Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[deliverable/linux.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <asm/div64.h>
27 #include "compat.h"
28 #include "ctree.h"
29 #include "extent_map.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "async-thread.h"
35
36 struct map_lookup {
37 u64 type;
38 int io_align;
39 int io_width;
40 int stripe_len;
41 int sector_size;
42 int num_stripes;
43 int sub_stripes;
44 struct btrfs_bio_stripe stripes[];
45 };
46
47 static int init_first_rw_device(struct btrfs_trans_handle *trans,
48 struct btrfs_root *root,
49 struct btrfs_device *device);
50 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
51
52 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
53 (sizeof(struct btrfs_bio_stripe) * (n)))
54
55 static DEFINE_MUTEX(uuid_mutex);
56 static LIST_HEAD(fs_uuids);
57
58 void btrfs_lock_volumes(void)
59 {
60 mutex_lock(&uuid_mutex);
61 }
62
63 void btrfs_unlock_volumes(void)
64 {
65 mutex_unlock(&uuid_mutex);
66 }
67
68 static void lock_chunks(struct btrfs_root *root)
69 {
70 mutex_lock(&root->fs_info->chunk_mutex);
71 }
72
73 static void unlock_chunks(struct btrfs_root *root)
74 {
75 mutex_unlock(&root->fs_info->chunk_mutex);
76 }
77
78 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
79 {
80 struct btrfs_device *device;
81 WARN_ON(fs_devices->opened);
82 while (!list_empty(&fs_devices->devices)) {
83 device = list_entry(fs_devices->devices.next,
84 struct btrfs_device, dev_list);
85 list_del(&device->dev_list);
86 kfree(device->name);
87 kfree(device);
88 }
89 kfree(fs_devices);
90 }
91
92 int btrfs_cleanup_fs_uuids(void)
93 {
94 struct btrfs_fs_devices *fs_devices;
95
96 while (!list_empty(&fs_uuids)) {
97 fs_devices = list_entry(fs_uuids.next,
98 struct btrfs_fs_devices, list);
99 list_del(&fs_devices->list);
100 free_fs_devices(fs_devices);
101 }
102 return 0;
103 }
104
105 static noinline struct btrfs_device *__find_device(struct list_head *head,
106 u64 devid, u8 *uuid)
107 {
108 struct btrfs_device *dev;
109
110 list_for_each_entry(dev, head, dev_list) {
111 if (dev->devid == devid &&
112 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
113 return dev;
114 }
115 }
116 return NULL;
117 }
118
119 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
120 {
121 struct btrfs_fs_devices *fs_devices;
122
123 list_for_each_entry(fs_devices, &fs_uuids, list) {
124 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
125 return fs_devices;
126 }
127 return NULL;
128 }
129
130 static void requeue_list(struct btrfs_pending_bios *pending_bios,
131 struct bio *head, struct bio *tail)
132 {
133
134 struct bio *old_head;
135
136 old_head = pending_bios->head;
137 pending_bios->head = head;
138 if (pending_bios->tail)
139 tail->bi_next = old_head;
140 else
141 pending_bios->tail = tail;
142 }
143
144 /*
145 * we try to collect pending bios for a device so we don't get a large
146 * number of procs sending bios down to the same device. This greatly
147 * improves the schedulers ability to collect and merge the bios.
148 *
149 * But, it also turns into a long list of bios to process and that is sure
150 * to eventually make the worker thread block. The solution here is to
151 * make some progress and then put this work struct back at the end of
152 * the list if the block device is congested. This way, multiple devices
153 * can make progress from a single worker thread.
154 */
155 static noinline int run_scheduled_bios(struct btrfs_device *device)
156 {
157 struct bio *pending;
158 struct backing_dev_info *bdi;
159 struct btrfs_fs_info *fs_info;
160 struct btrfs_pending_bios *pending_bios;
161 struct bio *tail;
162 struct bio *cur;
163 int again = 0;
164 unsigned long num_run;
165 unsigned long num_sync_run;
166 unsigned long batch_run = 0;
167 unsigned long limit;
168 unsigned long last_waited = 0;
169 int force_reg = 0;
170
171 bdi = blk_get_backing_dev_info(device->bdev);
172 fs_info = device->dev_root->fs_info;
173 limit = btrfs_async_submit_limit(fs_info);
174 limit = limit * 2 / 3;
175
176 /* we want to make sure that every time we switch from the sync
177 * list to the normal list, we unplug
178 */
179 num_sync_run = 0;
180
181 loop:
182 spin_lock(&device->io_lock);
183
184 loop_lock:
185 num_run = 0;
186
187 /* take all the bios off the list at once and process them
188 * later on (without the lock held). But, remember the
189 * tail and other pointers so the bios can be properly reinserted
190 * into the list if we hit congestion
191 */
192 if (!force_reg && device->pending_sync_bios.head) {
193 pending_bios = &device->pending_sync_bios;
194 force_reg = 1;
195 } else {
196 pending_bios = &device->pending_bios;
197 force_reg = 0;
198 }
199
200 pending = pending_bios->head;
201 tail = pending_bios->tail;
202 WARN_ON(pending && !tail);
203
204 /*
205 * if pending was null this time around, no bios need processing
206 * at all and we can stop. Otherwise it'll loop back up again
207 * and do an additional check so no bios are missed.
208 *
209 * device->running_pending is used to synchronize with the
210 * schedule_bio code.
211 */
212 if (device->pending_sync_bios.head == NULL &&
213 device->pending_bios.head == NULL) {
214 again = 0;
215 device->running_pending = 0;
216 } else {
217 again = 1;
218 device->running_pending = 1;
219 }
220
221 pending_bios->head = NULL;
222 pending_bios->tail = NULL;
223
224 spin_unlock(&device->io_lock);
225
226 /*
227 * if we're doing the regular priority list, make sure we unplug
228 * for any high prio bios we've sent down
229 */
230 if (pending_bios == &device->pending_bios && num_sync_run > 0) {
231 num_sync_run = 0;
232 blk_run_backing_dev(bdi, NULL);
233 }
234
235 while (pending) {
236
237 rmb();
238 /* we want to work on both lists, but do more bios on the
239 * sync list than the regular list
240 */
241 if ((num_run > 32 &&
242 pending_bios != &device->pending_sync_bios &&
243 device->pending_sync_bios.head) ||
244 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
245 device->pending_bios.head)) {
246 spin_lock(&device->io_lock);
247 requeue_list(pending_bios, pending, tail);
248 goto loop_lock;
249 }
250
251 cur = pending;
252 pending = pending->bi_next;
253 cur->bi_next = NULL;
254 atomic_dec(&fs_info->nr_async_bios);
255
256 if (atomic_read(&fs_info->nr_async_bios) < limit &&
257 waitqueue_active(&fs_info->async_submit_wait))
258 wake_up(&fs_info->async_submit_wait);
259
260 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
261
262 if (cur->bi_rw & REQ_SYNC)
263 num_sync_run++;
264
265 submit_bio(cur->bi_rw, cur);
266 num_run++;
267 batch_run++;
268 if (need_resched()) {
269 if (num_sync_run) {
270 blk_run_backing_dev(bdi, NULL);
271 num_sync_run = 0;
272 }
273 cond_resched();
274 }
275
276 /*
277 * we made progress, there is more work to do and the bdi
278 * is now congested. Back off and let other work structs
279 * run instead
280 */
281 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
282 fs_info->fs_devices->open_devices > 1) {
283 struct io_context *ioc;
284
285 ioc = current->io_context;
286
287 /*
288 * the main goal here is that we don't want to
289 * block if we're going to be able to submit
290 * more requests without blocking.
291 *
292 * This code does two great things, it pokes into
293 * the elevator code from a filesystem _and_
294 * it makes assumptions about how batching works.
295 */
296 if (ioc && ioc->nr_batch_requests > 0 &&
297 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
298 (last_waited == 0 ||
299 ioc->last_waited == last_waited)) {
300 /*
301 * we want to go through our batch of
302 * requests and stop. So, we copy out
303 * the ioc->last_waited time and test
304 * against it before looping
305 */
306 last_waited = ioc->last_waited;
307 if (need_resched()) {
308 if (num_sync_run) {
309 blk_run_backing_dev(bdi, NULL);
310 num_sync_run = 0;
311 }
312 cond_resched();
313 }
314 continue;
315 }
316 spin_lock(&device->io_lock);
317 requeue_list(pending_bios, pending, tail);
318 device->running_pending = 1;
319
320 spin_unlock(&device->io_lock);
321 btrfs_requeue_work(&device->work);
322 goto done;
323 }
324 }
325
326 if (num_sync_run) {
327 num_sync_run = 0;
328 blk_run_backing_dev(bdi, NULL);
329 }
330 /*
331 * IO has already been through a long path to get here. Checksumming,
332 * async helper threads, perhaps compression. We've done a pretty
333 * good job of collecting a batch of IO and should just unplug
334 * the device right away.
335 *
336 * This will help anyone who is waiting on the IO, they might have
337 * already unplugged, but managed to do so before the bio they
338 * cared about found its way down here.
339 */
340 blk_run_backing_dev(bdi, NULL);
341
342 cond_resched();
343 if (again)
344 goto loop;
345
346 spin_lock(&device->io_lock);
347 if (device->pending_bios.head || device->pending_sync_bios.head)
348 goto loop_lock;
349 spin_unlock(&device->io_lock);
350
351 done:
352 return 0;
353 }
354
355 static void pending_bios_fn(struct btrfs_work *work)
356 {
357 struct btrfs_device *device;
358
359 device = container_of(work, struct btrfs_device, work);
360 run_scheduled_bios(device);
361 }
362
363 static noinline int device_list_add(const char *path,
364 struct btrfs_super_block *disk_super,
365 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
366 {
367 struct btrfs_device *device;
368 struct btrfs_fs_devices *fs_devices;
369 u64 found_transid = btrfs_super_generation(disk_super);
370 char *name;
371
372 fs_devices = find_fsid(disk_super->fsid);
373 if (!fs_devices) {
374 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
375 if (!fs_devices)
376 return -ENOMEM;
377 INIT_LIST_HEAD(&fs_devices->devices);
378 INIT_LIST_HEAD(&fs_devices->alloc_list);
379 list_add(&fs_devices->list, &fs_uuids);
380 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
381 fs_devices->latest_devid = devid;
382 fs_devices->latest_trans = found_transid;
383 mutex_init(&fs_devices->device_list_mutex);
384 device = NULL;
385 } else {
386 device = __find_device(&fs_devices->devices, devid,
387 disk_super->dev_item.uuid);
388 }
389 if (!device) {
390 if (fs_devices->opened)
391 return -EBUSY;
392
393 device = kzalloc(sizeof(*device), GFP_NOFS);
394 if (!device) {
395 /* we can safely leave the fs_devices entry around */
396 return -ENOMEM;
397 }
398 device->devid = devid;
399 device->work.func = pending_bios_fn;
400 memcpy(device->uuid, disk_super->dev_item.uuid,
401 BTRFS_UUID_SIZE);
402 spin_lock_init(&device->io_lock);
403 device->name = kstrdup(path, GFP_NOFS);
404 if (!device->name) {
405 kfree(device);
406 return -ENOMEM;
407 }
408 INIT_LIST_HEAD(&device->dev_alloc_list);
409
410 mutex_lock(&fs_devices->device_list_mutex);
411 list_add(&device->dev_list, &fs_devices->devices);
412 mutex_unlock(&fs_devices->device_list_mutex);
413
414 device->fs_devices = fs_devices;
415 fs_devices->num_devices++;
416 } else if (!device->name || strcmp(device->name, path)) {
417 name = kstrdup(path, GFP_NOFS);
418 if (!name)
419 return -ENOMEM;
420 kfree(device->name);
421 device->name = name;
422 if (device->missing) {
423 fs_devices->missing_devices--;
424 device->missing = 0;
425 }
426 }
427
428 if (found_transid > fs_devices->latest_trans) {
429 fs_devices->latest_devid = devid;
430 fs_devices->latest_trans = found_transid;
431 }
432 *fs_devices_ret = fs_devices;
433 return 0;
434 }
435
436 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
437 {
438 struct btrfs_fs_devices *fs_devices;
439 struct btrfs_device *device;
440 struct btrfs_device *orig_dev;
441
442 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
443 if (!fs_devices)
444 return ERR_PTR(-ENOMEM);
445
446 INIT_LIST_HEAD(&fs_devices->devices);
447 INIT_LIST_HEAD(&fs_devices->alloc_list);
448 INIT_LIST_HEAD(&fs_devices->list);
449 mutex_init(&fs_devices->device_list_mutex);
450 fs_devices->latest_devid = orig->latest_devid;
451 fs_devices->latest_trans = orig->latest_trans;
452 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
453
454 mutex_lock(&orig->device_list_mutex);
455 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
456 device = kzalloc(sizeof(*device), GFP_NOFS);
457 if (!device)
458 goto error;
459
460 device->name = kstrdup(orig_dev->name, GFP_NOFS);
461 if (!device->name) {
462 kfree(device);
