Btrfs: Fix chunk allocation when some devices don't have enough room for stripes
[deliverable/linux.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <asm/div64.h>
22 #include "ctree.h"
23 #include "extent_map.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "volumes.h"
28
29 struct map_lookup {
30 u64 type;
31 int io_align;
32 int io_width;
33 int stripe_len;
34 int sector_size;
35 int num_stripes;
36 int sub_stripes;
37 struct btrfs_bio_stripe stripes[];
38 };
39
40 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
41 (sizeof(struct btrfs_bio_stripe) * (n)))
42
43 static DEFINE_MUTEX(uuid_mutex);
44 static LIST_HEAD(fs_uuids);
45
46 int btrfs_cleanup_fs_uuids(void)
47 {
48 struct btrfs_fs_devices *fs_devices;
49 struct list_head *uuid_cur;
50 struct list_head *devices_cur;
51 struct btrfs_device *dev;
52
53 list_for_each(uuid_cur, &fs_uuids) {
54 fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
55 list);
56 while(!list_empty(&fs_devices->devices)) {
57 devices_cur = fs_devices->devices.next;
58 dev = list_entry(devices_cur, struct btrfs_device,
59 dev_list);
60 if (dev->bdev) {
61 close_bdev_excl(dev->bdev);
62 }
63 list_del(&dev->dev_list);
64 kfree(dev);
65 }
66 }
67 return 0;
68 }
69
70 static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
71 u8 *uuid)
72 {
73 struct btrfs_device *dev;
74 struct list_head *cur;
75
76 list_for_each(cur, head) {
77 dev = list_entry(cur, struct btrfs_device, dev_list);
78 if (dev->devid == devid &&
79 !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE)) {
80 return dev;
81 }
82 }
83 return NULL;
84 }
85
86 static struct btrfs_fs_devices *find_fsid(u8 *fsid)
87 {
88 struct list_head *cur;
89 struct btrfs_fs_devices *fs_devices;
90
91 list_for_each(cur, &fs_uuids) {
92 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
93 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
94 return fs_devices;
95 }
96 return NULL;
97 }
98
99 static int device_list_add(const char *path,
100 struct btrfs_super_block *disk_super,
101 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
102 {
103 struct btrfs_device *device;
104 struct btrfs_fs_devices *fs_devices;
105 u64 found_transid = btrfs_super_generation(disk_super);
106
107 fs_devices = find_fsid(disk_super->fsid);
108 if (!fs_devices) {
109 fs_devices = kmalloc(sizeof(*fs_devices), GFP_NOFS);
110 if (!fs_devices)
111 return -ENOMEM;
112 INIT_LIST_HEAD(&fs_devices->devices);
113 list_add(&fs_devices->list, &fs_uuids);
114 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
115 fs_devices->latest_devid = devid;
116 fs_devices->latest_trans = found_transid;
117 fs_devices->lowest_devid = (u64)-1;
118 fs_devices->num_devices = 0;
119 device = NULL;
120 } else {
121 device = __find_device(&fs_devices->devices, devid,
122 disk_super->dev_item.uuid);
123 }
124 if (!device) {
125 device = kzalloc(sizeof(*device), GFP_NOFS);
126 if (!device) {
127 /* we can safely leave the fs_devices entry around */
128 return -ENOMEM;
129 }
130 device->devid = devid;
131 memcpy(device->uuid, disk_super->dev_item.uuid,
132 BTRFS_UUID_SIZE);
133 device->barriers = 1;
134 spin_lock_init(&device->io_lock);
135 device->name = kstrdup(path, GFP_NOFS);
136 if (!device->name) {
137 kfree(device);
138 return -ENOMEM;
139 }
140 list_add(&device->dev_list, &fs_devices->devices);
141 fs_devices->num_devices++;
142 }
143
144 if (found_transid > fs_devices->latest_trans) {
145 fs_devices->latest_devid = devid;
146 fs_devices->latest_trans = found_transid;
147 }
148 if (fs_devices->lowest_devid > devid) {
149 fs_devices->lowest_devid = devid;
150 }
151 *fs_devices_ret = fs_devices;
152 return 0;
153 }
154
155 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
156 {
157 struct list_head *head = &fs_devices->devices;
158 struct list_head *cur;
159 struct btrfs_device *device;
160
161 mutex_lock(&uuid_mutex);
162 list_for_each(cur, head) {
163 device = list_entry(cur, struct btrfs_device, dev_list);
164 if (device->bdev) {
165 close_bdev_excl(device->bdev);
166 }
167 device->bdev = NULL;
168 }
169 mutex_unlock(&uuid_mutex);
170 return 0;
171 }
172
