Btrfs: Fix wrong free_chunk_space assignment during removing a device
[deliverable/linux.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52
53 static DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55
56 static void lock_chunks(struct btrfs_root *root)
57 {
58 mutex_lock(&root->fs_info->chunk_mutex);
59 }
60
61 static void unlock_chunks(struct btrfs_root *root)
62 {
63 mutex_unlock(&root->fs_info->chunk_mutex);
64 }
65
66 static struct btrfs_fs_devices *__alloc_fs_devices(void)
67 {
68 struct btrfs_fs_devices *fs_devs;
69
70 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
71 if (!fs_devs)
72 return ERR_PTR(-ENOMEM);
73
74 mutex_init(&fs_devs->device_list_mutex);
75
76 INIT_LIST_HEAD(&fs_devs->devices);
77 INIT_LIST_HEAD(&fs_devs->resized_devices);
78 INIT_LIST_HEAD(&fs_devs->alloc_list);
79 INIT_LIST_HEAD(&fs_devs->list);
80
81 return fs_devs;
82 }
83
84 /**
85 * alloc_fs_devices - allocate struct btrfs_fs_devices
86 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
87 * generated.
88 *
89 * Return: a pointer to a new &struct btrfs_fs_devices on success;
90 * ERR_PTR() on error. Returned struct is not linked onto any lists and
91 * can be destroyed with kfree() right away.
92 */
93 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
94 {
95 struct btrfs_fs_devices *fs_devs;
96
97 fs_devs = __alloc_fs_devices();
98 if (IS_ERR(fs_devs))
99 return fs_devs;
100
101 if (fsid)
102 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
103 else
104 generate_random_uuid(fs_devs->fsid);
105
106 return fs_devs;
107 }
108
109 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
110 {
111 struct btrfs_device *device;
112 WARN_ON(fs_devices->opened);
113 while (!list_empty(&fs_devices->devices)) {
114 device = list_entry(fs_devices->devices.next,
115 struct btrfs_device, dev_list);
116 list_del(&device->dev_list);
117 rcu_string_free(device->name);
118 kfree(device);
119 }
120 kfree(fs_devices);
121 }
122
123 static void btrfs_kobject_uevent(struct block_device *bdev,
124 enum kobject_action action)
125 {
126 int ret;
127
128 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
129 if (ret)
130 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
131 action,
132 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
133 &disk_to_dev(bdev->bd_disk)->kobj);
134 }
135
136 void btrfs_cleanup_fs_uuids(void)
137 {
138 struct btrfs_fs_devices *fs_devices;
139
140 while (!list_empty(&fs_uuids)) {
141 fs_devices = list_entry(fs_uuids.next,
142 struct btrfs_fs_devices, list);
143 list_del(&fs_devices->list);
144 free_fs_devices(fs_devices);
145 }
146 }
147
148 static struct btrfs_device *__alloc_device(void)
149 {
150 struct btrfs_device *dev;
151
152 dev = kzalloc(sizeof(*dev), GFP_NOFS);
153 if (!dev)
154 return ERR_PTR(-ENOMEM);
155
156 INIT_LIST_HEAD(&dev->dev_list);
157 INIT_LIST_HEAD(&dev->dev_alloc_list);
158 INIT_LIST_HEAD(&dev->resized_list);
159
160 spin_lock_init(&dev->io_lock);
161
162 spin_lock_init(&dev->reada_lock);
163 atomic_set(&dev->reada_in_flight, 0);
164 atomic_set(&dev->dev_stats_ccnt, 0);
165 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
166 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
167
168 return dev;
169 }
170
171 static noinline struct btrfs_device *__find_device(struct list_head *head,
172 u64 devid, u8 *uuid)
173 {
174 struct btrfs_device *dev;
175
176 list_for_each_entry(dev, head, dev_list) {
177 if (dev->devid == devid &&
178 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
179 return dev;
180 }
181 }
182 return NULL;
183 }
184
185 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
186 {
187 struct btrfs_fs_devices *fs_devices;
188
189 list_for_each_entry(fs_devices, &fs_uuids, list) {
190 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
191 return fs_devices;
192 }
193 return NULL;
194 }
195
196 static int
197 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
198 int flush, struct block_device **bdev,
199 struct buffer_head **bh)
200 {
201 int ret;
202
203 *bdev = blkdev_get_by_path(device_path, flags, holder);
204
205 if (IS_ERR(*bdev)) {
206 ret = PTR_ERR(*bdev);
207 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
208 goto error;
209 }
210
211 if (flush)
212 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
213 ret = set_blocksize(*bdev, 4096);
214 if (ret) {
215 blkdev_put(*bdev, flags);
216 goto error;
217 }
218 invalidate_bdev(*bdev);
219 *bh = btrfs_read_dev_super(*bdev);
220 if (!*bh) {
221 ret = -EINVAL;
222 blkdev_put(*bdev, flags);
223 goto error;
224 }
225
226 return 0;
227
228 error:
229 *bdev = NULL;
230 *bh = NULL;
231 return ret;
232 }
233
234 static void requeue_list(struct btrfs_pending_bios *pending_bios,
235 struct bio *head, struct bio *tail)
236 {
237
238 struct bio *old_head;
239
240 old_head = pending_bios->head;
241 pending_bios->head = head;
242 if (pending_bios->tail)
243 tail->bi_next = old_head;
244 else
245 pending_bios->tail = tail;
246 }
247
248 /*
249 * we try to collect pending bios for a device so we don't get a large
250 * number of procs sending bios down to the same device. This greatly
251 * improves the schedulers ability to collect and merge the bios.
252 *
253 * But, it also turns into a long list of bios to process and that is sure
254 * to eventually make the worker thread block. The solution here is to
255 * make some progress and then put this work struct back at the end of
256 * the list if the block device is congested. This way, multiple devices
257 * can make progress from a single worker thread.
258 */
259 static noinline void run_scheduled_bios(struct btrfs_device *device)
260 {
261 struct bio *pending;
262 struct backing_dev_info *bdi;
263 struct btrfs_fs_info *fs_info;
264 struct btrfs_pending_bios *pending_bios;
265 struct bio *tail;
266 struct bio *cur;
267 int again = 0;
268 unsigned long num_run;
269 unsigned long batch_run = 0;
270 unsigned long limit;
271 unsigned long last_waited = 0;
272 int force_reg = 0;
273 int sync_pending = 0;
274 struct blk_plug plug;
275
276 /*
277 * this function runs all the bios we've collected for
278 * a particular device. We don't want to wander off to
279 * another device without first sending all of these down.
280 * So, setup a plug here and finish it off before we return
281 */
282 blk_start_plug(&plug);
283
284 bdi = blk_get_backing_dev_info(device->bdev);
285 fs_info = device->dev_root->fs_info;
286 limit = btrfs_async_submit_limit(fs_info);
287 limit = limit * 2 / 3;
288
289 loop:
290 spin_lock(&device->io_lock);
291
292 loop_lock:
293 num_run = 0;
294
295 /* take all the bios off the list at once and process them
296 * later on (without the lock held). But, remember the
297 * tail and other pointers so the bios can be properly reinserted
298 * into the list if we hit congestion
299 */
300 if (!force_reg && device->pending_sync_bios.head) {
301 pending_bios = &device->pending_sync_bios;
302 force_reg = 1;
303 } else {
304 pending_bios = &device->pending_bios;
305 force_reg = 0;
306 }
307
308 pending = pending_bios->head;
309 tail = pending_bios->tail;
310 WARN_ON(pending && !tail);
311
312 /*
313 * if pending was null this time around, no bios need processing
314 * at all and we can stop. Otherwise it'll loop back up again
315 * and do an additional check so no bios are missed.
316 *
317 * device->running_pending is used to synchronize with the
318 * schedule_bio code.
319 */
320 if (device->pending_sync_bios.head == NULL &&
321 device->pending_bios.head == NULL) {
322 again = 0;
323 device->running_pending = 0;
324 } else {
325 again = 1;
326 device->running_pending = 1;
327 }
328
329 pending_bios->head = NULL;
330 pending_bios->tail = NULL;
331
332 spin_unlock(&device->io_lock);
333
334 while (pending) {
335
336 rmb();
337 /* we want to work on both lists, but do more bios on the
338 * sync list than the regular list
339 */
340 if ((num_run > 32 &&
341 pending_bios != &device->pending_sync_bios &&
342 device->pending_sync_bios.head) ||
343 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
344 device->pending_bios.head)) {
345 spin_lock(&device->io_lock);
346 requeue_list(pending_bios, pending, tail);
347 goto loop_lock;
348 }
349
350 cur = pending;
351 pending = pending->bi_next;
352 cur->bi_next = NULL;
353
354 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
355 waitqueue_active(&fs_info->async_submit_wait))
356 wake_up(&fs_info->async_submit_wait);
357
358 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
359
360 /*
361 * if we're doing the sync list, record that our
362 * plug has some sync requests on it
363 *
364 * If we're doing the regular list and there are
365 * sync requests sitting around, unplug before
366 * we add more
367 */
368 if (pending_bios == &device->pending_sync_bios) {
369 sync_pending = 1;
370 } else if (sync_pending) {
371 blk_finish_plug(&plug);
372 blk_start_plug(&plug);
373 sync_pending = 0;
374 }
375
376 btrfsic_submit_bio(cur->bi_rw, cur);
377 num_run++;
378 batch_run++;
379 if (need_resched())
380 cond_resched();
381
382 /*
383 * we made progress, there is more work to do and the bdi
384 * is now congested. Back off and let other work structs
385 * run instead
386 */
387 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
388 fs_info->fs_devices->open_devices > 1) {
389 struct io_context *ioc;
390
391 ioc = current->io_context;
392
393 /*
394 * the main goal here is that we don't want to
395 * block if we're going to be able to submit
396 * more requests without blocking.
397 *
398 * This code does two great things, it pokes into
399 * the elevator code from a filesystem _and_
400 * it makes assumptions about how batching works.
401 */
402 if (ioc && ioc->nr_batch_requests > 0 &&
403 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
404 (last_waited == 0 ||
405 ioc->last_waited == last_waited)) {
406 /*
407 * we want to go through our batch of
408 * requests and stop. So, we copy out
409 * the ioc->last_waited time and test
410 * against it before looping
411 */
412 last_waited = ioc->last_waited;
413 if (need_resched())
414 cond_resched();
415 continue;
416 }
417 spin_lock(&device->io_lock);
418 requeue_list(pending_bios, pending, tail);
419 device->running_pending = 1;
420
421 spin_unlock(&device->io_lock);
422 btrfs_queue_work(fs_info->submit_workers,
423 &device->work);
424 goto done;
425 }
426 /* unplug every 64 requests just for good measure */
427 if (batch_run % 64 == 0) {
428 blk_finish_plug(&plug);
429 blk_start_plug(&plug);
430 sync_pending = 0;
431 }
432 }
433
434 cond_resched();
435 if (again)
436 goto loop;
437
438 spin_lock(&device->io_lock);
439 if (device->pending_bios.head || device->pending_sync_bios.head)
440 goto loop_lock;
441 spin_unlock(&device->io_lock);
442
443 done:
444 blk_finish_plug(&plug);
445 }
446
447 static void pending_bios_fn(struct btrfs_work *work)
448 {
449 struct btrfs_device *device;
450
451 device = container_of(work, struct btrfs_device, work);
452 run_scheduled_bios(device);
453 }
454
455 /*
456 * Add new device to list of registered devices
457 *
458 * Returns:
459 * 1 - first time device is seen
460 * 0 - device already known
461 * < 0 - error
462 */
463 static noinline int device_list_add(const char *path,
464 struct btrfs_super_block *disk_super,
465 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
466 {
467 struct btrfs_device *device;
468 struct btrfs_fs_devices *fs_devices;
469 struct rcu_string *name;
470 int ret = 0;
471 u64 found_transid = btrfs_super_generation(disk_super);
472
473 fs_devices = find_fsid(disk_super->fsid);
474 if (!fs_devices) {
475 fs_devices = alloc_fs_devices(disk_super->fsid);
476 if (IS_ERR(fs_devices))
477 return PTR_ERR(fs_devices);
478
479 list_add(&fs_devices->list, &fs_uuids);
480
481 device = NULL;
482 } else {
483 device = __find_device(&fs_devices->devices, devid,
484 disk_super->dev_item.uuid);
485 }
486
487 if (!device) {
488 if (fs_devices->opened)
489 return -EBUSY;
490
491 device = btrfs_alloc_device(NULL, &devid,
492 disk_super->dev_item.uuid);
493 if (IS_ERR(device)) {
494 /* we can safely leave the fs_devices entry around */
495 return PTR_ERR(device);
496 }
497
498 name = rcu_string_strdup(path, GFP_NOFS);
499 if (!name) {
500 kfree(device);
501 return -ENOMEM;
502 }
503 rcu_assign_pointer(device->name, name);
504
505 mutex_lock(&fs_devices->device_list_mutex);
506 list_add_rcu(&device->dev_list, &fs_devices->devices);
507 fs_devices->num_devices++;
508 mutex_unlock(&fs_devices->device_list_mutex);
509
510 ret = 1;
511 device->fs_devices = fs_devices;
512 } else if (!device->name || strcmp(device->name->str, path)) {
513 /*
514 * When FS is already mounted.
515 * 1. If you are here and if the device->name is NULL that
516 * means this device was missing at time of FS mount.
517 * 2. If you are here and if the device->name is different
518 * from 'path' that means either
519 * a. The same device disappeared and reappeared with
520 * different name. or
521 * b. The missing-disk-which-was-replaced, has
522 * reappeared now.
523 *
524 * We must allow 1 and 2a above. But 2b would be a spurious
525 * and unintentional.
526 *
527 * Further in case of 1 and 2a above, the disk at 'path'
528 * would have missed some transaction when it was away and
529 * in case of 2a the stale bdev has to be updated as well.
530 * 2b must not be allowed at all time.
531 */
532
533 /*
534 * As of now don't allow update to btrfs_fs_device through
535 * the btrfs dev scan cli, after FS has been mounted.
536 */
537 if (fs_devices->opened) {
538 return -EBUSY;
539 } else {
540 /*
541 * That is if the FS is _not_ mounted and if you
542 * are here, that means there is more than one
543 * disk with same uuid and devid.We keep the one
544 * with larger generation number or the last-in if
545 * generation are equal.
546 */
547 if (found_transid < device->generation)
548 return -EEXIST;
549 }
550
551 name = rcu_string_strdup(path, GFP_NOFS);
552 if (!name)
553 return -ENOMEM;
554 rcu_string_free(device->name);
555 rcu_assign_pointer(device->name, name);
556 if (device->missing) {
557 fs_devices->missing_devices--;
558 device->missing = 0;
559 }
560 }
561
562 /*
563 * Unmount does not free the btrfs_device struct but would zero
564 * generation along with most of the other members. So just update
565 * it back. We need it to pick the disk with largest generation
566 * (as above).
567 */
568 if (!fs_devices->opened)
569 device->generation = found_transid;
570
571 *fs_devices_ret = fs_devices;
572
573 return ret;
574 }
575
576 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
577 {
578 struct btrfs_fs_devices *fs_devices;
579 struct btrfs_device *device;
580 struct btrfs_device *orig_dev;
581
582 fs_devices = alloc_fs_devices(orig->fsid);
583 if (IS_ERR(fs_devices))
584 return fs_devices;
585
586 fs_devices->total_devices = orig->total_devices;
587
588 /* We have held the volume lock, it is safe to get the devices. */
589 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
590 struct rcu_string *name;
591
592 device = btrfs_alloc_device(NULL, &orig_dev->devid,
593 orig_dev->uuid);
594 if (IS_ERR(device))
595 goto error;
596
597 /*
598 * This is ok to do without rcu read locked because we hold the
599 * uuid mutex so nothing we touch in here is going to disappear.
600 */
601 if (orig_dev->name) {
602 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
603 if (!name) {
604 kfree(device);
605 goto error;
606 }
607 rcu_assign_pointer(device->name, name);
608 }
609
610 list_add(&device->dev_list, &fs_devices->devices);
611 device->fs_devices = fs_devices;
612 fs_devices->num_devices++;
613 }
614 return fs_devices;
615 error:
616 free_fs_devices(fs_devices);
617 return ERR_PTR(-ENOMEM);
618 }
619
620 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
621 struct btrfs_fs_devices *fs_devices, int step)
622 {
623 struct btrfs_device *device, *next;
624 struct btrfs_device *latest_dev = NULL;
625
626 mutex_lock(&uuid_mutex);
627 again:
628 /* This is the initialized path, it is safe to release the devices. */
629 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
630 if (device->in_fs_metadata) {
631 if (!device->is_tgtdev_for_dev_replace &&
632 (!latest_dev ||
633 device->generation > latest_dev->generation)) {
634 latest_dev = device;
635 }
636 continue;
637 }
638
639 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
640 /*
641 * In the first step, keep the device which has
642 * the correct fsid and the devid that is used
643 * for the dev_replace procedure.
644 * In the second step, the dev_replace state is
645 * read from the device tree and it is known
646 * whether the procedure is really active or
647 * not, which means whether this device is
648 * used or whether it should be removed.
649 */
650 if (step == 0 || device->is_tgtdev_for_dev_replace) {
651 continue;
652 }
653 }
654 if (device->bdev) {
655 blkdev_put(device->bdev, device->mode);
656 device->bdev = NULL;
657 fs_devices->open_devices--;
658 }
659 if (device->writeable) {
660 list_del_init(&device->dev_alloc_list);
661 device->writeable = 0;
662 if (!device->is_tgtdev_for_dev_replace)
663 fs_devices->rw_devices--;
664 }
665 list_del_init(&device->dev_list);
666 fs_devices->num_devices--;
667 rcu_string_free(device->name);
668 kfree(device);
669 }
670
671 if (fs_devices->seed) {
672 fs_devices = fs_devices->seed;
673 goto again;
674 }
675
676 fs_devices->latest_bdev = latest_dev->bdev;
677
678 mutex_unlock(&uuid_mutex);
679 }
680
681 static void __free_device(struct work_struct *work)
682 {
683 struct btrfs_device *device;
684
685 device = container_of(work, struct btrfs_device, rcu_work);
686
687 if (device->bdev)
688 blkdev_put(device->bdev, device->mode);
689
690 rcu_string_free(device->name);
691 kfree(device);
692 }
693
694 static void free_device(struct rcu_head *head)
695 {
696 struct btrfs_device *device;
697
698 device = container_of(head, struct btrfs_device, rcu);
699
700 INIT_WORK(&device->rcu_work, __free_device);
701 schedule_work(&device->rcu_work);
702 }
703
704 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
705 {
706 struct btrfs_device *device;
707
708 if (--fs_devices->opened > 0)
709 return 0;
710
711 mutex_lock(&fs_devices->device_list_mutex);
712 list_for_each_entry(device, &fs_devices->devices, dev_list) {
713 struct btrfs_device *new_device;
714 struct rcu_string *name;
715
716 if (device->bdev)
717 fs_devices->open_devices--;
718
719 if (device->writeable &&
720 device->devid != BTRFS_DEV_REPLACE_DEVID) {
721 list_del_init(&device->dev_alloc_list);
722 fs_devices->rw_devices--;
723 }
724
725 if (device->missing)
726 fs_devices->missing_devices--;
727
728 new_device = btrfs_alloc_device(NULL, &device->devid,
729 device->uuid);
730 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
731
732 /* Safe because we are under uuid_mutex */
733 if (device->name) {
734 name = rcu_string_strdup(device->name->str, GFP_NOFS);
735 BUG_ON(!name); /* -ENOMEM */
736 rcu_assign_pointer(new_device->name, name);
737 }
738
739 list_replace_rcu(&device->dev_list, &new_device->dev_list);
740 new_device->fs_devices = device->fs_devices;
741
742 call_rcu(&device->rcu, free_device);
743 }
744 mutex_unlock(&fs_devices->device_list_mutex);
745
746 WARN_ON(fs_devices->open_devices);
747 WARN_ON(fs_devices->rw_devices);
748 fs_devices->opened = 0;
749 fs_devices->seeding = 0;
750
751 return 0;
752 }
753
754 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
755 {
756 struct btrfs_fs_devices *seed_devices = NULL;
757 int ret;
758
759 mutex_lock(&uuid_mutex);
760 ret = __btrfs_close_devices(fs_devices);
761 if (!fs_devices->opened) {
762 seed_devices = fs_devices->seed;
763 fs_devices->seed = NULL;
764 }
765 mutex_unlock(&uuid_mutex);
766
767 while (seed_devices) {
768 fs_devices = seed_devices;
769 seed_devices = fs_devices->seed;
770 __btrfs_close_devices(fs_devices);
771 free_fs_devices(fs_devices);
772 }
773 /*
774 * Wait for rcu kworkers under __btrfs_close_devices
775 * to finish all blkdev_puts so device is really
776 * free when umount is done.
777 */
778 rcu_barrier();
779 return ret;
780 }
781
782 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
783 fmode_t flags, void *holder)
784 {
785 struct request_queue *q;
786 struct block_device *bdev;
787 struct list_head *head = &fs_devices->devices;
788 struct btrfs_device *device;
789 struct btrfs_device *latest_dev = NULL;
790 struct buffer_head *bh;
791 struct btrfs_super_block *disk_super;
792 u64 devid;
793 int seeding = 1;
794 int ret = 0;
795
796 flags |= FMODE_EXCL;
797
798 list_for_each_entry(device, head, dev_list) {
799 if (device->bdev)
800 continue;
801 if (!device->name)
802 continue;
803
804 /* Just open everything we can; ignore failures here */
805 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
806 &bdev, &bh))
807 continue;
808
809 disk_super = (struct btrfs_super_block *)bh->b_data;
810 devid = btrfs_stack_device_id(&disk_super->dev_item);
811 if (devid != device->devid)
812 goto error_brelse;
813
814 if (memcmp(device->uuid, disk_super->dev_item.uuid,
815 BTRFS_UUID_SIZE))
816 goto error_brelse;
817
818 device->generation = btrfs_super_generation(disk_super);
819 if (!latest_dev ||
820 device->generation > latest_dev->generation)
821 latest_dev = device;
822
823 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
824 device->writeable = 0;
825 } else {
826 device->writeable = !bdev_read_only(bdev);
827 seeding = 0;
828 }
829
830 q = bdev_get_queue(bdev);
831 if (blk_queue_discard(q))
832 device->can_discard = 1;
833
834 device->bdev = bdev;
835 device->in_fs_metadata = 0;
836 device->mode = flags;
837
838 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
839 fs_devices->rotating = 1;
840
841 fs_devices->open_devices++;
842 if (device->writeable &&
843 device->devid != BTRFS_DEV_REPLACE_DEVID) {
844 fs_devices->rw_devices++;
845 list_add(&device->dev_alloc_list,
846 &fs_devices->alloc_list);
847 }
848 brelse(bh);
849 continue;
850
851 error_brelse:
852 brelse(bh);
853 blkdev_put(bdev, flags);
854 continue;
855 }
856 if (fs_devices->open_devices == 0) {
857 ret = -EINVAL;
858 goto out;
859 }
860 fs_devices->seeding = seeding;
861 fs_devices->opened = 1;
862 fs_devices->latest_bdev = latest_dev->bdev;
863 fs_devices->total_rw_bytes = 0;
864 out:
865 return ret;
866 }
867
868 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
869 fmode_t flags, void *holder)
870 {
871 int ret;
872
873 mutex_lock(&uuid_mutex);
874 if (fs_devices->opened) {
875 fs_devices->opened++;
876 ret = 0;
877 } else {
878 ret = __btrfs_open_devices(fs_devices, flags, holder);
879 }
880 mutex_unlock(&uuid_mutex);
881 return ret;
882 }
883
884 /*
885 * Look for a btrfs signature on a device. This may be called out of the mount path
886 * and we are not allowed to call set_blocksize during the scan. The superblock
887 * is read via pagecache
888 */
889 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
890 struct btrfs_fs_devices **fs_devices_ret)
891 {
892 struct btrfs_super_block *disk_super;
893 struct block_device *bdev;
894 struct page *page;
895 void *p;
896 int ret = -EINVAL;
897 u64 devid;
898 u64 transid;
899 u64 total_devices;
900 u64 bytenr;
901 pgoff_t index;
902
903 /*
904 * we would like to check all the supers, but that would make
905 * a btrfs mount succeed after a mkfs from a different FS.
