check privileges before setting mount propagation
[deliverable/linux.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 bh->b_end_io = handler;
53 bh->b_private = private;
54 }
55
56 static int sync_buffer(void *word)
57 {
58 struct block_device *bd;
59 struct buffer_head *bh
60 = container_of(word, struct buffer_head, b_state);
61
62 smp_mb();
63 bd = bh->b_bdev;
64 if (bd)
65 blk_run_address_space(bd->bd_inode->i_mapping);
66 io_schedule();
67 return 0;
68 }
69
70 void fastcall __lock_buffer(struct buffer_head *bh)
71 {
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void fastcall unlock_buffer(struct buffer_head *bh)
78 {
79 smp_mb__before_clear_bit();
80 clear_buffer_locked(bh);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
83 }
84
85 /*
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
89 */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98 ClearPagePrivate(page);
99 set_page_private(page, 0);
100 page_cache_release(page);
101 }
102
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105 char b[BDEVNAME_SIZE];
106
107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh->b_bdev, b),
109 (unsigned long long)bh->b_blocknr);
110 }
111
112 /*
113 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
114 * unlock the buffer. This is what ll_rw_block uses too.
115 */
116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
117 {
118 if (uptodate) {
119 set_buffer_uptodate(bh);
120 } else {
121 /* This happens, due to failed READA attempts. */
122 clear_buffer_uptodate(bh);
123 }
124 unlock_buffer(bh);
125 put_bh(bh);
126 }
127
128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
129 {
130 char b[BDEVNAME_SIZE];
131
132 if (uptodate) {
133 set_buffer_uptodate(bh);
134 } else {
135 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
136 buffer_io_error(bh);
137 printk(KERN_WARNING "lost page write due to "
138 "I/O error on %s\n",
139 bdevname(bh->b_bdev, b));
140 }
141 set_buffer_write_io_error(bh);
142 clear_buffer_uptodate(bh);
143 }
144 unlock_buffer(bh);
145 put_bh(bh);
146 }
147
148 /*
149 * Write out and wait upon all the dirty data associated with a block
150 * device via its mapping. Does not take the superblock lock.
151 */
152 int sync_blockdev(struct block_device *bdev)
153 {
154 int ret = 0;
155
156 if (bdev)
157 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
158 return ret;
159 }
160 EXPORT_SYMBOL(sync_blockdev);
161
162 /*
163 * Write out and wait upon all dirty data associated with this
164 * device. Filesystem data as well as the underlying block
165 * device. Takes the superblock lock.
166 */
167 int fsync_bdev(struct block_device *bdev)
168 {
169 struct super_block *sb = get_super(bdev);
170 if (sb) {
171 int res = fsync_super(sb);
172 drop_super(sb);
173 return res;
174 }
175 return sync_blockdev(bdev);
176 }
177
178 /**
179 * freeze_bdev -- lock a filesystem and force it into a consistent state
180 * @bdev: blockdevice to lock
181 *
182 * This takes the block device bd_mount_sem to make sure no new mounts
183 * happen on bdev until thaw_bdev() is called.
184 * If a superblock is found on this device, we take the s_umount semaphore
185 * on it to make sure nobody unmounts until the snapshot creation is done.
186 */
187 struct super_block *freeze_bdev(struct block_device *bdev)
188 {
189 struct super_block *sb;
190
191 down(&bdev->bd_mount_sem);
192 sb = get_super(bdev);
193 if (sb && !(sb->s_flags & MS_RDONLY)) {
194 sb->s_frozen = SB_FREEZE_WRITE;
195 smp_wmb();
196
197 __fsync_super(sb);
198
199 sb->s_frozen = SB_FREEZE_TRANS;
200 smp_wmb();
201
202 sync_blockdev(sb->s_bdev);
203
204 if (sb->s_op->write_super_lockfs)
205 sb->s_op->write_super_lockfs(sb);
206 }
207
208 sync_blockdev(bdev);
209 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
210 }
211 EXPORT_SYMBOL(freeze_bdev);
212
213 /**
214 * thaw_bdev -- unlock filesystem
215 * @bdev: blockdevice to unlock
216 * @sb: associated superblock
217 *
218 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
219 */
220 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
221 {
222 if (sb) {
223 BUG_ON(sb->s_bdev != bdev);
224
225 if (sb->s_op->unlockfs)
226 sb->s_op->unlockfs(sb);
227 sb->s_frozen = SB_UNFROZEN;
228 smp_wmb();
229 wake_up(&sb->s_wait_unfrozen);
230 drop_super(sb);
231 }
232
233 up(&bdev->bd_mount_sem);
234 }
235 EXPORT_SYMBOL(thaw_bdev);
236
237 /*
238 * Various filesystems appear to want __find_get_block to be non-blocking.
239 * But it's the page lock which protects the buffers. To get around this,
240 * we get exclusion from try_to_free_buffers with the blockdev mapping's
241 * private_lock.
242 *
243 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
244 * may be quite high. This code could TryLock the page, and if that
245 * succeeds, there is no need to take private_lock. (But if
246 * private_lock is contended then so is mapping->tree_lock).
247 */
248 static struct buffer_head *
249 __find_get_block_slow(struct block_device *bdev, sector_t block)
250 {
251 struct inode *bd_inode = bdev->bd_inode;
252 struct address_space *bd_mapping = bd_inode->i_mapping;
253 struct buffer_head *ret = NULL;
254 pgoff_t index;
255 struct buffer_head *bh;
256 struct buffer_head *head;
257 struct page *page;
258 int all_mapped = 1;
259
260 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
261 page = find_get_page(bd_mapping, index);
262 if (!page)
263 goto out;
264
265 spin_lock(&bd_mapping->private_lock);
266 if (!page_has_buffers(page))
267 goto out_unlock;
268 head = page_buffers(page);
269 bh = head;
270 do {
271 if (bh->b_blocknr == block) {
272 ret = bh;
273 get_bh(bh);
274 goto out_unlock;
275 }
276 if (!buffer_mapped(bh))
277 all_mapped = 0;
278 bh = bh->b_this_page;
279 } while (bh != head);
280
281 /* we might be here because some of the buffers on this page are
282 * not mapped. This is due to various races between
283 * file io on the block device and getblk. It gets dealt with
284 * elsewhere, don't buffer_error if we had some unmapped buffers
285 */
286 if (all_mapped) {
287 printk("__find_get_block_slow() failed. "
288 "block=%llu, b_blocknr=%llu\n",
289 (unsigned long long)block,
290 (unsigned long long)bh->b_blocknr);
291 printk("b_state=0x%08lx, b_size=%zu\n",
292 bh->b_state, bh->b_size);
293 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
294 }
295 out_unlock:
296 spin_unlock(&bd_mapping->private_lock);
297 page_cache_release(page);
298 out:
299 return ret;
300 }
301
302 /* If invalidate_buffers() will trash dirty buffers, it means some kind
303 of fs corruption is going on. Trashing dirty data always imply losing
304 information that was supposed to be just stored on the physical layer
305 by the user.
306
307 Thus invalidate_buffers in general usage is not allwowed to trash
308 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
309 be preserved. These buffers are simply skipped.
310
311 We also skip buffers which are still in use. For example this can
312 happen if a userspace program is reading the block device.
313
314 NOTE: In the case where the user removed a removable-media-disk even if
315 there's still dirty data not synced on disk (due a bug in the device driver
316 or due an error of the user), by not destroying the dirty buffers we could
317 generate corruption also on the next media inserted, thus a parameter is
318 necessary to handle this case in the most safe way possible (trying
319 to not corrupt also the new disk inserted with the data belonging to
320 the old now corrupted disk). Also for the ramdisk the natural thing
321 to do in order to release the ramdisk memory is to destroy dirty buffers.
322
323 These are two special cases. Normal usage imply the device driver
324 to issue a sync on the device (without waiting I/O completion) and
325 then an invalidate_buffers call that doesn't trash dirty buffers.
326
327 For handling cache coherency with the blkdev pagecache the 'update' case
328 is been introduced. It is needed to re-read from disk any pinned
329 buffer. NOTE: re-reading from disk is destructive so we can do it only
330 when we assume nobody is changing the buffercache under our I/O and when
331 we think the disk contains more recent information than the buffercache.
332 The update == 1 pass marks the buffers we need to update, the update == 2
333 pass does the actual I/O. */
334 void invalidate_bdev(struct block_device *bdev)
335 {
336 struct address_space *mapping = bdev->bd_inode->i_mapping;
337
338 if (mapping->nrpages == 0)
339 return;
340
341 invalidate_bh_lrus();
342 invalidate_mapping_pages(mapping, 0, -1);
343 }
344
345 /*
346 * Kick pdflush then try to free up some ZONE_NORMAL memory.
347 */
348 static void free_more_memory(void)
349 {
350 struct zone **zones;
351 pg_data_t *pgdat;
352
353 wakeup_pdflush(1024);
354 yield();
355
356 for_each_online_pgdat(pgdat) {
357 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
358 if (*zones)
359 try_to_free_pages(zones, GFP_NOFS);
360 }
361 }
362
363 /*
364 * I/O completion handler for block_read_full_page() - pages
365 * which come unlocked at the end of I/O.
366 */
367 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
368 {
369 unsigned long flags;
370 struct buffer_head *first;
371 struct buffer_head *tmp;
372 struct page *page;
373 int page_uptodate = 1;
374
375 BUG_ON(!buffer_async_read(bh));
376
377 page = bh->b_page;
378 if (uptodate) {
379 set_buffer_uptodate(bh);
380 } else {
381 clear_buffer_uptodate(bh);
382 if (printk_ratelimit())
383 buffer_io_error(bh);
384 SetPageError(page);
385 }
386
387 /*
388 * Be _very_ careful from here on. Bad things can happen if
389 * two buffer heads end IO at almost the same time and both
390 * decide that the page is now completely done.
391 */
392 first = page_buffers(page);
393 local_irq_save(flags);
394 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
395 clear_buffer_async_read(bh);
396 unlock_buffer(bh);
397 tmp = bh;
398 do {
399 if (!buffer_uptodate(tmp))
400 page_uptodate = 0;
401 if (buffer_async_read(tmp)) {
402 BUG_ON(!buffer_locked(tmp));
403 goto still_busy;
404 }
405 tmp = tmp->b_this_page;
406 } while (tmp != bh);
407 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
408 local_irq_restore(flags);
409
410 /*
411 * If none of the buffers had errors and they are all
412 * uptodate then we can set the page uptodate.
413 */
414 if (page_uptodate && !PageError(page))
415 SetPageUptodate(page);
416 unlock_page(page);
417 return;
418
419 still_busy:
420 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
421 local_irq_restore(flags);
422 return;
423 }
424
425 /*
426 * Completion handler for block_write_full_page() - pages which are unlocked
427 * during I/O, and which have PageWriteback cleared upon I/O completion.
428 */
429 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
430 {
431 char b[BDEVNAME_SIZE];
432 unsigned long flags;
433 struct buffer_head *first;
434 struct buffer_head *tmp;
435 struct page *page;
436
437 BUG_ON(!buffer_async_write(bh));
438
439 page = bh->b_page;
440 if (uptodate) {
441 set_buffer_uptodate(bh);
442 } else {
443 if (printk_ratelimit()) {
444 buffer_io_error(bh);
445 printk(KERN_WARNING "lost page write due to "
446 "I/O error on %s\n",
447 bdevname(bh->b_bdev, b));
448 }
449 set_bit(AS_EIO, &page->mapping->flags);
450 set_buffer_write_io_error(bh);
451 clear_buffer_uptodate(bh);
452 SetPageError(page);
453 }
454
455 first = page_buffers(page);
456 local_irq_save(flags);
457 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
458
459 clear_buffer_async_write(bh);
460 unlock_buffer(bh);
461 tmp = bh->b_this_page;
462 while (tmp != bh) {
463 if (buffer_async_write(tmp)) {
464 BUG_ON(!buffer_locked(tmp));
465 goto still_busy;
466 }
467 tmp = tmp->b_this_page;
468 }
469 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
470 local_irq_restore(flags);
471 end_page_writeback(page);
472 return;
473
474 still_busy:
475 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
476 local_irq_restore(flags);
477 return;
478 }
479
480 /*
481 * If a page's buffers are under async readin (end_buffer_async_read
482 * completion) then there is a possibility that another thread of
483 * control could lock one of the buffers after it has completed
484 * but while some of the other buffers have not completed. This
485 * locked buffer would confuse end_buffer_async_read() into not unlocking
486 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
487 * that this buffer is not under async I/O.
