This is a logic error, but we don't want to just rely on the
2702 * user having built with ASSERT enabled, so if ASSERT doens't
2703 * do anything we still error out.
2704 */
2705 ASSERT(0);
2706 if (em)
2707 free_extent_map(em);
2708 return -EINVAL;
2709 }
2710 map = (struct map_lookup *)em->bdev;
2711 lock_chunks(root->fs_info->chunk_root);
2712 check_system_chunk(trans, extent_root, map->type);
2713 unlock_chunks(root->fs_info->chunk_root);
2714
2715 for (i = 0; i < map->num_stripes; i++) {
2716 struct btrfs_device *device = map->stripes[i].dev;
2717 ret = btrfs_free_dev_extent(trans, device,
2718 map->stripes[i].physical,
2719 &dev_extent_len);
2720 if (ret) {
2721 btrfs_abort_transaction(trans, root, ret);
2722 goto out;
2723 }
2724
2725 if (device->bytes_used > 0) {
2726 lock_chunks(root);
2727 btrfs_device_set_bytes_used(device,
2728 device->bytes_used - dev_extent_len);
2729 spin_lock(&root->fs_info->free_chunk_lock);
2730 root->fs_info->free_chunk_space += dev_extent_len;
2731 spin_unlock(&root->fs_info->free_chunk_lock);
2732 btrfs_clear_space_info_full(root->fs_info);
2733 unlock_chunks(root);
2734 }
2735
2736 if (map->stripes[i].dev) {
2737 ret = btrfs_update_device(trans, map->stripes[i].dev);
2738 if (ret) {
2739 btrfs_abort_transaction(trans, root, ret);
2740 goto out;
2741 }
2742 }
2743 }
2744 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2745 if (ret) {
2746 btrfs_abort_transaction(trans, root, ret);
2747 goto out;
2748 }
2749
2750 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2751
2752 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2753 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2754 if (ret) {
2755 btrfs_abort_transaction(trans, root, ret);
2756 goto out;
2757 }
2758 }
2759
2760 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2761 if (ret) {
2762 btrfs_abort_transaction(trans, extent_root, ret);
2763 goto out;
2764 }
2765
2766 out:
2767 /* once for us */
2768 free_extent_map(em);
2769 return ret;
2770 }
2771
2772 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2773 {
2774 struct btrfs_root *extent_root;
2775 struct btrfs_trans_handle *trans;
2776 int ret;
2777
2778 root = root->fs_info->chunk_root;
2779 extent_root = root->fs_info->extent_root;
2780
2781 /*
2782 * Prevent races with automatic removal of unused block groups.
2783 * After we relocate and before we remove the chunk with offset
2784 * chunk_offset, automatic removal of the block group can kick in,
2785 * resulting in a failure when calling btrfs_remove_chunk() below.
2786 *
2787 * Make sure to acquire this mutex before doing a tree search (dev
2788 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2789 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2790 * we release the path used to search the chunk/dev tree and before
2791 * the current task acquires this mutex and calls us.
2792 */
2793 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2794
2795 ret = btrfs_can_relocate(extent_root, chunk_offset);
2796 if (ret)
2797 return -ENOSPC;
2798
2799 /* step one, relocate all the extents inside this chunk */
2800 btrfs_scrub_pause(root);
2801 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2802 btrfs_scrub_continue(root);
2803 if (ret)
2804 return ret;
2805
2806 trans = btrfs_start_transaction(root, 0);
2807 if (IS_ERR(trans)) {
2808 ret = PTR_ERR(trans);
2809 btrfs_std_error(root->fs_info, ret);
2810 return ret;
2811 }
2812
2813 /*
2814 * step two, delete the device extents and the
2815 * chunk tree entries
2816 */
2817 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2818 btrfs_end_transaction(trans, root);
2819 return ret;
2820 }
2821
2822 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2823 {
2824 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2825 struct btrfs_path *path;
2826 struct extent_buffer *leaf;
2827 struct btrfs_chunk *chunk;
2828 struct btrfs_key key;
2829 struct btrfs_key found_key;
2830 u64 chunk_type;
2831 bool retried = false;
2832 int failed = 0;
2833 int ret;
2834
2835 path = btrfs_alloc_path();
2836 if (!path)
2837 return -ENOMEM;
2838
2839 again:
2840 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2841 key.offset = (u64)-1;
2842 key.type = BTRFS_CHUNK_ITEM_KEY;
2843
2844 while (1) {
2845 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2846 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2847 if (ret < 0) {
2848 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2849 goto error;
2850 }
2851 BUG_ON(ret == 0); /* Corruption */
2852
2853 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2854 key.type);
2855 if (ret)
2856 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2857 if (ret < 0)
2858 goto error;
2859 if (ret > 0)
2860 break;
2861
2862 leaf = path->nodes[0];
2863 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2864
2865 chunk = btrfs_item_ptr(leaf, path->slots[0],
2866 struct btrfs_chunk);
2867 chunk_type = btrfs_chunk_type(leaf, chunk);
2868 btrfs_release_path(path);
2869
2870 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2871 ret = btrfs_relocate_chunk(chunk_root,
2872 found_key.offset);
2873 if (ret == -ENOSPC)
2874 failed++;
2875 else
2876 BUG_ON(ret);
2877 }
2878 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2879
2880 if (found_key.offset == 0)
2881 break;
2882 key.offset = found_key.offset - 1;
2883 }
2884 ret = 0;
2885 if (failed && !retried) {
2886 failed = 0;
2887 retried = true;
2888 goto again;
2889 } else if (WARN_ON(failed && retried)) {
2890 ret = -ENOSPC;
2891 }
2892 error:
2893 btrfs_free_path(path);
2894 return ret;
2895 }
2896
2897 static int insert_balance_item(struct btrfs_root *root,
2898 struct btrfs_balance_control *bctl)
2899 {
2900 struct btrfs_trans_handle *trans;
2901 struct btrfs_balance_item *item;
2902 struct btrfs_disk_balance_args disk_bargs;
2903 struct btrfs_path *path;
2904 struct extent_buffer *leaf;
2905 struct btrfs_key key;
2906 int ret, err;
2907
2908 path = btrfs_alloc_path();
2909 if (!path)
2910 return -ENOMEM;
2911
2912 trans = btrfs_start_transaction(root, 0);
2913 if (IS_ERR(trans)) {
2914 btrfs_free_path(path);
2915 return PTR_ERR(trans);
2916 }
2917
2918 key.objectid = BTRFS_BALANCE_OBJECTID;
2919 key.type = BTRFS_BALANCE_ITEM_KEY;
2920 key.offset = 0;
2921
2922 ret = btrfs_insert_empty_item(trans, root, path, &key,
2923 sizeof(*item));
2924 if (ret)
2925 goto out;
2926
2927 leaf = path->nodes[0];
2928 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2929
2930 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2931
2932 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2933 btrfs_set_balance_data(leaf, item, &disk_bargs);
2934 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2935 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2936 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2937 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2938
2939 btrfs_set_balance_flags(leaf, item, bctl->flags);
2940
2941 btrfs_mark_buffer_dirty(leaf);
2942 out:
2943 btrfs_free_path(path);
2944 err = btrfs_commit_transaction(trans, root);
2945 if (err && !ret)
2946 ret = err;
2947 return ret;
2948 }
2949
2950 static int del_balance_item(struct btrfs_root *root)
2951 {
2952 struct btrfs_trans_handle *trans;
2953 struct btrfs_path *path;
2954 struct btrfs_key key;
2955 int ret, err;
2956
2957 path = btrfs_alloc_path();
2958 if (!path)
2959 return -ENOMEM;
2960
2961 trans = btrfs_start_transaction(root, 0);
2962 if (IS_ERR(trans)) {
2963 btrfs_free_path(path);
2964 return PTR_ERR(trans);
2965 }
2966
2967 key.objectid = BTRFS_BALANCE_OBJECTID;
2968 key.type = BTRFS_BALANCE_ITEM_KEY;
2969 key.offset = 0;
2970
2971 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2972 if (ret < 0)
2973 goto out;
2974 if (ret > 0) {
2975 ret = -ENOENT;
2976 goto out;
2977 }
2978
2979 ret = btrfs_del_item(trans, root, path);
2980 out:
2981 btrfs_free_path(path);
2982 err = btrfs_commit_transaction(trans, root);
2983 if (err && !ret)
2984 ret = err;
2985 return ret;
2986 }
2987
2988 /*
2989 * This is a heuristic used to reduce the number of chunks balanced on
2990 * resume after balance was interrupted.
2991 */
2992 static void update_balance_args(struct btrfs_balance_control *bctl)
2993 {
2994 /*
2995 * Turn on soft mode for chunk types that were being converted.
2996 */
2997 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2998 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2999 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3000 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3001 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3002 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3003
3004 /*
3005 * Turn on usage filter if is not already used. The idea is
3006 * that chunks that we have already balanced should be
3007 * reasonably full. Don't do it for chunks that are being
3008 * converted - that will keep us from relocating unconverted
3009 * (albeit full) chunks.
3010 */
3011 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3012 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3013 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3014 bctl->data.usage = 90;
3015 }
3016 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3017 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3018 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3019 bctl->sys.usage = 90;
3020 }
3021 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3022 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3023 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3024 bctl->meta.usage = 90;
3025 }
3026 }
3027
3028 /*
3029 * Should be called with both balance and volume mutexes held to
3030 * serialize other volume operations (add_dev/rm_dev/resize) with
3031 * restriper. Same goes for unset_balance_control.
3032 */
3033 static void set_balance_control(struct btrfs_balance_control *bctl)
3034 {
3035 struct btrfs_fs_info *fs_info = bctl->fs_info;
3036
3037 BUG_ON(fs_info->balance_ctl);
3038
3039 spin_lock(&fs_info->balance_lock);
3040 fs_info->balance_ctl = bctl;
3041 spin_unlock(&fs_info->balance_lock);
3042 }
3043
3044 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3045 {
3046 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3047
3048 BUG_ON(!fs_info->balance_ctl);
3049
3050 spin_lock(&fs_info->balance_lock);
3051 fs_info->balance_ctl = NULL;
3052 spin_unlock(&fs_info->balance_lock);
3053
3054 kfree(bctl);
3055 }
3056
3057 /*
3058 * Balance filters. Return 1 if chunk should be filtered out
3059 * (should not be balanced).
3060 */
3061 static int chunk_profiles_filter(u64 chunk_type,
3062 struct btrfs_balance_args *bargs)
3063 {
3064 chunk_type = chunk_to_extended(chunk_type) &
3065 BTRFS_EXTENDED_PROFILE_MASK;
3066
3067 if (bargs->profiles & chunk_type)
3068 return 0;
3069
3070 return 1;
3071 }
3072
3073 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3074 struct btrfs_balance_args *bargs)
3075 {
3076 struct btrfs_block_group_cache *cache;
3077 u64 chunk_used, user_thresh;
3078 int ret = 1;
3079
3080 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3081 chunk_used = btrfs_block_group_used(&cache->item);
3082
3083 if (bargs->usage == 0)
3084 user_thresh = 1;
3085 else if (bargs->usage > 100)
3086 user_thresh = cache->key.offset;
3087 else
3088 user_thresh = div_factor_fine(cache->key.offset,
3089 bargs->usage);
3090
3091 if (chunk_used < user_thresh)
3092 ret = 0;
3093
3094 btrfs_put_block_group(cache);
3095 return ret;
3096 }
3097
3098 static int chunk_devid_filter(struct extent_buffer *leaf,
3099 struct btrfs_chunk *chunk,
3100 struct btrfs_balance_args *bargs)
3101 {
3102 struct btrfs_stripe *stripe;
3103 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3104 int i;
3105
3106 for (i = 0; i < num_stripes; i++) {
3107 stripe = btrfs_stripe_nr(chunk, i);
3108 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3109 return 0;
3110 }
3111
3112 return 1;
3113 }
3114
3115 /* [pstart, pend) */
3116 static int chunk_drange_filter(struct extent_buffer *leaf,
3117 struct btrfs_chunk *chunk,
3118 u64 chunk_offset,
3119 struct btrfs_balance_args *bargs)
3120 {
3121 struct btrfs_stripe *stripe;
3122 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3123 u64 stripe_offset;
3124 u64 stripe_length;
3125 int factor;
3126 int i;
3127
3128 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3129 return 0;
3130
3131 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3132 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3133 factor = num_stripes / 2;
3134 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3135 factor = num_stripes - 1;
3136 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3137 factor = num_stripes - 2;
3138 } else {
3139 factor = num_stripes;
3140 }
3141
3142 for (i = 0; i < num_stripes; i++) {
3143 stripe = btrfs_stripe_nr(chunk, i);
3144 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3145 continue;
3146
3147 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3148 stripe_length = btrfs_chunk_length(leaf, chunk);
3149 stripe_length = div_u64(stripe_length, factor);
3150
3151 if (stripe_offset < bargs->pend &&
3152 stripe_offset + stripe_length > bargs->pstart)
3153 return 0;
3154 }
3155
3156 return 1;
3157 }
3158
3159 /* [vstart, vend) */
3160 static int chunk_vrange_filter(struct extent_buffer *leaf,
3161 struct btrfs_chunk *chunk,
3162 u64 chunk_offset,
3163 struct btrfs_balance_args *bargs)
3164 {
3165 if (chunk_offset < bargs->vend &&
3166 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3167 /* at least part of the chunk is inside this vrange */
3168 return 0;
3169
3170 return 1;
3171 }
3172
3173 static int chunk_soft_convert_filter(u64 chunk_type,
3174 struct btrfs_balance_args *bargs)
3175 {
3176 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3177 return 0;
3178
3179 chunk_type = chunk_to_extended(chunk_type) &
3180 BTRFS_EXTENDED_PROFILE_MASK;
3181
3182 if (bargs->target == chunk_type)
3183 return 1;
3184
3185 return 0;
3186 }
3187
3188 static int should_balance_chunk(struct btrfs_root *root,
3189 struct extent_buffer *leaf,
3190 struct btrfs_chunk *chunk, u64 chunk_offset)
3191 {
3192 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3193 struct btrfs_balance_args *bargs = NULL;
3194 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3195
3196 /* type filter */