906 * So, we need to add a special mount option to scan for
907 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
908 */
909 bytenr = btrfs_sb_offset(0);
910 flags |= FMODE_EXCL;
911 mutex_lock(&uuid_mutex);
912
913 bdev = blkdev_get_by_path(path, flags, holder);
914
915 if (IS_ERR(bdev)) {
916 ret = PTR_ERR(bdev);
917 goto error;
918 }
919
920 /* make sure our super fits in the device */
921 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
922 goto error_bdev_put;
923
924 /* make sure our super fits in the page */
925 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
926 goto error_bdev_put;
927
928 /* make sure our super doesn't straddle pages on disk */
929 index = bytenr >> PAGE_CACHE_SHIFT;
930 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
931 goto error_bdev_put;
932
933 /* pull in the page with our super */
934 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
935 index, GFP_NOFS);
936
937 if (IS_ERR_OR_NULL(page))
938 goto error_bdev_put;
939
940 p = kmap(page);
941
942 /* align our pointer to the offset of the super block */
943 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
944
945 if (btrfs_super_bytenr(disk_super) != bytenr ||
946 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
947 goto error_unmap;
948
949 devid = btrfs_stack_device_id(&disk_super->dev_item);
950 transid = btrfs_super_generation(disk_super);
951 total_devices = btrfs_super_num_devices(disk_super);
952
953 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
954 if (ret > 0) {
955 if (disk_super->label[0]) {
956 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
957 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
958 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
959 } else {
960 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
961 }
962
963 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
964 ret = 0;
965 }
966 if (!ret && fs_devices_ret)
967 (*fs_devices_ret)->total_devices = total_devices;
968
969 error_unmap:
970 kunmap(page);
971 page_cache_release(page);
972
973 error_bdev_put:
974 blkdev_put(bdev, flags);
975 error:
976 mutex_unlock(&uuid_mutex);
977 return ret;
978 }
979
980 /* helper to account the used device space in the range */
981 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
982 u64 end, u64 *length)
983 {
984 struct btrfs_key key;
985 struct btrfs_root *root = device->dev_root;
986 struct btrfs_dev_extent *dev_extent;
987 struct btrfs_path *path;
988 u64 extent_end;
989 int ret;
990 int slot;
991 struct extent_buffer *l;
992
993 *length = 0;
994
995 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
996 return 0;
997
998 path = btrfs_alloc_path();
999 if (!path)
1000 return -ENOMEM;
1001 path->reada = 2;
1002
1003 key.objectid = device->devid;
1004 key.offset = start;
1005 key.type = BTRFS_DEV_EXTENT_KEY;
1006
1007 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1008 if (ret < 0)
1009 goto out;
1010 if (ret > 0) {
1011 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1012 if (ret < 0)
1013 goto out;
1014 }
1015
1016 while (1) {
1017 l = path->nodes[0];
1018 slot = path->slots[0];
1019 if (slot >= btrfs_header_nritems(l)) {
1020 ret = btrfs_next_leaf(root, path);
1021 if (ret == 0)
1022 continue;
1023 if (ret < 0)
1024 goto out;
1025
1026 break;
1027 }
1028 btrfs_item_key_to_cpu(l, &key, slot);
1029
1030 if (key.objectid < device->devid)
1031 goto next;
1032
1033 if (key.objectid > device->devid)
1034 break;
1035
1036 if (key.type != BTRFS_DEV_EXTENT_KEY)
1037 goto next;
1038
1039 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1040 extent_end = key.offset + btrfs_dev_extent_length(l,
1041 dev_extent);
1042 if (key.offset <= start && extent_end > end) {
1043 *length = end - start + 1;
1044 break;
1045 } else if (key.offset <= start && extent_end > start)
1046 *length += extent_end - start;
1047 else if (key.offset > start && extent_end <= end)
1048 *length += extent_end - key.offset;
1049 else if (key.offset > start && key.offset <= end) {
1050 *length += end - key.offset + 1;
1051 break;
1052 } else if (key.offset > end)
1053 break;
1054
1055 next:
1056 path->slots[0]++;
1057 }
1058 ret = 0;
1059 out:
1060 btrfs_free_path(path);
1061 return ret;
1062 }
1063
1064 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1065 struct btrfs_device *device,
1066 u64 *start, u64 len)
1067 {
1068 struct extent_map *em;
1069 int ret = 0;
1070
1071 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1072 struct map_lookup *map;
1073 int i;
1074
1075 map = (struct map_lookup *)em->bdev;
1076 for (i = 0; i < map->num_stripes; i++) {
1077 if (map->stripes[i].dev != device)
1078 continue;
1079 if (map->stripes[i].physical >= *start + len ||
1080 map->stripes[i].physical + em->orig_block_len <=
1081 *start)
1082 continue;
1083 *start = map->stripes[i].physical +
1084 em->orig_block_len;
1085 ret = 1;
1086 }
1087 }
1088
1089 return ret;
1090 }
1091
1092
1093 /*
1094 * find_free_dev_extent - find free space in the specified device
1095 * @device: the device which we search the free space in
1096 * @num_bytes: the size of the free space that we need
1097 * @start: store the start of the free space.
1098 * @len: the size of the free space. that we find, or the size of the max
1099 * free space if we don't find suitable free space
1100 *
1101 * this uses a pretty simple search, the expectation is that it is
1102 * called very infrequently and that a given device has a small number
1103 * of extents
1104 *
1105 * @start is used to store the start of the free space if we find. But if we
1106 * don't find suitable free space, it will be used to store the start position
1107 * of the max free space.
1108 *
1109 * @len is used to store the size of the free space that we find.
1110 * But if we don't find suitable free space, it is used to store the size of
1111 * the max free space.
1112 */
1113 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1114 struct btrfs_device *device, u64 num_bytes,
1115 u64 *start, u64 *len)
1116 {
1117 struct btrfs_key key;
1118 struct btrfs_root *root = device->dev_root;
1119 struct btrfs_dev_extent *dev_extent;
1120 struct btrfs_path *path;
1121 u64 hole_size;
1122 u64 max_hole_start;
1123 u64 max_hole_size;
1124 u64 extent_end;
1125 u64 search_start;
1126 u64 search_end = device->total_bytes;
1127 int ret;
1128 int slot;
1129 struct extent_buffer *l;
1130
1131 /* FIXME use last free of some kind */
1132
1133 /* we don't want to overwrite the superblock on the drive,
1134 * so we make sure to start at an offset of at least 1MB
1135 */
1136 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1137
1138 path = btrfs_alloc_path();
1139 if (!path)
1140 return -ENOMEM;
1141 again:
1142 max_hole_start = search_start;
1143 max_hole_size = 0;
1144 hole_size = 0;
1145
1146 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1147 ret = -ENOSPC;
1148 goto out;
1149 }
1150
1151 path->reada = 2;
1152 path->search_commit_root = 1;
1153 path->skip_locking = 1;
1154
1155 key.objectid = device->devid;
1156 key.offset = search_start;
1157 key.type = BTRFS_DEV_EXTENT_KEY;
1158
1159 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1160 if (ret < 0)
1161 goto out;
1162 if (ret > 0) {
1163 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1164 if (ret < 0)
1165 goto out;
1166 }
1167
1168 while (1) {
1169 l = path->nodes[0];
1170 slot = path->slots[0];
1171 if (slot >= btrfs_header_nritems(l)) {
1172 ret = btrfs_next_leaf(root, path);
1173 if (ret == 0)
1174 continue;
1175 if (ret < 0)
1176 goto out;
1177
1178 break;
1179 }
1180 btrfs_item_key_to_cpu(l, &key, slot);
1181
1182 if (key.objectid < device->devid)
1183 goto next;
1184
1185 if (key.objectid > device->devid)
1186 break;
1187
1188 if (key.type != BTRFS_DEV_EXTENT_KEY)
1189 goto next;
1190
1191 if (key.offset > search_start) {
1192 hole_size = key.offset - search_start;
1193
1194 /*
1195 * Have to check before we set max_hole_start, otherwise
1196 * we could end up sending back this offset anyway.
1197 */
1198 if (contains_pending_extent(trans, device,
1199 &search_start,
1200 hole_size))
1201 hole_size = 0;
1202
1203 if (hole_size > max_hole_size) {
1204 max_hole_start = search_start;
1205 max_hole_size = hole_size;
1206 }
1207
1208 /*
1209 * If this free space is greater than which we need,
1210 * it must be the max free space that we have found
1211 * until now, so max_hole_start must point to the start
1212 * of this free space and the length of this free space
1213 * is stored in max_hole_size. Thus, we return
1214 * max_hole_start and max_hole_size and go back to the
1215 * caller.
1216 */
1217 if (hole_size >= num_bytes) {
1218 ret = 0;
1219 goto out;
1220 }
1221 }
1222
1223 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1224 extent_end = key.offset + btrfs_dev_extent_length(l,
1225 dev_extent);
1226 if (extent_end > search_start)
1227 search_start = extent_end;
1228 next:
1229 path->slots[0]++;
1230 cond_resched();
1231 }
1232
1233 /*
1234 * At this point, search_start should be the end of
1235 * allocated dev extents, and when shrinking the device,
1236 * search_end may be smaller than search_start.
1237 */
1238 if (search_end > search_start)
1239 hole_size = search_end - search_start;
1240
1241 if (hole_size > max_hole_size) {
1242 max_hole_start = search_start;
1243 max_hole_size = hole_size;
1244 }
1245
1246 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1247 btrfs_release_path(path);
1248 goto again;
1249 }
1250
1251 /* See above. */
1252 if (hole_size < num_bytes)
1253 ret = -ENOSPC;
1254 else
1255 ret = 0;
1256
1257 out:
1258 btrfs_free_path(path);
1259 *start = max_hole_start;
1260 if (len)
1261 *len = max_hole_size;
1262 return ret;
1263 }
1264
1265 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1266 struct btrfs_device *device,
1267 u64 start)
1268 {
1269 int ret;
1270 struct btrfs_path *path;
1271 struct btrfs_root *root = device->dev_root;
1272 struct btrfs_key key;
1273 struct btrfs_key found_key;
1274 struct extent_buffer *leaf = NULL;
1275 struct btrfs_dev_extent *extent = NULL;
1276
1277 path = btrfs_alloc_path();
1278 if (!path)
1279 return -ENOMEM;
1280
1281 key.objectid = device->devid;
1282 key.offset = start;
1283 key.type = BTRFS_DEV_EXTENT_KEY;
1284 again:
1285 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1286 if (ret > 0) {
1287 ret = btrfs_previous_item(root, path, key.objectid,
1288 BTRFS_DEV_EXTENT_KEY);
1289 if (ret)
1290 goto out;
1291 leaf = path->nodes[0];
1292 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1293 extent = btrfs_item_ptr(leaf, path->slots[0],
1294 struct btrfs_dev_extent);
1295 BUG_ON(found_key.offset > start || found_key.offset +
1296 btrfs_dev_extent_length(leaf, extent) < start);
1297 key = found_key;
1298 btrfs_release_path(path);
1299 goto again;
1300 } else if (ret == 0) {
1301 leaf = path->nodes[0];
1302 extent = btrfs_item_ptr(leaf, path->slots[0],
1303 struct btrfs_dev_extent);
1304 } else {
1305 btrfs_error(root->fs_info, ret, "Slot search failed");
1306 goto out;
1307 }
1308
1309 if (device->bytes_used > 0) {
1310 u64 len = btrfs_dev_extent_length(leaf, extent);
1311 device->bytes_used -= len;
1312 spin_lock(&root->fs_info->free_chunk_lock);
1313 root->fs_info->free_chunk_space += len;
1314 spin_unlock(&root->fs_info->free_chunk_lock);
1315 }
1316 ret = btrfs_del_item(trans, root, path);
1317 if (ret) {
1318 btrfs_error(root->fs_info, ret,
1319 "Failed to remove dev extent item");
1320 }
1321 out:
1322 btrfs_free_path(path);
1323 return ret;
1324 }
1325
1326 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1327 struct btrfs_device *device,
1328 u64 chunk_tree, u64 chunk_objectid,
1329 u64 chunk_offset, u64 start, u64 num_bytes)
1330 {
1331 int ret;
1332 struct btrfs_path *path;
1333 struct btrfs_root *root = device->dev_root;
1334 struct btrfs_dev_extent *extent;
1335 struct extent_buffer *leaf;
1336 struct btrfs_key key;
1337
1338 WARN_ON(!device->in_fs_metadata);
1339 WARN_ON(device->is_tgtdev_for_dev_replace);
1340 path = btrfs_alloc_path();
1341 if (!path)
1342 return -ENOMEM;
1343
1344 key.objectid = device->devid;
1345 key.offset = start;
1346 key.type = BTRFS_DEV_EXTENT_KEY;
1347 ret = btrfs_insert_empty_item(trans, root, path, &key,
1348 sizeof(*extent));
1349 if (ret)
1350 goto out;
1351
1352 leaf = path->nodes[0];
1353 extent = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_dev_extent);
1355 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1356 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1357 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1358
1359 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1360 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1361
1362 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1363 btrfs_mark_buffer_dirty(leaf);
1364 out:
1365 btrfs_free_path(path);
1366 return ret;
1367 }
1368
1369 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1370 {
1371 struct extent_map_tree *em_tree;
1372 struct extent_map *em;
1373 struct rb_node *n;
1374 u64 ret = 0;
1375
1376 em_tree = &fs_info->mapping_tree.map_tree;
1377 read_lock(&em_tree->lock);
1378 n = rb_last(&em_tree->map);
1379 if (n) {
1380 em = rb_entry(n, struct extent_map, rb_node);
1381 ret = em->start + em->len;
1382 }
1383 read_unlock(&em_tree->lock);
1384
1385 return ret;
1386 }
1387
1388 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1389 u64 *devid_ret)
1390 {
1391 int ret;
1392 struct btrfs_key key;
1393 struct btrfs_key found_key;
1394 struct btrfs_path *path;
1395
1396 path = btrfs_alloc_path();
1397 if (!path)
1398 return -ENOMEM;
1399
1400 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1401 key.type = BTRFS_DEV_ITEM_KEY;
1402 key.offset = (u64)-1;
1403
1404 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1405 if (ret < 0)
1406 goto error;
1407
1408 BUG_ON(ret == 0); /* Corruption */
1409
1410 ret = btrfs_previous_item(fs_info->chunk_root, path,
1411 BTRFS_DEV_ITEMS_OBJECTID,
1412 BTRFS_DEV_ITEM_KEY);
1413 if (ret) {
1414 *devid_ret = 1;
1415 } else {
1416 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1417 path->slots[0]);
1418 *devid_ret = found_key.offset + 1;
1419 }
1420 ret = 0;
1421 error:
1422 btrfs_free_path(path);
1423 return ret;
1424 }
1425
1426 /*
1427 * the device information is stored in the chunk root
1428 * the btrfs_device struct should be fully filled in
1429 */
1430 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1431 struct btrfs_root *root,
1432 struct btrfs_device *device)
1433 {
1434 int ret;
1435 struct btrfs_path *path;
1436 struct btrfs_dev_item *dev_item;
1437 struct extent_buffer *leaf;
1438 struct btrfs_key key;
1439 unsigned long ptr;
1440
1441 root = root->fs_info->chunk_root;
1442
1443 path = btrfs_alloc_path();
1444 if (!path)
1445 return -ENOMEM;
1446
1447 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1448 key.type = BTRFS_DEV_ITEM_KEY;
1449 key.offset = device->devid;
1450
1451 ret = btrfs_insert_empty_item(trans, root, path, &key,
1452 sizeof(*dev_item));
1453 if (ret)
1454 goto out;
1455
1456 leaf = path->nodes[0];
1457 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1458
1459 btrfs_set_device_id(leaf, dev_item, device->devid);
1460 btrfs_set_device_generation(leaf, dev_item, 0);
1461 btrfs_set_device_type(leaf, dev_item, device->type);
1462 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1463 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1464 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1465 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1466 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1467 btrfs_set_device_group(leaf, dev_item, 0);
1468 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1469 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1470 btrfs_set_device_start_offset(leaf, dev_item, 0);
1471
1472 ptr = btrfs_device_uuid(dev_item);
1473 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1474 ptr = btrfs_device_fsid(dev_item);
1475 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1476 btrfs_mark_buffer_dirty(leaf);
1477
1478 ret = 0;
1479 out:
1480 btrfs_free_path(path);
1481 return ret;
1482 }
1483
1484 /*
1485 * Function to update ctime/mtime for a given device path.
1486 * Mainly used for ctime/mtime based probe like libblkid.
1487 */
1488 static void update_dev_time(char *path_name)
1489 {
1490 struct file *filp;
1491
1492 filp = filp_open(path_name, O_RDWR, 0);
1493 if (!filp)
1494 return;
1495 file_update_time(filp);
1496 filp_close(filp, NULL);
1497 return;
1498 }
1499
1500 static int btrfs_rm_dev_item(struct btrfs_root *root,
1501 struct btrfs_device *device)
1502 {
1503 int ret;
1504 struct btrfs_path *path;
1505 struct btrfs_key key;
1506 struct btrfs_trans_handle *trans;
1507
1508 root = root->fs_info->chunk_root;
1509
1510 path = btrfs_alloc_path();
1511 if (!path)
1512 return -ENOMEM;
1513
1514 trans = btrfs_start_transaction(root, 0);
1515 if (IS_ERR(trans)) {
1516 btrfs_free_path(path);
1517 return PTR_ERR(trans);
1518 }
1519 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1520 key.type = BTRFS_DEV_ITEM_KEY;
1521 key.offset = device->devid;
1522 lock_chunks(root);
1523
1524 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1525 if (ret < 0)
1526 goto out;
1527
1528 if (ret > 0) {
1529 ret = -ENOENT;
1530 goto out;
1531 }
1532
1533 ret = btrfs_del_item(trans, root, path);
1534 if (ret)
1535 goto out;
1536 out:
1537 btrfs_free_path(path);
1538 unlock_chunks(root);
1539 btrfs_commit_transaction(trans, root);
1540 return ret;
1541 }
1542
1543 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1544 {
1545 struct btrfs_device *device;
1546 struct btrfs_device *next_device;
1547 struct block_device *bdev;
1548 struct buffer_head *bh = NULL;
1549 struct btrfs_super_block *disk_super;
1550 struct btrfs_fs_devices *cur_devices;
1551 u64 all_avail;
1552 u64 devid;
1553 u64 num_devices;
1554 u8 *dev_uuid;
1555 unsigned seq;
1556 int ret = 0;
1557 bool clear_super = false;
1558
1559 mutex_lock(&uuid_mutex);
1560
1561 do {
1562 seq = read_seqbegin(&root->fs_info->profiles_lock);
1563
1564 all_avail = root->fs_info->avail_data_alloc_bits |
1565 root->fs_info->avail_system_alloc_bits |
1566 root->fs_info->avail_metadata_alloc_bits;
1567 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1568
1569 num_devices = root->fs_info->fs_devices->num_devices;
1570 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1571 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1572 WARN_ON(num_devices < 1);
1573 num_devices--;
1574 }
1575 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1576
1577 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1578 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1579 goto out;
1580 }
1581
1582 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1583 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1584 goto out;
1585 }
1586
1587 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1588 root->fs_info->fs_devices->rw_devices <= 2) {
1589 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1590 goto out;
1591 }
1592 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1593 root->fs_info->fs_devices->rw_devices <= 3) {
1594 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1595 goto out;
1596 }
1597
1598 if (strcmp(device_path, "missing") == 0) {
1599 struct list_head *devices;
1600 struct btrfs_device *tmp;
1601
1602 device = NULL;
1603 devices = &root->fs_info->fs_devices->devices;
1604 /*
1605 * It is safe to read the devices since the volume_mutex
1606 * is held.
1607 */
1608 list_for_each_entry(tmp, devices, dev_list) {
1609 if (tmp->in_fs_metadata &&
1610 !tmp->is_tgtdev_for_dev_replace &&
1611 !tmp->bdev) {
1612 device = tmp;
1613 break;
1614 }
1615 }
1616 bdev = NULL;
1617 bh = NULL;
1618 disk_super = NULL;
1619 if (!device) {
1620 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1621 goto out;
1622 }
1623 } else {
1624 ret = btrfs_get_bdev_and_sb(device_path,
1625 FMODE_WRITE | FMODE_EXCL,
1626 root->fs_info->bdev_holder, 0,
1627 &bdev, &bh);
1628 if (ret)
1629 goto out;
1630 disk_super = (struct btrfs_super_block *)bh->b_data;
1631 devid = btrfs_stack_device_id(&disk_super->dev_item);
1632 dev_uuid = disk_super->dev_item.uuid;
1633 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1634 disk_super->fsid);
1635 if (!device) {
1636 ret = -ENOENT;
1637 goto error_brelse;
1638 }
1639 }
1640
1641 if (device->is_tgtdev_for_dev_replace) {
1642 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1643 goto error_brelse;
1644 }
1645
1646 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1647 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1648 goto error_brelse;
1649 }
1650
1651 if (device->writeable) {
1652 lock_chunks(root);
1653 list_del_init(&device->dev_alloc_list);
1654 unlock_chunks(root);
1655 root->fs_info->fs_devices->rw_devices--;
1656 clear_super = true;
1657 }
1658
1659 mutex_unlock(&uuid_mutex);
1660 ret = btrfs_shrink_device(device, 0);
1661 mutex_lock(&uuid_mutex);
1662 if (ret)
1663 goto error_undo;
1664
1665 /*
1666 * TODO: the superblock still includes this device in its num_devices
1667 * counter although write_all_supers() is not locked out. This
1668 * could give a filesystem state which requires a degraded mount.
1669 */
1670 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1671 if (ret)
1672 goto error_undo;
1673
1674 device->in_fs_metadata = 0;
1675 btrfs_scrub_cancel_dev(root->fs_info, device);
1676
1677 /*
1678 * the device list mutex makes sure that we don't change
1679 * the device list while someone else is writing out all
1680 * the device supers. Whoever is writing all supers, should
1681 * lock the device list mutex before getting the number of
1682 * devices in the super block (super_copy). Conversely,
1683 * whoever updates the number of devices in the super block
1684 * (super_copy) should hold the device list mutex.
