Merge branch 'for-linus' of git://neil.brown.name/md
[deliverable/linux.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <asm/div64.h>
27 #include "compat.h"
28 #include "ctree.h"
29 #include "extent_map.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "async-thread.h"
35
36 struct map_lookup {
37 u64 type;
38 int io_align;
39 int io_width;
40 int stripe_len;
41 int sector_size;
42 int num_stripes;
43 int sub_stripes;
44 struct btrfs_bio_stripe stripes[];
45 };
46
47 static int init_first_rw_device(struct btrfs_trans_handle *trans,
48 struct btrfs_root *root,
49 struct btrfs_device *device);
50 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
51
52 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
53 (sizeof(struct btrfs_bio_stripe) * (n)))
54
55 static DEFINE_MUTEX(uuid_mutex);
56 static LIST_HEAD(fs_uuids);
57
58 void btrfs_lock_volumes(void)
59 {
60 mutex_lock(&uuid_mutex);
61 }
62
63 void btrfs_unlock_volumes(void)
64 {
65 mutex_unlock(&uuid_mutex);
66 }
67
68 static void lock_chunks(struct btrfs_root *root)
69 {
70 mutex_lock(&root->fs_info->chunk_mutex);
71 }
72
73 static void unlock_chunks(struct btrfs_root *root)
74 {
75 mutex_unlock(&root->fs_info->chunk_mutex);
76 }
77
78 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
79 {
80 struct btrfs_device *device;
81 WARN_ON(fs_devices->opened);
82 while (!list_empty(&fs_devices->devices)) {
83 device = list_entry(fs_devices->devices.next,
84 struct btrfs_device, dev_list);
85 list_del(&device->dev_list);
86 kfree(device->name);
87 kfree(device);
88 }
89 kfree(fs_devices);
90 }
91
92 int btrfs_cleanup_fs_uuids(void)
93 {
94 struct btrfs_fs_devices *fs_devices;
95
96 while (!list_empty(&fs_uuids)) {
97 fs_devices = list_entry(fs_uuids.next,
98 struct btrfs_fs_devices, list);
99 list_del(&fs_devices->list);
100 free_fs_devices(fs_devices);
101 }
102 return 0;
103 }
104
105 static noinline struct btrfs_device *__find_device(struct list_head *head,
106 u64 devid, u8 *uuid)
107 {
108 struct btrfs_device *dev;
109
110 list_for_each_entry(dev, head, dev_list) {
111 if (dev->devid == devid &&
112 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
113 return dev;
114 }
115 }
116 return NULL;
117 }
118
119 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
120 {
121 struct btrfs_fs_devices *fs_devices;
122
123 list_for_each_entry(fs_devices, &fs_uuids, list) {
124 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
125 return fs_devices;
126 }
127 return NULL;
128 }
129
130 static void requeue_list(struct btrfs_pending_bios *pending_bios,
131 struct bio *head, struct bio *tail)
132 {
133
134 struct bio *old_head;
135
136 old_head = pending_bios->head;
137 pending_bios->head = head;
138 if (pending_bios->tail)
139 tail->bi_next = old_head;
140 else
141 pending_bios->tail = tail;
142 }
143
144 /*
145 * we try to collect pending bios for a device so we don't get a large
146 * number of procs sending bios down to the same device. This greatly
147 * improves the schedulers ability to collect and merge the bios.
148 *
149 * But, it also turns into a long list of bios to process and that is sure
150 * to eventually make the worker thread block. The solution here is to
151 * make some progress and then put this work struct back at the end of
152 * the list if the block device is congested. This way, multiple devices
153 * can make progress from a single worker thread.
154 */
155 static noinline int run_scheduled_bios(struct btrfs_device *device)
156 {
157 struct bio *pending;
158 struct backing_dev_info *bdi;
159 struct btrfs_fs_info *fs_info;
160 struct btrfs_pending_bios *pending_bios;
161 struct bio *tail;
162 struct bio *cur;
163 int again = 0;
164 unsigned long num_run;
165 unsigned long num_sync_run;
166 unsigned long batch_run = 0;
167 unsigned long limit;
168 unsigned long last_waited = 0;
169 int force_reg = 0;
170
171 bdi = blk_get_backing_dev_info(device->bdev);
172 fs_info = device->dev_root->fs_info;
173 limit = btrfs_async_submit_limit(fs_info);
174 limit = limit * 2 / 3;
175
176 /* we want to make sure that every time we switch from the sync
177 * list to the normal list, we unplug
178 */
179 num_sync_run = 0;
180
181 loop:
182 spin_lock(&device->io_lock);
183
184 loop_lock:
185 num_run = 0;
186
187 /* take all the bios off the list at once and process them
188 * later on (without the lock held). But, remember the
189 * tail and other pointers so the bios can be properly reinserted
190 * into the list if we hit congestion
191 */
192 if (!force_reg && device->pending_sync_bios.head) {
193 pending_bios = &device->pending_sync_bios;
194 force_reg = 1;
195 } else {
196 pending_bios = &device->pending_bios;
197 force_reg = 0;
198 }
199
200 pending = pending_bios->head;
201 tail = pending_bios->tail;
202 WARN_ON(pending && !tail);
203
204 /*
205 * if pending was null this time around, no bios need processing
206 * at all and we can stop. Otherwise it'll loop back up again
207 * and do an additional check so no bios are missed.
208 *
209 * device->running_pending is used to synchronize with the
210 * schedule_bio code.
211 */
212 if (device->pending_sync_bios.head == NULL &&
213 device->pending_bios.head == NULL) {
214 again = 0;
215 device->running_pending = 0;
216 } else {
217 again = 1;
218 device->running_pending = 1;
219 }
220
221 pending_bios->head = NULL;
222 pending_bios->tail = NULL;
223
224 spin_unlock(&device->io_lock);
225
226 /*
227 * if we're doing the regular priority list, make sure we unplug
228 * for any high prio bios we've sent down
229 */
230 if (pending_bios == &device->pending_bios && num_sync_run > 0) {
231 num_sync_run = 0;
232 blk_run_backing_dev(bdi, NULL);
233 }
234
235 while (pending) {
236
237 rmb();
238 /* we want to work on both lists, but do more bios on the
239 * sync list than the regular list
240 */
241 if ((num_run > 32 &&
242 pending_bios != &device->pending_sync_bios &&
243 device->pending_sync_bios.head) ||
244 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
245 device->pending_bios.head)) {
246 spin_lock(&device->io_lock);
247 requeue_list(pending_bios, pending, tail);
248 goto loop_lock;
249 }
250
251 cur = pending;
252 pending = pending->bi_next;
253 cur->bi_next = NULL;
254 atomic_dec(&fs_info->nr_async_bios);
255
256 if (atomic_read(&fs_info->nr_async_bios) < limit &&
257 waitqueue_active(&fs_info->async_submit_wait))
258 wake_up(&fs_info->async_submit_wait);
259
260 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
261
262 if (cur->bi_rw & REQ_SYNC)
263 num_sync_run++;
264
265 submit_bio(cur->bi_rw, cur);
266 num_run++;
267 batch_run++;
268 if (need_resched()) {
269 if (num_sync_run) {
270 blk_run_backing_dev(bdi, NULL);
271 num_sync_run = 0;
272 }
273 cond_resched();
274 }
275
276 /*
277 * we made progress, there is more work to do and the bdi
278 * is now congested. Back off and let other work structs
279 * run instead
280 */
281 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
282 fs_info->fs_devices->open_devices > 1) {
283 struct io_context *ioc;
284
285 ioc = current->io_context;
286
287 /*
288 * the main goal here is that we don't want to
289 * block if we're going to be able to submit
290 * more requests without blocking.
291 *
292 * This code does two great things, it pokes into
293 * the elevator code from a filesystem _and_
294 * it makes assumptions about how batching works.
295 */
296 if (ioc && ioc->nr_batch_requests > 0 &&
297 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
298 (last_waited == 0 ||
299 ioc->last_waited == last_waited)) {
300 /*
301 * we want to go through our batch of
302 * requests and stop. So, we copy out
303 * the ioc->last_waited time and test
304 * against it before looping
305 */
306 last_waited = ioc->last_waited;
307 if (need_resched()) {
308 if (num_sync_run) {
309 blk_run_backing_dev(bdi, NULL);
310 num_sync_run = 0;
311 }
312 cond_resched();
313 }
314 continue;
315 }
316 spin_lock(&device->io_lock);
317 requeue_list(pending_bios, pending, tail);
318 device->running_pending = 1;
319
320 spin_unlock(&device->io_lock);
321 btrfs_requeue_work(&device->work);
322 goto done;
323 }
324 }
325
326 if (num_sync_run) {
327 num_sync_run = 0;
328 blk_run_backing_dev(bdi, NULL);
329 }
330 /*
331 * IO has already been through a long path to get here. Checksumming,
332 * async helper threads, perhaps compression. We've done a pretty
333 * good job of collecting a batch of IO and should just unplug
334 * the device right away.
335 *
336 * This will help anyone who is waiting on the IO, they might have
337 * already unplugged, but managed to do so before the bio they
338 * cared about found its way down here.
339 */
340 blk_run_backing_dev(bdi, NULL);
341
342 cond_resched();
343 if (again)
344 goto loop;
345
346 spin_lock(&device->io_lock);
347 if (device->pending_bios.head || device->pending_sync_bios.head)
348 goto loop_lock;
349 spin_unlock(&device->io_lock);
350
351 done:
352 return 0;
353 }
354
355 static void pending_bios_fn(struct btrfs_work *work)
356 {
357 struct btrfs_device *device;
358
359 device = container_of(work, struct btrfs_device, work);
360 run_scheduled_bios(device);
361 }
362
363 static noinline int device_list_add(const char *path,
364 struct btrfs_super_block *disk_super,
365 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
366 {
367 struct btrfs_device *device;
368 struct btrfs_fs_devices *fs_devices;
369 u64 found_transid = btrfs_super_generation(disk_super);
370 char *name;
371
372 fs_devices = find_fsid(disk_super->fsid);
373 if (!fs_devices) {
374 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
375 if (!fs_devices)
376 return -ENOMEM;
377 INIT_LIST_HEAD(&fs_devices->devices);
378 INIT_LIST_HEAD(&fs_devices->alloc_list);
379 list_add(&fs_devices->list, &fs_uuids);
380 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
381 fs_devices->latest_devid = devid;
382 fs_devices->latest_trans = found_transid;
383 mutex_init(&fs_devices->device_list_mutex);
384 device = NULL;
385 } else {
386 device = __find_device(&fs_devices->devices, devid,
387 disk_super->dev_item.uuid);
388 }
389 if (!device) {
390 if (fs_devices->opened)
391 return -EBUSY;
392
393 device = kzalloc(sizeof(*device), GFP_NOFS);
394 if (!device) {
395 /* we can safely leave the fs_devices entry around */
396 return -ENOMEM;
397 }
398 device->devid = devid;
399 device->work.func = pending_bios_fn;
400 memcpy(device->uuid, disk_super->dev_item.uuid,
401 BTRFS_UUID_SIZE);
402 spin_lock_init(&device->io_lock);
403 device->name = kstrdup(path, GFP_NOFS);
404 if (!device->name) {
405 kfree(device);
406 return -ENOMEM;
407 }
408 INIT_LIST_HEAD(&device->dev_alloc_list);
409
410 mutex_lock(&fs_devices->device_list_mutex);
411 list_add(&device->dev_list, &fs_devices->devices);
412 mutex_unlock(&fs_devices->device_list_mutex);
413
414 device->fs_devices = fs_devices;
415 fs_devices->num_devices++;
416 } else if (!device->name || strcmp(device->name, path)) {
417 name = kstrdup(path, GFP_NOFS);
418 if (!name)
419 return -ENOMEM;
420 kfree(device->name);
421 device->name = name;
422 if (device->missing) {
423 fs_devices->missing_devices--;
424 device->missing = 0;
425 }
426 }
427
428 if (found_transid > fs_devices->latest_trans) {
429 fs_devices->latest_devid = devid;
430 fs_devices->latest_trans = found_transid;
431 }
432 *fs_devices_ret = fs_devices;
433 return 0;
434 }
435
436 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
437 {
438 struct btrfs_fs_devices *fs_devices;
439 struct btrfs_device *device;
440 struct btrfs_device *orig_dev;
441
442 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
443 if (!fs_devices)
444 return ERR_PTR(-ENOMEM);
445
446 INIT_LIST_HEAD(&fs_devices->devices);
447 INIT_LIST_HEAD(&fs_devices->alloc_list);
448 INIT_LIST_HEAD(&fs_devices->list);
449 mutex_init(&fs_devices->device_list_mutex);
450 fs_devices->latest_devid = orig->latest_devid;
451 fs_devices->latest_trans = orig->latest_trans;
452 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
453
454 mutex_lock(&orig->device_list_mutex);
455 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
456 device = kzalloc(sizeof(*device), GFP_NOFS);
457 if (!device)
458 goto error;
459
460 device->name = kstrdup(orig_dev->name, GFP_NOFS);
461 if (!device->name) {
462 kfree(device);