488 *
489 * The page comes unlocked when it has no locked buffer_async buffers
490 * left.
491 *
492 * PageLocked prevents anyone starting new async I/O reads any of
493 * the buffers.
494 *
495 * PageWriteback is used to prevent simultaneous writeout of the same
496 * page.
497 *
498 * PageLocked prevents anyone from starting writeback of a page which is
499 * under read I/O (PageWriteback is only ever set against a locked page).
500 */
501 static void mark_buffer_async_read(struct buffer_head *bh)
502 {
503 bh->b_end_io = end_buffer_async_read;
504 set_buffer_async_read(bh);
505 }
506
507 void mark_buffer_async_write(struct buffer_head *bh)
508 {
509 bh->b_end_io = end_buffer_async_write;
510 set_buffer_async_write(bh);
511 }
512 EXPORT_SYMBOL(mark_buffer_async_write);
513
514
515 /*
516 * fs/buffer.c contains helper functions for buffer-backed address space's
517 * fsync functions. A common requirement for buffer-based filesystems is
518 * that certain data from the backing blockdev needs to be written out for
519 * a successful fsync(). For example, ext2 indirect blocks need to be
520 * written back and waited upon before fsync() returns.
521 *
522 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
523 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
524 * management of a list of dependent buffers at ->i_mapping->private_list.
525 *
526 * Locking is a little subtle: try_to_free_buffers() will remove buffers
527 * from their controlling inode's queue when they are being freed. But
528 * try_to_free_buffers() will be operating against the *blockdev* mapping
529 * at the time, not against the S_ISREG file which depends on those buffers.
530 * So the locking for private_list is via the private_lock in the address_space
531 * which backs the buffers. Which is different from the address_space
532 * against which the buffers are listed. So for a particular address_space,
533 * mapping->private_lock does *not* protect mapping->private_list! In fact,
534 * mapping->private_list will always be protected by the backing blockdev's
535 * ->private_lock.
536 *
537 * Which introduces a requirement: all buffers on an address_space's
538 * ->private_list must be from the same address_space: the blockdev's.
539 *
540 * address_spaces which do not place buffers at ->private_list via these
541 * utility functions are free to use private_lock and private_list for
542 * whatever they want. The only requirement is that list_empty(private_list)
543 * be true at clear_inode() time.
544 *
545 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
546 * filesystems should do that. invalidate_inode_buffers() should just go
547 * BUG_ON(!list_empty).
548 *
549 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
550 * take an address_space, not an inode. And it should be called
551 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
552 * queued up.
553 *
554 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
555 * list if it is already on a list. Because if the buffer is on a list,
556 * it *must* already be on the right one. If not, the filesystem is being
557 * silly. This will save a ton of locking. But first we have to ensure
558 * that buffers are taken *off* the old inode's list when they are freed
559 * (presumably in truncate). That requires careful auditing of all
560 * filesystems (do it inside bforget()). It could also be done by bringing
561 * b_inode back.
562 */
563
564 /*
565 * The buffer's backing address_space's private_lock must be held
566 */
567 static inline void __remove_assoc_queue(struct buffer_head *bh)
568 {
569 list_del_init(&bh->b_assoc_buffers);
570 WARN_ON(!bh->b_assoc_map);
571 if (buffer_write_io_error(bh))
572 set_bit(AS_EIO, &bh->b_assoc_map->flags);
573 bh->b_assoc_map = NULL;
574 }
575
576 int inode_has_buffers(struct inode *inode)
577 {
578 return !list_empty(&inode->i_data.private_list);
579 }
580
581 /*
582 * osync is designed to support O_SYNC io. It waits synchronously for
583 * all already-submitted IO to complete, but does not queue any new
584 * writes to the disk.
585 *
586 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
587 * you dirty the buffers, and then use osync_inode_buffers to wait for
588 * completion. Any other dirty buffers which are not yet queued for
589 * write will not be flushed to disk by the osync.
590 */
591 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
592 {
593 struct buffer_head *bh;
594 struct list_head *p;
595 int err = 0;
596
597 spin_lock(lock);
598 repeat:
599 list_for_each_prev(p, list) {
600 bh = BH_ENTRY(p);
601 if (buffer_locked(bh)) {
602 get_bh(bh);
603 spin_unlock(lock);
604 wait_on_buffer(bh);
605 if (!buffer_uptodate(bh))
606 err = -EIO;
607 brelse(bh);
608 spin_lock(lock);
609 goto repeat;
610 }
611 }
612 spin_unlock(lock);
613 return err;
614 }
615
616 /**
617 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
618 * buffers
619 * @mapping: the mapping which wants those buffers written
620 *
621 * Starts I/O against the buffers at mapping->private_list, and waits upon
622 * that I/O.
623 *
624 * Basically, this is a convenience function for fsync().
625 * @mapping is a file or directory which needs those buffers to be written for
626 * a successful fsync().
627 */
628 int sync_mapping_buffers(struct address_space *mapping)
629 {
630 struct address_space *buffer_mapping = mapping->assoc_mapping;
631
632 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
633 return 0;
634
635 return fsync_buffers_list(&buffer_mapping->private_lock,
636 &mapping->private_list);
637 }
638 EXPORT_SYMBOL(sync_mapping_buffers);
639
640 /*
641 * Called when we've recently written block `bblock', and it is known that
642 * `bblock' was for a buffer_boundary() buffer. This means that the block at
643 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
644 * dirty, schedule it for IO. So that indirects merge nicely with their data.
645 */
646 void write_boundary_block(struct block_device *bdev,
647 sector_t bblock, unsigned blocksize)
648 {
649 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
650 if (bh) {
651 if (buffer_dirty(bh))
652 ll_rw_block(WRITE, 1, &bh);
653 put_bh(bh);
654 }
655 }
656
657 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
658 {
659 struct address_space *mapping = inode->i_mapping;
660 struct address_space *buffer_mapping = bh->b_page->mapping;
661
662 mark_buffer_dirty(bh);
663 if (!mapping->assoc_mapping) {
664 mapping->assoc_mapping = buffer_mapping;
665 } else {
666 BUG_ON(mapping->assoc_mapping != buffer_mapping);
667 }
668 if (list_empty(&bh->b_assoc_buffers)) {
669 spin_lock(&buffer_mapping->private_lock);
670 list_move_tail(&bh->b_assoc_buffers,
671 &mapping->private_list);
672 bh->b_assoc_map = mapping;
673 spin_unlock(&buffer_mapping->private_lock);
674 }
675 }
676 EXPORT_SYMBOL(mark_buffer_dirty_inode);
677
678 /*
679 * Add a page to the dirty page list.
680 *
681 * It is a sad fact of life that this function is called from several places
682 * deeply under spinlocking. It may not sleep.
683 *
684 * If the page has buffers, the uptodate buffers are set dirty, to preserve
685 * dirty-state coherency between the page and the buffers. It the page does
686 * not have buffers then when they are later attached they will all be set
687 * dirty.
688 *
689 * The buffers are dirtied before the page is dirtied. There's a small race
690 * window in which a writepage caller may see the page cleanness but not the
691 * buffer dirtiness. That's fine. If this code were to set the page dirty
692 * before the buffers, a concurrent writepage caller could clear the page dirty
693 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
694 * page on the dirty page list.
695 *
696 * We use private_lock to lock against try_to_free_buffers while using the
697 * page's buffer list. Also use this to protect against clean buffers being
698 * added to the page after it was set dirty.
699 *
700 * FIXME: may need to call ->reservepage here as well. That's rather up to the
701 * address_space though.
702 */
703 int __set_page_dirty_buffers(struct page *page)
704 {
705 struct address_space * const mapping = page_mapping(page);
706
707 if (unlikely(!mapping))
708 return !TestSetPageDirty(page);
709
710 spin_lock(&mapping->private_lock);
711 if (page_has_buffers(page)) {
712 struct buffer_head *head = page_buffers(page);
713 struct buffer_head *bh = head;
714
715 do {
716 set_buffer_dirty(bh);
717 bh = bh->b_this_page;
718 } while (bh != head);
719 }
720 spin_unlock(&mapping->private_lock);
721
722 if (TestSetPageDirty(page))
723 return 0;
724
725 write_lock_irq(&mapping->tree_lock);
726 if (page->mapping) { /* Race with truncate? */
727 if (mapping_cap_account_dirty(mapping)) {
728 __inc_zone_page_state(page, NR_FILE_DIRTY);
729 task_io_account_write(PAGE_CACHE_SIZE);
730 }
731 radix_tree_tag_set(&mapping->page_tree,
732 page_index(page), PAGECACHE_TAG_DIRTY);
733 }
734 write_unlock_irq(&mapping->tree_lock);
735 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
736 return 1;
737 }
738 EXPORT_SYMBOL(__set_page_dirty_buffers);
739
740 /*
741 * Write out and wait upon a list of buffers.
742 *
743 * We have conflicting pressures: we want to make sure that all
744 * initially dirty buffers get waited on, but that any subsequently
745 * dirtied buffers don't. After all, we don't want fsync to last
746 * forever if somebody is actively writing to the file.
747 *
748 * Do this in two main stages: first we copy dirty buffers to a
749 * temporary inode list, queueing the writes as we go. Then we clean
750 * up, waiting for those writes to complete.
751 *
752 * During this second stage, any subsequent updates to the file may end
753 * up refiling the buffer on the original inode's dirty list again, so
754 * there is a chance we will end up with a buffer queued for write but
755 * not yet completed on that list. So, as a final cleanup we go through
756 * the osync code to catch these locked, dirty buffers without requeuing
757 * any newly dirty buffers for write.
758 */
759 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
760 {
761 struct buffer_head *bh;
762 struct list_head tmp;
763 int err = 0, err2;
764
765 INIT_LIST_HEAD(&tmp);
766
767 spin_lock(lock);
768 while (!list_empty(list)) {
769 bh = BH_ENTRY(list->next);
770 __remove_assoc_queue(bh);
771 if (buffer_dirty(bh) || buffer_locked(bh)) {
772 list_add(&bh->b_assoc_buffers, &tmp);
773 if (buffer_dirty(bh)) {
774 get_bh(bh);
775 spin_unlock(lock);
776 /*
777 * Ensure any pending I/O completes so that
778 * ll_rw_block() actually writes the current
779 * contents - it is a noop if I/O is still in
780 * flight on potentially older contents.
781 */
782 ll_rw_block(SWRITE, 1, &bh);
783 brelse(bh);
784 spin_lock(lock);
785 }
786 }
787 }
788
789 while (!list_empty(&tmp)) {
790 bh = BH_ENTRY(tmp.prev);
791 list_del_init(&bh->b_assoc_buffers);
792 get_bh(bh);
793 spin_unlock(lock);
794 wait_on_buffer(bh);
795 if (!buffer_uptodate(bh))
796 err = -EIO;
797 brelse(bh);
798 spin_lock(lock);
799 }
800
801 spin_unlock(lock);
802 err2 = osync_buffers_list(lock, list);
803 if (err)
804 return err;
805 else
806 return err2;
807 }
808
809 /*
810 * Invalidate any and all dirty buffers on a given inode. We are
811 * probably unmounting the fs, but that doesn't mean we have already
812 * done a sync(). Just drop the buffers from the inode list.