1685 */
1686
1687 cur_devices = device->fs_devices;
1688 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1689 list_del_rcu(&device->dev_list);
1690
1691 device->fs_devices->num_devices--;
1692 device->fs_devices->total_devices--;
1693
1694 if (device->missing)
1695 device->fs_devices->missing_devices--;
1696
1697 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1698 struct btrfs_device, dev_list);
1699 if (device->bdev == root->fs_info->sb->s_bdev)
1700 root->fs_info->sb->s_bdev = next_device->bdev;
1701 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1702 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1703
1704 if (device->bdev) {
1705 device->fs_devices->open_devices--;
1706 /* remove sysfs entry */
1707 btrfs_kobj_rm_device(root->fs_info, device);
1708 }
1709
1710 call_rcu(&device->rcu, free_device);
1711
1712 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1713 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1714 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1715
1716 if (cur_devices->open_devices == 0) {
1717 struct btrfs_fs_devices *fs_devices;
1718 fs_devices = root->fs_info->fs_devices;
1719 while (fs_devices) {
1720 if (fs_devices->seed == cur_devices) {
1721 fs_devices->seed = cur_devices->seed;
1722 break;
1723 }
1724 fs_devices = fs_devices->seed;
1725 }
1726 cur_devices->seed = NULL;
1727 lock_chunks(root);
1728 __btrfs_close_devices(cur_devices);
1729 unlock_chunks(root);
1730 free_fs_devices(cur_devices);
1731 }
1732
1733 root->fs_info->num_tolerated_disk_barrier_failures =
1734 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1735
1736 /*
1737 * at this point, the device is zero sized. We want to
1738 * remove it from the devices list and zero out the old super
1739 */
1740 if (clear_super && disk_super) {
1741 u64 bytenr;
1742 int i;
1743
1744 /* make sure this device isn't detected as part of
1745 * the FS anymore
1746 */
1747 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1748 set_buffer_dirty(bh);
1749 sync_dirty_buffer(bh);
1750
1751 /* clear the mirror copies of super block on the disk
1752 * being removed, 0th copy is been taken care above and
1753 * the below would take of the rest
1754 */
1755 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1756 bytenr = btrfs_sb_offset(i);
1757 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1758 i_size_read(bdev->bd_inode))
1759 break;
1760
1761 brelse(bh);
1762 bh = __bread(bdev, bytenr / 4096,
1763 BTRFS_SUPER_INFO_SIZE);
1764 if (!bh)
1765 continue;
1766
1767 disk_super = (struct btrfs_super_block *)bh->b_data;
1768
1769 if (btrfs_super_bytenr(disk_super) != bytenr ||
1770 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1771 continue;
1772 }
1773 memset(&disk_super->magic, 0,
1774 sizeof(disk_super->magic));
1775 set_buffer_dirty(bh);
1776 sync_dirty_buffer(bh);
1777 }
1778 }
1779
1780 ret = 0;
1781
1782 if (bdev) {
1783 /* Notify udev that device has changed */
1784 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1785
1786 /* Update ctime/mtime for device path for libblkid */
1787 update_dev_time(device_path);
1788 }
1789
1790 error_brelse:
1791 brelse(bh);
1792 if (bdev)
1793 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1794 out:
1795 mutex_unlock(&uuid_mutex);
1796 return ret;
1797 error_undo:
1798 if (device->writeable) {
1799 lock_chunks(root);
1800 list_add(&device->dev_alloc_list,
1801 &root->fs_info->fs_devices->alloc_list);
1802 unlock_chunks(root);
1803 root->fs_info->fs_devices->rw_devices++;
1804 }
1805 goto error_brelse;
1806 }
1807
1808 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1809 struct btrfs_device *srcdev)
1810 {
1811 struct btrfs_fs_devices *fs_devices;
1812
1813 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1814
1815 /*
1816 * in case of fs with no seed, srcdev->fs_devices will point
1817 * to fs_devices of fs_info. However when the dev being replaced is
1818 * a seed dev it will point to the seed's local fs_devices. In short
1819 * srcdev will have its correct fs_devices in both the cases.
1820 */
1821 fs_devices = srcdev->fs_devices;
1822
1823 list_del_rcu(&srcdev->dev_list);
1824 list_del_rcu(&srcdev->dev_alloc_list);
1825 fs_devices->num_devices--;
1826 if (srcdev->missing) {
1827 fs_devices->missing_devices--;
1828 if (!fs_devices->seeding)
1829 fs_devices->rw_devices++;
1830 }
1831
1832 if (srcdev->bdev) {
1833 fs_devices->open_devices--;
1834
1835 /*
1836 * zero out the old super if it is not writable
1837 * (e.g. seed device)
1838 */
1839 if (srcdev->writeable)
1840 btrfs_scratch_superblock(srcdev);
1841 }
1842
1843 call_rcu(&srcdev->rcu, free_device);
1844
1845 /*
1846 * unless fs_devices is seed fs, num_devices shouldn't go
1847 * zero
1848 */
1849 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1850
1851 /* if this is no devs we rather delete the fs_devices */
1852 if (!fs_devices->num_devices) {
1853 struct btrfs_fs_devices *tmp_fs_devices;
1854
1855 tmp_fs_devices = fs_info->fs_devices;
1856 while (tmp_fs_devices) {
1857 if (tmp_fs_devices->seed == fs_devices) {
1858 tmp_fs_devices->seed = fs_devices->seed;
1859 break;
1860 }
1861 tmp_fs_devices = tmp_fs_devices->seed;
1862 }
1863 fs_devices->seed = NULL;
1864 __btrfs_close_devices(fs_devices);
1865 free_fs_devices(fs_devices);
1866 }
1867 }
1868
1869 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1870 struct btrfs_device *tgtdev)
1871 {
1872 struct btrfs_device *next_device;
1873
1874 WARN_ON(!tgtdev);
1875 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1876 if (tgtdev->bdev) {
1877 btrfs_scratch_superblock(tgtdev);
1878 fs_info->fs_devices->open_devices--;
1879 }
1880 fs_info->fs_devices->num_devices--;
1881
1882 next_device = list_entry(fs_info->fs_devices->devices.next,
1883 struct btrfs_device, dev_list);
1884 if (tgtdev->bdev == fs_info->sb->s_bdev)
1885 fs_info->sb->s_bdev = next_device->bdev;
1886 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1887 fs_info->fs_devices->latest_bdev = next_device->bdev;
1888 list_del_rcu(&tgtdev->dev_list);
1889
1890 call_rcu(&tgtdev->rcu, free_device);
1891
1892 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1893 }
1894
1895 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1896 struct btrfs_device **device)
1897 {
1898 int ret = 0;
1899 struct btrfs_super_block *disk_super;
1900 u64 devid;
1901 u8 *dev_uuid;
1902 struct block_device *bdev;
1903 struct buffer_head *bh;
1904
1905 *device = NULL;
1906 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1907 root->fs_info->bdev_holder, 0, &bdev, &bh);
1908 if (ret)
1909 return ret;
1910 disk_super = (struct btrfs_super_block *)bh->b_data;
1911 devid = btrfs_stack_device_id(&disk_super->dev_item);
1912 dev_uuid = disk_super->dev_item.uuid;
1913 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1914 disk_super->fsid);
1915 brelse(bh);
1916 if (!*device)
1917 ret = -ENOENT;
1918 blkdev_put(bdev, FMODE_READ);
1919 return ret;
1920 }
1921
1922 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1923 char *device_path,
1924 struct btrfs_device **device)
1925 {
1926 *device = NULL;
1927 if (strcmp(device_path, "missing") == 0) {
1928 struct list_head *devices;
1929 struct btrfs_device *tmp;
1930
1931 devices = &root->fs_info->fs_devices->devices;
1932 /*
1933 * It is safe to read the devices since the volume_mutex
1934 * is held by the caller.
1935 */
1936 list_for_each_entry(tmp, devices, dev_list) {
1937 if (tmp->in_fs_metadata && !tmp->bdev) {
1938 *device = tmp;
1939 break;
1940 }
1941 }
1942
1943 if (!*device) {
1944 btrfs_err(root->fs_info, "no missing device found");
1945 return -ENOENT;
1946 }
1947
1948 return 0;
1949 } else {
1950 return btrfs_find_device_by_path(root, device_path, device);
1951 }
1952 }
1953
1954 /*
1955 * does all the dirty work required for changing file system's UUID.
1956 */
1957 static int btrfs_prepare_sprout(struct btrfs_root *root)
1958 {
1959 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1960 struct btrfs_fs_devices *old_devices;
1961 struct btrfs_fs_devices *seed_devices;
1962 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1963 struct btrfs_device *device;
1964 u64 super_flags;
1965
1966 BUG_ON(!mutex_is_locked(&uuid_mutex));
1967 if (!fs_devices->seeding)
1968 return -EINVAL;
1969
1970 seed_devices = __alloc_fs_devices();
1971 if (IS_ERR(seed_devices))
1972 return PTR_ERR(seed_devices);
1973
1974 old_devices = clone_fs_devices(fs_devices);
1975 if (IS_ERR(old_devices)) {
1976 kfree(seed_devices);
1977 return PTR_ERR(old_devices);
1978 }
1979
1980 list_add(&old_devices->list, &fs_uuids);
1981
1982 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1983 seed_devices->opened = 1;
1984 INIT_LIST_HEAD(&seed_devices->devices);
1985 INIT_LIST_HEAD(&seed_devices->alloc_list);
1986 mutex_init(&seed_devices->device_list_mutex);
1987
1988 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1989 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1990 synchronize_rcu);
1991
1992 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1993 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1994 device->fs_devices = seed_devices;
1995 }
1996
1997 fs_devices->seeding = 0;
1998 fs_devices->num_devices = 0;
1999 fs_devices->open_devices = 0;
2000 fs_devices->missing_devices = 0;
2001 fs_devices->rotating = 0;
2002 fs_devices->seed = seed_devices;
2003
2004 generate_random_uuid(fs_devices->fsid);
2005 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2006 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2007 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2008
2009 super_flags = btrfs_super_flags(disk_super) &
2010 ~BTRFS_SUPER_FLAG_SEEDING;
2011 btrfs_set_super_flags(disk_super, super_flags);
2012
2013 return 0;
2014 }
2015
2016 /*
2017 * strore the expected generation for seed devices in device items.
2018 */
2019 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2020 struct btrfs_root *root)
2021 {
2022 struct btrfs_path *path;
2023 struct extent_buffer *leaf;
2024 struct btrfs_dev_item *dev_item;
2025 struct btrfs_device *device;
2026 struct btrfs_key key;
2027 u8 fs_uuid[BTRFS_UUID_SIZE];
2028 u8 dev_uuid[BTRFS_UUID_SIZE];
2029 u64 devid;
2030 int ret;
2031
2032 path = btrfs_alloc_path();
2033 if (!path)
2034 return -ENOMEM;
2035
2036 root = root->fs_info->chunk_root;
2037 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2038 key.offset = 0;
2039 key.type = BTRFS_DEV_ITEM_KEY;
2040
2041 while (1) {
2042 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2043 if (ret < 0)
2044 goto error;
2045
2046 leaf = path->nodes[0];
2047 next_slot:
2048 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2049 ret = btrfs_next_leaf(root, path);
2050 if (ret > 0)
2051 break;
2052 if (ret < 0)
2053 goto error;
2054 leaf = path->nodes[0];
2055 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2056 btrfs_release_path(path);
2057 continue;
2058 }
2059
2060 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2061 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2062 key.type != BTRFS_DEV_ITEM_KEY)
2063 break;
2064
2065 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2066 struct btrfs_dev_item);
2067 devid = btrfs_device_id(leaf, dev_item);
2068 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2069 BTRFS_UUID_SIZE);
2070 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2071 BTRFS_UUID_SIZE);
2072 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2073 fs_uuid);
2074 BUG_ON(!device); /* Logic error */
2075
2076 if (device->fs_devices->seeding) {
2077 btrfs_set_device_generation(leaf, dev_item,
2078 device->generation);
2079 btrfs_mark_buffer_dirty(leaf);
2080 }
2081
2082 path->slots[0]++;
2083 goto next_slot;
2084 }
2085 ret = 0;
2086 error:
2087 btrfs_free_path(path);
2088 return ret;
2089 }
2090
2091 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2092 {
2093 struct request_queue *q;
2094 struct btrfs_trans_handle *trans;
2095 struct btrfs_device *device;
2096 struct block_device *bdev;
2097 struct list_head *devices;
2098 struct super_block *sb = root->fs_info->sb;
2099 struct rcu_string *name;
2100 u64 tmp;
2101 int seeding_dev = 0;
2102 int ret = 0;
2103
2104 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2105 return -EROFS;
2106
2107 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2108 root->fs_info->bdev_holder);
2109 if (IS_ERR(bdev))
2110 return PTR_ERR(bdev);
2111
2112 if (root->fs_info->fs_devices->seeding) {
2113 seeding_dev = 1;
2114 down_write(&sb->s_umount);
2115 mutex_lock(&uuid_mutex);
2116 }
2117
2118 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2119
2120 devices = &root->fs_info->fs_devices->devices;
2121
2122 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2123 list_for_each_entry(device, devices, dev_list) {
2124 if (device->bdev == bdev) {
2125 ret = -EEXIST;
2126 mutex_unlock(
2127 &root->fs_info->fs_devices->device_list_mutex);
2128 goto error;
2129 }
2130 }
2131 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2132
2133 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2134 if (IS_ERR(device)) {
2135 /* we can safely leave the fs_devices entry around */
2136 ret = PTR_ERR(device);
2137 goto error;
2138 }
2139
2140 name = rcu_string_strdup(device_path, GFP_NOFS);
2141 if (!name) {
2142 kfree(device);
2143 ret = -ENOMEM;
2144 goto error;
2145 }
2146 rcu_assign_pointer(device->name, name);
2147
2148 trans = btrfs_start_transaction(root, 0);
2149 if (IS_ERR(trans)) {
2150 rcu_string_free(device->name);
2151 kfree(device);
2152 ret = PTR_ERR(trans);
2153 goto error;
2154 }
2155
2156 lock_chunks(root);
2157
2158 q = bdev_get_queue(bdev);
2159 if (blk_queue_discard(q))
2160 device->can_discard = 1;
2161 device->writeable = 1;
2162 device->generation = trans->transid;
2163 device->io_width = root->sectorsize;
2164 device->io_align = root->sectorsize;
2165 device->sector_size = root->sectorsize;
2166 device->total_bytes = i_size_read(bdev->bd_inode);
2167 device->disk_total_bytes = device->total_bytes;
2168 device->commit_total_bytes = device->total_bytes;
2169 device->dev_root = root->fs_info->dev_root;
2170 device->bdev = bdev;
2171 device->in_fs_metadata = 1;
2172 device->is_tgtdev_for_dev_replace = 0;
2173 device->mode = FMODE_EXCL;
2174 device->dev_stats_valid = 1;
2175 set_blocksize(device->bdev, 4096);
2176
2177 if (seeding_dev) {
2178 sb->s_flags &= ~MS_RDONLY;
2179 ret = btrfs_prepare_sprout(root);
2180 BUG_ON(ret); /* -ENOMEM */
2181 }
2182
2183 device->fs_devices = root->fs_info->fs_devices;
2184
2185 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2186 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2187 list_add(&device->dev_alloc_list,
2188 &root->fs_info->fs_devices->alloc_list);
2189 root->fs_info->fs_devices->num_devices++;
2190 root->fs_info->fs_devices->open_devices++;
2191 root->fs_info->fs_devices->rw_devices++;
2192 root->fs_info->fs_devices->total_devices++;
2193 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2194
2195 spin_lock(&root->fs_info->free_chunk_lock);
2196 root->fs_info->free_chunk_space += device->total_bytes;
2197 spin_unlock(&root->fs_info->free_chunk_lock);
2198
2199 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2200 root->fs_info->fs_devices->rotating = 1;
2201
2202 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2203 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2204 tmp + device->total_bytes);
2205
2206 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2207 btrfs_set_super_num_devices(root->fs_info->super_copy,
2208 tmp + 1);
2209
2210 /* add sysfs device entry */
2211 btrfs_kobj_add_device(root->fs_info, device);
2212
2213 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2214
2215 if (seeding_dev) {
2216 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2217 ret = init_first_rw_device(trans, root, device);
2218 if (ret) {
2219 btrfs_abort_transaction(trans, root, ret);
2220 goto error_trans;
2221 }
2222 ret = btrfs_finish_sprout(trans, root);
2223 if (ret) {
2224 btrfs_abort_transaction(trans, root, ret);
2225 goto error_trans;
2226 }
2227
2228 /* Sprouting would change fsid of the mounted root,
2229 * so rename the fsid on the sysfs
2230 */
2231 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2232 root->fs_info->fsid);
2233 if (kobject_rename(&root->fs_info->super_kobj, fsid_buf))
2234 goto error_trans;
2235 } else {
2236 ret = btrfs_add_device(trans, root, device);
2237 if (ret) {
2238 btrfs_abort_transaction(trans, root, ret);
2239 goto error_trans;
2240 }
2241 }
2242
2243 /*
2244 * we've got more storage, clear any full flags on the space
2245 * infos
2246 */
2247 btrfs_clear_space_info_full(root->fs_info);
2248
2249 unlock_chunks(root);
2250 root->fs_info->num_tolerated_disk_barrier_failures =
2251 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2252 ret = btrfs_commit_transaction(trans, root);
2253
2254 if (seeding_dev) {
2255 mutex_unlock(&uuid_mutex);
2256 up_write(&sb->s_umount);
2257
2258 if (ret) /* transaction commit */
2259 return ret;
2260
2261 ret = btrfs_relocate_sys_chunks(root);
2262 if (ret < 0)
2263 btrfs_error(root->fs_info, ret,
2264 "Failed to relocate sys chunks after "
2265 "device initialization. This can be fixed "
2266 "using the \"btrfs balance\" command.");
2267 trans = btrfs_attach_transaction(root);
2268 if (IS_ERR(trans)) {
2269 if (PTR_ERR(trans) == -ENOENT)
2270 return 0;
2271 return PTR_ERR(trans);
2272 }
2273 ret = btrfs_commit_transaction(trans, root);
2274 }
2275
2276 /* Update ctime/mtime for libblkid */
2277 update_dev_time(device_path);
2278 return ret;
2279
2280 error_trans:
2281 unlock_chunks(root);
2282 btrfs_end_transaction(trans, root);
2283 rcu_string_free(device->name);
2284 btrfs_kobj_rm_device(root->fs_info, device);
2285 kfree(device);
2286 error:
2287 blkdev_put(bdev, FMODE_EXCL);
2288 if (seeding_dev) {
2289 mutex_unlock(&uuid_mutex);
2290 up_write(&sb->s_umount);
2291 }
2292 return ret;
2293 }
2294
2295 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2296 struct btrfs_device *srcdev,
2297 struct btrfs_device **device_out)
2298 {
2299 struct request_queue *q;
2300 struct btrfs_device *device;
2301 struct block_device *bdev;
2302 struct btrfs_fs_info *fs_info = root->fs_info;
2303 struct list_head *devices;
2304 struct rcu_string *name;
2305 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2306 int ret = 0;
2307
2308 *device_out = NULL;
2309 if (fs_info->fs_devices->seeding) {
2310 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2311 return -EINVAL;
2312 }
2313
2314 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2315 fs_info->bdev_holder);
2316 if (IS_ERR(bdev)) {
2317 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2318 return PTR_ERR(bdev);
2319 }
2320
2321 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2322
2323 devices = &fs_info->fs_devices->devices;
2324 list_for_each_entry(device, devices, dev_list) {
2325 if (device->bdev == bdev) {
2326 btrfs_err(fs_info, "target device is in the filesystem!");
2327 ret = -EEXIST;
2328 goto error;
2329 }
2330 }
2331
2332
2333 if (i_size_read(bdev->bd_inode) < srcdev->total_bytes) {
2334 btrfs_err(fs_info, "target device is smaller than source device!");
2335 ret = -EINVAL;
2336 goto error;
2337 }
2338
2339
2340 device = btrfs_alloc_device(NULL, &devid, NULL);
2341 if (IS_ERR(device)) {
2342 ret = PTR_ERR(device);
2343 goto error;
2344 }
2345
2346 name = rcu_string_strdup(device_path, GFP_NOFS);
2347 if (!name) {
2348 kfree(device);
2349 ret = -ENOMEM;
2350 goto error;
2351 }
2352 rcu_assign_pointer(device->name, name);
2353
2354 q = bdev_get_queue(bdev);
2355 if (blk_queue_discard(q))
2356 device->can_discard = 1;
2357 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2358 device->writeable = 1;
2359 device->generation = 0;
2360 device->io_width = root->sectorsize;
2361 device->io_align = root->sectorsize;
2362 device->sector_size = root->sectorsize;
2363 device->total_bytes = srcdev->total_bytes;
2364 device->disk_total_bytes = srcdev->disk_total_bytes;
2365 ASSERT(list_empty(&srcdev->resized_list));
2366 device->commit_total_bytes = srcdev->commit_total_bytes;
2367 device->bytes_used = srcdev->bytes_used;
2368 device->commit_bytes_used = device->bytes_used;
2369 device->dev_root = fs_info->dev_root;
2370 device->bdev = bdev;
2371 device->in_fs_metadata = 1;
2372 device->is_tgtdev_for_dev_replace = 1;
2373 device->mode = FMODE_EXCL;
2374 device->dev_stats_valid = 1;
2375 set_blocksize(device->bdev, 4096);
2376 device->fs_devices = fs_info->fs_devices;
2377 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2378 fs_info->fs_devices->num_devices++;
2379 fs_info->fs_devices->open_devices++;
2380 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2381
2382 *device_out = device;
2383 return ret;
2384
2385 error:
2386 blkdev_put(bdev, FMODE_EXCL);
2387 return ret;
2388 }
2389
2390 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2391 struct btrfs_device *tgtdev)
2392 {
2393 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2394 tgtdev->io_width = fs_info->dev_root->sectorsize;
2395 tgtdev->io_align = fs_info->dev_root->sectorsize;
2396 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2397 tgtdev->dev_root = fs_info->dev_root;
2398 tgtdev->in_fs_metadata = 1;
2399 }
2400
2401 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2402 struct btrfs_device *device)
2403 {
2404 int ret;
2405 struct btrfs_path *path;
2406 struct btrfs_root *root;
2407 struct btrfs_dev_item *dev_item;
2408 struct extent_buffer *leaf;
2409 struct btrfs_key key;
2410
2411 root = device->dev_root->fs_info->chunk_root;
2412
2413 path = btrfs_alloc_path();
2414 if (!path)
2415 return -ENOMEM;
2416
2417 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2418 key.type = BTRFS_DEV_ITEM_KEY;
2419 key.offset = device->devid;
2420
2421 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2422 if (ret < 0)
2423 goto out;
2424
2425 if (ret > 0) {
2426 ret = -ENOENT;
2427 goto out;
2428 }
2429
2430 leaf = path->nodes[0];
2431 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2432
2433 btrfs_set_device_id(leaf, dev_item, device->devid);
2434 btrfs_set_device_type(leaf, dev_item, device->type);
2435 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2436 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2437 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2438 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
2439 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2440 btrfs_mark_buffer_dirty(leaf);
2441
2442 out:
2443 btrfs_free_path(path);
2444 return ret;
2445 }
2446
2447 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
2448 struct btrfs_device *device, u64 new_size)
2449 {
2450 struct btrfs_super_block *super_copy =
2451 device->dev_root->fs_info->super_copy;
2452 struct btrfs_fs_devices *fs_devices;
2453 u64 old_total = btrfs_super_total_bytes(super_copy);
2454 u64 diff = new_size - device->total_bytes;
2455
2456 if (!device->writeable)
2457 return -EACCES;
2458 if (new_size <= device->total_bytes ||
2459 device->is_tgtdev_for_dev_replace)
2460 return -EINVAL;
2461
2462 fs_devices = device->dev_root->fs_info->fs_devices;
2463
2464 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2465 device->fs_devices->total_rw_bytes += diff;
2466
2467 device->total_bytes = new_size;
2468 device->disk_total_bytes = new_size;
2469 btrfs_clear_space_info_full(device->dev_root->fs_info);
