writeback: dirty inodes against their matching cgroup bdi_writeback's
[deliverable/linux.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 bh->b_end_io = handler;
53 bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 trace_block_touch_buffer(bh);
60 mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63
64 void __lock_buffer(struct buffer_head *bh)
65 {
66 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69
70 void unlock_buffer(struct buffer_head *bh)
71 {
72 clear_bit_unlock(BH_Lock, &bh->b_state);
73 smp_mb__after_atomic();
74 wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77
78 /*
79 * Returns if the page has dirty or writeback buffers. If all the buffers
80 * are unlocked and clean then the PageDirty information is stale. If
81 * any of the pages are locked, it is assumed they are locked for IO.
82 */
83 void buffer_check_dirty_writeback(struct page *page,
84 bool *dirty, bool *writeback)
85 {
86 struct buffer_head *head, *bh;
87 *dirty = false;
88 *writeback = false;
89
90 BUG_ON(!PageLocked(page));
91
92 if (!page_has_buffers(page))
93 return;
94
95 if (PageWriteback(page))
96 *writeback = true;
97
98 head = page_buffers(page);
99 bh = head;
100 do {
101 if (buffer_locked(bh))
102 *writeback = true;
103
104 if (buffer_dirty(bh))
105 *dirty = true;
106
107 bh = bh->b_this_page;
108 } while (bh != head);
109 }
110 EXPORT_SYMBOL(buffer_check_dirty_writeback);
111
112 /*
113 * Block until a buffer comes unlocked. This doesn't stop it
114 * from becoming locked again - you have to lock it yourself
115 * if you want to preserve its state.
116 */
117 void __wait_on_buffer(struct buffer_head * bh)
118 {
119 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
120 }
121 EXPORT_SYMBOL(__wait_on_buffer);
122
123 static void
124 __clear_page_buffers(struct page *page)
125 {
126 ClearPagePrivate(page);
127 set_page_private(page, 0);
128 page_cache_release(page);
129 }
130
131 static void buffer_io_error(struct buffer_head *bh, char *msg)
132 {
133 char b[BDEVNAME_SIZE];
134
135 if (!test_bit(BH_Quiet, &bh->b_state))
136 printk_ratelimited(KERN_ERR
137 "Buffer I/O error on dev %s, logical block %llu%s\n",
138 bdevname(bh->b_bdev, b),
139 (unsigned long long)bh->b_blocknr, msg);
140 }
141
142 /*
143 * End-of-IO handler helper function which does not touch the bh after
144 * unlocking it.
145 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
146 * a race there is benign: unlock_buffer() only use the bh's address for
147 * hashing after unlocking the buffer, so it doesn't actually touch the bh
148 * itself.
149 */
150 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
151 {
152 if (uptodate) {
153 set_buffer_uptodate(bh);
154 } else {
155 /* This happens, due to failed READA attempts. */
156 clear_buffer_uptodate(bh);
157 }
158 unlock_buffer(bh);
159 }
160
161 /*
162 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
163 * unlock the buffer. This is what ll_rw_block uses too.
164 */
165 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
166 {
167 __end_buffer_read_notouch(bh, uptodate);
168 put_bh(bh);
169 }
170 EXPORT_SYMBOL(end_buffer_read_sync);
171
172 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
173 {
174 if (uptodate) {
175 set_buffer_uptodate(bh);
176 } else {
177 buffer_io_error(bh, ", lost sync page write");
178 set_buffer_write_io_error(bh);
179 clear_buffer_uptodate(bh);
180 }
181 unlock_buffer(bh);
182 put_bh(bh);
183 }
184 EXPORT_SYMBOL(end_buffer_write_sync);
185
186 /*
187 * Various filesystems appear to want __find_get_block to be non-blocking.
188 * But it's the page lock which protects the buffers. To get around this,
189 * we get exclusion from try_to_free_buffers with the blockdev mapping's
190 * private_lock.
191 *
192 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
193 * may be quite high. This code could TryLock the page, and if that
194 * succeeds, there is no need to take private_lock. (But if
195 * private_lock is contended then so is mapping->tree_lock).
196 */
197 static struct buffer_head *
198 __find_get_block_slow(struct block_device *bdev, sector_t block)
199 {
200 struct inode *bd_inode = bdev->bd_inode;
201 struct address_space *bd_mapping = bd_inode->i_mapping;
202 struct buffer_head *ret = NULL;
203 pgoff_t index;
204 struct buffer_head *bh;
205 struct buffer_head *head;
206 struct page *page;
207 int all_mapped = 1;
208
209 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
210 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
211 if (!page)
212 goto out;
213
214 spin_lock(&bd_mapping->private_lock);
215 if (!page_has_buffers(page))
216 goto out_unlock;
217 head = page_buffers(page);
218 bh = head;
219 do {
220 if (!buffer_mapped(bh))
221 all_mapped = 0;
222 else if (bh->b_blocknr == block) {
223 ret = bh;
224 get_bh(bh);
225 goto out_unlock;
226 }
227 bh = bh->b_this_page;
228 } while (bh != head);
229
230 /* we might be here because some of the buffers on this page are
231 * not mapped. This is due to various races between
232 * file io on the block device and getblk. It gets dealt with
233 * elsewhere, don't buffer_error if we had some unmapped buffers
234 */
235 if (all_mapped) {
236 char b[BDEVNAME_SIZE];
237
238 printk("__find_get_block_slow() failed. "
239 "block=%llu, b_blocknr=%llu\n",
240 (unsigned long long)block,
241 (unsigned long long)bh->b_blocknr);
242 printk("b_state=0x%08lx, b_size=%zu\n",
243 bh->b_state, bh->b_size);
244 printk("device %s blocksize: %d\n", bdevname(bdev, b),
245 1 << bd_inode->i_blkbits);
246 }
247 out_unlock:
248 spin_unlock(&bd_mapping->private_lock);
249 page_cache_release(page);
250 out:
251 return ret;
252 }
253
254 /*
255 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
256 */
257 static void free_more_memory(void)
258 {
259 struct zone *zone;
260 int nid;
261
262 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
263 yield();
264
265 for_each_online_node(nid) {
266 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
267 gfp_zone(GFP_NOFS), NULL,
268 &zone);
269 if (zone)
270 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
271 GFP_NOFS, NULL);
272 }
273 }
274
275 /*
276 * I/O completion handler for block_read_full_page() - pages
277 * which come unlocked at the end of I/O.
278 */
279 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
280 {
281 unsigned long flags;
282 struct buffer_head *first;
283 struct buffer_head *tmp;
284 struct page *page;
285 int page_uptodate = 1;
286
287 BUG_ON(!buffer_async_read(bh));
288
289 page = bh->b_page;
290 if (uptodate) {
291 set_buffer_uptodate(bh);
292 } else {
293 clear_buffer_uptodate(bh);
294 buffer_io_error(bh, ", async page read");
295 SetPageError(page);
296 }
297
298 /*
299 * Be _very_ careful from here on. Bad things can happen if
300 * two buffer heads end IO at almost the same time and both
301 * decide that the page is now completely done.
302 */
303 first = page_buffers(page);
304 local_irq_save(flags);
305 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
306 clear_buffer_async_read(bh);
307 unlock_buffer(bh);
308 tmp = bh;
309 do {
310 if (!buffer_uptodate(tmp))
311 page_uptodate = 0;
312 if (buffer_async_read(tmp)) {
313 BUG_ON(!buffer_locked(tmp));
314 goto still_busy;
315 }
316 tmp = tmp->b_this_page;
317 } while (tmp != bh);
318 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
319 local_irq_restore(flags);
320
321 /*
322 * If none of the buffers had errors and they are all
323 * uptodate then we can set the page uptodate.
324 */
325 if (page_uptodate && !PageError(page))
326 SetPageUptodate(page);
327 unlock_page(page);
328 return;
329
330 still_busy:
331 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
332 local_irq_restore(flags);
333 return;
334 }
335
336 /*
337 * Completion handler for block_write_full_page() - pages which are unlocked
338 * during I/O, and which have PageWriteback cleared upon I/O completion.
339 */
340 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
341 {
342 unsigned long flags;
343 struct buffer_head *first;
344 struct buffer_head *tmp;
345 struct page *page;
346
347 BUG_ON(!buffer_async_write(bh));
348
349 page = bh->b_page;
350 if (uptodate) {
351 set_buffer_uptodate(bh);
352 } else {
353 buffer_io_error(bh, ", lost async page write");
354 set_bit(AS_EIO, &page->mapping->flags);
355 set_buffer_write_io_error(bh);
356 clear_buffer_uptodate(bh);
357 SetPageError(page);
358 }
359
360 first = page_buffers(page);
361 local_irq_save(flags);
362 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
363
364 clear_buffer_async_write(bh);
365 unlock_buffer(bh);
366 tmp = bh->b_this_page;
367 while (tmp != bh) {
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
370 goto still_busy;
371 }
372 tmp = tmp->b_this_page;
373 }
374 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
375 local_irq_restore(flags);
376 end_page_writeback(page);
377 return;
378
379 still_busy:
380 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
381 local_irq_restore(flags);
382 return;
383 }
384 EXPORT_SYMBOL(end_buffer_async_write);
385
386 /*
387 * If a page's buffers are under async readin (end_buffer_async_read
388 * completion) then there is a possibility that another thread of
389 * control could lock one of the buffers after it has completed
390 * but while some of the other buffers have not completed. This
391 * locked buffer would confuse end_buffer_async_read() into not unlocking
392 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
393 * that this buffer is not under async I/O.
394 *
395 * The page comes unlocked when it has no locked buffer_async buffers
396 * left.
397 *
398 * PageLocked prevents anyone starting new async I/O reads any of
399 * the buffers.
400 *
401 * PageWriteback is used to prevent simultaneous writeout of the same
402 * page.
403 *
404 * PageLocked prevents anyone from starting writeback of a page which is
405 * under read I/O (PageWriteback is only ever set against a locked page).
406 */
407 static void mark_buffer_async_read(struct buffer_head *bh)
408 {
409 bh->b_end_io = end_buffer_async_read;
410 set_buffer_async_read(bh);
411 }
412
413 static void mark_buffer_async_write_endio(struct buffer_head *bh,
414 bh_end_io_t *handler)
415 {
416 bh->b_end_io = handler;
417 set_buffer_async_write(bh);
418 }
419
420 void mark_buffer_async_write(struct buffer_head *bh)
421 {
422 mark_buffer_async_write_endio(bh, end_buffer_async_write);
423 }
424 EXPORT_SYMBOL(mark_buffer_async_write);
425
426
427 /*
428 * fs/buffer.c contains helper functions for buffer-backed address space's
429 * fsync functions. A common requirement for buffer-based filesystems is
430 * that certain data from the backing blockdev needs to be written out for
431 * a successful fsync(). For example, ext2 indirect blocks need to be
432 * written back and waited upon before fsync() returns.
433 *
434 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
435 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
436 * management of a list of dependent buffers at ->i_mapping->private_list.
437 *
438 * Locking is a little subtle: try_to_free_buffers() will remove buffers
439 * from their controlling inode's queue when they are being freed. But
440 * try_to_free_buffers() will be operating against the *blockdev* mapping
441 * at the time, not against the S_ISREG file which depends on those buffers.
442 * So the locking for private_list is via the private_lock in the address_space
443 * which backs the buffers. Which is different from the address_space
444 * against which the buffers are listed. So for a particular address_space,
445 * mapping->private_lock does *not* protect mapping->private_list! In fact,
446 * mapping->private_list will always be protected by the backing blockdev's
447 * ->private_lock.
448 *
449 * Which introduces a requirement: all buffers on an address_space's
450 * ->private_list must be from the same address_space: the blockdev's.
451 *
452 * address_spaces which do not place buffers at ->private_list via these
453 * utility functions are free to use private_lock and private_list for
454 * whatever they want. The only requirement is that list_empty(private_list)
455 * be true at clear_inode() time.
456 *
457 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
458 * filesystems should do that. invalidate_inode_buffers() should just go
459 * BUG_ON(!list_empty).
460 *
461 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
462 * take an address_space, not an inode. And it should be called
463 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
464 * queued up.
465 *
466 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
467 * list if it is already on a list. Because if the buffer is on a list,
468 * it *must* already be on the right one. If not, the filesystem is being
469 * silly. This will save a ton of locking. But first we have to ensure
470 * that buffers are taken *off* the old inode's list when they are freed
471 * (presumably in truncate). That requires careful auditing of all
472 * filesystems (do it inside bforget()). It could also be done by bringing
473 * b_inode back.