3197 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3198 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3199 return 0;
3200 }
3201
3202 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3203 bargs = &bctl->data;
3204 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3205 bargs = &bctl->sys;
3206 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3207 bargs = &bctl->meta;
3208
3209 /* profiles filter */
3210 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3211 chunk_profiles_filter(chunk_type, bargs)) {
3212 return 0;
3213 }
3214
3215 /* usage filter */
3216 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3217 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3218 return 0;
3219 }
3220
3221 /* devid filter */
3222 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3223 chunk_devid_filter(leaf, chunk, bargs)) {
3224 return 0;
3225 }
3226
3227 /* drange filter, makes sense only with devid filter */
3228 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3229 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3230 return 0;
3231 }
3232
3233 /* vrange filter */
3234 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3235 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3236 return 0;
3237 }
3238
3239 /* soft profile changing mode */
3240 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3241 chunk_soft_convert_filter(chunk_type, bargs)) {
3242 return 0;
3243 }
3244
3245 /*
3246 * limited by count, must be the last filter
3247 */
3248 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3249 if (bargs->limit == 0)
3250 return 0;
3251 else
3252 bargs->limit--;
3253 }
3254
3255 return 1;
3256 }
3257
3258 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3259 {
3260 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3261 struct btrfs_root *chunk_root = fs_info->chunk_root;
3262 struct btrfs_root *dev_root = fs_info->dev_root;
3263 struct list_head *devices;
3264 struct btrfs_device *device;
3265 u64 old_size;
3266 u64 size_to_free;
3267 struct btrfs_chunk *chunk;
3268 struct btrfs_path *path;
3269 struct btrfs_key key;
3270 struct btrfs_key found_key;
3271 struct btrfs_trans_handle *trans;
3272 struct extent_buffer *leaf;
3273 int slot;
3274 int ret;
3275 int enospc_errors = 0;
3276 bool counting = true;
3277 u64 limit_data = bctl->data.limit;
3278 u64 limit_meta = bctl->meta.limit;
3279 u64 limit_sys = bctl->sys.limit;
3280
3281 /* step one make some room on all the devices */
3282 devices = &fs_info->fs_devices->devices;
3283 list_for_each_entry(device, devices, dev_list) {
3284 old_size = btrfs_device_get_total_bytes(device);
3285 size_to_free = div_factor(old_size, 1);
3286 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3287 if (!device->writeable ||
3288 btrfs_device_get_total_bytes(device) -
3289 btrfs_device_get_bytes_used(device) > size_to_free ||
3290 device->is_tgtdev_for_dev_replace)
3291 continue;
3292
3293 ret = btrfs_shrink_device(device, old_size - size_to_free);
3294 if (ret == -ENOSPC)
3295 break;
3296 BUG_ON(ret);
3297
3298 trans = btrfs_start_transaction(dev_root, 0);
3299 BUG_ON(IS_ERR(trans));
3300
3301 ret = btrfs_grow_device(trans, device, old_size);
3302 BUG_ON(ret);
3303
3304 btrfs_end_transaction(trans, dev_root);
3305 }
3306
3307 /* step two, relocate all the chunks */
3308 path = btrfs_alloc_path();
3309 if (!path) {
3310 ret = -ENOMEM;
3311 goto error;
3312 }
3313
3314 /* zero out stat counters */
3315 spin_lock(&fs_info->balance_lock);
3316 memset(&bctl->stat, 0, sizeof(bctl->stat));
3317 spin_unlock(&fs_info->balance_lock);
3318 again:
3319 if (!counting) {
3320 bctl->data.limit = limit_data;
3321 bctl->meta.limit = limit_meta;
3322 bctl->sys.limit = limit_sys;
3323 }
3324 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3325 key.offset = (u64)-1;
3326 key.type = BTRFS_CHUNK_ITEM_KEY;
3327
3328 while (1) {
3329 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3330 atomic_read(&fs_info->balance_cancel_req)) {
3331 ret = -ECANCELED;
3332 goto error;
3333 }
3334
3335 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3336 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3337 if (ret < 0) {
3338 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3339 goto error;
3340 }
3341
3342 /*
3343 * this shouldn't happen, it means the last relocate
3344 * failed
3345 */
3346 if (ret == 0)
3347 BUG(); /* FIXME break ? */
3348
3349 ret = btrfs_previous_item(chunk_root, path, 0,
3350 BTRFS_CHUNK_ITEM_KEY);
3351 if (ret) {
3352 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3353 ret = 0;
3354 break;
3355 }
3356
3357 leaf = path->nodes[0];
3358 slot = path->slots[0];
3359 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3360
3361 if (found_key.objectid != key.objectid) {
3362 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3363 break;
3364 }
3365
3366 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3367
3368 if (!counting) {
3369 spin_lock(&fs_info->balance_lock);
3370 bctl->stat.considered++;
3371 spin_unlock(&fs_info->balance_lock);
3372 }
3373
3374 ret = should_balance_chunk(chunk_root, leaf, chunk,
3375 found_key.offset);
3376 btrfs_release_path(path);
3377 if (!ret) {
3378 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3379 goto loop;
3380 }
3381
3382 if (counting) {
3383 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3384 spin_lock(&fs_info->balance_lock);
3385 bctl->stat.expected++;
3386 spin_unlock(&fs_info->balance_lock);
3387 goto loop;
3388 }
3389
3390 ret = btrfs_relocate_chunk(chunk_root,
3391 found_key.offset);
3392 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3393 if (ret && ret != -ENOSPC)
3394 goto error;
3395 if (ret == -ENOSPC) {
3396 enospc_errors++;
3397 } else {
3398 spin_lock(&fs_info->balance_lock);
3399 bctl->stat.completed++;
3400 spin_unlock(&fs_info->balance_lock);
3401 }
3402 loop:
3403 if (found_key.offset == 0)
3404 break;
3405 key.offset = found_key.offset - 1;
3406 }
3407
3408 if (counting) {
3409 btrfs_release_path(path);
3410 counting = false;
3411 goto again;
3412 }
3413 error:
3414 btrfs_free_path(path);
3415 if (enospc_errors) {
3416 btrfs_info(fs_info, "%d enospc errors during balance",
3417 enospc_errors);
3418 if (!ret)
3419 ret = -ENOSPC;
3420 }
3421
3422 return ret;
3423 }
3424
3425 /**
3426 * alloc_profile_is_valid - see if a given profile is valid and reduced
3427 * @flags: profile to validate
3428 * @extended: if true @flags is treated as an extended profile
3429 */
3430 static int alloc_profile_is_valid(u64 flags, int extended)
3431 {
3432 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3433 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3434
3435 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3436
3437 /* 1) check that all other bits are zeroed */
3438 if (flags & ~mask)
3439 return 0;
3440
3441 /* 2) see if profile is reduced */
3442 if (flags == 0)
3443 return !extended; /* "0" is valid for usual profiles */
3444
3445 /* true if exactly one bit set */
3446 return (flags & (flags - 1)) == 0;
3447 }
3448
3449 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3450 {
3451 /* cancel requested || normal exit path */
3452 return atomic_read(&fs_info->balance_cancel_req) ||
3453 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3454 atomic_read(&fs_info->balance_cancel_req) == 0);
3455 }
3456
3457 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3458 {
3459 int ret;
3460
3461 unset_balance_control(fs_info);
3462 ret = del_balance_item(fs_info->tree_root);
3463 if (ret)
3464 btrfs_std_error(fs_info, ret);
3465
3466 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3467 }
3468
3469 /*
3470 * Should be called with both balance and volume mutexes held
3471 */
3472 int btrfs_balance(struct btrfs_balance_control *bctl,
3473 struct btrfs_ioctl_balance_args *bargs)
3474 {
3475 struct btrfs_fs_info *fs_info = bctl->fs_info;
3476 u64 allowed;
3477 int mixed = 0;
3478 int ret;
3479 u64 num_devices;
3480 unsigned seq;
3481
3482 if (btrfs_fs_closing(fs_info) ||
3483 atomic_read(&fs_info->balance_pause_req) ||
3484 atomic_read(&fs_info->balance_cancel_req)) {
3485 ret = -EINVAL;
3486 goto out;
3487 }
3488
3489 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3490 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3491 mixed = 1;
3492
3493 /*
3494 * In case of mixed groups both data and meta should be picked,
3495 * and identical options should be given for both of them.
3496 */
3497 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3498 if (mixed && (bctl->flags & allowed)) {
3499 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3500 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3501 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3502 btrfs_err(fs_info, "with mixed groups data and "
3503 "metadata balance options must be the same");
3504 ret = -EINVAL;
3505 goto out;
3506 }
3507 }
3508
3509 num_devices = fs_info->fs_devices->num_devices;
3510 btrfs_dev_replace_lock(&fs_info->dev_replace);
3511 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3512 BUG_ON(num_devices < 1);
3513 num_devices--;
3514 }
3515 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3516 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3517 if (num_devices == 1)
3518 allowed |= BTRFS_BLOCK_GROUP_DUP;
3519 else if (num_devices > 1)
3520 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3521 if (num_devices > 2)
3522 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3523 if (num_devices > 3)
3524 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3525 BTRFS_BLOCK_GROUP_RAID6);
3526 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3527 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3528 (bctl->data.target & ~allowed))) {
3529 btrfs_err(fs_info, "unable to start balance with target "
3530 "data profile %llu",
3531 bctl->data.target);
3532 ret = -EINVAL;
3533 goto out;
3534 }
3535 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3536 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3537 (bctl->meta.target & ~allowed))) {
3538 btrfs_err(fs_info,
3539 "unable to start balance with target metadata profile %llu",
3540 bctl->meta.target);
3541 ret = -EINVAL;
3542 goto out;
3543 }
3544 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3545 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3546 (bctl->sys.target & ~allowed))) {
3547 btrfs_err(fs_info,
3548 "unable to start balance with target system profile %llu",
3549 bctl->sys.target);
3550 ret = -EINVAL;
3551 goto out;
3552 }
3553
3554 /* allow dup'ed data chunks only in mixed mode */
3555 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3556 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3557 btrfs_err(fs_info, "dup for data is not allowed");
3558 ret = -EINVAL;
3559 goto out;
3560 }
3561
3562 /* allow to reduce meta or sys integrity only if force set */
3563 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3564 BTRFS_BLOCK_GROUP_RAID10 |
3565 BTRFS_BLOCK_GROUP_RAID5 |
3566 BTRFS_BLOCK_GROUP_RAID6;
3567 do {
3568 seq = read_seqbegin(&fs_info->profiles_lock);
3569
3570 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3571 (fs_info->avail_system_alloc_bits & allowed) &&
3572 !(bctl->sys.target & allowed)) ||
3573 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3574 (fs_info->avail_metadata_alloc_bits & allowed) &&
3575 !(bctl->meta.target & allowed))) {
3576 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3577 btrfs_info(fs_info, "force reducing metadata integrity");
3578 } else {
3579 btrfs_err(fs_info, "balance will reduce metadata "
3580 "integrity, use force if you want this");
3581 ret = -EINVAL;
3582 goto out;
3583 }
3584 }
3585 } while (read_seqretry(&fs_info->profiles_lock, seq));
3586
3587 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3588 fs_info->num_tolerated_disk_barrier_failures = min(
3589 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3590 btrfs_get_num_tolerated_disk_barrier_failures(
3591 bctl->sys.target));
3592 }
3593
3594 ret = insert_balance_item(fs_info->tree_root, bctl);
3595 if (ret && ret != -EEXIST)
3596 goto out;
3597
3598 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3599 BUG_ON(ret == -EEXIST);
3600 set_balance_control(bctl);
3601 } else {
3602 BUG_ON(ret != -EEXIST);
3603 spin_lock(&fs_info->balance_lock);
3604 update_balance_args(bctl);
3605 spin_unlock(&fs_info->balance_lock);
3606 }
3607
3608 atomic_inc(&fs_info->balance_running);
3609 mutex_unlock(&fs_info->balance_mutex);
3610
3611 ret = __btrfs_balance(fs_info);
3612
3613 mutex_lock(&fs_info->balance_mutex);
3614 atomic_dec(&fs_info->balance_running);
3615
3616 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3617 fs_info->num_tolerated_disk_barrier_failures =
3618 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3619 }
3620
3621 if (bargs) {
3622 memset(bargs, 0, sizeof(*bargs));
3623 update_ioctl_balance_args(fs_info, 0, bargs);
3624 }
3625
3626 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3627 balance_need_close(fs_info)) {
3628 __cancel_balance(fs_info);
3629 }
3630
3631 wake_up(&fs_info->balance_wait_q);
3632
3633 return ret;
3634 out:
3635 if (bctl->flags & BTRFS_BALANCE_RESUME)
3636 __cancel_balance(fs_info);
3637 else {
3638 kfree(bctl);
3639 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3640 }
3641 return ret;
3642 }
3643
3644 static int balance_kthread(void *data)
3645 {
3646 struct btrfs_fs_info *fs_info = data;
3647 int ret = 0;
3648
3649 mutex_lock(&fs_info->volume_mutex);
3650 mutex_lock(&fs_info->balance_mutex);
3651
3652 if (fs_info->balance_ctl) {
3653 btrfs_info(fs_info, "continuing balance");
3654 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3655 }
3656
3657 mutex_unlock(&fs_info->balance_mutex);
3658 mutex_unlock(&fs_info->volume_mutex);
3659
3660 return ret;
3661 }
3662
3663 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3664 {
3665 struct task_struct *tsk;
3666
3667 spin_lock(&fs_info->balance_lock);
3668 if (!fs_info->balance_ctl) {
3669 spin_unlock(&fs_info->balance_lock);
3670 return 0;
3671 }
3672 spin_unlock(&fs_info->balance_lock);
3673
3674 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3675 btrfs_info(fs_info, "force skipping balance");
3676 return 0;
3677 }
3678
3679 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3680 return PTR_ERR_OR_ZERO(tsk);
3681 }
3682
3683 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3684 {
3685 struct btrfs_balance_control *bctl;