2470 if (list_empty(&device->resized_list))
2471 list_add_tail(&device->resized_list,
2472 &fs_devices->resized_devices);
2473
2474 return btrfs_update_device(trans, device);
2475 }
2476
2477 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2478 struct btrfs_device *device, u64 new_size)
2479 {
2480 int ret;
2481 lock_chunks(device->dev_root);
2482 ret = __btrfs_grow_device(trans, device, new_size);
2483 unlock_chunks(device->dev_root);
2484 return ret;
2485 }
2486
2487 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2488 struct btrfs_root *root,
2489 u64 chunk_tree, u64 chunk_objectid,
2490 u64 chunk_offset)
2491 {
2492 int ret;
2493 struct btrfs_path *path;
2494 struct btrfs_key key;
2495
2496 root = root->fs_info->chunk_root;
2497 path = btrfs_alloc_path();
2498 if (!path)
2499 return -ENOMEM;
2500
2501 key.objectid = chunk_objectid;
2502 key.offset = chunk_offset;
2503 key.type = BTRFS_CHUNK_ITEM_KEY;
2504
2505 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2506 if (ret < 0)
2507 goto out;
2508 else if (ret > 0) { /* Logic error or corruption */
2509 btrfs_error(root->fs_info, -ENOENT,
2510 "Failed lookup while freeing chunk.");
2511 ret = -ENOENT;
2512 goto out;
2513 }
2514
2515 ret = btrfs_del_item(trans, root, path);
2516 if (ret < 0)
2517 btrfs_error(root->fs_info, ret,
2518 "Failed to delete chunk item.");
2519 out:
2520 btrfs_free_path(path);
2521 return ret;
2522 }
2523
2524 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2525 chunk_offset)
2526 {
2527 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2528 struct btrfs_disk_key *disk_key;
2529 struct btrfs_chunk *chunk;
2530 u8 *ptr;
2531 int ret = 0;
2532 u32 num_stripes;
2533 u32 array_size;
2534 u32 len = 0;
2535 u32 cur;
2536 struct btrfs_key key;
2537
2538 array_size = btrfs_super_sys_array_size(super_copy);
2539
2540 ptr = super_copy->sys_chunk_array;
2541 cur = 0;
2542
2543 while (cur < array_size) {
2544 disk_key = (struct btrfs_disk_key *)ptr;
2545 btrfs_disk_key_to_cpu(&key, disk_key);
2546
2547 len = sizeof(*disk_key);
2548
2549 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2550 chunk = (struct btrfs_chunk *)(ptr + len);
2551 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2552 len += btrfs_chunk_item_size(num_stripes);
2553 } else {
2554 ret = -EIO;
2555 break;
2556 }
2557 if (key.objectid == chunk_objectid &&
2558 key.offset == chunk_offset) {
2559 memmove(ptr, ptr + len, array_size - (cur + len));
2560 array_size -= len;
2561 btrfs_set_super_sys_array_size(super_copy, array_size);
2562 } else {
2563 ptr += len;
2564 cur += len;
2565 }
2566 }
2567 return ret;
2568 }
2569
2570 static int btrfs_relocate_chunk(struct btrfs_root *root,
2571 u64 chunk_tree, u64 chunk_objectid,
2572 u64 chunk_offset)
2573 {
2574 struct extent_map_tree *em_tree;
2575 struct btrfs_root *extent_root;
2576 struct btrfs_trans_handle *trans;
2577 struct extent_map *em;
2578 struct map_lookup *map;
2579 int ret;
2580 int i;
2581
2582 root = root->fs_info->chunk_root;
2583 extent_root = root->fs_info->extent_root;
2584 em_tree = &root->fs_info->mapping_tree.map_tree;
2585
2586 ret = btrfs_can_relocate(extent_root, chunk_offset);
2587 if (ret)
2588 return -ENOSPC;
2589
2590 /* step one, relocate all the extents inside this chunk */
2591 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2592 if (ret)
2593 return ret;
2594
2595 trans = btrfs_start_transaction(root, 0);
2596 if (IS_ERR(trans)) {
2597 ret = PTR_ERR(trans);
2598 btrfs_std_error(root->fs_info, ret);
2599 return ret;
2600 }
2601
2602 lock_chunks(root);
2603
2604 /*
2605 * step two, delete the device extents and the
2606 * chunk tree entries
2607 */
2608 read_lock(&em_tree->lock);
2609 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2610 read_unlock(&em_tree->lock);
2611
2612 BUG_ON(!em || em->start > chunk_offset ||
2613 em->start + em->len < chunk_offset);
2614 map = (struct map_lookup *)em->bdev;
2615
2616 for (i = 0; i < map->num_stripes; i++) {
2617 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2618 map->stripes[i].physical);
2619 BUG_ON(ret);
2620
2621 if (map->stripes[i].dev) {
2622 ret = btrfs_update_device(trans, map->stripes[i].dev);
2623 BUG_ON(ret);
2624 }
2625 }
2626 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2627 chunk_offset);
2628
2629 BUG_ON(ret);
2630
2631 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2632
2633 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2634 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2635 BUG_ON(ret);
2636 }
2637
2638 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2639 BUG_ON(ret);
2640
2641 write_lock(&em_tree->lock);
2642 remove_extent_mapping(em_tree, em);
2643 write_unlock(&em_tree->lock);
2644
2645 /* once for the tree */
2646 free_extent_map(em);
2647 /* once for us */
2648 free_extent_map(em);
2649
2650 unlock_chunks(root);
2651 btrfs_end_transaction(trans, root);
2652 return 0;
2653 }
2654
2655 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2656 {
2657 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2658 struct btrfs_path *path;
2659 struct extent_buffer *leaf;
2660 struct btrfs_chunk *chunk;
2661 struct btrfs_key key;
2662 struct btrfs_key found_key;
2663 u64 chunk_tree = chunk_root->root_key.objectid;
2664 u64 chunk_type;
2665 bool retried = false;
2666 int failed = 0;
2667 int ret;
2668
2669 path = btrfs_alloc_path();
2670 if (!path)
2671 return -ENOMEM;
2672
2673 again:
2674 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2675 key.offset = (u64)-1;
2676 key.type = BTRFS_CHUNK_ITEM_KEY;
2677
2678 while (1) {
2679 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2680 if (ret < 0)
2681 goto error;
2682 BUG_ON(ret == 0); /* Corruption */
2683
2684 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2685 key.type);
2686 if (ret < 0)
2687 goto error;
2688 if (ret > 0)
2689 break;
2690
2691 leaf = path->nodes[0];
2692 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2693
2694 chunk = btrfs_item_ptr(leaf, path->slots[0],
2695 struct btrfs_chunk);
2696 chunk_type = btrfs_chunk_type(leaf, chunk);
2697 btrfs_release_path(path);
2698
2699 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2700 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2701 found_key.objectid,
2702 found_key.offset);
2703 if (ret == -ENOSPC)
2704 failed++;
2705 else
2706 BUG_ON(ret);
2707 }
2708
2709 if (found_key.offset == 0)
2710 break;
2711 key.offset = found_key.offset - 1;
2712 }
2713 ret = 0;
2714 if (failed && !retried) {
2715 failed = 0;
2716 retried = true;
2717 goto again;
2718 } else if (WARN_ON(failed && retried)) {
2719 ret = -ENOSPC;
2720 }
2721 error:
2722 btrfs_free_path(path);
2723 return ret;
2724 }
2725
2726 static int insert_balance_item(struct btrfs_root *root,
2727 struct btrfs_balance_control *bctl)
2728 {
2729 struct btrfs_trans_handle *trans;
2730 struct btrfs_balance_item *item;
2731 struct btrfs_disk_balance_args disk_bargs;
2732 struct btrfs_path *path;
2733 struct extent_buffer *leaf;
2734 struct btrfs_key key;
2735 int ret, err;
2736
2737 path = btrfs_alloc_path();
2738 if (!path)
2739 return -ENOMEM;
2740
2741 trans = btrfs_start_transaction(root, 0);
2742 if (IS_ERR(trans)) {
2743 btrfs_free_path(path);
2744 return PTR_ERR(trans);
2745 }
2746
2747 key.objectid = BTRFS_BALANCE_OBJECTID;
2748 key.type = BTRFS_BALANCE_ITEM_KEY;
2749 key.offset = 0;
2750
2751 ret = btrfs_insert_empty_item(trans, root, path, &key,
2752 sizeof(*item));
2753 if (ret)
2754 goto out;
2755
2756 leaf = path->nodes[0];
2757 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2758
2759 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2760
2761 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2762 btrfs_set_balance_data(leaf, item, &disk_bargs);
2763 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2764 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2765 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2766 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2767
2768 btrfs_set_balance_flags(leaf, item, bctl->flags);
2769
2770 btrfs_mark_buffer_dirty(leaf);
2771 out:
2772 btrfs_free_path(path);
2773 err = btrfs_commit_transaction(trans, root);
2774 if (err && !ret)
2775 ret = err;
2776 return ret;
2777 }
2778
2779 static int del_balance_item(struct btrfs_root *root)
2780 {
2781 struct btrfs_trans_handle *trans;
2782 struct btrfs_path *path;
2783 struct btrfs_key key;
2784 int ret, err;
2785
2786 path = btrfs_alloc_path();
2787 if (!path)
2788 return -ENOMEM;
2789
2790 trans = btrfs_start_transaction(root, 0);
2791 if (IS_ERR(trans)) {
2792 btrfs_free_path(path);
2793 return PTR_ERR(trans);
2794 }
2795
2796 key.objectid = BTRFS_BALANCE_OBJECTID;
2797 key.type = BTRFS_BALANCE_ITEM_KEY;
2798 key.offset = 0;
2799
2800 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2801 if (ret < 0)
2802 goto out;
2803 if (ret > 0) {
2804 ret = -ENOENT;
2805 goto out;
2806 }
2807
2808 ret = btrfs_del_item(trans, root, path);
2809 out:
2810 btrfs_free_path(path);
2811 err = btrfs_commit_transaction(trans, root);
2812 if (err && !ret)
2813 ret = err;
2814 return ret;
2815 }
2816
2817 /*
2818 * This is a heuristic used to reduce the number of chunks balanced on
2819 * resume after balance was interrupted.
2820 */
2821 static void update_balance_args(struct btrfs_balance_control *bctl)
2822 {
2823 /*
2824 * Turn on soft mode for chunk types that were being converted.
2825 */
2826 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2827 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2828 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2829 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2830 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2831 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2832
2833 /*
2834 * Turn on usage filter if is not already used. The idea is
2835 * that chunks that we have already balanced should be
2836 * reasonably full. Don't do it for chunks that are being
2837 * converted - that will keep us from relocating unconverted
2838 * (albeit full) chunks.
2839 */
2840 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2841 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2842 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2843 bctl->data.usage = 90;
2844 }
2845 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2846 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2847 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2848 bctl->sys.usage = 90;
2849 }
2850 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2851 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2852 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2853 bctl->meta.usage = 90;
2854 }
2855 }
2856
2857 /*
2858 * Should be called with both balance and volume mutexes held to
2859 * serialize other volume operations (add_dev/rm_dev/resize) with
2860 * restriper. Same goes for unset_balance_control.
2861 */
2862 static void set_balance_control(struct btrfs_balance_control *bctl)
2863 {
2864 struct btrfs_fs_info *fs_info = bctl->fs_info;
2865
2866 BUG_ON(fs_info->balance_ctl);
2867
2868 spin_lock(&fs_info->balance_lock);
2869 fs_info->balance_ctl = bctl;
2870 spin_unlock(&fs_info->balance_lock);
2871 }
2872
2873 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2874 {
2875 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2876
2877 BUG_ON(!fs_info->balance_ctl);
2878
2879 spin_lock(&fs_info->balance_lock);
2880 fs_info->balance_ctl = NULL;
2881 spin_unlock(&fs_info->balance_lock);
2882
2883 kfree(bctl);
2884 }
2885
2886 /*
2887 * Balance filters. Return 1 if chunk should be filtered out
2888 * (should not be balanced).
2889 */
2890 static int chunk_profiles_filter(u64 chunk_type,
2891 struct btrfs_balance_args *bargs)
2892 {
2893 chunk_type = chunk_to_extended(chunk_type) &
2894 BTRFS_EXTENDED_PROFILE_MASK;
2895
2896 if (bargs->profiles & chunk_type)
2897 return 0;
2898
2899 return 1;
2900 }
2901
2902 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2903 struct btrfs_balance_args *bargs)
2904 {
2905 struct btrfs_block_group_cache *cache;
2906 u64 chunk_used, user_thresh;
2907 int ret = 1;
2908
2909 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2910 chunk_used = btrfs_block_group_used(&cache->item);
2911
2912 if (bargs->usage == 0)
2913 user_thresh = 1;
2914 else if (bargs->usage > 100)
2915 user_thresh = cache->key.offset;
2916 else
2917 user_thresh = div_factor_fine(cache->key.offset,
2918 bargs->usage);
2919
2920 if (chunk_used < user_thresh)
2921 ret = 0;
2922
2923 btrfs_put_block_group(cache);
2924 return ret;
2925 }
2926
2927 static int chunk_devid_filter(struct extent_buffer *leaf,
2928 struct btrfs_chunk *chunk,
2929 struct btrfs_balance_args *bargs)
2930 {
2931 struct btrfs_stripe *stripe;
2932 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2933 int i;
2934
2935 for (i = 0; i < num_stripes; i++) {
2936 stripe = btrfs_stripe_nr(chunk, i);
2937 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2938 return 0;
2939 }
2940
2941 return 1;
2942 }
2943
2944 /* [pstart, pend) */
2945 static int chunk_drange_filter(struct extent_buffer *leaf,
2946 struct btrfs_chunk *chunk,
2947 u64 chunk_offset,
2948 struct btrfs_balance_args *bargs)
2949 {
2950 struct btrfs_stripe *stripe;
2951 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2952 u64 stripe_offset;
2953 u64 stripe_length;
2954 int factor;
2955 int i;
2956
2957 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2958 return 0;
2959
2960 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2961 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2962 factor = num_stripes / 2;
2963 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2964 factor = num_stripes - 1;
2965 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2966 factor = num_stripes - 2;
2967 } else {
2968 factor = num_stripes;
2969 }
2970
2971 for (i = 0; i < num_stripes; i++) {
2972 stripe = btrfs_stripe_nr(chunk, i);
2973 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2974 continue;
2975
2976 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2977 stripe_length = btrfs_chunk_length(leaf, chunk);
2978 do_div(stripe_length, factor);
2979
2980 if (stripe_offset < bargs->pend &&
2981 stripe_offset + stripe_length > bargs->pstart)
2982 return 0;
2983 }
2984
2985 return 1;
2986 }
2987
2988 /* [vstart, vend) */
2989 static int chunk_vrange_filter(struct extent_buffer *leaf,
2990 struct btrfs_chunk *chunk,
2991 u64 chunk_offset,
2992 struct btrfs_balance_args *bargs)
2993 {
2994 if (chunk_offset < bargs->vend &&
2995 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2996 /* at least part of the chunk is inside this vrange */
2997 return 0;
2998
2999 return 1;
3000 }
3001
3002 static int chunk_soft_convert_filter(u64 chunk_type,
3003 struct btrfs_balance_args *bargs)
3004 {
3005 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3006 return 0;
3007
3008 chunk_type = chunk_to_extended(chunk_type) &
3009 BTRFS_EXTENDED_PROFILE_MASK;
3010
3011 if (bargs->target == chunk_type)
3012 return 1;
3013
3014 return 0;
3015 }
3016
3017 static int should_balance_chunk(struct btrfs_root *root,
3018 struct extent_buffer *leaf,
3019 struct btrfs_chunk *chunk, u64 chunk_offset)
3020 {
3021 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3022 struct btrfs_balance_args *bargs = NULL;
3023 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3024
3025 /* type filter */
3026 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3027 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3028 return 0;
3029 }
3030
3031 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3032 bargs = &bctl->data;
3033 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3034 bargs = &bctl->sys;
3035 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3036 bargs = &bctl->meta;
3037
3038 /* profiles filter */
3039 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3040 chunk_profiles_filter(chunk_type, bargs)) {
3041 return 0;
3042 }
3043
3044 /* usage filter */
3045 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3046 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3047 return 0;
3048 }
3049
3050 /* devid filter */
3051 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3052 chunk_devid_filter(leaf, chunk, bargs)) {
3053 return 0;
3054 }
3055
3056 /* drange filter, makes sense only with devid filter */
3057 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3058 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3059 return 0;
3060 }
3061
3062 /* vrange filter */
3063 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3064 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3065 return 0;
3066 }
3067
3068 /* soft profile changing mode */
3069 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3070 chunk_soft_convert_filter(chunk_type, bargs)) {
3071 return 0;
3072 }
3073
3074 /*
3075 * limited by count, must be the last filter
3076 */
3077 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3078 if (bargs->limit == 0)
3079 return 0;
3080 else
3081 bargs->limit--;
3082 }
3083
3084 return 1;
3085 }
3086
3087 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3088 {
3089 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3090 struct btrfs_root *chunk_root = fs_info->chunk_root;
3091 struct btrfs_root *dev_root = fs_info->dev_root;
3092 struct list_head *devices;
3093 struct btrfs_device *device;
3094 u64 old_size;
3095 u64 size_to_free;
3096 struct btrfs_chunk *chunk;
3097 struct btrfs_path *path;
3098 struct btrfs_key key;
3099 struct btrfs_key found_key;
3100 struct btrfs_trans_handle *trans;
3101 struct extent_buffer *leaf;
3102 int slot;
3103 int ret;
3104 int enospc_errors = 0;
3105 bool counting = true;
3106 u64 limit_data = bctl->data.limit;
3107 u64 limit_meta = bctl->meta.limit;
3108 u64 limit_sys = bctl->sys.limit;
3109
3110 /* step one make some room on all the devices */
3111 devices = &fs_info->fs_devices->devices;
3112 list_for_each_entry(device, devices, dev_list) {
3113 old_size = device->total_bytes;
3114 size_to_free = div_factor(old_size, 1);
3115 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3116 if (!device->writeable ||
3117 device->total_bytes - device->bytes_used > size_to_free ||
3118 device->is_tgtdev_for_dev_replace)
3119 continue;
3120
3121 ret = btrfs_shrink_device(device, old_size - size_to_free);
3122 if (ret == -ENOSPC)
3123 break;
3124 BUG_ON(ret);
3125
3126 trans = btrfs_start_transaction(dev_root, 0);
3127 BUG_ON(IS_ERR(trans));
3128
3129 ret = btrfs_grow_device(trans, device, old_size);
3130 BUG_ON(ret);
3131
3132 btrfs_end_transaction(trans, dev_root);
3133 }
3134
3135 /* step two, relocate all the chunks */
3136 path = btrfs_alloc_path();
3137 if (!path) {
3138 ret = -ENOMEM;
3139 goto error;
3140 }
3141
3142 /* zero out stat counters */
3143 spin_lock(&fs_info->balance_lock);
3144 memset(&bctl->stat, 0, sizeof(bctl->stat));
3145 spin_unlock(&fs_info->balance_lock);
3146 again:
3147 if (!counting) {
3148 bctl->data.limit = limit_data;
3149 bctl->meta.limit = limit_meta;
3150 bctl->sys.limit = limit_sys;
3151 }
3152 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3153 key.offset = (u64)-1;
3154 key.type = BTRFS_CHUNK_ITEM_KEY;
3155
3156 while (1) {
3157 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3158 atomic_read(&fs_info->balance_cancel_req)) {
3159 ret = -ECANCELED;
3160 goto error;
3161 }
3162
3163 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3164 if (ret < 0)
3165 goto error;
3166
3167 /*
3168 * this shouldn't happen, it means the last relocate
3169 * failed
3170 */
3171 if (ret == 0)
3172 BUG(); /* FIXME break ? */
3173
3174 ret = btrfs_previous_item(chunk_root, path, 0,
3175 BTRFS_CHUNK_ITEM_KEY);
3176 if (ret) {
3177 ret = 0;
3178 break;
3179 }
3180
3181 leaf = path->nodes[0];
3182 slot = path->slots[0];
3183 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3184
3185 if (found_key.objectid != key.objectid)
3186 break;
3187
3188 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3189
3190 if (!counting) {
3191 spin_lock(&fs_info->balance_lock);
3192 bctl->stat.considered++;
3193 spin_unlock(&fs_info->balance_lock);
3194 }
3195
3196 ret = should_balance_chunk(chunk_root, leaf, chunk,
3197 found_key.offset);
3198 btrfs_release_path(path);
3199 if (!ret)
3200 goto loop;
3201
3202 if (counting) {
3203 spin_lock(&fs_info->balance_lock);
3204 bctl->stat.expected++;
3205 spin_unlock(&fs_info->balance_lock);
3206 goto loop;
3207 }
3208
3209 ret = btrfs_relocate_chunk(chunk_root,
3210 chunk_root->root_key.objectid,
3211 found_key.objectid,
3212 found_key.offset);
3213 if (ret && ret != -ENOSPC)
3214 goto error;
3215 if (ret == -ENOSPC) {
3216 enospc_errors++;
3217 } else {
3218 spin_lock(&fs_info->balance_lock);
3219 bctl->stat.completed++;
3220 spin_unlock(&fs_info->balance_lock);
3221 }
3222 loop:
3223 if (found_key.offset == 0)
3224 break;
3225 key.offset = found_key.offset - 1;
3226 }
3227
3228 if (counting) {
3229 btrfs_release_path(path);
3230 counting = false;
3231 goto again;
3232 }
3233 error:
3234 btrfs_free_path(path);
3235 if (enospc_errors) {
3236 btrfs_info(fs_info, "%d enospc errors during balance",
3237 enospc_errors);
3238 if (!ret)
3239 ret = -ENOSPC;
3240 }
3241
3242 return ret;
3243 }
3244
3245 /**
3246 * alloc_profile_is_valid - see if a given profile is valid and reduced
3247 * @flags: profile to validate
3248 * @extended: if true @flags is treated as an extended profile
3249 */
3250 static int alloc_profile_is_valid(u64 flags, int extended)
3251 {
3252 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3253 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3254
3255 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3256
3257 /* 1) check that all other bits are zeroed */
3258 if (flags & ~mask)
3259 return 0;
3260
3261 /* 2) see if profile is reduced */
3262 if (flags == 0)
3263 return !extended; /* "0" is valid for usual profiles */
3264
3265 /* true if exactly one bit set */
3266 return (flags & (flags - 1)) == 0;
3267 }
3268
3269 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3270 {
3271 /* cancel requested || normal exit path */
3272 return atomic_read(&fs_info->balance_cancel_req) ||
3273 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3274 atomic_read(&fs_info->balance_cancel_req) == 0);
3275 }
3276
3277 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3278 {
3279 int ret;
3280
3281 unset_balance_control(fs_info);
3282 ret = del_balance_item(fs_info->tree_root);
3283 if (ret)
3284 btrfs_std_error(fs_info, ret);
3285
3286 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3287 }
3288
3289 /*
3290 * Should be called with both balance and volume mutexes held
3291 */
3292 int btrfs_balance(struct btrfs_balance_control *bctl,
3293 struct btrfs_ioctl_balance_args *bargs)
3294 {
3295 struct btrfs_fs_info *fs_info = bctl->fs_info;
3296 u64 allowed;
3297 int mixed = 0;
3298 int ret;
3299 u64 num_devices;
3300 unsigned seq;
3301
3302 if (btrfs_fs_closing(fs_info) ||
3303 atomic_read(&fs_info->balance_pause_req) ||
3304 atomic_read(&fs_info->balance_cancel_req)) {
3305 ret = -EINVAL;
3306 goto out;
3307 }
3308
3309 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3310 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3311 mixed = 1;
3312
3313 /*
3314 * In case of mixed groups both data and meta should be picked,
3315 * and identical options should be given for both of them.