463 goto error;
464 }
465
466 device->devid = orig_dev->devid;
467 device->work.func = pending_bios_fn;
468 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
469 spin_lock_init(&device->io_lock);
470 INIT_LIST_HEAD(&device->dev_list);
471 INIT_LIST_HEAD(&device->dev_alloc_list);
472
473 list_add(&device->dev_list, &fs_devices->devices);
474 device->fs_devices = fs_devices;
475 fs_devices->num_devices++;
476 }
477 mutex_unlock(&orig->device_list_mutex);
478 return fs_devices;
479 error:
480 mutex_unlock(&orig->device_list_mutex);
481 free_fs_devices(fs_devices);
482 return ERR_PTR(-ENOMEM);
483 }
484
485 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
486 {
487 struct btrfs_device *device, *next;
488
489 mutex_lock(&uuid_mutex);
490 again:
491 mutex_lock(&fs_devices->device_list_mutex);
492 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
493 if (device->in_fs_metadata)
494 continue;
495
496 if (device->bdev) {
497 blkdev_put(device->bdev, device->mode);
498 device->bdev = NULL;
499 fs_devices->open_devices--;
500 }
501 if (device->writeable) {
502 list_del_init(&device->dev_alloc_list);
503 device->writeable = 0;
504 fs_devices->rw_devices--;
505 }
506 list_del_init(&device->dev_list);
507 fs_devices->num_devices--;
508 kfree(device->name);
509 kfree(device);
510 }
511 mutex_unlock(&fs_devices->device_list_mutex);
512
513 if (fs_devices->seed) {
514 fs_devices = fs_devices->seed;
515 goto again;
516 }
517
518 mutex_unlock(&uuid_mutex);
519 return 0;
520 }
521
522 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
523 {
524 struct btrfs_device *device;
525
526 if (--fs_devices->opened > 0)
527 return 0;
528
529 list_for_each_entry(device, &fs_devices->devices, dev_list) {
530 if (device->bdev) {
531 blkdev_put(device->bdev, device->mode);
532 fs_devices->open_devices--;
533 }
534 if (device->writeable) {
535 list_del_init(&device->dev_alloc_list);
536 fs_devices->rw_devices--;
537 }
538
539 device->bdev = NULL;
540 device->writeable = 0;
541 device->in_fs_metadata = 0;
542 }
543 WARN_ON(fs_devices->open_devices);
544 WARN_ON(fs_devices->rw_devices);
545 fs_devices->opened = 0;
546 fs_devices->seeding = 0;
547
548 return 0;
549 }
550
551 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
552 {
553 struct btrfs_fs_devices *seed_devices = NULL;
554 int ret;
555
556 mutex_lock(&uuid_mutex);
557 ret = __btrfs_close_devices(fs_devices);
558 if (!fs_devices->opened) {
559 seed_devices = fs_devices->seed;
560 fs_devices->seed = NULL;
561 }
562 mutex_unlock(&uuid_mutex);
563
564 while (seed_devices) {
565 fs_devices = seed_devices;
566 seed_devices = fs_devices->seed;
567 __btrfs_close_devices(fs_devices);
568 free_fs_devices(fs_devices);
569 }
570 return ret;
571 }
572
573 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
574 fmode_t flags, void *holder)
575 {
576 struct block_device *bdev;
577 struct list_head *head = &fs_devices->devices;
578 struct btrfs_device *device;
579 struct block_device *latest_bdev = NULL;
580 struct buffer_head *bh;
581 struct btrfs_super_block *disk_super;
582 u64 latest_devid = 0;
583 u64 latest_transid = 0;
584 u64 devid;
585 int seeding = 1;
586 int ret = 0;
587
588 flags |= FMODE_EXCL;
589
590 list_for_each_entry(device, head, dev_list) {
591 if (device->bdev)
592 continue;
593 if (!device->name)
594 continue;
595
596 bdev = blkdev_get_by_path(device->name, flags, holder);
597 if (IS_ERR(bdev)) {
598 printk(KERN_INFO "open %s failed\n", device->name);
599 goto error;
600 }
601 set_blocksize(bdev, 4096);
602
603 bh = btrfs_read_dev_super(bdev);
604 if (!bh) {
605 ret = -EINVAL;
606 goto error_close;
607 }
608
609 disk_super = (struct btrfs_super_block *)bh->b_data;
610 devid = btrfs_stack_device_id(&disk_super->dev_item);
611 if (devid != device->devid)
612 goto error_brelse;
613
614 if (memcmp(device->uuid, disk_super->dev_item.uuid,
615 BTRFS_UUID_SIZE))
616 goto error_brelse;
617
618 device->generation = btrfs_super_generation(disk_super);
619 if (!latest_transid || device->generation > latest_transid) {
620 latest_devid = devid;
621 latest_transid = device->generation;
622 latest_bdev = bdev;
623 }
624
625 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
626 device->writeable = 0;
627 } else {
628 device->writeable = !bdev_read_only(bdev);
629 seeding = 0;
630 }
631
632 device->bdev = bdev;
633 device->in_fs_metadata = 0;
634 device->mode = flags;
635
636 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
637 fs_devices->rotating = 1;
638
639 fs_devices->open_devices++;
640 if (device->writeable) {
641 fs_devices->rw_devices++;
642 list_add(&device->dev_alloc_list,
643 &fs_devices->alloc_list);
644 }
645 continue;
646
647 error_brelse:
648 brelse(bh);
649 error_close:
650 blkdev_put(bdev, flags);
651 error:
652 continue;
653 }
654 if (fs_devices->open_devices == 0) {
655 ret = -EIO;
656 goto out;
657 }
658 fs_devices->seeding = seeding;
659 fs_devices->opened = 1;
660 fs_devices->latest_bdev = latest_bdev;
661 fs_devices->latest_devid = latest_devid;
662 fs_devices->latest_trans = latest_transid;
663 fs_devices->total_rw_bytes = 0;
664 out:
665 return ret;
666 }
667
668 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
669 fmode_t flags, void *holder)
670 {
671 int ret;
672
673 mutex_lock(&uuid_mutex);
674 if (fs_devices->opened) {
675 fs_devices->opened++;
676 ret = 0;
677 } else {
678 ret = __btrfs_open_devices(fs_devices, flags, holder);
679 }
680 mutex_unlock(&uuid_mutex);
681 return ret;
682 }
683
684 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
685 struct btrfs_fs_devices **fs_devices_ret)
686 {
687 struct btrfs_super_block *disk_super;
688 struct block_device *bdev;
689 struct buffer_head *bh;
690 int ret;
691 u64 devid;
692 u64 transid;
693
694 mutex_lock(&uuid_mutex);
695
696 flags |= FMODE_EXCL;
697 bdev = blkdev_get_by_path(path, flags, holder);
698
699 if (IS_ERR(bdev)) {
700 ret = PTR_ERR(bdev);
701 goto error;
702 }
703
704 ret = set_blocksize(bdev, 4096);
705 if (ret)
706 goto error_close;
707 bh = btrfs_read_dev_super(bdev);
708 if (!bh) {
709 ret = -EINVAL;
710 goto error_close;
711 }
712 disk_super = (struct btrfs_super_block *)bh->b_data;
713 devid = btrfs_stack_device_id(&disk_super->dev_item);
714 transid = btrfs_super_generation(disk_super);
715 if (disk_super->label[0])
716 printk(KERN_INFO "device label %s ", disk_super->label);
717 else {
718 /* FIXME, make a readl uuid parser */
719 printk(KERN_INFO "device fsid %llx-%llx ",
720 *(unsigned long long *)disk_super->fsid,
721 *(unsigned long long *)(disk_super->fsid + 8));
722 }
723 printk(KERN_CONT "devid %llu transid %llu %s\n",
724 (unsigned long long)devid, (unsigned long long)transid, path);
725 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
726
727 brelse(bh);
728 error_close:
729 blkdev_put(bdev, flags);
730 error:
731 mutex_unlock(&uuid_mutex);
732 return ret;
733 }
734
735 /* helper to account the used device space in the range */
736 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
737 u64 end, u64 *length)
738 {
739 struct btrfs_key key;
740 struct btrfs_root *root = device->dev_root;
741 struct btrfs_dev_extent *dev_extent;
742 struct btrfs_path *path;
743 u64 extent_end;
744 int ret;
745 int slot;
746 struct extent_buffer *l;
747
748 *length = 0;
749
750 if (start >= device->total_bytes)
751 return 0;
752
753 path = btrfs_alloc_path();
754 if (!path)
755 return -ENOMEM;
756 path->reada = 2;
757
758 key.objectid = device->devid;
759 key.offset = start;
760 key.type = BTRFS_DEV_EXTENT_KEY;
761
762 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
763 if (ret < 0)
764 goto out;
765 if (ret > 0) {
766 ret = btrfs_previous_item(root, path, key.objectid, key.type);
767 if (ret < 0)
768 goto out;
769 }
770
771 while (1) {
772 l = path->nodes[0];
773 slot = path->slots[0];
774 if (slot >= btrfs_header_nritems(l)) {
775 ret = btrfs_next_leaf(root, path);
776 if (ret == 0)
777 continue;
778 if (ret < 0)
779 goto out;
780
781 break;
782 }
783 btrfs_item_key_to_cpu(l, &key, slot);
784
785 if (key.objectid < device->devid)
786 goto next;
787
788 if (key.objectid > device->devid)
789 break;
790
791 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
792 goto next;
793
794 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
795 extent_end = key.offset + btrfs_dev_extent_length(l,
796 dev_extent);
797 if (key.offset <= start && extent_end > end) {
798 *length = end - start + 1;
799 break;
800 } else if (key.offset <= start && extent_end > start)
801 *length += extent_end - start;
802 else if (key.offset > start && extent_end <= end)
803 *length += extent_end - key.offset;
804 else if (key.offset > start && key.offset <= end) {
805 *length += end - key.offset + 1;
806 break;
807 } else if (key.offset > end)
808 break;
809
810 next:
811 path->slots[0]++;
812 }
813 ret = 0;
814 out:
815 btrfs_free_path(path);
816 return ret;
817 }
818
819 /*
820 * find_free_dev_extent - find free space in the specified device
821 * @trans: transaction handler
822 * @device: the device which we search the free space in
823 * @num_bytes: the size of the free space that we need
824 * @start: store the start of the free space.
825 * @len: the size of the free space. that we find, or the size of the max
826 * free space if we don't find suitable free space
827 *
828 * this uses a pretty simple search, the expectation is that it is
829 * called very infrequently and that a given device has a small number
830 * of extents
831 *
832 * @start is used to store the start of the free space if we find. But if we
833 * don't find suitable free space, it will be used to store the start position
834 * of the max free space.
835 *
836 * @len is used to store the size of the free space that we find.
837 * But if we don't find suitable free space, it is used to store the size of
838 * the max free space.
839 */
840 int find_free_dev_extent(struct btrfs_trans_handle *trans,
841 struct btrfs_device *device, u64 num_bytes,
842 u64 *start, u64 *len)
843 {
844 struct btrfs_key key;
845 struct btrfs_root *root = device->dev_root;
846 struct btrfs_dev_extent *dev_extent;
847 struct btrfs_path *path;
848 u64 hole_size;
849 u64 max_hole_start;
850 u64 max_hole_size;
851 u64 extent_end;
852 u64 search_start;
853 u64 search_end = device->total_bytes;
854 int ret;
855 int slot;
856 struct extent_buffer *l;
857
858 /* FIXME use last free of some kind */
859
860 /* we don't want to overwrite the superblock on the drive,
861 * so we make sure to start at an offset of at least 1MB
862 */
863 search_start = 1024 * 1024;
864
865 if (root->fs_info->alloc_start + num_bytes <= search_end)
866 search_start = max(root->fs_info->alloc_start, search_start);
867
868 max_hole_start = search_start;
869 max_hole_size = 0;
870
871 if (search_start >= search_end) {
872 ret = -ENOSPC;
873 goto error;
874 }
875
876 path = btrfs_alloc_path();
877 if (!path) {
878 ret = -ENOMEM;
879 goto error;
880 }
881 path->reada = 2;
882
883 key.objectid = device->devid;
884 key.offset = search_start;
885 key.type = BTRFS_DEV_EXTENT_KEY;
886
887 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
888 if (ret < 0)
889 goto out;
890 if (ret > 0) {
891 ret = btrfs_previous_item(root, path, key.objectid, key.type);
892 if (ret < 0)
893 goto out;
894 }
895
896 while (1) {
897 l = path->nodes[0];
898 slot = path->slots[0];
899 if (slot >= btrfs_header_nritems(l)) {
900 ret = btrfs_next_leaf(root, path);
901 if (ret == 0)
902 continue;
903 if (ret < 0)
904 goto out;
905
906 break;
907 }
908 btrfs_item_key_to_cpu(l, &key, slot);
909
910 if (key.objectid < device->devid)
911 goto next;
912
913 if (key.objectid > device->devid)
914 break;
915
916 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
917 goto next;
918
919 if (key.offset > search_start) {
920 hole_size = key.offset - search_start;
921
922 if (hole_size > max_hole_size) {
923 max_hole_start = search_start;
924 max_hole_size = hole_size;
925 }
926
927 /*
928 * If this free space is greater than which we need,
929 * it must be the max free space that we have found
930 * until now, so max_hole_start must point to the start
931 * of this free space and the length of this free space
932 * is stored in max_hole_size. Thus, we return
933 * max_hole_start and max_hole_size and go back to the
934 * caller.