463 goto error;
464 }
465
466 device->devid = orig_dev->devid;
467 device->work.func = pending_bios_fn;
468 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
469 spin_lock_init(&device->io_lock);
470 INIT_LIST_HEAD(&device->dev_list);
471 INIT_LIST_HEAD(&device->dev_alloc_list);
472
473 list_add(&device->dev_list, &fs_devices->devices);
474 device->fs_devices = fs_devices;
475 fs_devices->num_devices++;
476 }
477 mutex_unlock(&orig->device_list_mutex);
478 return fs_devices;
479 error:
480 mutex_unlock(&orig->device_list_mutex);
481 free_fs_devices(fs_devices);
482 return ERR_PTR(-ENOMEM);
483 }
484
485 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
486 {
487 struct btrfs_device *device, *next;
488
489 mutex_lock(&uuid_mutex);
490 again:
491 mutex_lock(&fs_devices->device_list_mutex);
492 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
493 if (device->in_fs_metadata)
494 continue;
495
496 if (device->bdev) {
497 blkdev_put(device->bdev, device->mode);
498 device->bdev = NULL;
499 fs_devices->open_devices--;
500 }
501 if (device->writeable) {
502 list_del_init(&device->dev_alloc_list);
503 device->writeable = 0;
504 fs_devices->rw_devices--;
505 }
506 list_del_init(&device->dev_list);
507 fs_devices->num_devices--;
508 kfree(device->name);
509 kfree(device);
510 }
511 mutex_unlock(&fs_devices->device_list_mutex);
512
513 if (fs_devices->seed) {
514 fs_devices = fs_devices->seed;
515 goto again;
516 }
517
518 mutex_unlock(&uuid_mutex);
519 return 0;
520 }
521
522 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
523 {
524 struct btrfs_device *device;
525
526 if (--fs_devices->opened > 0)
527 return 0;
528
529 list_for_each_entry(device, &fs_devices->devices, dev_list) {
530 if (device->bdev) {
531 blkdev_put(device->bdev, device->mode);
532 fs_devices->open_devices--;
533 }
534 if (device->writeable) {
535 list_del_init(&device->dev_alloc_list);
536 fs_devices->rw_devices--;
537 }
538
539 device->bdev = NULL;
540 device->writeable = 0;
541 device->in_fs_metadata = 0;
542 }
543 WARN_ON(fs_devices->open_devices);
544 WARN_ON(fs_devices->rw_devices);
545 fs_devices->opened = 0;
546 fs_devices->seeding = 0;
547
548 return 0;
549 }
550
551 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
552 {
553 struct btrfs_fs_devices *seed_devices = NULL;
554 int ret;
555
556 mutex_lock(&uuid_mutex);
557 ret = __btrfs_close_devices(fs_devices);
558 if (!fs_devices->opened) {
559 seed_devices = fs_devices->seed;
560 fs_devices->seed = NULL;
561 }
562 mutex_unlock(&uuid_mutex);
563
564 while (seed_devices) {
565 fs_devices = seed_devices;
566 seed_devices = fs_devices->seed;
567 __btrfs_close_devices(fs_devices);
568 free_fs_devices(fs_devices);
569 }
570 return ret;
571 }
572
573 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
574 fmode_t flags, void *holder)
575 {
576 struct block_device *bdev;
577 struct list_head *head = &fs_devices->devices;
578 struct btrfs_device *device;
579 struct block_device *latest_bdev = NULL;
580 struct buffer_head *bh;
581 struct btrfs_super_block *disk_super;
582 u64 latest_devid = 0;
583 u64 latest_transid = 0;
584 u64 devid;
585 int seeding = 1;
586 int ret = 0;
587
588 flags |= FMODE_EXCL;
589
590 list_for_each_entry(device, head, dev_list) {
591 if (device->bdev)
592 continue;
593 if (!device->name)
594 continue;
595
596 bdev = blkdev_get_by_path(device->name, flags, holder);
597 if (IS_ERR(bdev)) {
598 printk(KERN_INFO "open %s failed\n", device->name);
599 goto error;
600 }
601 set_blocksize(bdev, 4096);
602
603 bh = btrfs_read_dev_super(bdev);
604 if (!bh) {
605 ret = -EINVAL;
606 goto error_close;
607 }
608
609 disk_super = (struct btrfs_super_block *)bh->b_data;
610 devid = btrfs_stack_device_id(&disk_super->dev_item);
611 if (devid != device->devid)
612 goto error_brelse;
613
614 if (memcmp(device->uuid, disk_super->dev_item.uuid,
615 BTRFS_UUID_SIZE))
616 goto error_brelse;
617
618 device->generation = btrfs_super_generation(disk_super);
619 if (!latest_transid || device->generation > latest_transid) {
620 latest_devid = devid;
621 latest_transid = device->generation;
622 latest_bdev = bdev;
623 }
624
625 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
626 device->writeable = 0;
627 } else {
628 device->writeable = !bdev_read_only(bdev);
629 seeding = 0;
630 }
631
632 device->bdev = bdev;
633 device->in_fs_metadata = 0;
634 device->mode = flags;
635
636 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
637 fs_devices->rotating = 1;
638
639 fs_devices->open_devices++;
640 if (device->writeable) {
641 fs_devices->rw_devices++;
642 list_add(&device->dev_alloc_list,
643 &fs_devices->alloc_list);
644 }
645 continue;
646
647 error_brelse:
648 brelse(bh);
649 error_close:
650 blkdev_put(bdev, flags);
651 error:
652 continue;
653 }
654 if (fs_devices->open_devices == 0) {
655 ret = -EIO;
656 goto out;
657 }
658 fs_devices->seeding = seeding;
659 fs_devices->opened = 1;
660 fs_devices->latest_bdev = latest_bdev;
661 fs_devices->latest_devid = latest_devid;
662 fs_devices->latest_trans = latest_transid;
663 fs_devices->total_rw_bytes = 0;
664 out:
665 return ret;
666 }
667
668 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
669 fmode_t flags, void *holder)
670 {
671 int ret;
672
673 mutex_lock(&uuid_mutex);
674 if (fs_devices->opened) {
675 fs_devices->opened++;
676 ret = 0;
677 } else {
678 ret = __btrfs_open_devices(fs_devices, flags, holder);
679 }
680 mutex_unlock(&uuid_mutex);
681 return ret;
682 }
683
684 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
685 struct btrfs_fs_devices **fs_devices_ret)
686 {
687 struct btrfs_super_block *disk_super;
688 struct block_device *bdev;
689 struct buffer_head *bh;
690 int ret;
691 u64 devid;
692 u64 transid;
693
694 mutex_lock(&uuid_mutex);
695
696 flags |= FMODE_EXCL;
697 bdev = blkdev_get_by_path(path, flags, holder);
698
699 if (IS_ERR(bdev)) {
700 ret = PTR_ERR(bdev);
701 goto error;
702 }
703
704 ret = set_blocksize(bdev, 4096);
705 if (ret)
706 goto error_close;
707 bh = btrfs_read_dev_super(bdev);
708 if (!bh) {
709 ret = -EINVAL;
710 goto error_close;
711 }
712 disk_super = (struct btrfs_super_block *)bh->b_data;
713 devid = btrfs_stack_device_id(&disk_super->dev_item);
714 transid = btrfs_super_generation(disk_super);
715 if (disk_super->label[0])
716 printk(KERN_INFO "device label %s ", disk_super->label);
717 else {
718 /* FIXME, make a readl uuid parser */
719 printk(KERN_INFO "device fsid %llx-%llx ",
720 *(unsigned long long *)disk_super->fsid,
721 *(unsigned long long *)(disk_super->fsid + 8));
722 }
723 printk(KERN_CONT "devid %llu transid %llu %s\n",
724 (unsigned long long)devid, (unsigned long long)transid, path);
725 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
726
727 brelse(bh);
728 error_close:
729 blkdev_put(bdev, flags);
730 error:
731 mutex_unlock(&uuid_mutex);
732 return ret;
733 }
734
735 /* helper to account the used device space in the range */
736 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
737 u64 end, u64 *length)
738 {
739 struct btrfs_key key;
740 struct btrfs_root *root = device->dev_root;
741 struct btrfs_dev_extent *dev_extent;
742 struct btrfs_path *path;
743 u64 extent_end;
744 int ret;
745 int slot;
746 struct extent_buffer *l;
747
748 *length = 0;
749
750 if (start >= device->total_bytes)
751 return 0;
752
753 path = btrfs_alloc_path();
754 if (!path)
755 return -ENOMEM;
756 path->reada = 2;
757
758 key.objectid = device->devid;
759 key.offset = start;
760 key.type = BTRFS_DEV_EXTENT_KEY;
761
762 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
763 if (ret < 0)
764 goto out;
765 if (ret > 0) {
766 ret = btrfs_previous_item(root, path, key.objectid, key.type);
767 if (ret < 0)
768 goto out;
769 }
770
771 while (1) {
772 l = path->nodes[0];
773 slot = path->slots[0];
774 if (slot >= btrfs_header_nritems(l)) {
775 ret = btrfs_next_leaf(root, path);
776 if (ret == 0)
777 continue;
778 if (ret < 0)
779 goto out;
780
781 break;
782 }
783 btrfs_item_key_to_cpu(l, &key, slot);
784
785 if (key.objectid < device->devid)
786 goto next;
787
788 if (key.objectid > device->devid)
789 break;
790
791 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
792 goto next;
793
794 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
795 extent_end = key.offset + btrfs_dev_extent_length(l,
796 dev_extent);
797 if (key.offset <= start && extent_end > end) {
798 *length = end - start + 1;
799 break;
800 } else if (key.offset <= start && extent_end > start)
801 *length += extent_end - start;
802 else if (key.offset > start && extent_end <= end)
803 *length += extent_end - key.offset;
804 else if (key.offset > start && key.offset <= end) {
805 *length += end - key.offset + 1;
806 break;
807 } else if (key.offset > end)
808 break;
809
810 next:
811 path->slots[0]++;
812 }
813 ret = 0;
814 out:
815 btrfs_free_path(path);
816 return ret;
817 }
818
819 /*
820 * find_free_dev_extent - find free space in the specified device
821 * @trans: transaction handler
822 * @device: the device which we search the free space in
823 * @num_bytes: the size of the free space that we need
824 * @start: store the start of the free space.
825 * @len: the size of the free space. that we find, or the size of the max
826 * free space if we don't find suitable free space
827 *
828 * this uses a pretty simple search, the expectation is that it is
829 * called very infrequently and that a given device has a small number
830 * of extents
831 *
832 * @start is used to store the start of the free space if we find. But if we
833 * don't find suitable free space, it will be used to store the start position
834 * of the max free space.
835 *
836 * @len is used to store the size of the free space that we find.
837 * But if we don't find suitable free space, it is used to store the size of
838 * the max free space.
839 */
840 int find_free_dev_extent(struct btrfs_trans_handle *trans,
841 struct btrfs_device *device, u64 num_bytes,
842 u64 *start, u64 *len)
843 {
844 struct btrfs_key key;
845 struct btrfs_root *root = device->dev_root;
846 struct btrfs_dev_extent *dev_extent;
847 struct btrfs_path *path;
848 u64 hole_size;
849 u64 max_hole_start;
850 u64 max_hole_size;
851 u64 extent_end;
852 u64 search_start;
853 u64 search_end = device->total_bytes;
854 int ret;
855 int slot;
856 struct extent_buffer *l;
857
858 /* FIXME use last free of some kind */
859
860 /* we don't want to overwrite the superblock on the drive,
861 * so we make sure to start at an offset of at least 1MB
862 */
863 search_start = 1024 * 1024;
864
865 if (root->fs_info->alloc_start + num_bytes <= search_end)
866 search_start = max(root->fs_info->alloc_start, search_start);
867
868 max_hole_start = search_start;
869 max_hole_size = 0;
870
871 if (search_start >= search_end) {
872 ret = -ENOSPC;
873 goto error;
874 }
875
876 path = btrfs_alloc_path();
877 if (!path) {
878 ret = -ENOMEM;
879 goto error;
880 }
881 path->reada = 2;
882
883 key.objectid = device->devid;
884 key.offset = search_start;
885 key.type = BTRFS_DEV_EXTENT_KEY;
886
887 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
888 if (ret < 0)
889 goto out;
890 if (ret > 0) {
891 ret = btrfs_previous_item(root, path, key.objectid, key.type);
892 if (ret < 0)
893 goto out;
894 }
895
896 while (1) {
897 l = path->nodes[0];
898 slot = path->slots[0];
899 if (slot >= btrfs_header_nritems(l)) {
900 ret = btrfs_next_leaf(root, path);
901 if (ret == 0)
902 continue;
903 if (ret < 0)
904 goto out;
905
906 break;
907 }
908 btrfs_item_key_to_cpu(l, &key, slot);
909
910 if (key.objectid < device->devid)
911 goto next;
912
913 if (key.objectid > device->devid)
914 break;
915
916 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
917 goto next;
918
919 if (key.offset > search_start) {
920 hole_size = key.offset - search_start;
921
922 if (hole_size > max_hole_size) {
923 max_hole_start = search_start;
924 max_hole_size = hole_size;
925 }
926
927 /*
928 * If this free space is greater than which we need,
929 * it must be the max free space that we have found
930 * until now, so max_hole_start must point to the start
931 * of this free space and the length of this free space
932 * is stored in max_hole_size. Thus, we return
933 * max_hole_start and max_hole_size and go back to the
934 * caller.