3686 struct btrfs_balance_item *item;
3687 struct btrfs_disk_balance_args disk_bargs;
3688 struct btrfs_path *path;
3689 struct extent_buffer *leaf;
3690 struct btrfs_key key;
3691 int ret;
3692
3693 path = btrfs_alloc_path();
3694 if (!path)
3695 return -ENOMEM;
3696
3697 key.objectid = BTRFS_BALANCE_OBJECTID;
3698 key.type = BTRFS_BALANCE_ITEM_KEY;
3699 key.offset = 0;
3700
3701 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3702 if (ret < 0)
3703 goto out;
3704 if (ret > 0) { /* ret = -ENOENT; */
3705 ret = 0;
3706 goto out;
3707 }
3708
3709 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3710 if (!bctl) {
3711 ret = -ENOMEM;
3712 goto out;
3713 }
3714
3715 leaf = path->nodes[0];
3716 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3717
3718 bctl->fs_info = fs_info;
3719 bctl->flags = btrfs_balance_flags(leaf, item);
3720 bctl->flags |= BTRFS_BALANCE_RESUME;
3721
3722 btrfs_balance_data(leaf, item, &disk_bargs);
3723 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3724 btrfs_balance_meta(leaf, item, &disk_bargs);
3725 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3726 btrfs_balance_sys(leaf, item, &disk_bargs);
3727 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3728
3729 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3730
3731 mutex_lock(&fs_info->volume_mutex);
3732 mutex_lock(&fs_info->balance_mutex);
3733
3734 set_balance_control(bctl);
3735
3736 mutex_unlock(&fs_info->balance_mutex);
3737 mutex_unlock(&fs_info->volume_mutex);
3738 out:
3739 btrfs_free_path(path);
3740 return ret;
3741 }
3742
3743 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3744 {
3745 int ret = 0;
3746
3747 mutex_lock(&fs_info->balance_mutex);
3748 if (!fs_info->balance_ctl) {
3749 mutex_unlock(&fs_info->balance_mutex);
3750 return -ENOTCONN;
3751 }
3752
3753 if (atomic_read(&fs_info->balance_running)) {
3754 atomic_inc(&fs_info->balance_pause_req);
3755 mutex_unlock(&fs_info->balance_mutex);
3756
3757 wait_event(fs_info->balance_wait_q,
3758 atomic_read(&fs_info->balance_running) == 0);
3759
3760 mutex_lock(&fs_info->balance_mutex);
3761 /* we are good with balance_ctl ripped off from under us */
3762 BUG_ON(atomic_read(&fs_info->balance_running));
3763 atomic_dec(&fs_info->balance_pause_req);
3764 } else {
3765 ret = -ENOTCONN;
3766 }
3767
3768 mutex_unlock(&fs_info->balance_mutex);
3769 return ret;
3770 }
3771
3772 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3773 {
3774 if (fs_info->sb->s_flags & MS_RDONLY)
3775 return -EROFS;
3776
3777 mutex_lock(&fs_info->balance_mutex);
3778 if (!fs_info->balance_ctl) {
3779 mutex_unlock(&fs_info->balance_mutex);
3780 return -ENOTCONN;
3781 }
3782
3783 atomic_inc(&fs_info->balance_cancel_req);
3784 /*
3785 * if we are running just wait and return, balance item is
3786 * deleted in btrfs_balance in this case
3787 */
3788 if (atomic_read(&fs_info->balance_running)) {
3789 mutex_unlock(&fs_info->balance_mutex);
3790 wait_event(fs_info->balance_wait_q,
3791 atomic_read(&fs_info->balance_running) == 0);
3792 mutex_lock(&fs_info->balance_mutex);
3793 } else {
3794 /* __cancel_balance needs volume_mutex */
3795 mutex_unlock(&fs_info->balance_mutex);
3796 mutex_lock(&fs_info->volume_mutex);
3797 mutex_lock(&fs_info->balance_mutex);
3798
3799 if (fs_info->balance_ctl)
3800 __cancel_balance(fs_info);
3801
3802 mutex_unlock(&fs_info->volume_mutex);
3803 }
3804
3805 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3806 atomic_dec(&fs_info->balance_cancel_req);
3807 mutex_unlock(&fs_info->balance_mutex);
3808 return 0;
3809 }
3810
3811 static int btrfs_uuid_scan_kthread(void *data)
3812 {
3813 struct btrfs_fs_info *fs_info = data;
3814 struct btrfs_root *root = fs_info->tree_root;
3815 struct btrfs_key key;
3816 struct btrfs_key max_key;
3817 struct btrfs_path *path = NULL;
3818 int ret = 0;
3819 struct extent_buffer *eb;
3820 int slot;
3821 struct btrfs_root_item root_item;
3822 u32 item_size;
3823 struct btrfs_trans_handle *trans = NULL;
3824
3825 path = btrfs_alloc_path();
3826 if (!path) {
3827 ret = -ENOMEM;
3828 goto out;
3829 }
3830
3831 key.objectid = 0;
3832 key.type = BTRFS_ROOT_ITEM_KEY;
3833 key.offset = 0;
3834
3835 max_key.objectid = (u64)-1;
3836 max_key.type = BTRFS_ROOT_ITEM_KEY;
3837 max_key.offset = (u64)-1;
3838
3839 while (1) {
3840 ret = btrfs_search_forward(root, &key, path, 0);
3841 if (ret) {
3842 if (ret > 0)
3843 ret = 0;
3844 break;
3845 }
3846
3847 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3848 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3849 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3850 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3851 goto skip;
3852
3853 eb = path->nodes[0];
3854 slot = path->slots[0];
3855 item_size = btrfs_item_size_nr(eb, slot);
3856 if (item_size < sizeof(root_item))
3857 goto skip;
3858
3859 read_extent_buffer(eb, &root_item,
3860 btrfs_item_ptr_offset(eb, slot),
3861 (int)sizeof(root_item));
3862 if (btrfs_root_refs(&root_item) == 0)
3863 goto skip;
3864
3865 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3866 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3867 if (trans)
3868 goto update_tree;
3869
3870 btrfs_release_path(path);
3871 /*
3872 * 1 - subvol uuid item
3873 * 1 - received_subvol uuid item
3874 */
3875 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3876 if (IS_ERR(trans)) {
3877 ret = PTR_ERR(trans);
3878 break;
3879 }
3880 continue;
3881 } else {
3882 goto skip;
3883 }
3884 update_tree:
3885 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3886 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3887 root_item.uuid,
3888 BTRFS_UUID_KEY_SUBVOL,
3889 key.objectid);
3890 if (ret < 0) {
3891 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3892 ret);
3893 break;
3894 }
3895 }
3896
3897 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3898 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3899 root_item.received_uuid,
3900 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3901 key.objectid);
3902 if (ret < 0) {
3903 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3904 ret);
3905 break;
3906 }
3907 }
3908
3909 skip:
3910 if (trans) {
3911 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3912 trans = NULL;
3913 if (ret)
3914 break;
3915 }
3916
3917 btrfs_release_path(path);
3918 if (key.offset < (u64)-1) {
3919 key.offset++;
3920 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3921 key.offset = 0;
3922 key.type = BTRFS_ROOT_ITEM_KEY;
3923 } else if (key.objectid < (u64)-1) {
3924 key.offset = 0;
3925 key.type = BTRFS_ROOT_ITEM_KEY;
3926 key.objectid++;
3927 } else {
3928 break;
3929 }
3930 cond_resched();
3931 }
3932
3933 out:
3934 btrfs_free_path(path);
3935 if (trans && !IS_ERR(trans))
3936 btrfs_end_transaction(trans, fs_info->uuid_root);
3937 if (ret)
3938 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3939 else
3940 fs_info->update_uuid_tree_gen = 1;
3941 up(&fs_info->uuid_tree_rescan_sem);
3942 return 0;
3943 }
3944
3945 /*
3946 * Callback for btrfs_uuid_tree_iterate().
3947 * returns:
3948 * 0 check succeeded, the entry is not outdated.
3949 * < 0 if an error occured.
3950 * > 0 if the check failed, which means the caller shall remove the entry.
3951 */
3952 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3953 u8 *uuid, u8 type, u64 subid)
3954 {
3955 struct btrfs_key key;
3956 int ret = 0;
3957 struct btrfs_root *subvol_root;
3958
3959 if (type != BTRFS_UUID_KEY_SUBVOL &&
3960 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3961 goto out;
3962
3963 key.objectid = subid;
3964 key.type = BTRFS_ROOT_ITEM_KEY;
3965 key.offset = (u64)-1;
3966 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3967 if (IS_ERR(subvol_root)) {
3968 ret = PTR_ERR(subvol_root);
3969 if (ret == -ENOENT)
3970 ret = 1;
3971 goto out;
3972 }
3973
3974 switch (type) {
3975 case BTRFS_UUID_KEY_SUBVOL:
3976 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3977 ret = 1;
3978 break;
3979 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3980 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3981 BTRFS_UUID_SIZE))
3982 ret = 1;
3983 break;
3984 }
3985
3986 out:
3987 return ret;
3988 }
3989
3990 static int btrfs_uuid_rescan_kthread(void *data)
3991 {
3992 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3993 int ret;
3994
3995 /*
3996 * 1st step is to iterate through the existing UUID tree and
3997 * to delete all entries that contain outdated data.
3998 * 2nd step is to add all missing entries to the UUID tree.
3999 */
4000 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4001 if (ret < 0) {
4002 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4003 up(&fs_info->uuid_tree_rescan_sem);
4004 return ret;
4005 }
4006 return btrfs_uuid_scan_kthread(data);
4007 }
4008
4009 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4010 {
4011 struct btrfs_trans_handle *trans;
4012 struct btrfs_root *tree_root = fs_info->tree_root;
4013 struct btrfs_root *uuid_root;
4014 struct task_struct *task;
4015 int ret;
4016
4017 /*
4018 * 1 - root node
4019 * 1 - root item
4020 */
4021 trans = btrfs_start_transaction(tree_root, 2);
4022 if (IS_ERR(trans))
4023 return PTR_ERR(trans);
4024
4025 uuid_root = btrfs_create_tree(trans, fs_info,
4026 BTRFS_UUID_TREE_OBJECTID);
4027 if (IS_ERR(uuid_root)) {
4028 ret = PTR_ERR(uuid_root);
4029 btrfs_abort_transaction(trans, tree_root, ret);
4030 return ret;
4031 }
4032
4033 fs_info->uuid_root = uuid_root;
4034
4035 ret = btrfs_commit_transaction(trans, tree_root);
4036 if (ret)
4037 return ret;
4038
4039 down(&fs_info->uuid_tree_rescan_sem);
4040 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4041 if (IS_ERR(task)) {
4042 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4043 btrfs_warn(fs_info, "failed to start uuid_scan task");
4044 up(&fs_info->uuid_tree_rescan_sem);
4045 return PTR_ERR(task);
4046 }
4047
4048 return 0;
4049 }
4050
4051 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4052 {
4053 struct task_struct *task;
4054
4055 down(&fs_info->uuid_tree_rescan_sem);
4056 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4057 if (IS_ERR(task)) {
4058 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4059 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4060 up(&fs_info->uuid_tree_rescan_sem);
4061 return PTR_ERR(task);
4062 }
4063
4064 return 0;
4065 }
4066
4067 /*
4068 * shrinking a device means finding all of the device extents past
4069 * the new size, and then following the back refs to the chunks.
4070 * The chunk relocation code actually frees the device extent
4071 */
4072 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4073 {
4074 struct btrfs_trans_handle *trans;
4075 struct btrfs_root *root = device->dev_root;
4076 struct btrfs_dev_extent *dev_extent = NULL;
4077 struct btrfs_path *path;
4078 u64 length;
4079 u64 chunk_offset;
4080 int ret;
4081 int slot;
4082 int failed = 0;
4083 bool retried = false;
4084 bool checked_pending_chunks = false;
4085 struct extent_buffer *l;
4086 struct btrfs_key key;
4087 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4088 u64 old_total = btrfs_super_total_bytes(super_copy);
4089 u64 old_size = btrfs_device_get_total_bytes(device);
4090 u64 diff = old_size - new_size;
4091
4092 if (device->is_tgtdev_for_dev_replace)
4093 return -EINVAL;
4094
4095 path = btrfs_alloc_path();
4096 if (!path)
4097 return -ENOMEM;
4098
4099 path->reada = 2;
4100
4101 lock_chunks(root);
4102
4103 btrfs_device_set_total_bytes(device, new_size);
4104 if (device->writeable) {
4105 device->fs_devices->total_rw_bytes -= diff;
4106 spin_lock(&root->fs_info->free_chunk_lock);
4107 root->fs_info->free_chunk_space -= diff;
4108 spin_unlock(&root->fs_info->free_chunk_lock);
4109 }
4110 unlock_chunks(root);
4111
4112 again:
4113 key.objectid = device->devid;
4114 key.offset = (u64)-1;
4115 key.type = BTRFS_DEV_EXTENT_KEY;
4116
4117 do {
4118 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4119 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4120 if (ret < 0) {
4121 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4122 goto done;
4123 }
4124
4125 ret = btrfs_previous_item(root, path, 0, key.type);
4126 if (ret)
4127 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4128 if (ret < 0)
4129 goto done;
4130 if (ret) {
4131 ret = 0;
4132 btrfs_release_path(path);
4133 break;
4134 }
4135
4136 l = path->nodes[0];
4137 slot = path->slots[0];
4138 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4139
4140 if (key.objectid != device->devid) {
4141 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4142 btrfs_release_path(path);
4143 break;
4144 }
4145
4146 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4147 length = btrfs_dev_extent_length(l, dev_extent);
4148
4149 if (key.offset + length <= new_size) {
4150 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4151 btrfs_release_path(path);
4152 break;
4153 }
4154
4155 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4156 btrfs_release_path(path);
4157
4158 ret = btrfs_relocate_chunk(root, chunk_offset);
4159 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4160 if (ret && ret != -ENOSPC)
4161 goto done;
4162 if (ret == -ENOSPC)
4163 failed++;
4164 } while (key.offset-- > 0);
4165
4166 if (failed && !retried) {
4167 failed = 0;
4168 retried = true;
4169 goto again;
4170 } else if (failed && retried) {
4171 ret = -ENOSPC;
4172 goto done;
4173 }
4174
4175 /* Shrinking succeeded, else we would be at "done". */
4176 trans = btrfs_start_transaction(root, 0);
4177 if (IS_ERR(trans)) {
4178 ret = PTR_ERR(trans);
4179 goto done;
4180 }
4181
4182 lock_chunks(root);
4183
4184 /*
4185 * We checked in the above loop all device extents that were already in
4186 * the device tree. However before we have updated the device's
4187 * total_bytes to the new size, we might have had chunk allocations that
4188 * have not complete yet (new block groups attached to transaction
4189 * handles), and therefore their device extents were not yet in the
4190 * device tree and we missed them in the loop above. So if we have any
4191 * pending chunk using a device extent that overlaps the device range
4192 * that we can not use anymore, commit the current transaction and
4193 * repeat the search on the device tree - this way we guarantee we will
4194 * not have chunks using device extents that end beyond 'new_size'.