935 */
936 if (hole_size >= num_bytes) {
937 ret = 0;
938 goto out;
939 }
940 }
941
942 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
943 extent_end = key.offset + btrfs_dev_extent_length(l,
944 dev_extent);
945 if (extent_end > search_start)
946 search_start = extent_end;
947 next:
948 path->slots[0]++;
949 cond_resched();
950 }
951
952 hole_size = search_end- search_start;
953 if (hole_size > max_hole_size) {
954 max_hole_start = search_start;
955 max_hole_size = hole_size;
956 }
957
958 /* See above. */
959 if (hole_size < num_bytes)
960 ret = -ENOSPC;
961 else
962 ret = 0;
963
964 out:
965 btrfs_free_path(path);
966 error:
967 *start = max_hole_start;
968 if (len)
969 *len = max_hole_size;
970 return ret;
971 }
972
973 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
974 struct btrfs_device *device,
975 u64 start)
976 {
977 int ret;
978 struct btrfs_path *path;
979 struct btrfs_root *root = device->dev_root;
980 struct btrfs_key key;
981 struct btrfs_key found_key;
982 struct extent_buffer *leaf = NULL;
983 struct btrfs_dev_extent *extent = NULL;
984
985 path = btrfs_alloc_path();
986 if (!path)
987 return -ENOMEM;
988
989 key.objectid = device->devid;
990 key.offset = start;
991 key.type = BTRFS_DEV_EXTENT_KEY;
992
993 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
994 if (ret > 0) {
995 ret = btrfs_previous_item(root, path, key.objectid,
996 BTRFS_DEV_EXTENT_KEY);
997 BUG_ON(ret);
998 leaf = path->nodes[0];
999 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1000 extent = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_dev_extent);
1002 BUG_ON(found_key.offset > start || found_key.offset +
1003 btrfs_dev_extent_length(leaf, extent) < start);
1004 ret = 0;
1005 } else if (ret == 0) {
1006 leaf = path->nodes[0];
1007 extent = btrfs_item_ptr(leaf, path->slots[0],
1008 struct btrfs_dev_extent);
1009 }
1010 BUG_ON(ret);
1011
1012 if (device->bytes_used > 0)
1013 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
1014 ret = btrfs_del_item(trans, root, path);
1015 BUG_ON(ret);
1016
1017 btrfs_free_path(path);
1018 return ret;
1019 }
1020
1021 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1022 struct btrfs_device *device,
1023 u64 chunk_tree, u64 chunk_objectid,
1024 u64 chunk_offset, u64 start, u64 num_bytes)
1025 {
1026 int ret;
1027 struct btrfs_path *path;
1028 struct btrfs_root *root = device->dev_root;
1029 struct btrfs_dev_extent *extent;
1030 struct extent_buffer *leaf;
1031 struct btrfs_key key;
1032
1033 WARN_ON(!device->in_fs_metadata);
1034 path = btrfs_alloc_path();
1035 if (!path)
1036 return -ENOMEM;
1037
1038 key.objectid = device->devid;
1039 key.offset = start;
1040 key.type = BTRFS_DEV_EXTENT_KEY;
1041 ret = btrfs_insert_empty_item(trans, root, path, &key,
1042 sizeof(*extent));
1043 BUG_ON(ret);
1044
1045 leaf = path->nodes[0];
1046 extent = btrfs_item_ptr(leaf, path->slots[0],
1047 struct btrfs_dev_extent);
1048 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1049 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1050 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1051
1052 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1053 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1054 BTRFS_UUID_SIZE);
1055
1056 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1057 btrfs_mark_buffer_dirty(leaf);
1058 btrfs_free_path(path);
1059 return ret;
1060 }
1061
1062 static noinline int find_next_chunk(struct btrfs_root *root,
1063 u64 objectid, u64 *offset)
1064 {
1065 struct btrfs_path *path;
1066 int ret;
1067 struct btrfs_key key;
1068 struct btrfs_chunk *chunk;
1069 struct btrfs_key found_key;
1070
1071 path = btrfs_alloc_path();
1072 BUG_ON(!path);
1073
1074 key.objectid = objectid;
1075 key.offset = (u64)-1;
1076 key.type = BTRFS_CHUNK_ITEM_KEY;
1077
1078 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1079 if (ret < 0)
1080 goto error;
1081
1082 BUG_ON(ret == 0);
1083
1084 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1085 if (ret) {
1086 *offset = 0;
1087 } else {
1088 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1089 path->slots[0]);
1090 if (found_key.objectid != objectid)
1091 *offset = 0;
1092 else {
1093 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1094 struct btrfs_chunk);
1095 *offset = found_key.offset +
1096 btrfs_chunk_length(path->nodes[0], chunk);
1097 }
1098 }
1099 ret = 0;
1100 error:
1101 btrfs_free_path(path);
1102 return ret;
1103 }
1104
1105 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1106 {
1107 int ret;
1108 struct btrfs_key key;
1109 struct btrfs_key found_key;
1110 struct btrfs_path *path;
1111
1112 root = root->fs_info->chunk_root;
1113
1114 path = btrfs_alloc_path();
1115 if (!path)
1116 return -ENOMEM;
1117
1118 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1119 key.type = BTRFS_DEV_ITEM_KEY;
1120 key.offset = (u64)-1;
1121
1122 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1123 if (ret < 0)
1124 goto error;
1125
1126 BUG_ON(ret == 0);
1127
1128 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1129 BTRFS_DEV_ITEM_KEY);
1130 if (ret) {
1131 *objectid = 1;
1132 } else {
1133 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1134 path->slots[0]);
1135 *objectid = found_key.offset + 1;
1136 }
1137 ret = 0;
1138 error:
1139 btrfs_free_path(path);
1140 return ret;
1141 }
1142
1143 /*
1144 * the device information is stored in the chunk root
1145 * the btrfs_device struct should be fully filled in
1146 */
1147 int btrfs_add_device(struct btrfs_trans_handle *trans,
1148 struct btrfs_root *root,
1149 struct btrfs_device *device)
1150 {
1151 int ret;
1152 struct btrfs_path *path;
1153 struct btrfs_dev_item *dev_item;
1154 struct extent_buffer *leaf;
1155 struct btrfs_key key;
1156 unsigned long ptr;
1157
1158 root = root->fs_info->chunk_root;
1159
1160 path = btrfs_alloc_path();
1161 if (!path)
1162 return -ENOMEM;
1163
1164 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1165 key.type = BTRFS_DEV_ITEM_KEY;
1166 key.offset = device->devid;
1167
1168 ret = btrfs_insert_empty_item(trans, root, path, &key,
1169 sizeof(*dev_item));
1170 if (ret)
1171 goto out;
1172
1173 leaf = path->nodes[0];
1174 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1175
1176 btrfs_set_device_id(leaf, dev_item, device->devid);
1177 btrfs_set_device_generation(leaf, dev_item, 0);
1178 btrfs_set_device_type(leaf, dev_item, device->type);
1179 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1180 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1181 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1182 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1183 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1184 btrfs_set_device_group(leaf, dev_item, 0);
1185 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1186 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1187 btrfs_set_device_start_offset(leaf, dev_item, 0);
1188
1189 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1190 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1191 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1192 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1193 btrfs_mark_buffer_dirty(leaf);
1194
1195 ret = 0;
1196 out:
1197 btrfs_free_path(path);
1198 return ret;
1199 }
1200
1201 static int btrfs_rm_dev_item(struct btrfs_root *root,
1202 struct btrfs_device *device)
1203 {
1204 int ret;
1205 struct btrfs_path *path;
1206 struct btrfs_key key;
1207 struct btrfs_trans_handle *trans;
1208
1209 root = root->fs_info->chunk_root;
1210
1211 path = btrfs_alloc_path();
1212 if (!path)
1213 return -ENOMEM;
1214
1215 trans = btrfs_start_transaction(root, 0);
1216 if (IS_ERR(trans)) {
1217 btrfs_free_path(path);
1218 return PTR_ERR(trans);
1219 }
1220 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1221 key.type = BTRFS_DEV_ITEM_KEY;
1222 key.offset = device->devid;
1223 lock_chunks(root);
1224
1225 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1226 if (ret < 0)
1227 goto out;
1228
1229 if (ret > 0) {
1230 ret = -ENOENT;
1231 goto out;
1232 }
1233
1234 ret = btrfs_del_item(trans, root, path);
1235 if (ret)
1236 goto out;
1237 out:
1238 btrfs_free_path(path);
1239 unlock_chunks(root);
1240 btrfs_commit_transaction(trans, root);
1241 return ret;
1242 }
1243
1244 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1245 {
1246 struct btrfs_device *device;
1247 struct btrfs_device *next_device;
1248 struct block_device *bdev;
1249 struct buffer_head *bh = NULL;
1250 struct btrfs_super_block *disk_super;
1251 u64 all_avail;
1252 u64 devid;
1253 u64 num_devices;
1254 u8 *dev_uuid;
1255 int ret = 0;
1256
1257 mutex_lock(&uuid_mutex);
1258 mutex_lock(&root->fs_info->volume_mutex);
1259
1260 all_avail = root->fs_info->avail_data_alloc_bits |
1261 root->fs_info->avail_system_alloc_bits |
1262 root->fs_info->avail_metadata_alloc_bits;
1263
1264 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1265 root->fs_info->fs_devices->num_devices <= 4) {
1266 printk(KERN_ERR "btrfs: unable to go below four devices "
1267 "on raid10\n");
1268 ret = -EINVAL;
1269 goto out;
1270 }
1271
1272 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1273 root->fs_info->fs_devices->num_devices <= 2) {
1274 printk(KERN_ERR "btrfs: unable to go below two "
1275 "devices on raid1\n");
1276 ret = -EINVAL;
1277 goto out;
1278 }
1279
1280 if (strcmp(device_path, "missing") == 0) {
1281 struct list_head *devices;
1282 struct btrfs_device *tmp;
1283
1284 device = NULL;
1285 devices = &root->fs_info->fs_devices->devices;
1286 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1287 list_for_each_entry(tmp, devices, dev_list) {
1288 if (tmp->in_fs_metadata && !tmp->bdev) {
1289 device = tmp;
1290 break;
1291 }
1292 }
1293 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1294 bdev = NULL;
1295 bh = NULL;
1296 disk_super = NULL;
1297 if (!device) {
1298 printk(KERN_ERR "btrfs: no missing devices found to "
1299 "remove\n");
1300 goto out;
1301 }
1302 } else {
1303 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1304 root->fs_info->bdev_holder);
1305 if (IS_ERR(bdev)) {
1306 ret = PTR_ERR(bdev);
1307 goto out;
1308 }
1309
1310 set_blocksize(bdev, 4096);
1311 bh = btrfs_read_dev_super(bdev);
1312 if (!bh) {
1313 ret = -EINVAL;
1314 goto error_close;
1315 }
1316 disk_super = (struct btrfs_super_block *)bh->b_data;
1317 devid = btrfs_stack_device_id(&disk_super->dev_item);
1318 dev_uuid = disk_super->dev_item.uuid;
1319 device = btrfs_find_device(root, devid, dev_uuid,
1320 disk_super->fsid);
1321 if (!device) {
1322 ret = -ENOENT;
1323 goto error_brelse;
1324 }
1325 }
1326
1327 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1328 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1329 "device\n");
1330 ret = -EINVAL;
1331 goto error_brelse;
1332 }
1333
1334 if (device->writeable) {
1335 list_del_init(&device->dev_alloc_list);
1336 root->fs_info->fs_devices->rw_devices--;
1337 }
1338
1339 ret = btrfs_shrink_device(device, 0);
1340 if (ret)
1341 goto error_brelse;
1342
1343 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1344 if (ret)
1345 goto error_brelse;
1346
1347 device->in_fs_metadata = 0;
1348
1349 /*
1350 * the device list mutex makes sure that we don't change
1351 * the device list while someone else is writing out all
1352 * the device supers.
1353 */
1354 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1355 list_del_init(&device->dev_list);
1356 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1357
1358 device->fs_devices->num_devices--;
1359
1360 if (device->missing)
1361 root->fs_info->fs_devices->missing_devices--;
1362
1363 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1364 struct btrfs_device, dev_list);
1365 if (device->bdev == root->fs_info->sb->s_bdev)
1366 root->fs_info->sb->s_bdev = next_device->bdev;
1367 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1368 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1369
1370 if (device->bdev) {
1371 blkdev_put(device->bdev, device->mode);
1372 device->bdev = NULL;
1373 device->fs_devices->open_devices--;
1374 }
1375
1376 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1377 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1378
1379 if (device->fs_devices->open_devices == 0) {
1380 struct btrfs_fs_devices *fs_devices;
1381 fs_devices = root->fs_info->fs_devices;
1382 while (fs_devices) {
1383 if (fs_devices->seed == device->fs_devices)
1384 break;
1385 fs_devices = fs_devices->seed;
1386 }
1387 fs_devices->seed = device->fs_devices->seed;
1388 device->fs_devices->seed = NULL;
1389 __btrfs_close_devices(device->fs_devices);
1390 free_fs_devices(device->fs_devices);
1391 }
1392
1393 /*
1394 * at this point, the device is zero sized. We want to
1395 * remove it from the devices list and zero out the old super
1396 */
1397 if (device->writeable) {
1398 /* make sure this device isn't detected as part of
1399 * the FS anymore
1400 */
1401 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1402 set_buffer_dirty(bh);
1403 sync_dirty_buffer(bh);
1404 }
1405
1406 kfree(device->name);
1407 kfree(device);
1408 ret = 0;
1409
1410 error_brelse:
1411 brelse(bh);
1412 error_close:
1413 if (bdev)
1414 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1415 out:
1416 mutex_unlock(&root->fs_info->volume_mutex);
1417 mutex_unlock(&uuid_mutex);
1418 return ret;
1419 }
1420
1421 /*
1422 * does all the dirty work required for changing file system's UUID.
1423 */
1424 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1425 struct btrfs_root *root)
1426 {
1427 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1428 struct btrfs_fs_devices *old_devices;
1429 struct btrfs_fs_devices *seed_devices;
1430 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1431 struct btrfs_device *device;
1432 u64 super_flags;
1433
1434 BUG_ON(!mutex_is_locked(&uuid_mutex));
1435 if (!fs_devices->seeding)
1436 return -EINVAL;
1437
1438 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1439 if (!seed_devices)
1440 return -ENOMEM;
1441
1442 old_devices = clone_fs_devices(fs_devices);
1443 if (IS_ERR(old_devices)) {
1444 kfree(seed_devices);
1445 return PTR_ERR(old_devices);
1446 }
1447
1448 list_add(&old_devices->list, &fs_uuids);
1449
1450 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1451 seed_devices->opened = 1;
1452 INIT_LIST_HEAD(&seed_devices->devices);
1453 INIT_LIST_HEAD(&seed_devices->alloc_list);
1454 mutex_init(&seed_devices->device_list_mutex);
1455 list_splice_init(&fs_devices->devices, &seed_devices->devices);
1456 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1457 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1458 device->fs_devices = seed_devices;
1459 }
1460
1461 fs_devices->seeding = 0;
1462 fs_devices->num_devices = 0;
1463 fs_devices->open_devices = 0;
1464 fs_devices->seed = seed_devices;
1465
1466 generate_random_uuid(fs_devices->fsid);
1467 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1468 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1469 super_flags = btrfs_super_flags(disk_super) &
1470 ~BTRFS_SUPER_FLAG_SEEDING;
1471 btrfs_set_super_flags(disk_super, super_flags);
1472
1473 return 0;
1474 }
1475
1476 /*
1477 * strore the expected generation for seed devices in device items.