3316 */
3317 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3318 if (mixed && (bctl->flags & allowed)) {
3319 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3320 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3321 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3322 btrfs_err(fs_info, "with mixed groups data and "
3323 "metadata balance options must be the same");
3324 ret = -EINVAL;
3325 goto out;
3326 }
3327 }
3328
3329 num_devices = fs_info->fs_devices->num_devices;
3330 btrfs_dev_replace_lock(&fs_info->dev_replace);
3331 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3332 BUG_ON(num_devices < 1);
3333 num_devices--;
3334 }
3335 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3336 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3337 if (num_devices == 1)
3338 allowed |= BTRFS_BLOCK_GROUP_DUP;
3339 else if (num_devices > 1)
3340 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3341 if (num_devices > 2)
3342 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3343 if (num_devices > 3)
3344 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3345 BTRFS_BLOCK_GROUP_RAID6);
3346 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3347 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3348 (bctl->data.target & ~allowed))) {
3349 btrfs_err(fs_info, "unable to start balance with target "
3350 "data profile %llu",
3351 bctl->data.target);
3352 ret = -EINVAL;
3353 goto out;
3354 }
3355 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3356 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3357 (bctl->meta.target & ~allowed))) {
3358 btrfs_err(fs_info,
3359 "unable to start balance with target metadata profile %llu",
3360 bctl->meta.target);
3361 ret = -EINVAL;
3362 goto out;
3363 }
3364 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3365 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3366 (bctl->sys.target & ~allowed))) {
3367 btrfs_err(fs_info,
3368 "unable to start balance with target system profile %llu",
3369 bctl->sys.target);
3370 ret = -EINVAL;
3371 goto out;
3372 }
3373
3374 /* allow dup'ed data chunks only in mixed mode */
3375 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3376 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3377 btrfs_err(fs_info, "dup for data is not allowed");
3378 ret = -EINVAL;
3379 goto out;
3380 }
3381
3382 /* allow to reduce meta or sys integrity only if force set */
3383 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3384 BTRFS_BLOCK_GROUP_RAID10 |
3385 BTRFS_BLOCK_GROUP_RAID5 |
3386 BTRFS_BLOCK_GROUP_RAID6;
3387 do {
3388 seq = read_seqbegin(&fs_info->profiles_lock);
3389
3390 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3391 (fs_info->avail_system_alloc_bits & allowed) &&
3392 !(bctl->sys.target & allowed)) ||
3393 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3394 (fs_info->avail_metadata_alloc_bits & allowed) &&
3395 !(bctl->meta.target & allowed))) {
3396 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3397 btrfs_info(fs_info, "force reducing metadata integrity");
3398 } else {
3399 btrfs_err(fs_info, "balance will reduce metadata "
3400 "integrity, use force if you want this");
3401 ret = -EINVAL;
3402 goto out;
3403 }
3404 }
3405 } while (read_seqretry(&fs_info->profiles_lock, seq));
3406
3407 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3408 int num_tolerated_disk_barrier_failures;
3409 u64 target = bctl->sys.target;
3410
3411 num_tolerated_disk_barrier_failures =
3412 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3413 if (num_tolerated_disk_barrier_failures > 0 &&
3414 (target &
3415 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3416 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3417 num_tolerated_disk_barrier_failures = 0;
3418 else if (num_tolerated_disk_barrier_failures > 1 &&
3419 (target &
3420 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3421 num_tolerated_disk_barrier_failures = 1;
3422
3423 fs_info->num_tolerated_disk_barrier_failures =
3424 num_tolerated_disk_barrier_failures;
3425 }
3426
3427 ret = insert_balance_item(fs_info->tree_root, bctl);
3428 if (ret && ret != -EEXIST)
3429 goto out;
3430
3431 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3432 BUG_ON(ret == -EEXIST);
3433 set_balance_control(bctl);
3434 } else {
3435 BUG_ON(ret != -EEXIST);
3436 spin_lock(&fs_info->balance_lock);
3437 update_balance_args(bctl);
3438 spin_unlock(&fs_info->balance_lock);
3439 }
3440
3441 atomic_inc(&fs_info->balance_running);
3442 mutex_unlock(&fs_info->balance_mutex);
3443
3444 ret = __btrfs_balance(fs_info);
3445
3446 mutex_lock(&fs_info->balance_mutex);
3447 atomic_dec(&fs_info->balance_running);
3448
3449 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3450 fs_info->num_tolerated_disk_barrier_failures =
3451 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3452 }
3453
3454 if (bargs) {
3455 memset(bargs, 0, sizeof(*bargs));
3456 update_ioctl_balance_args(fs_info, 0, bargs);
3457 }
3458
3459 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3460 balance_need_close(fs_info)) {
3461 __cancel_balance(fs_info);
3462 }
3463
3464 wake_up(&fs_info->balance_wait_q);
3465
3466 return ret;
3467 out:
3468 if (bctl->flags & BTRFS_BALANCE_RESUME)
3469 __cancel_balance(fs_info);
3470 else {
3471 kfree(bctl);
3472 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3473 }
3474 return ret;
3475 }
3476
3477 static int balance_kthread(void *data)
3478 {
3479 struct btrfs_fs_info *fs_info = data;
3480 int ret = 0;
3481
3482 mutex_lock(&fs_info->volume_mutex);
3483 mutex_lock(&fs_info->balance_mutex);
3484
3485 if (fs_info->balance_ctl) {
3486 btrfs_info(fs_info, "continuing balance");
3487 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3488 }
3489
3490 mutex_unlock(&fs_info->balance_mutex);
3491 mutex_unlock(&fs_info->volume_mutex);
3492
3493 return ret;
3494 }
3495
3496 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3497 {
3498 struct task_struct *tsk;
3499
3500 spin_lock(&fs_info->balance_lock);
3501 if (!fs_info->balance_ctl) {
3502 spin_unlock(&fs_info->balance_lock);
3503 return 0;
3504 }
3505 spin_unlock(&fs_info->balance_lock);
3506
3507 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3508 btrfs_info(fs_info, "force skipping balance");
3509 return 0;
3510 }
3511
3512 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3513 return PTR_ERR_OR_ZERO(tsk);
3514 }
3515
3516 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3517 {
3518 struct btrfs_balance_control *bctl;
3519 struct btrfs_balance_item *item;
3520 struct btrfs_disk_balance_args disk_bargs;
3521 struct btrfs_path *path;
3522 struct extent_buffer *leaf;
3523 struct btrfs_key key;
3524 int ret;
3525
3526 path = btrfs_alloc_path();
3527 if (!path)
3528 return -ENOMEM;
3529
3530 key.objectid = BTRFS_BALANCE_OBJECTID;
3531 key.type = BTRFS_BALANCE_ITEM_KEY;
3532 key.offset = 0;
3533
3534 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3535 if (ret < 0)
3536 goto out;
3537 if (ret > 0) { /* ret = -ENOENT; */
3538 ret = 0;
3539 goto out;
3540 }
3541
3542 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3543 if (!bctl) {
3544 ret = -ENOMEM;
3545 goto out;
3546 }
3547
3548 leaf = path->nodes[0];
3549 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3550
3551 bctl->fs_info = fs_info;
3552 bctl->flags = btrfs_balance_flags(leaf, item);
3553 bctl->flags |= BTRFS_BALANCE_RESUME;
3554
3555 btrfs_balance_data(leaf, item, &disk_bargs);
3556 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3557 btrfs_balance_meta(leaf, item, &disk_bargs);
3558 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3559 btrfs_balance_sys(leaf, item, &disk_bargs);
3560 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3561
3562 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3563
3564 mutex_lock(&fs_info->volume_mutex);
3565 mutex_lock(&fs_info->balance_mutex);
3566
3567 set_balance_control(bctl);
3568
3569 mutex_unlock(&fs_info->balance_mutex);
3570 mutex_unlock(&fs_info->volume_mutex);
3571 out:
3572 btrfs_free_path(path);
3573 return ret;
3574 }
3575
3576 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3577 {
3578 int ret = 0;
3579
3580 mutex_lock(&fs_info->balance_mutex);
3581 if (!fs_info->balance_ctl) {
3582 mutex_unlock(&fs_info->balance_mutex);
3583 return -ENOTCONN;
3584 }
3585
3586 if (atomic_read(&fs_info->balance_running)) {
3587 atomic_inc(&fs_info->balance_pause_req);
3588 mutex_unlock(&fs_info->balance_mutex);
3589
3590 wait_event(fs_info->balance_wait_q,
3591 atomic_read(&fs_info->balance_running) == 0);
3592
3593 mutex_lock(&fs_info->balance_mutex);
3594 /* we are good with balance_ctl ripped off from under us */
3595 BUG_ON(atomic_read(&fs_info->balance_running));
3596 atomic_dec(&fs_info->balance_pause_req);
3597 } else {
3598 ret = -ENOTCONN;
3599 }
3600
3601 mutex_unlock(&fs_info->balance_mutex);
3602 return ret;
3603 }
3604
3605 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3606 {
3607 if (fs_info->sb->s_flags & MS_RDONLY)
3608 return -EROFS;
3609
3610 mutex_lock(&fs_info->balance_mutex);
3611 if (!fs_info->balance_ctl) {
3612 mutex_unlock(&fs_info->balance_mutex);
3613 return -ENOTCONN;
3614 }
3615
3616 atomic_inc(&fs_info->balance_cancel_req);
3617 /*
3618 * if we are running just wait and return, balance item is
3619 * deleted in btrfs_balance in this case
3620 */
3621 if (atomic_read(&fs_info->balance_running)) {
3622 mutex_unlock(&fs_info->balance_mutex);
3623 wait_event(fs_info->balance_wait_q,
3624 atomic_read(&fs_info->balance_running) == 0);
3625 mutex_lock(&fs_info->balance_mutex);
3626 } else {
3627 /* __cancel_balance needs volume_mutex */
3628 mutex_unlock(&fs_info->balance_mutex);
3629 mutex_lock(&fs_info->volume_mutex);
3630 mutex_lock(&fs_info->balance_mutex);
3631
3632 if (fs_info->balance_ctl)
3633 __cancel_balance(fs_info);
3634
3635 mutex_unlock(&fs_info->volume_mutex);
3636 }
3637
3638 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3639 atomic_dec(&fs_info->balance_cancel_req);
3640 mutex_unlock(&fs_info->balance_mutex);
3641 return 0;
3642 }
3643
3644 static int btrfs_uuid_scan_kthread(void *data)
3645 {
3646 struct btrfs_fs_info *fs_info = data;
3647 struct btrfs_root *root = fs_info->tree_root;
3648 struct btrfs_key key;
3649 struct btrfs_key max_key;
3650 struct btrfs_path *path = NULL;
3651 int ret = 0;
3652 struct extent_buffer *eb;
3653 int slot;
3654 struct btrfs_root_item root_item;
3655 u32 item_size;
3656 struct btrfs_trans_handle *trans = NULL;
3657
3658 path = btrfs_alloc_path();
3659 if (!path) {
3660 ret = -ENOMEM;
3661 goto out;
3662 }
3663
3664 key.objectid = 0;
3665 key.type = BTRFS_ROOT_ITEM_KEY;
3666 key.offset = 0;
3667
3668 max_key.objectid = (u64)-1;
3669 max_key.type = BTRFS_ROOT_ITEM_KEY;
3670 max_key.offset = (u64)-1;
3671
3672 while (1) {
3673 ret = btrfs_search_forward(root, &key, path, 0);
3674 if (ret) {
3675 if (ret > 0)
3676 ret = 0;
3677 break;
3678 }
3679
3680 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3681 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3682 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3683 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3684 goto skip;
3685
3686 eb = path->nodes[0];
3687 slot = path->slots[0];
3688 item_size = btrfs_item_size_nr(eb, slot);
3689 if (item_size < sizeof(root_item))
3690 goto skip;
3691
3692 read_extent_buffer(eb, &root_item,
3693 btrfs_item_ptr_offset(eb, slot),
3694 (int)sizeof(root_item));
3695 if (btrfs_root_refs(&root_item) == 0)
3696 goto skip;
3697
3698 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3699 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3700 if (trans)
3701 goto update_tree;
3702
3703 btrfs_release_path(path);
3704 /*
3705 * 1 - subvol uuid item
3706 * 1 - received_subvol uuid item
3707 */
3708 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3709 if (IS_ERR(trans)) {
3710 ret = PTR_ERR(trans);
3711 break;
3712 }
3713 continue;
3714 } else {
3715 goto skip;
3716 }
3717 update_tree:
3718 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3719 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3720 root_item.uuid,
3721 BTRFS_UUID_KEY_SUBVOL,
3722 key.objectid);
3723 if (ret < 0) {
3724 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3725 ret);
3726 break;
3727 }
3728 }
3729
3730 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3731 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3732 root_item.received_uuid,
3733 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3734 key.objectid);
3735 if (ret < 0) {
3736 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3737 ret);
3738 break;
3739 }
3740 }
3741
3742 skip:
3743 if (trans) {
3744 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3745 trans = NULL;
3746 if (ret)
3747 break;
3748 }
3749
3750 btrfs_release_path(path);
3751 if (key.offset < (u64)-1) {
3752 key.offset++;
3753 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3754 key.offset = 0;
3755 key.type = BTRFS_ROOT_ITEM_KEY;
3756 } else if (key.objectid < (u64)-1) {
3757 key.offset = 0;
3758 key.type = BTRFS_ROOT_ITEM_KEY;
3759 key.objectid++;
3760 } else {
3761 break;
3762 }
3763 cond_resched();
3764 }
3765
3766 out:
3767 btrfs_free_path(path);
3768 if (trans && !IS_ERR(trans))
3769 btrfs_end_transaction(trans, fs_info->uuid_root);
3770 if (ret)
3771 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3772 else
3773 fs_info->update_uuid_tree_gen = 1;
3774 up(&fs_info->uuid_tree_rescan_sem);
3775 return 0;
3776 }
3777
3778 /*
3779 * Callback for btrfs_uuid_tree_iterate().
3780 * returns:
3781 * 0 check succeeded, the entry is not outdated.
3782 * < 0 if an error occured.
3783 * > 0 if the check failed, which means the caller shall remove the entry.
3784 */
3785 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3786 u8 *uuid, u8 type, u64 subid)
3787 {
3788 struct btrfs_key key;
3789 int ret = 0;
3790 struct btrfs_root *subvol_root;
3791
3792 if (type != BTRFS_UUID_KEY_SUBVOL &&
3793 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3794 goto out;
3795
3796 key.objectid = subid;
3797 key.type = BTRFS_ROOT_ITEM_KEY;
3798 key.offset = (u64)-1;
3799 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3800 if (IS_ERR(subvol_root)) {
3801 ret = PTR_ERR(subvol_root);
3802 if (ret == -ENOENT)
3803 ret = 1;
3804 goto out;
3805 }
3806
3807 switch (type) {
3808 case BTRFS_UUID_KEY_SUBVOL:
3809 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3810 ret = 1;
3811 break;
3812 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3813 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3814 BTRFS_UUID_SIZE))
3815 ret = 1;
3816 break;
3817 }
3818
3819 out:
3820 return ret;
3821 }
3822
3823 static int btrfs_uuid_rescan_kthread(void *data)
3824 {
3825 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3826 int ret;
3827
3828 /*
3829 * 1st step is to iterate through the existing UUID tree and
3830 * to delete all entries that contain outdated data.
3831 * 2nd step is to add all missing entries to the UUID tree.
3832 */
3833 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3834 if (ret < 0) {
3835 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3836 up(&fs_info->uuid_tree_rescan_sem);
3837 return ret;
3838 }
3839 return btrfs_uuid_scan_kthread(data);
3840 }
3841
3842 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3843 {
3844 struct btrfs_trans_handle *trans;
3845 struct btrfs_root *tree_root = fs_info->tree_root;
3846 struct btrfs_root *uuid_root;
3847 struct task_struct *task;
3848 int ret;
3849
3850 /*
3851 * 1 - root node
3852 * 1 - root item
3853 */
3854 trans = btrfs_start_transaction(tree_root, 2);
3855 if (IS_ERR(trans))
3856 return PTR_ERR(trans);
3857
3858 uuid_root = btrfs_create_tree(trans, fs_info,
3859 BTRFS_UUID_TREE_OBJECTID);
3860 if (IS_ERR(uuid_root)) {
3861 btrfs_abort_transaction(trans, tree_root,
3862 PTR_ERR(uuid_root));
3863 return PTR_ERR(uuid_root);
3864 }
3865
3866 fs_info->uuid_root = uuid_root;
3867
3868 ret = btrfs_commit_transaction(trans, tree_root);
3869 if (ret)
3870 return ret;
3871
3872 down(&fs_info->uuid_tree_rescan_sem);
3873 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3874 if (IS_ERR(task)) {
3875 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3876 btrfs_warn(fs_info, "failed to start uuid_scan task");
3877 up(&fs_info->uuid_tree_rescan_sem);
3878 return PTR_ERR(task);
3879 }
3880
3881 return 0;
3882 }
3883
3884 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3885 {
3886 struct task_struct *task;
3887
3888 down(&fs_info->uuid_tree_rescan_sem);
3889 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3890 if (IS_ERR(task)) {
3891 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3892 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3893 up(&fs_info->uuid_tree_rescan_sem);
3894 return PTR_ERR(task);
3895 }
3896
3897 return 0;
3898 }
3899
3900 /*
3901 * shrinking a device means finding all of the device extents past
3902 * the new size, and then following the back refs to the chunks.
3903 * The chunk relocation code actually frees the device extent
3904 */
3905 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3906 {
3907 struct btrfs_trans_handle *trans;
3908 struct btrfs_root *root = device->dev_root;
3909 struct btrfs_dev_extent *dev_extent = NULL;
3910 struct btrfs_path *path;
3911 u64 length;
3912 u64 chunk_tree;
3913 u64 chunk_objectid;
3914 u64 chunk_offset;
3915 int ret;
3916 int slot;
3917 int failed = 0;
3918 bool retried = false;
3919 struct extent_buffer *l;
3920 struct btrfs_key key;
3921 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3922 u64 old_total = btrfs_super_total_bytes(super_copy);
3923 u64 old_size = device->total_bytes;
3924 u64 diff = device->total_bytes - new_size;
3925
3926 if (device->is_tgtdev_for_dev_replace)
3927 return -EINVAL;
3928
3929 path = btrfs_alloc_path();
3930 if (!path)
3931 return -ENOMEM;
3932
3933 path->reada = 2;
3934
3935 lock_chunks(root);
3936
3937 device->total_bytes = new_size;
3938 if (device->writeable) {
3939 device->fs_devices->total_rw_bytes -= diff;
3940 spin_lock(&root->fs_info->free_chunk_lock);
3941 root->fs_info->free_chunk_space -= diff;
3942 spin_unlock(&root->fs_info->free_chunk_lock);
3943 }
3944 unlock_chunks(root);
3945
3946 again:
3947 key.objectid = device->devid;
3948 key.offset = (u64)-1;
3949 key.type = BTRFS_DEV_EXTENT_KEY;
3950
3951 do {
3952 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3953 if (ret < 0)
3954 goto done;
3955
3956 ret = btrfs_previous_item(root, path, 0, key.type);
3957 if (ret < 0)
3958 goto done;
3959 if (ret) {
3960 ret = 0;
3961 btrfs_release_path(path);
3962 break;
3963 }
3964
3965 l = path->nodes[0];
3966 slot = path->slots[0];
3967 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3968
3969 if (key.objectid != device->devid) {
3970 btrfs_release_path(path);
3971 break;
3972 }
3973
3974 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3975 length = btrfs_dev_extent_length(l, dev_extent);
3976
3977 if (key.offset + length <= new_size) {
3978 btrfs_release_path(path);
3979 break;
3980 }
3981
3982 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3983 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3984 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3985 btrfs_release_path(path);
3986
3987 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3988 chunk_offset);
3989 if (ret && ret != -ENOSPC)
3990 goto done;
3991 if (ret == -ENOSPC)
3992 failed++;
3993 } while (key.offset-- > 0);
3994
3995 if (failed && !retried) {
3996 failed = 0;
3997 retried = true;
3998 goto again;
3999 } else if (failed && retried) {
4000 ret = -ENOSPC;
4001 lock_chunks(root);
4002
4003 device->total_bytes = old_size;
4004 if (device->writeable)
4005 device->fs_devices->total_rw_bytes += diff;
4006 spin_lock(&root->fs_info->free_chunk_lock);
4007 root->fs_info->free_chunk_space += diff;
4008 spin_unlock(&root->fs_info->free_chunk_lock);
4009 unlock_chunks(root);
4010 goto done;
4011 }
4012
4013 /* Shrinking succeeded, else we would be at "done". */
4014 trans = btrfs_start_transaction(root, 0);
4015 if (IS_ERR(trans)) {
4016 ret = PTR_ERR(trans);
4017 goto done;
4018 }
4019
4020 lock_chunks(root);
4021 device->disk_total_bytes = new_size;
4022 if (list_empty(&device->resized_list))
4023 list_add_tail(&device->resized_list,
4024 &root->fs_info->fs_devices->resized_devices);
4025
4026 /* Now btrfs_update_device() will change the on-disk size. */
4027 ret = btrfs_update_device(trans, device);
4028 if (ret) {
4029 unlock_chunks(root);
4030 btrfs_end_transaction(trans, root);
4031 goto done;
4032 }
4033 WARN_ON(diff > old_total);
4034 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4035 unlock_chunks(root);
4036 btrfs_end_transaction(trans, root);
4037 done:
4038 btrfs_free_path(path);
4039 return ret;
4040 }
4041
4042 static int btrfs_add_system_chunk(struct btrfs_root *root,
4043 struct btrfs_key *key,
4044 struct btrfs_chunk *chunk, int item_size)
4045 {
4046 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4047 struct btrfs_disk_key disk_key;
4048 u32 array_size;
4049 u8 *ptr;
4050
4051 array_size = btrfs_super_sys_array_size(super_copy);
4052 if (array_size + item_size + sizeof(disk_key)
4053 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4054 return -EFBIG;
4055
4056 ptr = super_copy->sys_chunk_array + array_size;
4057 btrfs_cpu_key_to_disk(&disk_key, key);
4058 memcpy(ptr, &disk_key, sizeof(disk_key));
4059 ptr += sizeof(disk_key);
4060 memcpy(ptr, chunk, item_size);
4061 item_size += sizeof(disk_key);
4062 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4063 return 0;
4064 }
4065
4066 /*
4067 * sort the devices in descending order by max_avail, total_avail
4068 */
4069 static int btrfs_cmp_device_info(const void *a, const void *b)
4070 {
4071 const struct btrfs_device_info *di_a = a;
4072 const struct btrfs_device_info *di_b = b;
4073
4074 if (di_a->max_avail > di_b->max_avail)
4075 return -1;
4076 if (di_a->max_avail < di_b->max_avail)
4077 return 1;
4078 if (di_a->total_avail > di_b->total_avail)
4079 return -1;
4080 if (di_a->total_avail < di_b->total_avail)
4081 return 1;
4082 return 0;
4083 }
4084
4085 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4086 [BTRFS_RAID_RAID10] = {
4087 .sub_stripes = 2,
4088 .dev_stripes = 1,
4089 .devs_max = 0, /* 0 == as many as possible */
4090 .devs_min = 4,
4091 .devs_increment = 2,
4092 .ncopies = 2,
4093 },
4094 [BTRFS_RAID_RAID1] = {
4095 .sub_stripes = 1,
4096 .dev_stripes = 1,
4097 .devs_max = 2,
4098 .devs_min = 2,
4099 .devs_increment = 2,
4100 .ncopies = 2,
4101 },
4102 [BTRFS_RAID_DUP] = {
4103 .sub_stripes = 1,
4104 .dev_stripes = 2,
4105 .devs_max = 1,
4106 .devs_min = 1,
4107 .devs_increment = 1,
4108 .ncopies = 2,
4109 },
4110 [BTRFS_RAID_RAID0] = {
4111 .sub_stripes = 1,
4112 .dev_stripes = 1,
4113 .devs_max = 0,
4114 .devs_min = 2,
4115 .devs_increment = 1,
4116 .ncopies = 1,
4117 },
4118 [BTRFS_RAID_SINGLE] = {
4119 .sub_stripes = 1,
4120 .dev_stripes = 1,
4121 .devs_max = 1,
4122 .devs_min = 1,
4123 .devs_increment = 1,
4124 .ncopies = 1,
4125 },
4126 [BTRFS_RAID_RAID5] = {
4127 .sub_stripes = 1,
4128 .dev_stripes = 1,
4129 .devs_max = 0,
4130 .devs_min = 2,
4131 .devs_increment = 1,
4132 .ncopies = 2,
4133 },
4134 [BTRFS_RAID_RAID6] = {
4135 .sub_stripes = 1,
4136 .dev_stripes = 1,
4137 .devs_max = 0,
4138 .devs_min = 3,
4139 .devs_increment = 1,
4140 .ncopies = 3,
4141 },
4142 };
4143
4144 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4145 {
4146 /* TODO allow them to set a preferred stripe size */
4147 return 64 * 1024;
4148 }
4149
4150 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4151 {
4152 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
4153 return;
4154
4155 btrfs_set_fs_incompat(info, RAID56);
4156 }
4157
4158 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4159 - sizeof(struct btrfs_item) \
4160 - sizeof(struct btrfs_chunk)) \
4161 / sizeof(struct btrfs_stripe) + 1)
4162
4163 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4164 - 2 * sizeof(struct btrfs_disk_key) \
4165 - 2 * sizeof(struct btrfs_chunk)) \
4166 / sizeof(struct btrfs_stripe) + 1)
4167
4168 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4169 struct btrfs_root *extent_root, u64 start,
4170 u64 type)
4171 {
4172 struct btrfs_fs_info *info = extent_root->fs_info;
4173 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4174 struct list_head *cur;
4175 struct map_lookup *map = NULL;
4176 struct extent_map_tree *em_tree;
4177 struct extent_map *em;
4178 struct btrfs_device_info *devices_info = NULL;
4179 u64 total_avail;
4180 int num_stripes; /* total number of stripes to allocate */
4181 int data_stripes; /* number of stripes that count for
4182 block group size */
4183 int sub_stripes; /* sub_stripes info for map */
4184 int dev_stripes; /* stripes per dev */
4185 int devs_max; /* max devs to use */
4186 int devs_min; /* min devs needed */
4187 int devs_increment; /* ndevs has to be a multiple of this */
4188 int ncopies; /* how many copies to data has */
4189 int ret;
4190 u64 max_stripe_size;
4191 u64 max_chunk_size;
4192 u64 stripe_size;
4193 u64 num_bytes;
4194 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4195 int ndevs;
4196 int i;
4197 int j;
4198 int index;
4199
4200 BUG_ON(!alloc_profile_is_valid(type, 0));
4201
4202 if (list_empty(&fs_devices->alloc_list))
4203 return -ENOSPC;
4204
4205 index = __get_raid_index(type);
4206
4207 sub_stripes = btrfs_raid_array[index].sub_stripes;
4208 dev_stripes = btrfs_raid_array[index].dev_stripes;
4209 devs_max = btrfs_raid_array[index].devs_max;
4210 devs_min = btrfs_raid_array[index].devs_min;
4211 devs_increment = btrfs_raid_array[index].devs_increment;
4212 ncopies = btrfs_raid_array[index].ncopies;
4213
4214 if (type & BTRFS_BLOCK_GROUP_DATA) {
4215 max_stripe_size = 1024 * 1024 * 1024;
4216 max_chunk_size = 10 * max_stripe_size;
4217 if (!devs_max)
4218 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4219 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4220 /* for larger filesystems, use larger metadata chunks */
4221 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4222 max_stripe_size = 1024 * 1024 * 1024;
4223 else
4224 max_stripe_size = 256 * 1024 * 1024;
4225 max_chunk_size = max_stripe_size;
4226 if (!devs_max)
4227 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4228 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4229 max_stripe_size = 32 * 1024 * 1024;
4230 max_chunk_size = 2 * max_stripe_size;
4231 if (!devs_max)
4232 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4233 } else {
4234 btrfs_err(info, "invalid chunk type 0x%llx requested",
4235 type);
4236 BUG_ON(1);
4237 }
4238
4239 /* we don't want a chunk larger than 10% of writeable space */
4240 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4241 max_chunk_size);
4242
4243 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4244 GFP_NOFS);
4245 if (!devices_info)
4246 return -ENOMEM;
4247
4248 cur = fs_devices->alloc_list.next;
4249
4250 /*
4251 * in the first pass through the devices list, we gather information
4252 * about the available holes on each device.