474 */
475
476 /*
477 * The buffer's backing address_space's private_lock must be held
478 */
479 static void __remove_assoc_queue(struct buffer_head *bh)
480 {
481 list_del_init(&bh->b_assoc_buffers);
482 WARN_ON(!bh->b_assoc_map);
483 if (buffer_write_io_error(bh))
484 set_bit(AS_EIO, &bh->b_assoc_map->flags);
485 bh->b_assoc_map = NULL;
486 }
487
488 int inode_has_buffers(struct inode *inode)
489 {
490 return !list_empty(&inode->i_data.private_list);
491 }
492
493 /*
494 * osync is designed to support O_SYNC io. It waits synchronously for
495 * all already-submitted IO to complete, but does not queue any new
496 * writes to the disk.
497 *
498 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
499 * you dirty the buffers, and then use osync_inode_buffers to wait for
500 * completion. Any other dirty buffers which are not yet queued for
501 * write will not be flushed to disk by the osync.
502 */
503 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
504 {
505 struct buffer_head *bh;
506 struct list_head *p;
507 int err = 0;
508
509 spin_lock(lock);
510 repeat:
511 list_for_each_prev(p, list) {
512 bh = BH_ENTRY(p);
513 if (buffer_locked(bh)) {
514 get_bh(bh);
515 spin_unlock(lock);
516 wait_on_buffer(bh);
517 if (!buffer_uptodate(bh))
518 err = -EIO;
519 brelse(bh);
520 spin_lock(lock);
521 goto repeat;
522 }
523 }
524 spin_unlock(lock);
525 return err;
526 }
527
528 static void do_thaw_one(struct super_block *sb, void *unused)
529 {
530 char b[BDEVNAME_SIZE];
531 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
532 printk(KERN_WARNING "Emergency Thaw on %s\n",
533 bdevname(sb->s_bdev, b));
534 }
535
536 static void do_thaw_all(struct work_struct *work)
537 {
538 iterate_supers(do_thaw_one, NULL);
539 kfree(work);
540 printk(KERN_WARNING "Emergency Thaw complete\n");
541 }
542
543 /**
544 * emergency_thaw_all -- forcibly thaw every frozen filesystem
545 *
546 * Used for emergency unfreeze of all filesystems via SysRq
547 */
548 void emergency_thaw_all(void)
549 {
550 struct work_struct *work;
551
552 work = kmalloc(sizeof(*work), GFP_ATOMIC);
553 if (work) {
554 INIT_WORK(work, do_thaw_all);
555 schedule_work(work);
556 }
557 }
558
559 /**
560 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
561 * @mapping: the mapping which wants those buffers written
562 *
563 * Starts I/O against the buffers at mapping->private_list, and waits upon
564 * that I/O.
565 *
566 * Basically, this is a convenience function for fsync().
567 * @mapping is a file or directory which needs those buffers to be written for
568 * a successful fsync().
569 */
570 int sync_mapping_buffers(struct address_space *mapping)
571 {
572 struct address_space *buffer_mapping = mapping->private_data;
573
574 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
575 return 0;
576
577 return fsync_buffers_list(&buffer_mapping->private_lock,
578 &mapping->private_list);
579 }
580 EXPORT_SYMBOL(sync_mapping_buffers);
581
582 /*
583 * Called when we've recently written block `bblock', and it is known that
584 * `bblock' was for a buffer_boundary() buffer. This means that the block at
585 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
586 * dirty, schedule it for IO. So that indirects merge nicely with their data.
587 */
588 void write_boundary_block(struct block_device *bdev,
589 sector_t bblock, unsigned blocksize)
590 {
591 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
592 if (bh) {
593 if (buffer_dirty(bh))
594 ll_rw_block(WRITE, 1, &bh);
595 put_bh(bh);
596 }
597 }
598
599 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
600 {
601 struct address_space *mapping = inode->i_mapping;
602 struct address_space *buffer_mapping = bh->b_page->mapping;
603
604 mark_buffer_dirty(bh);
605 if (!mapping->private_data) {
606 mapping->private_data = buffer_mapping;
607 } else {
608 BUG_ON(mapping->private_data != buffer_mapping);
609 }
610 if (!bh->b_assoc_map) {
611 spin_lock(&buffer_mapping->private_lock);
612 list_move_tail(&bh->b_assoc_buffers,
613 &mapping->private_list);
614 bh->b_assoc_map = mapping;
615 spin_unlock(&buffer_mapping->private_lock);
616 }
617 }
618 EXPORT_SYMBOL(mark_buffer_dirty_inode);
619
620 /*
621 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
622 * dirty.
623 *
624 * If warn is true, then emit a warning if the page is not uptodate and has
625 * not been truncated.
626 *
627 * The caller must hold mem_cgroup_begin_page_stat() lock.
628 */
629 static void __set_page_dirty(struct page *page, struct address_space *mapping,
630 struct mem_cgroup *memcg, int warn)
631 {
632 unsigned long flags;
633
634 spin_lock_irqsave(&mapping->tree_lock, flags);
635 if (page->mapping) { /* Race with truncate? */
636 WARN_ON_ONCE(warn && !PageUptodate(page));
637 account_page_dirtied(page, mapping, memcg);
638 radix_tree_tag_set(&mapping->page_tree,
639 page_index(page), PAGECACHE_TAG_DIRTY);
640 }
641 spin_unlock_irqrestore(&mapping->tree_lock, flags);
642 }
643
644 /*
645 * Add a page to the dirty page list.
646 *
647 * It is a sad fact of life that this function is called from several places
648 * deeply under spinlocking. It may not sleep.
649 *
650 * If the page has buffers, the uptodate buffers are set dirty, to preserve
651 * dirty-state coherency between the page and the buffers. It the page does
652 * not have buffers then when they are later attached they will all be set
653 * dirty.
654 *
655 * The buffers are dirtied before the page is dirtied. There's a small race
656 * window in which a writepage caller may see the page cleanness but not the
657 * buffer dirtiness. That's fine. If this code were to set the page dirty
658 * before the buffers, a concurrent writepage caller could clear the page dirty
659 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
660 * page on the dirty page list.
661 *
662 * We use private_lock to lock against try_to_free_buffers while using the
663 * page's buffer list. Also use this to protect against clean buffers being
664 * added to the page after it was set dirty.
665 *
666 * FIXME: may need to call ->reservepage here as well. That's rather up to the
667 * address_space though.
668 */
669 int __set_page_dirty_buffers(struct page *page)
670 {
671 int newly_dirty;
672 struct mem_cgroup *memcg;
673 struct address_space *mapping = page_mapping(page);
674
675 if (unlikely(!mapping))
676 return !TestSetPageDirty(page);
677
678 spin_lock(&mapping->private_lock);
679 if (page_has_buffers(page)) {
680 struct buffer_head *head = page_buffers(page);
681 struct buffer_head *bh = head;
682
683 do {
684 set_buffer_dirty(bh);
685 bh = bh->b_this_page;
686 } while (bh != head);
687 }
688 /*
689 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
690 * per-memcg dirty page counters.
691 */
692 memcg = mem_cgroup_begin_page_stat(page);
693 newly_dirty = !TestSetPageDirty(page);
694 spin_unlock(&mapping->private_lock);
695
696 if (newly_dirty)
697 __set_page_dirty(page, mapping, memcg, 1);
698
699 mem_cgroup_end_page_stat(memcg);
700
701 if (newly_dirty)
702 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
703
704 return newly_dirty;
705 }
706 EXPORT_SYMBOL(__set_page_dirty_buffers);
707
708 /*
709 * Write out and wait upon a list of buffers.
710 *
711 * We have conflicting pressures: we want to make sure that all
712 * initially dirty buffers get waited on, but that any subsequently
713 * dirtied buffers don't. After all, we don't want fsync to last
714 * forever if somebody is actively writing to the file.
715 *
716 * Do this in two main stages: first we copy dirty buffers to a
717 * temporary inode list, queueing the writes as we go. Then we clean
718 * up, waiting for those writes to complete.
719 *
720 * During this second stage, any subsequent updates to the file may end
721 * up refiling the buffer on the original inode's dirty list again, so
722 * there is a chance we will end up with a buffer queued for write but
723 * not yet completed on that list. So, as a final cleanup we go through
724 * the osync code to catch these locked, dirty buffers without requeuing
725 * any newly dirty buffers for write.
726 */
727 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
728 {
729 struct buffer_head *bh;
730 struct list_head tmp;
731 struct address_space *mapping;
732 int err = 0, err2;
733 struct blk_plug plug;
734
735 INIT_LIST_HEAD(&tmp);
736 blk_start_plug(&plug);
737
738 spin_lock(lock);
739 while (!list_empty(list)) {
740 bh = BH_ENTRY(list->next);
741 mapping = bh->b_assoc_map;
742 __remove_assoc_queue(bh);
743 /* Avoid race with mark_buffer_dirty_inode() which does
744 * a lockless check and we rely on seeing the dirty bit */
745 smp_mb();
746 if (buffer_dirty(bh) || buffer_locked(bh)) {
747 list_add(&bh->b_assoc_buffers, &tmp);
748 bh->b_assoc_map = mapping;
749 if (buffer_dirty(bh)) {
750 get_bh(bh);
751 spin_unlock(lock);
752 /*
753 * Ensure any pending I/O completes so that
754 * write_dirty_buffer() actually writes the
755 * current contents - it is a noop if I/O is
756 * still in flight on potentially older
757 * contents.
758 */
759 write_dirty_buffer(bh, WRITE_SYNC);
760
761 /*
762 * Kick off IO for the previous mapping. Note
763 * that we will not run the very last mapping,
764 * wait_on_buffer() will do that for us
765 * through sync_buffer().
766 */
767 brelse(bh);
768 spin_lock(lock);
769 }
770 }
771 }
772
773 spin_unlock(lock);
774 blk_finish_plug(&plug);
775 spin_lock(lock);
776
777 while (!list_empty(&tmp)) {
778 bh = BH_ENTRY(tmp.prev);
779 get_bh(bh);
780 mapping = bh->b_assoc_map;
781 __remove_assoc_queue(bh);
782 /* Avoid race with mark_buffer_dirty_inode() which does
783 * a lockless check and we rely on seeing the dirty bit */
784 smp_mb();
785 if (buffer_dirty(bh)) {
786 list_add(&bh->b_assoc_buffers,
787 &mapping->private_list);
788 bh->b_assoc_map = mapping;
789 }
790 spin_unlock(lock);
791 wait_on_buffer(bh);
792 if (!buffer_uptodate(bh))
793 err = -EIO;
794 brelse(bh);
795 spin_lock(lock);
796 }
797
798 spin_unlock(lock);
799 err2 = osync_buffers_list(lock, list);
800 if (err)
801 return err;
802 else
803 return err2;
804 }
805
806 /*
807 * Invalidate any and all dirty buffers on a given inode. We are
808 * probably unmounting the fs, but that doesn't mean we have already
809 * done a sync(). Just drop the buffers from the inode list.
810 *
811 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
812 * assumes that all the buffers are against the blockdev. Not true
813 * for reiserfs.
814 */
815 void invalidate_inode_buffers(struct inode *inode)
816 {
817 if (inode_has_buffers(inode)) {
818 struct address_space *mapping = &inode->i_data;
819 struct list_head *list = &mapping->private_list;
820 struct address_space *buffer_mapping = mapping->private_data;
821
822 spin_lock(&buffer_mapping->private_lock);
823 while (!list_empty(list))
824 __remove_assoc_queue(BH_ENTRY(list->next));
825 spin_unlock(&buffer_mapping->private_lock);
826 }
827 }
828 EXPORT_SYMBOL(invalidate_inode_buffers);
829
830 /*
831 * Remove any clean buffers from the inode's buffer list. This is called
832 * when we're trying to free the inode itself. Those buffers can pin it.
833 *
834 * Returns true if all buffers were removed.
835 */
836 int remove_inode_buffers(struct inode *inode)
837 {
838 int ret = 1;
839
840 if (inode_has_buffers(inode)) {
841 struct address_space *mapping = &inode->i_data;
842 struct list_head *list = &mapping->private_list;
843 struct address_space *buffer_mapping = mapping->private_data;
844
845 spin_lock(&buffer_mapping->private_lock);
846 while (!list_empty(list)) {
847 struct buffer_head *bh = BH_ENTRY(list->next);
848 if (buffer_dirty(bh)) {
849 ret = 0;
850 break;
851 }
852 __remove_assoc_queue(bh);
853 }
854 spin_unlock(&buffer_mapping->private_lock);
855 }
856 return ret;
857 }
858
859 /*
860 * Create the appropriate buffers when given a page for data area and
861 * the size of each buffer.. Use the bh->b_this_page linked list to
862 * follow the buffers created. Return NULL if unable to create more
863 * buffers.