173 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
174 int flags, void *holder)
175 {
176 struct block_device *bdev;
177 struct list_head *head = &fs_devices->devices;
178 struct list_head *cur;
179 struct btrfs_device *device;
180 int ret;
181
182 mutex_lock(&uuid_mutex);
183 list_for_each(cur, head) {
184 device = list_entry(cur, struct btrfs_device, dev_list);
185 bdev = open_bdev_excl(device->name, flags, holder);
186
187 if (IS_ERR(bdev)) {
188 printk("open %s failed\n", device->name);
189 ret = PTR_ERR(bdev);
190 goto fail;
191 }
192 if (device->devid == fs_devices->latest_devid)
193 fs_devices->latest_bdev = bdev;
194 if (device->devid == fs_devices->lowest_devid) {
195 fs_devices->lowest_bdev = bdev;
196 }
197 device->bdev = bdev;
198 }
199 mutex_unlock(&uuid_mutex);
200 return 0;
201 fail:
202 mutex_unlock(&uuid_mutex);
203 btrfs_close_devices(fs_devices);
204 return ret;
205 }
206
207 int btrfs_scan_one_device(const char *path, int flags, void *holder,
208 struct btrfs_fs_devices **fs_devices_ret)
209 {
210 struct btrfs_super_block *disk_super;
211 struct block_device *bdev;
212 struct buffer_head *bh;
213 int ret;
214 u64 devid;
215 u64 transid;
216
217 mutex_lock(&uuid_mutex);
218
219 bdev = open_bdev_excl(path, flags, holder);
220
221 if (IS_ERR(bdev)) {
222 ret = PTR_ERR(bdev);
223 goto error;
224 }
225
226 ret = set_blocksize(bdev, 4096);
227 if (ret)
228 goto error_close;
229 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
230 if (!bh) {
231 ret = -EIO;
232 goto error_close;
233 }
234 disk_super = (struct btrfs_super_block *)bh->b_data;
235 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
236 sizeof(disk_super->magic))) {
237 ret = -EINVAL;
238 goto error_brelse;
239 }
240 devid = le64_to_cpu(disk_super->dev_item.devid);
241 transid = btrfs_super_generation(disk_super);
242 if (disk_super->label[0])
243 printk("device label %s ", disk_super->label);
244 else {
245 /* FIXME, make a readl uuid parser */
246 printk("device fsid %llx-%llx ",
247 *(unsigned long long *)disk_super->fsid,
248 *(unsigned long long *)(disk_super->fsid + 8));
249 }
250 printk("devid %Lu transid %Lu %s\n", devid, transid, path);
251 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
252
253 error_brelse:
254 brelse(bh);
255 error_close:
256 close_bdev_excl(bdev);
257 error:
258 mutex_unlock(&uuid_mutex);
259 return ret;
260 }
261
262 /*
263 * this uses a pretty simple search, the expectation is that it is
264 * called very infrequently and that a given device has a small number
265 * of extents
266 */
267 static int find_free_dev_extent(struct btrfs_trans_handle *trans,
268 struct btrfs_device *device,
269 struct btrfs_path *path,
270 u64 num_bytes, u64 *start)
271 {
272 struct btrfs_key key;
273 struct btrfs_root *root = device->dev_root;
274 struct btrfs_dev_extent *dev_extent = NULL;
275 u64 hole_size = 0;
276 u64 last_byte = 0;
277 u64 search_start = 0;
278 u64 search_end = device->total_bytes;
279 int ret;
280 int slot = 0;
281 int start_found;
282 struct extent_buffer *l;
283
284 start_found = 0;
285 path->reada = 2;
286
287 /* FIXME use last free of some kind */
288
289 /* we don't want to overwrite the superblock on the drive,
290 * so we make sure to start at an offset of at least 1MB
291 */
292 search_start = max((u64)1024 * 1024, search_start);
293 key.objectid = device->devid;
294 key.offset = search_start;
295 key.type = BTRFS_DEV_EXTENT_KEY;
296 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
297 if (ret < 0)
298 goto error;
299 ret = btrfs_previous_item(root, path, 0, key.type);
300 if (ret < 0)
301 goto error;
302 l = path->nodes[0];
303 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
304 while (1) {
305 l = path->nodes[0];
306 slot = path->slots[0];
307 if (slot >= btrfs_header_nritems(l)) {
308 ret = btrfs_next_leaf(root, path);
309 if (ret == 0)
310 continue;
311 if (ret < 0)
312 goto error;
313 no_more_items:
314 if (!start_found) {
315 if (search_start >= search_end) {
316 ret = -ENOSPC;
317 goto error;
318 }
319 *start = search_start;
320 start_found = 1;
321 goto check_pending;
322 }
323 *start = last_byte > search_start ?