813 *
814 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
815 * assumes that all the buffers are against the blockdev. Not true
816 * for reiserfs.
817 */
818 void invalidate_inode_buffers(struct inode *inode)
819 {
820 if (inode_has_buffers(inode)) {
821 struct address_space *mapping = &inode->i_data;
822 struct list_head *list = &mapping->private_list;
823 struct address_space *buffer_mapping = mapping->assoc_mapping;
824
825 spin_lock(&buffer_mapping->private_lock);
826 while (!list_empty(list))
827 __remove_assoc_queue(BH_ENTRY(list->next));
828 spin_unlock(&buffer_mapping->private_lock);
829 }
830 }
831
832 /*
833 * Remove any clean buffers from the inode's buffer list. This is called
834 * when we're trying to free the inode itself. Those buffers can pin it.
835 *
836 * Returns true if all buffers were removed.
837 */
838 int remove_inode_buffers(struct inode *inode)
839 {
840 int ret = 1;
841
842 if (inode_has_buffers(inode)) {
843 struct address_space *mapping = &inode->i_data;
844 struct list_head *list = &mapping->private_list;
845 struct address_space *buffer_mapping = mapping->assoc_mapping;
846
847 spin_lock(&buffer_mapping->private_lock);
848 while (!list_empty(list)) {
849 struct buffer_head *bh = BH_ENTRY(list->next);
850 if (buffer_dirty(bh)) {
851 ret = 0;
852 break;
853 }
854 __remove_assoc_queue(bh);
855 }
856 spin_unlock(&buffer_mapping->private_lock);
857 }
858 return ret;
859 }
860
861 /*
862 * Create the appropriate buffers when given a page for data area and
863 * the size of each buffer.. Use the bh->b_this_page linked list to
864 * follow the buffers created. Return NULL if unable to create more
865 * buffers.
866 *
867 * The retry flag is used to differentiate async IO (paging, swapping)
868 * which may not fail from ordinary buffer allocations.
869 */
870 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
871 int retry)
872 {
873 struct buffer_head *bh, *head;
874 long offset;
875
876 try_again:
877 head = NULL;
878 offset = PAGE_SIZE;
879 while ((offset -= size) >= 0) {
880 bh = alloc_buffer_head(GFP_NOFS);
881 if (!bh)
882 goto no_grow;
883
884 bh->b_bdev = NULL;
885 bh->b_this_page = head;
886 bh->b_blocknr = -1;
887 head = bh;
888
889 bh->b_state = 0;
890 atomic_set(&bh->b_count, 0);
891 bh->b_private = NULL;
892 bh->b_size = size;
893
894 /* Link the buffer to its page */
895 set_bh_page(bh, page, offset);
896
897 init_buffer(bh, NULL, NULL);
898 }
899 return head;
900 /*
901 * In case anything failed, we just free everything we got.
902 */
903 no_grow:
904 if (head) {
905 do {
906 bh = head;
907 head = head->b_this_page;
908 free_buffer_head(bh);
909 } while (head);
910 }
911
912 /*
913 * Return failure for non-async IO requests. Async IO requests
914 * are not allowed to fail, so we have to wait until buffer heads
915 * become available. But we don't want tasks sleeping with
916 * partially complete buffers, so all were released above.
917 */
918 if (!retry)
919 return NULL;
920
921 /* We're _really_ low on memory. Now we just
922 * wait for old buffer heads to become free due to
923 * finishing IO. Since this is an async request and
924 * the reserve list is empty, we're sure there are
925 * async buffer heads in use.
926 */
927 free_more_memory();
928 goto try_again;
929 }
930 EXPORT_SYMBOL_GPL(alloc_page_buffers);
931
932 static inline void
933 link_dev_buffers(struct page *page, struct buffer_head *head)
934 {
935 struct buffer_head *bh, *tail;
936
937 bh = head;
938 do {
939 tail = bh;
940 bh = bh->b_this_page;
941 } while (bh);
942 tail->b_this_page = head;
943 attach_page_buffers(page, head);
944 }
945
946 /*
947 * Initialise the state of a blockdev page's buffers.
948 */
949 static void
950 init_page_buffers(struct page *page, struct block_device *bdev,
951 sector_t block, int size)
952 {
953 struct buffer_head *head = page_buffers(page);
954 struct buffer_head *bh = head;
955 int uptodate = PageUptodate(page);
956
957 do {
958 if (!buffer_mapped(bh)) {
959 init_buffer(bh, NULL, NULL);
960 bh->b_bdev = bdev;
961 bh->b_blocknr = block;
962 if (uptodate)
963 set_buffer_uptodate(bh);
964 set_buffer_mapped(bh);
965 }
966 block++;
967 bh = bh->b_this_page;
968 } while (bh != head);
969 }
970
971 /*
972 * Create the page-cache page that contains the requested block.
973 *
974 * This is user purely for blockdev mappings.
975 */
976 static struct page *
977 grow_dev_page(struct block_device *bdev, sector_t block,
978 pgoff_t index, int size)
979 {
980 struct inode *inode = bdev->bd_inode;
981 struct page *page;
982 struct buffer_head *bh;
983
984 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
985 if (!page)
986 return NULL;
987
988 BUG_ON(!PageLocked(page));
989
990 if (page_has_buffers(page)) {
991 bh = page_buffers(page);
992 if (bh->b_size == size) {
993 init_page_buffers(page, bdev, block, size);
994 return page;
995 }
996 if (!try_to_free_buffers(page))
997 goto failed;
998 }
999
1000 /*
1001 * Allocate some buffers for this page
1002 */
1003 bh = alloc_page_buffers(page, size, 0);
1004 if (!bh)
1005 goto failed;
1006
1007 /*
1008 * Link the page to the buffers and initialise them. Take the
1009 * lock to be atomic wrt __find_get_block(), which does not
1010 * run under the page lock.
1011 */
1012 spin_lock(&inode->i_mapping->private_lock);
1013 link_dev_buffers(page, bh);
1014 init_page_buffers(page, bdev, block, size);
1015 spin_unlock(&inode->i_mapping->private_lock);
1016 return page;
1017
1018 failed:
1019 BUG();
1020 unlock_page(page);
1021 page_cache_release(page);
1022 return NULL;
1023 }
1024
1025 /*
1026 * Create buffers for the specified block device block's page. If
1027 * that page was dirty, the buffers are set dirty also.
1028 *
1029 * Except that's a bug. Attaching dirty buffers to a dirty
1030 * blockdev's page can result in filesystem corruption, because
1031 * some of those buffers may be aliases of filesystem data.
1032 * grow_dev_page() will go BUG() if this happens.
1033 */
1034 static int
1035 grow_buffers(struct block_device *bdev, sector_t block, int size)
1036 {
1037 struct page *page;
1038 pgoff_t index;
1039 int sizebits;
1040
1041 sizebits = -1;
1042 do {
1043 sizebits++;
1044 } while ((size << sizebits) < PAGE_SIZE);
1045
1046 index = block >> sizebits;
1047
1048 /*
1049 * Check for a block which wants to lie outside our maximum possible
1050 * pagecache index. (this comparison is done using sector_t types).
1051 */
1052 if (unlikely(index != block >> sizebits)) {
1053 char b[BDEVNAME_SIZE];
1054
1055 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1056 "device %s\n",
1057 __FUNCTION__, (unsigned long long)block,
1058 bdevname(bdev, b));
1059 return -EIO;
1060 }
1061 block = index << sizebits;
1062 /* Create a page with the proper size buffers.. */
1063 page = grow_dev_page(bdev, block, index, size);
1064 if (!page)
1065 return 0;
1066 unlock_page(page);
1067 page_cache_release(page);
1068 return 1;
1069 }
1070
1071 static struct buffer_head *
1072 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1073 {
1074 /* Size must be multiple of hard sectorsize */
1075 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1076 (size < 512 || size > PAGE_SIZE))) {
1077 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1078 size);
1079 printk(KERN_ERR "hardsect size: %d\n",
1080 bdev_hardsect_size(bdev));
1081
1082 dump_stack();
1083 return NULL;
1084 }
1085
1086 for (;;) {
1087 struct buffer_head * bh;
1088 int ret;
1089
1090 bh = __find_get_block(bdev, block, size);
1091 if (bh)
1092 return bh;
1093
1094 ret = grow_buffers(bdev, block, size);
1095 if (ret < 0)
1096 return NULL;
1097 if (ret == 0)
1098 free_more_memory();
1099 }
1100 }
1101
1102 /*
1103 * The relationship between dirty buffers and dirty pages:
1104 *
1105 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1106 * the page is tagged dirty in its radix tree.
1107 *
1108 * At all times, the dirtiness of the buffers represents the dirtiness of
1109 * subsections of the page. If the page has buffers, the page dirty bit is
1110 * merely a hint about the true dirty state.
1111 *
1112 * When a page is set dirty in its entirety, all its buffers are marked dirty
1113 * (if the page has buffers).
1114 *
1115 * When a buffer is marked dirty, its page is dirtied, but the page's other
1116 * buffers are not.
1117 *
1118 * Also. When blockdev buffers are explicitly read with bread(), they
1119 * individually become uptodate. But their backing page remains not
1120 * uptodate - even if all of its buffers are uptodate. A subsequent
1121 * block_read_full_page() against that page will discover all the uptodate
1122 * buffers, will set the page uptodate and will perform no I/O.
1123 */
1124
1125 /**
1126 * mark_buffer_dirty - mark a buffer_head as needing writeout
1127 * @bh: the buffer_head to mark dirty
1128 *
1129 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1130 * backing page dirty, then tag the page as dirty in its address_space's radix
1131 * tree and then attach the address_space's inode to its superblock's dirty
1132 * inode list.
1133 *
1134 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1135 * mapping->tree_lock and the global inode_lock.
1136 */
1137 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1138 {
1139 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1140 __set_page_dirty_nobuffers(bh->b_page);
1141 }
1142
1143 /*
1144 * Decrement a buffer_head's reference count. If all buffers against a page
1145 * have zero reference count, are clean and unlocked, and if the page is clean
1146 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1147 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1148 * a page but it ends up not being freed, and buffers may later be reattached).
1149 */
1150 void __brelse(struct buffer_head * buf)
1151 {
1152 if (atomic_read(&buf->b_count)) {
1153 put_bh(buf);
1154 return;
1155 }
1156 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1157 WARN_ON(1);
1158 }
1159
1160 /*
1161 * bforget() is like brelse(), except it discards any
1162 * potentially dirty data.
1163 */
1164 void __bforget(struct buffer_head *bh)
1165 {
1166 clear_buffer_dirty(bh);
1167 if (!list_empty(&bh->b_assoc_buffers)) {
1168 struct address_space *buffer_mapping = bh->b_page->mapping;
1169
1170 spin_lock(&buffer_mapping->private_lock);
1171 list_del_init(&bh->b_assoc_buffers);
1172 bh->b_assoc_map = NULL;
1173 spin_unlock(&buffer_mapping->private_lock);
1174 }
1175 __brelse(bh);
1176 }
1177
1178 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1179 {
1180 lock_buffer(bh);
1181 if (buffer_uptodate(bh)) {
1182 unlock_buffer(bh);
1183 return bh;
1184 } else {
1185 get_bh(bh);
1186 bh->b_end_io = end_buffer_read_sync;
1187 submit_bh(READ, bh);
1188 wait_on_buffer(bh);
1189 if (buffer_uptodate(bh))
1190 return bh;
1191 }
1192 brelse(bh);
1193 return NULL;
1194 }
1195
1196 /*
1197 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1198 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1199 * refcount elevated by one when they're in an LRU. A buffer can only appear
1200 * once in a particular CPU's LRU. A single buffer can be present in multiple
1201 * CPU's LRUs at the same time.
1202 *
1203 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1204 * sb_find_get_block().
1205 *
1206 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1207 * a local interrupt disable for that.