864 *
865 * The retry flag is used to differentiate async IO (paging, swapping)
866 * which may not fail from ordinary buffer allocations.
867 */
868 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
869 int retry)
870 {
871 struct buffer_head *bh, *head;
872 long offset;
873
874 try_again:
875 head = NULL;
876 offset = PAGE_SIZE;
877 while ((offset -= size) >= 0) {
878 bh = alloc_buffer_head(GFP_NOFS);
879 if (!bh)
880 goto no_grow;
881
882 bh->b_this_page = head;
883 bh->b_blocknr = -1;
884 head = bh;
885
886 bh->b_size = size;
887
888 /* Link the buffer to its page */
889 set_bh_page(bh, page, offset);
890 }
891 return head;
892 /*
893 * In case anything failed, we just free everything we got.
894 */
895 no_grow:
896 if (head) {
897 do {
898 bh = head;
899 head = head->b_this_page;
900 free_buffer_head(bh);
901 } while (head);
902 }
903
904 /*
905 * Return failure for non-async IO requests. Async IO requests
906 * are not allowed to fail, so we have to wait until buffer heads
907 * become available. But we don't want tasks sleeping with
908 * partially complete buffers, so all were released above.
909 */
910 if (!retry)
911 return NULL;
912
913 /* We're _really_ low on memory. Now we just
914 * wait for old buffer heads to become free due to
915 * finishing IO. Since this is an async request and
916 * the reserve list is empty, we're sure there are
917 * async buffer heads in use.
918 */
919 free_more_memory();
920 goto try_again;
921 }
922 EXPORT_SYMBOL_GPL(alloc_page_buffers);
923
924 static inline void
925 link_dev_buffers(struct page *page, struct buffer_head *head)
926 {
927 struct buffer_head *bh, *tail;
928
929 bh = head;
930 do {
931 tail = bh;
932 bh = bh->b_this_page;
933 } while (bh);
934 tail->b_this_page = head;
935 attach_page_buffers(page, head);
936 }
937
938 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
939 {
940 sector_t retval = ~((sector_t)0);
941 loff_t sz = i_size_read(bdev->bd_inode);
942
943 if (sz) {
944 unsigned int sizebits = blksize_bits(size);
945 retval = (sz >> sizebits);
946 }
947 return retval;
948 }
949
950 /*
951 * Initialise the state of a blockdev page's buffers.
952 */
953 static sector_t
954 init_page_buffers(struct page *page, struct block_device *bdev,
955 sector_t block, int size)
956 {
957 struct buffer_head *head = page_buffers(page);
958 struct buffer_head *bh = head;
959 int uptodate = PageUptodate(page);
960 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
961
962 do {
963 if (!buffer_mapped(bh)) {
964 init_buffer(bh, NULL, NULL);
965 bh->b_bdev = bdev;
966 bh->b_blocknr = block;
967 if (uptodate)
968 set_buffer_uptodate(bh);
969 if (block < end_block)
970 set_buffer_mapped(bh);
971 }
972 block++;
973 bh = bh->b_this_page;
974 } while (bh != head);
975
976 /*
977 * Caller needs to validate requested block against end of device.
978 */
979 return end_block;
980 }
981
982 /*
983 * Create the page-cache page that contains the requested block.
984 *
985 * This is used purely for blockdev mappings.
986 */
987 static int
988 grow_dev_page(struct block_device *bdev, sector_t block,
989 pgoff_t index, int size, int sizebits, gfp_t gfp)
990 {
991 struct inode *inode = bdev->bd_inode;
992 struct page *page;
993 struct buffer_head *bh;
994 sector_t end_block;
995 int ret = 0; /* Will call free_more_memory() */
996 gfp_t gfp_mask;
997
998 gfp_mask = (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS) | gfp;
999
1000 /*
1001 * XXX: __getblk_slow() can not really deal with failure and
1002 * will endlessly loop on improvised global reclaim. Prefer
1003 * looping in the allocator rather than here, at least that
1004 * code knows what it's doing.
1005 */
1006 gfp_mask |= __GFP_NOFAIL;
1007
1008 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1009 if (!page)
1010 return ret;
1011
1012 BUG_ON(!PageLocked(page));
1013
1014 if (page_has_buffers(page)) {
1015 bh = page_buffers(page);
1016 if (bh->b_size == size) {
1017 end_block = init_page_buffers(page, bdev,
1018 (sector_t)index << sizebits,
1019 size);
1020 goto done;
1021 }
1022 if (!try_to_free_buffers(page))
1023 goto failed;
1024 }
1025
1026 /*
1027 * Allocate some buffers for this page
1028 */
1029 bh = alloc_page_buffers(page, size, 0);
1030 if (!bh)
1031 goto failed;
1032
1033 /*
1034 * Link the page to the buffers and initialise them. Take the
1035 * lock to be atomic wrt __find_get_block(), which does not
1036 * run under the page lock.
1037 */
1038 spin_lock(&inode->i_mapping->private_lock);
1039 link_dev_buffers(page, bh);
1040 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1041 size);
1042 spin_unlock(&inode->i_mapping->private_lock);
1043 done:
1044 ret = (block < end_block) ? 1 : -ENXIO;
1045 failed:
1046 unlock_page(page);
1047 page_cache_release(page);
1048 return ret;
1049 }
1050
1051 /*
1052 * Create buffers for the specified block device block's page. If
1053 * that page was dirty, the buffers are set dirty also.
1054 */
1055 static int
1056 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1057 {
1058 pgoff_t index;
1059 int sizebits;
1060
1061 sizebits = -1;
1062 do {
1063 sizebits++;
1064 } while ((size << sizebits) < PAGE_SIZE);
1065
1066 index = block >> sizebits;
1067
1068 /*
1069 * Check for a block which wants to lie outside our maximum possible
1070 * pagecache index. (this comparison is done using sector_t types).
1071 */
1072 if (unlikely(index != block >> sizebits)) {
1073 char b[BDEVNAME_SIZE];
1074
1075 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1076 "device %s\n",
1077 __func__, (unsigned long long)block,
1078 bdevname(bdev, b));
1079 return -EIO;
1080 }
1081
1082 /* Create a page with the proper size buffers.. */
1083 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1084 }
1085
1086 struct buffer_head *
1087 __getblk_slow(struct block_device *bdev, sector_t block,
1088 unsigned size, gfp_t gfp)
1089 {
1090 /* Size must be multiple of hard sectorsize */
1091 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1092 (size < 512 || size > PAGE_SIZE))) {
1093 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1094 size);
1095 printk(KERN_ERR "logical block size: %d\n",
1096 bdev_logical_block_size(bdev));
1097
1098 dump_stack();
1099 return NULL;
1100 }
1101
1102 for (;;) {
1103 struct buffer_head *bh;
1104 int ret;
1105
1106 bh = __find_get_block(bdev, block, size);
1107 if (bh)
1108 return bh;
1109
1110 ret = grow_buffers(bdev, block, size, gfp);
1111 if (ret < 0)
1112 return NULL;
1113 if (ret == 0)
1114 free_more_memory();
1115 }
1116 }
1117 EXPORT_SYMBOL(__getblk_slow);
1118
1119 /*
1120 * The relationship between dirty buffers and dirty pages:
1121 *
1122 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1123 * the page is tagged dirty in its radix tree.
1124 *
1125 * At all times, the dirtiness of the buffers represents the dirtiness of
1126 * subsections of the page. If the page has buffers, the page dirty bit is
1127 * merely a hint about the true dirty state.
1128 *
1129 * When a page is set dirty in its entirety, all its buffers are marked dirty
1130 * (if the page has buffers).
1131 *
1132 * When a buffer is marked dirty, its page is dirtied, but the page's other
1133 * buffers are not.
1134 *
1135 * Also. When blockdev buffers are explicitly read with bread(), they
1136 * individually become uptodate. But their backing page remains not
1137 * uptodate - even if all of its buffers are uptodate. A subsequent
1138 * block_read_full_page() against that page will discover all the uptodate
1139 * buffers, will set the page uptodate and will perform no I/O.
1140 */
1141
1142 /**
1143 * mark_buffer_dirty - mark a buffer_head as needing writeout
1144 * @bh: the buffer_head to mark dirty
1145 *
1146 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1147 * backing page dirty, then tag the page as dirty in its address_space's radix
1148 * tree and then attach the address_space's inode to its superblock's dirty
1149 * inode list.
1150 *
1151 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1152 * mapping->tree_lock and mapping->host->i_lock.
1153 */
1154 void mark_buffer_dirty(struct buffer_head *bh)
1155 {
1156 WARN_ON_ONCE(!buffer_uptodate(bh));
1157
1158 trace_block_dirty_buffer(bh);
1159
1160 /*
1161 * Very *carefully* optimize the it-is-already-dirty case.
1162 *
1163 * Don't let the final "is it dirty" escape to before we
1164 * perhaps modified the buffer.
1165 */
1166 if (buffer_dirty(bh)) {
1167 smp_mb();
1168 if (buffer_dirty(bh))
1169 return;
1170 }
1171
1172 if (!test_set_buffer_dirty(bh)) {
1173 struct page *page = bh->b_page;
1174 struct address_space *mapping = NULL;
1175 struct mem_cgroup *memcg;
1176
1177 memcg = mem_cgroup_begin_page_stat(page);
1178 if (!TestSetPageDirty(page)) {
1179 mapping = page_mapping(page);
1180 if (mapping)
1181 __set_page_dirty(page, mapping, memcg, 0);
1182 }
1183 mem_cgroup_end_page_stat(memcg);
1184 if (mapping)
1185 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1186 }
1187 }
1188 EXPORT_SYMBOL(mark_buffer_dirty);
1189
1190 /*
1191 * Decrement a buffer_head's reference count. If all buffers against a page
1192 * have zero reference count, are clean and unlocked, and if the page is clean
1193 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1194 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1195 * a page but it ends up not being freed, and buffers may later be reattached).
1196 */
1197 void __brelse(struct buffer_head * buf)
1198 {
1199 if (atomic_read(&buf->b_count)) {
1200 put_bh(buf);
1201 return;
1202 }
1203 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1204 }
1205 EXPORT_SYMBOL(__brelse);
1206
1207 /*
1208 * bforget() is like brelse(), except it discards any
1209 * potentially dirty data.
1210 */
1211 void __bforget(struct buffer_head *bh)
1212 {
1213 clear_buffer_dirty(bh);
1214 if (bh->b_assoc_map) {
1215 struct address_space *buffer_mapping = bh->b_page->mapping;
1216
1217 spin_lock(&buffer_mapping->private_lock);
1218 list_del_init(&bh->b_assoc_buffers);
1219 bh->b_assoc_map = NULL;
1220 spin_unlock(&buffer_mapping->private_lock);
1221 }
1222 __brelse(bh);
1223 }
1224 EXPORT_SYMBOL(__bforget);
1225
1226 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1227 {
1228 lock_buffer(bh);
1229 if (buffer_uptodate(bh)) {
1230 unlock_buffer(bh);
1231 return bh;
1232 } else {
1233 get_bh(bh);
1234 bh->b_end_io = end_buffer_read_sync;
1235 submit_bh(READ, bh);
1236 wait_on_buffer(bh);
1237 if (buffer_uptodate(bh))
1238 return bh;
1239 }
1240 brelse(bh);
1241 return NULL;
1242 }
1243
1244 /*
1245 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1246 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1247 * refcount elevated by one when they're in an LRU. A buffer can only appear
1248 * once in a particular CPU's LRU. A single buffer can be present in multiple
1249 * CPU's LRUs at the same time.
1250 *
1251 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1252 * sb_find_get_block().
1253 *
1254 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1255 * a local interrupt disable for that.
1256 */
1257
1258 #define BH_LRU_SIZE 16
1259
1260 struct bh_lru {
1261 struct buffer_head *bhs[BH_LRU_SIZE];
1262 };
1263
1264 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1265
1266 #ifdef CONFIG_SMP
1267 #define bh_lru_lock() local_irq_disable()
1268 #define bh_lru_unlock() local_irq_enable()
1269 #else
1270 #define bh_lru_lock() preempt_disable()
1271 #define bh_lru_unlock() preempt_enable()
1272 #endif
1273
1274 static inline void check_irqs_on(void)
1275 {
1276 #ifdef irqs_disabled
1277 BUG_ON(irqs_disabled());
1278 #endif
1279 }
1280
1281 /*
1282 * The LRU management algorithm is dopey-but-simple. Sorry.