324 last_byte : search_start;
325 if (search_end <= *start) {
326 ret = -ENOSPC;
327 goto error;
328 }
329 goto check_pending;
330 }
331 btrfs_item_key_to_cpu(l, &key, slot);
332
333 if (key.objectid < device->devid)
334 goto next;
335
336 if (key.objectid > device->devid)
337 goto no_more_items;
338
339 if (key.offset >= search_start && key.offset > last_byte &&
340 start_found) {
341 if (last_byte < search_start)
342 last_byte = search_start;
343 hole_size = key.offset - last_byte;
344 if (key.offset > last_byte &&
345 hole_size >= num_bytes) {
346 *start = last_byte;
347 goto check_pending;
348 }
349 }
350 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
351 goto next;
352 }
353
354 start_found = 1;
355 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
356 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
357 next:
358 path->slots[0]++;
359 cond_resched();
360 }
361 check_pending:
362 /* we have to make sure we didn't find an extent that has already
363 * been allocated by the map tree or the original allocation
364 */
365 btrfs_release_path(root, path);
366 BUG_ON(*start < search_start);
367
368 if (*start + num_bytes > search_end) {
369 ret = -ENOSPC;
370 goto error;
371 }
372 /* check for pending inserts here */
373 return 0;
374
375 error:
376 btrfs_release_path(root, path);
377 return ret;
378 }
379
380 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
381 struct btrfs_device *device,
382 u64 chunk_tree, u64 chunk_objectid,
383 u64 chunk_offset,
384 u64 num_bytes, u64 *start)
385 {
386 int ret;
387 struct btrfs_path *path;
388 struct btrfs_root *root = device->dev_root;
389 struct btrfs_dev_extent *extent;
390 struct extent_buffer *leaf;
391 struct btrfs_key key;
392
393 path = btrfs_alloc_path();
394 if (!path)
395 return -ENOMEM;
396
397 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
398 if (ret) {
399 goto err;
400 }
401
402 key.objectid = device->devid;
403 key.offset = *start;
404 key.type = BTRFS_DEV_EXTENT_KEY;
405 ret = btrfs_insert_empty_item(trans, root, path, &key,
406 sizeof(*extent));
407 BUG_ON(ret);
408
409 leaf = path->nodes[0];
410 extent = btrfs_item_ptr(leaf, path->slots[0],
411 struct btrfs_dev_extent);
412 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
413 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
414 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
415
416 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
417 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
418 BTRFS_UUID_SIZE);
419
420 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
421 btrfs_mark_buffer_dirty(leaf);
422 err:
423 btrfs_free_path(path);
424 return ret;
425 }
426
427 static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
428 {
429 struct btrfs_path *path;
430 int ret;
431 struct btrfs_key key;
432 struct btrfs_chunk *chunk;
433 struct btrfs_key found_key;
434
435 path = btrfs_alloc_path();
436 BUG_ON(!path);
437
438 key.objectid = objectid;
439 key.offset = (u64)-1;
440 key.type = BTRFS_CHUNK_ITEM_KEY;
441
442 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
443 if (ret < 0)
444 goto error;
445
446 BUG_ON(ret == 0);
447
448 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
449 if (ret) {
450 *offset = 0;
451 } else {
452 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
453 path->slots[0]);
454 if (found_key.objectid != objectid)
455 *offset = 0;
456 else {
457 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
458 struct btrfs_chunk);
459 *offset = found_key.offset +
460 btrfs_chunk_length(path->nodes[0], chunk);
461 }
462 }
463 ret = 0;
464 error:
465 btrfs_free_path(path);
466 return ret;
467 }
468
469 static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
470 u64 *objectid)
471 {
472 int ret;
473 struct btrfs_key key;
474 struct btrfs_key found_key;
475
476 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
477 key.type = BTRFS_DEV_ITEM_KEY;
478 key.offset = (u64)-1;
479
480 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
481 if (ret < 0)
482 goto error;
483
484 BUG_ON(ret == 0);
485
486 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
487 BTRFS_DEV_ITEM_KEY);
488 if (ret) {
489 *objectid = 1;
490 } else {
491 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
492 path->slots[0]);
493 *objectid = found_key.offset + 1;
494 }
495 ret = 0;
496 error:
497 btrfs_release_path(root, path);
498 return ret;
499 }
500
501 /*
502 * the device information is stored in the chunk root
503 * the btrfs_device struct should be fully filled in
504 */
505 int btrfs_add_device(struct btrfs_trans_handle *trans,
506 struct btrfs_root *root,
507 struct btrfs_device *device)
508 {
509 int ret;
510 struct btrfs_path *path;
511 struct btrfs_dev_item *dev_item;
512 struct extent_buffer *leaf;
513 struct btrfs_key key;
514 unsigned long ptr;
515 u64 free_devid;
516
517 root = root->fs_info->chunk_root;
518
519 path = btrfs_alloc_path();
520 if (!path)
521 return -ENOMEM;
522
523 ret = find_next_devid(root, path, &free_devid);
524 if (ret)
525 goto out;
526
527 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
528 key.type = BTRFS_DEV_ITEM_KEY;
529 key.offset = free_devid;
530
531 ret = btrfs_insert_empty_item(trans, root, path, &key,
532 sizeof(*dev_item));
533 if (ret)
534 goto out;
535
536 leaf = path->nodes[0];
