Btrfs: Add a special device list for chunk allocations
[deliverable/linux.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <linux/blkdev.h>
22 #include <asm/div64.h>
23 #include "ctree.h"
24 #include "extent_map.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "print-tree.h"
28 #include "volumes.h"
29
30 struct map_lookup {
31 u64 type;
32 int io_align;
33 int io_width;
34 int stripe_len;
35 int sector_size;
36 int num_stripes;
37 int sub_stripes;
38 struct btrfs_bio_stripe stripes[];
39 };
40
41 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
42 (sizeof(struct btrfs_bio_stripe) * (n)))
43
44 static DEFINE_MUTEX(uuid_mutex);
45 static LIST_HEAD(fs_uuids);
46
47 int btrfs_cleanup_fs_uuids(void)
48 {
49 struct btrfs_fs_devices *fs_devices;
50 struct list_head *uuid_cur;
51 struct list_head *devices_cur;
52 struct btrfs_device *dev;
53
54 list_for_each(uuid_cur, &fs_uuids) {
55 fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
56 list);
57 while(!list_empty(&fs_devices->devices)) {
58 devices_cur = fs_devices->devices.next;
59 dev = list_entry(devices_cur, struct btrfs_device,
60 dev_list);
61 if (dev->bdev) {
62 close_bdev_excl(dev->bdev);
63 }
64 list_del(&dev->dev_list);
65 kfree(dev);
66 }
67 }
68 return 0;
69 }
70
71 static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
72 u8 *uuid)
73 {
74 struct btrfs_device *dev;
75 struct list_head *cur;
76
77 list_for_each(cur, head) {
78 dev = list_entry(cur, struct btrfs_device, dev_list);
79 if (dev->devid == devid &&
80 !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE)) {
81 return dev;
82 }
83 }
84 return NULL;
85 }
86
87 static struct btrfs_fs_devices *find_fsid(u8 *fsid)
88 {
89 struct list_head *cur;
90 struct btrfs_fs_devices *fs_devices;
91
92 list_for_each(cur, &fs_uuids) {
93 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
94 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
95 return fs_devices;
96 }
97 return NULL;
98 }
99
100 static int device_list_add(const char *path,
101 struct btrfs_super_block *disk_super,
102 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
103 {
104 struct btrfs_device *device;
105 struct btrfs_fs_devices *fs_devices;
106 u64 found_transid = btrfs_super_generation(disk_super);
107
108 fs_devices = find_fsid(disk_super->fsid);
109 if (!fs_devices) {
110 fs_devices = kmalloc(sizeof(*fs_devices), GFP_NOFS);
111 if (!fs_devices)
112 return -ENOMEM;
113 INIT_LIST_HEAD(&fs_devices->devices);
114 INIT_LIST_HEAD(&fs_devices->alloc_list);
115 list_add(&fs_devices->list, &fs_uuids);
116 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
117 fs_devices->latest_devid = devid;
118 fs_devices->latest_trans = found_transid;
119 fs_devices->lowest_devid = (u64)-1;
120 fs_devices->num_devices = 0;
121 device = NULL;
122 } else {
123 device = __find_device(&fs_devices->devices, devid,
124 disk_super->dev_item.uuid);
125 }
126 if (!device) {
127 device = kzalloc(sizeof(*device), GFP_NOFS);
128 if (!device) {
129 /* we can safely leave the fs_devices entry around */
130 return -ENOMEM;
131 }
132 device->devid = devid;
133 memcpy(device->uuid, disk_super->dev_item.uuid,
134 BTRFS_UUID_SIZE);
135 device->barriers = 1;
136 spin_lock_init(&device->io_lock);
137 device->name = kstrdup(path, GFP_NOFS);
138 if (!device->name) {
139 kfree(device);
140 return -ENOMEM;
141 }
142 list_add(&device->dev_list, &fs_devices->devices);
143 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
144 fs_devices->num_devices++;
145 }
146
147 if (found_transid > fs_devices->latest_trans) {
148 fs_devices->latest_devid = devid;
149 fs_devices->latest_trans = found_transid;
150 }
151 if (fs_devices->lowest_devid > devid) {
152 fs_devices->lowest_devid = devid;
153 }
154 *fs_devices_ret = fs_devices;
155 return 0;
156 }
157
158 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
159 {
160 struct list_head *head = &fs_devices->devices;
161 struct list_head *cur;
162 struct btrfs_device *device;
163
164 mutex_lock(&uuid_mutex);
165 list_for_each(cur, head) {
166 device = list_entry(cur, struct btrfs_device, dev_list);
167 if (device->bdev) {
168 close_bdev_excl(device->bdev);
169 }
170 device->bdev = NULL;
171 }