1283 */
1284 static void bh_lru_install(struct buffer_head *bh)
1285 {
1286 struct buffer_head *evictee = NULL;
1287
1288 check_irqs_on();
1289 bh_lru_lock();
1290 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1291 struct buffer_head *bhs[BH_LRU_SIZE];
1292 int in;
1293 int out = 0;
1294
1295 get_bh(bh);
1296 bhs[out++] = bh;
1297 for (in = 0; in < BH_LRU_SIZE; in++) {
1298 struct buffer_head *bh2 =
1299 __this_cpu_read(bh_lrus.bhs[in]);
1300
1301 if (bh2 == bh) {
1302 __brelse(bh2);
1303 } else {
1304 if (out >= BH_LRU_SIZE) {
1305 BUG_ON(evictee != NULL);
1306 evictee = bh2;
1307 } else {
1308 bhs[out++] = bh2;
1309 }
1310 }
1311 }
1312 while (out < BH_LRU_SIZE)
1313 bhs[out++] = NULL;
1314 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1315 }
1316 bh_lru_unlock();
1317
1318 if (evictee)
1319 __brelse(evictee);
1320 }
1321
1322 /*
1323 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1324 */
1325 static struct buffer_head *
1326 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1327 {
1328 struct buffer_head *ret = NULL;
1329 unsigned int i;
1330
1331 check_irqs_on();
1332 bh_lru_lock();
1333 for (i = 0; i < BH_LRU_SIZE; i++) {
1334 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1335
1336 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1337 bh->b_size == size) {
1338 if (i) {
1339 while (i) {
1340 __this_cpu_write(bh_lrus.bhs[i],
1341 __this_cpu_read(bh_lrus.bhs[i - 1]));
1342 i--;
1343 }
1344 __this_cpu_write(bh_lrus.bhs[0], bh);
1345 }
1346 get_bh(bh);
1347 ret = bh;
1348 break;
1349 }
1350 }
1351 bh_lru_unlock();
1352 return ret;
1353 }
1354
1355 /*
1356 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1357 * it in the LRU and mark it as accessed. If it is not present then return
1358 * NULL
1359 */
1360 struct buffer_head *
1361 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1362 {
1363 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1364
1365 if (bh == NULL) {
1366 /* __find_get_block_slow will mark the page accessed */
1367 bh = __find_get_block_slow(bdev, block);
1368 if (bh)
1369 bh_lru_install(bh);
1370 } else
1371 touch_buffer(bh);
1372
1373 return bh;
1374 }
1375 EXPORT_SYMBOL(__find_get_block);
1376
1377 /*
1378 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1379 * which corresponds to the passed block_device, block and size. The
1380 * returned buffer has its reference count incremented.
1381 *
1382 * __getblk_gfp() will lock up the machine if grow_dev_page's
1383 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1384 */
1385 struct buffer_head *
1386 __getblk_gfp(struct block_device *bdev, sector_t block,
1387 unsigned size, gfp_t gfp)
1388 {
1389 struct buffer_head *bh = __find_get_block(bdev, block, size);
1390
1391 might_sleep();
1392 if (bh == NULL)
1393 bh = __getblk_slow(bdev, block, size, gfp);
1394 return bh;
1395 }
1396 EXPORT_SYMBOL(__getblk_gfp);
1397
1398 /*
1399 * Do async read-ahead on a buffer..
1400 */
1401 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1402 {
1403 struct buffer_head *bh = __getblk(bdev, block, size);
1404 if (likely(bh)) {
1405 ll_rw_block(READA, 1, &bh);
1406 brelse(bh);
1407 }
1408 }
1409 EXPORT_SYMBOL(__breadahead);
1410
1411 /**
1412 * __bread_gfp() - reads a specified block and returns the bh
1413 * @bdev: the block_device to read from
1414 * @block: number of block
1415 * @size: size (in bytes) to read
1416 * @gfp: page allocation flag
1417 *
1418 * Reads a specified block, and returns buffer head that contains it.
1419 * The page cache can be allocated from non-movable area
1420 * not to prevent page migration if you set gfp to zero.
1421 * It returns NULL if the block was unreadable.
1422 */
1423 struct buffer_head *
1424 __bread_gfp(struct block_device *bdev, sector_t block,
1425 unsigned size, gfp_t gfp)
1426 {
1427 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1428
1429 if (likely(bh) && !buffer_uptodate(bh))
1430 bh = __bread_slow(bh);
1431 return bh;
1432 }
1433 EXPORT_SYMBOL(__bread_gfp);
1434
1435 /*
1436 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1437 * This doesn't race because it runs in each cpu either in irq
1438 * or with preempt disabled.
1439 */
1440 static void invalidate_bh_lru(void *arg)
1441 {
1442 struct bh_lru *b = &get_cpu_var(bh_lrus);
1443 int i;
1444
1445 for (i = 0; i < BH_LRU_SIZE; i++) {
1446 brelse(b->bhs[i]);
1447 b->bhs[i] = NULL;
1448 }
1449 put_cpu_var(bh_lrus);
1450 }
1451
1452 static bool has_bh_in_lru(int cpu, void *dummy)
1453 {
1454 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1455 int i;
1456
1457 for (i = 0; i < BH_LRU_SIZE; i++) {
1458 if (b->bhs[i])
1459 return 1;
1460 }
1461
1462 return 0;
1463 }
1464
1465 void invalidate_bh_lrus(void)
1466 {
1467 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1468 }
1469 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1470
1471 void set_bh_page(struct buffer_head *bh,
1472 struct page *page, unsigned long offset)
1473 {
1474 bh->b_page = page;
1475 BUG_ON(offset >= PAGE_SIZE);
1476 if (PageHighMem(page))
1477 /*
1478 * This catches illegal uses and preserves the offset:
1479 */
1480 bh->b_data = (char *)(0 + offset);
1481 else
1482 bh->b_data = page_address(page) + offset;
1483 }
1484 EXPORT_SYMBOL(set_bh_page);
1485
1486 /*
1487 * Called when truncating a buffer on a page completely.
1488 */
1489
1490 /* Bits that are cleared during an invalidate */
1491 #define BUFFER_FLAGS_DISCARD \
1492 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1493 1 << BH_Delay | 1 << BH_Unwritten)
1494
1495 static void discard_buffer(struct buffer_head * bh)
1496 {
1497 unsigned long b_state, b_state_old;
1498
1499 lock_buffer(bh);
1500 clear_buffer_dirty(bh);
1501 bh->b_bdev = NULL;
1502 b_state = bh->b_state;
1503 for (;;) {
1504 b_state_old = cmpxchg(&bh->b_state, b_state,
1505 (b_state & ~BUFFER_FLAGS_DISCARD));
1506 if (b_state_old == b_state)
1507 break;
1508 b_state = b_state_old;
1509 }
1510 unlock_buffer(bh);
1511 }
1512
1513 /**
1514 * block_invalidatepage - invalidate part or all of a buffer-backed page
1515 *
1516 * @page: the page which is affected
1517 * @offset: start of the range to invalidate
1518 * @length: length of the range to invalidate
1519 *
1520 * block_invalidatepage() is called when all or part of the page has become
1521 * invalidated by a truncate operation.
1522 *
1523 * block_invalidatepage() does not have to release all buffers, but it must
1524 * ensure that no dirty buffer is left outside @offset and that no I/O
1525 * is underway against any of the blocks which are outside the truncation
1526 * point. Because the caller is about to free (and possibly reuse) those
1527 * blocks on-disk.
1528 */
1529 void block_invalidatepage(struct page *page, unsigned int offset,
1530 unsigned int length)
1531 {
1532 struct buffer_head *head, *bh, *next;
1533 unsigned int curr_off = 0;
1534 unsigned int stop = length + offset;
1535
1536 BUG_ON(!PageLocked(page));
1537 if (!page_has_buffers(page))
1538 goto out;
1539
1540 /*
1541 * Check for overflow
1542 */
1543 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1544
1545 head = page_buffers(page);
1546 bh = head;
1547 do {
1548 unsigned int next_off = curr_off + bh->b_size;
1549 next = bh->b_this_page;
1550
1551 /*
1552 * Are we still fully in range ?
1553 */
1554 if (next_off > stop)
1555 goto out;
1556
1557 /*
1558 * is this block fully invalidated?
1559 */
1560 if (offset <= curr_off)
1561 discard_buffer(bh);
1562 curr_off = next_off;
1563 bh = next;
1564 } while (bh != head);
1565
1566 /*
1567 * We release buffers only if the entire page is being invalidated.
1568 * The get_block cached value has been unconditionally invalidated,
1569 * so real IO is not possible anymore.
1570 */
1571 if (offset == 0)
1572 try_to_release_page(page, 0);
1573 out:
1574 return;
1575 }
1576 EXPORT_SYMBOL(block_invalidatepage);
1577
1578
1579 /*
1580 * We attach and possibly dirty the buffers atomically wrt
1581 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1582 * is already excluded via the page lock.
1583 */
1584 void create_empty_buffers(struct page *page,
1585 unsigned long blocksize, unsigned long b_state)
1586 {
1587 struct buffer_head *bh, *head, *tail;
1588
1589 head = alloc_page_buffers(page, blocksize, 1);
1590 bh = head;
1591 do {
1592 bh->b_state |= b_state;
1593 tail = bh;
1594 bh = bh->b_this_page;
1595 } while (bh);
1596 tail->b_this_page = head;
1597
1598 spin_lock(&page->mapping->private_lock);
1599 if (PageUptodate(page) || PageDirty(page)) {
1600 bh = head;
1601 do {
1602 if (PageDirty(page))
1603 set_buffer_dirty(bh);
1604 if (PageUptodate(page))
1605 set_buffer_uptodate(bh);
1606 bh = bh->b_this_page;
1607 } while (bh != head);
1608 }
1609 attach_page_buffers(page, head);
1610 spin_unlock(&page->mapping->private_lock);
1611 }
1612 EXPORT_SYMBOL(create_empty_buffers);
1613
1614 /*
1615 * We are taking a block for data and we don't want any output from any
1616 * buffer-cache aliases starting from return from that function and
1617 * until the moment when something will explicitly mark the buffer
1618 * dirty (hopefully that will not happen until we will free that block ;-)
1619 * We don't even need to mark it not-uptodate - nobody can expect
1620 * anything from a newly allocated buffer anyway. We used to used
1621 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1622 * don't want to mark the alias unmapped, for example - it would confuse
1623 * anyone who might pick it with bread() afterwards...
1624 *
1625 * Also.. Note that bforget() doesn't lock the buffer. So there can
1626 * be writeout I/O going on against recently-freed buffers. We don't
1627 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1628 * only if we really need to. That happens here.
1629 */
1630 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1631 {
1632 struct buffer_head *old_bh;
1633
1634 might_sleep();
1635
1636 old_bh = __find_get_block_slow(bdev, block);
1637 if (old_bh) {
1638 clear_buffer_dirty(old_bh);
1639 wait_on_buffer(old_bh);
1640 clear_buffer_req(old_bh);
1641 __brelse(old_bh);
1642 }
1643 }
1644 EXPORT_SYMBOL(unmap_underlying_metadata);
1645
1646 /*
1647 * Size is a power-of-two in the range 512..PAGE_SIZE,
1648 * and the case we care about most is PAGE_SIZE.
1649 *
1650 * So this *could* possibly be written with those
1651 * constraints in mind (relevant mostly if some
1652 * architecture has a slow bit-scan instruction)
1653 */
1654 static inline int block_size_bits(unsigned int blocksize)
1655 {
1656 return ilog2(blocksize);
1657 }
1658
1659 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1660 {
1661 BUG_ON(!PageLocked(page));
1662
1663 if (!page_has_buffers(page))
1664 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1665 return page_buffers(page);
1666 }
1667
1668 /*
1669 * NOTE! All mapped/uptodate combinations are valid:
1670 *
1671 * Mapped Uptodate Meaning
1672 *
1673 * No No "unknown" - must do get_block()
1674 * No Yes "hole" - zero-filled
1675 * Yes No "allocated" - allocated on disk, not read in
1676 * Yes Yes "valid" - allocated and up-to-date in memory.
1677 *
1678 * "Dirty" is valid only with the last case (mapped+uptodate).
1679 */
1680
1681 /*
1682 * While block_write_full_page is writing back the dirty buffers under
1683 * the page lock, whoever dirtied the buffers may decide to clean them
1684 * again at any time. We handle that by only looking at the buffer
1685 * state inside lock_buffer().
1686 *
1687 * If block_write_full_page() is called for regular writeback
1688 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1689 * locked buffer. This only can happen if someone has written the buffer
1690 * directly, with submit_bh(). At the address_space level PageWriteback
1691 * prevents this contention from occurring.