537 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
538
539 device->devid = free_devid;
540 btrfs_set_device_id(leaf, dev_item, device->devid);
541 btrfs_set_device_type(leaf, dev_item, device->type);
542 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
543 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
544 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
545 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
546 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
547 btrfs_set_device_group(leaf, dev_item, 0);
548 btrfs_set_device_seek_speed(leaf, dev_item, 0);
549 btrfs_set_device_bandwidth(leaf, dev_item, 0);
550
551 ptr = (unsigned long)btrfs_device_uuid(dev_item);
552 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
553 btrfs_mark_buffer_dirty(leaf);
554 ret = 0;
555
556 out:
557 btrfs_free_path(path);
558 return ret;
559 }
560 int btrfs_update_device(struct btrfs_trans_handle *trans,
561 struct btrfs_device *device)
562 {
563 int ret;
564 struct btrfs_path *path;
565 struct btrfs_root *root;
566 struct btrfs_dev_item *dev_item;
567 struct extent_buffer *leaf;
568 struct btrfs_key key;
569
570 root = device->dev_root->fs_info->chunk_root;
571
572 path = btrfs_alloc_path();
573 if (!path)
574 return -ENOMEM;
575
576 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
577 key.type = BTRFS_DEV_ITEM_KEY;
578 key.offset = device->devid;
579
580 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
581 if (ret < 0)
582 goto out;
583
584 if (ret > 0) {
585 ret = -ENOENT;
586 goto out;
587 }
588
589 leaf = path->nodes[0];
590 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
591
592 btrfs_set_device_id(leaf, dev_item, device->devid);
593 btrfs_set_device_type(leaf, dev_item, device->type);
594 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
595 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
596 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
597 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
598 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
599 btrfs_mark_buffer_dirty(leaf);
600
601 out:
602 btrfs_free_path(path);
603 return ret;
604 }
605
606 int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
607 struct btrfs_root *root,
608 struct btrfs_key *key,
609 struct btrfs_chunk *chunk, int item_size)
610 {
611 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
612 struct btrfs_disk_key disk_key;
613 u32 array_size;
614 u8 *ptr;
615
616 array_size = btrfs_super_sys_array_size(super_copy);
617 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
618 return -EFBIG;
619
620 ptr = super_copy->sys_chunk_array + array_size;
621 btrfs_cpu_key_to_disk(&disk_key, key);
622 memcpy(ptr, &disk_key, sizeof(disk_key));
623 ptr += sizeof(disk_key);
624 memcpy(ptr, chunk, item_size);
625 item_size += sizeof(disk_key);
626 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
627 return 0;
628 }
629
630 static u64 div_factor(u64 num, int factor)
631 {
632 if (factor == 10)
633 return num;
634 num *= factor;
635 do_div(num, 10);
636 return num;
637 }
638
639 static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
640 int sub_stripes)
641 {
642 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
643 return calc_size;
644 else if (type & BTRFS_BLOCK_GROUP_RAID10)
645 return calc_size * (num_stripes / sub_stripes);
646 else
647 return calc_size * num_stripes;
648 }
649
650
651 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
652 struct btrfs_root *extent_root, u64 *start,
653 u64 *num_bytes, u64 type)
654 {
655 u64 dev_offset;
656 struct btrfs_fs_info *info = extent_root->fs_info;
657 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
658 struct btrfs_stripe *stripes;
659 struct btrfs_device *device = NULL;
660 struct btrfs_chunk *chunk;
661 struct list_head private_devs;
662 struct list_head *dev_list = &extent_root->fs_info->fs_devices->devices;
663 struct list_head *cur;
664 struct extent_map_tree *em_tree;
665 struct map_lookup *map;
666 struct extent_map *em;
667 int min_stripe_size = 1 * 1024 * 1024;
668 u64 physical;
669 u64 calc_size = 1024 * 1024 * 1024;
670 u64 max_chunk_size = calc_size;
671 u64 min_free;
672 u64 avail;
673 u64 max_avail = 0;
674 u64 percent_max;
675 int num_stripes = 1;
676 int min_stripes = 1;
677 int sub_stripes = 0;
678 int looped = 0;
679 int ret;
680 int index;
681 int stripe_len = 64 * 1024;
682 struct btrfs_key key;
683
684 if (list_empty(dev_list))
685 return -ENOSPC;
686
687 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
688 num_stripes = btrfs_super_num_devices(&info->super_copy);
689 min_stripes = 2;
690 }
691 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
692 num_stripes = 2;
693 min_stripes = 2;
694 }
695 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
696 num_stripes = min_t(u64, 2,
697 btrfs_super_num_devices(&info->super_copy));
698 if (num_stripes < 2)
699 return -ENOSPC;
700 min_stripes = 2;
701 }
702 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
703 num_stripes = btrfs_super_num_devices(&info->super_copy);
704 if (num_stripes < 4)
705 return -ENOSPC;
706 num_stripes &= ~(u32)1;
707 sub_stripes = 2;
708 min_stripes = 4;
709 }
710
711 if (type & BTRFS_BLOCK_GROUP_DATA) {
712 max_chunk_size = 10 * calc_size;
713 min_stripe_size = 64 * 1024 * 1024;