1478 */
1479 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1480 struct btrfs_root *root)
1481 {
1482 struct btrfs_path *path;
1483 struct extent_buffer *leaf;
1484 struct btrfs_dev_item *dev_item;
1485 struct btrfs_device *device;
1486 struct btrfs_key key;
1487 u8 fs_uuid[BTRFS_UUID_SIZE];
1488 u8 dev_uuid[BTRFS_UUID_SIZE];
1489 u64 devid;
1490 int ret;
1491
1492 path = btrfs_alloc_path();
1493 if (!path)
1494 return -ENOMEM;
1495
1496 root = root->fs_info->chunk_root;
1497 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1498 key.offset = 0;
1499 key.type = BTRFS_DEV_ITEM_KEY;
1500
1501 while (1) {
1502 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1503 if (ret < 0)
1504 goto error;
1505
1506 leaf = path->nodes[0];
1507 next_slot:
1508 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1509 ret = btrfs_next_leaf(root, path);
1510 if (ret > 0)
1511 break;
1512 if (ret < 0)
1513 goto error;
1514 leaf = path->nodes[0];
1515 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1516 btrfs_release_path(root, path);
1517 continue;
1518 }
1519
1520 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1521 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1522 key.type != BTRFS_DEV_ITEM_KEY)
1523 break;
1524
1525 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1526 struct btrfs_dev_item);
1527 devid = btrfs_device_id(leaf, dev_item);
1528 read_extent_buffer(leaf, dev_uuid,
1529 (unsigned long)btrfs_device_uuid(dev_item),
1530 BTRFS_UUID_SIZE);
1531 read_extent_buffer(leaf, fs_uuid,
1532 (unsigned long)btrfs_device_fsid(dev_item),
1533 BTRFS_UUID_SIZE);
1534 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1535 BUG_ON(!device);
1536
1537 if (device->fs_devices->seeding) {
1538 btrfs_set_device_generation(leaf, dev_item,
1539 device->generation);
1540 btrfs_mark_buffer_dirty(leaf);
1541 }
1542
1543 path->slots[0]++;
1544 goto next_slot;
1545 }
1546 ret = 0;
1547 error:
1548 btrfs_free_path(path);
1549 return ret;
1550 }
1551
1552 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1553 {
1554 struct btrfs_trans_handle *trans;
1555 struct btrfs_device *device;
1556 struct block_device *bdev;
1557 struct list_head *devices;
1558 struct super_block *sb = root->fs_info->sb;
1559 u64 total_bytes;
1560 int seeding_dev = 0;
1561 int ret = 0;
1562
1563 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1564 return -EINVAL;
1565
1566 bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
1567 root->fs_info->bdev_holder);
1568 if (IS_ERR(bdev))
1569 return PTR_ERR(bdev);
1570
1571 if (root->fs_info->fs_devices->seeding) {
1572 seeding_dev = 1;
1573 down_write(&sb->s_umount);
1574 mutex_lock(&uuid_mutex);
1575 }
1576
1577 filemap_write_and_wait(bdev->bd_inode->i_mapping);
1578 mutex_lock(&root->fs_info->volume_mutex);
1579
1580 devices = &root->fs_info->fs_devices->devices;
1581 /*
1582 * we have the volume lock, so we don't need the extra
1583 * device list mutex while reading the list here.
1584 */
1585 list_for_each_entry(device, devices, dev_list) {
1586 if (device->bdev == bdev) {
1587 ret = -EEXIST;
1588 goto error;
1589 }
1590 }
1591
1592 device = kzalloc(sizeof(*device), GFP_NOFS);
1593 if (!device) {
1594 /* we can safely leave the fs_devices entry around */
1595 ret = -ENOMEM;
1596 goto error;
1597 }
1598
1599 device->name = kstrdup(device_path, GFP_NOFS);
1600 if (!device->name) {
1601 kfree(device);
1602 ret = -ENOMEM;
1603 goto error;
1604 }
1605
1606 ret = find_next_devid(root, &device->devid);
1607 if (ret) {
1608 kfree(device->name);
1609 kfree(device);
1610 goto error;
1611 }
1612
1613 trans = btrfs_start_transaction(root, 0);
1614 if (IS_ERR(trans)) {
1615 kfree(device->name);
1616 kfree(device);
1617 ret = PTR_ERR(trans);
1618 goto error;
1619 }
1620
1621 lock_chunks(root);
1622
1623 device->writeable = 1;
1624 device->work.func = pending_bios_fn;
1625 generate_random_uuid(device->uuid);
1626 spin_lock_init(&device->io_lock);
1627 device->generation = trans->transid;
1628 device->io_width = root->sectorsize;
1629 device->io_align = root->sectorsize;
1630 device->sector_size = root->sectorsize;
1631 device->total_bytes = i_size_read(bdev->bd_inode);
1632 device->disk_total_bytes = device->total_bytes;
1633 device->dev_root = root->fs_info->dev_root;
1634 device->bdev = bdev;
1635 device->in_fs_metadata = 1;
1636 device->mode = 0;
1637 set_blocksize(device->bdev, 4096);
1638
1639 if (seeding_dev) {
1640 sb->s_flags &= ~MS_RDONLY;
1641 ret = btrfs_prepare_sprout(trans, root);
1642 BUG_ON(ret);
1643 }
1644
1645 device->fs_devices = root->fs_info->fs_devices;
1646
1647 /*
1648 * we don't want write_supers to jump in here with our device
1649 * half setup
1650 */
1651 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1652 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1653 list_add(&device->dev_alloc_list,
1654 &root->fs_info->fs_devices->alloc_list);
1655 root->fs_info->fs_devices->num_devices++;
1656 root->fs_info->fs_devices->open_devices++;
1657 root->fs_info->fs_devices->rw_devices++;
1658 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1659
1660 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1661 root->fs_info->fs_devices->rotating = 1;
1662
1663 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1664 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1665 total_bytes + device->total_bytes);
1666
1667 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1668 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1669 total_bytes + 1);
1670 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1671
1672 if (seeding_dev) {
1673 ret = init_first_rw_device(trans, root, device);
1674 BUG_ON(ret);
1675 ret = btrfs_finish_sprout(trans, root);
1676 BUG_ON(ret);
1677 } else {
1678 ret = btrfs_add_device(trans, root, device);
1679 }
1680
1681 /*
1682 * we've got more storage, clear any full flags on the space
1683 * infos
1684 */
1685 btrfs_clear_space_info_full(root->fs_info);
1686
1687 unlock_chunks(root);
1688 btrfs_commit_transaction(trans, root);
1689
1690 if (seeding_dev) {
1691 mutex_unlock(&uuid_mutex);
1692 up_write(&sb->s_umount);
1693
1694 ret = btrfs_relocate_sys_chunks(root);
1695 BUG_ON(ret);
1696 }
1697 out:
1698 mutex_unlock(&root->fs_info->volume_mutex);
1699 return ret;
1700 error:
1701 blkdev_put(bdev, FMODE_EXCL);
1702 if (seeding_dev) {
1703 mutex_unlock(&uuid_mutex);
1704 up_write(&sb->s_umount);
1705 }
1706 goto out;
1707 }
1708
1709 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1710 struct btrfs_device *device)
1711 {
1712 int ret;
1713 struct btrfs_path *path;
1714 struct btrfs_root *root;
1715 struct btrfs_dev_item *dev_item;
1716 struct extent_buffer *leaf;
1717 struct btrfs_key key;
1718
1719 root = device->dev_root->fs_info->chunk_root;
1720
1721 path = btrfs_alloc_path();
1722 if (!path)
1723 return -ENOMEM;
1724
1725 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1726 key.type = BTRFS_DEV_ITEM_KEY;
1727 key.offset = device->devid;
1728
1729 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1730 if (ret < 0)
1731 goto out;
1732
1733 if (ret > 0) {
1734 ret = -ENOENT;
1735 goto out;
1736 }
1737
1738 leaf = path->nodes[0];
1739 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1740
1741 btrfs_set_device_id(leaf, dev_item, device->devid);
1742 btrfs_set_device_type(leaf, dev_item, device->type);
1743 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1744 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1745 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1746 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1747 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1748 btrfs_mark_buffer_dirty(leaf);
1749
1750 out:
1751 btrfs_free_path(path);
1752 return ret;
1753 }
1754
1755 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1756 struct btrfs_device *device, u64 new_size)
1757 {
1758 struct btrfs_super_block *super_copy =
1759 &device->dev_root->fs_info->super_copy;
1760 u64 old_total = btrfs_super_total_bytes(super_copy);
1761 u64 diff = new_size - device->total_bytes;
1762
1763 if (!device->writeable)
1764 return -EACCES;
1765 if (new_size <= device->total_bytes)
1766 return -EINVAL;
1767
1768 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1769 device->fs_devices->total_rw_bytes += diff;
1770
1771 device->total_bytes = new_size;
1772 device->disk_total_bytes = new_size;
1773 btrfs_clear_space_info_full(device->dev_root->fs_info);
1774
1775 return btrfs_update_device(trans, device);
1776 }
1777
1778 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1779 struct btrfs_device *device, u64 new_size)
1780 {
1781 int ret;
1782 lock_chunks(device->dev_root);
1783 ret = __btrfs_grow_device(trans, device, new_size);
1784 unlock_chunks(device->dev_root);
1785 return ret;
1786 }
1787
1788 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1789 struct btrfs_root *root,
1790 u64 chunk_tree, u64 chunk_objectid,
1791 u64 chunk_offset)
1792 {
1793 int ret;
1794 struct btrfs_path *path;
1795 struct btrfs_key key;
1796
1797 root = root->fs_info->chunk_root;
1798 path = btrfs_alloc_path();
1799 if (!path)
1800 return -ENOMEM;
1801
1802 key.objectid = chunk_objectid;
1803 key.offset = chunk_offset;
1804 key.type = BTRFS_CHUNK_ITEM_KEY;
1805
1806 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1807 BUG_ON(ret);
1808
1809 ret = btrfs_del_item(trans, root, path);
1810 BUG_ON(ret);
1811
1812 btrfs_free_path(path);
1813 return 0;
1814 }
1815
1816 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1817 chunk_offset)
1818 {
1819 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1820 struct btrfs_disk_key *disk_key;
1821 struct btrfs_chunk *chunk;
1822 u8 *ptr;
1823 int ret = 0;
1824 u32 num_stripes;
1825 u32 array_size;
1826 u32 len = 0;
1827 u32 cur;
1828 struct btrfs_key key;
1829
1830 array_size = btrfs_super_sys_array_size(super_copy);
1831
1832 ptr = super_copy->sys_chunk_array;
1833 cur = 0;
1834
1835 while (cur < array_size) {
1836 disk_key = (struct btrfs_disk_key *)ptr;
1837 btrfs_disk_key_to_cpu(&key, disk_key);
1838
1839 len = sizeof(*disk_key);
1840
1841 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1842 chunk = (struct btrfs_chunk *)(ptr + len);
1843 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1844 len += btrfs_chunk_item_size(num_stripes);
1845 } else {
1846 ret = -EIO;
1847 break;
1848 }
1849 if (key.objectid == chunk_objectid &&
1850 key.offset == chunk_offset) {
1851 memmove(ptr, ptr + len, array_size - (cur + len));
1852 array_size -= len;
1853 btrfs_set_super_sys_array_size(super_copy, array_size);
1854 } else {
1855 ptr += len;
1856 cur += len;
1857 }
1858 }
1859 return ret;
1860 }
1861
1862 static int btrfs_relocate_chunk(struct btrfs_root *root,
1863 u64 chunk_tree, u64 chunk_objectid,
1864 u64 chunk_offset)
1865 {
1866 struct extent_map_tree *em_tree;
1867 struct btrfs_root *extent_root;
1868 struct btrfs_trans_handle *trans;
1869 struct extent_map *em;
1870 struct map_lookup *map;
1871 int ret;
1872 int i;
1873
1874 root = root->fs_info->chunk_root;
1875 extent_root = root->fs_info->extent_root;
1876 em_tree = &root->fs_info->mapping_tree.map_tree;
1877
1878 ret = btrfs_can_relocate(extent_root, chunk_offset);
1879 if (ret)
1880 return -ENOSPC;
1881
1882 /* step one, relocate all the extents inside this chunk */
1883 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1884 if (ret)
1885 return ret;
1886
1887 trans = btrfs_start_transaction(root, 0);
1888 BUG_ON(IS_ERR(trans));
1889
1890 lock_chunks(root);
1891
1892 /*
1893 * step two, delete the device extents and the
1894 * chunk tree entries
1895 */
1896 read_lock(&em_tree->lock);
1897 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1898 read_unlock(&em_tree->lock);
1899
1900 BUG_ON(em->start > chunk_offset ||
1901 em->start + em->len < chunk_offset);
1902 map = (struct map_lookup *)em->bdev;
1903
1904 for (i = 0; i < map->num_stripes; i++) {
1905 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1906 map->stripes[i].physical);
1907 BUG_ON(ret);
1908
1909 if (map->stripes[i].dev) {
1910 ret = btrfs_update_device(trans, map->stripes[i].dev);
1911 BUG_ON(ret);
1912 }
1913 }
1914 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1915 chunk_offset);
1916
1917 BUG_ON(ret);
1918
1919 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1920 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1921 BUG_ON(ret);
1922 }
1923
1924 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1925 BUG_ON(ret);
1926
1927 write_lock(&em_tree->lock);
1928 remove_extent_mapping(em_tree, em);
1929 write_unlock(&em_tree->lock);
1930
1931 kfree(map);
1932 em->bdev = NULL;
1933
1934 /* once for the tree */
1935 free_extent_map(em);
1936 /* once for us */
1937 free_extent_map(em);
1938
1939 unlock_chunks(root);
1940 btrfs_end_transaction(trans, root);
1941 return 0;
1942 }
1943
1944 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1945 {