1692 *
1693 * If block_write_full_page() is called with wbc->sync_mode ==
1694 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1695 * causes the writes to be flagged as synchronous writes.
1696 */
1697 static int __block_write_full_page(struct inode *inode, struct page *page,
1698 get_block_t *get_block, struct writeback_control *wbc,
1699 bh_end_io_t *handler)
1700 {
1701 int err;
1702 sector_t block;
1703 sector_t last_block;
1704 struct buffer_head *bh, *head;
1705 unsigned int blocksize, bbits;
1706 int nr_underway = 0;
1707 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1708 WRITE_SYNC : WRITE);
1709
1710 head = create_page_buffers(page, inode,
1711 (1 << BH_Dirty)|(1 << BH_Uptodate));
1712
1713 /*
1714 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1715 * here, and the (potentially unmapped) buffers may become dirty at
1716 * any time. If a buffer becomes dirty here after we've inspected it
1717 * then we just miss that fact, and the page stays dirty.
1718 *
1719 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1720 * handle that here by just cleaning them.
1721 */
1722
1723 bh = head;
1724 blocksize = bh->b_size;
1725 bbits = block_size_bits(blocksize);
1726
1727 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1728 last_block = (i_size_read(inode) - 1) >> bbits;
1729
1730 /*
1731 * Get all the dirty buffers mapped to disk addresses and
1732 * handle any aliases from the underlying blockdev's mapping.
1733 */
1734 do {
1735 if (block > last_block) {
1736 /*
1737 * mapped buffers outside i_size will occur, because
1738 * this page can be outside i_size when there is a
1739 * truncate in progress.
1740 */
1741 /*
1742 * The buffer was zeroed by block_write_full_page()
1743 */
1744 clear_buffer_dirty(bh);
1745 set_buffer_uptodate(bh);
1746 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1747 buffer_dirty(bh)) {
1748 WARN_ON(bh->b_size != blocksize);
1749 err = get_block(inode, block, bh, 1);
1750 if (err)
1751 goto recover;
1752 clear_buffer_delay(bh);
1753 if (buffer_new(bh)) {
1754 /* blockdev mappings never come here */
1755 clear_buffer_new(bh);
1756 unmap_underlying_metadata(bh->b_bdev,
1757 bh->b_blocknr);
1758 }
1759 }
1760 bh = bh->b_this_page;
1761 block++;
1762 } while (bh != head);
1763
1764 do {
1765 if (!buffer_mapped(bh))
1766 continue;
1767 /*
1768 * If it's a fully non-blocking write attempt and we cannot
1769 * lock the buffer then redirty the page. Note that this can
1770 * potentially cause a busy-wait loop from writeback threads
1771 * and kswapd activity, but those code paths have their own
1772 * higher-level throttling.
1773 */
1774 if (wbc->sync_mode != WB_SYNC_NONE) {
1775 lock_buffer(bh);
1776 } else if (!trylock_buffer(bh)) {
1777 redirty_page_for_writepage(wbc, page);
1778 continue;
1779 }
1780 if (test_clear_buffer_dirty(bh)) {
1781 mark_buffer_async_write_endio(bh, handler);
1782 } else {
1783 unlock_buffer(bh);
1784 }
1785 } while ((bh = bh->b_this_page) != head);
1786
1787 /*
1788 * The page and its buffers are protected by PageWriteback(), so we can
1789 * drop the bh refcounts early.
1790 */
1791 BUG_ON(PageWriteback(page));
1792 set_page_writeback(page);
1793
1794 do {
1795 struct buffer_head *next = bh->b_this_page;
1796 if (buffer_async_write(bh)) {
1797 submit_bh(write_op, bh);
1798 nr_underway++;
1799 }
1800 bh = next;
1801 } while (bh != head);
1802 unlock_page(page);
1803
1804 err = 0;
1805 done:
1806 if (nr_underway == 0) {
1807 /*
1808 * The page was marked dirty, but the buffers were
1809 * clean. Someone wrote them back by hand with
1810 * ll_rw_block/submit_bh. A rare case.
1811 */
1812 end_page_writeback(page);
1813
1814 /*
1815 * The page and buffer_heads can be released at any time from
1816 * here on.
1817 */
1818 }
1819 return err;
1820
1821 recover:
1822 /*
1823 * ENOSPC, or some other error. We may already have added some
1824 * blocks to the file, so we need to write these out to avoid
1825 * exposing stale data.
1826 * The page is currently locked and not marked for writeback
1827 */
1828 bh = head;
1829 /* Recovery: lock and submit the mapped buffers */
1830 do {
1831 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1832 !buffer_delay(bh)) {
1833 lock_buffer(bh);
1834 mark_buffer_async_write_endio(bh, handler);
1835 } else {
1836 /*
1837 * The buffer may have been set dirty during
1838 * attachment to a dirty page.
1839 */
1840 clear_buffer_dirty(bh);
1841 }
1842 } while ((bh = bh->b_this_page) != head);
1843 SetPageError(page);
1844 BUG_ON(PageWriteback(page));
1845 mapping_set_error(page->mapping, err);
1846 set_page_writeback(page);
1847 do {
1848 struct buffer_head *next = bh->b_this_page;
1849 if (buffer_async_write(bh)) {
1850 clear_buffer_dirty(bh);
1851 submit_bh(write_op, bh);
1852 nr_underway++;
1853 }
1854 bh = next;
1855 } while (bh != head);
1856 unlock_page(page);
1857 goto done;
1858 }
1859
1860 /*
1861 * If a page has any new buffers, zero them out here, and mark them uptodate
1862 * and dirty so they'll be written out (in order to prevent uninitialised
1863 * block data from leaking). And clear the new bit.
1864 */
1865 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1866 {
1867 unsigned int block_start, block_end;
1868 struct buffer_head *head, *bh;
1869
1870 BUG_ON(!PageLocked(page));
1871 if (!page_has_buffers(page))
1872 return;
1873
1874 bh = head = page_buffers(page);
1875 block_start = 0;
1876 do {
1877 block_end = block_start + bh->b_size;
1878
1879 if (buffer_new(bh)) {
1880 if (block_end > from && block_start < to) {
1881 if (!PageUptodate(page)) {
1882 unsigned start, size;
1883
1884 start = max(from, block_start);
1885 size = min(to, block_end) - start;
1886
1887 zero_user(page, start, size);
1888 set_buffer_uptodate(bh);
1889 }
1890
1891 clear_buffer_new(bh);
1892 mark_buffer_dirty(bh);
1893 }
1894 }
1895
1896 block_start = block_end;
1897 bh = bh->b_this_page;
1898 } while (bh != head);
1899 }
1900 EXPORT_SYMBOL(page_zero_new_buffers);
1901
1902 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1903 get_block_t *get_block)
1904 {
1905 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1906 unsigned to = from + len;
1907 struct inode *inode = page->mapping->host;
1908 unsigned block_start, block_end;
1909 sector_t block;
1910 int err = 0;
1911 unsigned blocksize, bbits;
1912 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1913
1914 BUG_ON(!PageLocked(page));
1915 BUG_ON(from > PAGE_CACHE_SIZE);
1916 BUG_ON(to > PAGE_CACHE_SIZE);
1917 BUG_ON(from > to);
1918
1919 head = create_page_buffers(page, inode, 0);
1920 blocksize = head->b_size;
1921 bbits = block_size_bits(blocksize);
1922
1923 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1924
1925 for(bh = head, block_start = 0; bh != head || !block_start;
1926 block++, block_start=block_end, bh = bh->b_this_page) {
1927 block_end = block_start + blocksize;
1928 if (block_end <= from || block_start >= to) {
1929 if (PageUptodate(page)) {
1930 if (!buffer_uptodate(bh))
1931 set_buffer_uptodate(bh);
1932 }
1933 continue;
1934 }
1935 if (buffer_new(bh))
1936 clear_buffer_new(bh);
1937 if (!buffer_mapped(bh)) {
1938 WARN_ON(bh->b_size != blocksize);
1939 err = get_block(inode, block, bh, 1);
1940 if (err)
1941 break;
1942 if (buffer_new(bh)) {
1943 unmap_underlying_metadata(bh->b_bdev,
1944 bh->b_blocknr);
1945 if (PageUptodate(page)) {
1946 clear_buffer_new(bh);
1947 set_buffer_uptodate(bh);
1948 mark_buffer_dirty(bh);
1949 continue;
1950 }
1951 if (block_end > to || block_start < from)
1952 zero_user_segments(page,
1953 to, block_end,
1954 block_start, from);
1955 continue;
1956 }
1957 }
1958 if (PageUptodate(page)) {
1959 if (!buffer_uptodate(bh))
1960 set_buffer_uptodate(bh);
1961 continue;
1962 }
1963 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1964 !buffer_unwritten(bh) &&
1965 (block_start < from || block_end > to)) {
1966 ll_rw_block(READ, 1, &bh);
1967 *wait_bh++=bh;
1968 }
1969 }
1970 /*
1971 * If we issued read requests - let them complete.
1972 */
1973 while(wait_bh > wait) {
1974 wait_on_buffer(*--wait_bh);
1975 if (!buffer_uptodate(*wait_bh))
1976 err = -EIO;
1977 }
1978 if (unlikely(err))
1979 page_zero_new_buffers(page, from, to);
1980 return err;
1981 }
1982 EXPORT_SYMBOL(__block_write_begin);
1983
1984 static int __block_commit_write(struct inode *inode, struct page *page,
1985 unsigned from, unsigned to)
1986 {
1987 unsigned block_start, block_end;
1988 int partial = 0;
1989 unsigned blocksize;
1990 struct buffer_head *bh, *head;
1991
1992 bh = head = page_buffers(page);
1993 blocksize = bh->b_size;
1994
1995 block_start = 0;
1996 do {
1997 block_end = block_start + blocksize;
1998 if (block_end <= from || block_start >= to) {
1999 if (!buffer_uptodate(bh))
2000 partial = 1;
2001 } else {
2002 set_buffer_uptodate(bh);
2003 mark_buffer_dirty(bh);
2004 }
2005 clear_buffer_new(bh);
2006
2007 block_start = block_end;
2008 bh = bh->b_this_page;
2009 } while (bh != head);
2010
2011 /*
2012 * If this is a partial write which happened to make all buffers
2013 * uptodate then we can optimize away a bogus readpage() for
2014 * the next read(). Here we 'discover' whether the page went
2015 * uptodate as a result of this (potentially partial) write.
2016 */
2017 if (!partial)
2018 SetPageUptodate(page);
2019 return 0;
2020 }
2021
2022 /*
2023 * block_write_begin takes care of the basic task of block allocation and
2024 * bringing partial write blocks uptodate first.
2025 *
2026 * The filesystem needs to handle block truncation upon failure.
2027 */
2028 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2029 unsigned flags, struct page **pagep, get_block_t *get_block)
2030 {
2031 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2032 struct page *page;
2033 int status;
2034
2035 page = grab_cache_page_write_begin(mapping, index, flags);
2036 if (!page)
2037 return -ENOMEM;
2038
2039 status = __block_write_begin(page, pos, len, get_block);
2040 if (unlikely(status)) {
2041 unlock_page(page);
2042 page_cache_release(page);
2043 page = NULL;
2044 }
2045
2046 *pagep = page;
2047 return status;
2048 }
2049 EXPORT_SYMBOL(block_write_begin);
2050
2051 int block_write_end(struct file *file, struct address_space *mapping,
2052 loff_t pos, unsigned len, unsigned copied,
2053 struct page *page, void *fsdata)
2054 {
2055 struct inode *inode = mapping->host;
2056 unsigned start;
2057
2058 start = pos & (PAGE_CACHE_SIZE - 1);
2059
2060 if (unlikely(copied < len)) {
2061 /*
2062 * The buffers that were written will now be uptodate, so we
2063 * don't have to worry about a readpage reading them and
2064 * overwriting a partial write. However if we have encountered
2065 * a short write and only partially written into a buffer, it
2066 * will not be marked uptodate, so a readpage might come in and
2067 * destroy our partial write.
2068 *
2069 * Do the simplest thing, and just treat any short write to a
2070 * non uptodate page as a zero-length write, and force the
2071 * caller to redo the whole thing.