1208 */
1209
1210 #define BH_LRU_SIZE 8
1211
1212 struct bh_lru {
1213 struct buffer_head *bhs[BH_LRU_SIZE];
1214 };
1215
1216 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1217
1218 #ifdef CONFIG_SMP
1219 #define bh_lru_lock() local_irq_disable()
1220 #define bh_lru_unlock() local_irq_enable()
1221 #else
1222 #define bh_lru_lock() preempt_disable()
1223 #define bh_lru_unlock() preempt_enable()
1224 #endif
1225
1226 static inline void check_irqs_on(void)
1227 {
1228 #ifdef irqs_disabled
1229 BUG_ON(irqs_disabled());
1230 #endif
1231 }
1232
1233 /*
1234 * The LRU management algorithm is dopey-but-simple. Sorry.
1235 */
1236 static void bh_lru_install(struct buffer_head *bh)
1237 {
1238 struct buffer_head *evictee = NULL;
1239 struct bh_lru *lru;
1240
1241 check_irqs_on();
1242 bh_lru_lock();
1243 lru = &__get_cpu_var(bh_lrus);
1244 if (lru->bhs[0] != bh) {
1245 struct buffer_head *bhs[BH_LRU_SIZE];
1246 int in;
1247 int out = 0;
1248
1249 get_bh(bh);
1250 bhs[out++] = bh;
1251 for (in = 0; in < BH_LRU_SIZE; in++) {
1252 struct buffer_head *bh2 = lru->bhs[in];
1253
1254 if (bh2 == bh) {
1255 __brelse(bh2);
1256 } else {
1257 if (out >= BH_LRU_SIZE) {
1258 BUG_ON(evictee != NULL);
1259 evictee = bh2;
1260 } else {
1261 bhs[out++] = bh2;
1262 }
1263 }
1264 }
1265 while (out < BH_LRU_SIZE)
1266 bhs[out++] = NULL;
1267 memcpy(lru->bhs, bhs, sizeof(bhs));
1268 }
1269 bh_lru_unlock();
1270
1271 if (evictee)
1272 __brelse(evictee);
1273 }
1274
1275 /*
1276 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1277 */
1278 static struct buffer_head *
1279 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1280 {
1281 struct buffer_head *ret = NULL;
1282 struct bh_lru *lru;
1283 unsigned int i;
1284
1285 check_irqs_on();
1286 bh_lru_lock();
1287 lru = &__get_cpu_var(bh_lrus);
1288 for (i = 0; i < BH_LRU_SIZE; i++) {
1289 struct buffer_head *bh = lru->bhs[i];
1290
1291 if (bh && bh->b_bdev == bdev &&
1292 bh->b_blocknr == block && bh->b_size == size) {
1293 if (i) {
1294 while (i) {
1295 lru->bhs[i] = lru->bhs[i - 1];
1296 i--;
1297 }
1298 lru->bhs[0] = bh;
1299 }
1300 get_bh(bh);
1301 ret = bh;
1302 break;
1303 }
1304 }
1305 bh_lru_unlock();
1306 return ret;
1307 }
1308
1309 /*
1310 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1311 * it in the LRU and mark it as accessed. If it is not present then return
1312 * NULL
1313 */
1314 struct buffer_head *
1315 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1316 {
1317 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1318
1319 if (bh == NULL) {
1320 bh = __find_get_block_slow(bdev, block);
1321 if (bh)
1322 bh_lru_install(bh);
1323 }
1324 if (bh)
1325 touch_buffer(bh);
1326 return bh;
1327 }
1328 EXPORT_SYMBOL(__find_get_block);
1329
1330 /*
1331 * __getblk will locate (and, if necessary, create) the buffer_head
1332 * which corresponds to the passed block_device, block and size. The
1333 * returned buffer has its reference count incremented.
1334 *
1335 * __getblk() cannot fail - it just keeps trying. If you pass it an
1336 * illegal block number, __getblk() will happily return a buffer_head
1337 * which represents the non-existent block. Very weird.
1338 *
1339 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1340 * attempt is failing. FIXME, perhaps?
1341 */
1342 struct buffer_head *
1343 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1344 {
1345 struct buffer_head *bh = __find_get_block(bdev, block, size);
1346
1347 might_sleep();
1348 if (bh == NULL)
1349 bh = __getblk_slow(bdev, block, size);
1350 return bh;
1351 }
1352 EXPORT_SYMBOL(__getblk);
1353
1354 /*
1355 * Do async read-ahead on a buffer..
1356 */
1357 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1358 {
1359 struct buffer_head *bh = __getblk(bdev, block, size);
1360 if (likely(bh)) {
1361 ll_rw_block(READA, 1, &bh);
1362 brelse(bh);
1363 }
1364 }
1365 EXPORT_SYMBOL(__breadahead);
1366
1367 /**
1368 * __bread() - reads a specified block and returns the bh
1369 * @bdev: the block_device to read from
1370 * @block: number of block
1371 * @size: size (in bytes) to read
1372 *
1373 * Reads a specified block, and returns buffer head that contains it.
1374 * It returns NULL if the block was unreadable.
1375 */
1376 struct buffer_head *
1377 __bread(struct block_device *bdev, sector_t block, unsigned size)
1378 {
1379 struct buffer_head *bh = __getblk(bdev, block, size);
1380
1381 if (likely(bh) && !buffer_uptodate(bh))
1382 bh = __bread_slow(bh);
1383 return bh;
1384 }
1385 EXPORT_SYMBOL(__bread);
1386
1387 /*
1388 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1389 * This doesn't race because it runs in each cpu either in irq
1390 * or with preempt disabled.
1391 */
1392 static void invalidate_bh_lru(void *arg)
1393 {
1394 struct bh_lru *b = &get_cpu_var(bh_lrus);
1395 int i;
1396
1397 for (i = 0; i < BH_LRU_SIZE; i++) {
1398 brelse(b->bhs[i]);
1399 b->bhs[i] = NULL;
1400 }
1401 put_cpu_var(bh_lrus);
1402 }
1403
1404 void invalidate_bh_lrus(void)
1405 {
1406 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1407 }
1408
1409 void set_bh_page(struct buffer_head *bh,
1410 struct page *page, unsigned long offset)
1411 {
1412 bh->b_page = page;
1413 BUG_ON(offset >= PAGE_SIZE);
1414 if (PageHighMem(page))
1415 /*
1416 * This catches illegal uses and preserves the offset:
1417 */
1418 bh->b_data = (char *)(0 + offset);
1419 else
1420 bh->b_data = page_address(page) + offset;
1421 }
1422 EXPORT_SYMBOL(set_bh_page);
1423
1424 /*
1425 * Called when truncating a buffer on a page completely.
1426 */
1427 static void discard_buffer(struct buffer_head * bh)
1428 {
1429 lock_buffer(bh);
1430 clear_buffer_dirty(bh);
1431 bh->b_bdev = NULL;
1432 clear_buffer_mapped(bh);
1433 clear_buffer_req(bh);
1434 clear_buffer_new(bh);
1435 clear_buffer_delay(bh);
1436 clear_buffer_unwritten(bh);
1437 unlock_buffer(bh);
1438 }
1439
1440 /**
1441 * block_invalidatepage - invalidate part of all of a buffer-backed page
1442 *
1443 * @page: the page which is affected
1444 * @offset: the index of the truncation point
1445 *
1446 * block_invalidatepage() is called when all or part of the page has become
1447 * invalidatedby a truncate operation.
1448 *
1449 * block_invalidatepage() does not have to release all buffers, but it must
1450 * ensure that no dirty buffer is left outside @offset and that no I/O
1451 * is underway against any of the blocks which are outside the truncation
1452 * point. Because the caller is about to free (and possibly reuse) those
1453 * blocks on-disk.
1454 */
1455 void block_invalidatepage(struct page *page, unsigned long offset)
1456 {
1457 struct buffer_head *head, *bh, *next;
1458 unsigned int curr_off = 0;
1459
1460 BUG_ON(!PageLocked(page));
1461 if (!page_has_buffers(page))
1462 goto out;
1463
1464 head = page_buffers(page);
1465 bh = head;
1466 do {
1467 unsigned int next_off = curr_off + bh->b_size;
1468 next = bh->b_this_page;
1469
1470 /*
1471 * is this block fully invalidated?
1472 */
1473 if (offset <= curr_off)
1474 discard_buffer(bh);
1475 curr_off = next_off;
1476 bh = next;
1477 } while (bh != head);
1478
1479 /*
1480 * We release buffers only if the entire page is being invalidated.
1481 * The get_block cached value has been unconditionally invalidated,
1482 * so real IO is not possible anymore.
1483 */
1484 if (offset == 0)
1485 try_to_release_page(page, 0);
1486 out:
1487 return;
1488 }
1489 EXPORT_SYMBOL(block_invalidatepage);
1490
1491 /*
1492 * We attach and possibly dirty the buffers atomically wrt
1493 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1494 * is already excluded via the page lock.
1495 */
1496 void create_empty_buffers(struct page *page,
1497 unsigned long blocksize, unsigned long b_state)
1498 {
1499 struct buffer_head *bh, *head, *tail;
1500
1501 head = alloc_page_buffers(page, blocksize, 1);
1502 bh = head;
1503 do {
1504 bh->b_state |= b_state;
1505 tail = bh;
1506 bh = bh->b_this_page;
1507 } while (bh);
1508 tail->b_this_page = head;
1509
1510 spin_lock(&page->mapping->private_lock);
1511 if (PageUptodate(page) || PageDirty(page)) {
1512 bh = head;
1513 do {
1514 if (PageDirty(page))
1515 set_buffer_dirty(bh);
1516 if (PageUptodate(page))
1517 set_buffer_uptodate(bh);
1518 bh = bh->b_this_page;
1519 } while (bh != head);
1520 }
1521 attach_page_buffers(page, head);
1522 spin_unlock(&page->mapping->private_lock);
1523 }
1524 EXPORT_SYMBOL(create_empty_buffers);
1525
1526 /*
1527 * We are taking a block for data and we don't want any output from any
1528 * buffer-cache aliases starting from return from that function and
1529 * until the moment when something will explicitly mark the buffer
1530 * dirty (hopefully that will not happen until we will free that block ;-)
1531 * We don't even need to mark it not-uptodate - nobody can expect
1532 * anything from a newly allocated buffer anyway. We used to used
1533 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1534 * don't want to mark the alias unmapped, for example - it would confuse
1535 * anyone who might pick it with bread() afterwards...
1536 *
1537 * Also.. Note that bforget() doesn't lock the buffer. So there can
1538 * be writeout I/O going on against recently-freed buffers. We don't
1539 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1540 * only if we really need to. That happens here.
1541 */
1542 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1543 {
1544 struct buffer_head *old_bh;
1545
1546 might_sleep();
1547
1548 old_bh = __find_get_block_slow(bdev, block);
1549 if (old_bh) {
1550 clear_buffer_dirty(old_bh);
1551 wait_on_buffer(old_bh);
1552 clear_buffer_req(old_bh);
1553 __brelse(old_bh);
1554 }
1555 }
1556 EXPORT_SYMBOL(unmap_underlying_metadata);
1557
1558 /*
1559 * NOTE! All mapped/uptodate combinations are valid:
1560 *
1561 * Mapped Uptodate Meaning
1562 *
1563 * No No "unknown" - must do get_block()
1564 * No Yes "hole" - zero-filled
1565 * Yes No "allocated" - allocated on disk, not read in
1566 * Yes Yes "valid" - allocated and up-to-date in memory.
1567 *
1568 * "Dirty" is valid only with the last case (mapped+uptodate).
1569 */
1570
1571 /*
1572 * While block_write_full_page is writing back the dirty buffers under
1573 * the page lock, whoever dirtied the buffers may decide to clean them
1574 * again at any time. We handle that by only looking at the buffer
1575 * state inside lock_buffer().