172 mutex_unlock(&uuid_mutex);
173 return 0;
174 }
175
176 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
177 int flags, void *holder)
178 {
179 struct block_device *bdev;
180 struct list_head *head = &fs_devices->devices;
181 struct list_head *cur;
182 struct btrfs_device *device;
183 int ret;
184
185 mutex_lock(&uuid_mutex);
186 list_for_each(cur, head) {
187 device = list_entry(cur, struct btrfs_device, dev_list);
188 bdev = open_bdev_excl(device->name, flags, holder);
189
190 if (IS_ERR(bdev)) {
191 printk("open %s failed\n", device->name);
192 ret = PTR_ERR(bdev);
193 goto fail;
194 }
195 if (device->devid == fs_devices->latest_devid)
196 fs_devices->latest_bdev = bdev;
197 if (device->devid == fs_devices->lowest_devid) {
198 fs_devices->lowest_bdev = bdev;
199 }
200 device->bdev = bdev;
201 }
202 mutex_unlock(&uuid_mutex);
203 return 0;
204 fail:
205 mutex_unlock(&uuid_mutex);
206 btrfs_close_devices(fs_devices);
207 return ret;
208 }
209
210 int btrfs_scan_one_device(const char *path, int flags, void *holder,
211 struct btrfs_fs_devices **fs_devices_ret)
212 {
213 struct btrfs_super_block *disk_super;
214 struct block_device *bdev;
215 struct buffer_head *bh;
216 int ret;
217 u64 devid;
218 u64 transid;
219
220 mutex_lock(&uuid_mutex);
221
222 bdev = open_bdev_excl(path, flags, holder);
223
224 if (IS_ERR(bdev)) {
225 ret = PTR_ERR(bdev);
226 goto error;
227 }
228
229 ret = set_blocksize(bdev, 4096);
230 if (ret)
231 goto error_close;
232 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
233 if (!bh) {
234 ret = -EIO;
235 goto error_close;
236 }
237 disk_super = (struct btrfs_super_block *)bh->b_data;
238 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
239 sizeof(disk_super->magic))) {
240 ret = -EINVAL;
241 goto error_brelse;
242 }
243 devid = le64_to_cpu(disk_super->dev_item.devid);
244 transid = btrfs_super_generation(disk_super);
245 if (disk_super->label[0])
246 printk("device label %s ", disk_super->label);
247 else {
248 /* FIXME, make a readl uuid parser */
249 printk("device fsid %llx-%llx ",
250 *(unsigned long long *)disk_super->fsid,
251 *(unsigned long long *)(disk_super->fsid + 8));
252 }
253 printk("devid %Lu transid %Lu %s\n", devid, transid, path);
254 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
255
256 error_brelse:
257 brelse(bh);
258 error_close:
259 close_bdev_excl(bdev);
260 error:
261 mutex_unlock(&uuid_mutex);
262 return ret;
263 }
264
265 /*
266 * this uses a pretty simple search, the expectation is that it is
267 * called very infrequently and that a given device has a small number
268 * of extents
269 */
270 static int find_free_dev_extent(struct btrfs_trans_handle *trans,
271 struct btrfs_device *device,
272 struct btrfs_path *path,
273 u64 num_bytes, u64 *start)
274 {
275 struct btrfs_key key;
276 struct btrfs_root *root = device->dev_root;
277 struct btrfs_dev_extent *dev_extent = NULL;
278 u64 hole_size = 0;
279 u64 last_byte = 0;
280 u64 search_start = 0;
281 u64 search_end = device->total_bytes;
282 int ret;
283 int slot = 0;
284 int start_found;
285 struct extent_buffer *l;
286
287 start_found = 0;
288 path->reada = 2;
289
290 /* FIXME use last free of some kind */
291
292 /* we don't want to overwrite the superblock on the drive,
293 * so we make sure to start at an offset of at least 1MB
294 */
295 search_start = max((u64)1024 * 1024, search_start);
296 key.objectid = device->devid;
297 key.offset = search_start;
298 key.type = BTRFS_DEV_EXTENT_KEY;
299 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
300 if (ret < 0)
301 goto error;
302 ret = btrfs_previous_item(root, path, 0, key.type);
303 if (ret < 0)
304 goto error;
305 l = path->nodes[0];
306 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
307 while (1) {
308 l = path->nodes[0];
309 slot = path->slots[0];
310 if (slot >= btrfs_header_nritems(l)) {
311 ret = btrfs_next_leaf(root, path);
312 if (ret == 0)
313 continue;
314 if (ret < 0)
315 goto error;
316 no_more_items:
317 if (!start_found) {
318 if (search_start >= search_end) {
319 ret = -ENOSPC;
320 goto error;
321 }
322 *start = search_start;
323 start_found = 1;
324 goto check_pending;
325 }
326 *start = last_byte > search_start ?