714 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
715 max_chunk_size = 4 * calc_size;
716 min_stripe_size = 32 * 1024 * 1024;
717 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
718 calc_size = 8 * 1024 * 1024;
719 max_chunk_size = calc_size * 2;
720 min_stripe_size = 1 * 1024 * 1024;
721 }
722
723 /* we don't want a chunk larger than 10% of the FS */
724 percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
725 max_chunk_size = min(percent_max, max_chunk_size);
726
727 again:
728 if (calc_size * num_stripes > max_chunk_size) {
729 calc_size = max_chunk_size;
730 do_div(calc_size, num_stripes);
731 do_div(calc_size, stripe_len);
732 calc_size *= stripe_len;
733 }
734 /* we don't want tiny stripes */
735 calc_size = max_t(u64, min_stripe_size, calc_size);
736
737 do_div(calc_size, stripe_len);
738 calc_size *= stripe_len;
739
740 INIT_LIST_HEAD(&private_devs);
741 cur = dev_list->next;
742 index = 0;
743
744 if (type & BTRFS_BLOCK_GROUP_DUP)
745 min_free = calc_size * 2;
746 else
747 min_free = calc_size;
748
749 /* build a private list of devices we will allocate from */
750 while(index < num_stripes) {
751 device = list_entry(cur, struct btrfs_device, dev_list);
752
753 avail = device->total_bytes - device->bytes_used;
754 cur = cur->next;
755 if (avail >= min_free) {
756 list_move_tail(&device->dev_list, &private_devs);
757 index++;
758 if (type & BTRFS_BLOCK_GROUP_DUP)
759 index++;
760 } else if (avail > max_avail)
761 max_avail = avail;
762 if (cur == dev_list)
763 break;
764 }
765 if (index < num_stripes) {
766 list_splice(&private_devs, dev_list);
767 if (index >= min_stripes) {
768 num_stripes = index;
769 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
770 num_stripes /= sub_stripes;
771 num_stripes *= sub_stripes;
772 }
773 looped = 1;
774 goto again;
775 }
776 if (!looped && max_avail > 0) {
777 looped = 1;
778 calc_size = max_avail;
779 goto again;
780 }
781 return -ENOSPC;
782 }
783 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
784 key.type = BTRFS_CHUNK_ITEM_KEY;
785 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
786 &key.offset);
787 if (ret)
788 return ret;
789
790 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
791 if (!chunk)
792 return -ENOMEM;
793
794 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
795 if (!map) {
796 kfree(chunk);
797 return -ENOMEM;
798 }
799
800 stripes = &chunk->stripe;
801 *num_bytes = chunk_bytes_by_type(type, calc_size,
802 num_stripes, sub_stripes);
803
804
805 index = 0;
806 printk("new chunk type %Lu start %Lu size %Lu\n", type, key.offset, *num_bytes);
807 while(index < num_stripes) {
808 struct btrfs_stripe *stripe;
809 BUG_ON(list_empty(&private_devs));
810 cur = private_devs.next;
811 device = list_entry(cur, struct btrfs_device, dev_list);
812
813 /* loop over this device again if we're doing a dup group */
814 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
815 (index == num_stripes - 1))
816 list_move_tail(&device->dev_list, dev_list);
817
818 ret = btrfs_alloc_dev_extent(trans, device,
819 info->chunk_root->root_key.objectid,
820 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
821 calc_size, &dev_offset);
822 BUG_ON(ret);
823 printk("alloc chunk start %Lu size %Lu from dev %Lu type %Lu\n", key.offset, calc_size, device->devid, type);
824 device->bytes_used += calc_size;
825 ret = btrfs_update_device(trans, device);
826 BUG_ON(ret);
827
828 map->stripes[index].dev = device;
829 map->stripes[index].physical = dev_offset;
830 stripe = stripes + index;
831 btrfs_set_stack_stripe_devid(stripe, device->devid);
832 btrfs_set_stack_stripe_offset(stripe, dev_offset);
833 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
834 physical = dev_offset;
835 index++;
836 }
837 BUG_ON(!list_empty(&private_devs));
838
839 /* key was set above */
840 btrfs_set_stack_chunk_length(chunk, *num_bytes);
841 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
842 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
843 btrfs_set_stack_chunk_type(chunk, type);
844 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
845 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
846 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
847 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
848 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
849 map->sector_size = extent_root->sectorsize;
850 map->stripe_len = stripe_len;
851 map->io_align = stripe_len;
852 map->io_width = stripe_len;
853 map->type = type;
854 map->num_stripes = num_stripes;
855 map->sub_stripes = sub_stripes;
856
857 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
858 btrfs_chunk_item_size(num_stripes));
859 BUG_ON(ret);
860 *start = key.offset;;
861
862 em = alloc_extent_map(GFP_NOFS);
863 if (!em)
864 return -ENOMEM;
865 em->bdev = (struct block_device *)map;
866 em->start = key.offset;
867 em->len = *num_bytes;
868 em->block_start = 0;
869
870 kfree(chunk);
871
872 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
873 spin_lock(&em_tree->lock);
874 ret = add_extent_mapping(em_tree, em);
875 spin_unlock(&em_tree->lock);
876 BUG_ON(ret);
877 free_extent_map(em);
878 return ret;
879 }
880
881 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
882 {
883 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
884 }
885
886 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