4195 */
4196 if (!checked_pending_chunks) {
4197 u64 start = new_size;
4198 u64 len = old_size - new_size;
4199
4200 if (contains_pending_extent(trans->transaction, device,
4201 &start, len)) {
4202 unlock_chunks(root);
4203 checked_pending_chunks = true;
4204 failed = 0;
4205 retried = false;
4206 ret = btrfs_commit_transaction(trans, root);
4207 if (ret)
4208 goto done;
4209 goto again;
4210 }
4211 }
4212
4213 btrfs_device_set_disk_total_bytes(device, new_size);
4214 if (list_empty(&device->resized_list))
4215 list_add_tail(&device->resized_list,
4216 &root->fs_info->fs_devices->resized_devices);
4217
4218 WARN_ON(diff > old_total);
4219 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4220 unlock_chunks(root);
4221
4222 /* Now btrfs_update_device() will change the on-disk size. */
4223 ret = btrfs_update_device(trans, device);
4224 btrfs_end_transaction(trans, root);
4225 done:
4226 btrfs_free_path(path);
4227 if (ret) {
4228 lock_chunks(root);
4229 btrfs_device_set_total_bytes(device, old_size);
4230 if (device->writeable)
4231 device->fs_devices->total_rw_bytes += diff;
4232 spin_lock(&root->fs_info->free_chunk_lock);
4233 root->fs_info->free_chunk_space += diff;
4234 spin_unlock(&root->fs_info->free_chunk_lock);
4235 unlock_chunks(root);
4236 }
4237 return ret;
4238 }
4239
4240 static int btrfs_add_system_chunk(struct btrfs_root *root,
4241 struct btrfs_key *key,
4242 struct btrfs_chunk *chunk, int item_size)
4243 {
4244 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4245 struct btrfs_disk_key disk_key;
4246 u32 array_size;
4247 u8 *ptr;
4248
4249 lock_chunks(root);
4250 array_size = btrfs_super_sys_array_size(super_copy);
4251 if (array_size + item_size + sizeof(disk_key)
4252 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4253 unlock_chunks(root);
4254 return -EFBIG;
4255 }
4256
4257 ptr = super_copy->sys_chunk_array + array_size;
4258 btrfs_cpu_key_to_disk(&disk_key, key);
4259 memcpy(ptr, &disk_key, sizeof(disk_key));
4260 ptr += sizeof(disk_key);
4261 memcpy(ptr, chunk, item_size);
4262 item_size += sizeof(disk_key);
4263 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4264 unlock_chunks(root);
4265
4266 return 0;
4267 }
4268
4269 /*
4270 * sort the devices in descending order by max_avail, total_avail
4271 */
4272 static int btrfs_cmp_device_info(const void *a, const void *b)
4273 {
4274 const struct btrfs_device_info *di_a = a;
4275 const struct btrfs_device_info *di_b = b;
4276
4277 if (di_a->max_avail > di_b->max_avail)
4278 return -1;
4279 if (di_a->max_avail < di_b->max_avail)
4280 return 1;
4281 if (di_a->total_avail > di_b->total_avail)
4282 return -1;
4283 if (di_a->total_avail < di_b->total_avail)
4284 return 1;
4285 return 0;
4286 }
4287
4288 static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4289 [BTRFS_RAID_RAID10] = {
4290 .sub_stripes = 2,
4291 .dev_stripes = 1,
4292 .devs_max = 0, /* 0 == as many as possible */
4293 .devs_min = 4,
4294 .devs_increment = 2,
4295 .ncopies = 2,
4296 },
4297 [BTRFS_RAID_RAID1] = {
4298 .sub_stripes = 1,
4299 .dev_stripes = 1,
4300 .devs_max = 2,
4301 .devs_min = 2,
4302 .devs_increment = 2,
4303 .ncopies = 2,
4304 },
4305 [BTRFS_RAID_DUP] = {
4306 .sub_stripes = 1,
4307 .dev_stripes = 2,
4308 .devs_max = 1,
4309 .devs_min = 1,
4310 .devs_increment = 1,
4311 .ncopies = 2,
4312 },
4313 [BTRFS_RAID_RAID0] = {
4314 .sub_stripes = 1,
4315 .dev_stripes = 1,
4316 .devs_max = 0,
4317 .devs_min = 2,
4318 .devs_increment = 1,
4319 .ncopies = 1,
4320 },
4321 [BTRFS_RAID_SINGLE] = {
4322 .sub_stripes = 1,
4323 .dev_stripes = 1,
4324 .devs_max = 1,
4325 .devs_min = 1,
4326 .devs_increment = 1,
4327 .ncopies = 1,
4328 },
4329 [BTRFS_RAID_RAID5] = {
4330 .sub_stripes = 1,
4331 .dev_stripes = 1,
4332 .devs_max = 0,
4333 .devs_min = 2,
4334 .devs_increment = 1,
4335 .ncopies = 2,
4336 },
4337 [BTRFS_RAID_RAID6] = {
4338 .sub_stripes = 1,
4339 .dev_stripes = 1,
4340 .devs_max = 0,
4341 .devs_min = 3,
4342 .devs_increment = 1,
4343 .ncopies = 3,
4344 },
4345 };
4346
4347 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4348 {
4349 /* TODO allow them to set a preferred stripe size */
4350 return 64 * 1024;
4351 }
4352
4353 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4354 {
4355 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4356 return;
4357
4358 btrfs_set_fs_incompat(info, RAID56);
4359 }
4360
4361 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4362 - sizeof(struct btrfs_item) \
4363 - sizeof(struct btrfs_chunk)) \
4364 / sizeof(struct btrfs_stripe) + 1)
4365
4366 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4367 - 2 * sizeof(struct btrfs_disk_key) \
4368 - 2 * sizeof(struct btrfs_chunk)) \
4369 / sizeof(struct btrfs_stripe) + 1)
4370
4371 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4372 struct btrfs_root *extent_root, u64 start,
4373 u64 type)
4374 {
4375 struct btrfs_fs_info *info = extent_root->fs_info;
4376 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4377 struct list_head *cur;
4378 struct map_lookup *map = NULL;
4379 struct extent_map_tree *em_tree;
4380 struct extent_map *em;
4381 struct btrfs_device_info *devices_info = NULL;
4382 u64 total_avail;
4383 int num_stripes; /* total number of stripes to allocate */
4384 int data_stripes; /* number of stripes that count for
4385 block group size */
4386 int sub_stripes; /* sub_stripes info for map */
4387 int dev_stripes; /* stripes per dev */
4388 int devs_max; /* max devs to use */
4389 int devs_min; /* min devs needed */
4390 int devs_increment; /* ndevs has to be a multiple of this */
4391 int ncopies; /* how many copies to data has */
4392 int ret;
4393 u64 max_stripe_size;
4394 u64 max_chunk_size;
4395 u64 stripe_size;
4396 u64 num_bytes;
4397 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4398 int ndevs;
4399 int i;
4400 int j;
4401 int index;
4402
4403 BUG_ON(!alloc_profile_is_valid(type, 0));
4404
4405 if (list_empty(&fs_devices->alloc_list))
4406 return -ENOSPC;
4407
4408 index = __get_raid_index(type);
4409
4410 sub_stripes = btrfs_raid_array[index].sub_stripes;
4411 dev_stripes = btrfs_raid_array[index].dev_stripes;
4412 devs_max = btrfs_raid_array[index].devs_max;
4413 devs_min = btrfs_raid_array[index].devs_min;
4414 devs_increment = btrfs_raid_array[index].devs_increment;
4415 ncopies = btrfs_raid_array[index].ncopies;
4416
4417 if (type & BTRFS_BLOCK_GROUP_DATA) {
4418 max_stripe_size = 1024 * 1024 * 1024;
4419 max_chunk_size = 10 * max_stripe_size;
4420 if (!devs_max)
4421 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4422 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4423 /* for larger filesystems, use larger metadata chunks */
4424 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4425 max_stripe_size = 1024 * 1024 * 1024;
4426 else
4427 max_stripe_size = 256 * 1024 * 1024;
4428 max_chunk_size = max_stripe_size;
4429 if (!devs_max)
4430 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4431 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4432 max_stripe_size = 32 * 1024 * 1024;
4433 max_chunk_size = 2 * max_stripe_size;
4434 if (!devs_max)
4435 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4436 } else {
4437 btrfs_err(info, "invalid chunk type 0x%llx requested",
4438 type);
4439 BUG_ON(1);
4440 }
4441
4442 /* we don't want a chunk larger than 10% of writeable space */
4443 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4444 max_chunk_size);
4445
4446 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4447 GFP_NOFS);
4448 if (!devices_info)
4449 return -ENOMEM;
4450
4451 cur = fs_devices->alloc_list.next;
4452
4453 /*
4454 * in the first pass through the devices list, we gather information
4455 * about the available holes on each device.
4456 */
4457 ndevs = 0;
4458 while (cur != &fs_devices->alloc_list) {
4459 struct btrfs_device *device;
4460 u64 max_avail;
4461 u64 dev_offset;
4462
4463 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4464
4465 cur = cur->next;
4466
4467 if (!device->writeable) {
4468 WARN(1, KERN_ERR
4469 "BTRFS: read-only device in alloc_list\n");
4470 continue;
4471 }
4472
4473 if (!device->in_fs_metadata ||
4474 device->is_tgtdev_for_dev_replace)
4475 continue;
4476
4477 if (device->total_bytes > device->bytes_used)
4478 total_avail = device->total_bytes - device->bytes_used;
4479 else
4480 total_avail = 0;
4481
4482 /* If there is no space on this device, skip it. */
4483 if (total_avail == 0)
4484 continue;
4485
4486 ret = find_free_dev_extent(trans, device,
4487 max_stripe_size * dev_stripes,
4488 &dev_offset, &max_avail);
4489 if (ret && ret != -ENOSPC)
4490 goto error;
4491
4492 if (ret == 0)
4493 max_avail = max_stripe_size * dev_stripes;
4494
4495 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4496 continue;
4497
4498 if (ndevs == fs_devices->rw_devices) {
4499 WARN(1, "%s: found more than %llu devices\n",
4500 __func__, fs_devices->rw_devices);
4501 break;
4502 }
4503 devices_info[ndevs].dev_offset = dev_offset;
4504 devices_info[ndevs].max_avail = max_avail;
4505 devices_info[ndevs].total_avail = total_avail;
4506 devices_info[ndevs].dev = device;
4507 ++ndevs;
4508 }
4509
4510 /*
4511 * now sort the devices by hole size / available space
4512 */
4513 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4514 btrfs_cmp_device_info, NULL);
4515
4516 /* round down to number of usable stripes */
4517 ndevs -= ndevs % devs_increment;
4518
4519 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4520 ret = -ENOSPC;
4521 goto error;
4522 }
4523
4524 if (devs_max && ndevs > devs_max)
4525 ndevs = devs_max;
4526 /*
4527 * the primary goal is to maximize the number of stripes, so use as many
4528 * devices as possible, even if the stripes are not maximum sized.
4529 */
4530 stripe_size = devices_info[ndevs-1].max_avail;
4531 num_stripes = ndevs * dev_stripes;
4532
4533 /*
4534 * this will have to be fixed for RAID1 and RAID10 over
4535 * more drives
4536 */
4537 data_stripes = num_stripes / ncopies;
4538
4539 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4540 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4541 btrfs_super_stripesize(info->super_copy));
4542 data_stripes = num_stripes - 1;
4543 }
4544 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4545 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4546 btrfs_super_stripesize(info->super_copy));
4547 data_stripes = num_stripes - 2;
4548 }
4549
4550 /*
4551 * Use the number of data stripes to figure out how big this chunk
4552 * is really going to be in terms of logical address space,
4553 * and compare that answer with the max chunk size
4554 */
4555 if (stripe_size * data_stripes > max_chunk_size) {
4556 u64 mask = (1ULL << 24) - 1;
4557
4558 stripe_size = div_u64(max_chunk_size, data_stripes);
4559
4560 /* bump the answer up to a 16MB boundary */
4561 stripe_size = (stripe_size + mask) & ~mask;
4562
4563 /* but don't go higher than the limits we found
4564 * while searching for free extents
4565 */
4566 if (stripe_size > devices_info[ndevs-1].max_avail)
4567 stripe_size = devices_info[ndevs-1].max_avail;
4568 }
4569
4570 stripe_size = div_u64(stripe_size, dev_stripes);
4571
4572 /* align to BTRFS_STRIPE_LEN */
4573 stripe_size = div_u64(stripe_size, raid_stripe_len);
4574 stripe_size *= raid_stripe_len;
4575
4576 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4577 if (!map) {
4578 ret = -ENOMEM;
4579 goto error;
4580 }
4581 map->num_stripes = num_stripes;
4582
4583 for (i = 0; i < ndevs; ++i) {
4584 for (j = 0; j < dev_stripes; ++j) {
4585 int s = i * dev_stripes + j;
4586 map->stripes[s].dev = devices_info[i].dev;
4587 map->stripes[s].physical = devices_info[i].dev_offset +
4588 j * stripe_size;
4589 }
4590 }
4591 map->sector_size = extent_root->sectorsize;
4592 map->stripe_len = raid_stripe_len;
4593 map->io_align = raid_stripe_len;
4594 map->io_width = raid_stripe_len;
4595 map->type = type;
4596 map->sub_stripes = sub_stripes;
4597
4598 num_bytes = stripe_size * data_stripes;
4599
4600 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4601
4602 em = alloc_extent_map();
4603 if (!em) {
4604 kfree(map);
4605 ret = -ENOMEM;
4606 goto error;
4607 }
4608 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4609 em->bdev = (struct block_device *)map;
4610 em->start = start;
4611 em->len = num_bytes;
4612 em->block_start = 0;
4613 em->block_len = em->len;
4614 em->orig_block_len = stripe_size;
4615
4616 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4617 write_lock(&em_tree->lock);
4618 ret = add_extent_mapping(em_tree, em, 0);
4619 if (!ret) {
4620 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4621 atomic_inc(&em->refs);
4622 }
4623 write_unlock(&em_tree->lock);
4624 if (ret) {
4625 free_extent_map(em);
4626 goto error;
4627 }
4628
4629 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4630 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4631 start, num_bytes);
4632 if (ret)
4633 goto error_del_extent;
4634
4635 for (i = 0; i < map->num_stripes; i++) {
4636 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4637 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4638 }
4639
4640 spin_lock(&extent_root->fs_info->free_chunk_lock);
4641 extent_root->fs_info->free_chunk_space -= (stripe_size *
4642 map->num_stripes);
4643 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4644
4645 free_extent_map(em);
4646 check_raid56_incompat_flag(extent_root->fs_info, type);
4647
4648 kfree(devices_info);
4649 return 0;
4650
4651 error_del_extent:
4652 write_lock(&em_tree->lock);
4653 remove_extent_mapping(em_tree, em);
4654 write_unlock(&em_tree->lock);
4655
4656 /* One for our allocation */
4657 free_extent_map(em);
4658 /* One for the tree reference */
4659 free_extent_map(em);
4660 /* One for the pending_chunks list reference */
4661 free_extent_map(em);
4662 error:
4663 kfree(devices_info);
4664 return ret;
4665 }
4666
4667 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4668 struct btrfs_root *extent_root,
4669 u64 chunk_offset, u64 chunk_size)
4670 {
4671 struct btrfs_key key;
4672 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4673 struct btrfs_device *device;
4674 struct btrfs_chunk *chunk;
4675 struct btrfs_stripe *stripe;
4676 struct extent_map_tree *em_tree;
4677 struct extent_map *em;
4678 struct map_lookup *map;
4679 size_t item_size;
4680 u64 dev_offset;
4681 u64 stripe_size;
4682 int i = 0;
4683 int ret;
4684
4685 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4686 read_lock(&em_tree->lock);
4687 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4688 read_unlock(&em_tree->lock);
4689
4690 if (!em) {
4691 btrfs_crit(extent_root->fs_info, "unable to find logical "
4692 "%Lu len %Lu", chunk_offset, chunk_size);
4693 return -EINVAL;
4694 }
4695
4696 if (em->start != chunk_offset || em->len != chunk_size) {
4697 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4698 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4699 chunk_size, em->start, em->len);
4700 free_extent_map(em);
4701 return -EINVAL;
4702 }
4703
4704 map = (struct map_lookup *)em->bdev;
4705 item_size = btrfs_chunk_item_size(map->num_stripes);
4706 stripe_size = em->orig_block_len;
4707
4708 chunk = kzalloc(item_size, GFP_NOFS);
4709 if (!chunk) {
4710 ret = -ENOMEM;
4711 goto out;
4712 }
4713
4714 for (i = 0; i < map->num_stripes; i++) {
4715 device = map->stripes[i].dev;
4716 dev_offset = map->stripes[i].physical;
4717
4718 ret = btrfs_update_device(trans, device);
4719 if (ret)
4720 goto out;
4721 ret = btrfs_alloc_dev_extent(trans, device,
4722 chunk_root->root_key.objectid,
4723 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4724 chunk_offset, dev_offset,
4725 stripe_size);
4726 if (ret)
4727 goto out;
4728 }
4729
4730 stripe = &chunk->stripe;
4731 for (i = 0; i < map->num_stripes; i++) {
4732 device = map->stripes[i].dev;
4733 dev_offset = map->stripes[i].physical;
4734
4735 btrfs_set_stack_stripe_devid(stripe, device->devid);
4736 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4737 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4738 stripe++;
4739 }
4740
4741 btrfs_set_stack_chunk_length(chunk, chunk_size);
4742 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4743 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4744 btrfs_set_stack_chunk_type(chunk, map->type);
4745 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4746 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4747 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4748 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4749 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4750
4751 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4752 key.type = BTRFS_CHUNK_ITEM_KEY;
4753 key.offset = chunk_offset;
4754
4755 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4756 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4757 /*
4758 * TODO: Cleanup of inserted chunk root in case of
4759 * failure.
4760 */
4761 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4762 item_size);
4763 }
4764
4765 out:
4766 kfree(chunk);
4767 free_extent_map(em);
4768 return ret;
4769 }
4770
4771 /*
4772 * Chunk allocation falls into two parts. The first part does works
4773 * that make the new allocated chunk useable, but not do any operation
4774 * that modifies the chunk tree. The second part does the works that
4775 * require modifying the chunk tree. This division is important for the
4776 * bootstrap process of adding storage to a seed btrfs.