327 last_byte : search_start;
328 if (search_end <= *start) {
329 ret = -ENOSPC;
330 goto error;
331 }
332 goto check_pending;
333 }
334 btrfs_item_key_to_cpu(l, &key, slot);
335
336 if (key.objectid < device->devid)
337 goto next;
338
339 if (key.objectid > device->devid)
340 goto no_more_items;
341
342 if (key.offset >= search_start && key.offset > last_byte &&
343 start_found) {
344 if (last_byte < search_start)
345 last_byte = search_start;
346 hole_size = key.offset - last_byte;
347 if (key.offset > last_byte &&
348 hole_size >= num_bytes) {
349 *start = last_byte;
350 goto check_pending;
351 }
352 }
353 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
354 goto next;
355 }
356
357 start_found = 1;
358 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
359 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
360 next:
361 path->slots[0]++;
362 cond_resched();
363 }
364 check_pending:
365 /* we have to make sure we didn't find an extent that has already
366 * been allocated by the map tree or the original allocation
367 */
368 btrfs_release_path(root, path);
369 BUG_ON(*start < search_start);
370
371 if (*start + num_bytes > search_end) {
372 ret = -ENOSPC;
373 goto error;
374 }
375 /* check for pending inserts here */
376 return 0;
377
378 error:
379 btrfs_release_path(root, path);
380 return ret;
381 }
382
383 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
384 struct btrfs_device *device,
385 u64 chunk_tree, u64 chunk_objectid,
386 u64 chunk_offset,
387 u64 num_bytes, u64 *start)
388 {
389 int ret;
390 struct btrfs_path *path;
391 struct btrfs_root *root = device->dev_root;
392 struct btrfs_dev_extent *extent;
393 struct extent_buffer *leaf;
394 struct btrfs_key key;
395
396 path = btrfs_alloc_path();
397 if (!path)
398 return -ENOMEM;
399
400 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
401 if (ret) {
402 goto err;
403 }
404
405 key.objectid = device->devid;
406 key.offset = *start;
407 key.type = BTRFS_DEV_EXTENT_KEY;
408 ret = btrfs_insert_empty_item(trans, root, path, &key,
409 sizeof(*extent));
410 BUG_ON(ret);
411
412 leaf = path->nodes[0];
413 extent = btrfs_item_ptr(leaf, path->slots[0],
414 struct btrfs_dev_extent);
415 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
416 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
417 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
418
419 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
420 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
421 BTRFS_UUID_SIZE);
422
423 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
424 btrfs_mark_buffer_dirty(leaf);
425 err:
426 btrfs_free_path(path);
427 return ret;
428 }
429
430 static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
431 {
432 struct btrfs_path *path;
433 int ret;
434 struct btrfs_key key;
435 struct btrfs_chunk *chunk;
436 struct btrfs_key found_key;
437
438 path = btrfs_alloc_path();
439 BUG_ON(!path);
440
441 key.objectid = objectid;
442 key.offset = (u64)-1;
443 key.type = BTRFS_CHUNK_ITEM_KEY;
444
445 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
446 if (ret < 0)
447 goto error;
448
449 BUG_ON(ret == 0);
450
451 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
452 if (ret) {
453 *offset = 0;
454 } else {
455 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
456 path->slots[0]);
457 if (found_key.objectid != objectid)
458 *offset = 0;
459 else {
460 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
461 struct btrfs_chunk);
462 *offset = found_key.offset +
463 btrfs_chunk_length(path->nodes[0], chunk);
464 }
465 }
466 ret = 0;
467 error:
468 btrfs_free_path(path);
469 return ret;
470 }
471
472 static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
473 u64 *objectid)
474 {
475 int ret;
476 struct btrfs_key key;
477 struct btrfs_key found_key;
478
479 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
480 key.type = BTRFS_DEV_ITEM_KEY;
481 key.offset = (u64)-1;
482
483 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
484 if (ret < 0)
485 goto error;
486
487 BUG_ON(ret == 0);
488
489 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
490 BTRFS_DEV_ITEM_KEY);
491 if (ret) {
492 *objectid = 1;
493 } else {
494 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
495 path->slots[0]);
496 *objectid = found_key.offset + 1;
497 }
498 ret = 0;
499 error:
500 btrfs_release_path(root, path);
501 return ret;
502 }
503
504 /*
505 * the device information is stored in the chunk root
506 * the btrfs_device struct should be fully filled in
507 */
508 int btrfs_add_device(struct btrfs_trans_handle *trans,
509 struct btrfs_root *root,
510 struct btrfs_device *device)
511 {
512 int ret;
513 struct btrfs_path *path;
514 struct btrfs_dev_item *dev_item;
515 struct extent_buffer *leaf;
516 struct btrfs_key key;
517 unsigned long ptr;
518 u64 free_devid;
519
520 root = root->fs_info->chunk_root;
521
522 path = btrfs_alloc_path();
523 if (!path)
524 return -ENOMEM;
525
526 ret = find_next_devid(root, path, &free_devid);
527 if (ret)
528 goto out;
529
530 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
531 key.type = BTRFS_DEV_ITEM_KEY;
532 key.offset = free_devid;
533
534 ret = btrfs_insert_empty_item(trans, root, path, &key,
535 sizeof(*dev_item));
536 if (ret)
537 goto out;
538
539 leaf = path->nodes[0];
540 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
541
542 device->devid = free_devid;
543 btrfs_set_device_id(leaf, dev_item, device->devid);