935 */
936 if (hole_size >= num_bytes) {
937 ret = 0;
938 goto out;
939 }
940 }
941
942 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
943 extent_end = key.offset + btrfs_dev_extent_length(l,
944 dev_extent);
945 if (extent_end > search_start)
946 search_start = extent_end;
947 next:
948 path->slots[0]++;
949 cond_resched();
950 }
951
952 hole_size = search_end- search_start;
953 if (hole_size > max_hole_size) {
954 max_hole_start = search_start;
955 max_hole_size = hole_size;
956 }
957
958 /* See above. */
959 if (hole_size < num_bytes)
960 ret = -ENOSPC;
961 else
962 ret = 0;
963
964 out:
965 btrfs_free_path(path);
966 error:
967 *start = max_hole_start;
968 if (len)
969 *len = max_hole_size;
970 return ret;
971 }
972
973 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
974 struct btrfs_device *device,
975 u64 start)
976 {
977 int ret;
978 struct btrfs_path *path;
979 struct btrfs_root *root = device->dev_root;
980 struct btrfs_key key;
981 struct btrfs_key found_key;
982 struct extent_buffer *leaf = NULL;
983 struct btrfs_dev_extent *extent = NULL;
984
985 path = btrfs_alloc_path();
986 if (!path)
987 return -ENOMEM;
988
989 key.objectid = device->devid;
990 key.offset = start;
991 key.type = BTRFS_DEV_EXTENT_KEY;
992
993 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
994 if (ret > 0) {
995 ret = btrfs_previous_item(root, path, key.objectid,
996 BTRFS_DEV_EXTENT_KEY);
997 BUG_ON(ret);
998 leaf = path->nodes[0];
999 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1000 extent = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_dev_extent);
1002 BUG_ON(found_key.offset > start || found_key.offset +
1003 btrfs_dev_extent_length(leaf, extent) < start);
1004 ret = 0;
1005 } else if (ret == 0) {
1006 leaf = path->nodes[0];
1007 extent = btrfs_item_ptr(leaf, path->slots[0],
1008 struct btrfs_dev_extent);
1009 }
1010 BUG_ON(ret);
1011
1012 if (device->bytes_used > 0)
1013 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
1014 ret = btrfs_del_item(trans, root, path);
1015 BUG_ON(ret);
1016
1017 btrfs_free_path(path);
1018 return ret;
1019 }
1020
1021 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1022 struct btrfs_device *device,
1023 u64 chunk_tree, u64 chunk_objectid,
1024 u64 chunk_offset, u64 start, u64 num_bytes)
1025 {
1026 int ret;
1027 struct btrfs_path *path;
1028 struct btrfs_root *root = device->dev_root;
1029 struct btrfs_dev_extent *extent;
1030 struct extent_buffer *leaf;
1031 struct btrfs_key key;
1032
1033 WARN_ON(!device->in_fs_metadata);
1034 path = btrfs_alloc_path();
1035 if (!path)
1036 return -ENOMEM;
1037
1038 key.objectid = device->devid;
1039 key.offset = start;
1040 key.type = BTRFS_DEV_EXTENT_KEY;
1041 ret = btrfs_insert_empty_item(trans, root, path, &key,
1042 sizeof(*extent));
1043 BUG_ON(ret);
1044
1045 leaf = path->nodes[0];
1046 extent = btrfs_item_ptr(leaf, path->slots[0],
1047 struct btrfs_dev_extent);
1048 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1049 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1050 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1051
1052 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1053 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1054 BTRFS_UUID_SIZE);
1055
1056 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1057 btrfs_mark_buffer_dirty(leaf);
1058 btrfs_free_path(path);
1059 return ret;
1060 }
1061
1062 static noinline int find_next_chunk(struct btrfs_root *root,
1063 u64 objectid, u64 *offset)
1064 {
1065 struct btrfs_path *path;
1066 int ret;
1067 struct btrfs_key key;
1068 struct btrfs_chunk *chunk;
1069 struct btrfs_key found_key;
1070
1071 path = btrfs_alloc_path();
1072 BUG_ON(!path);
1073
1074 key.objectid = objectid;
1075 key.offset = (u64)-1;
1076 key.type = BTRFS_CHUNK_ITEM_KEY;
1077
1078 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1079 if (ret < 0)
1080 goto error;
1081
1082 BUG_ON(ret == 0);
1083
1084 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1085 if (ret) {
1086 *offset = 0;
1087 } else {
1088 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1089 path->slots[0]);
1090 if (found_key.objectid != objectid)
1091 *offset = 0;
1092 else {
1093 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1094 struct btrfs_chunk);
1095 *offset = found_key.offset +
1096 btrfs_chunk_length(path->nodes[0], chunk);
1097 }
1098 }
1099 ret = 0;
1100 error:
1101 btrfs_free_path(path);
1102 return ret;
1103 }
1104
1105 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1106 {
1107 int ret;
1108 struct btrfs_key key;
1109 struct btrfs_key found_key;
1110 struct btrfs_path *path;
1111
1112 root = root->fs_info->chunk_root;
1113
1114 path = btrfs_alloc_path();
1115 if (!path)
1116 return -ENOMEM;
1117
1118 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1119 key.type = BTRFS_DEV_ITEM_KEY;
1120 key.offset = (u64)-1;
1121
1122 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1123 if (ret < 0)
1124 goto error;
1125
1126 BUG_ON(ret == 0);
1127
1128 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1129 BTRFS_DEV_ITEM_KEY);
1130 if (ret) {
1131 *objectid = 1;
1132 } else {
1133 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1134 path->slots[0]);
1135 *objectid = found_key.offset + 1;
1136 }
1137 ret = 0;
1138 error:
1139 btrfs_free_path(path);
1140 return ret;
1141 }
1142
1143 /*
1144 * the device information is stored in the chunk root
1145 * the btrfs_device struct should be fully filled in
1146 */
1147 int btrfs_add_device(struct btrfs_trans_handle *trans,
1148 struct btrfs_root *root,
1149 struct btrfs_device *device)
1150 {
1151 int ret;
1152 struct btrfs_path *path;
1153 struct btrfs_dev_item *dev_item;
1154 struct extent_buffer *leaf;
1155 struct btrfs_key key;
1156 unsigned long ptr;
1157
1158 root = root->fs_info->chunk_root;
1159
1160 path = btrfs_alloc_path();
1161 if (!path)
1162 return -ENOMEM;
1163
1164 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1165 key.type = BTRFS_DEV_ITEM_KEY;
1166 key.offset = device->devid;
1167
1168 ret = btrfs_insert_empty_item(trans, root, path, &key,
1169 sizeof(*dev_item));
1170 if (ret)
1171 goto out;
1172
1173 leaf = path->nodes[0];
1174 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1175
1176 btrfs_set_device_id(leaf, dev_item, device->devid);
1177 btrfs_set_device_generation(leaf, dev_item, 0);
1178 btrfs_set_device_type(leaf, dev_item, device->type);
1179 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1180 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1181 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1182 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1183 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1184 btrfs_set_device_group(leaf, dev_item, 0);
1185 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1186 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1187 btrfs_set_device_start_offset(leaf, dev_item, 0);
1188
1189 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1190 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1191 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1192 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1193 btrfs_mark_buffer_dirty(leaf);
1194
1195 ret = 0;
1196 out:
1197 btrfs_free_path(path);
1198 return ret;
1199 }
1200
1201 static int btrfs_rm_dev_item(struct btrfs_root *root,
1202 struct btrfs_device *device)
1203 {
1204 int ret;
1205 struct btrfs_path *path;
1206 struct btrfs_key key;
1207 struct btrfs_trans_handle *trans;
1208
1209 root = root->fs_info->chunk_root;
1210
1211 path = btrfs_alloc_path();
1212 if (!path)
1213 return -ENOMEM;
1214
1215 trans = btrfs_start_transaction(root, 0);
1216 if (IS_ERR(trans)) {
1217 btrfs_free_path(path);
1218 return PTR_ERR(trans);
1219 }
1220 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1221 key.type = BTRFS_DEV_ITEM_KEY;
1222 key.offset = device->devid;
1223 lock_chunks(root);
1224
1225 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1226 if (ret < 0)
1227 goto out;
1228
1229 if (ret > 0) {
1230 ret = -ENOENT;
1231 goto out;
1232 }
1233
1234 ret = btrfs_del_item(trans, root, path);
1235 if (ret)
1236 goto out;
1237 out:
1238 btrfs_free_path(path);
1239 unlock_chunks(root);
1240 btrfs_commit_transaction(trans, root);
1241 return ret;
1242 }
1243
1244 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1245 {
1246 struct btrfs_device *device;
1247 struct btrfs_device *next_device;
1248 struct block_device *bdev;
1249 struct buffer_head *bh = NULL;
1250 struct btrfs_super_block *disk_super;
1251 u64 all_avail;
1252 u64 devid;
1253 u64 num_devices;
1254 u8 *dev_uuid;
1255 int ret = 0;
1256
1257 mutex_lock(&uuid_mutex);
1258 mutex_lock(&root->fs_info->volume_mutex);
1259
1260 all_avail = root->fs_info->avail_data_alloc_bits |
1261 root->fs_info->avail_system_alloc_bits |
1262 root->fs_info->avail_metadata_alloc_bits;
1263
1264 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1265 root->fs_info->fs_devices->num_devices <= 4) {
1266 printk(KERN_ERR "btrfs: unable to go below four devices "
1267 "on raid10\n");
1268 ret = -EINVAL;
1269 goto out;
1270 }
1271
1272 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1273 root->fs_info->fs_devices->num_devices <= 2) {
1274 printk(KERN_ERR "btrfs: unable to go below two "
1275 "devices on raid1\n");
1276 ret = -EINVAL;
1277 goto out;
1278 }
1279
1280 if (strcmp(device_path, "missing") == 0) {
1281 struct list_head *devices;
1282 struct btrfs_device *tmp;
1283
1284 device = NULL;
1285 devices = &root->fs_info->fs_devices->devices;
1286 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1287 list_for_each_entry(tmp, devices, dev_list) {
1288 if (tmp->in_fs_metadata && !tmp->bdev) {
1289 device = tmp;
1290 break;
1291 }
1292 }
1293 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1294 bdev = NULL;
1295 bh = NULL;
1296 disk_super = NULL;
1297 if (!device) {
1298 printk(KERN_ERR "btrfs: no missing devices found to "
1299 "remove\n");
1300 goto out;
1301 }
1302 } else {
1303 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1304 root->fs_info->bdev_holder);
1305 if (IS_ERR(bdev)) {
1306 ret = PTR_ERR(bdev);
1307 goto out;
1308 }
1309
1310 set_blocksize(bdev, 4096);
1311 bh = btrfs_read_dev_super(bdev);
1312 if (!bh) {
1313 ret = -EINVAL;
1314 goto error_close;
1315 }
1316 disk_super = (struct btrfs_super_block *)bh->b_data;
1317 devid = btrfs_stack_device_id(&disk_super->dev_item);
1318 dev_uuid = disk_super->dev_item.uuid;
1319 device = btrfs_find_device(root, devid, dev_uuid,
1320 disk_super->fsid);
1321 if (!device) {
1322 ret = -ENOENT;
1323 goto error_brelse;
1324 }
1325 }
1326
1327 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1328 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1329 "device\n");
1330 ret = -EINVAL;
1331 goto error_brelse;
1332 }
1333
1334 if (device->writeable) {
1335 list_del_init(&device->dev_alloc_list);
1336 root->fs_info->fs_devices->rw_devices--;
1337 }
1338
1339 ret = btrfs_shrink_device(device, 0);
1340 if (ret)
1341 goto error_undo;
1342
1343 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1344 if (ret)
1345 goto error_undo;
1346
1347 device->in_fs_metadata = 0;
1348
1349 /*
1350 * the device list mutex makes sure that we don't change
1351 * the device list while someone else is writing out all
1352 * the device supers.
1353 */
1354 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1355 list_del_init(&device->dev_list);
1356 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1357
1358 device->fs_devices->num_devices--;
1359
1360 if (device->missing)
1361 root->fs_info->fs_devices->missing_devices--;
1362
1363 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1364 struct btrfs_device, dev_list);
1365 if (device->bdev == root->fs_info->sb->s_bdev)
1366 root->fs_info->sb->s_bdev = next_device->bdev;
1367 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1368 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1369
1370 if (device->bdev) {
1371 blkdev_put(device->bdev, device->mode);
1372 device->bdev = NULL;
1373 device->fs_devices->open_devices--;
1374 }
1375
1376 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1377 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1378
1379 if (device->fs_devices->open_devices == 0) {
1380 struct btrfs_fs_devices *fs_devices;
1381 fs_devices = root->fs_info->fs_devices;
1382 while (fs_devices) {
1383 if (fs_devices->seed == device->fs_devices)
1384 break;
1385 fs_devices = fs_devices->seed;
1386 }
1387 fs_devices->seed = device->fs_devices->seed;
1388 device->fs_devices->seed = NULL;
1389 __btrfs_close_devices(device->fs_devices);
1390 free_fs_devices(device->fs_devices);
1391 }
1392
1393 /*
1394 * at this point, the device is zero sized. We want to
1395 * remove it from the devices list and zero out the old super
1396 */
1397 if (device->writeable) {
1398 /* make sure this device isn't detected as part of
1399 * the FS anymore
1400 */
1401 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1402 set_buffer_dirty(bh);
1403 sync_dirty_buffer(bh);
1404 }
1405
1406 kfree(device->name);
1407 kfree(device);
1408 ret = 0;
1409
1410 error_brelse:
1411 brelse(bh);
1412 error_close:
1413 if (bdev)
1414 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1415 out:
1416 mutex_unlock(&root->fs_info->volume_mutex);
1417 mutex_unlock(&uuid_mutex);
1418 return ret;
1419 error_undo:
1420 if (device->writeable) {
1421 list_add(&device->dev_alloc_list,
1422 &root->fs_info->fs_devices->alloc_list);
1423 root->fs_info->fs_devices->rw_devices++;
1424 }
1425 goto error_brelse;
1426 }
1427
1428 /*
1429 * does all the dirty work required for changing file system's UUID.
1430 */
1431 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1432 struct btrfs_root *root)
1433 {
1434 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1435 struct btrfs_fs_devices *old_devices;
1436 struct btrfs_fs_devices *seed_devices;
1437 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1438 struct btrfs_device *device;
1439 u64 super_flags;
1440
1441 BUG_ON(!mutex_is_locked(&uuid_mutex));
1442 if (!fs_devices->seeding)
1443 return -EINVAL;
1444
1445 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1446 if (!seed_devices)
1447 return -ENOMEM;
1448
1449 old_devices = clone_fs_devices(fs_devices);
1450 if (IS_ERR(old_devices)) {
1451 kfree(seed_devices);
1452 return PTR_ERR(old_devices);
1453 }
1454
1455 list_add(&old_devices->list, &fs_uuids);
1456
1457 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1458 seed_devices->opened = 1;
1459 INIT_LIST_HEAD(&seed_devices->devices);
1460 INIT_LIST_HEAD(&seed_devices->alloc_list);
1461 mutex_init(&seed_devices->device_list_mutex);
1462 list_splice_init(&fs_devices->devices, &seed_devices->devices);
1463 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1464 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1465 device->fs_devices = seed_devices;
1466 }
1467
1468 fs_devices->seeding = 0;
1469 fs_devices->num_devices = 0;
1470 fs_devices->open_devices = 0;
1471 fs_devices->seed = seed_devices;
1472
1473 generate_random_uuid(fs_devices->fsid);
1474 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1475 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1476 super_flags = btrfs_super_flags(disk_super) &
1477 ~BTRFS_SUPER_FLAG_SEEDING;
1478 btrfs_set_super_flags(disk_super, super_flags);
1479
1480 return 0;
1481 }
1482
1483 /*
1484 * strore the expected generation for seed devices in device items.