1946 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1947 struct btrfs_path *path;
1948 struct extent_buffer *leaf;
1949 struct btrfs_chunk *chunk;
1950 struct btrfs_key key;
1951 struct btrfs_key found_key;
1952 u64 chunk_tree = chunk_root->root_key.objectid;
1953 u64 chunk_type;
1954 bool retried = false;
1955 int failed = 0;
1956 int ret;
1957
1958 path = btrfs_alloc_path();
1959 if (!path)
1960 return -ENOMEM;
1961
1962 again:
1963 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1964 key.offset = (u64)-1;
1965 key.type = BTRFS_CHUNK_ITEM_KEY;
1966
1967 while (1) {
1968 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1969 if (ret < 0)
1970 goto error;
1971 BUG_ON(ret == 0);
1972
1973 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1974 key.type);
1975 if (ret < 0)
1976 goto error;
1977 if (ret > 0)
1978 break;
1979
1980 leaf = path->nodes[0];
1981 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1982
1983 chunk = btrfs_item_ptr(leaf, path->slots[0],
1984 struct btrfs_chunk);
1985 chunk_type = btrfs_chunk_type(leaf, chunk);
1986 btrfs_release_path(chunk_root, path);
1987
1988 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1989 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1990 found_key.objectid,
1991 found_key.offset);
1992 if (ret == -ENOSPC)
1993 failed++;
1994 else if (ret)
1995 BUG();
1996 }
1997
1998 if (found_key.offset == 0)
1999 break;
2000 key.offset = found_key.offset - 1;
2001 }
2002 ret = 0;
2003 if (failed && !retried) {
2004 failed = 0;
2005 retried = true;
2006 goto again;
2007 } else if (failed && retried) {
2008 WARN_ON(1);
2009 ret = -ENOSPC;
2010 }
2011 error:
2012 btrfs_free_path(path);
2013 return ret;
2014 }
2015
2016 static u64 div_factor(u64 num, int factor)
2017 {
2018 if (factor == 10)
2019 return num;
2020 num *= factor;
2021 do_div(num, 10);
2022 return num;
2023 }
2024
2025 int btrfs_balance(struct btrfs_root *dev_root)
2026 {
2027 int ret;
2028 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
2029 struct btrfs_device *device;
2030 u64 old_size;
2031 u64 size_to_free;
2032 struct btrfs_path *path;
2033 struct btrfs_key key;
2034 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
2035 struct btrfs_trans_handle *trans;
2036 struct btrfs_key found_key;
2037
2038 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2039 return -EROFS;
2040
2041 if (!capable(CAP_SYS_ADMIN))
2042 return -EPERM;
2043
2044 mutex_lock(&dev_root->fs_info->volume_mutex);
2045 dev_root = dev_root->fs_info->dev_root;
2046
2047 /* step one make some room on all the devices */
2048 list_for_each_entry(device, devices, dev_list) {
2049 old_size = device->total_bytes;
2050 size_to_free = div_factor(old_size, 1);
2051 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2052 if (!device->writeable ||
2053 device->total_bytes - device->bytes_used > size_to_free)
2054 continue;
2055
2056 ret = btrfs_shrink_device(device, old_size - size_to_free);
2057 if (ret == -ENOSPC)
2058 break;
2059 BUG_ON(ret);
2060
2061 trans = btrfs_start_transaction(dev_root, 0);
2062 BUG_ON(IS_ERR(trans));
2063
2064 ret = btrfs_grow_device(trans, device, old_size);
2065 BUG_ON(ret);
2066
2067 btrfs_end_transaction(trans, dev_root);
2068 }
2069
2070 /* step two, relocate all the chunks */
2071 path = btrfs_alloc_path();
2072 BUG_ON(!path);
2073
2074 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2075 key.offset = (u64)-1;
2076 key.type = BTRFS_CHUNK_ITEM_KEY;
2077
2078 while (1) {
2079 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2080 if (ret < 0)
2081 goto error;
2082
2083 /*
2084 * this shouldn't happen, it means the last relocate
2085 * failed
2086 */
2087 if (ret == 0)
2088 break;
2089
2090 ret = btrfs_previous_item(chunk_root, path, 0,
2091 BTRFS_CHUNK_ITEM_KEY);
2092 if (ret)
2093 break;
2094
2095 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2096 path->slots[0]);
2097 if (found_key.objectid != key.objectid)
2098 break;
2099
2100 /* chunk zero is special */
2101 if (found_key.offset == 0)
2102 break;
2103
2104 btrfs_release_path(chunk_root, path);
2105 ret = btrfs_relocate_chunk(chunk_root,
2106 chunk_root->root_key.objectid,
2107 found_key.objectid,
2108 found_key.offset);
2109 BUG_ON(ret && ret != -ENOSPC);
2110 key.offset = found_key.offset - 1;
2111 }
2112 ret = 0;
2113 error:
2114 btrfs_free_path(path);
2115 mutex_unlock(&dev_root->fs_info->volume_mutex);
2116 return ret;
2117 }
2118
2119 /*
2120 * shrinking a device means finding all of the device extents past
2121 * the new size, and then following the back refs to the chunks.
2122 * The chunk relocation code actually frees the device extent
2123 */
2124 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2125 {
2126 struct btrfs_trans_handle *trans;
2127 struct btrfs_root *root = device->dev_root;
2128 struct btrfs_dev_extent *dev_extent = NULL;
2129 struct btrfs_path *path;
2130 u64 length;
2131 u64 chunk_tree;
2132 u64 chunk_objectid;
2133 u64 chunk_offset;
2134 int ret;
2135 int slot;
2136 int failed = 0;
2137 bool retried = false;
2138 struct extent_buffer *l;
2139 struct btrfs_key key;
2140 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2141 u64 old_total = btrfs_super_total_bytes(super_copy);
2142 u64 old_size = device->total_bytes;
2143 u64 diff = device->total_bytes - new_size;
2144
2145 if (new_size >= device->total_bytes)
2146 return -EINVAL;
2147
2148 path = btrfs_alloc_path();
2149 if (!path)
2150 return -ENOMEM;
2151
2152 path->reada = 2;
2153
2154 lock_chunks(root);
2155
2156 device->total_bytes = new_size;
2157 if (device->writeable)
2158 device->fs_devices->total_rw_bytes -= diff;
2159 unlock_chunks(root);
2160
2161 again:
2162 key.objectid = device->devid;
2163 key.offset = (u64)-1;
2164 key.type = BTRFS_DEV_EXTENT_KEY;
2165
2166 while (1) {
2167 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2168 if (ret < 0)
2169 goto done;
2170
2171 ret = btrfs_previous_item(root, path, 0, key.type);
2172 if (ret < 0)
2173 goto done;
2174 if (ret) {
2175 ret = 0;
2176 btrfs_release_path(root, path);
2177 break;
2178 }
2179
2180 l = path->nodes[0];
2181 slot = path->slots[0];
2182 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2183
2184 if (key.objectid != device->devid) {
2185 btrfs_release_path(root, path);
2186 break;
2187 }
2188
2189 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2190 length = btrfs_dev_extent_length(l, dev_extent);
2191
2192 if (key.offset + length <= new_size) {
2193 btrfs_release_path(root, path);
2194 break;
2195 }
2196
2197 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2198 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2199 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2200 btrfs_release_path(root, path);
2201
2202 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2203 chunk_offset);
2204 if (ret && ret != -ENOSPC)
2205 goto done;
2206 if (ret == -ENOSPC)
2207 failed++;
2208 key.offset -= 1;
2209 }
2210
2211 if (failed && !retried) {
2212 failed = 0;
2213 retried = true;
2214 goto again;
2215 } else if (failed && retried) {
2216 ret = -ENOSPC;
2217 lock_chunks(root);
2218
2219 device->total_bytes = old_size;
2220 if (device->writeable)
2221 device->fs_devices->total_rw_bytes += diff;
2222 unlock_chunks(root);
2223 goto done;
2224 }
2225
2226 /* Shrinking succeeded, else we would be at "done". */
2227 trans = btrfs_start_transaction(root, 0);
2228 if (IS_ERR(trans)) {
2229 ret = PTR_ERR(trans);
2230 goto done;
2231 }
2232
2233 lock_chunks(root);
2234
2235 device->disk_total_bytes = new_size;
2236 /* Now btrfs_update_device() will change the on-disk size. */
2237 ret = btrfs_update_device(trans, device);
2238 if (ret) {
2239 unlock_chunks(root);
2240 btrfs_end_transaction(trans, root);
2241 goto done;
2242 }
2243 WARN_ON(diff > old_total);
2244 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2245 unlock_chunks(root);
2246 btrfs_end_transaction(trans, root);
2247 done:
2248 btrfs_free_path(path);
2249 return ret;
2250 }
2251
2252 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2253 struct btrfs_root *root,
2254 struct btrfs_key *key,
2255 struct btrfs_chunk *chunk, int item_size)
2256 {
2257 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2258 struct btrfs_disk_key disk_key;
2259 u32 array_size;
2260 u8 *ptr;
2261
2262 array_size = btrfs_super_sys_array_size(super_copy);
2263 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2264 return -EFBIG;
2265
2266 ptr = super_copy->sys_chunk_array + array_size;
2267 btrfs_cpu_key_to_disk(&disk_key, key);
2268 memcpy(ptr, &disk_key, sizeof(disk_key));
2269 ptr += sizeof(disk_key);
2270 memcpy(ptr, chunk, item_size);
2271 item_size += sizeof(disk_key);
2272 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2273 return 0;
2274 }
2275
2276 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2277 int num_stripes, int sub_stripes)
2278 {
2279 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2280 return calc_size;
2281 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2282 return calc_size * (num_stripes / sub_stripes);
2283 else
2284 return calc_size * num_stripes;
2285 }
2286
2287 /* Used to sort the devices by max_avail(descending sort) */
2288 int btrfs_cmp_device_free_bytes(const void *dev_info1, const void *dev_info2)
2289 {
2290 if (((struct btrfs_device_info *)dev_info1)->max_avail >
2291 ((struct btrfs_device_info *)dev_info2)->max_avail)
2292 return -1;
2293 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2294 ((struct btrfs_device_info *)dev_info2)->max_avail)
2295 return 1;
2296 else
2297 return 0;
2298 }
2299
2300 static int __btrfs_calc_nstripes(struct btrfs_fs_devices *fs_devices, u64 type,
2301 int *num_stripes, int *min_stripes,
2302 int *sub_stripes)
2303 {
2304 *num_stripes = 1;
2305 *min_stripes = 1;
2306 *sub_stripes = 0;
2307
2308 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2309 *num_stripes = fs_devices->rw_devices;
2310 *min_stripes = 2;
2311 }
2312 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2313 *num_stripes = 2;
2314 *min_stripes = 2;
2315 }
2316 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2317 if (fs_devices->rw_devices < 2)
2318 return -ENOSPC;
2319 *num_stripes = 2;
2320 *min_stripes = 2;
2321 }
2322 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2323 *num_stripes = fs_devices->rw_devices;
2324 if (*num_stripes < 4)
2325 return -ENOSPC;
2326 *num_stripes &= ~(u32)1;
2327 *sub_stripes = 2;
2328 *min_stripes = 4;
2329 }
2330
2331 return 0;
2332 }
2333
2334 static u64 __btrfs_calc_stripe_size(struct btrfs_fs_devices *fs_devices,
2335 u64 proposed_size, u64 type,
2336 int num_stripes, int small_stripe)
2337 {
2338 int min_stripe_size = 1 * 1024 * 1024;
2339 u64 calc_size = proposed_size;
2340 u64 max_chunk_size = calc_size;
2341 int ncopies = 1;
2342
2343 if (type & (BTRFS_BLOCK_GROUP_RAID1 |
2344 BTRFS_BLOCK_GROUP_DUP |
2345 BTRFS_BLOCK_GROUP_RAID10))
2346 ncopies = 2;
2347
2348 if (type & BTRFS_BLOCK_GROUP_DATA) {
2349 max_chunk_size = 10 * calc_size;
2350 min_stripe_size = 64 * 1024 * 1024;
2351 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2352 max_chunk_size = 256 * 1024 * 1024;
2353 min_stripe_size = 32 * 1024 * 1024;
2354 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2355 calc_size = 8 * 1024 * 1024;
2356 max_chunk_size = calc_size * 2;
2357 min_stripe_size = 1 * 1024 * 1024;
2358 }
2359
2360 /* we don't want a chunk larger than 10% of writeable space */
2361 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2362 max_chunk_size);
2363
2364 if (calc_size * num_stripes > max_chunk_size * ncopies) {
2365 calc_size = max_chunk_size * ncopies;
2366 do_div(calc_size, num_stripes);
2367 do_div(calc_size, BTRFS_STRIPE_LEN);
2368 calc_size *= BTRFS_STRIPE_LEN;
2369 }
2370
2371 /* we don't want tiny stripes */
2372 if (!small_stripe)
2373 calc_size = max_t(u64, min_stripe_size, calc_size);
2374
2375 /*
2376 * we're about to do_div by the BTRFS_STRIPE_LEN so lets make sure
2377 * we end up with something bigger than a stripe
2378 */
2379 calc_size = max_t(u64, calc_size, BTRFS_STRIPE_LEN);
2380
2381 do_div(calc_size, BTRFS_STRIPE_LEN);
2382 calc_size *= BTRFS_STRIPE_LEN;
2383
2384 return calc_size;
2385 }
2386
2387 static struct map_lookup *__shrink_map_lookup_stripes(struct map_lookup *map,
2388 int num_stripes)
2389 {
2390 struct map_lookup *new;
2391 size_t len = map_lookup_size(num_stripes);
2392
2393 BUG_ON(map->num_stripes < num_stripes);
2394
2395 if (map->num_stripes == num_stripes)
2396 return map;
2397
2398 new = kmalloc(len, GFP_NOFS);
2399 if (!new) {
2400 /* just change map->num_stripes */
2401 map->num_stripes = num_stripes;
2402 return map;
2403 }
2404
2405 memcpy(new, map, len);
2406 new->num_stripes = num_stripes;
2407 kfree(map);
2408 return new;
2409 }
2410
2411 /*
2412 * helper to allocate device space from btrfs_device_info, in which we stored
2413 * max free space information of every device. It is used when we can not
2414 * allocate chunks by default size.