1576 *
1577 * If block_write_full_page() is called for regular writeback
1578 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1579 * locked buffer. This only can happen if someone has written the buffer
1580 * directly, with submit_bh(). At the address_space level PageWriteback
1581 * prevents this contention from occurring.
1582 */
1583 static int __block_write_full_page(struct inode *inode, struct page *page,
1584 get_block_t *get_block, struct writeback_control *wbc)
1585 {
1586 int err;
1587 sector_t block;
1588 sector_t last_block;
1589 struct buffer_head *bh, *head;
1590 const unsigned blocksize = 1 << inode->i_blkbits;
1591 int nr_underway = 0;
1592
1593 BUG_ON(!PageLocked(page));
1594
1595 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1596
1597 if (!page_has_buffers(page)) {
1598 create_empty_buffers(page, blocksize,
1599 (1 << BH_Dirty)|(1 << BH_Uptodate));
1600 }
1601
1602 /*
1603 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1604 * here, and the (potentially unmapped) buffers may become dirty at
1605 * any time. If a buffer becomes dirty here after we've inspected it
1606 * then we just miss that fact, and the page stays dirty.
1607 *
1608 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1609 * handle that here by just cleaning them.
1610 */
1611
1612 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1613 head = page_buffers(page);
1614 bh = head;
1615
1616 /*
1617 * Get all the dirty buffers mapped to disk addresses and
1618 * handle any aliases from the underlying blockdev's mapping.
1619 */
1620 do {
1621 if (block > last_block) {
1622 /*
1623 * mapped buffers outside i_size will occur, because
1624 * this page can be outside i_size when there is a
1625 * truncate in progress.
1626 */
1627 /*
1628 * The buffer was zeroed by block_write_full_page()
1629 */
1630 clear_buffer_dirty(bh);
1631 set_buffer_uptodate(bh);
1632 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1633 WARN_ON(bh->b_size != blocksize);
1634 err = get_block(inode, block, bh, 1);
1635 if (err)
1636 goto recover;
1637 if (buffer_new(bh)) {
1638 /* blockdev mappings never come here */
1639 clear_buffer_new(bh);
1640 unmap_underlying_metadata(bh->b_bdev,
1641 bh->b_blocknr);
1642 }
1643 }
1644 bh = bh->b_this_page;
1645 block++;
1646 } while (bh != head);
1647
1648 do {
1649 if (!buffer_mapped(bh))
1650 continue;
1651 /*
1652 * If it's a fully non-blocking write attempt and we cannot
1653 * lock the buffer then redirty the page. Note that this can
1654 * potentially cause a busy-wait loop from pdflush and kswapd
1655 * activity, but those code paths have their own higher-level
1656 * throttling.
1657 */
1658 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1659 lock_buffer(bh);
1660 } else if (test_set_buffer_locked(bh)) {
1661 redirty_page_for_writepage(wbc, page);
1662 continue;
1663 }
1664 if (test_clear_buffer_dirty(bh)) {
1665 mark_buffer_async_write(bh);
1666 } else {
1667 unlock_buffer(bh);
1668 }
1669 } while ((bh = bh->b_this_page) != head);
1670
1671 /*
1672 * The page and its buffers are protected by PageWriteback(), so we can
1673 * drop the bh refcounts early.
1674 */
1675 BUG_ON(PageWriteback(page));
1676 set_page_writeback(page);
1677
1678 do {
1679 struct buffer_head *next = bh->b_this_page;
1680 if (buffer_async_write(bh)) {
1681 submit_bh(WRITE, bh);
1682 nr_underway++;
1683 }
1684 bh = next;
1685 } while (bh != head);
1686 unlock_page(page);
1687
1688 err = 0;
1689 done:
1690 if (nr_underway == 0) {
1691 /*
1692 * The page was marked dirty, but the buffers were
1693 * clean. Someone wrote them back by hand with
1694 * ll_rw_block/submit_bh. A rare case.
1695 */
1696 end_page_writeback(page);
1697
1698 /*
1699 * The page and buffer_heads can be released at any time from
1700 * here on.
1701 */
1702 wbc->pages_skipped++; /* We didn't write this page */
1703 }
1704 return err;
1705
1706 recover:
1707 /*
1708 * ENOSPC, or some other error. We may already have added some
1709 * blocks to the file, so we need to write these out to avoid
1710 * exposing stale data.
1711 * The page is currently locked and not marked for writeback
1712 */
1713 bh = head;
1714 /* Recovery: lock and submit the mapped buffers */
1715 do {
1716 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1717 lock_buffer(bh);
1718 mark_buffer_async_write(bh);
1719 } else {
1720 /*
1721 * The buffer may have been set dirty during
1722 * attachment to a dirty page.
1723 */
1724 clear_buffer_dirty(bh);
1725 }
1726 } while ((bh = bh->b_this_page) != head);
1727 SetPageError(page);
1728 BUG_ON(PageWriteback(page));
1729 mapping_set_error(page->mapping, err);
1730 set_page_writeback(page);
1731 do {
1732 struct buffer_head *next = bh->b_this_page;
1733 if (buffer_async_write(bh)) {
1734 clear_buffer_dirty(bh);
1735 submit_bh(WRITE, bh);
1736 nr_underway++;
1737 }
1738 bh = next;
1739 } while (bh != head);
1740 unlock_page(page);
1741 goto done;
1742 }
1743
1744 static int __block_prepare_write(struct inode *inode, struct page *page,
1745 unsigned from, unsigned to, get_block_t *get_block)
1746 {
1747 unsigned block_start, block_end;
1748 sector_t block;
1749 int err = 0;
1750 unsigned blocksize, bbits;
1751 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1752
1753 BUG_ON(!PageLocked(page));
1754 BUG_ON(from > PAGE_CACHE_SIZE);
1755 BUG_ON(to > PAGE_CACHE_SIZE);
1756 BUG_ON(from > to);
1757
1758 blocksize = 1 << inode->i_blkbits;
1759 if (!page_has_buffers(page))
1760 create_empty_buffers(page, blocksize, 0);
1761 head = page_buffers(page);
1762
1763 bbits = inode->i_blkbits;
1764 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1765
1766 for(bh = head, block_start = 0; bh != head || !block_start;
1767 block++, block_start=block_end, bh = bh->b_this_page) {
1768 block_end = block_start + blocksize;
1769 if (block_end <= from || block_start >= to) {
1770 if (PageUptodate(page)) {
1771 if (!buffer_uptodate(bh))
1772 set_buffer_uptodate(bh);
1773 }
1774 continue;
1775 }
1776 if (buffer_new(bh))
1777 clear_buffer_new(bh);
1778 if (!buffer_mapped(bh)) {
1779 WARN_ON(bh->b_size != blocksize);
1780 err = get_block(inode, block, bh, 1);
1781 if (err)
1782 break;
1783 if (buffer_new(bh)) {
1784 unmap_underlying_metadata(bh->b_bdev,
1785 bh->b_blocknr);
1786 if (PageUptodate(page)) {
1787 set_buffer_uptodate(bh);
1788 continue;
1789 }
1790 if (block_end > to || block_start < from) {
1791 void *kaddr;
1792
1793 kaddr = kmap_atomic(page, KM_USER0);
1794 if (block_end > to)
1795 memset(kaddr+to, 0,
1796 block_end-to);
1797 if (block_start < from)
1798 memset(kaddr+block_start,
1799 0, from-block_start);
1800 flush_dcache_page(page);
1801 kunmap_atomic(kaddr, KM_USER0);
1802 }
1803 continue;
1804 }
1805 }
1806 if (PageUptodate(page)) {
1807 if (!buffer_uptodate(bh))
1808 set_buffer_uptodate(bh);
1809 continue;
1810 }
1811 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1812 !buffer_unwritten(bh) &&
1813 (block_start < from || block_end > to)) {
1814 ll_rw_block(READ, 1, &bh);
1815 *wait_bh++=bh;
1816 }
1817 }
1818 /*
1819 * If we issued read requests - let them complete.
1820 */
1821 while(wait_bh > wait) {
1822 wait_on_buffer(*--wait_bh);
1823 if (!buffer_uptodate(*wait_bh))
1824 err = -EIO;
1825 }
1826 if (!err) {
1827 bh = head;
1828 do {
1829 if (buffer_new(bh))
1830 clear_buffer_new(bh);
1831 } while ((bh = bh->b_this_page) != head);
1832 return 0;
1833 }
1834 /* Error case: */
1835 /*
1836 * Zero out any newly allocated blocks to avoid exposing stale
1837 * data. If BH_New is set, we know that the block was newly
1838 * allocated in the above loop.
1839 */
1840 bh = head;
1841 block_start = 0;
1842 do {
1843 block_end = block_start+blocksize;
1844 if (block_end <= from)
1845 goto next_bh;
1846 if (block_start >= to)
1847 break;
1848 if (buffer_new(bh)) {
1849 void *kaddr;
1850
1851 clear_buffer_new(bh);
1852 kaddr = kmap_atomic(page, KM_USER0);
1853 memset(kaddr+block_start, 0, bh->b_size);
1854 flush_dcache_page(page);
1855 kunmap_atomic(kaddr, KM_USER0);
1856 set_buffer_uptodate(bh);
1857 mark_buffer_dirty(bh);
1858 }
1859 next_bh:
1860 block_start = block_end;
1861 bh = bh->b_this_page;
1862 } while (bh != head);
1863 return err;
1864 }
1865
1866 static int __block_commit_write(struct inode *inode, struct page *page,
1867 unsigned from, unsigned to)
1868 {
1869 unsigned block_start, block_end;
1870 int partial = 0;
1871 unsigned blocksize;
1872 struct buffer_head *bh, *head;
1873
1874 blocksize = 1 << inode->i_blkbits;
1875
1876 for(bh = head = page_buffers(page), block_start = 0;
1877 bh != head || !block_start;
1878 block_start=block_end, bh = bh->b_this_page) {
1879 block_end = block_start + blocksize;
1880 if (block_end <= from || block_start >= to) {
1881 if (!buffer_uptodate(bh))
1882 partial = 1;
1883 } else {
1884 set_buffer_uptodate(bh);
1885 mark_buffer_dirty(bh);
1886 }
1887 }
1888
1889 /*
1890 * If this is a partial write which happened to make all buffers
1891 * uptodate then we can optimize away a bogus readpage() for
1892 * the next read(). Here we 'discover' whether the page went
1893 * uptodate as a result of this (potentially partial) write.
1894 */
1895 if (!partial)
1896 SetPageUptodate(page);
1897 return 0;
1898 }
1899
1900 /*
1901 * Generic "read page" function for block devices that have the normal
1902 * get_block functionality. This is most of the block device filesystems.
1903 * Reads the page asynchronously --- the unlock_buffer() and
1904 * set/clear_buffer_uptodate() functions propagate buffer state into the
1905 * page struct once IO has completed.
1906 */
1907 int block_read_full_page(struct page *page, get_block_t *get_block)
1908 {
1909 struct inode *inode = page->mapping->host;
1910 sector_t iblock, lblock;
1911 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1912 unsigned int blocksize;
1913 int nr, i;
1914 int fully_mapped = 1;
1915
1916 BUG_ON(!PageLocked(page));
1917 blocksize = 1 << inode->i_blkbits;
1918 if (!page_has_buffers(page))
1919 create_empty_buffers(page, blocksize, 0);
1920 head = page_buffers(page);
1921
1922 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1923 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1924 bh = head;
1925 nr = 0;
1926 i = 0;
1927
1928 do {
1929 if (buffer_uptodate(bh))
1930 continue;
1931
1932 if (!buffer_mapped(bh)) {
1933 int err = 0;
1934
1935 fully_mapped = 0;
1936 if (iblock < lblock) {
1937 WARN_ON(bh->b_size != blocksize);
1938 err = get_block(inode, iblock, bh, 0);
1939 if (err)
1940 SetPageError(page);
1941 }
1942 if (!buffer_mapped(bh)) {
1943 void *kaddr = kmap_atomic(page, KM_USER0);
1944 memset(kaddr + i * blocksize, 0, blocksize);
1945 flush_dcache_page(page);
1946 kunmap_atomic(kaddr, KM_USER0);
1947 if (!err)
1948 set_buffer_uptodate(bh);
1949 continue;
1950 }
1951 /*
1952 * get_block() might have updated the buffer
1953 * synchronously
1954 */
1955 if (buffer_uptodate(bh))
1956 continue;
1957 }
1958 arr[nr++] = bh;
1959 } while (i++, iblock++, (bh = bh->b_this_page) != head);
1960
1961 if (fully_mapped)
1962 SetPageMappedToDisk(page);
1963
1964 if (!nr) {
1965 /*
1966 * All buffers are uptodate - we can set the page uptodate
1967 * as well. But not if get_block() returned an error.