4777 */
4778 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4779 struct btrfs_root *extent_root, u64 type)
4780 {
4781 u64 chunk_offset;
4782
4783 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4784 chunk_offset = find_next_chunk(extent_root->fs_info);
4785 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4786 }
4787
4788 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4789 struct btrfs_root *root,
4790 struct btrfs_device *device)
4791 {
4792 u64 chunk_offset;
4793 u64 sys_chunk_offset;
4794 u64 alloc_profile;
4795 struct btrfs_fs_info *fs_info = root->fs_info;
4796 struct btrfs_root *extent_root = fs_info->extent_root;
4797 int ret;
4798
4799 chunk_offset = find_next_chunk(fs_info);
4800 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4801 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4802 alloc_profile);
4803 if (ret)
4804 return ret;
4805
4806 sys_chunk_offset = find_next_chunk(root->fs_info);
4807 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4808 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4809 alloc_profile);
4810 return ret;
4811 }
4812
4813 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4814 {
4815 int max_errors;
4816
4817 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4818 BTRFS_BLOCK_GROUP_RAID10 |
4819 BTRFS_BLOCK_GROUP_RAID5 |
4820 BTRFS_BLOCK_GROUP_DUP)) {
4821 max_errors = 1;
4822 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4823 max_errors = 2;
4824 } else {
4825 max_errors = 0;
4826 }
4827
4828 return max_errors;
4829 }
4830
4831 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4832 {
4833 struct extent_map *em;
4834 struct map_lookup *map;
4835 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4836 int readonly = 0;
4837 int miss_ndevs = 0;
4838 int i;
4839
4840 read_lock(&map_tree->map_tree.lock);
4841 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4842 read_unlock(&map_tree->map_tree.lock);
4843 if (!em)
4844 return 1;
4845
4846 map = (struct map_lookup *)em->bdev;
4847 for (i = 0; i < map->num_stripes; i++) {
4848 if (map->stripes[i].dev->missing) {
4849 miss_ndevs++;
4850 continue;
4851 }
4852
4853 if (!map->stripes[i].dev->writeable) {
4854 readonly = 1;
4855 goto end;
4856 }
4857 }
4858
4859 /*
4860 * If the number of missing devices is larger than max errors,
4861 * we can not write the data into that chunk successfully, so
4862 * set it readonly.
4863 */
4864 if (miss_ndevs > btrfs_chunk_max_errors(map))
4865 readonly = 1;
4866 end:
4867 free_extent_map(em);
4868 return readonly;
4869 }
4870
4871 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4872 {
4873 extent_map_tree_init(&tree->map_tree);
4874 }
4875
4876 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4877 {
4878 struct extent_map *em;
4879
4880 while (1) {
4881 write_lock(&tree->map_tree.lock);
4882 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4883 if (em)
4884 remove_extent_mapping(&tree->map_tree, em);
4885 write_unlock(&tree->map_tree.lock);
4886 if (!em)
4887 break;
4888 /* once for us */
4889 free_extent_map(em);
4890 /* once for the tree */
4891 free_extent_map(em);
4892 }
4893 }
4894
4895 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4896 {
4897 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4898 struct extent_map *em;
4899 struct map_lookup *map;
4900 struct extent_map_tree *em_tree = &map_tree->map_tree;
4901 int ret;
4902
4903 read_lock(&em_tree->lock);
4904 em = lookup_extent_mapping(em_tree, logical, len);
4905 read_unlock(&em_tree->lock);
4906
4907 /*
4908 * We could return errors for these cases, but that could get ugly and
4909 * we'd probably do the same thing which is just not do anything else
4910 * and exit, so return 1 so the callers don't try to use other copies.
4911 */
4912 if (!em) {
4913 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4914 logical+len);
4915 return 1;
4916 }
4917
4918 if (em->start > logical || em->start + em->len < logical) {
4919 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4920 "%Lu-%Lu", logical, logical+len, em->start,
4921 em->start + em->len);
4922 free_extent_map(em);
4923 return 1;
4924 }
4925
4926 map = (struct map_lookup *)em->bdev;
4927 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4928 ret = map->num_stripes;
4929 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4930 ret = map->sub_stripes;
4931 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4932 ret = 2;
4933 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4934 ret = 3;
4935 else
4936 ret = 1;
4937 free_extent_map(em);
4938
4939 btrfs_dev_replace_lock(&fs_info->dev_replace);
4940 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4941 ret++;
4942 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4943
4944 return ret;
4945 }
4946
4947 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4948 struct btrfs_mapping_tree *map_tree,
4949 u64 logical)
4950 {
4951 struct extent_map *em;
4952 struct map_lookup *map;
4953 struct extent_map_tree *em_tree = &map_tree->map_tree;
4954 unsigned long len = root->sectorsize;
4955
4956 read_lock(&em_tree->lock);
4957 em = lookup_extent_mapping(em_tree, logical, len);
4958 read_unlock(&em_tree->lock);
4959 BUG_ON(!em);
4960
4961 BUG_ON(em->start > logical || em->start + em->len < logical);
4962 map = (struct map_lookup *)em->bdev;
4963 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4964 len = map->stripe_len * nr_data_stripes(map);
4965 free_extent_map(em);
4966 return len;
4967 }
4968
4969 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4970 u64 logical, u64 len, int mirror_num)
4971 {
4972 struct extent_map *em;
4973 struct map_lookup *map;
4974 struct extent_map_tree *em_tree = &map_tree->map_tree;
4975 int ret = 0;
4976
4977 read_lock(&em_tree->lock);
4978 em = lookup_extent_mapping(em_tree, logical, len);
4979 read_unlock(&em_tree->lock);
4980 BUG_ON(!em);
4981
4982 BUG_ON(em->start > logical || em->start + em->len < logical);
4983 map = (struct map_lookup *)em->bdev;
4984 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4985 ret = 1;
4986 free_extent_map(em);
4987 return ret;
4988 }
4989
4990 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4991 struct map_lookup *map, int first, int num,
4992 int optimal, int dev_replace_is_ongoing)
4993 {
4994 int i;
4995 int tolerance;
4996 struct btrfs_device *srcdev;
4997
4998 if (dev_replace_is_ongoing &&
4999 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5000 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5001 srcdev = fs_info->dev_replace.srcdev;
5002 else
5003 srcdev = NULL;
5004
5005 /*
5006 * try to avoid the drive that is the source drive for a
5007 * dev-replace procedure, only choose it if no other non-missing
5008 * mirror is available
5009 */
5010 for (tolerance = 0; tolerance < 2; tolerance++) {
5011 if (map->stripes[optimal].dev->bdev &&
5012 (tolerance || map->stripes[optimal].dev != srcdev))
5013 return optimal;
5014 for (i = first; i < first + num; i++) {
5015 if (map->stripes[i].dev->bdev &&
5016 (tolerance || map->stripes[i].dev != srcdev))
5017 return i;
5018 }
5019 }
5020
5021 /* we couldn't find one that doesn't fail. Just return something
5022 * and the io error handling code will clean up eventually
5023 */
5024 return optimal;
5025 }
5026
5027 static inline int parity_smaller(u64 a, u64 b)
5028 {
5029 return a > b;
5030 }
5031
5032 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5033 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5034 {
5035 struct btrfs_bio_stripe s;
5036 int i;
5037 u64 l;
5038 int again = 1;
5039
5040 while (again) {
5041 again = 0;
5042 for (i = 0; i < num_stripes - 1; i++) {
5043 if (parity_smaller(bbio->raid_map[i],
5044 bbio->raid_map[i+1])) {
5045 s = bbio->stripes[i];
5046 l = bbio->raid_map[i];
5047 bbio->stripes[i] = bbio->stripes[i+1];
5048 bbio->raid_map[i] = bbio->raid_map[i+1];
5049 bbio->stripes[i+1] = s;
5050 bbio->raid_map[i+1] = l;
5051
5052 again = 1;
5053 }
5054 }
5055 }
5056 }
5057
5058 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5059 {
5060 struct btrfs_bio *bbio = kzalloc(
5061 /* the size of the btrfs_bio */
5062 sizeof(struct btrfs_bio) +
5063 /* plus the variable array for the stripes */
5064 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5065 /* plus the variable array for the tgt dev */
5066 sizeof(int) * (real_stripes) +
5067 /*
5068 * plus the raid_map, which includes both the tgt dev
5069 * and the stripes
5070 */
5071 sizeof(u64) * (total_stripes),
5072 GFP_NOFS|__GFP_NOFAIL);
5073
5074 atomic_set(&bbio->error, 0);
5075 atomic_set(&bbio->refs, 1);
5076
5077 return bbio;
5078 }
5079
5080 void btrfs_get_bbio(struct btrfs_bio *bbio)
5081 {
5082 WARN_ON(!atomic_read(&bbio->refs));
5083 atomic_inc(&bbio->refs);
5084 }
5085
5086 void btrfs_put_bbio(struct btrfs_bio *bbio)
5087 {
5088 if (!bbio)
5089 return;
5090 if (atomic_dec_and_test(&bbio->refs))
5091 kfree(bbio);
5092 }
5093
5094 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5095 u64 logical, u64 *length,
5096 struct btrfs_bio **bbio_ret,
5097 int mirror_num, int need_raid_map)
5098 {
5099 struct extent_map *em;
5100 struct map_lookup *map;
5101 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5102 struct extent_map_tree *em_tree = &map_tree->map_tree;
5103 u64 offset;
5104 u64 stripe_offset;
5105 u64 stripe_end_offset;
5106 u64 stripe_nr;
5107 u64 stripe_nr_orig;
5108 u64 stripe_nr_end;
5109 u64 stripe_len;
5110 u32 stripe_index;
5111 int i;
5112 int ret = 0;
5113 int num_stripes;
5114 int max_errors = 0;
5115 int tgtdev_indexes = 0;
5116 struct btrfs_bio *bbio = NULL;
5117 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5118 int dev_replace_is_ongoing = 0;
5119 int num_alloc_stripes;
5120 int patch_the_first_stripe_for_dev_replace = 0;
5121 u64 physical_to_patch_in_first_stripe = 0;
5122 u64 raid56_full_stripe_start = (u64)-1;
5123
5124 read_lock(&em_tree->lock);
5125 em = lookup_extent_mapping(em_tree, logical, *length);
5126 read_unlock(&em_tree->lock);
5127
5128 if (!em) {
5129 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5130 logical, *length);
5131 return -EINVAL;
5132 }
5133
5134 if (em->start > logical || em->start + em->len < logical) {
5135 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5136 "found %Lu-%Lu", logical, em->start,
5137 em->start + em->len);
5138 free_extent_map(em);
5139 return -EINVAL;
5140 }
5141
5142 map = (struct map_lookup *)em->bdev;
5143 offset = logical - em->start;
5144
5145 stripe_len = map->stripe_len;
5146 stripe_nr = offset;
5147 /*
5148 * stripe_nr counts the total number of stripes we have to stride
5149 * to get to this block
5150 */
5151 stripe_nr = div64_u64(stripe_nr, stripe_len);
5152
5153 stripe_offset = stripe_nr * stripe_len;
5154 BUG_ON(offset < stripe_offset);
5155
5156 /* stripe_offset is the offset of this block in its stripe*/
5157 stripe_offset = offset - stripe_offset;
5158
5159 /* if we're here for raid56, we need to know the stripe aligned start */
5160 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5161 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5162 raid56_full_stripe_start = offset;
5163
5164 /* allow a write of a full stripe, but make sure we don't
5165 * allow straddling of stripes
5166 */
5167 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5168 full_stripe_len);
5169 raid56_full_stripe_start *= full_stripe_len;
5170 }
5171
5172 if (rw & REQ_DISCARD) {
5173 /* we don't discard raid56 yet */
5174 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5175 ret = -EOPNOTSUPP;
5176 goto out;
5177 }
5178 *length = min_t(u64, em->len - offset, *length);
5179 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5180 u64 max_len;
5181 /* For writes to RAID[56], allow a full stripeset across all disks.
5182 For other RAID types and for RAID[56] reads, just allow a single
5183 stripe (on a single disk). */
5184 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5185 (rw & REQ_WRITE)) {
5186 max_len = stripe_len * nr_data_stripes(map) -
5187 (offset - raid56_full_stripe_start);
5188 } else {
5189 /* we limit the length of each bio to what fits in a stripe */
5190 max_len = stripe_len - stripe_offset;
5191 }
5192 *length = min_t(u64, em->len - offset, max_len);
5193 } else {
5194 *length = em->len - offset;
5195 }
5196
5197 /* This is for when we're called from btrfs_merge_bio_hook() and all
5198 it cares about is the length */
5199 if (!bbio_ret)
5200 goto out;
5201
5202 btrfs_dev_replace_lock(dev_replace);
5203 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5204 if (!dev_replace_is_ongoing)
5205 btrfs_dev_replace_unlock(dev_replace);
5206
5207 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5208 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5209 dev_replace->tgtdev != NULL) {
5210 /*
5211 * in dev-replace case, for repair case (that's the only
5212 * case where the mirror is selected explicitly when
5213 * calling btrfs_map_block), blocks left of the left cursor
5214 * can also be read from the target drive.
5215 * For REQ_GET_READ_MIRRORS, the target drive is added as
5216 * the last one to the array of stripes. For READ, it also
5217 * needs to be supported using the same mirror number.
5218 * If the requested block is not left of the left cursor,
5219 * EIO is returned. This can happen because btrfs_num_copies()
5220 * returns one more in the dev-replace case.
5221 */
5222 u64 tmp_length = *length;
5223 struct btrfs_bio *tmp_bbio = NULL;
5224 int tmp_num_stripes;
5225 u64 srcdev_devid = dev_replace->srcdev->devid;
5226 int index_srcdev = 0;
5227 int found = 0;
5228 u64 physical_of_found = 0;
5229
5230 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5231 logical, &tmp_length, &tmp_bbio, 0, 0);
5232 if (ret) {
5233 WARN_ON(tmp_bbio != NULL);
5234 goto out;
5235 }
5236
5237 tmp_num_stripes = tmp_bbio->num_stripes;
5238 if (mirror_num > tmp_num_stripes) {
5239 /*
5240 * REQ_GET_READ_MIRRORS does not contain this
5241 * mirror, that means that the requested area
5242 * is not left of the left cursor
5243 */
5244 ret = -EIO;
5245 btrfs_put_bbio(tmp_bbio);
5246 goto out;
5247 }
5248
5249 /*
5250 * process the rest of the function using the mirror_num
5251 * of the source drive. Therefore look it up first.
5252 * At the end, patch the device pointer to the one of the
5253 * target drive.