2415 *
2416 * By this helper, we can allocate a new chunk as larger as possible.
2417 */
2418 static int __btrfs_alloc_tiny_space(struct btrfs_trans_handle *trans,
2419 struct btrfs_fs_devices *fs_devices,
2420 struct btrfs_device_info *devices,
2421 int nr_device, u64 type,
2422 struct map_lookup **map_lookup,
2423 int min_stripes, u64 *stripe_size)
2424 {
2425 int i, index, sort_again = 0;
2426 int min_devices = min_stripes;
2427 u64 max_avail, min_free;
2428 struct map_lookup *map = *map_lookup;
2429 int ret;
2430
2431 if (nr_device < min_stripes)
2432 return -ENOSPC;
2433
2434 btrfs_descending_sort_devices(devices, nr_device);
2435
2436 max_avail = devices[0].max_avail;
2437 if (!max_avail)
2438 return -ENOSPC;
2439
2440 for (i = 0; i < nr_device; i++) {
2441 /*
2442 * if dev_offset = 0, it means the free space of this device
2443 * is less than what we need, and we didn't search max avail
2444 * extent on this device, so do it now.
2445 */
2446 if (!devices[i].dev_offset) {
2447 ret = find_free_dev_extent(trans, devices[i].dev,
2448 max_avail,
2449 &devices[i].dev_offset,
2450 &devices[i].max_avail);
2451 if (ret != 0 && ret != -ENOSPC)
2452 return ret;
2453 sort_again = 1;
2454 }
2455 }
2456
2457 /* we update the max avail free extent of each devices, sort again */
2458 if (sort_again)
2459 btrfs_descending_sort_devices(devices, nr_device);
2460
2461 if (type & BTRFS_BLOCK_GROUP_DUP)
2462 min_devices = 1;
2463
2464 if (!devices[min_devices - 1].max_avail)
2465 return -ENOSPC;
2466
2467 max_avail = devices[min_devices - 1].max_avail;
2468 if (type & BTRFS_BLOCK_GROUP_DUP)
2469 do_div(max_avail, 2);
2470
2471 max_avail = __btrfs_calc_stripe_size(fs_devices, max_avail, type,
2472 min_stripes, 1);
2473 if (type & BTRFS_BLOCK_GROUP_DUP)
2474 min_free = max_avail * 2;
2475 else
2476 min_free = max_avail;
2477
2478 if (min_free > devices[min_devices - 1].max_avail)
2479 return -ENOSPC;
2480
2481 map = __shrink_map_lookup_stripes(map, min_stripes);
2482 *stripe_size = max_avail;
2483
2484 index = 0;
2485 for (i = 0; i < min_stripes; i++) {
2486 map->stripes[i].dev = devices[index].dev;
2487 map->stripes[i].physical = devices[index].dev_offset;
2488 if (type & BTRFS_BLOCK_GROUP_DUP) {
2489 i++;
2490 map->stripes[i].dev = devices[index].dev;
2491 map->stripes[i].physical = devices[index].dev_offset +
2492 max_avail;
2493 }
2494 index++;
2495 }
2496 *map_lookup = map;
2497
2498 return 0;
2499 }
2500
2501 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2502 struct btrfs_root *extent_root,
2503 struct map_lookup **map_ret,
2504 u64 *num_bytes, u64 *stripe_size,
2505 u64 start, u64 type)
2506 {
2507 struct btrfs_fs_info *info = extent_root->fs_info;
2508 struct btrfs_device *device = NULL;
2509 struct btrfs_fs_devices *fs_devices = info->fs_devices;
2510 struct list_head *cur;
2511 struct map_lookup *map;
2512 struct extent_map_tree *em_tree;
2513 struct extent_map *em;
2514 struct btrfs_device_info *devices_info;
2515 struct list_head private_devs;
2516 u64 calc_size = 1024 * 1024 * 1024;
2517 u64 min_free;
2518 u64 avail;
2519 u64 dev_offset;
2520 int num_stripes;
2521 int min_stripes;
2522 int sub_stripes;
2523 int min_devices; /* the min number of devices we need */
2524 int i;
2525 int ret;
2526 int index;
2527
2528 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2529 (type & BTRFS_BLOCK_GROUP_DUP)) {
2530 WARN_ON(1);
2531 type &= ~BTRFS_BLOCK_GROUP_DUP;
2532 }
2533 if (list_empty(&fs_devices->alloc_list))
2534 return -ENOSPC;
2535
2536 ret = __btrfs_calc_nstripes(fs_devices, type, &num_stripes,
2537 &min_stripes, &sub_stripes);
2538 if (ret)
2539 return ret;
2540
2541 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2542 GFP_NOFS);
2543 if (!devices_info)
2544 return -ENOMEM;
2545
2546 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2547 if (!map) {
2548 ret = -ENOMEM;
2549 goto error;
2550 }
2551 map->num_stripes = num_stripes;
2552
2553 cur = fs_devices->alloc_list.next;
2554 index = 0;
2555 i = 0;
2556
2557 calc_size = __btrfs_calc_stripe_size(fs_devices, calc_size, type,
2558 num_stripes, 0);
2559
2560 if (type & BTRFS_BLOCK_GROUP_DUP) {
2561 min_free = calc_size * 2;
2562 min_devices = 1;
2563 } else {
2564 min_free = calc_size;
2565 min_devices = min_stripes;
2566 }
2567
2568 INIT_LIST_HEAD(&private_devs);
2569 while (index < num_stripes) {
2570 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2571 BUG_ON(!device->writeable);
2572 if (device->total_bytes > device->bytes_used)
2573 avail = device->total_bytes - device->bytes_used;
2574 else
2575 avail = 0;
2576 cur = cur->next;
2577
2578 if (device->in_fs_metadata && avail >= min_free) {
2579 ret = find_free_dev_extent(trans, device, min_free,
2580 &devices_info[i].dev_offset,
2581 &devices_info[i].max_avail);
2582 if (ret == 0) {
2583 list_move_tail(&device->dev_alloc_list,
2584 &private_devs);
2585 map->stripes[index].dev = device;
2586 map->stripes[index].physical =
2587 devices_info[i].dev_offset;
2588 index++;
2589 if (type & BTRFS_BLOCK_GROUP_DUP) {
2590 map->stripes[index].dev = device;
2591 map->stripes[index].physical =
2592 devices_info[i].dev_offset +
2593 calc_size;
2594 index++;
2595 }
2596 } else if (ret != -ENOSPC)
2597 goto error;
2598
2599 devices_info[i].dev = device;
2600 i++;
2601 } else if (device->in_fs_metadata &&
2602 avail >= BTRFS_STRIPE_LEN) {
2603 devices_info[i].dev = device;
2604 devices_info[i].max_avail = avail;
2605 i++;
2606 }
2607
2608 if (cur == &fs_devices->alloc_list)
2609 break;
2610 }
2611
2612 list_splice(&private_devs, &fs_devices->alloc_list);
2613 if (index < num_stripes) {
2614 if (index >= min_stripes) {
2615 num_stripes = index;
2616 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2617 num_stripes /= sub_stripes;
2618 num_stripes *= sub_stripes;
2619 }
2620
2621 map = __shrink_map_lookup_stripes(map, num_stripes);
2622 } else if (i >= min_devices) {
2623 ret = __btrfs_alloc_tiny_space(trans, fs_devices,
2624 devices_info, i, type,
2625 &map, min_stripes,
2626 &calc_size);
2627 if (ret)
2628 goto error;
2629 } else {
2630 ret = -ENOSPC;
2631 goto error;
2632 }
2633 }
2634 map->sector_size = extent_root->sectorsize;
2635 map->stripe_len = BTRFS_STRIPE_LEN;
2636 map->io_align = BTRFS_STRIPE_LEN;
2637 map->io_width = BTRFS_STRIPE_LEN;
2638 map->type = type;
2639 map->sub_stripes = sub_stripes;
2640
2641 *map_ret = map;
2642 *stripe_size = calc_size;
2643 *num_bytes = chunk_bytes_by_type(type, calc_size,
2644 map->num_stripes, sub_stripes);
2645
2646 em = alloc_extent_map(GFP_NOFS);
2647 if (!em) {
2648 ret = -ENOMEM;
2649 goto error;
2650 }
2651 em->bdev = (struct block_device *)map;
2652 em->start = start;
2653 em->len = *num_bytes;
2654 em->block_start = 0;
2655 em->block_len = em->len;
2656
2657 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2658 write_lock(&em_tree->lock);
2659 ret = add_extent_mapping(em_tree, em);
2660 write_unlock(&em_tree->lock);
2661 BUG_ON(ret);
2662 free_extent_map(em);
2663
2664 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2665 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2666 start, *num_bytes);
2667 BUG_ON(ret);
2668
2669 index = 0;
2670 while (index < map->num_stripes) {
2671 device = map->stripes[index].dev;
2672 dev_offset = map->stripes[index].physical;
2673
2674 ret = btrfs_alloc_dev_extent(trans, device,
2675 info->chunk_root->root_key.objectid,
2676 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2677 start, dev_offset, calc_size);
2678 BUG_ON(ret);
2679 index++;
2680 }
2681
2682 kfree(devices_info);
2683 return 0;
2684
2685 error:
2686 kfree(map);
2687 kfree(devices_info);
2688 return ret;
2689 }
2690
2691 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2692 struct btrfs_root *extent_root,
2693 struct map_lookup *map, u64 chunk_offset,
2694 u64 chunk_size, u64 stripe_size)
2695 {
2696 u64 dev_offset;
2697 struct btrfs_key key;
2698 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2699 struct btrfs_device *device;
2700 struct btrfs_chunk *chunk;
2701 struct btrfs_stripe *stripe;
2702 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2703 int index = 0;
2704 int ret;
2705
2706 chunk = kzalloc(item_size, GFP_NOFS);
2707 if (!chunk)
2708 return -ENOMEM;
2709
2710 index = 0;
2711 while (index < map->num_stripes) {
2712 device = map->stripes[index].dev;
2713 device->bytes_used += stripe_size;
2714 ret = btrfs_update_device(trans, device);
2715 BUG_ON(ret);
2716 index++;
2717 }
2718
2719 index = 0;
2720 stripe = &chunk->stripe;
2721 while (index < map->num_stripes) {
2722 device = map->stripes[index].dev;
2723 dev_offset = map->stripes[index].physical;
2724
2725 btrfs_set_stack_stripe_devid(stripe, device->devid);
2726 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2727 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2728 stripe++;
2729 index++;
2730 }
2731
2732 btrfs_set_stack_chunk_length(chunk, chunk_size);
2733 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2734 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2735 btrfs_set_stack_chunk_type(chunk, map->type);
2736 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2737 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2738 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2739 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2740 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2741
2742 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2743 key.type = BTRFS_CHUNK_ITEM_KEY;
2744 key.offset = chunk_offset;
2745
2746 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2747 BUG_ON(ret);
2748
2749 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2750 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2751 item_size);
2752 BUG_ON(ret);
2753 }
2754 kfree(chunk);
2755 return 0;
2756 }
2757
2758 /*
2759 * Chunk allocation falls into two parts. The first part does works
2760 * that make the new allocated chunk useable, but not do any operation
2761 * that modifies the chunk tree. The second part does the works that
2762 * require modifying the chunk tree. This division is important for the
2763 * bootstrap process of adding storage to a seed btrfs.
2764 */
2765 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2766 struct btrfs_root *extent_root, u64 type)
2767 {
2768 u64 chunk_offset;
2769 u64 chunk_size;
2770 u64 stripe_size;
2771 struct map_lookup *map;
2772 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2773 int ret;
2774
2775 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2776 &chunk_offset);
2777 if (ret)
2778 return ret;
2779
2780 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2781 &stripe_size, chunk_offset, type);
2782 if (ret)
2783 return ret;
2784
2785 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2786 chunk_size, stripe_size);
2787 BUG_ON(ret);
2788 return 0;
2789 }
2790
2791 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2792 struct btrfs_root *root,
2793 struct btrfs_device *device)
2794 {
2795 u64 chunk_offset;
2796 u64 sys_chunk_offset;
2797 u64 chunk_size;
2798 u64 sys_chunk_size;
2799 u64 stripe_size;
2800 u64 sys_stripe_size;
2801 u64 alloc_profile;
2802 struct map_lookup *map;
2803 struct map_lookup *sys_map;
2804 struct btrfs_fs_info *fs_info = root->fs_info;
2805 struct btrfs_root *extent_root = fs_info->extent_root;
2806 int ret;
2807
2808 ret = find_next_chunk(fs_info->chunk_root,
2809 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2810 BUG_ON(ret);
2811
2812 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2813 (fs_info->metadata_alloc_profile &
2814 fs_info->avail_metadata_alloc_bits);
2815 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2816
2817 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2818 &stripe_size, chunk_offset, alloc_profile);
2819 BUG_ON(ret);
2820
2821 sys_chunk_offset = chunk_offset + chunk_size;
2822
2823 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2824 (fs_info->system_alloc_profile &
2825 fs_info->avail_system_alloc_bits);
2826 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2827
2828 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2829 &sys_chunk_size, &sys_stripe_size,
2830 sys_chunk_offset, alloc_profile);
2831 BUG_ON(ret);
2832
2833 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2834 BUG_ON(ret);
2835
2836 /*
2837 * Modifying chunk tree needs allocating new blocks from both
2838 * system block group and metadata block group. So we only can
2839 * do operations require modifying the chunk tree after both
2840 * block groups were created.