1485 */
1486 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1487 struct btrfs_root *root)
1488 {
1489 struct btrfs_path *path;
1490 struct extent_buffer *leaf;
1491 struct btrfs_dev_item *dev_item;
1492 struct btrfs_device *device;
1493 struct btrfs_key key;
1494 u8 fs_uuid[BTRFS_UUID_SIZE];
1495 u8 dev_uuid[BTRFS_UUID_SIZE];
1496 u64 devid;
1497 int ret;
1498
1499 path = btrfs_alloc_path();
1500 if (!path)
1501 return -ENOMEM;
1502
1503 root = root->fs_info->chunk_root;
1504 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1505 key.offset = 0;
1506 key.type = BTRFS_DEV_ITEM_KEY;
1507
1508 while (1) {
1509 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1510 if (ret < 0)
1511 goto error;
1512
1513 leaf = path->nodes[0];
1514 next_slot:
1515 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1516 ret = btrfs_next_leaf(root, path);
1517 if (ret > 0)
1518 break;
1519 if (ret < 0)
1520 goto error;
1521 leaf = path->nodes[0];
1522 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1523 btrfs_release_path(root, path);
1524 continue;
1525 }
1526
1527 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1528 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1529 key.type != BTRFS_DEV_ITEM_KEY)
1530 break;
1531
1532 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1533 struct btrfs_dev_item);
1534 devid = btrfs_device_id(leaf, dev_item);
1535 read_extent_buffer(leaf, dev_uuid,
1536 (unsigned long)btrfs_device_uuid(dev_item),
1537 BTRFS_UUID_SIZE);
1538 read_extent_buffer(leaf, fs_uuid,
1539 (unsigned long)btrfs_device_fsid(dev_item),
1540 BTRFS_UUID_SIZE);
1541 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1542 BUG_ON(!device);
1543
1544 if (device->fs_devices->seeding) {
1545 btrfs_set_device_generation(leaf, dev_item,
1546 device->generation);
1547 btrfs_mark_buffer_dirty(leaf);
1548 }
1549
1550 path->slots[0]++;
1551 goto next_slot;
1552 }
1553 ret = 0;
1554 error:
1555 btrfs_free_path(path);
1556 return ret;
1557 }
1558
1559 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1560 {
1561 struct btrfs_trans_handle *trans;
1562 struct btrfs_device *device;
1563 struct block_device *bdev;
1564 struct list_head *devices;
1565 struct super_block *sb = root->fs_info->sb;
1566 u64 total_bytes;
1567 int seeding_dev = 0;
1568 int ret = 0;
1569
1570 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1571 return -EINVAL;
1572
1573 bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
1574 root->fs_info->bdev_holder);
1575 if (IS_ERR(bdev))
1576 return PTR_ERR(bdev);
1577
1578 if (root->fs_info->fs_devices->seeding) {
1579 seeding_dev = 1;
1580 down_write(&sb->s_umount);
1581 mutex_lock(&uuid_mutex);
1582 }
1583
1584 filemap_write_and_wait(bdev->bd_inode->i_mapping);
1585 mutex_lock(&root->fs_info->volume_mutex);
1586
1587 devices = &root->fs_info->fs_devices->devices;
1588 /*
1589 * we have the volume lock, so we don't need the extra
1590 * device list mutex while reading the list here.
1591 */
1592 list_for_each_entry(device, devices, dev_list) {
1593 if (device->bdev == bdev) {
1594 ret = -EEXIST;
1595 goto error;
1596 }
1597 }
1598
1599 device = kzalloc(sizeof(*device), GFP_NOFS);
1600 if (!device) {
1601 /* we can safely leave the fs_devices entry around */
1602 ret = -ENOMEM;
1603 goto error;
1604 }
1605
1606 device->name = kstrdup(device_path, GFP_NOFS);
1607 if (!device->name) {
1608 kfree(device);
1609 ret = -ENOMEM;
1610 goto error;
1611 }
1612
1613 ret = find_next_devid(root, &device->devid);
1614 if (ret) {
1615 kfree(device->name);
1616 kfree(device);
1617 goto error;
1618 }
1619
1620 trans = btrfs_start_transaction(root, 0);
1621 if (IS_ERR(trans)) {
1622 kfree(device->name);
1623 kfree(device);
1624 ret = PTR_ERR(trans);
1625 goto error;
1626 }
1627
1628 lock_chunks(root);
1629
1630 device->writeable = 1;
1631 device->work.func = pending_bios_fn;
1632 generate_random_uuid(device->uuid);
1633 spin_lock_init(&device->io_lock);
1634 device->generation = trans->transid;
1635 device->io_width = root->sectorsize;
1636 device->io_align = root->sectorsize;
1637 device->sector_size = root->sectorsize;
1638 device->total_bytes = i_size_read(bdev->bd_inode);
1639 device->disk_total_bytes = device->total_bytes;
1640 device->dev_root = root->fs_info->dev_root;
1641 device->bdev = bdev;
1642 device->in_fs_metadata = 1;
1643 device->mode = FMODE_EXCL;
1644 set_blocksize(device->bdev, 4096);
1645
1646 if (seeding_dev) {
1647 sb->s_flags &= ~MS_RDONLY;
1648 ret = btrfs_prepare_sprout(trans, root);
1649 BUG_ON(ret);
1650 }
1651
1652 device->fs_devices = root->fs_info->fs_devices;
1653
1654 /*
1655 * we don't want write_supers to jump in here with our device
1656 * half setup
1657 */
1658 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1659 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1660 list_add(&device->dev_alloc_list,
1661 &root->fs_info->fs_devices->alloc_list);
1662 root->fs_info->fs_devices->num_devices++;
1663 root->fs_info->fs_devices->open_devices++;
1664 root->fs_info->fs_devices->rw_devices++;
1665 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1666
1667 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1668 root->fs_info->fs_devices->rotating = 1;
1669
1670 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1671 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1672 total_bytes + device->total_bytes);
1673
1674 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1675 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1676 total_bytes + 1);
1677 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1678
1679 if (seeding_dev) {
1680 ret = init_first_rw_device(trans, root, device);
1681 BUG_ON(ret);
1682 ret = btrfs_finish_sprout(trans, root);
1683 BUG_ON(ret);
1684 } else {
1685 ret = btrfs_add_device(trans, root, device);
1686 }
1687
1688 /*
1689 * we've got more storage, clear any full flags on the space
1690 * infos
1691 */
1692 btrfs_clear_space_info_full(root->fs_info);
1693
1694 unlock_chunks(root);
1695 btrfs_commit_transaction(trans, root);
1696
1697 if (seeding_dev) {
1698 mutex_unlock(&uuid_mutex);
1699 up_write(&sb->s_umount);
1700
1701 ret = btrfs_relocate_sys_chunks(root);
1702 BUG_ON(ret);
1703 }
1704 out:
1705 mutex_unlock(&root->fs_info->volume_mutex);
1706 return ret;
1707 error:
1708 blkdev_put(bdev, FMODE_EXCL);
1709 if (seeding_dev) {
1710 mutex_unlock(&uuid_mutex);
1711 up_write(&sb->s_umount);
1712 }
1713 goto out;
1714 }
1715
1716 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1717 struct btrfs_device *device)
1718 {
1719 int ret;
1720 struct btrfs_path *path;
1721 struct btrfs_root *root;
1722 struct btrfs_dev_item *dev_item;
1723 struct extent_buffer *leaf;
1724 struct btrfs_key key;
1725
1726 root = device->dev_root->fs_info->chunk_root;
1727
1728 path = btrfs_alloc_path();
1729 if (!path)
1730 return -ENOMEM;
1731
1732 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1733 key.type = BTRFS_DEV_ITEM_KEY;
1734 key.offset = device->devid;
1735
1736 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1737 if (ret < 0)
1738 goto out;
1739
1740 if (ret > 0) {
1741 ret = -ENOENT;
1742 goto out;
1743 }
1744
1745 leaf = path->nodes[0];
1746 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1747
1748 btrfs_set_device_id(leaf, dev_item, device->devid);
1749 btrfs_set_device_type(leaf, dev_item, device->type);
1750 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1751 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1752 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1753 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1754 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1755 btrfs_mark_buffer_dirty(leaf);
1756
1757 out:
1758 btrfs_free_path(path);
1759 return ret;
1760 }
1761
1762 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1763 struct btrfs_device *device, u64 new_size)
1764 {
1765 struct btrfs_super_block *super_copy =
1766 &device->dev_root->fs_info->super_copy;
1767 u64 old_total = btrfs_super_total_bytes(super_copy);
1768 u64 diff = new_size - device->total_bytes;
1769
1770 if (!device->writeable)
1771 return -EACCES;
1772 if (new_size <= device->total_bytes)
1773 return -EINVAL;
1774
1775 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1776 device->fs_devices->total_rw_bytes += diff;
1777
1778 device->total_bytes = new_size;
1779 device->disk_total_bytes = new_size;
1780 btrfs_clear_space_info_full(device->dev_root->fs_info);
1781
1782 return btrfs_update_device(trans, device);
1783 }
1784
1785 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1786 struct btrfs_device *device, u64 new_size)
1787 {
1788 int ret;
1789 lock_chunks(device->dev_root);
1790 ret = __btrfs_grow_device(trans, device, new_size);
1791 unlock_chunks(device->dev_root);
1792 return ret;
1793 }
1794
1795 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1796 struct btrfs_root *root,
1797 u64 chunk_tree, u64 chunk_objectid,
1798 u64 chunk_offset)
1799 {
1800 int ret;
1801 struct btrfs_path *path;
1802 struct btrfs_key key;
1803
1804 root = root->fs_info->chunk_root;
1805 path = btrfs_alloc_path();
1806 if (!path)
1807 return -ENOMEM;
1808
1809 key.objectid = chunk_objectid;
1810 key.offset = chunk_offset;
1811 key.type = BTRFS_CHUNK_ITEM_KEY;
1812
1813 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1814 BUG_ON(ret);
1815
1816 ret = btrfs_del_item(trans, root, path);
1817 BUG_ON(ret);
1818
1819 btrfs_free_path(path);
1820 return 0;
1821 }
1822
1823 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1824 chunk_offset)
1825 {
1826 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1827 struct btrfs_disk_key *disk_key;
1828 struct btrfs_chunk *chunk;
1829 u8 *ptr;
1830 int ret = 0;
1831 u32 num_stripes;
1832 u32 array_size;
1833 u32 len = 0;
1834 u32 cur;
1835 struct btrfs_key key;
1836
1837 array_size = btrfs_super_sys_array_size(super_copy);
1838
1839 ptr = super_copy->sys_chunk_array;
1840 cur = 0;
1841
1842 while (cur < array_size) {
1843 disk_key = (struct btrfs_disk_key *)ptr;
1844 btrfs_disk_key_to_cpu(&key, disk_key);
1845
1846 len = sizeof(*disk_key);
1847
1848 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1849 chunk = (struct btrfs_chunk *)(ptr + len);
1850 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1851 len += btrfs_chunk_item_size(num_stripes);
1852 } else {
1853 ret = -EIO;
1854 break;
1855 }
1856 if (key.objectid == chunk_objectid &&
1857 key.offset == chunk_offset) {
1858 memmove(ptr, ptr + len, array_size - (cur + len));
1859 array_size -= len;
1860 btrfs_set_super_sys_array_size(super_copy, array_size);
1861 } else {
1862 ptr += len;
1863 cur += len;
1864 }
1865 }
1866 return ret;
1867 }
1868
1869 static int btrfs_relocate_chunk(struct btrfs_root *root,
1870 u64 chunk_tree, u64 chunk_objectid,
1871 u64 chunk_offset)
1872 {
1873 struct extent_map_tree *em_tree;
1874 struct btrfs_root *extent_root;
1875 struct btrfs_trans_handle *trans;
1876 struct extent_map *em;
1877 struct map_lookup *map;
1878 int ret;
1879 int i;
1880
1881 root = root->fs_info->chunk_root;
1882 extent_root = root->fs_info->extent_root;
1883 em_tree = &root->fs_info->mapping_tree.map_tree;
1884
1885 ret = btrfs_can_relocate(extent_root, chunk_offset);
1886 if (ret)
1887 return -ENOSPC;
1888
1889 /* step one, relocate all the extents inside this chunk */
1890 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1891 if (ret)
1892 return ret;
1893
1894 trans = btrfs_start_transaction(root, 0);
1895 BUG_ON(IS_ERR(trans));
1896
1897 lock_chunks(root);
1898
1899 /*
1900 * step two, delete the device extents and the
1901 * chunk tree entries
1902 */
1903 read_lock(&em_tree->lock);
1904 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1905 read_unlock(&em_tree->lock);
1906
1907 BUG_ON(em->start > chunk_offset ||
1908 em->start + em->len < chunk_offset);
1909 map = (struct map_lookup *)em->bdev;
1910
1911 for (i = 0; i < map->num_stripes; i++) {
1912 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1913 map->stripes[i].physical);
1914 BUG_ON(ret);
1915
1916 if (map->stripes[i].dev) {
1917 ret = btrfs_update_device(trans, map->stripes[i].dev);
1918 BUG_ON(ret);
1919 }
1920 }
1921 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1922 chunk_offset);
1923
1924 BUG_ON(ret);
1925
1926 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1927 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1928 BUG_ON(ret);
1929 }
1930
1931 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1932 BUG_ON(ret);
1933
1934 write_lock(&em_tree->lock);
1935 remove_extent_mapping(em_tree, em);
1936 write_unlock(&em_tree->lock);
1937
1938 kfree(map);
1939 em->bdev = NULL;
1940
1941 /* once for the tree */
1942 free_extent_map(em);
1943 /* once for us */
1944 free_extent_map(em);
1945
1946 unlock_chunks(root);
1947 btrfs_end_transaction(trans, root);
1948 return 0;
1949 }
1950
1951 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1952 {