887 {
888 struct extent_map *em;
889
890 while(1) {
891 spin_lock(&tree->map_tree.lock);
892 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
893 if (em)
894 remove_extent_mapping(&tree->map_tree, em);
895 spin_unlock(&tree->map_tree.lock);
896 if (!em)
897 break;
898 kfree(em->bdev);
899 /* once for us */
900 free_extent_map(em);
901 /* once for the tree */
902 free_extent_map(em);
903 }
904 }
905
906 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
907 {
908 struct extent_map *em;
909 struct map_lookup *map;
910 struct extent_map_tree *em_tree = &map_tree->map_tree;
911 int ret;
912
913 spin_lock(&em_tree->lock);
914 em = lookup_extent_mapping(em_tree, logical, len);
915 spin_unlock(&em_tree->lock);
916 BUG_ON(!em);
917
918 BUG_ON(em->start > logical || em->start + em->len < logical);
919 map = (struct map_lookup *)em->bdev;
920 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
921 ret = map->num_stripes;
922 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
923 ret = map->sub_stripes;
924 else
925 ret = 1;
926 free_extent_map(em);
927 return ret;
928 }
929
930 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
931 u64 logical, u64 *length,
932 struct btrfs_multi_bio **multi_ret, int mirror_num)
933 {
934 struct extent_map *em;
935 struct map_lookup *map;
936 struct extent_map_tree *em_tree = &map_tree->map_tree;
937 u64 offset;
938 u64 stripe_offset;
939 u64 stripe_nr;
940 int stripes_allocated = 8;
941 int stripes_required = 1;
942 int stripe_index;
943 int i;
944 struct btrfs_multi_bio *multi = NULL;
945
946 if (multi_ret && !(rw & (1 << BIO_RW))) {
947 stripes_allocated = 1;
948 }
949 again:
950 if (multi_ret) {
951 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
952 GFP_NOFS);
953 if (!multi)
954 return -ENOMEM;
955 }
956
957 spin_lock(&em_tree->lock);
958 em = lookup_extent_mapping(em_tree, logical, *length);
959 spin_unlock(&em_tree->lock);
960 if (!em) {
961 printk("unable to find logical %Lu\n", logical);
962 }
963 BUG_ON(!em);
964
965 BUG_ON(em->start > logical || em->start + em->len < logical);
966 map = (struct map_lookup *)em->bdev;
967 offset = logical - em->start;
968
969 if (mirror_num > map->num_stripes)
970 mirror_num = 0;
971
972 /* if our multi bio struct is too small, back off and try again */
973 if (rw & (1 << BIO_RW)) {
974 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
975 BTRFS_BLOCK_GROUP_DUP)) {
976 stripes_required = map->num_stripes;
977 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
978 stripes_required = map->sub_stripes;
979 }
980 }
981 if (multi_ret && rw == WRITE &&
982 stripes_allocated < stripes_required) {
983 stripes_allocated = map->num_stripes;
984 free_extent_map(em);
985 kfree(multi);
986 goto again;
987 }
988 stripe_nr = offset;
989 /*
990 * stripe_nr counts the total number of stripes we have to stride
991 * to get to this block
992 */
993 do_div(stripe_nr, map->stripe_len);
994
995 stripe_offset = stripe_nr * map->stripe_len;
996 BUG_ON(offset < stripe_offset);
997
998 /* stripe_offset is the offset of this block in its stripe*/
999 stripe_offset = offset - stripe_offset;
1000
1001 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
1002 BTRFS_BLOCK_GROUP_RAID10 |
1003 BTRFS_BLOCK_GROUP_DUP)) {
1004 /* we limit the length of each bio to what fits in a stripe */
1005 *length = min_t(u64, em->len - offset,
1006 map->stripe_len - stripe_offset);
1007 } else {
1008 *length = em->len - offset;
1009 }
1010 if (!multi_ret)
1011 goto out;
1012
1013 multi->num_stripes = 1;
1014 stripe_index = 0;
1015 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1016 if (rw & (1 << BIO_RW))
1017 multi->num_stripes = map->num_stripes;
1018 else if (mirror_num) {
1019 stripe_index = mirror_num - 1;
1020 } else {
1021 int i;
1022 u64 least = (u64)-1;
1023 struct btrfs_device *cur;
1024
1025 for (i = 0; i < map->num_stripes; i++) {
1026 cur = map->stripes[i].dev;
1027 spin_lock(&cur->io_lock);
1028 if (cur->total_ios < least) {
1029 least = cur->total_ios;
1030 stripe_index = i;
1031 }
1032 spin_unlock(&cur->io_lock);
1033 }
1034 }
1035 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1036 if (rw & (1 << BIO_RW))
1037 multi->num_stripes = map->num_stripes;
1038 else if (mirror_num)
1039 stripe_index = mirror_num - 1;
1040 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1041 int factor = map->num_stripes / map->sub_stripes;
1042 int orig_stripe_nr = stripe_nr;
1043
1044 stripe_index = do_div(stripe_nr, factor);
1045 stripe_index *= map->sub_stripes;
1046
1047 if (rw & (1 << BIO_RW))
1048 multi->num_stripes = map->sub_stripes;
1049 else if (mirror_num)
1050 stripe_index += mirror_num - 1;
1051 else
1052 stripe_index += orig_stripe_nr % map->sub_stripes;
1053 } else {
1054 /*
1055 * after this do_div call, stripe_nr is the number of stripes
1056 * on this device we have to walk to find the data, and
1057 * stripe_index is the number of our device in the stripe array
1058 */
1059 stripe_index = do_div(stripe_nr, map->num_stripes);
1060 }
1061 BUG_ON(stripe_index >= map->num_stripes);
1062
1063 for (i = 0; i < multi->num_stripes; i++) {
1064 multi->stripes[i].physical =
1065 map->stripes[stripe_index].physical + stripe_offset +
1066 stripe_nr * map->stripe_len;
1067 multi->stripes[i].dev = map->stripes[stripe_index].dev;