2841 */
2842 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2843 chunk_size, stripe_size);
2844 BUG_ON(ret);
2845
2846 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2847 sys_chunk_offset, sys_chunk_size,
2848 sys_stripe_size);
2849 BUG_ON(ret);
2850 return 0;
2851 }
2852
2853 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2854 {
2855 struct extent_map *em;
2856 struct map_lookup *map;
2857 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2858 int readonly = 0;
2859 int i;
2860
2861 read_lock(&map_tree->map_tree.lock);
2862 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2863 read_unlock(&map_tree->map_tree.lock);
2864 if (!em)
2865 return 1;
2866
2867 if (btrfs_test_opt(root, DEGRADED)) {
2868 free_extent_map(em);
2869 return 0;
2870 }
2871
2872 map = (struct map_lookup *)em->bdev;
2873 for (i = 0; i < map->num_stripes; i++) {
2874 if (!map->stripes[i].dev->writeable) {
2875 readonly = 1;
2876 break;
2877 }
2878 }
2879 free_extent_map(em);
2880 return readonly;
2881 }
2882
2883 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2884 {
2885 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2886 }
2887
2888 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2889 {
2890 struct extent_map *em;
2891
2892 while (1) {
2893 write_lock(&tree->map_tree.lock);
2894 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2895 if (em)
2896 remove_extent_mapping(&tree->map_tree, em);
2897 write_unlock(&tree->map_tree.lock);
2898 if (!em)
2899 break;
2900 kfree(em->bdev);
2901 /* once for us */
2902 free_extent_map(em);
2903 /* once for the tree */
2904 free_extent_map(em);
2905 }
2906 }
2907
2908 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2909 {
2910 struct extent_map *em;
2911 struct map_lookup *map;
2912 struct extent_map_tree *em_tree = &map_tree->map_tree;
2913 int ret;
2914
2915 read_lock(&em_tree->lock);
2916 em = lookup_extent_mapping(em_tree, logical, len);
2917 read_unlock(&em_tree->lock);
2918 BUG_ON(!em);
2919
2920 BUG_ON(em->start > logical || em->start + em->len < logical);
2921 map = (struct map_lookup *)em->bdev;
2922 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2923 ret = map->num_stripes;
2924 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2925 ret = map->sub_stripes;
2926 else
2927 ret = 1;
2928 free_extent_map(em);
2929 return ret;
2930 }
2931
2932 static int find_live_mirror(struct map_lookup *map, int first, int num,
2933 int optimal)
2934 {
2935 int i;
2936 if (map->stripes[optimal].dev->bdev)
2937 return optimal;
2938 for (i = first; i < first + num; i++) {
2939 if (map->stripes[i].dev->bdev)
2940 return i;
2941 }
2942 /* we couldn't find one that doesn't fail. Just return something
2943 * and the io error handling code will clean up eventually
2944 */
2945 return optimal;
2946 }
2947
2948 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2949 u64 logical, u64 *length,
2950 struct btrfs_multi_bio **multi_ret,
2951 int mirror_num, struct page *unplug_page)
2952 {
2953 struct extent_map *em;
2954 struct map_lookup *map;
2955 struct extent_map_tree *em_tree = &map_tree->map_tree;
2956 u64 offset;
2957 u64 stripe_offset;
2958 u64 stripe_nr;
2959 int stripes_allocated = 8;
2960 int stripes_required = 1;
2961 int stripe_index;
2962 int i;
2963 int num_stripes;
2964 int max_errors = 0;
2965 struct btrfs_multi_bio *multi = NULL;
2966
2967 if (multi_ret && !(rw & REQ_WRITE))
2968 stripes_allocated = 1;
2969 again:
2970 if (multi_ret) {
2971 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2972 GFP_NOFS);
2973 if (!multi)
2974 return -ENOMEM;
2975
2976 atomic_set(&multi->error, 0);
2977 }
2978
2979 read_lock(&em_tree->lock);
2980 em = lookup_extent_mapping(em_tree, logical, *length);
2981 read_unlock(&em_tree->lock);
2982
2983 if (!em && unplug_page) {
2984 kfree(multi);
2985 return 0;
2986 }
2987
2988 if (!em) {
2989 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2990 (unsigned long long)logical,
2991 (unsigned long long)*length);
2992 BUG();
2993 }
2994
2995 BUG_ON(em->start > logical || em->start + em->len < logical);
2996 map = (struct map_lookup *)em->bdev;
2997 offset = logical - em->start;
2998
2999 if (mirror_num > map->num_stripes)
3000 mirror_num = 0;
3001
3002 /* if our multi bio struct is too small, back off and try again */
3003 if (rw & REQ_WRITE) {
3004 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3005 BTRFS_BLOCK_GROUP_DUP)) {
3006 stripes_required = map->num_stripes;
3007 max_errors = 1;
3008 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3009 stripes_required = map->sub_stripes;
3010 max_errors = 1;
3011 }
3012 }
3013 if (multi_ret && (rw & REQ_WRITE) &&
3014 stripes_allocated < stripes_required) {
3015 stripes_allocated = map->num_stripes;
3016 free_extent_map(em);
3017 kfree(multi);
3018 goto again;
3019 }
3020 stripe_nr = offset;
3021 /*
3022 * stripe_nr counts the total number of stripes we have to stride
3023 * to get to this block
3024 */
3025 do_div(stripe_nr, map->stripe_len);
3026
3027 stripe_offset = stripe_nr * map->stripe_len;
3028 BUG_ON(offset < stripe_offset);
3029
3030 /* stripe_offset is the offset of this block in its stripe*/
3031 stripe_offset = offset - stripe_offset;
3032
3033 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
3034 BTRFS_BLOCK_GROUP_RAID10 |
3035 BTRFS_BLOCK_GROUP_DUP)) {
3036 /* we limit the length of each bio to what fits in a stripe */
3037 *length = min_t(u64, em->len - offset,
3038 map->stripe_len - stripe_offset);
3039 } else {
3040 *length = em->len - offset;
3041 }
3042
3043 if (!multi_ret && !unplug_page)
3044 goto out;
3045
3046 num_stripes = 1;
3047 stripe_index = 0;
3048 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3049 if (unplug_page || (rw & REQ_WRITE))
3050 num_stripes = map->num_stripes;
3051 else if (mirror_num)
3052 stripe_index = mirror_num - 1;
3053 else {
3054 stripe_index = find_live_mirror(map, 0,
3055 map->num_stripes,
3056 current->pid % map->num_stripes);
3057 }
3058
3059 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3060 if (rw & REQ_WRITE)
3061 num_stripes = map->num_stripes;
3062 else if (mirror_num)
3063 stripe_index = mirror_num - 1;
3064
3065 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3066 int factor = map->num_stripes / map->sub_stripes;
3067
3068 stripe_index = do_div(stripe_nr, factor);
3069 stripe_index *= map->sub_stripes;
3070
3071 if (unplug_page || (rw & REQ_WRITE))
3072 num_stripes = map->sub_stripes;
3073 else if (mirror_num)
3074 stripe_index += mirror_num - 1;
3075 else {
3076 stripe_index = find_live_mirror(map, stripe_index,
3077 map->sub_stripes, stripe_index +
3078 current->pid % map->sub_stripes);
3079 }
3080 } else {
3081 /*
3082 * after this do_div call, stripe_nr is the number of stripes
3083 * on this device we have to walk to find the data, and
3084 * stripe_index is the number of our device in the stripe array
3085 */
3086 stripe_index = do_div(stripe_nr, map->num_stripes);
3087 }
3088 BUG_ON(stripe_index >= map->num_stripes);
3089
3090 for (i = 0; i < num_stripes; i++) {
3091 if (unplug_page) {
3092 struct btrfs_device *device;
3093 struct backing_dev_info *bdi;
3094
3095 device = map->stripes[stripe_index].dev;
3096 if (device->bdev) {
3097 bdi = blk_get_backing_dev_info(device->bdev);
3098 if (bdi->unplug_io_fn)
3099 bdi->unplug_io_fn(bdi, unplug_page);
3100 }
3101 } else {
3102 multi->stripes[i].physical =
3103 map->stripes[stripe_index].physical +
3104 stripe_offset + stripe_nr * map->stripe_len;
3105 multi->stripes[i].dev = map->stripes[stripe_index].dev;
3106 }
3107 stripe_index++;
3108 }
3109 if (multi_ret) {
3110 *multi_ret = multi;
3111 multi->num_stripes = num_stripes;
3112 multi->max_errors = max_errors;
3113 }
3114 out:
3115 free_extent_map(em);
3116 return 0;
3117 }
3118
3119 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3120 u64 logical, u64 *length,
3121 struct btrfs_multi_bio **multi_ret, int mirror_num)
3122 {
3123 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
3124 mirror_num, NULL);
3125 }
3126
3127 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3128 u64 chunk_start, u64 physical, u64 devid,
3129 u64 **logical, int *naddrs, int *stripe_len)
3130 {
3131 struct extent_map_tree *em_tree = &map_tree->map_tree;
3132 struct extent_map *em;
3133 struct map_lookup *map;
3134 u64 *buf;
3135 u64 bytenr;
3136 u64 length;
3137 u64 stripe_nr;
3138 int i, j, nr = 0;
3139
3140 read_lock(&em_tree->lock);
3141 em = lookup_extent_mapping(em_tree, chunk_start, 1);
3142 read_unlock(&em_tree->lock);
3143
3144 BUG_ON(!em || em->start != chunk_start);
3145 map = (struct map_lookup *)em->bdev;
3146
3147 length = em->len;
3148 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3149 do_div(length, map->num_stripes / map->sub_stripes);
3150 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3151 do_div(length, map->num_stripes);
3152
3153 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3154 BUG_ON(!buf);
3155
3156 for (i = 0; i < map->num_stripes; i++) {
3157 if (devid && map->stripes[i].dev->devid != devid)
3158 continue;
3159 if (map->stripes[i].physical > physical ||
3160 map->stripes[i].physical + length <= physical)
3161 continue;
3162
3163 stripe_nr = physical - map->stripes[i].physical;
3164 do_div(stripe_nr, map->stripe_len);
3165
3166 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3167 stripe_nr = stripe_nr * map->num_stripes + i;
3168 do_div(stripe_nr, map->sub_stripes);
3169 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3170 stripe_nr = stripe_nr * map->num_stripes + i;
3171 }
3172 bytenr = chunk_start + stripe_nr * map->stripe_len;
3173 WARN_ON(nr >= map->num_stripes);
3174 for (j = 0; j < nr; j++) {
3175 if (buf[j] == bytenr)
3176 break;
3177 }
3178 if (j == nr) {
3179 WARN_ON(nr >= map->num_stripes);
3180 buf[nr++] = bytenr;
3181 }
3182 }
3183
3184 *logical = buf;
3185 *naddrs = nr;
3186 *stripe_len = map->stripe_len;
3187
3188 free_extent_map(em);
3189 return 0;
3190 }
3191
3192 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
3193 u64 logical, struct page *page)
3194 {
3195 u64 length = PAGE_CACHE_SIZE;
3196 return __btrfs_map_block(map_tree, READ, logical, &length,
3197 NULL, 0, page);
3198 }
3199
3200 static void end_bio_multi_stripe(struct bio *bio, int err)
3201 {
3202 struct btrfs_multi_bio *multi = bio->bi_private;
3203 int is_orig_bio = 0;
3204
3205 if (err)
3206 atomic_inc(&multi->error);
3207
3208 if (bio == multi->orig_bio)
3209 is_orig_bio = 1;
3210
3211 if (atomic_dec_and_test(&multi->stripes_pending)) {
3212 if (!is_orig_bio) {
3213 bio_put(bio);
3214 bio = multi->orig_bio;
3215 }
3216 bio->bi_private = multi->private;
3217 bio->bi_end_io = multi->end_io;
3218 /* only send an error to the higher layers if it is
3219 * beyond the tolerance of the multi-bio
3220 */
3221 if (atomic_read(&multi->error) > multi->max_errors) {
3222 err = -EIO;
3223 } else if (err) {
3224 /*
3225 * this bio is actually up to date, we didn't
3226 * go over the max number of errors
3227 */
3228 set_bit(BIO_UPTODATE, &bio->bi_flags);
3229 err = 0;
3230 }
3231 kfree(multi);
3232
3233 bio_endio(bio, err);
3234 } else if (!is_orig_bio) {
3235 bio_put(bio);
3236 }
3237 }
3238
3239 struct async_sched {
3240 struct bio *bio;
3241 int rw;
3242 struct btrfs_fs_info *info;
3243 struct btrfs_work work;
3244 };
3245
3246 /*
3247 * see run_scheduled_bios for a description of why bios are collected for
3248 * async submit.
3249 *
3250 * This will add one bio to the pending list for a device and make sure
3251 * the work struct is scheduled.