1953 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1954 struct btrfs_path *path;
1955 struct extent_buffer *leaf;
1956 struct btrfs_chunk *chunk;
1957 struct btrfs_key key;
1958 struct btrfs_key found_key;
1959 u64 chunk_tree = chunk_root->root_key.objectid;
1960 u64 chunk_type;
1961 bool retried = false;
1962 int failed = 0;
1963 int ret;
1964
1965 path = btrfs_alloc_path();
1966 if (!path)
1967 return -ENOMEM;
1968
1969 again:
1970 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1971 key.offset = (u64)-1;
1972 key.type = BTRFS_CHUNK_ITEM_KEY;
1973
1974 while (1) {
1975 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1976 if (ret < 0)
1977 goto error;
1978 BUG_ON(ret == 0);
1979
1980 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1981 key.type);
1982 if (ret < 0)
1983 goto error;
1984 if (ret > 0)
1985 break;
1986
1987 leaf = path->nodes[0];
1988 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1989
1990 chunk = btrfs_item_ptr(leaf, path->slots[0],
1991 struct btrfs_chunk);
1992 chunk_type = btrfs_chunk_type(leaf, chunk);
1993 btrfs_release_path(chunk_root, path);
1994
1995 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1996 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1997 found_key.objectid,
1998 found_key.offset);
1999 if (ret == -ENOSPC)
2000 failed++;
2001 else if (ret)
2002 BUG();
2003 }
2004
2005 if (found_key.offset == 0)
2006 break;
2007 key.offset = found_key.offset - 1;
2008 }
2009 ret = 0;
2010 if (failed && !retried) {
2011 failed = 0;
2012 retried = true;
2013 goto again;
2014 } else if (failed && retried) {
2015 WARN_ON(1);
2016 ret = -ENOSPC;
2017 }
2018 error:
2019 btrfs_free_path(path);
2020 return ret;
2021 }
2022
2023 static u64 div_factor(u64 num, int factor)
2024 {
2025 if (factor == 10)
2026 return num;
2027 num *= factor;
2028 do_div(num, 10);
2029 return num;
2030 }
2031
2032 int btrfs_balance(struct btrfs_root *dev_root)
2033 {
2034 int ret;
2035 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
2036 struct btrfs_device *device;
2037 u64 old_size;
2038 u64 size_to_free;
2039 struct btrfs_path *path;
2040 struct btrfs_key key;
2041 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
2042 struct btrfs_trans_handle *trans;
2043 struct btrfs_key found_key;
2044
2045 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2046 return -EROFS;
2047
2048 if (!capable(CAP_SYS_ADMIN))
2049 return -EPERM;
2050
2051 mutex_lock(&dev_root->fs_info->volume_mutex);
2052 dev_root = dev_root->fs_info->dev_root;
2053
2054 /* step one make some room on all the devices */
2055 list_for_each_entry(device, devices, dev_list) {
2056 old_size = device->total_bytes;
2057 size_to_free = div_factor(old_size, 1);
2058 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2059 if (!device->writeable ||
2060 device->total_bytes - device->bytes_used > size_to_free)
2061 continue;
2062
2063 ret = btrfs_shrink_device(device, old_size - size_to_free);
2064 if (ret == -ENOSPC)
2065 break;
2066 BUG_ON(ret);
2067
2068 trans = btrfs_start_transaction(dev_root, 0);
2069 BUG_ON(IS_ERR(trans));
2070
2071 ret = btrfs_grow_device(trans, device, old_size);
2072 BUG_ON(ret);
2073
2074 btrfs_end_transaction(trans, dev_root);
2075 }
2076
2077 /* step two, relocate all the chunks */
2078 path = btrfs_alloc_path();
2079 BUG_ON(!path);
2080
2081 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2082 key.offset = (u64)-1;
2083 key.type = BTRFS_CHUNK_ITEM_KEY;
2084
2085 while (1) {
2086 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2087 if (ret < 0)
2088 goto error;
2089
2090 /*
2091 * this shouldn't happen, it means the last relocate
2092 * failed
2093 */
2094 if (ret == 0)
2095 break;
2096
2097 ret = btrfs_previous_item(chunk_root, path, 0,
2098 BTRFS_CHUNK_ITEM_KEY);
2099 if (ret)
2100 break;
2101
2102 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2103 path->slots[0]);
2104 if (found_key.objectid != key.objectid)
2105 break;
2106
2107 /* chunk zero is special */
2108 if (found_key.offset == 0)
2109 break;
2110
2111 btrfs_release_path(chunk_root, path);
2112 ret = btrfs_relocate_chunk(chunk_root,
2113 chunk_root->root_key.objectid,
2114 found_key.objectid,
2115 found_key.offset);
2116 BUG_ON(ret && ret != -ENOSPC);
2117 key.offset = found_key.offset - 1;
2118 }
2119 ret = 0;
2120 error:
2121 btrfs_free_path(path);
2122 mutex_unlock(&dev_root->fs_info->volume_mutex);
2123 return ret;
2124 }
2125
2126 /*
2127 * shrinking a device means finding all of the device extents past
2128 * the new size, and then following the back refs to the chunks.
2129 * The chunk relocation code actually frees the device extent
2130 */
2131 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2132 {
2133 struct btrfs_trans_handle *trans;
2134 struct btrfs_root *root = device->dev_root;
2135 struct btrfs_dev_extent *dev_extent = NULL;
2136 struct btrfs_path *path;
2137 u64 length;
2138 u64 chunk_tree;
2139 u64 chunk_objectid;
2140 u64 chunk_offset;
2141 int ret;
2142 int slot;
2143 int failed = 0;
2144 bool retried = false;
2145 struct extent_buffer *l;
2146 struct btrfs_key key;
2147 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2148 u64 old_total = btrfs_super_total_bytes(super_copy);
2149 u64 old_size = device->total_bytes;
2150 u64 diff = device->total_bytes - new_size;
2151
2152 if (new_size >= device->total_bytes)
2153 return -EINVAL;
2154
2155 path = btrfs_alloc_path();
2156 if (!path)
2157 return -ENOMEM;
2158
2159 path->reada = 2;
2160
2161 lock_chunks(root);
2162
2163 device->total_bytes = new_size;
2164 if (device->writeable)
2165 device->fs_devices->total_rw_bytes -= diff;
2166 unlock_chunks(root);
2167
2168 again:
2169 key.objectid = device->devid;
2170 key.offset = (u64)-1;
2171 key.type = BTRFS_DEV_EXTENT_KEY;
2172
2173 while (1) {
2174 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2175 if (ret < 0)
2176 goto done;
2177
2178 ret = btrfs_previous_item(root, path, 0, key.type);
2179 if (ret < 0)
2180 goto done;
2181 if (ret) {
2182 ret = 0;
2183 btrfs_release_path(root, path);
2184 break;
2185 }
2186
2187 l = path->nodes[0];
2188 slot = path->slots[0];
2189 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2190
2191 if (key.objectid != device->devid) {
2192 btrfs_release_path(root, path);
2193 break;
2194 }
2195
2196 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2197 length = btrfs_dev_extent_length(l, dev_extent);
2198
2199 if (key.offset + length <= new_size) {
2200 btrfs_release_path(root, path);
2201 break;
2202 }
2203
2204 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2205 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2206 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2207 btrfs_release_path(root, path);
2208
2209 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2210 chunk_offset);
2211 if (ret && ret != -ENOSPC)
2212 goto done;
2213 if (ret == -ENOSPC)
2214 failed++;
2215 key.offset -= 1;
2216 }
2217
2218 if (failed && !retried) {
2219 failed = 0;
2220 retried = true;
2221 goto again;
2222 } else if (failed && retried) {
2223 ret = -ENOSPC;
2224 lock_chunks(root);
2225
2226 device->total_bytes = old_size;
2227 if (device->writeable)
2228 device->fs_devices->total_rw_bytes += diff;
2229 unlock_chunks(root);
2230 goto done;
2231 }
2232
2233 /* Shrinking succeeded, else we would be at "done". */
2234 trans = btrfs_start_transaction(root, 0);
2235 if (IS_ERR(trans)) {
2236 ret = PTR_ERR(trans);
2237 goto done;
2238 }
2239
2240 lock_chunks(root);
2241
2242 device->disk_total_bytes = new_size;
2243 /* Now btrfs_update_device() will change the on-disk size. */
2244 ret = btrfs_update_device(trans, device);
2245 if (ret) {
2246 unlock_chunks(root);
2247 btrfs_end_transaction(trans, root);
2248 goto done;
2249 }
2250 WARN_ON(diff > old_total);
2251 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2252 unlock_chunks(root);
2253 btrfs_end_transaction(trans, root);
2254 done:
2255 btrfs_free_path(path);
2256 return ret;
2257 }
2258
2259 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2260 struct btrfs_root *root,
2261 struct btrfs_key *key,
2262 struct btrfs_chunk *chunk, int item_size)
2263 {
2264 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2265 struct btrfs_disk_key disk_key;
2266 u32 array_size;
2267 u8 *ptr;
2268
2269 array_size = btrfs_super_sys_array_size(super_copy);
2270 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2271 return -EFBIG;
2272
2273 ptr = super_copy->sys_chunk_array + array_size;
2274 btrfs_cpu_key_to_disk(&disk_key, key);
2275 memcpy(ptr, &disk_key, sizeof(disk_key));
2276 ptr += sizeof(disk_key);
2277 memcpy(ptr, chunk, item_size);
2278 item_size += sizeof(disk_key);
2279 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2280 return 0;
2281 }
2282
2283 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2284 int num_stripes, int sub_stripes)
2285 {
2286 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2287 return calc_size;
2288 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2289 return calc_size * (num_stripes / sub_stripes);
2290 else
2291 return calc_size * num_stripes;
2292 }
2293
2294 /* Used to sort the devices by max_avail(descending sort) */
2295 int btrfs_cmp_device_free_bytes(const void *dev_info1, const void *dev_info2)
2296 {
2297 if (((struct btrfs_device_info *)dev_info1)->max_avail >
2298 ((struct btrfs_device_info *)dev_info2)->max_avail)
2299 return -1;
2300 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2301 ((struct btrfs_device_info *)dev_info2)->max_avail)
2302 return 1;
2303 else
2304 return 0;
2305 }
2306
2307 static int __btrfs_calc_nstripes(struct btrfs_fs_devices *fs_devices, u64 type,
2308 int *num_stripes, int *min_stripes,
2309 int *sub_stripes)
2310 {
2311 *num_stripes = 1;
2312 *min_stripes = 1;
2313 *sub_stripes = 0;
2314
2315 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2316 *num_stripes = fs_devices->rw_devices;
2317 *min_stripes = 2;
2318 }
2319 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2320 *num_stripes = 2;
2321 *min_stripes = 2;
2322 }
2323 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2324 if (fs_devices->rw_devices < 2)
2325 return -ENOSPC;
2326 *num_stripes = 2;
2327 *min_stripes = 2;
2328 }
2329 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2330 *num_stripes = fs_devices->rw_devices;
2331 if (*num_stripes < 4)
2332 return -ENOSPC;
2333 *num_stripes &= ~(u32)1;
2334 *sub_stripes = 2;
2335 *min_stripes = 4;
2336 }
2337
2338 return 0;
2339 }
2340
2341 static u64 __btrfs_calc_stripe_size(struct btrfs_fs_devices *fs_devices,
2342 u64 proposed_size, u64 type,
2343 int num_stripes, int small_stripe)
2344 {
2345 int min_stripe_size = 1 * 1024 * 1024;
2346 u64 calc_size = proposed_size;
2347 u64 max_chunk_size = calc_size;
2348 int ncopies = 1;
2349
2350 if (type & (BTRFS_BLOCK_GROUP_RAID1 |
2351 BTRFS_BLOCK_GROUP_DUP |
2352 BTRFS_BLOCK_GROUP_RAID10))
2353 ncopies = 2;
2354
2355 if (type & BTRFS_BLOCK_GROUP_DATA) {
2356 max_chunk_size = 10 * calc_size;
2357 min_stripe_size = 64 * 1024 * 1024;
2358 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2359 max_chunk_size = 256 * 1024 * 1024;
2360 min_stripe_size = 32 * 1024 * 1024;
2361 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2362 calc_size = 8 * 1024 * 1024;
2363 max_chunk_size = calc_size * 2;
2364 min_stripe_size = 1 * 1024 * 1024;
2365 }
2366
2367 /* we don't want a chunk larger than 10% of writeable space */
2368 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2369 max_chunk_size);
2370
2371 if (calc_size * num_stripes > max_chunk_size * ncopies) {
2372 calc_size = max_chunk_size * ncopies;
2373 do_div(calc_size, num_stripes);
2374 do_div(calc_size, BTRFS_STRIPE_LEN);
2375 calc_size *= BTRFS_STRIPE_LEN;
2376 }
2377
2378 /* we don't want tiny stripes */
2379 if (!small_stripe)
2380 calc_size = max_t(u64, min_stripe_size, calc_size);
2381
2382 /*
2383 * we're about to do_div by the BTRFS_STRIPE_LEN so lets make sure
2384 * we end up with something bigger than a stripe
2385 */
2386 calc_size = max_t(u64, calc_size, BTRFS_STRIPE_LEN);
2387
2388 do_div(calc_size, BTRFS_STRIPE_LEN);
2389 calc_size *= BTRFS_STRIPE_LEN;
2390
2391 return calc_size;
2392 }
2393
2394 static struct map_lookup *__shrink_map_lookup_stripes(struct map_lookup *map,
2395 int num_stripes)
2396 {
2397 struct map_lookup *new;
2398 size_t len = map_lookup_size(num_stripes);
2399
2400 BUG_ON(map->num_stripes < num_stripes);
2401
2402 if (map->num_stripes == num_stripes)
2403 return map;
2404
2405 new = kmalloc(len, GFP_NOFS);
2406 if (!new) {
2407 /* just change map->num_stripes */
2408 map->num_stripes = num_stripes;
2409 return map;
2410 }
2411
2412 memcpy(new, map, len);
2413 new->num_stripes = num_stripes;
2414 kfree(map);
2415 return new;
2416 }
2417
2418 /*
2419 * helper to allocate device space from btrfs_device_info, in which we stored
2420 * max free space information of every device. It is used when we can not
2421 * allocate chunks by default size.