1968 */
1969 if (!PageError(page))
1970 SetPageUptodate(page);
1971 unlock_page(page);
1972 return 0;
1973 }
1974
1975 /* Stage two: lock the buffers */
1976 for (i = 0; i < nr; i++) {
1977 bh = arr[i];
1978 lock_buffer(bh);
1979 mark_buffer_async_read(bh);
1980 }
1981
1982 /*
1983 * Stage 3: start the IO. Check for uptodateness
1984 * inside the buffer lock in case another process reading
1985 * the underlying blockdev brought it uptodate (the sct fix).
1986 */
1987 for (i = 0; i < nr; i++) {
1988 bh = arr[i];
1989 if (buffer_uptodate(bh))
1990 end_buffer_async_read(bh, 1);
1991 else
1992 submit_bh(READ, bh);
1993 }
1994 return 0;
1995 }
1996
1997 /* utility function for filesystems that need to do work on expanding
1998 * truncates. Uses prepare/commit_write to allow the filesystem to
1999 * deal with the hole.
2000 */
2001 static int __generic_cont_expand(struct inode *inode, loff_t size,
2002 pgoff_t index, unsigned int offset)
2003 {
2004 struct address_space *mapping = inode->i_mapping;
2005 struct page *page;
2006 unsigned long limit;
2007 int err;
2008
2009 err = -EFBIG;
2010 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2011 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2012 send_sig(SIGXFSZ, current, 0);
2013 goto out;
2014 }
2015 if (size > inode->i_sb->s_maxbytes)
2016 goto out;
2017
2018 err = -ENOMEM;
2019 page = grab_cache_page(mapping, index);
2020 if (!page)
2021 goto out;
2022 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2023 if (err) {
2024 /*
2025 * ->prepare_write() may have instantiated a few blocks
2026 * outside i_size. Trim these off again.
2027 */
2028 unlock_page(page);
2029 page_cache_release(page);
2030 vmtruncate(inode, inode->i_size);
2031 goto out;
2032 }
2033
2034 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2035
2036 unlock_page(page);
2037 page_cache_release(page);
2038 if (err > 0)
2039 err = 0;
2040 out:
2041 return err;
2042 }
2043
2044 int generic_cont_expand(struct inode *inode, loff_t size)
2045 {
2046 pgoff_t index;
2047 unsigned int offset;
2048
2049 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2050
2051 /* ugh. in prepare/commit_write, if from==to==start of block, we
2052 ** skip the prepare. make sure we never send an offset for the start
2053 ** of a block
2054 */
2055 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2056 /* caller must handle this extra byte. */
2057 offset++;
2058 }
2059 index = size >> PAGE_CACHE_SHIFT;
2060
2061 return __generic_cont_expand(inode, size, index, offset);
2062 }
2063
2064 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2065 {
2066 loff_t pos = size - 1;
2067 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2068 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2069
2070 /* prepare/commit_write can handle even if from==to==start of block. */
2071 return __generic_cont_expand(inode, size, index, offset);
2072 }
2073
2074 /*
2075 * For moronic filesystems that do not allow holes in file.
2076 * We may have to extend the file.
2077 */
2078
2079 int cont_prepare_write(struct page *page, unsigned offset,
2080 unsigned to, get_block_t *get_block, loff_t *bytes)
2081 {
2082 struct address_space *mapping = page->mapping;
2083 struct inode *inode = mapping->host;
2084 struct page *new_page;
2085 pgoff_t pgpos;
2086 long status;
2087 unsigned zerofrom;
2088 unsigned blocksize = 1 << inode->i_blkbits;
2089 void *kaddr;
2090
2091 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2092 status = -ENOMEM;
2093 new_page = grab_cache_page(mapping, pgpos);
2094 if (!new_page)
2095 goto out;
2096 /* we might sleep */
2097 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2098 unlock_page(new_page);
2099 page_cache_release(new_page);
2100 continue;
2101 }
2102 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2103 if (zerofrom & (blocksize-1)) {
2104 *bytes |= (blocksize-1);
2105 (*bytes)++;
2106 }
2107 status = __block_prepare_write(inode, new_page, zerofrom,
2108 PAGE_CACHE_SIZE, get_block);
2109 if (status)
2110 goto out_unmap;
2111 kaddr = kmap_atomic(new_page, KM_USER0);
2112 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2113 flush_dcache_page(new_page);
2114 kunmap_atomic(kaddr, KM_USER0);
2115 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2116 unlock_page(new_page);
2117 page_cache_release(new_page);
2118 }
2119
2120 if (page->index < pgpos) {
2121 /* completely inside the area */
2122 zerofrom = offset;
2123 } else {
2124 /* page covers the boundary, find the boundary offset */
2125 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2126
2127 /* if we will expand the thing last block will be filled */
2128 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2129 *bytes |= (blocksize-1);
2130 (*bytes)++;
2131 }
2132
2133 /* starting below the boundary? Nothing to zero out */
2134 if (offset <= zerofrom)
2135 zerofrom = offset;
2136 }
2137 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2138 if (status)
2139 goto out1;
2140 if (zerofrom < offset) {
2141 kaddr = kmap_atomic(page, KM_USER0);
2142 memset(kaddr+zerofrom, 0, offset-zerofrom);
2143 flush_dcache_page(page);
2144 kunmap_atomic(kaddr, KM_USER0);
2145 __block_commit_write(inode, page, zerofrom, offset);
2146 }
2147 return 0;
2148 out1:
2149 ClearPageUptodate(page);
2150 return status;
2151
2152 out_unmap:
2153 ClearPageUptodate(new_page);
2154 unlock_page(new_page);
2155 page_cache_release(new_page);
2156 out:
2157 return status;
2158 }
2159
2160 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2161 get_block_t *get_block)
2162 {
2163 struct inode *inode = page->mapping->host;
2164 int err = __block_prepare_write(inode, page, from, to, get_block);
2165 if (err)
2166 ClearPageUptodate(page);
2167 return err;
2168 }
2169
2170 int block_commit_write(struct page *page, unsigned from, unsigned to)
2171 {
2172 struct inode *inode = page->mapping->host;
2173 __block_commit_write(inode,page,from,to);
2174 return 0;
2175 }
2176
2177 int generic_commit_write(struct file *file, struct page *page,
2178 unsigned from, unsigned to)
2179 {
2180 struct inode *inode = page->mapping->host;
2181 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2182 __block_commit_write(inode,page,from,to);
2183 /*
2184 * No need to use i_size_read() here, the i_size
2185 * cannot change under us because we hold i_mutex.
2186 */
2187 if (pos > inode->i_size) {
2188 i_size_write(inode, pos);
2189 mark_inode_dirty(inode);
2190 }
2191 return 0;
2192 }
2193
2194
2195 /*
2196 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2197 * immediately, while under the page lock. So it needs a special end_io
2198 * handler which does not touch the bh after unlocking it.
2199 *
2200 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2201 * a race there is benign: unlock_buffer() only use the bh's address for
2202 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2203 * itself.
2204 */
2205 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2206 {
2207 if (uptodate) {
2208 set_buffer_uptodate(bh);
2209 } else {
2210 /* This happens, due to failed READA attempts. */
2211 clear_buffer_uptodate(bh);
2212 }
2213 unlock_buffer(bh);
2214 }
2215
2216 /*
2217 * On entry, the page is fully not uptodate.
2218 * On exit the page is fully uptodate in the areas outside (from,to)
2219 */
2220 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2221 get_block_t *get_block)
2222 {
2223 struct inode *inode = page->mapping->host;
2224 const unsigned blkbits = inode->i_blkbits;
2225 const unsigned blocksize = 1 << blkbits;
2226 struct buffer_head map_bh;
2227 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2228 unsigned block_in_page;
2229 unsigned block_start;
2230 sector_t block_in_file;
2231 char *kaddr;
2232 int nr_reads = 0;
2233 int i;
2234 int ret = 0;
2235 int is_mapped_to_disk = 1;
2236
2237 if (PageMappedToDisk(page))
2238 return 0;
2239
2240 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2241 map_bh.b_page = page;
2242
2243 /*
2244 * We loop across all blocks in the page, whether or not they are
2245 * part of the affected region. This is so we can discover if the
2246 * page is fully mapped-to-disk.
2247 */
2248 for (block_start = 0, block_in_page = 0;
2249 block_start < PAGE_CACHE_SIZE;
2250 block_in_page++, block_start += blocksize) {
2251 unsigned block_end = block_start + blocksize;
2252 int create;
2253
2254 map_bh.b_state = 0;
2255 create = 1;
2256 if (block_start >= to)
2257 create = 0;
2258 map_bh.b_size = blocksize;
2259 ret = get_block(inode, block_in_file + block_in_page,
2260 &map_bh, create);
2261 if (ret)
2262 goto failed;
2263 if (!buffer_mapped(&map_bh))
2264 is_mapped_to_disk = 0;
2265 if (buffer_new(&map_bh))
2266 unmap_underlying_metadata(map_bh.b_bdev,
2267 map_bh.b_blocknr);
2268 if (PageUptodate(page))
2269 continue;
2270 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2271 kaddr = kmap_atomic(page, KM_USER0);
2272 if (block_start < from)
2273 memset(kaddr+block_start, 0, from-block_start);
2274 if (block_end > to)
2275 memset(kaddr + to, 0, block_end - to);
2276 flush_dcache_page(page);
2277 kunmap_atomic(kaddr, KM_USER0);
2278 continue;
2279 }
2280 if (buffer_uptodate(&map_bh))
2281 continue; /* reiserfs does this */
2282 if (block_start < from || block_end > to) {
2283 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2284
2285 if (!bh) {
2286 ret = -ENOMEM;
2287 goto failed;
2288 }
2289 bh->b_state = map_bh.b_state;
2290 atomic_set(&bh->b_count, 0);
2291 bh->b_this_page = NULL;
2292 bh->b_page = page;
2293 bh->b_blocknr = map_bh.b_blocknr;
2294 bh->b_size = blocksize;
2295 bh->b_data = (char *)(long)block_start;
2296 bh->b_bdev = map_bh.b_bdev;
2297 bh->b_private = NULL;
2298 read_bh[nr_reads++] = bh;
2299 }
2300 }
2301
2302 if (nr_reads) {
2303 struct buffer_head *bh;
2304
2305 /*
2306 * The page is locked, so these buffers are protected from
2307 * any VM or truncate activity. Hence we don't need to care
2308 * for the buffer_head refcounts.