3252 */
3253 static noinline int schedule_bio(struct btrfs_root *root,
3254 struct btrfs_device *device,
3255 int rw, struct bio *bio)
3256 {
3257 int should_queue = 1;
3258 struct btrfs_pending_bios *pending_bios;
3259
3260 /* don't bother with additional async steps for reads, right now */
3261 if (!(rw & REQ_WRITE)) {
3262 bio_get(bio);
3263 submit_bio(rw, bio);
3264 bio_put(bio);
3265 return 0;
3266 }
3267
3268 /*
3269 * nr_async_bios allows us to reliably return congestion to the
3270 * higher layers. Otherwise, the async bio makes it appear we have
3271 * made progress against dirty pages when we've really just put it
3272 * on a queue for later
3273 */
3274 atomic_inc(&root->fs_info->nr_async_bios);
3275 WARN_ON(bio->bi_next);
3276 bio->bi_next = NULL;
3277 bio->bi_rw |= rw;
3278
3279 spin_lock(&device->io_lock);
3280 if (bio->bi_rw & REQ_SYNC)
3281 pending_bios = &device->pending_sync_bios;
3282 else
3283 pending_bios = &device->pending_bios;
3284
3285 if (pending_bios->tail)
3286 pending_bios->tail->bi_next = bio;
3287
3288 pending_bios->tail = bio;
3289 if (!pending_bios->head)
3290 pending_bios->head = bio;
3291 if (device->running_pending)
3292 should_queue = 0;
3293
3294 spin_unlock(&device->io_lock);
3295
3296 if (should_queue)
3297 btrfs_queue_worker(&root->fs_info->submit_workers,
3298 &device->work);
3299 return 0;
3300 }
3301
3302 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
3303 int mirror_num, int async_submit)
3304 {
3305 struct btrfs_mapping_tree *map_tree;
3306 struct btrfs_device *dev;
3307 struct bio *first_bio = bio;
3308 u64 logical = (u64)bio->bi_sector << 9;
3309 u64 length = 0;
3310 u64 map_length;
3311 struct btrfs_multi_bio *multi = NULL;
3312 int ret;
3313 int dev_nr = 0;
3314 int total_devs = 1;
3315
3316 length = bio->bi_size;
3317 map_tree = &root->fs_info->mapping_tree;
3318 map_length = length;
3319
3320 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3321 mirror_num);
3322 BUG_ON(ret);
3323
3324 total_devs = multi->num_stripes;
3325 if (map_length < length) {
3326 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3327 "len %llu\n", (unsigned long long)logical,
3328 (unsigned long long)length,
3329 (unsigned long long)map_length);
3330 BUG();
3331 }
3332 multi->end_io = first_bio->bi_end_io;
3333 multi->private = first_bio->bi_private;
3334 multi->orig_bio = first_bio;
3335 atomic_set(&multi->stripes_pending, multi->num_stripes);
3336
3337 while (dev_nr < total_devs) {
3338 if (total_devs > 1) {
3339 if (dev_nr < total_devs - 1) {
3340 bio = bio_clone(first_bio, GFP_NOFS);
3341 BUG_ON(!bio);
3342 } else {
3343 bio = first_bio;
3344 }
3345 bio->bi_private = multi;
3346 bio->bi_end_io = end_bio_multi_stripe;
3347 }
3348 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3349 dev = multi->stripes[dev_nr].dev;
3350 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
3351 bio->bi_bdev = dev->bdev;
3352 if (async_submit)
3353 schedule_bio(root, dev, rw, bio);
3354 else
3355 submit_bio(rw, bio);
3356 } else {
3357 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3358 bio->bi_sector = logical >> 9;
3359 bio_endio(bio, -EIO);
3360 }
3361 dev_nr++;
3362 }
3363 if (total_devs == 1)
3364 kfree(multi);
3365 return 0;
3366 }
3367
3368 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3369 u8 *uuid, u8 *fsid)
3370 {
3371 struct btrfs_device *device;
3372 struct btrfs_fs_devices *cur_devices;
3373
3374 cur_devices = root->fs_info->fs_devices;
3375 while (cur_devices) {
3376 if (!fsid ||
3377 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3378 device = __find_device(&cur_devices->devices,
3379 devid, uuid);
3380 if (device)
3381 return device;
3382 }
3383 cur_devices = cur_devices->seed;
3384 }
3385 return NULL;
3386 }
3387
3388 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3389 u64 devid, u8 *dev_uuid)
3390 {
3391 struct btrfs_device *device;
3392 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3393
3394 device = kzalloc(sizeof(*device), GFP_NOFS);
3395 if (!device)
3396 return NULL;
3397 list_add(&device->dev_list,
3398 &fs_devices->devices);
3399 device->dev_root = root->fs_info->dev_root;
3400 device->devid = devid;
3401 device->work.func = pending_bios_fn;
3402 device->fs_devices = fs_devices;
3403 device->missing = 1;
3404 fs_devices->num_devices++;
3405 fs_devices->missing_devices++;
3406 spin_lock_init(&device->io_lock);
3407 INIT_LIST_HEAD(&device->dev_alloc_list);
3408 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3409 return device;
3410 }
3411
3412 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3413 struct extent_buffer *leaf,
3414 struct btrfs_chunk *chunk)
3415 {
3416 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3417 struct map_lookup *map;
3418 struct extent_map *em;
3419 u64 logical;
3420 u64 length;
3421 u64 devid;
3422 u8 uuid[BTRFS_UUID_SIZE];
3423 int num_stripes;
3424 int ret;
3425 int i;
3426
3427 logical = key->offset;
3428 length = btrfs_chunk_length(leaf, chunk);
3429
3430 read_lock(&map_tree->map_tree.lock);
3431 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3432 read_unlock(&map_tree->map_tree.lock);
3433
3434 /* already mapped? */
3435 if (em && em->start <= logical && em->start + em->len > logical) {
3436 free_extent_map(em);
3437 return 0;
3438 } else if (em) {
3439 free_extent_map(em);
3440 }
3441
3442 em = alloc_extent_map(GFP_NOFS);
3443 if (!em)
3444 return -ENOMEM;
3445 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3446 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3447 if (!map) {
3448 free_extent_map(em);
3449 return -ENOMEM;
3450 }
3451
3452 em->bdev = (struct block_device *)map;
3453 em->start = logical;
3454 em->len = length;
3455 em->block_start = 0;
3456 em->block_len = em->len;
3457
3458 map->num_stripes = num_stripes;
3459 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3460 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3461 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3462 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3463 map->type = btrfs_chunk_type(leaf, chunk);
3464 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3465 for (i = 0; i < num_stripes; i++) {
3466 map->stripes[i].physical =
3467 btrfs_stripe_offset_nr(leaf, chunk, i);
3468 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3469 read_extent_buffer(leaf, uuid, (unsigned long)
3470 btrfs_stripe_dev_uuid_nr(chunk, i),
3471 BTRFS_UUID_SIZE);
3472 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3473 NULL);
3474 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3475 kfree(map);
3476 free_extent_map(em);
3477 return -EIO;
3478 }
3479 if (!map->stripes[i].dev) {
3480 map->stripes[i].dev =
3481 add_missing_dev(root, devid, uuid);
3482 if (!map->stripes[i].dev) {
3483 kfree(map);
3484 free_extent_map(em);
3485 return -EIO;
3486 }
3487 }
3488 map->stripes[i].dev->in_fs_metadata = 1;
3489 }
3490
3491 write_lock(&map_tree->map_tree.lock);
3492 ret = add_extent_mapping(&map_tree->map_tree, em);
3493 write_unlock(&map_tree->map_tree.lock);
3494 BUG_ON(ret);
3495 free_extent_map(em);
3496
3497 return 0;
3498 }
3499
3500 static int fill_device_from_item(struct extent_buffer *leaf,
3501 struct btrfs_dev_item *dev_item,
3502 struct btrfs_device *device)
3503 {
3504 unsigned long ptr;
3505
3506 device->devid = btrfs_device_id(leaf, dev_item);
3507 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3508 device->total_bytes = device->disk_total_bytes;
3509 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3510 device->type = btrfs_device_type(leaf, dev_item);
3511 device->io_align = btrfs_device_io_align(leaf, dev_item);
3512 device->io_width = btrfs_device_io_width(leaf, dev_item);
3513 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3514
3515 ptr = (unsigned long)btrfs_device_uuid(dev_item);
3516 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3517
3518 return 0;
3519 }
3520
3521 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3522 {
3523 struct btrfs_fs_devices *fs_devices;
3524 int ret;
3525
3526 mutex_lock(&uuid_mutex);
3527
3528 fs_devices = root->fs_info->fs_devices->seed;
3529 while (fs_devices) {
3530 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3531 ret = 0;
3532 goto out;
3533 }
3534 fs_devices = fs_devices->seed;
3535 }
3536
3537 fs_devices = find_fsid(fsid);
3538 if (!fs_devices) {
3539 ret = -ENOENT;
3540 goto out;
3541 }
3542
3543 fs_devices = clone_fs_devices(fs_devices);
3544 if (IS_ERR(fs_devices)) {
3545 ret = PTR_ERR(fs_devices);
3546 goto out;
3547 }
3548
3549 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3550 root->fs_info->bdev_holder);
3551 if (ret)
3552 goto out;
3553
3554 if (!fs_devices->seeding) {
3555 __btrfs_close_devices(fs_devices);
3556 free_fs_devices(fs_devices);
3557 ret = -EINVAL;
3558 goto out;
3559 }
3560
3561 fs_devices->seed = root->fs_info->fs_devices->seed;
3562 root->fs_info->fs_devices->seed = fs_devices;
3563 out:
3564 mutex_unlock(&uuid_mutex);
3565 return ret;
3566 }
3567
3568 static int read_one_dev(struct btrfs_root *root,
3569 struct extent_buffer *leaf,
3570 struct btrfs_dev_item *dev_item)
3571 {
3572 struct btrfs_device *device;
3573 u64 devid;
3574 int ret;
3575 u8 fs_uuid[BTRFS_UUID_SIZE];
3576 u8 dev_uuid[BTRFS_UUID_SIZE];
3577
3578 devid = btrfs_device_id(leaf, dev_item);
3579 read_extent_buffer(leaf, dev_uuid,
3580 (unsigned long)btrfs_device_uuid(dev_item),
3581 BTRFS_UUID_SIZE);
3582 read_extent_buffer(leaf, fs_uuid,
3583 (unsigned long)btrfs_device_fsid(dev_item),
3584 BTRFS_UUID_SIZE);
3585
3586 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3587 ret = open_seed_devices(root, fs_uuid);
3588 if (ret && !btrfs_test_opt(root, DEGRADED))
3589 return ret;
3590 }
3591
3592 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3593 if (!device || !device->bdev) {
3594 if (!btrfs_test_opt(root, DEGRADED))
3595 return -EIO;
3596
3597 if (!device) {
3598 printk(KERN_WARNING "warning devid %llu missing\n",
3599 (unsigned long long)devid);
3600 device = add_missing_dev(root, devid, dev_uuid);
3601 if (!device)
3602 return -ENOMEM;
3603 } else if (!device->missing) {
3604 /*
3605 * this happens when a device that was properly setup
3606 * in the device info lists suddenly goes bad.
3607 * device->bdev is NULL, and so we have to set
3608 * device->missing to one here
3609 */
3610 root->fs_info->fs_devices->missing_devices++;
3611 device->missing = 1;
3612 }
3613 }
3614
3615 if (device->fs_devices != root->fs_info->fs_devices) {
3616 BUG_ON(device->writeable);
3617 if (device->generation !=
3618 btrfs_device_generation(leaf, dev_item))
3619 return -EINVAL;
3620 }
3621
3622 fill_device_from_item(leaf, dev_item, device);
3623 device->dev_root = root->fs_info->dev_root;
3624 device->in_fs_metadata = 1;
3625 if (device->writeable)
3626 device->fs_devices->total_rw_bytes += device->total_bytes;
3627 ret = 0;
3628 return ret;
3629 }
3630
3631 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3632 {
3633 struct btrfs_dev_item *dev_item;
3634
3635 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3636 dev_item);
3637 return read_one_dev(root, buf, dev_item);
3638 }
3639
3640 int btrfs_read_sys_array(struct btrfs_root *root)
3641 {
3642 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3643 struct extent_buffer *sb;
3644 struct btrfs_disk_key *disk_key;
3645 struct btrfs_chunk *chunk;
3646 u8 *ptr;
3647 unsigned long sb_ptr;
3648 int ret = 0;
3649 u32 num_stripes;
3650 u32 array_size;
3651 u32 len = 0;
3652 u32 cur;
3653 struct btrfs_key key;
3654
3655 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3656 BTRFS_SUPER_INFO_SIZE);
3657 if (!sb)
3658 return -ENOMEM;
3659 btrfs_set_buffer_uptodate(sb);
3660 btrfs_set_buffer_lockdep_class(sb, 0);
3661
3662 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3663 array_size = btrfs_super_sys_array_size(super_copy);
3664
3665 ptr = super_copy->sys_chunk_array;
3666 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3667 cur = 0;
3668
3669 while (cur < array_size) {
3670 disk_key = (struct btrfs_disk_key *)ptr;
3671 btrfs_disk_key_to_cpu(&key, disk_key);
3672
3673 len = sizeof(*disk_key); ptr += len;
3674 sb_ptr += len;
3675 cur += len;
3676
3677 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3678 chunk = (struct btrfs_chunk *)sb_ptr;
3679 ret = read_one_chunk(root, &key, sb, chunk);
3680 if (ret)
3681 break;
3682 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3683 len = btrfs_chunk_item_size(num_stripes);
3684 } else {
3685 ret = -EIO;
3686 break;
3687 }
3688 ptr += len;
3689 sb_ptr += len;
3690 cur += len;
3691 }
3692 free_extent_buffer(sb);
3693 return ret;
3694 }
3695
3696 int btrfs_read_chunk_tree(struct btrfs_root *root)
3697 {
3698 struct btrfs_path *path;
3699 struct extent_buffer *leaf;
3700 struct btrfs_key key;
3701 struct btrfs_key found_key;
3702 int ret;
3703 int slot;
3704
3705 root = root->fs_info->chunk_root;
3706
3707 path = btrfs_alloc_path();
3708 if (!path)
3709 return -ENOMEM;
3710
3711 /* first we search for all of the device items, and then we
3712 * read in all of the chunk items. This way we can create chunk
3713 * mappings that reference all of the devices that are afound
3714 */
3715 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3716 key.offset = 0;
3717 key.type = 0;
3718 again:
3719 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3720 if (ret < 0)
3721 goto error;
3722 while (1) {
3723 leaf = path->nodes[0];
3724 slot = path->slots[0];
3725 if (slot >= btrfs_header_nritems(leaf)) {
3726 ret = btrfs_next_leaf(root, path);
3727 if (ret == 0)
3728 continue;
3729 if (ret < 0)
3730 goto error;
3731 break;
3732 }
3733 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3734 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3735 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3736 break;
3737 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3738 struct btrfs_dev_item *dev_item;
3739 dev_item = btrfs_item_ptr(leaf, slot,
3740 struct btrfs_dev_item);
3741 ret = read_one_dev(root, leaf, dev_item);
3742 if (ret)
3743 goto error;
3744 }
3745 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3746 struct btrfs_chunk *chunk;
3747 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3748 ret = read_one_chunk(root, &found_key, leaf, chunk);
3749 if (ret)
3750 goto error;
3751 }
3752 path->slots[0]++;
3753 }
3754 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3755 key.objectid = 0;
3756 btrfs_release_path(root, path);
3757 goto again;
3758 }
3759 ret = 0;
3760 error:
3761 btrfs_free_path(path);
3762 return ret;
3763 }
This page took 0.104146 seconds and 6 git commands to generate.