544 btrfs_set_device_type(leaf, dev_item, device->type);
545 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
546 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
547 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
548 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
549 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
550 btrfs_set_device_group(leaf, dev_item, 0);
551 btrfs_set_device_seek_speed(leaf, dev_item, 0);
552 btrfs_set_device_bandwidth(leaf, dev_item, 0);
553
554 ptr = (unsigned long)btrfs_device_uuid(dev_item);
555 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
556 btrfs_mark_buffer_dirty(leaf);
557 ret = 0;
558
559 out:
560 btrfs_free_path(path);
561 return ret;
562 }
563 int btrfs_update_device(struct btrfs_trans_handle *trans,
564 struct btrfs_device *device)
565 {
566 int ret;
567 struct btrfs_path *path;
568 struct btrfs_root *root;
569 struct btrfs_dev_item *dev_item;
570 struct extent_buffer *leaf;
571 struct btrfs_key key;
572
573 root = device->dev_root->fs_info->chunk_root;
574
575 path = btrfs_alloc_path();
576 if (!path)
577 return -ENOMEM;
578
579 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
580 key.type = BTRFS_DEV_ITEM_KEY;
581 key.offset = device->devid;
582
583 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
584 if (ret < 0)
585 goto out;
586
587 if (ret > 0) {
588 ret = -ENOENT;
589 goto out;
590 }
591
592 leaf = path->nodes[0];
593 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
594
595 btrfs_set_device_id(leaf, dev_item, device->devid);
596 btrfs_set_device_type(leaf, dev_item, device->type);
597 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
598 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
599 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
600 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
601 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
602 btrfs_mark_buffer_dirty(leaf);
603
604 out:
605 btrfs_free_path(path);
606 return ret;
607 }
608
609 int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
610 struct btrfs_root *root,
611 struct btrfs_key *key,
612 struct btrfs_chunk *chunk, int item_size)
613 {
614 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
615 struct btrfs_disk_key disk_key;
616 u32 array_size;
617 u8 *ptr;
618
619 array_size = btrfs_super_sys_array_size(super_copy);
620 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
621 return -EFBIG;
622
623 ptr = super_copy->sys_chunk_array + array_size;
624 btrfs_cpu_key_to_disk(&disk_key, key);
625 memcpy(ptr, &disk_key, sizeof(disk_key));
626 ptr += sizeof(disk_key);
627 memcpy(ptr, chunk, item_size);
628 item_size += sizeof(disk_key);
629 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
630 return 0;
631 }
632
633 static u64 div_factor(u64 num, int factor)
634 {
635 if (factor == 10)
636 return num;
637 num *= factor;
638 do_div(num, 10);
639 return num;
640 }
641
642 static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
643 int sub_stripes)
644 {
645 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
646 return calc_size;
647 else if (type & BTRFS_BLOCK_GROUP_RAID10)
648 return calc_size * (num_stripes / sub_stripes);
649 else
650 return calc_size * num_stripes;
651 }
652
653
654 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
655 struct btrfs_root *extent_root, u64 *start,
656 u64 *num_bytes, u64 type)
657 {
658 u64 dev_offset;
659 struct btrfs_fs_info *info = extent_root->fs_info;
660 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
661 struct btrfs_stripe *stripes;
662 struct btrfs_device *device = NULL;
663 struct btrfs_chunk *chunk;
664 struct list_head private_devs;
665 struct list_head *dev_list;
666 struct list_head *cur;
667 struct extent_map_tree *em_tree;
668 struct map_lookup *map;
669 struct extent_map *em;
670 int min_stripe_size = 1 * 1024 * 1024;
671 u64 physical;
672 u64 calc_size = 1024 * 1024 * 1024;
673 u64 max_chunk_size = calc_size;
674 u64 min_free;
675 u64 avail;
676 u64 max_avail = 0;
677 u64 percent_max;
678 int num_stripes = 1;
679 int min_stripes = 1;
680 int sub_stripes = 0;
681 int looped = 0;
682 int ret;
683 int index;
684 int stripe_len = 64 * 1024;
685 struct btrfs_key key;
686
687 dev_list = &extent_root->fs_info->fs_devices->alloc_list;
688 if (list_empty(dev_list))
689 return -ENOSPC;
690
691 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
692 num_stripes = btrfs_super_num_devices(&info->super_copy);
693 min_stripes = 2;
694 }
695 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
696 num_stripes = 2;
697 min_stripes = 2;
698 }
699 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
700 num_stripes = min_t(u64, 2,
701 btrfs_super_num_devices(&info->super_copy));
702 if (num_stripes < 2)
703 return -ENOSPC;
704 min_stripes = 2;
705 }
706 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
707 num_stripes = btrfs_super_num_devices(&info->super_copy);
708 if (num_stripes < 4)
709 return -ENOSPC;
710 num_stripes &= ~(u32)1;
711 sub_stripes = 2;
712 min_stripes = 4;
713 }
714
715 if (type & BTRFS_BLOCK_GROUP_DATA) {
716 max_chunk_size = 10 * calc_size;
717 min_stripe_size = 64 * 1024 * 1024;
718 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
719 max_chunk_size = 4 * calc_size;
720 min_stripe_size = 32 * 1024 * 1024;
721 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
722 calc_size = 8 * 1024 * 1024;
723 max_chunk_size = calc_size * 2;
724 min_stripe_size = 1 * 1024 * 1024;
725 }
726