5254 */
5255 for (i = 0; i < tmp_num_stripes; i++) {
5256 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5257 /*
5258 * In case of DUP, in order to keep it
5259 * simple, only add the mirror with the
5260 * lowest physical address
5261 */
5262 if (found &&
5263 physical_of_found <=
5264 tmp_bbio->stripes[i].physical)
5265 continue;
5266 index_srcdev = i;
5267 found = 1;
5268 physical_of_found =
5269 tmp_bbio->stripes[i].physical;
5270 }
5271 }
5272
5273 if (found) {
5274 mirror_num = index_srcdev + 1;
5275 patch_the_first_stripe_for_dev_replace = 1;
5276 physical_to_patch_in_first_stripe = physical_of_found;
5277 } else {
5278 WARN_ON(1);
5279 ret = -EIO;
5280 btrfs_put_bbio(tmp_bbio);
5281 goto out;
5282 }
5283
5284 btrfs_put_bbio(tmp_bbio);
5285 } else if (mirror_num > map->num_stripes) {
5286 mirror_num = 0;
5287 }
5288
5289 num_stripes = 1;
5290 stripe_index = 0;
5291 stripe_nr_orig = stripe_nr;
5292 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5293 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5294 stripe_end_offset = stripe_nr_end * map->stripe_len -
5295 (offset + *length);
5296
5297 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5298 if (rw & REQ_DISCARD)
5299 num_stripes = min_t(u64, map->num_stripes,
5300 stripe_nr_end - stripe_nr_orig);
5301 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5302 &stripe_index);
5303 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5304 mirror_num = 1;
5305 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5306 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5307 num_stripes = map->num_stripes;
5308 else if (mirror_num)
5309 stripe_index = mirror_num - 1;
5310 else {
5311 stripe_index = find_live_mirror(fs_info, map, 0,
5312 map->num_stripes,
5313 current->pid % map->num_stripes,
5314 dev_replace_is_ongoing);
5315 mirror_num = stripe_index + 1;
5316 }
5317
5318 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5319 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5320 num_stripes = map->num_stripes;
5321 } else if (mirror_num) {
5322 stripe_index = mirror_num - 1;
5323 } else {
5324 mirror_num = 1;
5325 }
5326
5327 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5328 u32 factor = map->num_stripes / map->sub_stripes;
5329
5330 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5331 stripe_index *= map->sub_stripes;
5332
5333 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5334 num_stripes = map->sub_stripes;
5335 else if (rw & REQ_DISCARD)
5336 num_stripes = min_t(u64, map->sub_stripes *
5337 (stripe_nr_end - stripe_nr_orig),
5338 map->num_stripes);
5339 else if (mirror_num)
5340 stripe_index += mirror_num - 1;
5341 else {
5342 int old_stripe_index = stripe_index;
5343 stripe_index = find_live_mirror(fs_info, map,
5344 stripe_index,
5345 map->sub_stripes, stripe_index +
5346 current->pid % map->sub_stripes,
5347 dev_replace_is_ongoing);
5348 mirror_num = stripe_index - old_stripe_index + 1;
5349 }
5350
5351 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5352 if (need_raid_map &&
5353 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5354 mirror_num > 1)) {
5355 /* push stripe_nr back to the start of the full stripe */
5356 stripe_nr = div_u64(raid56_full_stripe_start,
5357 stripe_len * nr_data_stripes(map));
5358
5359 /* RAID[56] write or recovery. Return all stripes */
5360 num_stripes = map->num_stripes;
5361 max_errors = nr_parity_stripes(map);
5362
5363 *length = map->stripe_len;
5364 stripe_index = 0;
5365 stripe_offset = 0;
5366 } else {
5367 /*
5368 * Mirror #0 or #1 means the original data block.
5369 * Mirror #2 is RAID5 parity block.
5370 * Mirror #3 is RAID6 Q block.
5371 */
5372 stripe_nr = div_u64_rem(stripe_nr,
5373 nr_data_stripes(map), &stripe_index);
5374 if (mirror_num > 1)
5375 stripe_index = nr_data_stripes(map) +
5376 mirror_num - 2;
5377
5378 /* We distribute the parity blocks across stripes */
5379 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5380 &stripe_index);
5381 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5382 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5383 mirror_num = 1;
5384 }
5385 } else {
5386 /*
5387 * after this, stripe_nr is the number of stripes on this
5388 * device we have to walk to find the data, and stripe_index is
5389 * the number of our device in the stripe array
5390 */
5391 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5392 &stripe_index);
5393 mirror_num = stripe_index + 1;
5394 }
5395 BUG_ON(stripe_index >= map->num_stripes);
5396
5397 num_alloc_stripes = num_stripes;
5398 if (dev_replace_is_ongoing) {
5399 if (rw & (REQ_WRITE | REQ_DISCARD))
5400 num_alloc_stripes <<= 1;
5401 if (rw & REQ_GET_READ_MIRRORS)
5402 num_alloc_stripes++;
5403 tgtdev_indexes = num_stripes;
5404 }
5405
5406 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5407 if (!bbio) {
5408 ret = -ENOMEM;
5409 goto out;
5410 }
5411 if (dev_replace_is_ongoing)
5412 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5413
5414 /* build raid_map */
5415 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5416 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5417 mirror_num > 1)) {
5418 u64 tmp;
5419 unsigned rot;
5420
5421 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5422 sizeof(struct btrfs_bio_stripe) *
5423 num_alloc_stripes +
5424 sizeof(int) * tgtdev_indexes);
5425
5426 /* Work out the disk rotation on this stripe-set */
5427 div_u64_rem(stripe_nr, num_stripes, &rot);
5428
5429 /* Fill in the logical address of each stripe */
5430 tmp = stripe_nr * nr_data_stripes(map);
5431 for (i = 0; i < nr_data_stripes(map); i++)
5432 bbio->raid_map[(i+rot) % num_stripes] =
5433 em->start + (tmp + i) * map->stripe_len;
5434
5435 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5436 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5437 bbio->raid_map[(i+rot+1) % num_stripes] =
5438 RAID6_Q_STRIPE;
5439 }
5440
5441 if (rw & REQ_DISCARD) {
5442 u32 factor = 0;
5443 u32 sub_stripes = 0;
5444 u64 stripes_per_dev = 0;
5445 u32 remaining_stripes = 0;
5446 u32 last_stripe = 0;
5447
5448 if (map->type &
5449 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5450 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5451 sub_stripes = 1;
5452 else
5453 sub_stripes = map->sub_stripes;
5454
5455 factor = map->num_stripes / sub_stripes;
5456 stripes_per_dev = div_u64_rem(stripe_nr_end -
5457 stripe_nr_orig,
5458 factor,
5459 &remaining_stripes);
5460 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5461 last_stripe *= sub_stripes;
5462 }
5463
5464 for (i = 0; i < num_stripes; i++) {
5465 bbio->stripes[i].physical =
5466 map->stripes[stripe_index].physical +
5467 stripe_offset + stripe_nr * map->stripe_len;
5468 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5469
5470 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5471 BTRFS_BLOCK_GROUP_RAID10)) {
5472 bbio->stripes[i].length = stripes_per_dev *
5473 map->stripe_len;
5474
5475 if (i / sub_stripes < remaining_stripes)
5476 bbio->stripes[i].length +=
5477 map->stripe_len;
5478
5479 /*
5480 * Special for the first stripe and
5481 * the last stripe:
5482 *
5483 * |-------|...|-------|
5484 * |----------|
5485 * off end_off
5486 */
5487 if (i < sub_stripes)
5488 bbio->stripes[i].length -=
5489 stripe_offset;
5490
5491 if (stripe_index >= last_stripe &&
5492 stripe_index <= (last_stripe +
5493 sub_stripes - 1))
5494 bbio->stripes[i].length -=
5495 stripe_end_offset;
5496
5497 if (i == sub_stripes - 1)
5498 stripe_offset = 0;
5499 } else
5500 bbio->stripes[i].length = *length;
5501
5502 stripe_index++;
5503 if (stripe_index == map->num_stripes) {
5504 /* This could only happen for RAID0/10 */
5505 stripe_index = 0;
5506 stripe_nr++;
5507 }
5508 }
5509 } else {
5510 for (i = 0; i < num_stripes; i++) {
5511 bbio->stripes[i].physical =
5512 map->stripes[stripe_index].physical +
5513 stripe_offset +
5514 stripe_nr * map->stripe_len;
5515 bbio->stripes[i].dev =
5516 map->stripes[stripe_index].dev;
5517 stripe_index++;
5518 }
5519 }
5520
5521 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5522 max_errors = btrfs_chunk_max_errors(map);
5523
5524 if (bbio->raid_map)
5525 sort_parity_stripes(bbio, num_stripes);
5526
5527 tgtdev_indexes = 0;
5528 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5529 dev_replace->tgtdev != NULL) {
5530 int index_where_to_add;
5531 u64 srcdev_devid = dev_replace->srcdev->devid;
5532
5533 /*
5534 * duplicate the write operations while the dev replace
5535 * procedure is running. Since the copying of the old disk
5536 * to the new disk takes place at run time while the
5537 * filesystem is mounted writable, the regular write
5538 * operations to the old disk have to be duplicated to go
5539 * to the new disk as well.
5540 * Note that device->missing is handled by the caller, and
5541 * that the write to the old disk is already set up in the
5542 * stripes array.
5543 */
5544 index_where_to_add = num_stripes;
5545 for (i = 0; i < num_stripes; i++) {
5546 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5547 /* write to new disk, too */
5548 struct btrfs_bio_stripe *new =
5549 bbio->stripes + index_where_to_add;
5550 struct btrfs_bio_stripe *old =
5551 bbio->stripes + i;
5552
5553 new->physical = old->physical;
5554 new->length = old->length;
5555 new->dev = dev_replace->tgtdev;
5556 bbio->tgtdev_map[i] = index_where_to_add;
5557 index_where_to_add++;
5558 max_errors++;
5559 tgtdev_indexes++;
5560 }
5561 }
5562 num_stripes = index_where_to_add;
5563 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5564 dev_replace->tgtdev != NULL) {
5565 u64 srcdev_devid = dev_replace->srcdev->devid;
5566 int index_srcdev = 0;
5567 int found = 0;
5568 u64 physical_of_found = 0;
5569
5570 /*
5571 * During the dev-replace procedure, the target drive can
5572 * also be used to read data in case it is needed to repair
5573 * a corrupt block elsewhere. This is possible if the
5574 * requested area is left of the left cursor. In this area,
5575 * the target drive is a full copy of the source drive.
5576 */
5577 for (i = 0; i < num_stripes; i++) {
5578 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5579 /*
5580 * In case of DUP, in order to keep it
5581 * simple, only add the mirror with the
5582 * lowest physical address
5583 */
5584 if (found &&
5585 physical_of_found <=
5586 bbio->stripes[i].physical)
5587 continue;
5588 index_srcdev = i;
5589 found = 1;
5590 physical_of_found = bbio->stripes[i].physical;
5591 }
5592 }
5593 if (found) {
5594 if (physical_of_found + map->stripe_len <=
5595 dev_replace->cursor_left) {
5596 struct btrfs_bio_stripe *tgtdev_stripe =
5597 bbio->stripes + num_stripes;
5598
5599 tgtdev_stripe->physical = physical_of_found;
5600 tgtdev_stripe->length =
5601 bbio->stripes[index_srcdev].length;
5602 tgtdev_stripe->dev = dev_replace->tgtdev;
5603 bbio->tgtdev_map[index_srcdev] = num_stripes;
5604
5605 tgtdev_indexes++;
5606 num_stripes++;
5607 }
5608 }
5609 }
5610
5611 *bbio_ret = bbio;
5612 bbio->map_type = map->type;
5613 bbio->num_stripes = num_stripes;
5614 bbio->max_errors = max_errors;
5615 bbio->mirror_num = mirror_num;
5616 bbio->num_tgtdevs = tgtdev_indexes;
5617
5618 /*
5619 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5620 * mirror_num == num_stripes + 1 && dev_replace target drive is
5621 * available as a mirror
5622 */
5623 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5624 WARN_ON(num_stripes > 1);
5625 bbio->stripes[0].dev = dev_replace->tgtdev;
5626 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5627 bbio->mirror_num = map->num_stripes + 1;
5628 }
5629 out:
5630 if (dev_replace_is_ongoing)
5631 btrfs_dev_replace_unlock(dev_replace);
5632 free_extent_map(em);
5633 return ret;
5634 }
5635
5636 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5637 u64 logical, u64 *length,
5638 struct btrfs_bio **bbio_ret, int mirror_num)
5639 {
5640 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5641 mirror_num, 0);
5642 }
5643
5644 /* For Scrub/replace */
5645 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5646 u64 logical, u64 *length,
5647 struct btrfs_bio **bbio_ret, int mirror_num,
5648 int need_raid_map)
5649 {
5650 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5651 mirror_num, need_raid_map);
5652 }
5653
5654 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5655 u64 chunk_start, u64 physical, u64 devid,
5656 u64 **logical, int *naddrs, int *stripe_len)
5657 {
5658 struct extent_map_tree *em_tree = &map_tree->map_tree;
5659 struct extent_map *em;
5660 struct map_lookup *map;
5661 u64 *buf;
5662 u64 bytenr;
5663 u64 length;
5664 u64 stripe_nr;
5665 u64 rmap_len;
5666 int i, j, nr = 0;
5667
5668 read_lock(&em_tree->lock);
5669 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5670 read_unlock(&em_tree->lock);
5671
5672 if (!em) {
5673 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5674 chunk_start);
5675 return -EIO;
5676 }
5677
5678 if (em->start != chunk_start) {
5679 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5680 em->start, chunk_start);
5681 free_extent_map(em);
5682 return -EIO;
5683 }
5684 map = (struct map_lookup *)em->bdev;
5685
5686 length = em->len;
5687 rmap_len = map->stripe_len;
5688
5689 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5690 length = div_u64(length, map->num_stripes / map->sub_stripes);
5691 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5692 length = div_u64(length, map->num_stripes);
5693 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5694 length = div_u64(length, nr_data_stripes(map));
5695 rmap_len = map->stripe_len * nr_data_stripes(map);
5696 }
5697
5698 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5699 BUG_ON(!buf); /* -ENOMEM */
5700
5701 for (i = 0; i < map->num_stripes; i++) {
5702 if (devid && map->stripes[i].dev->devid != devid)
5703 continue;
5704 if (map->stripes[i].physical > physical ||
5705 map->stripes[i].physical + length <= physical)
5706 continue;
5707
5708 stripe_nr = physical - map->stripes[i].physical;
5709 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5710
5711 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5712 stripe_nr = stripe_nr * map->num_stripes + i;
5713 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5714 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5715 stripe_nr = stripe_nr * map->num_stripes + i;
5716 } /* else if RAID[56], multiply by nr_data_stripes().
5717 * Alternatively, just use rmap_len below instead of
5718 * map->stripe_len */
5719
5720 bytenr = chunk_start + stripe_nr * rmap_len;
5721 WARN_ON(nr >= map->num_stripes);
5722 for (j = 0; j < nr; j++) {
5723 if (buf[j] == bytenr)
5724 break;
5725 }
5726 if (j == nr) {
5727 WARN_ON(nr >= map->num_stripes);
5728 buf[nr++] = bytenr;
5729 }
5730 }
5731
5732 *logical = buf;
5733 *naddrs = nr;
5734 *stripe_len = rmap_len;
5735
5736 free_extent_map(em);
5737 return 0;
5738 }
5739
5740 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5741 {
5742 bio->bi_private = bbio->private;
5743 bio->bi_end_io = bbio->end_io;
5744 bio_endio(bio);
5745
5746 btrfs_put_bbio(bbio);
5747 }
5748
5749 static void btrfs_end_bio(struct bio *bio)
5750 {
5751 struct btrfs_bio *bbio = bio->bi_private;
5752 int is_orig_bio = 0;
5753
5754 if (bio->bi_error) {
5755 atomic_inc(&bbio->error);
5756 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5757 unsigned int stripe_index =
5758 btrfs_io_bio(bio)->stripe_index;
5759 struct btrfs_device *dev;
5760
5761 BUG_ON(stripe_index >= bbio->num_stripes);
5762 dev = bbio->stripes[stripe_index].dev;
5763 if (dev->bdev) {
5764 if (bio->bi_rw & WRITE)
5765 btrfs_dev_stat_inc(dev,
5766 BTRFS_DEV_STAT_WRITE_ERRS);
5767 else
5768 btrfs_dev_stat_inc(dev,
5769 BTRFS_DEV_STAT_READ_ERRS);
5770 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5771 btrfs_dev_stat_inc(dev,
5772 BTRFS_DEV_STAT_FLUSH_ERRS);
5773 btrfs_dev_stat_print_on_error(dev);
5774 }
5775 }
5776 }
5777
5778 if (bio == bbio->orig_bio)
5779 is_orig_bio = 1;
5780
5781 btrfs_bio_counter_dec(bbio->fs_info);
5782
5783 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5784 if (!is_orig_bio) {
5785 bio_put(bio);
5786 bio = bbio->orig_bio;
5787 }
5788
5789 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5790 /* only send an error to the higher layers if it is
5791 * beyond the tolerance of the btrfs bio
5792 */
5793 if (atomic_read(&bbio->error) > bbio->max_errors) {
5794 bio->bi_error = -EIO;
5795 } else {
5796 /*
5797 * this bio is actually up to date, we didn't
5798 * go over the max number of errors
5799 */
5800 bio->bi_error = 0;
5801 }
5802
5803 btrfs_end_bbio(bbio, bio);
5804 } else if (!is_orig_bio) {
5805 bio_put(bio);
5806 }
5807 }
5808
5809 /*
5810 * see run_scheduled_bios for a description of why bios are collected for
5811 * async submit.