4253 */
4254 ndevs = 0;
4255 while (cur != &fs_devices->alloc_list) {
4256 struct btrfs_device *device;
4257 u64 max_avail;
4258 u64 dev_offset;
4259
4260 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4261
4262 cur = cur->next;
4263
4264 if (!device->writeable) {
4265 WARN(1, KERN_ERR
4266 "BTRFS: read-only device in alloc_list\n");
4267 continue;
4268 }
4269
4270 if (!device->in_fs_metadata ||
4271 device->is_tgtdev_for_dev_replace)
4272 continue;
4273
4274 if (device->total_bytes > device->bytes_used)
4275 total_avail = device->total_bytes - device->bytes_used;
4276 else
4277 total_avail = 0;
4278
4279 /* If there is no space on this device, skip it. */
4280 if (total_avail == 0)
4281 continue;
4282
4283 ret = find_free_dev_extent(trans, device,
4284 max_stripe_size * dev_stripes,
4285 &dev_offset, &max_avail);
4286 if (ret && ret != -ENOSPC)
4287 goto error;
4288
4289 if (ret == 0)
4290 max_avail = max_stripe_size * dev_stripes;
4291
4292 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4293 continue;
4294
4295 if (ndevs == fs_devices->rw_devices) {
4296 WARN(1, "%s: found more than %llu devices\n",
4297 __func__, fs_devices->rw_devices);
4298 break;
4299 }
4300 devices_info[ndevs].dev_offset = dev_offset;
4301 devices_info[ndevs].max_avail = max_avail;
4302 devices_info[ndevs].total_avail = total_avail;
4303 devices_info[ndevs].dev = device;
4304 ++ndevs;
4305 }
4306
4307 /*
4308 * now sort the devices by hole size / available space
4309 */
4310 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4311 btrfs_cmp_device_info, NULL);
4312
4313 /* round down to number of usable stripes */
4314 ndevs -= ndevs % devs_increment;
4315
4316 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4317 ret = -ENOSPC;
4318 goto error;
4319 }
4320
4321 if (devs_max && ndevs > devs_max)
4322 ndevs = devs_max;
4323 /*
4324 * the primary goal is to maximize the number of stripes, so use as many
4325 * devices as possible, even if the stripes are not maximum sized.
4326 */
4327 stripe_size = devices_info[ndevs-1].max_avail;
4328 num_stripes = ndevs * dev_stripes;
4329
4330 /*
4331 * this will have to be fixed for RAID1 and RAID10 over
4332 * more drives
4333 */
4334 data_stripes = num_stripes / ncopies;
4335
4336 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4337 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4338 btrfs_super_stripesize(info->super_copy));
4339 data_stripes = num_stripes - 1;
4340 }
4341 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4342 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4343 btrfs_super_stripesize(info->super_copy));
4344 data_stripes = num_stripes - 2;
4345 }
4346
4347 /*
4348 * Use the number of data stripes to figure out how big this chunk
4349 * is really going to be in terms of logical address space,
4350 * and compare that answer with the max chunk size
4351 */
4352 if (stripe_size * data_stripes > max_chunk_size) {
4353 u64 mask = (1ULL << 24) - 1;
4354 stripe_size = max_chunk_size;
4355 do_div(stripe_size, data_stripes);
4356
4357 /* bump the answer up to a 16MB boundary */
4358 stripe_size = (stripe_size + mask) & ~mask;
4359
4360 /* but don't go higher than the limits we found
4361 * while searching for free extents
4362 */
4363 if (stripe_size > devices_info[ndevs-1].max_avail)
4364 stripe_size = devices_info[ndevs-1].max_avail;
4365 }
4366
4367 do_div(stripe_size, dev_stripes);
4368
4369 /* align to BTRFS_STRIPE_LEN */
4370 do_div(stripe_size, raid_stripe_len);
4371 stripe_size *= raid_stripe_len;
4372
4373 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4374 if (!map) {
4375 ret = -ENOMEM;
4376 goto error;
4377 }
4378 map->num_stripes = num_stripes;
4379
4380 for (i = 0; i < ndevs; ++i) {
4381 for (j = 0; j < dev_stripes; ++j) {
4382 int s = i * dev_stripes + j;
4383 map->stripes[s].dev = devices_info[i].dev;
4384 map->stripes[s].physical = devices_info[i].dev_offset +
4385 j * stripe_size;
4386 }
4387 }
4388 map->sector_size = extent_root->sectorsize;
4389 map->stripe_len = raid_stripe_len;
4390 map->io_align = raid_stripe_len;
4391 map->io_width = raid_stripe_len;
4392 map->type = type;
4393 map->sub_stripes = sub_stripes;
4394
4395 num_bytes = stripe_size * data_stripes;
4396
4397 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4398
4399 em = alloc_extent_map();
4400 if (!em) {
4401 kfree(map);
4402 ret = -ENOMEM;
4403 goto error;
4404 }
4405 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4406 em->bdev = (struct block_device *)map;
4407 em->start = start;
4408 em->len = num_bytes;
4409 em->block_start = 0;
4410 em->block_len = em->len;
4411 em->orig_block_len = stripe_size;
4412
4413 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4414 write_lock(&em_tree->lock);
4415 ret = add_extent_mapping(em_tree, em, 0);
4416 if (!ret) {
4417 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4418 atomic_inc(&em->refs);
4419 }
4420 write_unlock(&em_tree->lock);
4421 if (ret) {
4422 free_extent_map(em);
4423 goto error;
4424 }
4425
4426 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4427 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4428 start, num_bytes);
4429 if (ret)
4430 goto error_del_extent;
4431
4432 free_extent_map(em);
4433 check_raid56_incompat_flag(extent_root->fs_info, type);
4434
4435 kfree(devices_info);
4436 return 0;
4437
4438 error_del_extent:
4439 write_lock(&em_tree->lock);
4440 remove_extent_mapping(em_tree, em);
4441 write_unlock(&em_tree->lock);
4442
4443 /* One for our allocation */
4444 free_extent_map(em);
4445 /* One for the tree reference */
4446 free_extent_map(em);
4447 error:
4448 kfree(devices_info);
4449 return ret;
4450 }
4451
4452 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4453 struct btrfs_root *extent_root,
4454 u64 chunk_offset, u64 chunk_size)
4455 {
4456 struct btrfs_key key;
4457 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4458 struct btrfs_device *device;
4459 struct btrfs_chunk *chunk;
4460 struct btrfs_stripe *stripe;
4461 struct extent_map_tree *em_tree;
4462 struct extent_map *em;
4463 struct map_lookup *map;
4464 size_t item_size;
4465 u64 dev_offset;
4466 u64 stripe_size;
4467 int i = 0;
4468 int ret;
4469
4470 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4471 read_lock(&em_tree->lock);
4472 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4473 read_unlock(&em_tree->lock);
4474
4475 if (!em) {
4476 btrfs_crit(extent_root->fs_info, "unable to find logical "
4477 "%Lu len %Lu", chunk_offset, chunk_size);
4478 return -EINVAL;
4479 }
4480
4481 if (em->start != chunk_offset || em->len != chunk_size) {
4482 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4483 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4484 chunk_size, em->start, em->len);
4485 free_extent_map(em);
4486 return -EINVAL;
4487 }
4488
4489 map = (struct map_lookup *)em->bdev;
4490 item_size = btrfs_chunk_item_size(map->num_stripes);
4491 stripe_size = em->orig_block_len;
4492
4493 chunk = kzalloc(item_size, GFP_NOFS);
4494 if (!chunk) {
4495 ret = -ENOMEM;
4496 goto out;
4497 }
4498
4499 for (i = 0; i < map->num_stripes; i++) {
4500 device = map->stripes[i].dev;
4501 dev_offset = map->stripes[i].physical;
4502
4503 device->bytes_used += stripe_size;
4504 ret = btrfs_update_device(trans, device);
4505 if (ret)
4506 goto out;
4507 ret = btrfs_alloc_dev_extent(trans, device,
4508 chunk_root->root_key.objectid,
4509 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4510 chunk_offset, dev_offset,
4511 stripe_size);
4512 if (ret)
4513 goto out;
4514 }
4515
4516 spin_lock(&extent_root->fs_info->free_chunk_lock);
4517 extent_root->fs_info->free_chunk_space -= (stripe_size *
4518 map->num_stripes);
4519 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4520
4521 stripe = &chunk->stripe;
4522 for (i = 0; i < map->num_stripes; i++) {
4523 device = map->stripes[i].dev;
4524 dev_offset = map->stripes[i].physical;
4525
4526 btrfs_set_stack_stripe_devid(stripe, device->devid);
4527 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4528 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4529 stripe++;
4530 }
4531
4532 btrfs_set_stack_chunk_length(chunk, chunk_size);
4533 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4534 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4535 btrfs_set_stack_chunk_type(chunk, map->type);
4536 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4537 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4538 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4539 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4540 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4541
4542 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4543 key.type = BTRFS_CHUNK_ITEM_KEY;
4544 key.offset = chunk_offset;
4545
4546 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4547 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4548 /*
4549 * TODO: Cleanup of inserted chunk root in case of
4550 * failure.
4551 */
4552 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4553 item_size);
4554 }
4555
4556 out:
4557 kfree(chunk);
4558 free_extent_map(em);
4559 return ret;
4560 }
4561
4562 /*
4563 * Chunk allocation falls into two parts. The first part does works
4564 * that make the new allocated chunk useable, but not do any operation
4565 * that modifies the chunk tree. The second part does the works that
4566 * require modifying the chunk tree. This division is important for the
4567 * bootstrap process of adding storage to a seed btrfs.
4568 */
4569 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4570 struct btrfs_root *extent_root, u64 type)
4571 {
4572 u64 chunk_offset;
4573
4574 chunk_offset = find_next_chunk(extent_root->fs_info);
4575 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4576 }
4577
4578 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4579 struct btrfs_root *root,
4580 struct btrfs_device *device)
4581 {
4582 u64 chunk_offset;
4583 u64 sys_chunk_offset;
4584 u64 alloc_profile;
4585 struct btrfs_fs_info *fs_info = root->fs_info;
4586 struct btrfs_root *extent_root = fs_info->extent_root;
4587 int ret;
4588
4589 chunk_offset = find_next_chunk(fs_info);
4590 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4591 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4592 alloc_profile);
4593 if (ret)
4594 return ret;
4595
4596 sys_chunk_offset = find_next_chunk(root->fs_info);
4597 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4598 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4599 alloc_profile);
4600 if (ret) {
4601 btrfs_abort_transaction(trans, root, ret);
4602 goto out;
4603 }
4604
4605 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
4606 if (ret)
4607 btrfs_abort_transaction(trans, root, ret);
4608 out:
4609 return ret;
4610 }
4611
4612 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4613 {
4614 int max_errors;
4615
4616 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4617 BTRFS_BLOCK_GROUP_RAID10 |
4618 BTRFS_BLOCK_GROUP_RAID5 |
4619 BTRFS_BLOCK_GROUP_DUP)) {
4620 max_errors = 1;
4621 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4622 max_errors = 2;
4623 } else {
4624 max_errors = 0;
4625 }
4626
4627 return max_errors;
4628 }
4629
4630 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4631 {
4632 struct extent_map *em;
4633 struct map_lookup *map;
4634 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4635 int readonly = 0;
4636 int miss_ndevs = 0;
4637 int i;
4638
4639 read_lock(&map_tree->map_tree.lock);
4640 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4641 read_unlock(&map_tree->map_tree.lock);
4642 if (!em)
4643 return 1;
4644
4645 map = (struct map_lookup *)em->bdev;
4646 for (i = 0; i < map->num_stripes; i++) {
4647 if (map->stripes[i].dev->missing) {
4648 miss_ndevs++;
4649 continue;
4650 }
4651
4652 if (!map->stripes[i].dev->writeable) {
4653 readonly = 1;
4654 goto end;
4655 }
4656 }
4657
4658 /*
4659 * If the number of missing devices is larger than max errors,
4660 * we can not write the data into that chunk successfully, so
4661 * set it readonly.
4662 */
4663 if (miss_ndevs > btrfs_chunk_max_errors(map))
4664 readonly = 1;
4665 end:
4666 free_extent_map(em);
4667 return readonly;
4668 }
4669
4670 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4671 {
4672 extent_map_tree_init(&tree->map_tree);
4673 }
4674
4675 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4676 {
4677 struct extent_map *em;
4678
4679 while (1) {
4680 write_lock(&tree->map_tree.lock);
4681 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4682 if (em)
4683 remove_extent_mapping(&tree->map_tree, em);
4684 write_unlock(&tree->map_tree.lock);
4685 if (!em)
4686 break;
4687 /* once for us */
4688 free_extent_map(em);
4689 /* once for the tree */
4690 free_extent_map(em);
4691 }
4692 }
4693
4694 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4695 {
4696 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4697 struct extent_map *em;
4698 struct map_lookup *map;
4699 struct extent_map_tree *em_tree = &map_tree->map_tree;
4700 int ret;
4701
4702 read_lock(&em_tree->lock);
4703 em = lookup_extent_mapping(em_tree, logical, len);
4704 read_unlock(&em_tree->lock);
4705
4706 /*
4707 * We could return errors for these cases, but that could get ugly and
4708 * we'd probably do the same thing which is just not do anything else
4709 * and exit, so return 1 so the callers don't try to use other copies.
4710 */
4711 if (!em) {
4712 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4713 logical+len);
4714 return 1;
4715 }
4716
4717 if (em->start > logical || em->start + em->len < logical) {
4718 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4719 "%Lu-%Lu", logical, logical+len, em->start,
4720 em->start + em->len);
4721 free_extent_map(em);
4722 return 1;
4723 }
4724
4725 map = (struct map_lookup *)em->bdev;
4726 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4727 ret = map->num_stripes;
4728 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4729 ret = map->sub_stripes;
4730 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4731 ret = 2;
4732 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4733 ret = 3;
4734 else
4735 ret = 1;
4736 free_extent_map(em);
4737
4738 btrfs_dev_replace_lock(&fs_info->dev_replace);
4739 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4740 ret++;
4741 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4742
4743 return ret;
4744 }
4745
4746 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4747 struct btrfs_mapping_tree *map_tree,
4748 u64 logical)
4749 {
4750 struct extent_map *em;
4751 struct map_lookup *map;
4752 struct extent_map_tree *em_tree = &map_tree->map_tree;
4753 unsigned long len = root->sectorsize;
4754
4755 read_lock(&em_tree->lock);
4756 em = lookup_extent_mapping(em_tree, logical, len);
4757 read_unlock(&em_tree->lock);
4758 BUG_ON(!em);
4759
4760 BUG_ON(em->start > logical || em->start + em->len < logical);
4761 map = (struct map_lookup *)em->bdev;
4762 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4763 BTRFS_BLOCK_GROUP_RAID6)) {
4764 len = map->stripe_len * nr_data_stripes(map);
4765 }
4766 free_extent_map(em);
4767 return len;
4768 }
4769
4770 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4771 u64 logical, u64 len, int mirror_num)
4772 {
4773 struct extent_map *em;
4774 struct map_lookup *map;
4775 struct extent_map_tree *em_tree = &map_tree->map_tree;
4776 int ret = 0;
4777
4778 read_lock(&em_tree->lock);
4779 em = lookup_extent_mapping(em_tree, logical, len);
4780 read_unlock(&em_tree->lock);
4781 BUG_ON(!em);
4782
4783 BUG_ON(em->start > logical || em->start + em->len < logical);
4784 map = (struct map_lookup *)em->bdev;
4785 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4786 BTRFS_BLOCK_GROUP_RAID6))
4787 ret = 1;
4788 free_extent_map(em);
4789 return ret;
4790 }
4791
4792 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4793 struct map_lookup *map, int first, int num,
4794 int optimal, int dev_replace_is_ongoing)
4795 {
4796 int i;
4797 int tolerance;
4798 struct btrfs_device *srcdev;
4799
4800 if (dev_replace_is_ongoing &&
4801 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4802 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4803 srcdev = fs_info->dev_replace.srcdev;
4804 else
4805 srcdev = NULL;
4806
4807 /*
4808 * try to avoid the drive that is the source drive for a
4809 * dev-replace procedure, only choose it if no other non-missing
4810 * mirror is available
4811 */
4812 for (tolerance = 0; tolerance < 2; tolerance++) {
4813 if (map->stripes[optimal].dev->bdev &&
4814 (tolerance || map->stripes[optimal].dev != srcdev))
4815 return optimal;
4816 for (i = first; i < first + num; i++) {
4817 if (map->stripes[i].dev->bdev &&
4818 (tolerance || map->stripes[i].dev != srcdev))
4819 return i;
4820 }
4821 }
4822
4823 /* we couldn't find one that doesn't fail. Just return something
4824 * and the io error handling code will clean up eventually
4825 */
4826 return optimal;
4827 }
4828
4829 static inline int parity_smaller(u64 a, u64 b)
4830 {
4831 return a > b;
4832 }
4833
4834 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4835 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4836 {
4837 struct btrfs_bio_stripe s;
4838 int i;
4839 u64 l;
4840 int again = 1;
4841
4842 while (again) {
4843 again = 0;
4844 for (i = 0; i < bbio->num_stripes - 1; i++) {
4845 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4846 s = bbio->stripes[i];
4847 l = raid_map[i];
4848 bbio->stripes[i] = bbio->stripes[i+1];
4849 raid_map[i] = raid_map[i+1];
4850 bbio->stripes[i+1] = s;
4851 raid_map[i+1] = l;
4852 again = 1;
4853 }
4854 }
4855 }
4856 }
4857
4858 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4859 u64 logical, u64 *length,
4860 struct btrfs_bio **bbio_ret,
4861 int mirror_num, u64 **raid_map_ret)
4862 {
4863 struct extent_map *em;
4864 struct map_lookup *map;
4865 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4866 struct extent_map_tree *em_tree = &map_tree->map_tree;
4867 u64 offset;
4868 u64 stripe_offset;
4869 u64 stripe_end_offset;
4870 u64 stripe_nr;
4871 u64 stripe_nr_orig;
4872 u64 stripe_nr_end;
4873 u64 stripe_len;
4874 u64 *raid_map = NULL;
4875 int stripe_index;
4876 int i;
4877 int ret = 0;
4878 int num_stripes;
4879 int max_errors = 0;
4880 struct btrfs_bio *bbio = NULL;
4881 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4882 int dev_replace_is_ongoing = 0;
4883 int num_alloc_stripes;
4884 int patch_the_first_stripe_for_dev_replace = 0;
4885 u64 physical_to_patch_in_first_stripe = 0;
4886 u64 raid56_full_stripe_start = (u64)-1;
4887
4888 read_lock(&em_tree->lock);
4889 em = lookup_extent_mapping(em_tree, logical, *length);
4890 read_unlock(&em_tree->lock);
4891
4892 if (!em) {
4893 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4894 logical, *length);
4895 return -EINVAL;
4896 }
4897
4898 if (em->start > logical || em->start + em->len < logical) {
4899 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4900 "found %Lu-%Lu", logical, em->start,
4901 em->start + em->len);
4902 free_extent_map(em);
4903 return -EINVAL;
4904 }
4905
4906 map = (struct map_lookup *)em->bdev;
4907 offset = logical - em->start;
4908
4909 stripe_len = map->stripe_len;
4910 stripe_nr = offset;
4911 /*
4912 * stripe_nr counts the total number of stripes we have to stride
4913 * to get to this block
4914 */
4915 do_div(stripe_nr, stripe_len);
4916
4917 stripe_offset = stripe_nr * stripe_len;
4918 BUG_ON(offset < stripe_offset);
4919
4920 /* stripe_offset is the offset of this block in its stripe*/
4921 stripe_offset = offset - stripe_offset;
4922
4923 /* if we're here for raid56, we need to know the stripe aligned start */
4924 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4925 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4926 raid56_full_stripe_start = offset;
4927
4928 /* allow a write of a full stripe, but make sure we don't
4929 * allow straddling of stripes
4930 */
4931 do_div(raid56_full_stripe_start, full_stripe_len);
4932 raid56_full_stripe_start *= full_stripe_len;
4933 }
4934
4935 if (rw & REQ_DISCARD) {
4936 /* we don't discard raid56 yet */
4937 if (map->type &
4938 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4939 ret = -EOPNOTSUPP;
4940 goto out;
4941 }
4942 *length = min_t(u64, em->len - offset, *length);
4943 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4944 u64 max_len;
4945 /* For writes to RAID[56], allow a full stripeset across all disks.
4946 For other RAID types and for RAID[56] reads, just allow a single
4947 stripe (on a single disk). */
4948 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4949 (rw & REQ_WRITE)) {
4950 max_len = stripe_len * nr_data_stripes(map) -
4951 (offset - raid56_full_stripe_start);
4952 } else {
4953 /* we limit the length of each bio to what fits in a stripe */
4954 max_len = stripe_len - stripe_offset;
4955 }
4956 *length = min_t(u64, em->len - offset, max_len);
4957 } else {
4958 *length = em->len - offset;
4959 }
4960
4961 /* This is for when we're called from btrfs_merge_bio_hook() and all
4962 it cares about is the length */
4963 if (!bbio_ret)
4964 goto out;
4965
4966 btrfs_dev_replace_lock(dev_replace);
4967 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4968 if (!dev_replace_is_ongoing)
4969 btrfs_dev_replace_unlock(dev_replace);
4970
4971 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4972 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4973 dev_replace->tgtdev != NULL) {
4974 /*
4975 * in dev-replace case, for repair case (that's the only
4976 * case where the mirror is selected explicitly when
4977 * calling btrfs_map_block), blocks left of the left cursor
4978 * can also be read from the target drive.
4979 * For REQ_GET_READ_MIRRORS, the target drive is added as
4980 * the last one to the array of stripes. For READ, it also
4981 * needs to be supported using the same mirror number.
4982 * If the requested block is not left of the left cursor,
4983 * EIO is returned. This can happen because btrfs_num_copies()
4984 * returns one more in the dev-replace case.