2309 */
2310 for (i = 0; i < nr_reads; i++) {
2311 bh = read_bh[i];
2312 lock_buffer(bh);
2313 bh->b_end_io = end_buffer_read_nobh;
2314 submit_bh(READ, bh);
2315 }
2316 for (i = 0; i < nr_reads; i++) {
2317 bh = read_bh[i];
2318 wait_on_buffer(bh);
2319 if (!buffer_uptodate(bh))
2320 ret = -EIO;
2321 free_buffer_head(bh);
2322 read_bh[i] = NULL;
2323 }
2324 if (ret)
2325 goto failed;
2326 }
2327
2328 if (is_mapped_to_disk)
2329 SetPageMappedToDisk(page);
2330
2331 return 0;
2332
2333 failed:
2334 for (i = 0; i < nr_reads; i++) {
2335 if (read_bh[i])
2336 free_buffer_head(read_bh[i]);
2337 }
2338
2339 /*
2340 * Error recovery is pretty slack. Clear the page and mark it dirty
2341 * so we'll later zero out any blocks which _were_ allocated.
2342 */
2343 kaddr = kmap_atomic(page, KM_USER0);
2344 memset(kaddr, 0, PAGE_CACHE_SIZE);
2345 flush_dcache_page(page);
2346 kunmap_atomic(kaddr, KM_USER0);
2347 SetPageUptodate(page);
2348 set_page_dirty(page);
2349 return ret;
2350 }
2351 EXPORT_SYMBOL(nobh_prepare_write);
2352
2353 /*
2354 * Make sure any changes to nobh_commit_write() are reflected in
2355 * nobh_truncate_page(), since it doesn't call commit_write().
2356 */
2357 int nobh_commit_write(struct file *file, struct page *page,
2358 unsigned from, unsigned to)
2359 {
2360 struct inode *inode = page->mapping->host;
2361 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2362
2363 SetPageUptodate(page);
2364 set_page_dirty(page);
2365 if (pos > inode->i_size) {
2366 i_size_write(inode, pos);
2367 mark_inode_dirty(inode);
2368 }
2369 return 0;
2370 }
2371 EXPORT_SYMBOL(nobh_commit_write);
2372
2373 /*
2374 * nobh_writepage() - based on block_full_write_page() except
2375 * that it tries to operate without attaching bufferheads to
2376 * the page.
2377 */
2378 int nobh_writepage(struct page *page, get_block_t *get_block,
2379 struct writeback_control *wbc)
2380 {
2381 struct inode * const inode = page->mapping->host;
2382 loff_t i_size = i_size_read(inode);
2383 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2384 unsigned offset;
2385 void *kaddr;
2386 int ret;
2387
2388 /* Is the page fully inside i_size? */
2389 if (page->index < end_index)
2390 goto out;
2391
2392 /* Is the page fully outside i_size? (truncate in progress) */
2393 offset = i_size & (PAGE_CACHE_SIZE-1);
2394 if (page->index >= end_index+1 || !offset) {
2395 /*
2396 * The page may have dirty, unmapped buffers. For example,
2397 * they may have been added in ext3_writepage(). Make them
2398 * freeable here, so the page does not leak.
2399 */
2400 #if 0
2401 /* Not really sure about this - do we need this ? */
2402 if (page->mapping->a_ops->invalidatepage)
2403 page->mapping->a_ops->invalidatepage(page, offset);
2404 #endif
2405 unlock_page(page);
2406 return 0; /* don't care */
2407 }
2408
2409 /*
2410 * The page straddles i_size. It must be zeroed out on each and every
2411 * writepage invocation because it may be mmapped. "A file is mapped
2412 * in multiples of the page size. For a file that is not a multiple of
2413 * the page size, the remaining memory is zeroed when mapped, and
2414 * writes to that region are not written out to the file."
2415 */
2416 kaddr = kmap_atomic(page, KM_USER0);
2417 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2418 flush_dcache_page(page);
2419 kunmap_atomic(kaddr, KM_USER0);
2420 out:
2421 ret = mpage_writepage(page, get_block, wbc);
2422 if (ret == -EAGAIN)
2423 ret = __block_write_full_page(inode, page, get_block, wbc);
2424 return ret;
2425 }
2426 EXPORT_SYMBOL(nobh_writepage);
2427
2428 /*
2429 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2430 */
2431 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2432 {
2433 struct inode *inode = mapping->host;
2434 unsigned blocksize = 1 << inode->i_blkbits;
2435 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2436 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2437 unsigned to;
2438 struct page *page;
2439 const struct address_space_operations *a_ops = mapping->a_ops;
2440 char *kaddr;
2441 int ret = 0;
2442
2443 if ((offset & (blocksize - 1)) == 0)
2444 goto out;
2445
2446 ret = -ENOMEM;
2447 page = grab_cache_page(mapping, index);
2448 if (!page)
2449 goto out;
2450
2451 to = (offset + blocksize) & ~(blocksize - 1);
2452 ret = a_ops->prepare_write(NULL, page, offset, to);
2453 if (ret == 0) {
2454 kaddr = kmap_atomic(page, KM_USER0);
2455 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2456 flush_dcache_page(page);
2457 kunmap_atomic(kaddr, KM_USER0);
2458 /*
2459 * It would be more correct to call aops->commit_write()
2460 * here, but this is more efficient.
2461 */
2462 SetPageUptodate(page);
2463 set_page_dirty(page);
2464 }
2465 unlock_page(page);
2466 page_cache_release(page);
2467 out:
2468 return ret;
2469 }
2470 EXPORT_SYMBOL(nobh_truncate_page);
2471
2472 int block_truncate_page(struct address_space *mapping,
2473 loff_t from, get_block_t *get_block)
2474 {
2475 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2476 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2477 unsigned blocksize;
2478 sector_t iblock;
2479 unsigned length, pos;
2480 struct inode *inode = mapping->host;
2481 struct page *page;
2482 struct buffer_head *bh;
2483 void *kaddr;
2484 int err;
2485
2486 blocksize = 1 << inode->i_blkbits;
2487 length = offset & (blocksize - 1);
2488
2489 /* Block boundary? Nothing to do */
2490 if (!length)
2491 return 0;
2492
2493 length = blocksize - length;
2494 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2495
2496 page = grab_cache_page(mapping, index);
2497 err = -ENOMEM;
2498 if (!page)
2499 goto out;
2500
2501 if (!page_has_buffers(page))
2502 create_empty_buffers(page, blocksize, 0);
2503
2504 /* Find the buffer that contains "offset" */
2505 bh = page_buffers(page);
2506 pos = blocksize;
2507 while (offset >= pos) {
2508 bh = bh->b_this_page;
2509 iblock++;
2510 pos += blocksize;
2511 }
2512
2513 err = 0;
2514 if (!buffer_mapped(bh)) {
2515 WARN_ON(bh->b_size != blocksize);
2516 err = get_block(inode, iblock, bh, 0);
2517 if (err)
2518 goto unlock;
2519 /* unmapped? It's a hole - nothing to do */
2520 if (!buffer_mapped(bh))
2521 goto unlock;
2522 }
2523
2524 /* Ok, it's mapped. Make sure it's up-to-date */
2525 if (PageUptodate(page))
2526 set_buffer_uptodate(bh);
2527
2528 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2529 err = -EIO;
2530 ll_rw_block(READ, 1, &bh);
2531 wait_on_buffer(bh);
2532 /* Uhhuh. Read error. Complain and punt. */
2533 if (!buffer_uptodate(bh))
2534 goto unlock;
2535 }
2536
2537 kaddr = kmap_atomic(page, KM_USER0);
2538 memset(kaddr + offset, 0, length);
2539 flush_dcache_page(page);
2540 kunmap_atomic(kaddr, KM_USER0);
2541
2542 mark_buffer_dirty(bh);
2543 err = 0;
2544
2545 unlock:
2546 unlock_page(page);
2547 page_cache_release(page);
2548 out:
2549 return err;
2550 }
2551
2552 /*
2553 * The generic ->writepage function for buffer-backed address_spaces
2554 */
2555 int block_write_full_page(struct page *page, get_block_t *get_block,
2556 struct writeback_control *wbc)
2557 {
2558 struct inode * const inode = page->mapping->host;
2559 loff_t i_size = i_size_read(inode);
2560 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2561 unsigned offset;
2562 void *kaddr;
2563
2564 /* Is the page fully inside i_size? */
2565 if (page->index < end_index)
2566 return __block_write_full_page(inode, page, get_block, wbc);
2567
2568 /* Is the page fully outside i_size? (truncate in progress) */
2569 offset = i_size & (PAGE_CACHE_SIZE-1);
2570 if (page->index >= end_index+1 || !offset) {
2571 /*
2572 * The page may have dirty, unmapped buffers. For example,
2573 * they may have been added in ext3_writepage(). Make them
2574 * freeable here, so the page does not leak.
2575 */
2576 do_invalidatepage(page, 0);
2577 unlock_page(page);
2578 return 0; /* don't care */
2579 }
2580
2581 /*
2582 * The page straddles i_size. It must be zeroed out on each and every
2583 * writepage invokation because it may be mmapped. "A file is mapped
2584 * in multiples of the page size. For a file that is not a multiple of
2585 * the page size, the remaining memory is zeroed when mapped, and
2586 * writes to that region are not written out to the file."
2587 */
2588 kaddr = kmap_atomic(page, KM_USER0);
2589 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2590 flush_dcache_page(page);
2591 kunmap_atomic(kaddr, KM_USER0);
2592 return __block_write_full_page(inode, page, get_block, wbc);
2593 }
2594
2595 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2596 get_block_t *get_block)
2597 {
2598 struct buffer_head tmp;
2599 struct inode *inode = mapping->host;
2600 tmp.b_state = 0;
2601 tmp.b_blocknr = 0;
2602 tmp.b_size = 1 << inode->i_blkbits;
2603 get_block(inode, block, &tmp, 0);
2604 return tmp.b_blocknr;
2605 }
2606
2607 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2608 {
2609 struct buffer_head *bh = bio->bi_private;
2610
2611 if (bio->bi_size)
2612 return 1;
2613
2614 if (err == -EOPNOTSUPP) {
2615 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2616 set_bit(BH_Eopnotsupp, &bh->b_state);
2617 }
2618
2619 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2620 bio_put(bio);
2621 return 0;
2622 }
2623
2624 int submit_bh(int rw, struct buffer_head * bh)
2625 {
2626 struct bio *bio;
2627 int ret = 0;
2628
2629 BUG_ON(!buffer_locked(bh));
2630 BUG_ON(!buffer_mapped(bh));
2631 BUG_ON(!bh->b_end_io);
2632
2633 if (buffer_ordered(bh) && (rw == WRITE))
2634 rw = WRITE_BARRIER;
2635
2636 /*
2637 * Only clear out a write error when rewriting, should this
2638 * include WRITE_SYNC as well?
2639 */
2640 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2641 clear_buffer_write_io_error(bh);
2642
2643 /*
2644 * from here on down, it's all bio -- do the initial mapping,
2645 * submit_bio -> generic_make_request may further map this bio around
2646 */
2647 bio = bio_alloc(GFP_NOIO, 1);
2648
2649 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2650 bio->bi_bdev = bh->b_bdev;
2651 bio->bi_io_vec[0].bv_page = bh->b_page;
2652 bio->bi_io_vec[0].bv_len = bh->b_size;
2653 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2654
2655 bio->bi_vcnt = 1;
2656 bio->bi_idx = 0;
2657 bio->bi_size = bh->b_size;
2658
2659 bio->bi_end_io = end_bio_bh_io_sync;
2660 bio->bi_private = bh;
2661
2662 bio_get(bio);
2663 submit_bio(rw, bio);
2664
2665 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2666 ret = -EOPNOTSUPP;
2667
2668 bio_put(bio);
2669 return ret;
2670 }
2671
2672 /**
2673 * ll_rw_block: low-level access to block devices (DEPRECATED)
2674 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2675 * @nr: number of &struct buffer_heads in the array
2676 * @bhs: array of pointers to &struct buffer_head
2677 *
2678 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2679 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2680 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2681 * are sent to disk. The fourth %READA option is described in the documentation
2682 * for generic_make_request() which ll_rw_block() calls.