5812 *
5813 * This will add one bio to the pending list for a device and make sure
5814 * the work struct is scheduled.
5815 */
5816 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5817 struct btrfs_device *device,
5818 int rw, struct bio *bio)
5819 {
5820 int should_queue = 1;
5821 struct btrfs_pending_bios *pending_bios;
5822
5823 if (device->missing || !device->bdev) {
5824 bio_io_error(bio);
5825 return;
5826 }
5827
5828 /* don't bother with additional async steps for reads, right now */
5829 if (!(rw & REQ_WRITE)) {
5830 bio_get(bio);
5831 btrfsic_submit_bio(rw, bio);
5832 bio_put(bio);
5833 return;
5834 }
5835
5836 /*
5837 * nr_async_bios allows us to reliably return congestion to the
5838 * higher layers. Otherwise, the async bio makes it appear we have
5839 * made progress against dirty pages when we've really just put it
5840 * on a queue for later
5841 */
5842 atomic_inc(&root->fs_info->nr_async_bios);
5843 WARN_ON(bio->bi_next);
5844 bio->bi_next = NULL;
5845 bio->bi_rw |= rw;
5846
5847 spin_lock(&device->io_lock);
5848 if (bio->bi_rw & REQ_SYNC)
5849 pending_bios = &device->pending_sync_bios;
5850 else
5851 pending_bios = &device->pending_bios;
5852
5853 if (pending_bios->tail)
5854 pending_bios->tail->bi_next = bio;
5855
5856 pending_bios->tail = bio;
5857 if (!pending_bios->head)
5858 pending_bios->head = bio;
5859 if (device->running_pending)
5860 should_queue = 0;
5861
5862 spin_unlock(&device->io_lock);
5863
5864 if (should_queue)
5865 btrfs_queue_work(root->fs_info->submit_workers,
5866 &device->work);
5867 }
5868
5869 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5870 struct bio *bio, u64 physical, int dev_nr,
5871 int rw, int async)
5872 {
5873 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5874
5875 bio->bi_private = bbio;
5876 btrfs_io_bio(bio)->stripe_index = dev_nr;
5877 bio->bi_end_io = btrfs_end_bio;
5878 bio->bi_iter.bi_sector = physical >> 9;
5879 #ifdef DEBUG
5880 {
5881 struct rcu_string *name;
5882
5883 rcu_read_lock();
5884 name = rcu_dereference(dev->name);
5885 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5886 "(%s id %llu), size=%u\n", rw,
5887 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5888 name->str, dev->devid, bio->bi_iter.bi_size);
5889 rcu_read_unlock();
5890 }
5891 #endif
5892 bio->bi_bdev = dev->bdev;
5893
5894 btrfs_bio_counter_inc_noblocked(root->fs_info);
5895
5896 if (async)
5897 btrfs_schedule_bio(root, dev, rw, bio);
5898 else
5899 btrfsic_submit_bio(rw, bio);
5900 }
5901
5902 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5903 {
5904 atomic_inc(&bbio->error);
5905 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5906 /* Shoud be the original bio. */
5907 WARN_ON(bio != bbio->orig_bio);
5908
5909 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5910 bio->bi_iter.bi_sector = logical >> 9;
5911 bio->bi_error = -EIO;
5912 btrfs_end_bbio(bbio, bio);
5913 }
5914 }
5915
5916 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5917 int mirror_num, int async_submit)
5918 {
5919 struct btrfs_device *dev;
5920 struct bio *first_bio = bio;
5921 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5922 u64 length = 0;
5923 u64 map_length;
5924 int ret;
5925 int dev_nr;
5926 int total_devs;
5927 struct btrfs_bio *bbio = NULL;
5928
5929 length = bio->bi_iter.bi_size;
5930 map_length = length;
5931
5932 btrfs_bio_counter_inc_blocked(root->fs_info);
5933 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5934 mirror_num, 1);
5935 if (ret) {
5936 btrfs_bio_counter_dec(root->fs_info);
5937 return ret;
5938 }
5939
5940 total_devs = bbio->num_stripes;
5941 bbio->orig_bio = first_bio;
5942 bbio->private = first_bio->bi_private;
5943 bbio->end_io = first_bio->bi_end_io;
5944 bbio->fs_info = root->fs_info;
5945 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5946
5947 if (bbio->raid_map) {
5948 /* In this case, map_length has been set to the length of
5949 a single stripe; not the whole write */
5950 if (rw & WRITE) {
5951 ret = raid56_parity_write(root, bio, bbio, map_length);
5952 } else {
5953 ret = raid56_parity_recover(root, bio, bbio, map_length,
5954 mirror_num, 1);
5955 }
5956
5957 btrfs_bio_counter_dec(root->fs_info);
5958 return ret;
5959 }
5960
5961 if (map_length < length) {
5962 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5963 logical, length, map_length);
5964 BUG();
5965 }
5966
5967 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
5968 dev = bbio->stripes[dev_nr].dev;
5969 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5970 bbio_error(bbio, first_bio, logical);
5971 continue;
5972 }
5973
5974 if (dev_nr < total_devs - 1) {
5975 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5976 BUG_ON(!bio); /* -ENOMEM */
5977 } else
5978 bio = first_bio;
5979
5980 submit_stripe_bio(root, bbio, bio,
5981 bbio->stripes[dev_nr].physical, dev_nr, rw,
5982 async_submit);
5983 }
5984 btrfs_bio_counter_dec(root->fs_info);
5985 return 0;
5986 }
5987
5988 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5989 u8 *uuid, u8 *fsid)
5990 {
5991 struct btrfs_device *device;
5992 struct btrfs_fs_devices *cur_devices;
5993
5994 cur_devices = fs_info->fs_devices;
5995 while (cur_devices) {
5996 if (!fsid ||
5997 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5998 device = __find_device(&cur_devices->devices,
5999 devid, uuid);
6000 if (device)
6001 return device;
6002 }
6003 cur_devices = cur_devices->seed;
6004 }
6005 return NULL;
6006 }
6007
6008 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6009 struct btrfs_fs_devices *fs_devices,
6010 u64 devid, u8 *dev_uuid)
6011 {
6012 struct btrfs_device *device;
6013
6014 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6015 if (IS_ERR(device))
6016 return NULL;
6017
6018 list_add(&device->dev_list, &fs_devices->devices);
6019 device->fs_devices = fs_devices;
6020 fs_devices->num_devices++;
6021
6022 device->missing = 1;
6023 fs_devices->missing_devices++;
6024
6025 return device;
6026 }
6027
6028 /**
6029 * btrfs_alloc_device - allocate struct btrfs_device
6030 * @fs_info: used only for generating a new devid, can be NULL if
6031 * devid is provided (i.e. @devid != NULL).
6032 * @devid: a pointer to devid for this device. If NULL a new devid
6033 * is generated.
6034 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6035 * is generated.
6036 *
6037 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6038 * on error. Returned struct is not linked onto any lists and can be
6039 * destroyed with kfree() right away.
6040 */
6041 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6042 const u64 *devid,
6043 const u8 *uuid)
6044 {
6045 struct btrfs_device *dev;
6046 u64 tmp;
6047
6048 if (WARN_ON(!devid && !fs_info))
6049 return ERR_PTR(-EINVAL);
6050
6051 dev = __alloc_device();
6052 if (IS_ERR(dev))
6053 return dev;
6054
6055 if (devid)
6056 tmp = *devid;
6057 else {
6058 int ret;
6059
6060 ret = find_next_devid(fs_info, &tmp);
6061 if (ret) {
6062 kfree(dev);
6063 return ERR_PTR(ret);
6064 }
6065 }
6066 dev->devid = tmp;
6067
6068 if (uuid)
6069 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6070 else
6071 generate_random_uuid(dev->uuid);
6072
6073 btrfs_init_work(&dev->work, btrfs_submit_helper,
6074 pending_bios_fn, NULL, NULL);
6075
6076 return dev;
6077 }
6078
6079 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6080 struct extent_buffer *leaf,
6081 struct btrfs_chunk *chunk)
6082 {
6083 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6084 struct map_lookup *map;
6085 struct extent_map *em;
6086 u64 logical;
6087 u64 length;
6088 u64 devid;
6089 u8 uuid[BTRFS_UUID_SIZE];
6090 int num_stripes;
6091 int ret;
6092 int i;
6093
6094 logical = key->offset;
6095 length = btrfs_chunk_length(leaf, chunk);
6096
6097 read_lock(&map_tree->map_tree.lock);
6098 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6099 read_unlock(&map_tree->map_tree.lock);
6100
6101 /* already mapped? */
6102 if (em && em->start <= logical && em->start + em->len > logical) {
6103 free_extent_map(em);
6104 return 0;
6105 } else if (em) {
6106 free_extent_map(em);
6107 }
6108
6109 em = alloc_extent_map();
6110 if (!em)
6111 return -ENOMEM;
6112 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6113 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6114 if (!map) {
6115 free_extent_map(em);
6116 return -ENOMEM;
6117 }
6118
6119 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6120 em->bdev = (struct block_device *)map;
6121 em->start = logical;
6122 em->len = length;
6123 em->orig_start = 0;
6124 em->block_start = 0;
6125 em->block_len = em->len;
6126
6127 map->num_stripes = num_stripes;
6128 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6129 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6130 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6131 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6132 map->type = btrfs_chunk_type(leaf, chunk);
6133 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6134 for (i = 0; i < num_stripes; i++) {
6135 map->stripes[i].physical =
6136 btrfs_stripe_offset_nr(leaf, chunk, i);
6137 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6138 read_extent_buffer(leaf, uuid, (unsigned long)
6139 btrfs_stripe_dev_uuid_nr(chunk, i),
6140 BTRFS_UUID_SIZE);
6141 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6142 uuid, NULL);
6143 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6144 free_extent_map(em);
6145 return -EIO;
6146 }
6147 if (!map->stripes[i].dev) {
6148 map->stripes[i].dev =
6149 add_missing_dev(root, root->fs_info->fs_devices,
6150 devid, uuid);
6151 if (!map->stripes[i].dev) {
6152 free_extent_map(em);
6153 return -EIO;
6154 }
6155 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6156 devid, uuid);
6157 }
6158 map->stripes[i].dev->in_fs_metadata = 1;
6159 }
6160
6161 write_lock(&map_tree->map_tree.lock);
6162 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6163 write_unlock(&map_tree->map_tree.lock);
6164 BUG_ON(ret); /* Tree corruption */
6165 free_extent_map(em);
6166
6167 return 0;
6168 }
6169
6170 static void fill_device_from_item(struct extent_buffer *leaf,
6171 struct btrfs_dev_item *dev_item,
6172 struct btrfs_device *device)
6173 {
6174 unsigned long ptr;
6175
6176 device->devid = btrfs_device_id(leaf, dev_item);
6177 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6178 device->total_bytes = device->disk_total_bytes;
6179 device->commit_total_bytes = device->disk_total_bytes;
6180 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6181 device->commit_bytes_used = device->bytes_used;
6182 device->type = btrfs_device_type(leaf, dev_item);
6183 device->io_align = btrfs_device_io_align(leaf, dev_item);
6184 device->io_width = btrfs_device_io_width(leaf, dev_item);
6185 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6186 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6187 device->is_tgtdev_for_dev_replace = 0;
6188
6189 ptr = btrfs_device_uuid(dev_item);
6190 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6191 }
6192
6193 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6194 u8 *fsid)
6195 {
6196 struct btrfs_fs_devices *fs_devices;
6197 int ret;
6198
6199 BUG_ON(!mutex_is_locked(&uuid_mutex));
6200
6201 fs_devices = root->fs_info->fs_devices->seed;
6202 while (fs_devices) {
6203 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6204 return fs_devices;
6205
6206 fs_devices = fs_devices->seed;
6207 }
6208
6209 fs_devices = find_fsid(fsid);
6210 if (!fs_devices) {
6211 if (!btrfs_test_opt(root, DEGRADED))
6212 return ERR_PTR(-ENOENT);
6213
6214 fs_devices = alloc_fs_devices(fsid);
6215 if (IS_ERR(fs_devices))
6216 return fs_devices;
6217
6218 fs_devices->seeding = 1;
6219 fs_devices->opened = 1;
6220 return fs_devices;
6221 }
6222
6223 fs_devices = clone_fs_devices(fs_devices);
6224 if (IS_ERR(fs_devices))
6225 return fs_devices;
6226
6227 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6228 root->fs_info->bdev_holder);
6229 if (ret) {
6230 free_fs_devices(fs_devices);
6231 fs_devices = ERR_PTR(ret);
6232 goto out;
6233 }
6234
6235 if (!fs_devices->seeding) {
6236 __btrfs_close_devices(fs_devices);
6237 free_fs_devices(fs_devices);
6238 fs_devices = ERR_PTR(-EINVAL);
6239 goto out;
6240 }
6241
6242 fs_devices->seed = root->fs_info->fs_devices->seed;
6243 root->fs_info->fs_devices->seed = fs_devices;
6244 out:
6245 return fs_devices;
6246 }
6247
6248 static int read_one_dev(struct btrfs_root *root,
6249 struct extent_buffer *leaf,
6250 struct btrfs_dev_item *dev_item)
6251 {
6252 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6253 struct btrfs_device *device;
6254 u64 devid;
6255 int ret;
6256 u8 fs_uuid[BTRFS_UUID_SIZE];
6257 u8 dev_uuid[BTRFS_UUID_SIZE];
6258
6259 devid = btrfs_device_id(leaf, dev_item);
6260 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6261 BTRFS_UUID_SIZE);
6262 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6263 BTRFS_UUID_SIZE);
6264
6265 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6266 fs_devices = open_seed_devices(root, fs_uuid);
6267 if (IS_ERR(fs_devices))
6268 return PTR_ERR(fs_devices);
6269 }
6270
6271 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6272 if (!device) {
6273 if (!btrfs_test_opt(root, DEGRADED))
6274 return -EIO;
6275
6276 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6277 if (!device)
6278 return -ENOMEM;
6279 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6280 devid, dev_uuid);
6281 } else {
6282 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6283 return -EIO;
6284
6285 if(!device->bdev && !device->missing) {
6286 /*
6287 * this happens when a device that was properly setup
6288 * in the device info lists suddenly goes bad.