4985 */
4986 u64 tmp_length = *length;
4987 struct btrfs_bio *tmp_bbio = NULL;
4988 int tmp_num_stripes;
4989 u64 srcdev_devid = dev_replace->srcdev->devid;
4990 int index_srcdev = 0;
4991 int found = 0;
4992 u64 physical_of_found = 0;
4993
4994 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
4995 logical, &tmp_length, &tmp_bbio, 0, NULL);
4996 if (ret) {
4997 WARN_ON(tmp_bbio != NULL);
4998 goto out;
4999 }
5000
5001 tmp_num_stripes = tmp_bbio->num_stripes;
5002 if (mirror_num > tmp_num_stripes) {
5003 /*
5004 * REQ_GET_READ_MIRRORS does not contain this
5005 * mirror, that means that the requested area
5006 * is not left of the left cursor
5007 */
5008 ret = -EIO;
5009 kfree(tmp_bbio);
5010 goto out;
5011 }
5012
5013 /*
5014 * process the rest of the function using the mirror_num
5015 * of the source drive. Therefore look it up first.
5016 * At the end, patch the device pointer to the one of the
5017 * target drive.
5018 */
5019 for (i = 0; i < tmp_num_stripes; i++) {
5020 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5021 /*
5022 * In case of DUP, in order to keep it
5023 * simple, only add the mirror with the
5024 * lowest physical address
5025 */
5026 if (found &&
5027 physical_of_found <=
5028 tmp_bbio->stripes[i].physical)
5029 continue;
5030 index_srcdev = i;
5031 found = 1;
5032 physical_of_found =
5033 tmp_bbio->stripes[i].physical;
5034 }
5035 }
5036
5037 if (found) {
5038 mirror_num = index_srcdev + 1;
5039 patch_the_first_stripe_for_dev_replace = 1;
5040 physical_to_patch_in_first_stripe = physical_of_found;
5041 } else {
5042 WARN_ON(1);
5043 ret = -EIO;
5044 kfree(tmp_bbio);
5045 goto out;
5046 }
5047
5048 kfree(tmp_bbio);
5049 } else if (mirror_num > map->num_stripes) {
5050 mirror_num = 0;
5051 }
5052
5053 num_stripes = 1;
5054 stripe_index = 0;
5055 stripe_nr_orig = stripe_nr;
5056 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5057 do_div(stripe_nr_end, map->stripe_len);
5058 stripe_end_offset = stripe_nr_end * map->stripe_len -
5059 (offset + *length);
5060
5061 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5062 if (rw & REQ_DISCARD)
5063 num_stripes = min_t(u64, map->num_stripes,
5064 stripe_nr_end - stripe_nr_orig);
5065 stripe_index = do_div(stripe_nr, map->num_stripes);
5066 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5067 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5068 num_stripes = map->num_stripes;
5069 else if (mirror_num)
5070 stripe_index = mirror_num - 1;
5071 else {
5072 stripe_index = find_live_mirror(fs_info, map, 0,
5073 map->num_stripes,
5074 current->pid % map->num_stripes,
5075 dev_replace_is_ongoing);
5076 mirror_num = stripe_index + 1;
5077 }
5078
5079 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5080 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5081 num_stripes = map->num_stripes;
5082 } else if (mirror_num) {
5083 stripe_index = mirror_num - 1;
5084 } else {
5085 mirror_num = 1;
5086 }
5087
5088 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5089 int factor = map->num_stripes / map->sub_stripes;
5090
5091 stripe_index = do_div(stripe_nr, factor);
5092 stripe_index *= map->sub_stripes;
5093
5094 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5095 num_stripes = map->sub_stripes;
5096 else if (rw & REQ_DISCARD)
5097 num_stripes = min_t(u64, map->sub_stripes *
5098 (stripe_nr_end - stripe_nr_orig),
5099 map->num_stripes);
5100 else if (mirror_num)
5101 stripe_index += mirror_num - 1;
5102 else {
5103 int old_stripe_index = stripe_index;
5104 stripe_index = find_live_mirror(fs_info, map,
5105 stripe_index,
5106 map->sub_stripes, stripe_index +
5107 current->pid % map->sub_stripes,
5108 dev_replace_is_ongoing);
5109 mirror_num = stripe_index - old_stripe_index + 1;
5110 }
5111
5112 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5113 BTRFS_BLOCK_GROUP_RAID6)) {
5114 u64 tmp;
5115
5116 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
5117 && raid_map_ret) {
5118 int i, rot;
5119
5120 /* push stripe_nr back to the start of the full stripe */
5121 stripe_nr = raid56_full_stripe_start;
5122 do_div(stripe_nr, stripe_len);
5123
5124 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5125
5126 /* RAID[56] write or recovery. Return all stripes */
5127 num_stripes = map->num_stripes;
5128 max_errors = nr_parity_stripes(map);
5129
5130 raid_map = kmalloc_array(num_stripes, sizeof(u64),
5131 GFP_NOFS);
5132 if (!raid_map) {
5133 ret = -ENOMEM;
5134 goto out;
5135 }
5136
5137 /* Work out the disk rotation on this stripe-set */
5138 tmp = stripe_nr;
5139 rot = do_div(tmp, num_stripes);
5140
5141 /* Fill in the logical address of each stripe */
5142 tmp = stripe_nr * nr_data_stripes(map);
5143 for (i = 0; i < nr_data_stripes(map); i++)
5144 raid_map[(i+rot) % num_stripes] =
5145 em->start + (tmp + i) * map->stripe_len;
5146
5147 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5148 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5149 raid_map[(i+rot+1) % num_stripes] =
5150 RAID6_Q_STRIPE;
5151
5152 *length = map->stripe_len;
5153 stripe_index = 0;
5154 stripe_offset = 0;
5155 } else {
5156 /*
5157 * Mirror #0 or #1 means the original data block.
5158 * Mirror #2 is RAID5 parity block.
5159 * Mirror #3 is RAID6 Q block.
5160 */
5161 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5162 if (mirror_num > 1)
5163 stripe_index = nr_data_stripes(map) +
5164 mirror_num - 2;
5165
5166 /* We distribute the parity blocks across stripes */
5167 tmp = stripe_nr + stripe_index;
5168 stripe_index = do_div(tmp, map->num_stripes);
5169 }
5170 } else {
5171 /*
5172 * after this do_div call, stripe_nr is the number of stripes
5173 * on this device we have to walk to find the data, and
5174 * stripe_index is the number of our device in the stripe array
5175 */
5176 stripe_index = do_div(stripe_nr, map->num_stripes);
5177 mirror_num = stripe_index + 1;
5178 }
5179 BUG_ON(stripe_index >= map->num_stripes);
5180
5181 num_alloc_stripes = num_stripes;
5182 if (dev_replace_is_ongoing) {
5183 if (rw & (REQ_WRITE | REQ_DISCARD))
5184 num_alloc_stripes <<= 1;
5185 if (rw & REQ_GET_READ_MIRRORS)
5186 num_alloc_stripes++;
5187 }
5188 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
5189 if (!bbio) {
5190 kfree(raid_map);
5191 ret = -ENOMEM;
5192 goto out;
5193 }
5194 atomic_set(&bbio->error, 0);
5195
5196 if (rw & REQ_DISCARD) {
5197 int factor = 0;
5198 int sub_stripes = 0;
5199 u64 stripes_per_dev = 0;
5200 u32 remaining_stripes = 0;
5201 u32 last_stripe = 0;
5202
5203 if (map->type &
5204 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5205 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5206 sub_stripes = 1;
5207 else
5208 sub_stripes = map->sub_stripes;
5209
5210 factor = map->num_stripes / sub_stripes;
5211 stripes_per_dev = div_u64_rem(stripe_nr_end -
5212 stripe_nr_orig,
5213 factor,
5214 &remaining_stripes);
5215 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5216 last_stripe *= sub_stripes;
5217 }
5218
5219 for (i = 0; i < num_stripes; i++) {
5220 bbio->stripes[i].physical =
5221 map->stripes[stripe_index].physical +
5222 stripe_offset + stripe_nr * map->stripe_len;
5223 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5224
5225 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5226 BTRFS_BLOCK_GROUP_RAID10)) {
5227 bbio->stripes[i].length = stripes_per_dev *
5228 map->stripe_len;
5229
5230 if (i / sub_stripes < remaining_stripes)
5231 bbio->stripes[i].length +=
5232 map->stripe_len;
5233
5234 /*
5235 * Special for the first stripe and
5236 * the last stripe:
5237 *
5238 * |-------|...|-------|
5239 * |----------|
5240 * off end_off
5241 */
5242 if (i < sub_stripes)
5243 bbio->stripes[i].length -=
5244 stripe_offset;
5245
5246 if (stripe_index >= last_stripe &&
5247 stripe_index <= (last_stripe +
5248 sub_stripes - 1))
5249 bbio->stripes[i].length -=
5250 stripe_end_offset;
5251
5252 if (i == sub_stripes - 1)
5253 stripe_offset = 0;
5254 } else
5255 bbio->stripes[i].length = *length;
5256
5257 stripe_index++;
5258 if (stripe_index == map->num_stripes) {
5259 /* This could only happen for RAID0/10 */
5260 stripe_index = 0;
5261 stripe_nr++;
5262 }
5263 }
5264 } else {
5265 for (i = 0; i < num_stripes; i++) {
5266 bbio->stripes[i].physical =
5267 map->stripes[stripe_index].physical +
5268 stripe_offset +
5269 stripe_nr * map->stripe_len;
5270 bbio->stripes[i].dev =
5271 map->stripes[stripe_index].dev;
5272 stripe_index++;
5273 }
5274 }
5275
5276 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5277 max_errors = btrfs_chunk_max_errors(map);
5278
5279 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5280 dev_replace->tgtdev != NULL) {
5281 int index_where_to_add;
5282 u64 srcdev_devid = dev_replace->srcdev->devid;
5283
5284 /*
5285 * duplicate the write operations while the dev replace
5286 * procedure is running. Since the copying of the old disk
5287 * to the new disk takes place at run time while the
5288 * filesystem is mounted writable, the regular write
5289 * operations to the old disk have to be duplicated to go
5290 * to the new disk as well.
5291 * Note that device->missing is handled by the caller, and
5292 * that the write to the old disk is already set up in the
5293 * stripes array.
5294 */
5295 index_where_to_add = num_stripes;
5296 for (i = 0; i < num_stripes; i++) {
5297 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5298 /* write to new disk, too */
5299 struct btrfs_bio_stripe *new =
5300 bbio->stripes + index_where_to_add;
5301 struct btrfs_bio_stripe *old =
5302 bbio->stripes + i;
5303
5304 new->physical = old->physical;
5305 new->length = old->length;
5306 new->dev = dev_replace->tgtdev;
5307 index_where_to_add++;
5308 max_errors++;
5309 }
5310 }
5311 num_stripes = index_where_to_add;
5312 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5313 dev_replace->tgtdev != NULL) {
5314 u64 srcdev_devid = dev_replace->srcdev->devid;
5315 int index_srcdev = 0;
5316 int found = 0;
5317 u64 physical_of_found = 0;
5318
5319 /*
5320 * During the dev-replace procedure, the target drive can
5321 * also be used to read data in case it is needed to repair
5322 * a corrupt block elsewhere. This is possible if the
5323 * requested area is left of the left cursor. In this area,
5324 * the target drive is a full copy of the source drive.
5325 */
5326 for (i = 0; i < num_stripes; i++) {
5327 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5328 /*
5329 * In case of DUP, in order to keep it
5330 * simple, only add the mirror with the
5331 * lowest physical address
5332 */
5333 if (found &&
5334 physical_of_found <=
5335 bbio->stripes[i].physical)
5336 continue;
5337 index_srcdev = i;
5338 found = 1;
5339 physical_of_found = bbio->stripes[i].physical;
5340 }
5341 }
5342 if (found) {
5343 u64 length = map->stripe_len;
5344
5345 if (physical_of_found + length <=
5346 dev_replace->cursor_left) {
5347 struct btrfs_bio_stripe *tgtdev_stripe =
5348 bbio->stripes + num_stripes;
5349
5350 tgtdev_stripe->physical = physical_of_found;
5351 tgtdev_stripe->length =
5352 bbio->stripes[index_srcdev].length;
5353 tgtdev_stripe->dev = dev_replace->tgtdev;
5354
5355 num_stripes++;
5356 }
5357 }
5358 }
5359
5360 *bbio_ret = bbio;
5361 bbio->num_stripes = num_stripes;
5362 bbio->max_errors = max_errors;
5363 bbio->mirror_num = mirror_num;
5364
5365 /*
5366 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5367 * mirror_num == num_stripes + 1 && dev_replace target drive is
5368 * available as a mirror
5369 */
5370 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5371 WARN_ON(num_stripes > 1);
5372 bbio->stripes[0].dev = dev_replace->tgtdev;
5373 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5374 bbio->mirror_num = map->num_stripes + 1;
5375 }
5376 if (raid_map) {
5377 sort_parity_stripes(bbio, raid_map);
5378 *raid_map_ret = raid_map;
5379 }
5380 out:
5381 if (dev_replace_is_ongoing)
5382 btrfs_dev_replace_unlock(dev_replace);
5383 free_extent_map(em);
5384 return ret;
5385 }
5386
5387 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5388 u64 logical, u64 *length,
5389 struct btrfs_bio **bbio_ret, int mirror_num)
5390 {
5391 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5392 mirror_num, NULL);
5393 }
5394
5395 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5396 u64 chunk_start, u64 physical, u64 devid,
5397 u64 **logical, int *naddrs, int *stripe_len)
5398 {
5399 struct extent_map_tree *em_tree = &map_tree->map_tree;
5400 struct extent_map *em;
5401 struct map_lookup *map;
5402 u64 *buf;
5403 u64 bytenr;
5404 u64 length;
5405 u64 stripe_nr;
5406 u64 rmap_len;
5407 int i, j, nr = 0;
5408
5409 read_lock(&em_tree->lock);
5410 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5411 read_unlock(&em_tree->lock);
5412
5413 if (!em) {
5414 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5415 chunk_start);
5416 return -EIO;
5417 }
5418
5419 if (em->start != chunk_start) {
5420 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5421 em->start, chunk_start);
5422 free_extent_map(em);
5423 return -EIO;
5424 }
5425 map = (struct map_lookup *)em->bdev;
5426
5427 length = em->len;
5428 rmap_len = map->stripe_len;
5429
5430 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5431 do_div(length, map->num_stripes / map->sub_stripes);
5432 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5433 do_div(length, map->num_stripes);
5434 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5435 BTRFS_BLOCK_GROUP_RAID6)) {
5436 do_div(length, nr_data_stripes(map));
5437 rmap_len = map->stripe_len * nr_data_stripes(map);
5438 }
5439
5440 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
5441 BUG_ON(!buf); /* -ENOMEM */
5442
5443 for (i = 0; i < map->num_stripes; i++) {
5444 if (devid && map->stripes[i].dev->devid != devid)
5445 continue;
5446 if (map->stripes[i].physical > physical ||
5447 map->stripes[i].physical + length <= physical)
5448 continue;
5449
5450 stripe_nr = physical - map->stripes[i].physical;
5451 do_div(stripe_nr, map->stripe_len);
5452
5453 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5454 stripe_nr = stripe_nr * map->num_stripes + i;
5455 do_div(stripe_nr, map->sub_stripes);
5456 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5457 stripe_nr = stripe_nr * map->num_stripes + i;
5458 } /* else if RAID[56], multiply by nr_data_stripes().
5459 * Alternatively, just use rmap_len below instead of
5460 * map->stripe_len */
5461
5462 bytenr = chunk_start + stripe_nr * rmap_len;
5463 WARN_ON(nr >= map->num_stripes);
5464 for (j = 0; j < nr; j++) {
5465 if (buf[j] == bytenr)
5466 break;
5467 }
5468 if (j == nr) {
5469 WARN_ON(nr >= map->num_stripes);
5470 buf[nr++] = bytenr;
5471 }
5472 }
5473
5474 *logical = buf;
5475 *naddrs = nr;
5476 *stripe_len = rmap_len;
5477
5478 free_extent_map(em);
5479 return 0;
5480 }
5481
5482 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5483 {
5484 if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5485 bio_endio_nodec(bio, err);
5486 else
5487 bio_endio(bio, err);
5488 kfree(bbio);
5489 }
5490
5491 static void btrfs_end_bio(struct bio *bio, int err)
5492 {
5493 struct btrfs_bio *bbio = bio->bi_private;
5494 struct btrfs_device *dev = bbio->stripes[0].dev;
5495 int is_orig_bio = 0;
5496
5497 if (err) {
5498 atomic_inc(&bbio->error);
5499 if (err == -EIO || err == -EREMOTEIO) {
5500 unsigned int stripe_index =
5501 btrfs_io_bio(bio)->stripe_index;
5502
5503 BUG_ON(stripe_index >= bbio->num_stripes);
5504 dev = bbio->stripes[stripe_index].dev;
5505 if (dev->bdev) {
5506 if (bio->bi_rw & WRITE)
5507 btrfs_dev_stat_inc(dev,
5508 BTRFS_DEV_STAT_WRITE_ERRS);
5509 else
5510 btrfs_dev_stat_inc(dev,
5511 BTRFS_DEV_STAT_READ_ERRS);
5512 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5513 btrfs_dev_stat_inc(dev,
5514 BTRFS_DEV_STAT_FLUSH_ERRS);
5515 btrfs_dev_stat_print_on_error(dev);
5516 }
5517 }
5518 }
5519
5520 if (bio == bbio->orig_bio)
5521 is_orig_bio = 1;
5522
5523 btrfs_bio_counter_dec(bbio->fs_info);
5524
5525 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5526 if (!is_orig_bio) {
5527 bio_put(bio);
5528 bio = bbio->orig_bio;
5529 }
5530
5531 bio->bi_private = bbio->private;
5532 bio->bi_end_io = bbio->end_io;
5533 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5534 /* only send an error to the higher layers if it is
5535 * beyond the tolerance of the btrfs bio
5536 */
5537 if (atomic_read(&bbio->error) > bbio->max_errors) {
5538 err = -EIO;
5539 } else {
5540 /*
5541 * this bio is actually up to date, we didn't
5542 * go over the max number of errors
5543 */
5544 set_bit(BIO_UPTODATE, &bio->bi_flags);
5545 err = 0;
5546 }
5547
5548 btrfs_end_bbio(bbio, bio, err);
5549 } else if (!is_orig_bio) {
5550 bio_put(bio);
5551 }
5552 }
5553
5554 /*
5555 * see run_scheduled_bios for a description of why bios are collected for
5556 * async submit.
5557 *
5558 * This will add one bio to the pending list for a device and make sure
5559 * the work struct is scheduled.
5560 */
5561 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5562 struct btrfs_device *device,
5563 int rw, struct bio *bio)
5564 {
5565 int should_queue = 1;
5566 struct btrfs_pending_bios *pending_bios;
5567
5568 if (device->missing || !device->bdev) {
5569 bio_endio(bio, -EIO);
5570 return;
5571 }
5572
5573 /* don't bother with additional async steps for reads, right now */
5574 if (!(rw & REQ_WRITE)) {
5575 bio_get(bio);
5576 btrfsic_submit_bio(rw, bio);
5577 bio_put(bio);
5578 return;
5579 }
5580
5581 /*
5582 * nr_async_bios allows us to reliably return congestion to the
5583 * higher layers. Otherwise, the async bio makes it appear we have
5584 * made progress against dirty pages when we've really just put it
5585 * on a queue for later
5586 */
5587 atomic_inc(&root->fs_info->nr_async_bios);
5588 WARN_ON(bio->bi_next);
5589 bio->bi_next = NULL;
5590 bio->bi_rw |= rw;
5591
5592 spin_lock(&device->io_lock);
5593 if (bio->bi_rw & REQ_SYNC)
5594 pending_bios = &device->pending_sync_bios;
5595 else
5596 pending_bios = &device->pending_bios;
5597
5598 if (pending_bios->tail)
5599 pending_bios->tail->bi_next = bio;
5600
5601 pending_bios->tail = bio;
5602 if (!pending_bios->head)
5603 pending_bios->head = bio;
5604 if (device->running_pending)
5605 should_queue = 0;
5606
5607 spin_unlock(&device->io_lock);
5608
5609 if (should_queue)
5610 btrfs_queue_work(root->fs_info->submit_workers,
5611 &device->work);
5612 }
5613
5614 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5615 sector_t sector)
5616 {
5617 struct bio_vec *prev;
5618 struct request_queue *q = bdev_get_queue(bdev);
5619 unsigned int max_sectors = queue_max_sectors(q);
5620 struct bvec_merge_data bvm = {
5621 .bi_bdev = bdev,
5622 .bi_sector = sector,
5623 .bi_rw = bio->bi_rw,
5624 };
5625
5626 if (WARN_ON(bio->bi_vcnt == 0))
5627 return 1;
5628
5629 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5630 if (bio_sectors(bio) > max_sectors)
5631 return 0;
5632
5633 if (!q->merge_bvec_fn)
5634 return 1;
5635
5636 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5637 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5638 return 0;
5639 return 1;
5640 }
5641
5642 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5643 struct bio *bio, u64 physical, int dev_nr,
5644 int rw, int async)
5645 {
5646 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5647
5648 bio->bi_private = bbio;
5649 btrfs_io_bio(bio)->stripe_index = dev_nr;
5650 bio->bi_end_io = btrfs_end_bio;
5651 bio->bi_iter.bi_sector = physical >> 9;
5652 #ifdef DEBUG
5653 {
5654 struct rcu_string *name;
5655
5656 rcu_read_lock();
5657 name = rcu_dereference(dev->name);
5658 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5659 "(%s id %llu), size=%u\n", rw,
5660 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5661 name->str, dev->devid, bio->bi_size);
5662 rcu_read_unlock();
5663 }
5664 #endif
5665 bio->bi_bdev = dev->bdev;
5666
5667 btrfs_bio_counter_inc_noblocked(root->fs_info);
5668
5669 if (async)
5670 btrfs_schedule_bio(root, dev, rw, bio);
5671 else
5672 btrfsic_submit_bio(rw, bio);
5673 }
5674
5675 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5676 struct bio *first_bio, struct btrfs_device *dev,
5677 int dev_nr, int rw, int async)
5678 {
5679 struct bio_vec *bvec = first_bio->bi_io_vec;
5680 struct bio *bio;
5681 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5682 u64 physical = bbio->stripes[dev_nr].physical;
5683
5684 again:
5685 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5686 if (!bio)
5687 return -ENOMEM;
5688
5689 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5690 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5691 bvec->bv_offset) < bvec->bv_len) {
5692 u64 len = bio->bi_iter.bi_size;
5693
5694 atomic_inc(&bbio->stripes_pending);
5695 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5696 rw, async);
5697 physical += len;
5698 goto again;
5699 }
5700 bvec++;
5701 }
5702
5703 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5704 return 0;
5705 }
5706
5707 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5708 {
5709 atomic_inc(&bbio->error);
5710 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5711 /* Shoud be the original bio. */
5712 WARN_ON(bio != bbio->orig_bio);
5713
5714 bio->bi_private = bbio->private;
5715 bio->bi_end_io = bbio->end_io;
5716 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5717 bio->bi_iter.bi_sector = logical >> 9;
5718
5719 btrfs_end_bbio(bbio, bio, -EIO);
5720 }
5721 }
5722
5723 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5724 int mirror_num, int async_submit)
5725 {
5726 struct btrfs_device *dev;
5727 struct bio *first_bio = bio;
5728 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5729 u64 length = 0;
5730 u64 map_length;
5731 u64 *raid_map = NULL;
5732 int ret;
5733 int dev_nr = 0;
5734 int total_devs = 1;
5735 struct btrfs_bio *bbio = NULL;
5736
5737 length = bio->bi_iter.bi_size;
5738 map_length = length;
5739
5740 btrfs_bio_counter_inc_blocked(root->fs_info);
5741 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5742 mirror_num, &raid_map);
5743 if (ret) {
5744 btrfs_bio_counter_dec(root->fs_info);
5745 return ret;
5746 }
5747
5748 total_devs = bbio->num_stripes;
5749 bbio->orig_bio = first_bio;
5750 bbio->private = first_bio->bi_private;
5751 bbio->end_io = first_bio->bi_end_io;
5752 bbio->fs_info = root->fs_info;
5753 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5754
5755 if (raid_map) {
5756 /* In this case, map_length has been set to the length of
5757 a single stripe; not the whole write */
5758 if (rw & WRITE) {
5759 ret = raid56_parity_write(root, bio, bbio,
5760 raid_map, map_length);
5761 } else {
5762 ret = raid56_parity_recover(root, bio, bbio,
5763 raid_map, map_length,
5764 mirror_num);
5765 }
5766 /*
5767 * FIXME, replace dosen't support raid56 yet, please fix
5768 * it in the future.