2422 *
2423 * By this helper, we can allocate a new chunk as larger as possible.
2424 */
2425 static int __btrfs_alloc_tiny_space(struct btrfs_trans_handle *trans,
2426 struct btrfs_fs_devices *fs_devices,
2427 struct btrfs_device_info *devices,
2428 int nr_device, u64 type,
2429 struct map_lookup **map_lookup,
2430 int min_stripes, u64 *stripe_size)
2431 {
2432 int i, index, sort_again = 0;
2433 int min_devices = min_stripes;
2434 u64 max_avail, min_free;
2435 struct map_lookup *map = *map_lookup;
2436 int ret;
2437
2438 if (nr_device < min_stripes)
2439 return -ENOSPC;
2440
2441 btrfs_descending_sort_devices(devices, nr_device);
2442
2443 max_avail = devices[0].max_avail;
2444 if (!max_avail)
2445 return -ENOSPC;
2446
2447 for (i = 0; i < nr_device; i++) {
2448 /*
2449 * if dev_offset = 0, it means the free space of this device
2450 * is less than what we need, and we didn't search max avail
2451 * extent on this device, so do it now.
2452 */
2453 if (!devices[i].dev_offset) {
2454 ret = find_free_dev_extent(trans, devices[i].dev,
2455 max_avail,
2456 &devices[i].dev_offset,
2457 &devices[i].max_avail);
2458 if (ret != 0 && ret != -ENOSPC)
2459 return ret;
2460 sort_again = 1;
2461 }
2462 }
2463
2464 /* we update the max avail free extent of each devices, sort again */
2465 if (sort_again)
2466 btrfs_descending_sort_devices(devices, nr_device);
2467
2468 if (type & BTRFS_BLOCK_GROUP_DUP)
2469 min_devices = 1;
2470
2471 if (!devices[min_devices - 1].max_avail)
2472 return -ENOSPC;
2473
2474 max_avail = devices[min_devices - 1].max_avail;
2475 if (type & BTRFS_BLOCK_GROUP_DUP)
2476 do_div(max_avail, 2);
2477
2478 max_avail = __btrfs_calc_stripe_size(fs_devices, max_avail, type,
2479 min_stripes, 1);
2480 if (type & BTRFS_BLOCK_GROUP_DUP)
2481 min_free = max_avail * 2;
2482 else
2483 min_free = max_avail;
2484
2485 if (min_free > devices[min_devices - 1].max_avail)
2486 return -ENOSPC;
2487
2488 map = __shrink_map_lookup_stripes(map, min_stripes);
2489 *stripe_size = max_avail;
2490
2491 index = 0;
2492 for (i = 0; i < min_stripes; i++) {
2493 map->stripes[i].dev = devices[index].dev;
2494 map->stripes[i].physical = devices[index].dev_offset;
2495 if (type & BTRFS_BLOCK_GROUP_DUP) {
2496 i++;
2497 map->stripes[i].dev = devices[index].dev;
2498 map->stripes[i].physical = devices[index].dev_offset +
2499 max_avail;
2500 }
2501 index++;
2502 }
2503 *map_lookup = map;
2504
2505 return 0;
2506 }
2507
2508 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2509 struct btrfs_root *extent_root,
2510 struct map_lookup **map_ret,
2511 u64 *num_bytes, u64 *stripe_size,
2512 u64 start, u64 type)
2513 {
2514 struct btrfs_fs_info *info = extent_root->fs_info;
2515 struct btrfs_device *device = NULL;
2516 struct btrfs_fs_devices *fs_devices = info->fs_devices;
2517 struct list_head *cur;
2518 struct map_lookup *map;
2519 struct extent_map_tree *em_tree;
2520 struct extent_map *em;
2521 struct btrfs_device_info *devices_info;
2522 struct list_head private_devs;
2523 u64 calc_size = 1024 * 1024 * 1024;
2524 u64 min_free;
2525 u64 avail;
2526 u64 dev_offset;
2527 int num_stripes;
2528 int min_stripes;
2529 int sub_stripes;
2530 int min_devices; /* the min number of devices we need */
2531 int i;
2532 int ret;
2533 int index;
2534
2535 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2536 (type & BTRFS_BLOCK_GROUP_DUP)) {
2537 WARN_ON(1);
2538 type &= ~BTRFS_BLOCK_GROUP_DUP;
2539 }
2540 if (list_empty(&fs_devices->alloc_list))
2541 return -ENOSPC;
2542
2543 ret = __btrfs_calc_nstripes(fs_devices, type, &num_stripes,
2544 &min_stripes, &sub_stripes);
2545 if (ret)
2546 return ret;
2547
2548 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2549 GFP_NOFS);
2550 if (!devices_info)
2551 return -ENOMEM;
2552
2553 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2554 if (!map) {
2555 ret = -ENOMEM;
2556 goto error;
2557 }
2558 map->num_stripes = num_stripes;
2559
2560 cur = fs_devices->alloc_list.next;
2561 index = 0;
2562 i = 0;
2563
2564 calc_size = __btrfs_calc_stripe_size(fs_devices, calc_size, type,
2565 num_stripes, 0);
2566
2567 if (type & BTRFS_BLOCK_GROUP_DUP) {
2568 min_free = calc_size * 2;
2569 min_devices = 1;
2570 } else {
2571 min_free = calc_size;
2572 min_devices = min_stripes;
2573 }
2574
2575 INIT_LIST_HEAD(&private_devs);
2576 while (index < num_stripes) {
2577 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2578 BUG_ON(!device->writeable);
2579 if (device->total_bytes > device->bytes_used)
2580 avail = device->total_bytes - device->bytes_used;
2581 else
2582 avail = 0;
2583 cur = cur->next;
2584
2585 if (device->in_fs_metadata && avail >= min_free) {
2586 ret = find_free_dev_extent(trans, device, min_free,
2587 &devices_info[i].dev_offset,
2588 &devices_info[i].max_avail);
2589 if (ret == 0) {
2590 list_move_tail(&device->dev_alloc_list,
2591 &private_devs);
2592 map->stripes[index].dev = device;
2593 map->stripes[index].physical =
2594 devices_info[i].dev_offset;
2595 index++;
2596 if (type & BTRFS_BLOCK_GROUP_DUP) {
2597 map->stripes[index].dev = device;
2598 map->stripes[index].physical =
2599 devices_info[i].dev_offset +
2600 calc_size;
2601 index++;
2602 }
2603 } else if (ret != -ENOSPC)
2604 goto error;
2605
2606 devices_info[i].dev = device;
2607 i++;
2608 } else if (device->in_fs_metadata &&
2609 avail >= BTRFS_STRIPE_LEN) {
2610 devices_info[i].dev = device;
2611 devices_info[i].max_avail = avail;
2612 i++;
2613 }
2614
2615 if (cur == &fs_devices->alloc_list)
2616 break;
2617 }
2618
2619 list_splice(&private_devs, &fs_devices->alloc_list);
2620 if (index < num_stripes) {
2621 if (index >= min_stripes) {
2622 num_stripes = index;
2623 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2624 num_stripes /= sub_stripes;
2625 num_stripes *= sub_stripes;
2626 }
2627
2628 map = __shrink_map_lookup_stripes(map, num_stripes);
2629 } else if (i >= min_devices) {
2630 ret = __btrfs_alloc_tiny_space(trans, fs_devices,
2631 devices_info, i, type,
2632 &map, min_stripes,
2633 &calc_size);
2634 if (ret)
2635 goto error;
2636 } else {
2637 ret = -ENOSPC;
2638 goto error;
2639 }
2640 }
2641 map->sector_size = extent_root->sectorsize;
2642 map->stripe_len = BTRFS_STRIPE_LEN;
2643 map->io_align = BTRFS_STRIPE_LEN;
2644 map->io_width = BTRFS_STRIPE_LEN;
2645 map->type = type;
2646 map->sub_stripes = sub_stripes;
2647
2648 *map_ret = map;
2649 *stripe_size = calc_size;
2650 *num_bytes = chunk_bytes_by_type(type, calc_size,
2651 map->num_stripes, sub_stripes);
2652
2653 em = alloc_extent_map(GFP_NOFS);
2654 if (!em) {
2655 ret = -ENOMEM;
2656 goto error;
2657 }
2658 em->bdev = (struct block_device *)map;
2659 em->start = start;
2660 em->len = *num_bytes;
2661 em->block_start = 0;
2662 em->block_len = em->len;
2663
2664 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2665 write_lock(&em_tree->lock);
2666 ret = add_extent_mapping(em_tree, em);
2667 write_unlock(&em_tree->lock);
2668 BUG_ON(ret);
2669 free_extent_map(em);
2670
2671 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2672 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2673 start, *num_bytes);
2674 BUG_ON(ret);
2675
2676 index = 0;
2677 while (index < map->num_stripes) {
2678 device = map->stripes[index].dev;
2679 dev_offset = map->stripes[index].physical;
2680
2681 ret = btrfs_alloc_dev_extent(trans, device,
2682 info->chunk_root->root_key.objectid,
2683 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2684 start, dev_offset, calc_size);
2685 BUG_ON(ret);
2686 index++;
2687 }
2688
2689 kfree(devices_info);
2690 return 0;
2691
2692 error:
2693 kfree(map);
2694 kfree(devices_info);
2695 return ret;
2696 }
2697
2698 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2699 struct btrfs_root *extent_root,
2700 struct map_lookup *map, u64 chunk_offset,
2701 u64 chunk_size, u64 stripe_size)
2702 {
2703 u64 dev_offset;
2704 struct btrfs_key key;
2705 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2706 struct btrfs_device *device;
2707 struct btrfs_chunk *chunk;
2708 struct btrfs_stripe *stripe;
2709 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2710 int index = 0;
2711 int ret;
2712
2713 chunk = kzalloc(item_size, GFP_NOFS);
2714 if (!chunk)
2715 return -ENOMEM;
2716
2717 index = 0;
2718 while (index < map->num_stripes) {
2719 device = map->stripes[index].dev;
2720 device->bytes_used += stripe_size;
2721 ret = btrfs_update_device(trans, device);
2722 BUG_ON(ret);
2723 index++;
2724 }
2725
2726 index = 0;
2727 stripe = &chunk->stripe;
2728 while (index < map->num_stripes) {
2729 device = map->stripes[index].dev;
2730 dev_offset = map->stripes[index].physical;
2731
2732 btrfs_set_stack_stripe_devid(stripe, device->devid);
2733 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2734 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2735 stripe++;
2736 index++;
2737 }
2738
2739 btrfs_set_stack_chunk_length(chunk, chunk_size);
2740 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2741 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2742 btrfs_set_stack_chunk_type(chunk, map->type);
2743 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2744 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2745 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2746 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2747 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2748
2749 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2750 key.type = BTRFS_CHUNK_ITEM_KEY;
2751 key.offset = chunk_offset;
2752
2753 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2754 BUG_ON(ret);
2755
2756 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2757 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2758 item_size);
2759 BUG_ON(ret);
2760 }
2761 kfree(chunk);
2762 return 0;
2763 }
2764
2765 /*
2766 * Chunk allocation falls into two parts. The first part does works
2767 * that make the new allocated chunk useable, but not do any operation
2768 * that modifies the chunk tree. The second part does the works that
2769 * require modifying the chunk tree. This division is important for the
2770 * bootstrap process of adding storage to a seed btrfs.
2771 */
2772 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2773 struct btrfs_root *extent_root, u64 type)
2774 {
2775 u64 chunk_offset;
2776 u64 chunk_size;
2777 u64 stripe_size;
2778 struct map_lookup *map;
2779 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2780 int ret;
2781
2782 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2783 &chunk_offset);
2784 if (ret)
2785 return ret;
2786
2787 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2788 &stripe_size, chunk_offset, type);
2789 if (ret)
2790 return ret;
2791
2792 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2793 chunk_size, stripe_size);
2794 BUG_ON(ret);
2795 return 0;
2796 }
2797
2798 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2799 struct btrfs_root *root,
2800 struct btrfs_device *device)
2801 {
2802 u64 chunk_offset;
2803 u64 sys_chunk_offset;
2804 u64 chunk_size;
2805 u64 sys_chunk_size;
2806 u64 stripe_size;
2807 u64 sys_stripe_size;
2808 u64 alloc_profile;
2809 struct map_lookup *map;
2810 struct map_lookup *sys_map;
2811 struct btrfs_fs_info *fs_info = root->fs_info;
2812 struct btrfs_root *extent_root = fs_info->extent_root;
2813 int ret;
2814
2815 ret = find_next_chunk(fs_info->chunk_root,
2816 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2817 BUG_ON(ret);
2818
2819 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2820 (fs_info->metadata_alloc_profile &
2821 fs_info->avail_metadata_alloc_bits);
2822 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2823
2824 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2825 &stripe_size, chunk_offset, alloc_profile);
2826 BUG_ON(ret);
2827
2828 sys_chunk_offset = chunk_offset + chunk_size;
2829
2830 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2831 (fs_info->system_alloc_profile &
2832 fs_info->avail_system_alloc_bits);
2833 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2834
2835 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2836 &sys_chunk_size, &sys_stripe_size,
2837 sys_chunk_offset, alloc_profile);
2838 BUG_ON(ret);
2839
2840 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2841 BUG_ON(ret);
2842
2843 /*
2844 * Modifying chunk tree needs allocating new blocks from both
2845 * system block group and metadata block group. So we only can
2846 * do operations require modifying the chunk tree after both
2847 * block groups were created.