2072 */
2073 if (!PageUptodate(page))
2074 copied = 0;
2075
2076 page_zero_new_buffers(page, start+copied, start+len);
2077 }
2078 flush_dcache_page(page);
2079
2080 /* This could be a short (even 0-length) commit */
2081 __block_commit_write(inode, page, start, start+copied);
2082
2083 return copied;
2084 }
2085 EXPORT_SYMBOL(block_write_end);
2086
2087 int generic_write_end(struct file *file, struct address_space *mapping,
2088 loff_t pos, unsigned len, unsigned copied,
2089 struct page *page, void *fsdata)
2090 {
2091 struct inode *inode = mapping->host;
2092 loff_t old_size = inode->i_size;
2093 int i_size_changed = 0;
2094
2095 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2096
2097 /*
2098 * No need to use i_size_read() here, the i_size
2099 * cannot change under us because we hold i_mutex.
2100 *
2101 * But it's important to update i_size while still holding page lock:
2102 * page writeout could otherwise come in and zero beyond i_size.
2103 */
2104 if (pos+copied > inode->i_size) {
2105 i_size_write(inode, pos+copied);
2106 i_size_changed = 1;
2107 }
2108
2109 unlock_page(page);
2110 page_cache_release(page);
2111
2112 if (old_size < pos)
2113 pagecache_isize_extended(inode, old_size, pos);
2114 /*
2115 * Don't mark the inode dirty under page lock. First, it unnecessarily
2116 * makes the holding time of page lock longer. Second, it forces lock
2117 * ordering of page lock and transaction start for journaling
2118 * filesystems.
2119 */
2120 if (i_size_changed)
2121 mark_inode_dirty(inode);
2122
2123 return copied;
2124 }
2125 EXPORT_SYMBOL(generic_write_end);
2126
2127 /*
2128 * block_is_partially_uptodate checks whether buffers within a page are
2129 * uptodate or not.
2130 *
2131 * Returns true if all buffers which correspond to a file portion
2132 * we want to read are uptodate.
2133 */
2134 int block_is_partially_uptodate(struct page *page, unsigned long from,
2135 unsigned long count)
2136 {
2137 unsigned block_start, block_end, blocksize;
2138 unsigned to;
2139 struct buffer_head *bh, *head;
2140 int ret = 1;
2141
2142 if (!page_has_buffers(page))
2143 return 0;
2144
2145 head = page_buffers(page);
2146 blocksize = head->b_size;
2147 to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2148 to = from + to;
2149 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2150 return 0;
2151
2152 bh = head;
2153 block_start = 0;
2154 do {
2155 block_end = block_start + blocksize;
2156 if (block_end > from && block_start < to) {
2157 if (!buffer_uptodate(bh)) {
2158 ret = 0;
2159 break;
2160 }
2161 if (block_end >= to)
2162 break;
2163 }
2164 block_start = block_end;
2165 bh = bh->b_this_page;
2166 } while (bh != head);
2167
2168 return ret;
2169 }
2170 EXPORT_SYMBOL(block_is_partially_uptodate);
2171
2172 /*
2173 * Generic "read page" function for block devices that have the normal
2174 * get_block functionality. This is most of the block device filesystems.
2175 * Reads the page asynchronously --- the unlock_buffer() and
2176 * set/clear_buffer_uptodate() functions propagate buffer state into the
2177 * page struct once IO has completed.
2178 */
2179 int block_read_full_page(struct page *page, get_block_t *get_block)
2180 {
2181 struct inode *inode = page->mapping->host;
2182 sector_t iblock, lblock;
2183 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2184 unsigned int blocksize, bbits;
2185 int nr, i;
2186 int fully_mapped = 1;
2187
2188 head = create_page_buffers(page, inode, 0);
2189 blocksize = head->b_size;
2190 bbits = block_size_bits(blocksize);
2191
2192 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2193 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2194 bh = head;
2195 nr = 0;
2196 i = 0;
2197
2198 do {
2199 if (buffer_uptodate(bh))
2200 continue;
2201
2202 if (!buffer_mapped(bh)) {
2203 int err = 0;
2204
2205 fully_mapped = 0;
2206 if (iblock < lblock) {
2207 WARN_ON(bh->b_size != blocksize);
2208 err = get_block(inode, iblock, bh, 0);
2209 if (err)
2210 SetPageError(page);
2211 }
2212 if (!buffer_mapped(bh)) {
2213 zero_user(page, i * blocksize, blocksize);
2214 if (!err)
2215 set_buffer_uptodate(bh);
2216 continue;
2217 }
2218 /*
2219 * get_block() might have updated the buffer
2220 * synchronously
2221 */
2222 if (buffer_uptodate(bh))
2223 continue;
2224 }
2225 arr[nr++] = bh;
2226 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2227
2228 if (fully_mapped)
2229 SetPageMappedToDisk(page);
2230
2231 if (!nr) {
2232 /*
2233 * All buffers are uptodate - we can set the page uptodate
2234 * as well. But not if get_block() returned an error.
2235 */
2236 if (!PageError(page))
2237 SetPageUptodate(page);
2238 unlock_page(page);
2239 return 0;
2240 }
2241
2242 /* Stage two: lock the buffers */
2243 for (i = 0; i < nr; i++) {
2244 bh = arr[i];
2245 lock_buffer(bh);
2246 mark_buffer_async_read(bh);
2247 }
2248
2249 /*
2250 * Stage 3: start the IO. Check for uptodateness
2251 * inside the buffer lock in case another process reading
2252 * the underlying blockdev brought it uptodate (the sct fix).
2253 */
2254 for (i = 0; i < nr; i++) {
2255 bh = arr[i];
2256 if (buffer_uptodate(bh))
2257 end_buffer_async_read(bh, 1);
2258 else
2259 submit_bh(READ, bh);
2260 }
2261 return 0;
2262 }
2263 EXPORT_SYMBOL(block_read_full_page);
2264
2265 /* utility function for filesystems that need to do work on expanding
2266 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2267 * deal with the hole.
2268 */
2269 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2270 {
2271 struct address_space *mapping = inode->i_mapping;
2272 struct page *page;
2273 void *fsdata;
2274 int err;
2275
2276 err = inode_newsize_ok(inode, size);
2277 if (err)
2278 goto out;
2279
2280 err = pagecache_write_begin(NULL, mapping, size, 0,
2281 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2282 &page, &fsdata);
2283 if (err)
2284 goto out;
2285
2286 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2287 BUG_ON(err > 0);
2288
2289 out:
2290 return err;
2291 }
2292 EXPORT_SYMBOL(generic_cont_expand_simple);
2293
2294 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2295 loff_t pos, loff_t *bytes)
2296 {
2297 struct inode *inode = mapping->host;
2298 unsigned blocksize = 1 << inode->i_blkbits;
2299 struct page *page;
2300 void *fsdata;
2301 pgoff_t index, curidx;
2302 loff_t curpos;
2303 unsigned zerofrom, offset, len;
2304 int err = 0;
2305
2306 index = pos >> PAGE_CACHE_SHIFT;
2307 offset = pos & ~PAGE_CACHE_MASK;
2308
2309 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2310 zerofrom = curpos & ~PAGE_CACHE_MASK;
2311 if (zerofrom & (blocksize-1)) {
2312 *bytes |= (blocksize-1);
2313 (*bytes)++;
2314 }
2315 len = PAGE_CACHE_SIZE - zerofrom;
2316
2317 err = pagecache_write_begin(file, mapping, curpos, len,
2318 AOP_FLAG_UNINTERRUPTIBLE,
2319 &page, &fsdata);
2320 if (err)
2321 goto out;
2322 zero_user(page, zerofrom, len);
2323 err = pagecache_write_end(file, mapping, curpos, len, len,
2324 page, fsdata);
2325 if (err < 0)
2326 goto out;
2327 BUG_ON(err != len);
2328 err = 0;
2329
2330 balance_dirty_pages_ratelimited(mapping);
2331
2332 if (unlikely(fatal_signal_pending(current))) {
2333 err = -EINTR;
2334 goto out;
2335 }
2336 }
2337
2338 /* page covers the boundary, find the boundary offset */
2339 if (index == curidx) {
2340 zerofrom = curpos & ~PAGE_CACHE_MASK;
2341 /* if we will expand the thing last block will be filled */
2342 if (offset <= zerofrom) {
2343 goto out;
2344 }
2345 if (zerofrom & (blocksize-1)) {
2346 *bytes |= (blocksize-1);
2347 (*bytes)++;
2348 }
2349 len = offset - zerofrom;
2350
2351 err = pagecache_write_begin(file, mapping, curpos, len,
2352 AOP_FLAG_UNINTERRUPTIBLE,
2353 &page, &fsdata);
2354 if (err)
2355 goto out;
2356 zero_user(page, zerofrom, len);
2357 err = pagecache_write_end(file, mapping, curpos, len, len,
2358 page, fsdata);
2359 if (err < 0)
2360 goto out;
2361 BUG_ON(err != len);
2362 err = 0;
2363 }
2364 out:
2365 return err;
2366 }
2367
2368 /*
2369 * For moronic filesystems that do not allow holes in file.
2370 * We may have to extend the file.
2371 */
2372 int cont_write_begin(struct file *file, struct address_space *mapping,
2373 loff_t pos, unsigned len, unsigned flags,
2374 struct page **pagep, void **fsdata,
2375 get_block_t *get_block, loff_t *bytes)
2376 {
2377 struct inode *inode = mapping->host;
2378 unsigned blocksize = 1 << inode->i_blkbits;
2379 unsigned zerofrom;
2380 int err;
2381
2382 err = cont_expand_zero(file, mapping, pos, bytes);
2383 if (err)
2384 return err;
2385
2386 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2387 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2388 *bytes |= (blocksize-1);
2389 (*bytes)++;
2390 }
2391
2392 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2393 }
2394 EXPORT_SYMBOL(cont_write_begin);
2395
2396 int block_commit_write(struct page *page, unsigned from, unsigned to)
2397 {
2398 struct inode *inode = page->mapping->host;
2399 __block_commit_write(inode,page,from,to);
2400 return 0;
2401 }
2402 EXPORT_SYMBOL(block_commit_write);
2403
2404 /*
2405 * block_page_mkwrite() is not allowed to change the file size as it gets
2406 * called from a page fault handler when a page is first dirtied. Hence we must
2407 * be careful to check for EOF conditions here. We set the page up correctly
2408 * for a written page which means we get ENOSPC checking when writing into
2409 * holes and correct delalloc and unwritten extent mapping on filesystems that
2410 * support these features.
2411 *
2412 * We are not allowed to take the i_mutex here so we have to play games to
2413 * protect against truncate races as the page could now be beyond EOF. Because
2414 * truncate writes the inode size before removing pages, once we have the
2415 * page lock we can determine safely if the page is beyond EOF. If it is not
2416 * beyond EOF, then the page is guaranteed safe against truncation until we
2417 * unlock the page.
2418 *
2419 * Direct callers of this function should protect against filesystem freezing
2420 * using sb_start_write() - sb_end_write() functions.
2421 */
2422 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2423 get_block_t get_block)
2424 {
2425 struct page *page = vmf->page;
2426 struct inode *inode = file_inode(vma->vm_file);
2427 unsigned long end;
2428 loff_t size;
2429 int ret;
2430
2431 lock_page(page);
2432 size = i_size_read(inode);
2433 if ((page->mapping != inode->i_mapping) ||
2434 (page_offset(page) > size)) {
2435 /* We overload EFAULT to mean page got truncated */
2436 ret = -EFAULT;
2437 goto out_unlock;
2438 }
2439
2440 /* page is wholly or partially inside EOF */
2441 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2442 end = size & ~PAGE_CACHE_MASK;
2443 else
2444 end = PAGE_CACHE_SIZE;
2445
2446 ret = __block_write_begin(page, 0, end, get_block);
2447 if (!ret)
2448 ret = block_commit_write(page, 0, end);
2449
2450 if (unlikely(ret < 0))
2451 goto out_unlock;
2452 set_page_dirty(page);
2453 wait_for_stable_page(page);
2454 return 0;
2455 out_unlock:
2456 unlock_page(page);
2457 return ret;
2458 }
2459 EXPORT_SYMBOL(__block_page_mkwrite);
2460
2461 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2462 get_block_t get_block)
2463 {
2464 int ret;
2465 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2466
2467 sb_start_pagefault(sb);
2468
2469 /*
2470 * Update file times before taking page lock. We may end up failing the
2471 * fault so this update may be superfluous but who really cares...
2472 */
2473 file_update_time(vma->vm_file);
2474
2475 ret = __block_page_mkwrite(vma, vmf, get_block);
2476 sb_end_pagefault(sb);
2477 return block_page_mkwrite_return(ret);
2478 }
2479 EXPORT_SYMBOL(block_page_mkwrite);
2480
2481 /*
2482 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2483 * immediately, while under the page lock. So it needs a special end_io
2484 * handler which does not touch the bh after unlocking it.