727 /* we don't want a chunk larger than 10% of the FS */
728 percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
729 max_chunk_size = min(percent_max, max_chunk_size);
730
731 again:
732 if (calc_size * num_stripes > max_chunk_size) {
733 calc_size = max_chunk_size;
734 do_div(calc_size, num_stripes);
735 do_div(calc_size, stripe_len);
736 calc_size *= stripe_len;
737 }
738 /* we don't want tiny stripes */
739 calc_size = max_t(u64, min_stripe_size, calc_size);
740
741 do_div(calc_size, stripe_len);
742 calc_size *= stripe_len;
743
744 INIT_LIST_HEAD(&private_devs);
745 cur = dev_list->next;
746 index = 0;
747
748 if (type & BTRFS_BLOCK_GROUP_DUP)
749 min_free = calc_size * 2;
750 else
751 min_free = calc_size;
752
753 /* we add 1MB because we never use the first 1MB of the device */
754 min_free += 1024 * 1024;
755
756 /* build a private list of devices we will allocate from */
757 while(index < num_stripes) {
758 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
759
760 avail = device->total_bytes - device->bytes_used;
761 cur = cur->next;
762 if (avail >= min_free) {
763 list_move_tail(&device->dev_alloc_list, &private_devs);
764 index++;
765 if (type & BTRFS_BLOCK_GROUP_DUP)
766 index++;
767 } else if (avail > max_avail)
768 max_avail = avail;
769 if (cur == dev_list)
770 break;
771 }
772 if (index < num_stripes) {
773 list_splice(&private_devs, dev_list);
774 if (index >= min_stripes) {
775 num_stripes = index;
776 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
777 num_stripes /= sub_stripes;
778 num_stripes *= sub_stripes;
779 }
780 looped = 1;
781 goto again;
782 }
783 if (!looped && max_avail > 0) {
784 looped = 1;
785 calc_size = max_avail;
786 goto again;
787 }
788 return -ENOSPC;
789 }
790 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
791 key.type = BTRFS_CHUNK_ITEM_KEY;
792 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
793 &key.offset);
794 if (ret)
795 return ret;
796
797 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
798 if (!chunk)
799 return -ENOMEM;
800
801 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
802 if (!map) {
803 kfree(chunk);
804 return -ENOMEM;
805 }
806
807 stripes = &chunk->stripe;
808 *num_bytes = chunk_bytes_by_type(type, calc_size,
809 num_stripes, sub_stripes);
810
811
812 index = 0;
813 printk("new chunk type %Lu start %Lu size %Lu\n", type, key.offset, *num_bytes);
814 while(index < num_stripes) {
815 struct btrfs_stripe *stripe;
816 BUG_ON(list_empty(&private_devs));
817 cur = private_devs.next;
818 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
819
820 /* loop over this device again if we're doing a dup group */
821 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
822 (index == num_stripes - 1))
823 list_move_tail(&device->dev_alloc_list, dev_list);
824
825 ret = btrfs_alloc_dev_extent(trans, device,
826 info->chunk_root->root_key.objectid,
827 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
828 calc_size, &dev_offset);
829 BUG_ON(ret);
830 printk("alloc chunk start %Lu size %Lu from dev %Lu type %Lu\n", key.offset, calc_size, device->devid, type);
831 device->bytes_used += calc_size;
832 ret = btrfs_update_device(trans, device);
833 BUG_ON(ret);
834
835 map->stripes[index].dev = device;
836 map->stripes[index].physical = dev_offset;
837 stripe = stripes + index;
838 btrfs_set_stack_stripe_devid(stripe, device->devid);
839 btrfs_set_stack_stripe_offset(stripe, dev_offset);
840 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
841 physical = dev_offset;
842 index++;
843 }
844 BUG_ON(!list_empty(&private_devs));
845
846 /* key was set above */
847 btrfs_set_stack_chunk_length(chunk, *num_bytes);
848 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
849 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
850 btrfs_set_stack_chunk_type(chunk, type);
851 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
852 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
853 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
854 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
855 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
856 map->sector_size = extent_root->sectorsize;
857 map->stripe_len = stripe_len;
858 map->io_align = stripe_len;
859 map->io_width = stripe_len;
860 map->type = type;
861 map->num_stripes = num_stripes;
862 map->sub_stripes = sub_stripes;
863
864 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
865 btrfs_chunk_item_size(num_stripes));
866 BUG_ON(ret);
867 *start = key.offset;;
868
869 em = alloc_extent_map(GFP_NOFS);
870 if (!em)
871 return -ENOMEM;
872 em->bdev = (struct block_device *)map;
873 em->start = key.offset;
874 em->len = *num_bytes;
875 em->block_start = 0;
876
877 kfree(chunk);
878
879 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
880 spin_lock(&em_tree->lock);
881 ret = add_extent_mapping(em_tree, em);
882 spin_unlock(&em_tree->lock);
883 BUG_ON(ret);
884 free_extent_map(em);
885 return ret;
886 }
887
888 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
889 {
890 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
891 }
892
893 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
894 {
895 struct extent_map *em;
896
897 while(1) {
898 spin_lock(&tree->map_tree.lock);
899 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
900 if (em)
901 remove_extent_mapping(&tree->map_tree, em);
902 spin_unlock(&tree->map_tree.lock);
903 if (!em)
904 break;
905 kfree(em->bdev);