6289 * device->bdev is NULL, and so we have to set
6290 * device->missing to one here
6291 */
6292 device->fs_devices->missing_devices++;
6293 device->missing = 1;
6294 }
6295
6296 /* Move the device to its own fs_devices */
6297 if (device->fs_devices != fs_devices) {
6298 ASSERT(device->missing);
6299
6300 list_move(&device->dev_list, &fs_devices->devices);
6301 device->fs_devices->num_devices--;
6302 fs_devices->num_devices++;
6303
6304 device->fs_devices->missing_devices--;
6305 fs_devices->missing_devices++;
6306
6307 device->fs_devices = fs_devices;
6308 }
6309 }
6310
6311 if (device->fs_devices != root->fs_info->fs_devices) {
6312 BUG_ON(device->writeable);
6313 if (device->generation !=
6314 btrfs_device_generation(leaf, dev_item))
6315 return -EINVAL;
6316 }
6317
6318 fill_device_from_item(leaf, dev_item, device);
6319 device->in_fs_metadata = 1;
6320 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6321 device->fs_devices->total_rw_bytes += device->total_bytes;
6322 spin_lock(&root->fs_info->free_chunk_lock);
6323 root->fs_info->free_chunk_space += device->total_bytes -
6324 device->bytes_used;
6325 spin_unlock(&root->fs_info->free_chunk_lock);
6326 }
6327 ret = 0;
6328 return ret;
6329 }
6330
6331 int btrfs_read_sys_array(struct btrfs_root *root)
6332 {
6333 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6334 struct extent_buffer *sb;
6335 struct btrfs_disk_key *disk_key;
6336 struct btrfs_chunk *chunk;
6337 u8 *array_ptr;
6338 unsigned long sb_array_offset;
6339 int ret = 0;
6340 u32 num_stripes;
6341 u32 array_size;
6342 u32 len = 0;
6343 u32 cur_offset;
6344 struct btrfs_key key;
6345
6346 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6347 /*
6348 * This will create extent buffer of nodesize, superblock size is
6349 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6350 * overallocate but we can keep it as-is, only the first page is used.
6351 */
6352 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6353 if (!sb)
6354 return -ENOMEM;
6355 btrfs_set_buffer_uptodate(sb);
6356 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6357 /*
6358 * The sb extent buffer is artifical and just used to read the system array.
6359 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6360 * pages up-to-date when the page is larger: extent does not cover the
6361 * whole page and consequently check_page_uptodate does not find all
6362 * the page's extents up-to-date (the hole beyond sb),
6363 * write_extent_buffer then triggers a WARN_ON.
6364 *
6365 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6366 * but sb spans only this function. Add an explicit SetPageUptodate call
6367 * to silence the warning eg. on PowerPC 64.
6368 */
6369 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6370 SetPageUptodate(sb->pages[0]);
6371
6372 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6373 array_size = btrfs_super_sys_array_size(super_copy);
6374
6375 array_ptr = super_copy->sys_chunk_array;
6376 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6377 cur_offset = 0;
6378
6379 while (cur_offset < array_size) {
6380 disk_key = (struct btrfs_disk_key *)array_ptr;
6381 len = sizeof(*disk_key);
6382 if (cur_offset + len > array_size)
6383 goto out_short_read;
6384
6385 btrfs_disk_key_to_cpu(&key, disk_key);
6386
6387 array_ptr += len;
6388 sb_array_offset += len;
6389 cur_offset += len;
6390
6391 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6392 chunk = (struct btrfs_chunk *)sb_array_offset;
6393 /*
6394 * At least one btrfs_chunk with one stripe must be
6395 * present, exact stripe count check comes afterwards
6396 */
6397 len = btrfs_chunk_item_size(1);
6398 if (cur_offset + len > array_size)
6399 goto out_short_read;
6400
6401 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6402 len = btrfs_chunk_item_size(num_stripes);
6403 if (cur_offset + len > array_size)
6404 goto out_short_read;
6405
6406 ret = read_one_chunk(root, &key, sb, chunk);
6407 if (ret)
6408 break;
6409 } else {
6410 ret = -EIO;
6411 break;
6412 }
6413 array_ptr += len;
6414 sb_array_offset += len;
6415 cur_offset += len;
6416 }
6417 free_extent_buffer(sb);
6418 return ret;
6419
6420 out_short_read:
6421 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6422 len, cur_offset);
6423 free_extent_buffer(sb);
6424 return -EIO;
6425 }
6426
6427 int btrfs_read_chunk_tree(struct btrfs_root *root)
6428 {
6429 struct btrfs_path *path;
6430 struct extent_buffer *leaf;
6431 struct btrfs_key key;
6432 struct btrfs_key found_key;
6433 int ret;
6434 int slot;
6435
6436 root = root->fs_info->chunk_root;
6437
6438 path = btrfs_alloc_path();
6439 if (!path)
6440 return -ENOMEM;
6441
6442 mutex_lock(&uuid_mutex);
6443 lock_chunks(root);
6444
6445 /*
6446 * Read all device items, and then all the chunk items. All
6447 * device items are found before any chunk item (their object id
6448 * is smaller than the lowest possible object id for a chunk
6449 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6450 */
6451 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6452 key.offset = 0;
6453 key.type = 0;
6454 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6455 if (ret < 0)
6456 goto error;
6457 while (1) {
6458 leaf = path->nodes[0];
6459 slot = path->slots[0];
6460 if (slot >= btrfs_header_nritems(leaf)) {
6461 ret = btrfs_next_leaf(root, path);
6462 if (ret == 0)
6463 continue;
6464 if (ret < 0)
6465 goto error;
6466 break;
6467 }
6468 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6469 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6470 struct btrfs_dev_item *dev_item;
6471 dev_item = btrfs_item_ptr(leaf, slot,
6472 struct btrfs_dev_item);
6473 ret = read_one_dev(root, leaf, dev_item);
6474 if (ret)
6475 goto error;
6476 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6477 struct btrfs_chunk *chunk;
6478 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6479 ret = read_one_chunk(root, &found_key, leaf, chunk);
6480 if (ret)
6481 goto error;
6482 }
6483 path->slots[0]++;
6484 }
6485 ret = 0;
6486 error:
6487 unlock_chunks(root);
6488 mutex_unlock(&uuid_mutex);
6489
6490 btrfs_free_path(path);
6491 return ret;
6492 }
6493
6494 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6495 {
6496 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6497 struct btrfs_device *device;
6498
6499 while (fs_devices) {
6500 mutex_lock(&fs_devices->device_list_mutex);
6501 list_for_each_entry(device, &fs_devices->devices, dev_list)
6502 device->dev_root = fs_info->dev_root;
6503 mutex_unlock(&fs_devices->device_list_mutex);
6504
6505 fs_devices = fs_devices->seed;
6506 }
6507 }
6508
6509 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6510 {
6511 int i;
6512
6513 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6514 btrfs_dev_stat_reset(dev, i);
6515 }
6516
6517 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6518 {
6519 struct btrfs_key key;
6520 struct btrfs_key found_key;
6521 struct btrfs_root *dev_root = fs_info->dev_root;
6522 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6523 struct extent_buffer *eb;
6524 int slot;
6525 int ret = 0;
6526 struct btrfs_device *device;
6527 struct btrfs_path *path = NULL;
6528 int i;
6529
6530 path = btrfs_alloc_path();
6531 if (!path) {
6532 ret = -ENOMEM;
6533 goto out;
6534 }
6535
6536 mutex_lock(&fs_devices->device_list_mutex);
6537 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6538 int item_size;
6539 struct btrfs_dev_stats_item *ptr;
6540
6541 key.objectid = 0;
6542 key.type = BTRFS_DEV_STATS_KEY;
6543 key.offset = device->devid;
6544 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6545 if (ret) {
6546 __btrfs_reset_dev_stats(device);
6547 device->dev_stats_valid = 1;
6548 btrfs_release_path(path);
6549 continue;
6550 }
6551 slot = path->slots[0];
6552 eb = path->nodes[0];
6553 btrfs_item_key_to_cpu(eb, &found_key, slot);
6554 item_size = btrfs_item_size_nr(eb, slot);
6555
6556 ptr = btrfs_item_ptr(eb, slot,
6557 struct btrfs_dev_stats_item);
6558
6559 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6560 if (item_size >= (1 + i) * sizeof(__le64))
6561 btrfs_dev_stat_set(device, i,
6562 btrfs_dev_stats_value(eb, ptr, i));
6563 else
6564 btrfs_dev_stat_reset(device, i);
6565 }
6566
6567 device->dev_stats_valid = 1;
6568 btrfs_dev_stat_print_on_load(device);
6569 btrfs_release_path(path);
6570 }
6571 mutex_unlock(&fs_devices->device_list_mutex);
6572
6573 out:
6574 btrfs_free_path(path);
6575 return ret < 0 ? ret : 0;
6576 }
6577
6578 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6579 struct btrfs_root *dev_root,
6580 struct btrfs_device *device)
6581 {
6582 struct btrfs_path *path;
6583 struct btrfs_key key;
6584 struct extent_buffer *eb;
6585 struct btrfs_dev_stats_item *ptr;
6586 int ret;
6587 int i;
6588
6589 key.objectid = 0;
6590 key.type = BTRFS_DEV_STATS_KEY;
6591 key.offset = device->devid;
6592
6593 path = btrfs_alloc_path();
6594 BUG_ON(!path);
6595 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6596 if (ret < 0) {
6597 printk_in_rcu(KERN_WARNING "BTRFS: "
6598 "error %d while searching for dev_stats item for device %s!\n",
6599 ret, rcu_str_deref(device->name));
6600 goto out;
6601 }
6602
6603 if (ret == 0 &&
6604 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6605 /* need to delete old one and insert a new one */
6606 ret = btrfs_del_item(trans, dev_root, path);
6607 if (ret != 0) {
6608 printk_in_rcu(KERN_WARNING "BTRFS: "
6609 "delete too small dev_stats item for device %s failed %d!\n",
6610 rcu_str_deref(device->name), ret);
6611 goto out;
6612 }
6613 ret = 1;
6614 }
6615
6616 if (ret == 1) {
6617 /* need to insert a new item */
6618 btrfs_release_path(path);
6619 ret = btrfs_insert_empty_item(trans, dev_root, path,
6620 &key, sizeof(*ptr));
6621 if (ret < 0) {
6622 printk_in_rcu(KERN_WARNING "BTRFS: "
6623 "insert dev_stats item for device %s failed %d!\n",
6624 rcu_str_deref(device->name), ret);
6625 goto out;
6626 }
6627 }
6628
6629 eb = path->nodes[0];
6630 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6631 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6632 btrfs_set_dev_stats_value(eb, ptr, i,
6633 btrfs_dev_stat_read(device, i));
6634 btrfs_mark_buffer_dirty(eb);
6635
6636 out:
6637 btrfs_free_path(path);
6638 return ret;
6639 }
6640
6641 /*
6642 * called from commit_transaction. Writes all changed device stats to disk.
6643 */
6644 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6645 struct btrfs_fs_info *fs_info)
6646 {
6647 struct btrfs_root *dev_root = fs_info->dev_root;
6648 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6649 struct btrfs_device *device;
6650 int stats_cnt;
6651 int ret = 0;
6652
6653 mutex_lock(&fs_devices->device_list_mutex);
6654 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6655 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6656 continue;
6657
6658 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6659 ret = update_dev_stat_item(trans, dev_root, device);
6660 if (!ret)
6661 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6662 }
6663 mutex_unlock(&fs_devices->device_list_mutex);
6664
6665 return ret;
6666 }
6667
6668 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6669 {
6670 btrfs_dev_stat_inc(dev, index);
6671 btrfs_dev_stat_print_on_error(dev);
6672 }
6673
6674 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6675 {
6676 if (!dev->dev_stats_valid)
6677 return;
6678 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6679 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6680 rcu_str_deref(dev->name),
6681 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6682 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6683 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6684 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6685 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6686 }
6687
6688 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6689 {
6690 int i;
6691
6692 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6693 if (btrfs_dev_stat_read(dev, i) != 0)
6694 break;
6695 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6696 return; /* all values == 0, suppress message */
6697
6698 printk_in_rcu(KERN_INFO "BTRFS: "
6699 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6700 rcu_str_deref(dev->name),
6701 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6702 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6703 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6704 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6705 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6706 }
6707
6708 int btrfs_get_dev_stats(struct btrfs_root *root,
6709 struct btrfs_ioctl_get_dev_stats *stats)
6710 {
6711 struct btrfs_device *dev;
6712 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6713 int i;
6714
6715 mutex_lock(&fs_devices->device_list_mutex);
6716 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6717 mutex_unlock(&fs_devices->device_list_mutex);
6718
6719 if (!dev) {
6720 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6721 return -ENODEV;
6722 } else if (!dev->dev_stats_valid) {
6723 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6724 return -ENODEV;
6725 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6726 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6727 if (stats->nr_items > i)
6728 stats->values[i] =
6729 btrfs_dev_stat_read_and_reset(dev, i);
6730 else
6731 btrfs_dev_stat_reset(dev, i);
6732 }
6733 } else {
6734 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6735 if (stats->nr_items > i)
6736 stats->values[i] = btrfs_dev_stat_read(dev, i);
6737 }
6738 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6739 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6740 return 0;
6741 }
6742
6743 int btrfs_scratch_superblock(struct btrfs_device *device)
6744 {
6745 struct buffer_head *bh;
6746 struct btrfs_super_block *disk_super;
6747
6748 bh = btrfs_read_dev_super(device->bdev);
6749 if (!bh)
6750 return -EINVAL;
6751 disk_super = (struct btrfs_super_block *)bh->b_data;
6752
6753 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6754 set_buffer_dirty(bh);
6755 sync_dirty_buffer(bh);
6756 brelse(bh);
6757
6758 return 0;
6759 }
6760
6761 /*
6762 * Update the size of all devices, which is used for writing out the
6763 * super blocks.
6764 */
6765 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6766 {
6767 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6768 struct btrfs_device *curr, *next;
6769
6770 if (list_empty(&fs_devices->resized_devices))
6771 return;
6772
6773 mutex_lock(&fs_devices->device_list_mutex);
6774 lock_chunks(fs_info->dev_root);
6775 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6776 resized_list) {
6777 list_del_init(&curr->resized_list);
6778 curr->commit_total_bytes = curr->disk_total_bytes;
6779 }
6780 unlock_chunks(fs_info->dev_root);
6781 mutex_unlock(&fs_devices->device_list_mutex);
6782 }
6783
6784 /* Must be invoked during the transaction commit */
6785 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6786 struct btrfs_transaction *transaction)
6787 {
6788 struct extent_map *em;
6789 struct map_lookup *map;
6790 struct btrfs_device *dev;
6791 int i;
6792
6793 if (list_empty(&transaction->pending_chunks))
6794 return;
6795
6796 /* In order to kick the device replace finish process */
6797 lock_chunks(root);
6798 list_for_each_entry(em, &transaction->pending_chunks, list) {
6799 map = (struct map_lookup *)em->bdev;
6800
6801 for (i = 0; i < map->num_stripes; i++) {
6802 dev = map->stripes[i].dev;
6803 dev->commit_bytes_used = dev->bytes_used;
6804 }
6805 }
6806 unlock_chunks(root);
6807 }
6808
6809 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6810 {
6811 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6812 while (fs_devices) {
6813 fs_devices->fs_info = fs_info;
6814 fs_devices = fs_devices->seed;
6815 }
6816 }
6817
6818 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6819 {
6820 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6821 while (fs_devices) {
6822 fs_devices->fs_info = NULL;
6823 fs_devices = fs_devices->seed;
6824 }
6825 }
This page took 0.15768 seconds and 6 git commands to generate.