1068 stripe_index++;
1069 }
1070 *multi_ret = multi;
1071 out:
1072 free_extent_map(em);
1073 return 0;
1074 }
1075
1076 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1077 static void end_bio_multi_stripe(struct bio *bio, int err)
1078 #else
1079 static int end_bio_multi_stripe(struct bio *bio,
1080 unsigned int bytes_done, int err)
1081 #endif
1082 {
1083 struct btrfs_multi_bio *multi = bio->bi_private;
1084
1085 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1086 if (bio->bi_size)
1087 return 1;
1088 #endif
1089 if (err)
1090 multi->error = err;
1091
1092 if (atomic_dec_and_test(&multi->stripes_pending)) {
1093 bio->bi_private = multi->private;
1094 bio->bi_end_io = multi->end_io;
1095
1096 if (!err && multi->error)
1097 err = multi->error;
1098 kfree(multi);
1099
1100 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1101 bio_endio(bio, bio->bi_size, err);
1102 #else
1103 bio_endio(bio, err);
1104 #endif
1105 } else {
1106 bio_put(bio);
1107 }
1108 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1109 return 0;
1110 #endif
1111 }
1112
1113 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
1114 int mirror_num)
1115 {
1116 struct btrfs_mapping_tree *map_tree;
1117 struct btrfs_device *dev;
1118 struct bio *first_bio = bio;
1119 u64 logical = bio->bi_sector << 9;
1120 u64 length = 0;
1121 u64 map_length;
1122 struct bio_vec *bvec;
1123 struct btrfs_multi_bio *multi = NULL;
1124 int i;
1125 int ret;
1126 int dev_nr = 0;
1127 int total_devs = 1;
1128
1129 bio_for_each_segment(bvec, bio, i) {
1130 length += bvec->bv_len;
1131 }
1132
1133 map_tree = &root->fs_info->mapping_tree;
1134 map_length = length;
1135
1136 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
1137 mirror_num);
1138 BUG_ON(ret);
1139
1140 total_devs = multi->num_stripes;
1141 if (map_length < length) {
1142 printk("mapping failed logical %Lu bio len %Lu "
1143 "len %Lu\n", logical, length, map_length);
1144 BUG();
1145 }
1146 multi->end_io = first_bio->bi_end_io;
1147 multi->private = first_bio->bi_private;
1148 atomic_set(&multi->stripes_pending, multi->num_stripes);
1149
1150 while(dev_nr < total_devs) {
1151 if (total_devs > 1) {
1152 if (dev_nr < total_devs - 1) {
1153 bio = bio_clone(first_bio, GFP_NOFS);
1154 BUG_ON(!bio);
1155 } else {
1156 bio = first_bio;
1157 }
1158 bio->bi_private = multi;
1159 bio->bi_end_io = end_bio_multi_stripe;
1160 }
1161 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
1162 dev = multi->stripes[dev_nr].dev;
1163 bio->bi_bdev = dev->bdev;
1164 spin_lock(&dev->io_lock);
1165 dev->total_ios++;
1166 spin_unlock(&dev->io_lock);
1167 submit_bio(rw, bio);
1168 dev_nr++;
1169 }
1170 if (total_devs == 1)
1171 kfree(multi);
1172 return 0;
1173 }
1174
1175 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
1176 u8 *uuid)
1177 {
1178 struct list_head *head = &root->fs_info->fs_devices->devices;
1179
1180 return __find_device(head, devid, uuid);
1181 }
1182
1183 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
1184 struct extent_buffer *leaf,
1185 struct btrfs_chunk *chunk)
1186 {
1187 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1188 struct map_lookup *map;
1189 struct extent_map *em;
1190 u64 logical;
1191 u64 length;
1192 u64 devid;
1193 u8 uuid[BTRFS_UUID_SIZE];
1194 int num_stripes;
1195 int ret;
1196 int i;
1197
1198 logical = key->offset;
1199 length = btrfs_chunk_length(leaf, chunk);
1200 spin_lock(&map_tree->map_tree.lock);
1201 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
1202 spin_unlock(&map_tree->map_tree.lock);
1203
1204 /* already mapped? */
1205 if (em && em->start <= logical && em->start + em->len > logical) {
1206 free_extent_map(em);
1207 return 0;
1208 } else if (em) {
1209 free_extent_map(em);
1210 }
1211
1212 map = kzalloc(sizeof(*map), GFP_NOFS);
1213 if (!map)
1214 return -ENOMEM;
1215
1216 em = alloc_extent_map(GFP_NOFS);
1217 if (!em)
1218 return -ENOMEM;
1219 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1220 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1221 if (!map) {
1222 free_extent_map(em);
1223 return -ENOMEM;
1224 }
1225
1226 em->bdev = (struct block_device *)map;
1227 em->start = logical;
1228 em->len = length;
1229 em->block_start = 0;
1230
1231 map->num_stripes = num_stripes;
1232 map->io_width = btrfs_chunk_io_width(leaf, chunk);
1233 map->io_align = btrfs_chunk_io_align(leaf, chunk);
1234 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
1235 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1236 map->type = btrfs_chunk_type(leaf, chunk);
1237 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
1238 for (i = 0; i < num_stripes; i++) {
1239 map->stripes[i].physical =
1240 btrfs_stripe_offset_nr(leaf, chunk, i);
1241 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
1242 read_extent_buffer(leaf, uuid, (unsigned long)
1243 btrfs_stripe_dev_uuid_nr(chunk, i),
1244 BTRFS_UUID_SIZE);
1245 map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
1246 if (!map->stripes[i].dev) {
1247 kfree(map);
1248 free_extent_map(em);
1249 return -EIO;
1250 }
1251 }
1252
1253 spin_lock(&map_tree->map_tree.lock);
1254 ret = add_extent_mapping(&map_tree->map_tree, em);
1255 spin_unlock(&map_tree->map_tree.lock);
1256 BUG_ON(ret);
1257 free_extent_map(em);
1258
1259 return 0;
1260 }
1261