906 /* once for us */
907 free_extent_map(em);
908 /* once for the tree */
909 free_extent_map(em);
910 }
911 }
912
913 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
914 {
915 struct extent_map *em;
916 struct map_lookup *map;
917 struct extent_map_tree *em_tree = &map_tree->map_tree;
918 int ret;
919
920 spin_lock(&em_tree->lock);
921 em = lookup_extent_mapping(em_tree, logical, len);
922 spin_unlock(&em_tree->lock);
923 BUG_ON(!em);
924
925 BUG_ON(em->start > logical || em->start + em->len < logical);
926 map = (struct map_lookup *)em->bdev;
927 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
928 ret = map->num_stripes;
929 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
930 ret = map->sub_stripes;
931 else
932 ret = 1;
933 free_extent_map(em);
934 return ret;
935 }
936
937 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
938 u64 logical, u64 *length,
939 struct btrfs_multi_bio **multi_ret,
940 int mirror_num, struct page *unplug_page)
941 {
942 struct extent_map *em;
943 struct map_lookup *map;
944 struct extent_map_tree *em_tree = &map_tree->map_tree;
945 u64 offset;
946 u64 stripe_offset;
947 u64 stripe_nr;
948 int stripes_allocated = 8;
949 int stripes_required = 1;
950 int stripe_index;
951 int i;
952 int num_stripes;
953 struct btrfs_multi_bio *multi = NULL;
954
955 if (multi_ret && !(rw & (1 << BIO_RW))) {
956 stripes_allocated = 1;
957 }
958 again:
959 if (multi_ret) {
960 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
961 GFP_NOFS);
962 if (!multi)
963 return -ENOMEM;
964 }
965
966 spin_lock(&em_tree->lock);
967 em = lookup_extent_mapping(em_tree, logical, *length);
968 spin_unlock(&em_tree->lock);
969
970 if (!em && unplug_page)
971 return 0;
972
973 if (!em) {
974 printk("unable to find logical %Lu\n", logical);
975 BUG();
976 }
977
978 BUG_ON(em->start > logical || em->start + em->len < logical);
979 map = (struct map_lookup *)em->bdev;
980 offset = logical - em->start;
981
982 if (mirror_num > map->num_stripes)
983 mirror_num = 0;
984
985 /* if our multi bio struct is too small, back off and try again */
986 if (rw & (1 << BIO_RW)) {
987 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
988 BTRFS_BLOCK_GROUP_DUP)) {
989 stripes_required = map->num_stripes;
990 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
991 stripes_required = map->sub_stripes;
992 }
993 }
994 if (multi_ret && rw == WRITE &&
995 stripes_allocated < stripes_required) {
996 stripes_allocated = map->num_stripes;
997 free_extent_map(em);
998 kfree(multi);
999 goto again;
1000 }
1001 stripe_nr = offset;
1002 /*
1003 * stripe_nr counts the total number of stripes we have to stride
1004 * to get to this block
1005 */
1006 do_div(stripe_nr, map->stripe_len);
1007
1008 stripe_offset = stripe_nr * map->stripe_len;
1009 BUG_ON(offset < stripe_offset);
1010
1011 /* stripe_offset is the offset of this block in its stripe*/
1012 stripe_offset = offset - stripe_offset;
1013
1014 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
1015 BTRFS_BLOCK_GROUP_RAID10 |
1016 BTRFS_BLOCK_GROUP_DUP)) {
1017 /* we limit the length of each bio to what fits in a stripe */
1018 *length = min_t(u64, em->len - offset,
1019 map->stripe_len - stripe_offset);
1020 } else {
1021 *length = em->len - offset;
1022 }
1023
1024 if (!multi_ret && !unplug_page)
1025 goto out;
1026
1027 num_stripes = 1;
1028 stripe_index = 0;
1029 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1030 if (unplug_page || (rw & (1 << BIO_RW)))
1031 num_stripes = map->num_stripes;
1032 else if (mirror_num) {
1033 stripe_index = mirror_num - 1;
1034 } else {
1035 u64 orig_stripe_nr = stripe_nr;
1036 stripe_index = do_div(orig_stripe_nr, num_stripes);
1037 }
1038 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1039 if (rw & (1 << BIO_RW))
1040 num_stripes = map->num_stripes;
1041 else if (mirror_num)
1042 stripe_index = mirror_num - 1;
1043 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1044 int factor = map->num_stripes / map->sub_stripes;
1045
1046 stripe_index = do_div(stripe_nr, factor);
1047 stripe_index *= map->sub_stripes;
1048
1049 if (unplug_page || (rw & (1 << BIO_RW)))
1050 num_stripes = map->sub_stripes;
1051 else if (mirror_num)
1052 stripe_index += mirror_num - 1;
1053 else {
1054 u64 orig_stripe_nr = stripe_nr;
1055 stripe_index += do_div(orig_stripe_nr,
1056 map->sub_stripes);
1057 }
1058 } else {
1059 /*
1060 * after this do_div call, stripe_nr is the number of stripes
1061 * on this device we have to walk to find the data, and
1062 * stripe_index is the number of our device in the stripe array
1063 */
1064 stripe_index = do_div(stripe_nr, map->num_stripes);
1065 }
1066 BUG_ON(stripe_index >= map->num_stripes);
1067
1068 for (i = 0; i < num_stripes; i++) {
1069 if (unplug_page) {
1070 struct btrfs_device *device;
1071 struct backing_dev_info *bdi;
1072
1073 device = map->stripes[stripe_index].dev;
1074 bdi = blk_get_backing_dev_info(device->bdev);
1075 if (bdi->unplug_io_fn) {
1076 bdi->unplug_io_fn(bdi, unplug_page);
1077 }
1078 } else {
1079 multi->stripes[i].physical =
1080 map->stripes[stripe_index].physical +
1081 stripe_offset + stripe_nr * map->stripe_len;
1082 multi->stripes[i].dev = map->stripes[stripe_index].dev;
1083 }
1084 stripe_index++;
1085 }
1086 if (multi_ret) {
1087 *multi_ret = multi;
1088 multi->num_stripes = num_stripes;
1089 }
1090 out:
1091 free_extent_map(em);
1092 return 0;
1093 }
1094
1095 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1096 u64 logical, u64 *length,