2683 *
2684 * This function drops any buffer that it cannot get a lock on (with the
2685 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2686 * clean when doing a write request, and any buffer that appears to be
2687 * up-to-date when doing read request. Further it marks as clean buffers that
2688 * are processed for writing (the buffer cache won't assume that they are
2689 * actually clean until the buffer gets unlocked).
2690 *
2691 * ll_rw_block sets b_end_io to simple completion handler that marks
2692 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2693 * any waiters.
2694 *
2695 * All of the buffers must be for the same device, and must also be a
2696 * multiple of the current approved size for the device.
2697 */
2698 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2699 {
2700 int i;
2701
2702 for (i = 0; i < nr; i++) {
2703 struct buffer_head *bh = bhs[i];
2704
2705 if (rw == SWRITE)
2706 lock_buffer(bh);
2707 else if (test_set_buffer_locked(bh))
2708 continue;
2709
2710 if (rw == WRITE || rw == SWRITE) {
2711 if (test_clear_buffer_dirty(bh)) {
2712 bh->b_end_io = end_buffer_write_sync;
2713 get_bh(bh);
2714 submit_bh(WRITE, bh);
2715 continue;
2716 }
2717 } else {
2718 if (!buffer_uptodate(bh)) {
2719 bh->b_end_io = end_buffer_read_sync;
2720 get_bh(bh);
2721 submit_bh(rw, bh);
2722 continue;
2723 }
2724 }
2725 unlock_buffer(bh);
2726 }
2727 }
2728
2729 /*
2730 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2731 * and then start new I/O and then wait upon it. The caller must have a ref on
2732 * the buffer_head.
2733 */
2734 int sync_dirty_buffer(struct buffer_head *bh)
2735 {
2736 int ret = 0;
2737
2738 WARN_ON(atomic_read(&bh->b_count) < 1);
2739 lock_buffer(bh);
2740 if (test_clear_buffer_dirty(bh)) {
2741 get_bh(bh);
2742 bh->b_end_io = end_buffer_write_sync;
2743 ret = submit_bh(WRITE, bh);
2744 wait_on_buffer(bh);
2745 if (buffer_eopnotsupp(bh)) {
2746 clear_buffer_eopnotsupp(bh);
2747 ret = -EOPNOTSUPP;
2748 }
2749 if (!ret && !buffer_uptodate(bh))
2750 ret = -EIO;
2751 } else {
2752 unlock_buffer(bh);
2753 }
2754 return ret;
2755 }
2756
2757 /*
2758 * try_to_free_buffers() checks if all the buffers on this particular page
2759 * are unused, and releases them if so.
2760 *
2761 * Exclusion against try_to_free_buffers may be obtained by either
2762 * locking the page or by holding its mapping's private_lock.
2763 *
2764 * If the page is dirty but all the buffers are clean then we need to
2765 * be sure to mark the page clean as well. This is because the page
2766 * may be against a block device, and a later reattachment of buffers
2767 * to a dirty page will set *all* buffers dirty. Which would corrupt
2768 * filesystem data on the same device.
2769 *
2770 * The same applies to regular filesystem pages: if all the buffers are
2771 * clean then we set the page clean and proceed. To do that, we require
2772 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2773 * private_lock.
2774 *
2775 * try_to_free_buffers() is non-blocking.
2776 */
2777 static inline int buffer_busy(struct buffer_head *bh)
2778 {
2779 return atomic_read(&bh->b_count) |
2780 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2781 }
2782
2783 static int
2784 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2785 {
2786 struct buffer_head *head = page_buffers(page);
2787 struct buffer_head *bh;
2788
2789 bh = head;
2790 do {
2791 if (buffer_write_io_error(bh) && page->mapping)
2792 set_bit(AS_EIO, &page->mapping->flags);
2793 if (buffer_busy(bh))
2794 goto failed;
2795 bh = bh->b_this_page;
2796 } while (bh != head);
2797
2798 do {
2799 struct buffer_head *next = bh->b_this_page;
2800
2801 if (!list_empty(&bh->b_assoc_buffers))
2802 __remove_assoc_queue(bh);
2803 bh = next;
2804 } while (bh != head);
2805 *buffers_to_free = head;
2806 __clear_page_buffers(page);
2807 return 1;
2808 failed:
2809 return 0;
2810 }
2811
2812 int try_to_free_buffers(struct page *page)
2813 {
2814 struct address_space * const mapping = page->mapping;
2815 struct buffer_head *buffers_to_free = NULL;
2816 int ret = 0;
2817
2818 BUG_ON(!PageLocked(page));
2819 if (PageWriteback(page))
2820 return 0;
2821
2822 if (mapping == NULL) { /* can this still happen? */
2823 ret = drop_buffers(page, &buffers_to_free);
2824 goto out;
2825 }
2826
2827 spin_lock(&mapping->private_lock);
2828 ret = drop_buffers(page, &buffers_to_free);
2829
2830 /*
2831 * If the filesystem writes its buffers by hand (eg ext3)
2832 * then we can have clean buffers against a dirty page. We
2833 * clean the page here; otherwise the VM will never notice
2834 * that the filesystem did any IO at all.
2835 *
2836 * Also, during truncate, discard_buffer will have marked all
2837 * the page's buffers clean. We discover that here and clean
2838 * the page also.
2839 *
2840 * private_lock must be held over this entire operation in order
2841 * to synchronise against __set_page_dirty_buffers and prevent the
2842 * dirty bit from being lost.
2843 */
2844 if (ret)
2845 cancel_dirty_page(page, PAGE_CACHE_SIZE);
2846 spin_unlock(&mapping->private_lock);
2847 out:
2848 if (buffers_to_free) {
2849 struct buffer_head *bh = buffers_to_free;
2850
2851 do {
2852 struct buffer_head *next = bh->b_this_page;
2853 free_buffer_head(bh);
2854 bh = next;
2855 } while (bh != buffers_to_free);
2856 }
2857 return ret;
2858 }
2859 EXPORT_SYMBOL(try_to_free_buffers);
2860
2861 void block_sync_page(struct page *page)
2862 {
2863 struct address_space *mapping;
2864
2865 smp_mb();
2866 mapping = page_mapping(page);
2867 if (mapping)
2868 blk_run_backing_dev(mapping->backing_dev_info, page);
2869 }
2870
2871 /*
2872 * There are no bdflush tunables left. But distributions are
2873 * still running obsolete flush daemons, so we terminate them here.
2874 *
2875 * Use of bdflush() is deprecated and will be removed in a future kernel.
2876 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2877 */
2878 asmlinkage long sys_bdflush(int func, long data)
2879 {
2880 static int msg_count;
2881
2882 if (!capable(CAP_SYS_ADMIN))
2883 return -EPERM;
2884
2885 if (msg_count < 5) {
2886 msg_count++;
2887 printk(KERN_INFO
2888 "warning: process `%s' used the obsolete bdflush"
2889 " system call\n", current->comm);
2890 printk(KERN_INFO "Fix your initscripts?\n");
2891 }
2892
2893 if (func == 1)
2894 do_exit(0);
2895 return 0;
2896 }
2897
2898 /*
2899 * Buffer-head allocation
2900 */
2901 static struct kmem_cache *bh_cachep;
2902
2903 /*
2904 * Once the number of bh's in the machine exceeds this level, we start
2905 * stripping them in writeback.
2906 */
2907 static int max_buffer_heads;
2908
2909 int buffer_heads_over_limit;
2910
2911 struct bh_accounting {
2912 int nr; /* Number of live bh's */
2913 int ratelimit; /* Limit cacheline bouncing */
2914 };
2915
2916 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2917
2918 static void recalc_bh_state(void)
2919 {
2920 int i;
2921 int tot = 0;
2922
2923 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2924 return;
2925 __get_cpu_var(bh_accounting).ratelimit = 0;
2926 for_each_online_cpu(i)
2927 tot += per_cpu(bh_accounting, i).nr;
2928 buffer_heads_over_limit = (tot > max_buffer_heads);
2929 }
2930
2931 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2932 {
2933 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2934 if (ret) {
2935 get_cpu_var(bh_accounting).nr++;
2936 recalc_bh_state();
2937 put_cpu_var(bh_accounting);
2938 }
2939 return ret;
2940 }
2941 EXPORT_SYMBOL(alloc_buffer_head);
2942
2943 void free_buffer_head(struct buffer_head *bh)
2944 {
2945 BUG_ON(!list_empty(&bh->b_assoc_buffers));
2946 kmem_cache_free(bh_cachep, bh);
2947 get_cpu_var(bh_accounting).nr--;
2948 recalc_bh_state();
2949 put_cpu_var(bh_accounting);
2950 }
2951 EXPORT_SYMBOL(free_buffer_head);
2952
2953 static void
2954 init_buffer_head(void *data, struct kmem_cache *cachep, unsigned long flags)
2955 {
2956 if (flags & SLAB_CTOR_CONSTRUCTOR) {
2957 struct buffer_head * bh = (struct buffer_head *)data;
2958
2959 memset(bh, 0, sizeof(*bh));
2960 INIT_LIST_HEAD(&bh->b_assoc_buffers);
2961 }
2962 }
2963
2964 static void buffer_exit_cpu(int cpu)
2965 {
2966 int i;
2967 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2968
2969 for (i = 0; i < BH_LRU_SIZE; i++) {
2970 brelse(b->bhs[i]);
2971 b->bhs[i] = NULL;
2972 }
2973 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2974 per_cpu(bh_accounting, cpu).nr = 0;
2975 put_cpu_var(bh_accounting);
2976 }
2977
2978 static int buffer_cpu_notify(struct notifier_block *self,
2979 unsigned long action, void *hcpu)
2980 {
2981 if (action == CPU_DEAD)
2982 buffer_exit_cpu((unsigned long)hcpu);
2983 return NOTIFY_OK;
2984 }
2985
2986 void __init buffer_init(void)
2987 {
2988 int nrpages;
2989
2990 bh_cachep = kmem_cache_create("buffer_head",
2991 sizeof(struct buffer_head), 0,
2992 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2993 SLAB_MEM_SPREAD),
2994 init_buffer_head,
2995 NULL);
2996
2997 /*
2998 * Limit the bh occupancy to 10% of ZONE_NORMAL
2999 */
3000 nrpages = (nr_free_buffer_pages() * 10) / 100;
3001 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3002 hotcpu_notifier(buffer_cpu_notify, 0);
3003 }
3004
3005 EXPORT_SYMBOL(__bforget);
3006 EXPORT_SYMBOL(__brelse);
3007 EXPORT_SYMBOL(__wait_on_buffer);
3008 EXPORT_SYMBOL(block_commit_write);
3009 EXPORT_SYMBOL(block_prepare_write);
3010 EXPORT_SYMBOL(block_read_full_page);
3011 EXPORT_SYMBOL(block_sync_page);
3012 EXPORT_SYMBOL(block_truncate_page);
3013 EXPORT_SYMBOL(block_write_full_page);
3014 EXPORT_SYMBOL(cont_prepare_write);
3015 EXPORT_SYMBOL(end_buffer_read_sync);
3016 EXPORT_SYMBOL(end_buffer_write_sync);
3017 EXPORT_SYMBOL(file_fsync);
3018 EXPORT_SYMBOL(fsync_bdev);
3019 EXPORT_SYMBOL(generic_block_bmap);
3020 EXPORT_SYMBOL(generic_commit_write);
3021 EXPORT_SYMBOL(generic_cont_expand);
3022 EXPORT_SYMBOL(generic_cont_expand_simple);
3023 EXPORT_SYMBOL(init_buffer);
3024 EXPORT_SYMBOL(invalidate_bdev);
3025 EXPORT_SYMBOL(ll_rw_block);
3026 EXPORT_SYMBOL(mark_buffer_dirty);
3027 EXPORT_SYMBOL(submit_bh);
3028 EXPORT_SYMBOL(sync_dirty_buffer);
3029 EXPORT_SYMBOL(unlock_buffer);
This page took 0.097929 seconds and 5 git commands to generate.