2848 */
2849 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2850 chunk_size, stripe_size);
2851 BUG_ON(ret);
2852
2853 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2854 sys_chunk_offset, sys_chunk_size,
2855 sys_stripe_size);
2856 BUG_ON(ret);
2857 return 0;
2858 }
2859
2860 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2861 {
2862 struct extent_map *em;
2863 struct map_lookup *map;
2864 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2865 int readonly = 0;
2866 int i;
2867
2868 read_lock(&map_tree->map_tree.lock);
2869 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2870 read_unlock(&map_tree->map_tree.lock);
2871 if (!em)
2872 return 1;
2873
2874 if (btrfs_test_opt(root, DEGRADED)) {
2875 free_extent_map(em);
2876 return 0;
2877 }
2878
2879 map = (struct map_lookup *)em->bdev;
2880 for (i = 0; i < map->num_stripes; i++) {
2881 if (!map->stripes[i].dev->writeable) {
2882 readonly = 1;
2883 break;
2884 }
2885 }
2886 free_extent_map(em);
2887 return readonly;
2888 }
2889
2890 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2891 {
2892 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2893 }
2894
2895 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2896 {
2897 struct extent_map *em;
2898
2899 while (1) {
2900 write_lock(&tree->map_tree.lock);
2901 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2902 if (em)
2903 remove_extent_mapping(&tree->map_tree, em);
2904 write_unlock(&tree->map_tree.lock);
2905 if (!em)
2906 break;
2907 kfree(em->bdev);
2908 /* once for us */
2909 free_extent_map(em);
2910 /* once for the tree */
2911 free_extent_map(em);
2912 }
2913 }
2914
2915 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2916 {
2917 struct extent_map *em;
2918 struct map_lookup *map;
2919 struct extent_map_tree *em_tree = &map_tree->map_tree;
2920 int ret;
2921
2922 read_lock(&em_tree->lock);
2923 em = lookup_extent_mapping(em_tree, logical, len);
2924 read_unlock(&em_tree->lock);
2925 BUG_ON(!em);
2926
2927 BUG_ON(em->start > logical || em->start + em->len < logical);
2928 map = (struct map_lookup *)em->bdev;
2929 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2930 ret = map->num_stripes;
2931 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2932 ret = map->sub_stripes;
2933 else
2934 ret = 1;
2935 free_extent_map(em);
2936 return ret;
2937 }
2938
2939 static int find_live_mirror(struct map_lookup *map, int first, int num,
2940 int optimal)
2941 {
2942 int i;
2943 if (map->stripes[optimal].dev->bdev)
2944 return optimal;
2945 for (i = first; i < first + num; i++) {
2946 if (map->stripes[i].dev->bdev)
2947 return i;
2948 }
2949 /* we couldn't find one that doesn't fail. Just return something
2950 * and the io error handling code will clean up eventually
2951 */
2952 return optimal;
2953 }
2954
2955 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2956 u64 logical, u64 *length,
2957 struct btrfs_multi_bio **multi_ret,
2958 int mirror_num, struct page *unplug_page)
2959 {
2960 struct extent_map *em;
2961 struct map_lookup *map;
2962 struct extent_map_tree *em_tree = &map_tree->map_tree;
2963 u64 offset;
2964 u64 stripe_offset;
2965 u64 stripe_nr;
2966 int stripes_allocated = 8;
2967 int stripes_required = 1;
2968 int stripe_index;
2969 int i;
2970 int num_stripes;
2971 int max_errors = 0;
2972 struct btrfs_multi_bio *multi = NULL;
2973
2974 if (multi_ret && !(rw & REQ_WRITE))
2975 stripes_allocated = 1;
2976 again:
2977 if (multi_ret) {
2978 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2979 GFP_NOFS);
2980 if (!multi)
2981 return -ENOMEM;
2982
2983 atomic_set(&multi->error, 0);
2984 }
2985
2986 read_lock(&em_tree->lock);
2987 em = lookup_extent_mapping(em_tree, logical, *length);
2988 read_unlock(&em_tree->lock);
2989
2990 if (!em && unplug_page) {
2991 kfree(multi);
2992 return 0;
2993 }
2994
2995 if (!em) {
2996 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2997 (unsigned long long)logical,
2998 (unsigned long long)*length);
2999 BUG();
3000 }
3001
3002 BUG_ON(em->start > logical || em->start + em->len < logical);
3003 map = (struct map_lookup *)em->bdev;
3004 offset = logical - em->start;
3005
3006 if (mirror_num > map->num_stripes)
3007 mirror_num = 0;
3008
3009 /* if our multi bio struct is too small, back off and try again */
3010 if (rw & REQ_WRITE) {
3011 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3012 BTRFS_BLOCK_GROUP_DUP)) {
3013 stripes_required = map->num_stripes;
3014 max_errors = 1;
3015 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3016 stripes_required = map->sub_stripes;
3017 max_errors = 1;
3018 }
3019 }
3020 if (multi_ret && (rw & REQ_WRITE) &&
3021 stripes_allocated < stripes_required) {
3022 stripes_allocated = map->num_stripes;
3023 free_extent_map(em);
3024 kfree(multi);
3025 goto again;
3026 }
3027 stripe_nr = offset;
3028 /*
3029 * stripe_nr counts the total number of stripes we have to stride
3030 * to get to this block
3031 */
3032 do_div(stripe_nr, map->stripe_len);
3033
3034 stripe_offset = stripe_nr * map->stripe_len;
3035 BUG_ON(offset < stripe_offset);
3036
3037 /* stripe_offset is the offset of this block in its stripe*/
3038 stripe_offset = offset - stripe_offset;
3039
3040 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
3041 BTRFS_BLOCK_GROUP_RAID10 |
3042 BTRFS_BLOCK_GROUP_DUP)) {
3043 /* we limit the length of each bio to what fits in a stripe */
3044 *length = min_t(u64, em->len - offset,
3045 map->stripe_len - stripe_offset);
3046 } else {
3047 *length = em->len - offset;
3048 }
3049
3050 if (!multi_ret && !unplug_page)
3051 goto out;
3052
3053 num_stripes = 1;
3054 stripe_index = 0;
3055 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3056 if (unplug_page || (rw & REQ_WRITE))
3057 num_stripes = map->num_stripes;
3058 else if (mirror_num)
3059 stripe_index = mirror_num - 1;
3060 else {
3061 stripe_index = find_live_mirror(map, 0,
3062 map->num_stripes,
3063 current->pid % map->num_stripes);
3064 }
3065
3066 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3067 if (rw & REQ_WRITE)
3068 num_stripes = map->num_stripes;
3069 else if (mirror_num)
3070 stripe_index = mirror_num - 1;
3071
3072 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3073 int factor = map->num_stripes / map->sub_stripes;
3074
3075 stripe_index = do_div(stripe_nr, factor);
3076 stripe_index *= map->sub_stripes;
3077
3078 if (unplug_page || (rw & REQ_WRITE))
3079 num_stripes = map->sub_stripes;
3080 else if (mirror_num)
3081 stripe_index += mirror_num - 1;
3082 else {
3083 stripe_index = find_live_mirror(map, stripe_index,
3084 map->sub_stripes, stripe_index +
3085 current->pid % map->sub_stripes);
3086 }
3087 } else {
3088 /*
3089 * after this do_div call, stripe_nr is the number of stripes
3090 * on this device we have to walk to find the data, and
3091 * stripe_index is the number of our device in the stripe array
3092 */
3093 stripe_index = do_div(stripe_nr, map->num_stripes);
3094 }
3095 BUG_ON(stripe_index >= map->num_stripes);
3096
3097 for (i = 0; i < num_stripes; i++) {
3098 if (unplug_page) {
3099 struct btrfs_device *device;
3100 struct backing_dev_info *bdi;
3101
3102 device = map->stripes[stripe_index].dev;
3103 if (device->bdev) {
3104 bdi = blk_get_backing_dev_info(device->bdev);
3105 if (bdi->unplug_io_fn)
3106 bdi->unplug_io_fn(bdi, unplug_page);
3107 }
3108 } else {
3109 multi->stripes[i].physical =
3110 map->stripes[stripe_index].physical +
3111 stripe_offset + stripe_nr * map->stripe_len;
3112 multi->stripes[i].dev = map->stripes[stripe_index].dev;
3113 }
3114 stripe_index++;
3115 }
3116 if (multi_ret) {
3117 *multi_ret = multi;
3118 multi->num_stripes = num_stripes;
3119 multi->max_errors = max_errors;
3120 }
3121 out:
3122 free_extent_map(em);
3123 return 0;
3124 }
3125
3126 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3127 u64 logical, u64 *length,
3128 struct btrfs_multi_bio **multi_ret, int mirror_num)
3129 {
3130 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
3131 mirror_num, NULL);
3132 }
3133
3134 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3135 u64 chunk_start, u64 physical, u64 devid,
3136 u64 **logical, int *naddrs, int *stripe_len)
3137 {
3138 struct extent_map_tree *em_tree = &map_tree->map_tree;
3139 struct extent_map *em;
3140 struct map_lookup *map;
3141 u64 *buf;
3142 u64 bytenr;
3143 u64 length;
3144 u64 stripe_nr;
3145 int i, j, nr = 0;
3146
3147 read_lock(&em_tree->lock);
3148 em = lookup_extent_mapping(em_tree, chunk_start, 1);
3149 read_unlock(&em_tree->lock);
3150
3151 BUG_ON(!em || em->start != chunk_start);
3152 map = (struct map_lookup *)em->bdev;
3153
3154 length = em->len;
3155 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3156 do_div(length, map->num_stripes / map->sub_stripes);
3157 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3158 do_div(length, map->num_stripes);
3159
3160 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3161 BUG_ON(!buf);
3162
3163 for (i = 0; i < map->num_stripes; i++) {
3164 if (devid && map->stripes[i].dev->devid != devid)
3165 continue;
3166 if (map->stripes[i].physical > physical ||
3167 map->stripes[i].physical + length <= physical)
3168 continue;
3169
3170 stripe_nr = physical - map->stripes[i].physical;
3171 do_div(stripe_nr, map->stripe_len);
3172
3173 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3174 stripe_nr = stripe_nr * map->num_stripes + i;
3175 do_div(stripe_nr, map->sub_stripes);
3176 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3177 stripe_nr = stripe_nr * map->num_stripes + i;
3178 }
3179 bytenr = chunk_start + stripe_nr * map->stripe_len;
3180 WARN_ON(nr >= map->num_stripes);
3181 for (j = 0; j < nr; j++) {
3182 if (buf[j] == bytenr)
3183 break;
3184 }
3185 if (j == nr) {
3186 WARN_ON(nr >= map->num_stripes);
3187 buf[nr++] = bytenr;
3188 }
3189 }
3190
3191 *logical = buf;
3192 *naddrs = nr;
3193 *stripe_len = map->stripe_len;
3194
3195 free_extent_map(em);
3196 return 0;
3197 }
3198
3199 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
3200 u64 logical, struct page *page)
3201 {
3202 u64 length = PAGE_CACHE_SIZE;
3203 return __btrfs_map_block(map_tree, READ, logical, &length,
3204 NULL, 0, page);
3205 }
3206
3207 static void end_bio_multi_stripe(struct bio *bio, int err)
3208 {
3209 struct btrfs_multi_bio *multi = bio->bi_private;
3210 int is_orig_bio = 0;
3211
3212 if (err)
3213 atomic_inc(&multi->error);
3214
3215 if (bio == multi->orig_bio)
3216 is_orig_bio = 1;
3217
3218 if (atomic_dec_and_test(&multi->stripes_pending)) {
3219 if (!is_orig_bio) {
3220 bio_put(bio);
3221 bio = multi->orig_bio;
3222 }
3223 bio->bi_private = multi->private;
3224 bio->bi_end_io = multi->end_io;
3225 /* only send an error to the higher layers if it is
3226 * beyond the tolerance of the multi-bio
3227 */
3228 if (atomic_read(&multi->error) > multi->max_errors) {
3229 err = -EIO;
3230 } else if (err) {
3231 /*
3232 * this bio is actually up to date, we didn't
3233 * go over the max number of errors
3234 */
3235 set_bit(BIO_UPTODATE, &bio->bi_flags);
3236 err = 0;
3237 }
3238 kfree(multi);
3239
3240 bio_endio(bio, err);
3241 } else if (!is_orig_bio) {
3242 bio_put(bio);
3243 }
3244 }
3245
3246 struct async_sched {
3247 struct bio *bio;
3248 int rw;
3249 struct btrfs_fs_info *info;
3250 struct btrfs_work work;
3251 };
3252
3253 /*
3254 * see run_scheduled_bios for a description of why bios are collected for
3255 * async submit.
3256 *
3257 * This will add one bio to the pending list for a device and make sure
3258 * the work struct is scheduled.