1097 struct btrfs_multi_bio **multi_ret, int mirror_num)
1098 {
1099 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
1100 mirror_num, NULL);
1101 }
1102
1103 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
1104 u64 logical, struct page *page)
1105 {
1106 u64 length = PAGE_CACHE_SIZE;
1107 return __btrfs_map_block(map_tree, READ, logical, &length,
1108 NULL, 0, page);
1109 }
1110
1111
1112 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1113 static void end_bio_multi_stripe(struct bio *bio, int err)
1114 #else
1115 static int end_bio_multi_stripe(struct bio *bio,
1116 unsigned int bytes_done, int err)
1117 #endif
1118 {
1119 struct btrfs_multi_bio *multi = bio->bi_private;
1120
1121 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1122 if (bio->bi_size)
1123 return 1;
1124 #endif
1125 if (err)
1126 multi->error = err;
1127
1128 if (atomic_dec_and_test(&multi->stripes_pending)) {
1129 bio->bi_private = multi->private;
1130 bio->bi_end_io = multi->end_io;
1131
1132 if (!err && multi->error)
1133 err = multi->error;
1134 kfree(multi);
1135
1136 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1137 bio_endio(bio, bio->bi_size, err);
1138 #else
1139 bio_endio(bio, err);
1140 #endif
1141 } else {
1142 bio_put(bio);
1143 }
1144 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1145 return 0;
1146 #endif
1147 }
1148
1149 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
1150 int mirror_num)
1151 {
1152 struct btrfs_mapping_tree *map_tree;
1153 struct btrfs_device *dev;
1154 struct bio *first_bio = bio;
1155 u64 logical = bio->bi_sector << 9;
1156 u64 length = 0;
1157 u64 map_length;
1158 struct btrfs_multi_bio *multi = NULL;
1159 int ret;
1160 int dev_nr = 0;
1161 int total_devs = 1;
1162
1163 length = bio->bi_size;
1164
1165 map_tree = &root->fs_info->mapping_tree;
1166 map_length = length;
1167
1168 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
1169 mirror_num);
1170 BUG_ON(ret);
1171
1172 total_devs = multi->num_stripes;
1173 if (map_length < length) {
1174 printk("mapping failed logical %Lu bio len %Lu "
1175 "len %Lu\n", logical, length, map_length);
1176 BUG();
1177 }
1178 multi->end_io = first_bio->bi_end_io;
1179 multi->private = first_bio->bi_private;
1180 atomic_set(&multi->stripes_pending, multi->num_stripes);
1181
1182 while(dev_nr < total_devs) {
1183 if (total_devs > 1) {
1184 if (dev_nr < total_devs - 1) {
1185 bio = bio_clone(first_bio, GFP_NOFS);
1186 BUG_ON(!bio);
1187 } else {
1188 bio = first_bio;
1189 }
1190 bio->bi_private = multi;
1191 bio->bi_end_io = end_bio_multi_stripe;
1192 }
1193 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
1194 dev = multi->stripes[dev_nr].dev;
1195 bio->bi_bdev = dev->bdev;
1196 spin_lock(&dev->io_lock);
1197 dev->total_ios++;
1198 spin_unlock(&dev->io_lock);
1199 submit_bio(rw, bio);
1200 dev_nr++;
1201 }
1202 if (total_devs == 1)
1203 kfree(multi);
1204 return 0;
1205 }
1206
1207 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
1208 u8 *uuid)
1209 {
1210 struct list_head *head = &root->fs_info->fs_devices->devices;
1211
1212 return __find_device(head, devid, uuid);
1213 }
1214
1215 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
1216 struct extent_buffer *leaf,
1217 struct btrfs_chunk *chunk)
1218 {
1219 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1220 struct map_lookup *map;
1221 struct extent_map *em;
1222 u64 logical;
1223 u64 length;
1224 u64 devid;
1225 u8 uuid[BTRFS_UUID_SIZE];
1226 int num_stripes;
1227 int ret;
1228 int i;
1229
1230 logical = key->offset;
1231 length = btrfs_chunk_length(leaf, chunk);
1232 spin_lock(&map_tree->map_tree.lock);
1233 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
1234 spin_unlock(&map_tree->map_tree.lock);
1235
1236 /* already mapped? */
1237 if (em && em->start <= logical && em->start + em->len > logical) {
1238 free_extent_map(em);
1239 return 0;
1240 } else if (em) {
1241 free_extent_map(em);
1242 }
1243
1244 map = kzalloc(sizeof(*map), GFP_NOFS);
1245 if (!map)
1246 return -ENOMEM;
1247
1248 em = alloc_extent_map(GFP_NOFS);
1249 if (!em)
1250 return -ENOMEM;
1251 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1252 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1253 if (!map) {
1254 free_extent_map(em);
1255 return -ENOMEM;
1256 }
1257
1258 em->bdev = (struct block_device *)map;
1259 em->start = logical;
1260 em->len = length;
1261 em->block_start = 0;
1262
1263 map->num_stripes = num_stripes;
1264 map->io_width = btrfs_chunk_io_width(leaf, chunk);
1265 map->io_align = btrfs_chunk_io_align(leaf, chunk);
1266 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
1267 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1268 map->type = btrfs_chunk_type(leaf, chunk);
1269 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
1270 for (i = 0; i < num_stripes; i++) {
1271 map->stripes[i].physical =
1272 btrfs_stripe_offset_nr(leaf, chunk, i);
1273 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
1274 read_extent_buffer(leaf, uuid, (unsigned long)
1275 btrfs_stripe_dev_uuid_nr(chunk, i),
1276 BTRFS_UUID_SIZE);
1277 map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
1278 if (!map->stripes[i].dev) {
1279 kfree(map);
1280 free_extent_map(em);
1281 return -EIO;
1282 }
1283 }
1284
1285 spin_lock(&map_tree->map_tree.lock);
1286 ret = add_extent_mapping(&map_tree->map_tree, em);
1287 spin_unlock(&map_tree->map_tree.lock);
1288 BUG_ON(ret);