1262 static int fill_device_from_item(struct extent_buffer *leaf,
1263 struct btrfs_dev_item *dev_item,
1264 struct btrfs_device *device)
1265 {
1266 unsigned long ptr;
1267
1268 device->devid = btrfs_device_id(leaf, dev_item);
1269 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
1270 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
1271 device->type = btrfs_device_type(leaf, dev_item);
1272 device->io_align = btrfs_device_io_align(leaf, dev_item);
1273 device->io_width = btrfs_device_io_width(leaf, dev_item);
1274 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
1275
1276 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1277 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1278
1279 return 0;
1280 }
1281
1282 static int read_one_dev(struct btrfs_root *root,
1283 struct extent_buffer *leaf,
1284 struct btrfs_dev_item *dev_item)
1285 {
1286 struct btrfs_device *device;
1287 u64 devid;
1288 int ret;
1289 u8 dev_uuid[BTRFS_UUID_SIZE];
1290
1291 devid = btrfs_device_id(leaf, dev_item);
1292 read_extent_buffer(leaf, dev_uuid,
1293 (unsigned long)btrfs_device_uuid(dev_item),
1294 BTRFS_UUID_SIZE);
1295 device = btrfs_find_device(root, devid, dev_uuid);
1296 if (!device) {
1297 printk("warning devid %Lu not found already\n", devid);
1298 device = kzalloc(sizeof(*device), GFP_NOFS);
1299 if (!device)
1300 return -ENOMEM;
1301 list_add(&device->dev_list,
1302 &root->fs_info->fs_devices->devices);
1303 device->barriers = 1;
1304 spin_lock_init(&device->io_lock);
1305 }
1306
1307 fill_device_from_item(leaf, dev_item, device);
1308 device->dev_root = root->fs_info->dev_root;
1309 ret = 0;
1310 #if 0
1311 ret = btrfs_open_device(device);
1312 if (ret) {
1313 kfree(device);
1314 }
1315 #endif
1316 return ret;
1317 }
1318
1319 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
1320 {
1321 struct btrfs_dev_item *dev_item;
1322
1323 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1324 dev_item);
1325 return read_one_dev(root, buf, dev_item);
1326 }
1327
1328 int btrfs_read_sys_array(struct btrfs_root *root)
1329 {
1330 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1331 struct extent_buffer *sb = root->fs_info->sb_buffer;
1332 struct btrfs_disk_key *disk_key;
1333 struct btrfs_chunk *chunk;
1334 struct btrfs_key key;
1335 u32 num_stripes;
1336 u32 array_size;
1337 u32 len = 0;
1338 u8 *ptr;
1339 unsigned long sb_ptr;
1340 u32 cur;
1341 int ret;
1342
1343 array_size = btrfs_super_sys_array_size(super_copy);
1344
1345 /*
1346 * we do this loop twice, once for the device items and
1347 * once for all of the chunks. This way there are device
1348 * structs filled in for every chunk
1349 */
1350 ptr = super_copy->sys_chunk_array;
1351 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
1352 cur = 0;
1353
1354 while (cur < array_size) {
1355 disk_key = (struct btrfs_disk_key *)ptr;
1356 btrfs_disk_key_to_cpu(&key, disk_key);
1357
1358 len = sizeof(*disk_key);
1359 ptr += len;
1360 sb_ptr += len;
1361 cur += len;
1362
1363 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1364 chunk = (struct btrfs_chunk *)sb_ptr;
1365 ret = read_one_chunk(root, &key, sb, chunk);
1366 BUG_ON(ret);
1367 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
1368 len = btrfs_chunk_item_size(num_stripes);
1369 } else {
1370 BUG();
1371 }
1372 ptr += len;
1373 sb_ptr += len;
1374 cur += len;
1375 }
1376 return 0;
1377 }
1378
1379 int btrfs_read_chunk_tree(struct btrfs_root *root)
1380 {
1381 struct btrfs_path *path;
1382 struct extent_buffer *leaf;
1383 struct btrfs_key key;
1384 struct btrfs_key found_key;
1385 int ret;
1386 int slot;
1387
1388 root = root->fs_info->chunk_root;
1389
1390 path = btrfs_alloc_path();
1391 if (!path)
1392 return -ENOMEM;
1393
1394 /* first we search for all of the device items, and then we
1395 * read in all of the chunk items. This way we can create chunk
1396 * mappings that reference all of the devices that are afound
1397 */
1398 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1399 key.offset = 0;
1400 key.type = 0;
1401 again:
1402 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1403 while(1) {
1404 leaf = path->nodes[0];
1405 slot = path->slots[0];
1406 if (slot >= btrfs_header_nritems(leaf)) {
1407 ret = btrfs_next_leaf(root, path);
1408 if (ret == 0)
1409 continue;
1410 if (ret < 0)
1411 goto error;
1412 break;
1413 }
1414 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1415 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1416 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
1417 break;
1418 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
1419 struct btrfs_dev_item *dev_item;
1420 dev_item = btrfs_item_ptr(leaf, slot,
1421 struct btrfs_dev_item);
1422 ret = read_one_dev(root, leaf, dev_item);
1423 BUG_ON(ret);
1424 }
1425 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
1426 struct btrfs_chunk *chunk;
1427 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1428 ret = read_one_chunk(root, &found_key, leaf, chunk);
1429 }
1430 path->slots[0]++;
1431 }
1432 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1433 key.objectid = 0;
1434 btrfs_release_path(root, path);
1435 goto again;
1436 }
1437
1438 btrfs_free_path(path);
1439 ret = 0;
1440 error:
1441 return ret;
1442 }
1443
This page took 0.059298 seconds and 6 git commands to generate.