3259 */
3260 static noinline int schedule_bio(struct btrfs_root *root,
3261 struct btrfs_device *device,
3262 int rw, struct bio *bio)
3263 {
3264 int should_queue = 1;
3265 struct btrfs_pending_bios *pending_bios;
3266
3267 /* don't bother with additional async steps for reads, right now */
3268 if (!(rw & REQ_WRITE)) {
3269 bio_get(bio);
3270 submit_bio(rw, bio);
3271 bio_put(bio);
3272 return 0;
3273 }
3274
3275 /*
3276 * nr_async_bios allows us to reliably return congestion to the
3277 * higher layers. Otherwise, the async bio makes it appear we have
3278 * made progress against dirty pages when we've really just put it
3279 * on a queue for later
3280 */
3281 atomic_inc(&root->fs_info->nr_async_bios);
3282 WARN_ON(bio->bi_next);
3283 bio->bi_next = NULL;
3284 bio->bi_rw |= rw;
3285
3286 spin_lock(&device->io_lock);
3287 if (bio->bi_rw & REQ_SYNC)
3288 pending_bios = &device->pending_sync_bios;
3289 else
3290 pending_bios = &device->pending_bios;
3291
3292 if (pending_bios->tail)
3293 pending_bios->tail->bi_next = bio;
3294
3295 pending_bios->tail = bio;
3296 if (!pending_bios->head)
3297 pending_bios->head = bio;
3298 if (device->running_pending)
3299 should_queue = 0;
3300
3301 spin_unlock(&device->io_lock);
3302
3303 if (should_queue)
3304 btrfs_queue_worker(&root->fs_info->submit_workers,
3305 &device->work);
3306 return 0;
3307 }
3308
3309 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
3310 int mirror_num, int async_submit)
3311 {
3312 struct btrfs_mapping_tree *map_tree;
3313 struct btrfs_device *dev;
3314 struct bio *first_bio = bio;
3315 u64 logical = (u64)bio->bi_sector << 9;
3316 u64 length = 0;
3317 u64 map_length;
3318 struct btrfs_multi_bio *multi = NULL;
3319 int ret;
3320 int dev_nr = 0;
3321 int total_devs = 1;
3322
3323 length = bio->bi_size;
3324 map_tree = &root->fs_info->mapping_tree;
3325 map_length = length;
3326
3327 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3328 mirror_num);
3329 BUG_ON(ret);
3330
3331 total_devs = multi->num_stripes;
3332 if (map_length < length) {
3333 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3334 "len %llu\n", (unsigned long long)logical,
3335 (unsigned long long)length,
3336 (unsigned long long)map_length);
3337 BUG();
3338 }
3339 multi->end_io = first_bio->bi_end_io;
3340 multi->private = first_bio->bi_private;
3341 multi->orig_bio = first_bio;
3342 atomic_set(&multi->stripes_pending, multi->num_stripes);
3343
3344 while (dev_nr < total_devs) {
3345 if (total_devs > 1) {
3346 if (dev_nr < total_devs - 1) {
3347 bio = bio_clone(first_bio, GFP_NOFS);
3348 BUG_ON(!bio);
3349 } else {
3350 bio = first_bio;
3351 }
3352 bio->bi_private = multi;
3353 bio->bi_end_io = end_bio_multi_stripe;
3354 }
3355 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3356 dev = multi->stripes[dev_nr].dev;
3357 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
3358 bio->bi_bdev = dev->bdev;
3359 if (async_submit)
3360 schedule_bio(root, dev, rw, bio);
3361 else
3362 submit_bio(rw, bio);
3363 } else {
3364 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3365 bio->bi_sector = logical >> 9;
3366 bio_endio(bio, -EIO);
3367 }
3368 dev_nr++;
3369 }
3370 if (total_devs == 1)
3371 kfree(multi);
3372 return 0;
3373 }
3374
3375 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3376 u8 *uuid, u8 *fsid)
3377 {
3378 struct btrfs_device *device;
3379 struct btrfs_fs_devices *cur_devices;
3380
3381 cur_devices = root->fs_info->fs_devices;
3382 while (cur_devices) {
3383 if (!fsid ||
3384 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3385 device = __find_device(&cur_devices->devices,
3386 devid, uuid);
3387 if (device)
3388 return device;
3389 }
3390 cur_devices = cur_devices->seed;
3391 }
3392 return NULL;
3393 }
3394
3395 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3396 u64 devid, u8 *dev_uuid)
3397 {
3398 struct btrfs_device *device;
3399 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3400
3401 device = kzalloc(sizeof(*device), GFP_NOFS);
3402 if (!device)
3403 return NULL;
3404 list_add(&device->dev_list,
3405 &fs_devices->devices);
3406 device->dev_root = root->fs_info->dev_root;
3407 device->devid = devid;
3408 device->work.func = pending_bios_fn;
3409 device->fs_devices = fs_devices;
3410 device->missing = 1;
3411 fs_devices->num_devices++;
3412 fs_devices->missing_devices++;
3413 spin_lock_init(&device->io_lock);
3414 INIT_LIST_HEAD(&device->dev_alloc_list);
3415 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3416 return device;
3417 }
3418
3419 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3420 struct extent_buffer *leaf,
3421 struct btrfs_chunk *chunk)
3422 {
3423 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3424 struct map_lookup *map;
3425 struct extent_map *em;
3426 u64 logical;
3427 u64 length;
3428 u64 devid;
3429 u8 uuid[BTRFS_UUID_SIZE];
3430 int num_stripes;
3431 int ret;
3432 int i;
3433
3434 logical = key->offset;
3435 length = btrfs_chunk_length(leaf, chunk);
3436
3437 read_lock(&map_tree->map_tree.lock);
3438 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3439 read_unlock(&map_tree->map_tree.lock);
3440
3441 /* already mapped? */
3442 if (em && em->start <= logical && em->start + em->len > logical) {
3443 free_extent_map(em);
3444 return 0;
3445 } else if (em) {
3446 free_extent_map(em);
3447 }
3448
3449 em = alloc_extent_map(GFP_NOFS);
3450 if (!em)
3451 return -ENOMEM;
3452 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3453 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3454 if (!map) {
3455 free_extent_map(em);
3456 return -ENOMEM;
3457 }
3458
3459 em->bdev = (struct block_device *)map;
3460 em->start = logical;
3461 em->len = length;
3462 em->block_start = 0;
3463 em->block_len = em->len;
3464
3465 map->num_stripes = num_stripes;
3466 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3467 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3468 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3469 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3470 map->type = btrfs_chunk_type(leaf, chunk);
3471 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3472 for (i = 0; i < num_stripes; i++) {
3473 map->stripes[i].physical =
3474 btrfs_stripe_offset_nr(leaf, chunk, i);
3475 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3476 read_extent_buffer(leaf, uuid, (unsigned long)
3477 btrfs_stripe_dev_uuid_nr(chunk, i),
3478 BTRFS_UUID_SIZE);
3479 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3480 NULL);
3481 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3482 kfree(map);
3483 free_extent_map(em);
3484 return -EIO;
3485 }
3486 if (!map->stripes[i].dev) {
3487 map->stripes[i].dev =
3488 add_missing_dev(root, devid, uuid);
3489 if (!map->stripes[i].dev) {
3490 kfree(map);
3491 free_extent_map(em);
3492 return -EIO;
3493 }
3494 }
3495 map->stripes[i].dev->in_fs_metadata = 1;
3496 }
3497
3498 write_lock(&map_tree->map_tree.lock);
3499 ret = add_extent_mapping(&map_tree->map_tree, em);
3500 write_unlock(&map_tree->map_tree.lock);
3501 BUG_ON(ret);
3502 free_extent_map(em);
3503
3504 return 0;
3505 }
3506
3507 static int fill_device_from_item(struct extent_buffer *leaf,
3508 struct btrfs_dev_item *dev_item,
3509 struct btrfs_device *device)
3510 {
3511 unsigned long ptr;
3512
3513 device->devid = btrfs_device_id(leaf, dev_item);
3514 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3515 device->total_bytes = device->disk_total_bytes;
3516 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3517 device->type = btrfs_device_type(leaf, dev_item);
3518 device->io_align = btrfs_device_io_align(leaf, dev_item);
3519 device->io_width = btrfs_device_io_width(leaf, dev_item);
3520 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3521
3522 ptr = (unsigned long)btrfs_device_uuid(dev_item);
3523 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3524
3525 return 0;
3526 }
3527
3528 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3529 {
3530 struct btrfs_fs_devices *fs_devices;
3531 int ret;
3532
3533 mutex_lock(&uuid_mutex);
3534
3535 fs_devices = root->fs_info->fs_devices->seed;
3536 while (fs_devices) {
3537 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3538 ret = 0;
3539 goto out;
3540 }
3541 fs_devices = fs_devices->seed;
3542 }
3543
3544 fs_devices = find_fsid(fsid);
3545 if (!fs_devices) {
3546 ret = -ENOENT;
3547 goto out;
3548 }
3549
3550 fs_devices = clone_fs_devices(fs_devices);
3551 if (IS_ERR(fs_devices)) {
3552 ret = PTR_ERR(fs_devices);
3553 goto out;
3554 }
3555
3556 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3557 root->fs_info->bdev_holder);
3558 if (ret)
3559 goto out;
3560
3561 if (!fs_devices->seeding) {
3562 __btrfs_close_devices(fs_devices);
3563 free_fs_devices(fs_devices);
3564 ret = -EINVAL;
3565 goto out;
3566 }
3567
3568 fs_devices->seed = root->fs_info->fs_devices->seed;
3569 root->fs_info->fs_devices->seed = fs_devices;
3570 out:
3571 mutex_unlock(&uuid_mutex);
3572 return ret;
3573 }
3574
3575 static int read_one_dev(struct btrfs_root *root,
3576 struct extent_buffer *leaf,
3577 struct btrfs_dev_item *dev_item)
3578 {
3579 struct btrfs_device *device;
3580 u64 devid;
3581 int ret;
3582 u8 fs_uuid[BTRFS_UUID_SIZE];
3583 u8 dev_uuid[BTRFS_UUID_SIZE];
3584
3585 devid = btrfs_device_id(leaf, dev_item);
3586 read_extent_buffer(leaf, dev_uuid,
3587 (unsigned long)btrfs_device_uuid(dev_item),
3588 BTRFS_UUID_SIZE);
3589 read_extent_buffer(leaf, fs_uuid,
3590 (unsigned long)btrfs_device_fsid(dev_item),
3591 BTRFS_UUID_SIZE);
3592
3593 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3594 ret = open_seed_devices(root, fs_uuid);
3595 if (ret && !btrfs_test_opt(root, DEGRADED))
3596 return ret;
3597 }
3598
3599 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3600 if (!device || !device->bdev) {
3601 if (!btrfs_test_opt(root, DEGRADED))
3602 return -EIO;
3603
3604 if (!device) {
3605 printk(KERN_WARNING "warning devid %llu missing\n",
3606 (unsigned long long)devid);
3607 device = add_missing_dev(root, devid, dev_uuid);
3608 if (!device)
3609 return -ENOMEM;
3610 } else if (!device->missing) {
3611 /*
3612 * this happens when a device that was properly setup
3613 * in the device info lists suddenly goes bad.
3614 * device->bdev is NULL, and so we have to set
3615 * device->missing to one here
3616 */
3617 root->fs_info->fs_devices->missing_devices++;
3618 device->missing = 1;
3619 }
3620 }
3621
3622 if (device->fs_devices != root->fs_info->fs_devices) {
3623 BUG_ON(device->writeable);
3624 if (device->generation !=
3625 btrfs_device_generation(leaf, dev_item))
3626 return -EINVAL;
3627 }
3628
3629 fill_device_from_item(leaf, dev_item, device);
3630 device->dev_root = root->fs_info->dev_root;
3631 device->in_fs_metadata = 1;
3632 if (device->writeable)
3633 device->fs_devices->total_rw_bytes += device->total_bytes;
3634 ret = 0;
3635 return ret;
3636 }
3637
3638 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3639 {
3640 struct btrfs_dev_item *dev_item;
3641
3642 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3643 dev_item);
3644 return read_one_dev(root, buf, dev_item);
3645 }
3646
3647 int btrfs_read_sys_array(struct btrfs_root *root)
3648 {
3649 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3650 struct extent_buffer *sb;
3651 struct btrfs_disk_key *disk_key;
3652 struct btrfs_chunk *chunk;
3653 u8 *ptr;
3654 unsigned long sb_ptr;
3655 int ret = 0;
3656 u32 num_stripes;
3657 u32 array_size;
3658 u32 len = 0;
3659 u32 cur;
3660 struct btrfs_key key;
3661
3662 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3663 BTRFS_SUPER_INFO_SIZE);
3664 if (!sb)
3665 return -ENOMEM;
3666 btrfs_set_buffer_uptodate(sb);
3667 btrfs_set_buffer_lockdep_class(sb, 0);
3668
3669 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3670 array_size = btrfs_super_sys_array_size(super_copy);
3671
3672 ptr = super_copy->sys_chunk_array;
3673 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3674 cur = 0;
3675
3676 while (cur < array_size) {
3677 disk_key = (struct btrfs_disk_key *)ptr;
3678 btrfs_disk_key_to_cpu(&key, disk_key);
3679
3680 len = sizeof(*disk_key); ptr += len;
3681 sb_ptr += len;
3682 cur += len;
3683
3684 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3685 chunk = (struct btrfs_chunk *)sb_ptr;
3686 ret = read_one_chunk(root, &key, sb, chunk);
3687 if (ret)
3688 break;
3689 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3690 len = btrfs_chunk_item_size(num_stripes);
3691 } else {
3692 ret = -EIO;
3693 break;
3694 }
3695 ptr += len;
3696 sb_ptr += len;
3697 cur += len;
3698 }
3699 free_extent_buffer(sb);
3700 return ret;
3701 }
3702
3703 int btrfs_read_chunk_tree(struct btrfs_root *root)
3704 {
3705 struct btrfs_path *path;
3706 struct extent_buffer *leaf;
3707 struct btrfs_key key;
3708 struct btrfs_key found_key;
3709 int ret;
3710 int slot;
3711
3712 root = root->fs_info->chunk_root;
3713
3714 path = btrfs_alloc_path();
3715 if (!path)
3716 return -ENOMEM;
3717
3718 /* first we search for all of the device items, and then we
3719 * read in all of the chunk items. This way we can create chunk
3720 * mappings that reference all of the devices that are afound
3721 */
3722 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3723 key.offset = 0;
3724 key.type = 0;
3725 again:
3726 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3727 if (ret < 0)
3728 goto error;
3729 while (1) {
3730 leaf = path->nodes[0];
3731 slot = path->slots[0];
3732 if (slot >= btrfs_header_nritems(leaf)) {
3733 ret = btrfs_next_leaf(root, path);
3734 if (ret == 0)
3735 continue;
3736 if (ret < 0)
3737 goto error;
3738 break;
3739 }
3740 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3741 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3742 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3743 break;
3744 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3745 struct btrfs_dev_item *dev_item;
3746 dev_item = btrfs_item_ptr(leaf, slot,
3747 struct btrfs_dev_item);
3748 ret = read_one_dev(root, leaf, dev_item);
3749 if (ret)
3750 goto error;
3751 }
3752 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3753 struct btrfs_chunk *chunk;
3754 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3755 ret = read_one_chunk(root, &found_key, leaf, chunk);
3756 if (ret)
3757 goto error;
3758 }
3759 path->slots[0]++;
3760 }
3761 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3762 key.objectid = 0;
3763 btrfs_release_path(root, path);
3764 goto again;
3765 }
3766 ret = 0;
3767 error:
3768 btrfs_free_path(path);
3769 return ret;
3770 }
This page took 0.101526 seconds and 6 git commands to generate.