1289 free_extent_map(em);
1290
1291 return 0;
1292 }
1293
1294 static int fill_device_from_item(struct extent_buffer *leaf,
1295 struct btrfs_dev_item *dev_item,
1296 struct btrfs_device *device)
1297 {
1298 unsigned long ptr;
1299
1300 device->devid = btrfs_device_id(leaf, dev_item);
1301 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
1302 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
1303 device->type = btrfs_device_type(leaf, dev_item);
1304 device->io_align = btrfs_device_io_align(leaf, dev_item);
1305 device->io_width = btrfs_device_io_width(leaf, dev_item);
1306 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
1307
1308 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1309 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1310
1311 return 0;
1312 }
1313
1314 static int read_one_dev(struct btrfs_root *root,
1315 struct extent_buffer *leaf,
1316 struct btrfs_dev_item *dev_item)
1317 {
1318 struct btrfs_device *device;
1319 u64 devid;
1320 int ret;
1321 u8 dev_uuid[BTRFS_UUID_SIZE];
1322
1323 devid = btrfs_device_id(leaf, dev_item);
1324 read_extent_buffer(leaf, dev_uuid,
1325 (unsigned long)btrfs_device_uuid(dev_item),
1326 BTRFS_UUID_SIZE);
1327 device = btrfs_find_device(root, devid, dev_uuid);
1328 if (!device) {
1329 printk("warning devid %Lu not found already\n", devid);
1330 device = kzalloc(sizeof(*device), GFP_NOFS);
1331 if (!device)
1332 return -ENOMEM;
1333 list_add(&device->dev_list,
1334 &root->fs_info->fs_devices->devices);
1335 list_add(&device->dev_alloc_list,
1336 &root->fs_info->fs_devices->alloc_list);
1337 device->barriers = 1;
1338 spin_lock_init(&device->io_lock);
1339 }
1340
1341 fill_device_from_item(leaf, dev_item, device);
1342 device->dev_root = root->fs_info->dev_root;
1343 ret = 0;
1344 #if 0
1345 ret = btrfs_open_device(device);
1346 if (ret) {
1347 kfree(device);
1348 }
1349 #endif
1350 return ret;
1351 }
1352
1353 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
1354 {
1355 struct btrfs_dev_item *dev_item;
1356
1357 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1358 dev_item);
1359 return read_one_dev(root, buf, dev_item);
1360 }
1361
1362 int btrfs_read_sys_array(struct btrfs_root *root)
1363 {
1364 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1365 struct extent_buffer *sb = root->fs_info->sb_buffer;
1366 struct btrfs_disk_key *disk_key;
1367 struct btrfs_chunk *chunk;
1368 struct btrfs_key key;
1369 u32 num_stripes;
1370 u32 array_size;
1371 u32 len = 0;
1372 u8 *ptr;
1373 unsigned long sb_ptr;
1374 u32 cur;
1375 int ret;
1376
1377 array_size = btrfs_super_sys_array_size(super_copy);
1378
1379 /*
1380 * we do this loop twice, once for the device items and
1381 * once for all of the chunks. This way there are device
1382 * structs filled in for every chunk
1383 */
1384 ptr = super_copy->sys_chunk_array;
1385 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
1386 cur = 0;
1387
1388 while (cur < array_size) {
1389 disk_key = (struct btrfs_disk_key *)ptr;
1390 btrfs_disk_key_to_cpu(&key, disk_key);
1391
1392 len = sizeof(*disk_key);
1393 ptr += len;
1394 sb_ptr += len;
1395 cur += len;
1396
1397 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1398 chunk = (struct btrfs_chunk *)sb_ptr;
1399 ret = read_one_chunk(root, &key, sb, chunk);
1400 BUG_ON(ret);
1401 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
1402 len = btrfs_chunk_item_size(num_stripes);
1403 } else {
1404 BUG();
1405 }
1406 ptr += len;
1407 sb_ptr += len;
1408 cur += len;
1409 }
1410 return 0;
1411 }
1412
1413 int btrfs_read_chunk_tree(struct btrfs_root *root)
1414 {
1415 struct btrfs_path *path;
1416 struct extent_buffer *leaf;
1417 struct btrfs_key key;
1418 struct btrfs_key found_key;
1419 int ret;
1420 int slot;
1421
1422 root = root->fs_info->chunk_root;
1423
1424 path = btrfs_alloc_path();
1425 if (!path)
1426 return -ENOMEM;
1427
1428 /* first we search for all of the device items, and then we
1429 * read in all of the chunk items. This way we can create chunk
1430 * mappings that reference all of the devices that are afound
1431 */
1432 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1433 key.offset = 0;
1434 key.type = 0;
1435 again:
1436 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1437 while(1) {
1438 leaf = path->nodes[0];
1439 slot = path->slots[0];
1440 if (slot >= btrfs_header_nritems(leaf)) {
1441 ret = btrfs_next_leaf(root, path);
1442 if (ret == 0)
1443 continue;
1444 if (ret < 0)
1445 goto error;
1446 break;
1447 }
1448 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1449 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1450 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
1451 break;
1452 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
1453 struct btrfs_dev_item *dev_item;
1454 dev_item = btrfs_item_ptr(leaf, slot,
1455 struct btrfs_dev_item);
1456 ret = read_one_dev(root, leaf, dev_item);
1457 BUG_ON(ret);
1458 }
1459 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
1460 struct btrfs_chunk *chunk;
1461 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1462 ret = read_one_chunk(root, &found_key, leaf, chunk);
1463 }
1464 path->slots[0]++;
1465 }
1466 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1467 key.objectid = 0;
1468 btrfs_release_path(root, path);
1469 goto again;
1470 }
1471
1472 btrfs_free_path(path);
1473 ret = 0;
1474 error:
1475 return ret;
1476 }
1477
This page took 0.0641659999999999 seconds and 6 git commands to generate.