5769 */
5770 btrfs_bio_counter_dec(root->fs_info);
5771 return ret;
5772 }
5773
5774 if (map_length < length) {
5775 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5776 logical, length, map_length);
5777 BUG();
5778 }
5779
5780 while (dev_nr < total_devs) {
5781 dev = bbio->stripes[dev_nr].dev;
5782 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5783 bbio_error(bbio, first_bio, logical);
5784 dev_nr++;
5785 continue;
5786 }
5787
5788 /*
5789 * Check and see if we're ok with this bio based on it's size
5790 * and offset with the given device.
5791 */
5792 if (!bio_size_ok(dev->bdev, first_bio,
5793 bbio->stripes[dev_nr].physical >> 9)) {
5794 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5795 dev_nr, rw, async_submit);
5796 BUG_ON(ret);
5797 dev_nr++;
5798 continue;
5799 }
5800
5801 if (dev_nr < total_devs - 1) {
5802 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5803 BUG_ON(!bio); /* -ENOMEM */
5804 } else {
5805 bio = first_bio;
5806 bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
5807 }
5808
5809 submit_stripe_bio(root, bbio, bio,
5810 bbio->stripes[dev_nr].physical, dev_nr, rw,
5811 async_submit);
5812 dev_nr++;
5813 }
5814 btrfs_bio_counter_dec(root->fs_info);
5815 return 0;
5816 }
5817
5818 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5819 u8 *uuid, u8 *fsid)
5820 {
5821 struct btrfs_device *device;
5822 struct btrfs_fs_devices *cur_devices;
5823
5824 cur_devices = fs_info->fs_devices;
5825 while (cur_devices) {
5826 if (!fsid ||
5827 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5828 device = __find_device(&cur_devices->devices,
5829 devid, uuid);
5830 if (device)
5831 return device;
5832 }
5833 cur_devices = cur_devices->seed;
5834 }
5835 return NULL;
5836 }
5837
5838 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5839 u64 devid, u8 *dev_uuid)
5840 {
5841 struct btrfs_device *device;
5842 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5843
5844 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5845 if (IS_ERR(device))
5846 return NULL;
5847
5848 list_add(&device->dev_list, &fs_devices->devices);
5849 device->fs_devices = fs_devices;
5850 fs_devices->num_devices++;
5851
5852 device->missing = 1;
5853 fs_devices->missing_devices++;
5854
5855 return device;
5856 }
5857
5858 /**
5859 * btrfs_alloc_device - allocate struct btrfs_device
5860 * @fs_info: used only for generating a new devid, can be NULL if
5861 * devid is provided (i.e. @devid != NULL).
5862 * @devid: a pointer to devid for this device. If NULL a new devid
5863 * is generated.
5864 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5865 * is generated.
5866 *
5867 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5868 * on error. Returned struct is not linked onto any lists and can be
5869 * destroyed with kfree() right away.
5870 */
5871 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5872 const u64 *devid,
5873 const u8 *uuid)
5874 {
5875 struct btrfs_device *dev;
5876 u64 tmp;
5877
5878 if (WARN_ON(!devid && !fs_info))
5879 return ERR_PTR(-EINVAL);
5880
5881 dev = __alloc_device();
5882 if (IS_ERR(dev))
5883 return dev;
5884
5885 if (devid)
5886 tmp = *devid;
5887 else {
5888 int ret;
5889
5890 ret = find_next_devid(fs_info, &tmp);
5891 if (ret) {
5892 kfree(dev);
5893 return ERR_PTR(ret);
5894 }
5895 }
5896 dev->devid = tmp;
5897
5898 if (uuid)
5899 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5900 else
5901 generate_random_uuid(dev->uuid);
5902
5903 btrfs_init_work(&dev->work, btrfs_submit_helper,
5904 pending_bios_fn, NULL, NULL);
5905
5906 return dev;
5907 }
5908
5909 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5910 struct extent_buffer *leaf,
5911 struct btrfs_chunk *chunk)
5912 {
5913 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5914 struct map_lookup *map;
5915 struct extent_map *em;
5916 u64 logical;
5917 u64 length;
5918 u64 devid;
5919 u8 uuid[BTRFS_UUID_SIZE];
5920 int num_stripes;
5921 int ret;
5922 int i;
5923
5924 logical = key->offset;
5925 length = btrfs_chunk_length(leaf, chunk);
5926
5927 read_lock(&map_tree->map_tree.lock);
5928 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
5929 read_unlock(&map_tree->map_tree.lock);
5930
5931 /* already mapped? */
5932 if (em && em->start <= logical && em->start + em->len > logical) {
5933 free_extent_map(em);
5934 return 0;
5935 } else if (em) {
5936 free_extent_map(em);
5937 }
5938
5939 em = alloc_extent_map();
5940 if (!em)
5941 return -ENOMEM;
5942 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5943 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5944 if (!map) {
5945 free_extent_map(em);
5946 return -ENOMEM;
5947 }
5948
5949 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5950 em->bdev = (struct block_device *)map;
5951 em->start = logical;
5952 em->len = length;
5953 em->orig_start = 0;
5954 em->block_start = 0;
5955 em->block_len = em->len;
5956
5957 map->num_stripes = num_stripes;
5958 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5959 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5960 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5961 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5962 map->type = btrfs_chunk_type(leaf, chunk);
5963 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
5964 for (i = 0; i < num_stripes; i++) {
5965 map->stripes[i].physical =
5966 btrfs_stripe_offset_nr(leaf, chunk, i);
5967 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
5968 read_extent_buffer(leaf, uuid, (unsigned long)
5969 btrfs_stripe_dev_uuid_nr(chunk, i),
5970 BTRFS_UUID_SIZE);
5971 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5972 uuid, NULL);
5973 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
5974 free_extent_map(em);
5975 return -EIO;
5976 }
5977 if (!map->stripes[i].dev) {
5978 map->stripes[i].dev =
5979 add_missing_dev(root, devid, uuid);
5980 if (!map->stripes[i].dev) {
5981 free_extent_map(em);
5982 return -EIO;
5983 }
5984 }
5985 map->stripes[i].dev->in_fs_metadata = 1;
5986 }
5987
5988 write_lock(&map_tree->map_tree.lock);
5989 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
5990 write_unlock(&map_tree->map_tree.lock);
5991 BUG_ON(ret); /* Tree corruption */
5992 free_extent_map(em);
5993
5994 return 0;
5995 }
5996
5997 static void fill_device_from_item(struct extent_buffer *leaf,
5998 struct btrfs_dev_item *dev_item,
5999 struct btrfs_device *device)
6000 {
6001 unsigned long ptr;
6002
6003 device->devid = btrfs_device_id(leaf, dev_item);
6004 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6005 device->total_bytes = device->disk_total_bytes;
6006 device->commit_total_bytes = device->disk_total_bytes;
6007 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6008 device->commit_bytes_used = device->bytes_used;
6009 device->type = btrfs_device_type(leaf, dev_item);
6010 device->io_align = btrfs_device_io_align(leaf, dev_item);
6011 device->io_width = btrfs_device_io_width(leaf, dev_item);
6012 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6013 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6014 device->is_tgtdev_for_dev_replace = 0;
6015
6016 ptr = btrfs_device_uuid(dev_item);
6017 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6018 }
6019
6020 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
6021 {
6022 struct btrfs_fs_devices *fs_devices;
6023 int ret;
6024
6025 BUG_ON(!mutex_is_locked(&uuid_mutex));
6026
6027 fs_devices = root->fs_info->fs_devices->seed;
6028 while (fs_devices) {
6029 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6030 ret = 0;
6031 goto out;
6032 }
6033 fs_devices = fs_devices->seed;
6034 }
6035
6036 fs_devices = find_fsid(fsid);
6037 if (!fs_devices) {
6038 ret = -ENOENT;
6039 goto out;
6040 }
6041
6042 fs_devices = clone_fs_devices(fs_devices);
6043 if (IS_ERR(fs_devices)) {
6044 ret = PTR_ERR(fs_devices);
6045 goto out;
6046 }
6047
6048 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6049 root->fs_info->bdev_holder);
6050 if (ret) {
6051 free_fs_devices(fs_devices);
6052 goto out;
6053 }
6054
6055 if (!fs_devices->seeding) {
6056 __btrfs_close_devices(fs_devices);
6057 free_fs_devices(fs_devices);
6058 ret = -EINVAL;
6059 goto out;
6060 }
6061
6062 fs_devices->seed = root->fs_info->fs_devices->seed;
6063 root->fs_info->fs_devices->seed = fs_devices;
6064 out:
6065 return ret;
6066 }
6067
6068 static int read_one_dev(struct btrfs_root *root,
6069 struct extent_buffer *leaf,
6070 struct btrfs_dev_item *dev_item)
6071 {
6072 struct btrfs_device *device;
6073 u64 devid;
6074 int ret;
6075 u8 fs_uuid[BTRFS_UUID_SIZE];
6076 u8 dev_uuid[BTRFS_UUID_SIZE];
6077
6078 devid = btrfs_device_id(leaf, dev_item);
6079 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6080 BTRFS_UUID_SIZE);
6081 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6082 BTRFS_UUID_SIZE);
6083
6084 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6085 ret = open_seed_devices(root, fs_uuid);
6086 if (ret && !btrfs_test_opt(root, DEGRADED))
6087 return ret;
6088 }
6089
6090 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6091 if (!device || !device->bdev) {
6092 if (!btrfs_test_opt(root, DEGRADED))
6093 return -EIO;
6094
6095 if (!device) {
6096 btrfs_warn(root->fs_info, "devid %llu missing", devid);
6097 device = add_missing_dev(root, devid, dev_uuid);
6098 if (!device)
6099 return -ENOMEM;
6100 } else if (!device->missing) {
6101 /*
6102 * this happens when a device that was properly setup
6103 * in the device info lists suddenly goes bad.
6104 * device->bdev is NULL, and so we have to set
6105 * device->missing to one here
6106 */
6107 root->fs_info->fs_devices->missing_devices++;
6108 device->missing = 1;
6109 }
6110 }
6111
6112 if (device->fs_devices != root->fs_info->fs_devices) {
6113 BUG_ON(device->writeable);
6114 if (device->generation !=
6115 btrfs_device_generation(leaf, dev_item))
6116 return -EINVAL;
6117 }
6118
6119 fill_device_from_item(leaf, dev_item, device);
6120 device->in_fs_metadata = 1;
6121 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6122 device->fs_devices->total_rw_bytes += device->total_bytes;
6123 spin_lock(&root->fs_info->free_chunk_lock);
6124 root->fs_info->free_chunk_space += device->total_bytes -
6125 device->bytes_used;
6126 spin_unlock(&root->fs_info->free_chunk_lock);
6127 }
6128 ret = 0;
6129 return ret;
6130 }
6131
6132 int btrfs_read_sys_array(struct btrfs_root *root)
6133 {
6134 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6135 struct extent_buffer *sb;
6136 struct btrfs_disk_key *disk_key;
6137 struct btrfs_chunk *chunk;
6138 u8 *ptr;
6139 unsigned long sb_ptr;
6140 int ret = 0;
6141 u32 num_stripes;
6142 u32 array_size;
6143 u32 len = 0;
6144 u32 cur;
6145 struct btrfs_key key;
6146
6147 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
6148 BTRFS_SUPER_INFO_SIZE);
6149 if (!sb)
6150 return -ENOMEM;
6151 btrfs_set_buffer_uptodate(sb);
6152 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6153 /*
6154 * The sb extent buffer is artifical and just used to read the system array.
6155 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6156 * pages up-to-date when the page is larger: extent does not cover the
6157 * whole page and consequently check_page_uptodate does not find all
6158 * the page's extents up-to-date (the hole beyond sb),
6159 * write_extent_buffer then triggers a WARN_ON.
6160 *
6161 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6162 * but sb spans only this function. Add an explicit SetPageUptodate call
6163 * to silence the warning eg. on PowerPC 64.
6164 */
6165 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6166 SetPageUptodate(sb->pages[0]);
6167
6168 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6169 array_size = btrfs_super_sys_array_size(super_copy);
6170
6171 ptr = super_copy->sys_chunk_array;
6172 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
6173 cur = 0;
6174
6175 while (cur < array_size) {
6176 disk_key = (struct btrfs_disk_key *)ptr;
6177 btrfs_disk_key_to_cpu(&key, disk_key);
6178
6179 len = sizeof(*disk_key); ptr += len;
6180 sb_ptr += len;
6181 cur += len;
6182
6183 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6184 chunk = (struct btrfs_chunk *)sb_ptr;
6185 ret = read_one_chunk(root, &key, sb, chunk);
6186 if (ret)
6187 break;
6188 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6189 len = btrfs_chunk_item_size(num_stripes);
6190 } else {
6191 ret = -EIO;
6192 break;
6193 }
6194 ptr += len;
6195 sb_ptr += len;
6196 cur += len;
6197 }
6198 free_extent_buffer(sb);
6199 return ret;
6200 }
6201
6202 int btrfs_read_chunk_tree(struct btrfs_root *root)
6203 {
6204 struct btrfs_path *path;
6205 struct extent_buffer *leaf;
6206 struct btrfs_key key;
6207 struct btrfs_key found_key;
6208 int ret;
6209 int slot;
6210
6211 root = root->fs_info->chunk_root;
6212
6213 path = btrfs_alloc_path();
6214 if (!path)
6215 return -ENOMEM;
6216
6217 mutex_lock(&uuid_mutex);
6218 lock_chunks(root);
6219
6220 /*
6221 * Read all device items, and then all the chunk items. All
6222 * device items are found before any chunk item (their object id
6223 * is smaller than the lowest possible object id for a chunk
6224 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6225 */
6226 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6227 key.offset = 0;
6228 key.type = 0;
6229 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6230 if (ret < 0)
6231 goto error;
6232 while (1) {
6233 leaf = path->nodes[0];
6234 slot = path->slots[0];
6235 if (slot >= btrfs_header_nritems(leaf)) {
6236 ret = btrfs_next_leaf(root, path);
6237 if (ret == 0)
6238 continue;
6239 if (ret < 0)
6240 goto error;
6241 break;
6242 }
6243 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6244 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6245 struct btrfs_dev_item *dev_item;
6246 dev_item = btrfs_item_ptr(leaf, slot,
6247 struct btrfs_dev_item);
6248 ret = read_one_dev(root, leaf, dev_item);
6249 if (ret)
6250 goto error;
6251 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6252 struct btrfs_chunk *chunk;
6253 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6254 ret = read_one_chunk(root, &found_key, leaf, chunk);
6255 if (ret)
6256 goto error;
6257 }
6258 path->slots[0]++;
6259 }
6260 ret = 0;
6261 error:
6262 unlock_chunks(root);
6263 mutex_unlock(&uuid_mutex);
6264
6265 btrfs_free_path(path);
6266 return ret;
6267 }
6268
6269 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6270 {
6271 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6272 struct btrfs_device *device;
6273
6274 while (fs_devices) {
6275 mutex_lock(&fs_devices->device_list_mutex);
6276 list_for_each_entry(device, &fs_devices->devices, dev_list)
6277 device->dev_root = fs_info->dev_root;
6278 mutex_unlock(&fs_devices->device_list_mutex);
6279
6280 fs_devices = fs_devices->seed;
6281 }
6282 }
6283
6284 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6285 {
6286 int i;
6287
6288 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6289 btrfs_dev_stat_reset(dev, i);
6290 }
6291
6292 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6293 {
6294 struct btrfs_key key;
6295 struct btrfs_key found_key;
6296 struct btrfs_root *dev_root = fs_info->dev_root;
6297 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6298 struct extent_buffer *eb;
6299 int slot;
6300 int ret = 0;
6301 struct btrfs_device *device;
6302 struct btrfs_path *path = NULL;
6303 int i;
6304
6305 path = btrfs_alloc_path();
6306 if (!path) {
6307 ret = -ENOMEM;
6308 goto out;
6309 }
6310
6311 mutex_lock(&fs_devices->device_list_mutex);
6312 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6313 int item_size;
6314 struct btrfs_dev_stats_item *ptr;
6315
6316 key.objectid = 0;
6317 key.type = BTRFS_DEV_STATS_KEY;
6318 key.offset = device->devid;
6319 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6320 if (ret) {
6321 __btrfs_reset_dev_stats(device);
6322 device->dev_stats_valid = 1;
6323 btrfs_release_path(path);
6324 continue;
6325 }
6326 slot = path->slots[0];
6327 eb = path->nodes[0];
6328 btrfs_item_key_to_cpu(eb, &found_key, slot);
6329 item_size = btrfs_item_size_nr(eb, slot);
6330
6331 ptr = btrfs_item_ptr(eb, slot,
6332 struct btrfs_dev_stats_item);
6333
6334 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6335 if (item_size >= (1 + i) * sizeof(__le64))
6336 btrfs_dev_stat_set(device, i,
6337 btrfs_dev_stats_value(eb, ptr, i));
6338 else
6339 btrfs_dev_stat_reset(device, i);
6340 }
6341
6342 device->dev_stats_valid = 1;
6343 btrfs_dev_stat_print_on_load(device);
6344 btrfs_release_path(path);
6345 }
6346 mutex_unlock(&fs_devices->device_list_mutex);
6347
6348 out:
6349 btrfs_free_path(path);
6350 return ret < 0 ? ret : 0;
6351 }
6352
6353 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6354 struct btrfs_root *dev_root,
6355 struct btrfs_device *device)
6356 {
6357 struct btrfs_path *path;
6358 struct btrfs_key key;
6359 struct extent_buffer *eb;
6360 struct btrfs_dev_stats_item *ptr;
6361 int ret;
6362 int i;
6363
6364 key.objectid = 0;
6365 key.type = BTRFS_DEV_STATS_KEY;
6366 key.offset = device->devid;
6367
6368 path = btrfs_alloc_path();
6369 BUG_ON(!path);
6370 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6371 if (ret < 0) {
6372 printk_in_rcu(KERN_WARNING "BTRFS: "
6373 "error %d while searching for dev_stats item for device %s!\n",
6374 ret, rcu_str_deref(device->name));
6375 goto out;
6376 }
6377
6378 if (ret == 0 &&
6379 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6380 /* need to delete old one and insert a new one */
6381 ret = btrfs_del_item(trans, dev_root, path);
6382 if (ret != 0) {
6383 printk_in_rcu(KERN_WARNING "BTRFS: "
6384 "delete too small dev_stats item for device %s failed %d!\n",
6385 rcu_str_deref(device->name), ret);
6386 goto out;
6387 }
6388 ret = 1;
6389 }
6390
6391 if (ret == 1) {
6392 /* need to insert a new item */
6393 btrfs_release_path(path);
6394 ret = btrfs_insert_empty_item(trans, dev_root, path,
6395 &key, sizeof(*ptr));
6396 if (ret < 0) {
6397 printk_in_rcu(KERN_WARNING "BTRFS: "
6398 "insert dev_stats item for device %s failed %d!\n",
6399 rcu_str_deref(device->name), ret);
6400 goto out;
6401 }
6402 }
6403
6404 eb = path->nodes[0];
6405 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6406 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6407 btrfs_set_dev_stats_value(eb, ptr, i,
6408 btrfs_dev_stat_read(device, i));
6409 btrfs_mark_buffer_dirty(eb);
6410
6411 out:
6412 btrfs_free_path(path);
6413 return ret;
6414 }
6415
6416 /*
6417 * called from commit_transaction. Writes all changed device stats to disk.
6418 */
6419 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6420 struct btrfs_fs_info *fs_info)
6421 {
6422 struct btrfs_root *dev_root = fs_info->dev_root;
6423 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6424 struct btrfs_device *device;
6425 int stats_cnt;
6426 int ret = 0;
6427
6428 mutex_lock(&fs_devices->device_list_mutex);
6429 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6430 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6431 continue;
6432
6433 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6434 ret = update_dev_stat_item(trans, dev_root, device);
6435 if (!ret)
6436 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6437 }
6438 mutex_unlock(&fs_devices->device_list_mutex);
6439
6440 return ret;
6441 }
6442
6443 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6444 {
6445 btrfs_dev_stat_inc(dev, index);
6446 btrfs_dev_stat_print_on_error(dev);
6447 }
6448
6449 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6450 {
6451 if (!dev->dev_stats_valid)
6452 return;
6453 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6454 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6455 rcu_str_deref(dev->name),
6456 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6457 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6458 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6459 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6460 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6461 }
6462
6463 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6464 {
6465 int i;
6466
6467 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6468 if (btrfs_dev_stat_read(dev, i) != 0)
6469 break;
6470 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6471 return; /* all values == 0, suppress message */
6472
6473 printk_in_rcu(KERN_INFO "BTRFS: "
6474 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6475 rcu_str_deref(dev->name),
6476 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6477 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6478 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6479 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6480 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6481 }
6482
6483 int btrfs_get_dev_stats(struct btrfs_root *root,
6484 struct btrfs_ioctl_get_dev_stats *stats)
6485 {
6486 struct btrfs_device *dev;
6487 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6488 int i;
6489
6490 mutex_lock(&fs_devices->device_list_mutex);
6491 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6492 mutex_unlock(&fs_devices->device_list_mutex);
6493
6494 if (!dev) {
6495 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6496 return -ENODEV;
6497 } else if (!dev->dev_stats_valid) {
6498 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6499 return -ENODEV;
6500 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6501 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6502 if (stats->nr_items > i)
6503 stats->values[i] =
6504 btrfs_dev_stat_read_and_reset(dev, i);
6505 else
6506 btrfs_dev_stat_reset(dev, i);
6507 }
6508 } else {
6509 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6510 if (stats->nr_items > i)
6511 stats->values[i] = btrfs_dev_stat_read(dev, i);
6512 }
6513 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6514 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6515 return 0;
6516 }
6517
6518 int btrfs_scratch_superblock(struct btrfs_device *device)
6519 {
6520 struct buffer_head *bh;
6521 struct btrfs_super_block *disk_super;
6522
6523 bh = btrfs_read_dev_super(device->bdev);
6524 if (!bh)
6525 return -EINVAL;
6526 disk_super = (struct btrfs_super_block *)bh->b_data;
6527
6528 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6529 set_buffer_dirty(bh);
6530 sync_dirty_buffer(bh);
6531 brelse(bh);
6532
6533 return 0;
6534 }
6535
6536 /*
6537 * Update the size of all devices, which is used for writing out the
6538 * super blocks.
6539 */
6540 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6541 {
6542 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6543 struct btrfs_device *curr, *next;
6544
6545 if (list_empty(&fs_devices->resized_devices))
6546 return;
6547
6548 mutex_lock(&fs_devices->device_list_mutex);
6549 lock_chunks(fs_info->dev_root);
6550 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6551 resized_list) {
6552 list_del_init(&curr->resized_list);
6553 curr->commit_total_bytes = curr->disk_total_bytes;
6554 }
6555 unlock_chunks(fs_info->dev_root);
6556 mutex_unlock(&fs_devices->device_list_mutex);
6557 }
6558
6559 /* Must be invoked during the transaction commit */
6560 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6561 struct btrfs_transaction *transaction)
6562 {
6563 struct extent_map *em;
6564 struct map_lookup *map;
6565 struct btrfs_device *dev;
6566 int i;
6567
6568 if (list_empty(&transaction->pending_chunks))
6569 return;
6570
6571 /* In order to kick the device replace finish process */
6572 lock_chunks(root);
6573 list_for_each_entry(em, &transaction->pending_chunks, list) {
6574 map = (struct map_lookup *)em->bdev;
6575
6576 for (i = 0; i < map->num_stripes; i++) {
6577 dev = map->stripes[i].dev;
6578 dev->commit_bytes_used = dev->bytes_used;
6579 }
6580 }
6581 unlock_chunks(root);
6582 }
This page took 0.162741 seconds and 6 git commands to generate.