2485 */
2486 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2487 {
2488 __end_buffer_read_notouch(bh, uptodate);
2489 }
2490
2491 /*
2492 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2493 * the page (converting it to circular linked list and taking care of page
2494 * dirty races).
2495 */
2496 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2497 {
2498 struct buffer_head *bh;
2499
2500 BUG_ON(!PageLocked(page));
2501
2502 spin_lock(&page->mapping->private_lock);
2503 bh = head;
2504 do {
2505 if (PageDirty(page))
2506 set_buffer_dirty(bh);
2507 if (!bh->b_this_page)
2508 bh->b_this_page = head;
2509 bh = bh->b_this_page;
2510 } while (bh != head);
2511 attach_page_buffers(page, head);
2512 spin_unlock(&page->mapping->private_lock);
2513 }
2514
2515 /*
2516 * On entry, the page is fully not uptodate.
2517 * On exit the page is fully uptodate in the areas outside (from,to)
2518 * The filesystem needs to handle block truncation upon failure.
2519 */
2520 int nobh_write_begin(struct address_space *mapping,
2521 loff_t pos, unsigned len, unsigned flags,
2522 struct page **pagep, void **fsdata,
2523 get_block_t *get_block)
2524 {
2525 struct inode *inode = mapping->host;
2526 const unsigned blkbits = inode->i_blkbits;
2527 const unsigned blocksize = 1 << blkbits;
2528 struct buffer_head *head, *bh;
2529 struct page *page;
2530 pgoff_t index;
2531 unsigned from, to;
2532 unsigned block_in_page;
2533 unsigned block_start, block_end;
2534 sector_t block_in_file;
2535 int nr_reads = 0;
2536 int ret = 0;
2537 int is_mapped_to_disk = 1;
2538
2539 index = pos >> PAGE_CACHE_SHIFT;
2540 from = pos & (PAGE_CACHE_SIZE - 1);
2541 to = from + len;
2542
2543 page = grab_cache_page_write_begin(mapping, index, flags);
2544 if (!page)
2545 return -ENOMEM;
2546 *pagep = page;
2547 *fsdata = NULL;
2548
2549 if (page_has_buffers(page)) {
2550 ret = __block_write_begin(page, pos, len, get_block);
2551 if (unlikely(ret))
2552 goto out_release;
2553 return ret;
2554 }
2555
2556 if (PageMappedToDisk(page))
2557 return 0;
2558
2559 /*
2560 * Allocate buffers so that we can keep track of state, and potentially
2561 * attach them to the page if an error occurs. In the common case of
2562 * no error, they will just be freed again without ever being attached
2563 * to the page (which is all OK, because we're under the page lock).
2564 *
2565 * Be careful: the buffer linked list is a NULL terminated one, rather
2566 * than the circular one we're used to.
2567 */
2568 head = alloc_page_buffers(page, blocksize, 0);
2569 if (!head) {
2570 ret = -ENOMEM;
2571 goto out_release;
2572 }
2573
2574 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2575
2576 /*
2577 * We loop across all blocks in the page, whether or not they are
2578 * part of the affected region. This is so we can discover if the
2579 * page is fully mapped-to-disk.
2580 */
2581 for (block_start = 0, block_in_page = 0, bh = head;
2582 block_start < PAGE_CACHE_SIZE;
2583 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2584 int create;
2585
2586 block_end = block_start + blocksize;
2587 bh->b_state = 0;
2588 create = 1;
2589 if (block_start >= to)
2590 create = 0;
2591 ret = get_block(inode, block_in_file + block_in_page,
2592 bh, create);
2593 if (ret)
2594 goto failed;
2595 if (!buffer_mapped(bh))
2596 is_mapped_to_disk = 0;
2597 if (buffer_new(bh))
2598 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2599 if (PageUptodate(page)) {
2600 set_buffer_uptodate(bh);
2601 continue;
2602 }
2603 if (buffer_new(bh) || !buffer_mapped(bh)) {
2604 zero_user_segments(page, block_start, from,
2605 to, block_end);
2606 continue;
2607 }
2608 if (buffer_uptodate(bh))
2609 continue; /* reiserfs does this */
2610 if (block_start < from || block_end > to) {
2611 lock_buffer(bh);
2612 bh->b_end_io = end_buffer_read_nobh;
2613 submit_bh(READ, bh);
2614 nr_reads++;
2615 }
2616 }
2617
2618 if (nr_reads) {
2619 /*
2620 * The page is locked, so these buffers are protected from
2621 * any VM or truncate activity. Hence we don't need to care
2622 * for the buffer_head refcounts.
2623 */
2624 for (bh = head; bh; bh = bh->b_this_page) {
2625 wait_on_buffer(bh);
2626 if (!buffer_uptodate(bh))
2627 ret = -EIO;
2628 }
2629 if (ret)
2630 goto failed;
2631 }
2632
2633 if (is_mapped_to_disk)
2634 SetPageMappedToDisk(page);
2635
2636 *fsdata = head; /* to be released by nobh_write_end */
2637
2638 return 0;
2639
2640 failed:
2641 BUG_ON(!ret);
2642 /*
2643 * Error recovery is a bit difficult. We need to zero out blocks that
2644 * were newly allocated, and dirty them to ensure they get written out.
2645 * Buffers need to be attached to the page at this point, otherwise
2646 * the handling of potential IO errors during writeout would be hard
2647 * (could try doing synchronous writeout, but what if that fails too?)
2648 */
2649 attach_nobh_buffers(page, head);
2650 page_zero_new_buffers(page, from, to);
2651
2652 out_release:
2653 unlock_page(page);
2654 page_cache_release(page);
2655 *pagep = NULL;
2656
2657 return ret;
2658 }
2659 EXPORT_SYMBOL(nobh_write_begin);
2660
2661 int nobh_write_end(struct file *file, struct address_space *mapping,
2662 loff_t pos, unsigned len, unsigned copied,
2663 struct page *page, void *fsdata)
2664 {
2665 struct inode *inode = page->mapping->host;
2666 struct buffer_head *head = fsdata;
2667 struct buffer_head *bh;
2668 BUG_ON(fsdata != NULL && page_has_buffers(page));
2669
2670 if (unlikely(copied < len) && head)
2671 attach_nobh_buffers(page, head);
2672 if (page_has_buffers(page))
2673 return generic_write_end(file, mapping, pos, len,
2674 copied, page, fsdata);
2675
2676 SetPageUptodate(page);
2677 set_page_dirty(page);
2678 if (pos+copied > inode->i_size) {
2679 i_size_write(inode, pos+copied);
2680 mark_inode_dirty(inode);
2681 }
2682
2683 unlock_page(page);
2684 page_cache_release(page);
2685
2686 while (head) {
2687 bh = head;
2688 head = head->b_this_page;
2689 free_buffer_head(bh);
2690 }
2691
2692 return copied;
2693 }
2694 EXPORT_SYMBOL(nobh_write_end);
2695
2696 /*
2697 * nobh_writepage() - based on block_full_write_page() except
2698 * that it tries to operate without attaching bufferheads to
2699 * the page.
2700 */
2701 int nobh_writepage(struct page *page, get_block_t *get_block,
2702 struct writeback_control *wbc)
2703 {
2704 struct inode * const inode = page->mapping->host;
2705 loff_t i_size = i_size_read(inode);
2706 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2707 unsigned offset;
2708 int ret;
2709
2710 /* Is the page fully inside i_size? */
2711 if (page->index < end_index)
2712 goto out;
2713
2714 /* Is the page fully outside i_size? (truncate in progress) */
2715 offset = i_size & (PAGE_CACHE_SIZE-1);
2716 if (page->index >= end_index+1 || !offset) {
2717 /*
2718 * The page may have dirty, unmapped buffers. For example,
2719 * they may have been added in ext3_writepage(). Make them
2720 * freeable here, so the page does not leak.
2721 */
2722 #if 0
2723 /* Not really sure about this - do we need this ? */
2724 if (page->mapping->a_ops->invalidatepage)
2725 page->mapping->a_ops->invalidatepage(page, offset);
2726 #endif
2727 unlock_page(page);
2728 return 0; /* don't care */
2729 }
2730
2731 /*
2732 * The page straddles i_size. It must be zeroed out on each and every
2733 * writepage invocation because it may be mmapped. "A file is mapped
2734 * in multiples of the page size. For a file that is not a multiple of
2735 * the page size, the remaining memory is zeroed when mapped, and
2736 * writes to that region are not written out to the file."
2737 */
2738 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2739 out:
2740 ret = mpage_writepage(page, get_block, wbc);
2741 if (ret == -EAGAIN)
2742 ret = __block_write_full_page(inode, page, get_block, wbc,
2743 end_buffer_async_write);
2744 return ret;
2745 }
2746 EXPORT_SYMBOL(nobh_writepage);
2747
2748 int nobh_truncate_page(struct address_space *mapping,
2749 loff_t from, get_block_t *get_block)
2750 {
2751 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2752 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2753 unsigned blocksize;
2754 sector_t iblock;
2755 unsigned length, pos;
2756 struct inode *inode = mapping->host;
2757 struct page *page;
2758 struct buffer_head map_bh;
2759 int err;
2760
2761 blocksize = 1 << inode->i_blkbits;
2762 length = offset & (blocksize - 1);
2763
2764 /* Block boundary? Nothing to do */
2765 if (!length)
2766 return 0;
2767
2768 length = blocksize - length;
2769 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2770
2771 page = grab_cache_page(mapping, index);
2772 err = -ENOMEM;
2773 if (!page)
2774 goto out;
2775
2776 if (page_has_buffers(page)) {
2777 has_buffers:
2778 unlock_page(page);
2779 page_cache_release(page);
2780 return block_truncate_page(mapping, from, get_block);
2781 }
2782
2783 /* Find the buffer that contains "offset" */
2784 pos = blocksize;
2785 while (offset >= pos) {
2786 iblock++;
2787 pos += blocksize;
2788 }
2789
2790 map_bh.b_size = blocksize;
2791 map_bh.b_state = 0;
2792 err = get_block(inode, iblock, &map_bh, 0);
2793 if (err)
2794 goto unlock;
2795 /* unmapped? It's a hole - nothing to do */
2796 if (!buffer_mapped(&map_bh))
2797 goto unlock;
2798
2799 /* Ok, it's mapped. Make sure it's up-to-date */
2800 if (!PageUptodate(page)) {
2801 err = mapping->a_ops->readpage(NULL, page);
2802 if (err) {
2803 page_cache_release(page);
2804 goto out;
2805 }
2806 lock_page(page);
2807 if (!PageUptodate(page)) {
2808 err = -EIO;
2809 goto unlock;
2810 }
2811 if (page_has_buffers(page))
2812 goto has_buffers;
2813 }
2814 zero_user(page, offset, length);
2815 set_page_dirty(page);
2816 err = 0;
2817
2818 unlock:
2819 unlock_page(page);
2820 page_cache_release(page);
2821 out:
2822 return err;
2823 }
2824 EXPORT_SYMBOL(nobh_truncate_page);
2825
2826 int block_truncate_page(struct address_space *mapping,
2827 loff_t from, get_block_t *get_block)
2828 {
2829 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2830 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2831 unsigned blocksize;
2832 sector_t iblock;
2833 unsigned length, pos;
2834 struct inode *inode = mapping->host;
2835 struct page *page;
2836 struct buffer_head *bh;
2837 int err;
2838
2839 blocksize = 1 << inode->i_blkbits;
2840 length = offset & (blocksize - 1);
2841
2842 /* Block boundary? Nothing to do */
2843 if (!length)
2844 return 0;
2845
2846 length = blocksize - length;
2847 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2848
2849 page = grab_cache_page(mapping, index);
2850 err = -ENOMEM;
2851 if (!page)
2852 goto out;
2853
2854 if (!page_has_buffers(page))
2855 create_empty_buffers(page, blocksize, 0);
2856
2857 /* Find the buffer that contains "offset" */
2858 bh = page_buffers(page);
2859 pos = blocksize;
2860 while (offset >= pos) {
2861 bh = bh->b_this_page;
2862 iblock++;
2863 pos += blocksize;
2864 }
2865
2866 err = 0;
2867 if (!buffer_mapped(bh)) {
2868 WARN_ON(bh->b_size != blocksize);
2869 err = get_block(inode, iblock, bh, 0);
2870 if (err)
2871 goto unlock;
2872 /* unmapped? It's a hole - nothing to do */
2873 if (!buffer_mapped(bh))
2874 goto unlock;
2875 }
2876
2877 /* Ok, it's mapped. Make sure it's up-to-date */
2878 if (PageUptodate(page))
2879 set_buffer_uptodate(bh);
2880
2881 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2882 err = -EIO;
2883 ll_rw_block(READ, 1, &bh);
2884 wait_on_buffer(bh);
2885 /* Uhhuh. Read error. Complain and punt. */
2886 if (!buffer_uptodate(bh))
2887 goto unlock;
2888 }
2889
2890 zero_user(page, offset, length);
2891 mark_buffer_dirty(bh);
2892 err = 0;
2893
2894 unlock:
2895 unlock_page(page);
2896 page_cache_release(page);
2897 out:
2898 return err;
2899 }
2900 EXPORT_SYMBOL(block_truncate_page);
2901
2902 /*
2903 * The generic ->writepage function for buffer-backed address_spaces
2904 */
2905 int block_write_full_page(struct page *page, get_block_t *get_block,
2906 struct writeback_control *wbc)
2907 {
2908 struct inode * const inode = page->mapping->host;
2909 loff_t i_size = i_size_read(inode);
2910 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2911 unsigned offset;
2912
2913 /* Is the page fully inside i_size? */
2914 if (page->index < end_index)
2915 return __block_write_full_page(inode, page, get_block, wbc,
2916 end_buffer_async_write);
2917
2918 /* Is the page fully outside i_size? (truncate in progress) */
2919 offset = i_size & (PAGE_CACHE_SIZE-1);
2920 if (page->index >= end_index+1 || !offset) {
2921 /*
2922 * The page may have dirty, unmapped buffers. For example,
2923 * they may have been added in ext3_writepage(). Make them
2924 * freeable here, so the page does not leak.
2925 */
2926 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2927 unlock_page(page);
2928 return 0; /* don't care */
2929 }
2930
2931 /*
2932 * The page straddles i_size. It must be zeroed out on each and every
2933 * writepage invocation because it may be mmapped. "A file is mapped
2934 * in multiples of the page size. For a file that is not a multiple of
2935 * the page size, the remaining memory is zeroed when mapped, and
2936 * writes to that region are not written out to the file."
2937 */
2938 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2939 return __block_write_full_page(inode, page, get_block, wbc,
2940 end_buffer_async_write);
2941 }
2942 EXPORT_SYMBOL(block_write_full_page);
2943
2944 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2945 get_block_t *get_block)
2946 {
2947 struct buffer_head tmp;
2948 struct inode *inode = mapping->host;
2949 tmp.b_state = 0;
2950 tmp.b_blocknr = 0;
2951 tmp.b_size = 1 << inode->i_blkbits;
2952 get_block(inode, block, &tmp, 0);
2953 return tmp.b_blocknr;
2954 }
2955 EXPORT_SYMBOL(generic_block_bmap);
2956
2957 static void end_bio_bh_io_sync(struct bio *bio, int err)
2958 {
2959 struct buffer_head *bh = bio->bi_private;
2960
2961 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2962 set_bit(BH_Quiet, &bh->b_state);
2963
2964 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2965 bio_put(bio);
2966 }
2967
2968 /*
2969 * This allows us to do IO even on the odd last sectors
2970 * of a device, even if the block size is some multiple
2971 * of the physical sector size.
2972 *
2973 * We'll just truncate the bio to the size of the device,
2974 * and clear the end of the buffer head manually.
2975 *
2976 * Truly out-of-range accesses will turn into actual IO
2977 * errors, this only handles the "we need to be able to
2978 * do IO at the final sector" case.
2979 */
2980 void guard_bio_eod(int rw, struct bio *bio)
2981 {
2982 sector_t maxsector;
2983 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2984 unsigned truncated_bytes;
2985
2986 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2987 if (!maxsector)
2988 return;
2989
2990 /*
2991 * If the *whole* IO is past the end of the device,
2992 * let it through, and the IO layer will turn it into
2993 * an EIO.
2994 */
2995 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2996 return;
2997
2998 maxsector -= bio->bi_iter.bi_sector;
2999 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3000 return;
3001
3002 /* Uhhuh. We've got a bio that straddles the device size! */
3003 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3004
3005 /* Truncate the bio.. */
3006 bio->bi_iter.bi_size -= truncated_bytes;
3007 bvec->bv_len -= truncated_bytes;
3008
3009 /* ..and clear the end of the buffer for reads */
3010 if ((rw & RW_MASK) == READ) {
3011 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3012 truncated_bytes);
3013 }
3014 }
3015
3016 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3017 {
3018 struct bio *bio;
3019
3020 BUG_ON(!buffer_locked(bh));
3021 BUG_ON(!buffer_mapped(bh));
3022 BUG_ON(!bh->b_end_io);
3023 BUG_ON(buffer_delay(bh));
3024 BUG_ON(buffer_unwritten(bh));
3025
3026 /*
3027 * Only clear out a write error when rewriting
3028 */
3029 if (test_set_buffer_req(bh) && (rw & WRITE))
3030 clear_buffer_write_io_error(bh);
3031
3032 /*
3033 * from here on down, it's all bio -- do the initial mapping,
3034 * submit_bio -> generic_make_request may further map this bio around
3035 */
3036 bio = bio_alloc(GFP_NOIO, 1);
3037
3038 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3039 bio->bi_bdev = bh->b_bdev;
3040 bio->bi_io_vec[0].bv_page = bh->b_page;
3041 bio->bi_io_vec[0].bv_len = bh->b_size;
3042 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3043
3044 bio->bi_vcnt = 1;
3045 bio->bi_iter.bi_size = bh->b_size;
3046
3047 bio->bi_end_io = end_bio_bh_io_sync;
3048 bio->bi_private = bh;
3049 bio->bi_flags |= bio_flags;
3050
3051 /* Take care of bh's that straddle the end of the device */
3052 guard_bio_eod(rw, bio);
3053
3054 if (buffer_meta(bh))
3055 rw |= REQ_META;
3056 if (buffer_prio(bh))
3057 rw |= REQ_PRIO;
3058
3059 submit_bio(rw, bio);
3060 return 0;
3061 }
3062 EXPORT_SYMBOL_GPL(_submit_bh);
3063
3064 int submit_bh(int rw, struct buffer_head *bh)
3065 {
3066 return _submit_bh(rw, bh, 0);
3067 }
3068 EXPORT_SYMBOL(submit_bh);
3069
3070 /**
3071 * ll_rw_block: low-level access to block devices (DEPRECATED)
3072 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3073 * @nr: number of &struct buffer_heads in the array
3074 * @bhs: array of pointers to &struct buffer_head
3075 *
3076 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3077 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3078 * %READA option is described in the documentation for generic_make_request()
3079 * which ll_rw_block() calls.
3080 *
3081 * This function drops any buffer that it cannot get a lock on (with the
3082 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3083 * request, and any buffer that appears to be up-to-date when doing read
3084 * request. Further it marks as clean buffers that are processed for
3085 * writing (the buffer cache won't assume that they are actually clean
3086 * until the buffer gets unlocked).
3087 *
3088 * ll_rw_block sets b_end_io to simple completion handler that marks
3089 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3090 * any waiters.
3091 *
3092 * All of the buffers must be for the same device, and must also be a
3093 * multiple of the current approved size for the device.
3094 */
3095 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3096 {
3097 int i;
3098
3099 for (i = 0; i < nr; i++) {
3100 struct buffer_head *bh = bhs[i];
3101
3102 if (!trylock_buffer(bh))
3103 continue;
3104 if (rw == WRITE) {
3105 if (test_clear_buffer_dirty(bh)) {
3106 bh->b_end_io = end_buffer_write_sync;
3107 get_bh(bh);
3108 submit_bh(WRITE, bh);
3109 continue;
3110 }
3111 } else {
3112 if (!buffer_uptodate(bh)) {
3113 bh->b_end_io = end_buffer_read_sync;
3114 get_bh(bh);
3115 submit_bh(rw, bh);
3116 continue;
3117 }
3118 }
3119 unlock_buffer(bh);
3120 }
3121 }
3122 EXPORT_SYMBOL(ll_rw_block);
3123
3124 void write_dirty_buffer(struct buffer_head *bh, int rw)
3125 {
3126 lock_buffer(bh);
3127 if (!test_clear_buffer_dirty(bh)) {
3128 unlock_buffer(bh);
3129 return;
3130 }
3131 bh->b_end_io = end_buffer_write_sync;
3132 get_bh(bh);
3133 submit_bh(rw, bh);
3134 }
3135 EXPORT_SYMBOL(write_dirty_buffer);
3136
3137 /*
3138 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3139 * and then start new I/O and then wait upon it. The caller must have a ref on
3140 * the buffer_head.
3141 */
3142 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3143 {
3144 int ret = 0;
3145
3146 WARN_ON(atomic_read(&bh->b_count) < 1);
3147 lock_buffer(bh);
3148 if (test_clear_buffer_dirty(bh)) {
3149 get_bh(bh);
3150 bh->b_end_io = end_buffer_write_sync;
3151 ret = submit_bh(rw, bh);
3152 wait_on_buffer(bh);
3153 if (!ret && !buffer_uptodate(bh))
3154 ret = -EIO;
3155 } else {
3156 unlock_buffer(bh);
3157 }
3158 return ret;
3159 }
3160 EXPORT_SYMBOL(__sync_dirty_buffer);
3161
3162 int sync_dirty_buffer(struct buffer_head *bh)
3163 {
3164 return __sync_dirty_buffer(bh, WRITE_SYNC);
3165 }
3166 EXPORT_SYMBOL(sync_dirty_buffer);
3167
3168 /*
3169 * try_to_free_buffers() checks if all the buffers on this particular page
3170 * are unused, and releases them if so.
3171 *
3172 * Exclusion against try_to_free_buffers may be obtained by either
3173 * locking the page or by holding its mapping's private_lock.
3174 *
3175 * If the page is dirty but all the buffers are clean then we need to
3176 * be sure to mark the page clean as well. This is because the page
3177 * may be against a block device, and a later reattachment of buffers
3178 * to a dirty page will set *all* buffers dirty. Which would corrupt
3179 * filesystem data on the same device.
3180 *
3181 * The same applies to regular filesystem pages: if all the buffers are
3182 * clean then we set the page clean and proceed. To do that, we require
3183 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3184 * private_lock.
3185 *
3186 * try_to_free_buffers() is non-blocking.
3187 */
3188 static inline int buffer_busy(struct buffer_head *bh)
3189 {
3190 return atomic_read(&bh->b_count) |
3191 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3192 }
3193
3194 static int
3195 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3196 {
3197 struct buffer_head *head = page_buffers(page);
3198 struct buffer_head *bh;
3199
3200 bh = head;
3201 do {
3202 if (buffer_write_io_error(bh) && page->mapping)
3203 set_bit(AS_EIO, &page->mapping->flags);
3204 if (buffer_busy(bh))
3205 goto failed;
3206 bh = bh->b_this_page;
3207 } while (bh != head);
3208
3209 do {
3210 struct buffer_head *next = bh->b_this_page;
3211
3212 if (bh->b_assoc_map)
3213 __remove_assoc_queue(bh);
3214 bh = next;
3215 } while (bh != head);
3216 *buffers_to_free = head;
3217 __clear_page_buffers(page);
3218 return 1;
3219 failed:
3220 return 0;
3221 }
3222
3223 int try_to_free_buffers(struct page *page)
3224 {
3225 struct address_space * const mapping = page->mapping;
3226 struct buffer_head *buffers_to_free = NULL;
3227 int ret = 0;
3228
3229 BUG_ON(!PageLocked(page));
3230 if (PageWriteback(page))
3231 return 0;
3232
3233 if (mapping == NULL) { /* can this still happen? */
3234 ret = drop_buffers(page, &buffers_to_free);
3235 goto out;
3236 }
3237
3238 spin_lock(&mapping->private_lock);
3239 ret = drop_buffers(page, &buffers_to_free);
3240
3241 /*
3242 * If the filesystem writes its buffers by hand (eg ext3)
3243 * then we can have clean buffers against a dirty page. We
3244 * clean the page here; otherwise the VM will never notice
3245 * that the filesystem did any IO at all.
3246 *
3247 * Also, during truncate, discard_buffer will have marked all
3248 * the page's buffers clean. We discover that here and clean
3249 * the page also.
3250 *
3251 * private_lock must be held over this entire operation in order
3252 * to synchronise against __set_page_dirty_buffers and prevent the
3253 * dirty bit from being lost.
3254 */
3255 if (ret)
3256 cancel_dirty_page(page);
3257 spin_unlock(&mapping->private_lock);
3258 out:
3259 if (buffers_to_free) {
3260 struct buffer_head *bh = buffers_to_free;
3261
3262 do {
3263 struct buffer_head *next = bh->b_this_page;
3264 free_buffer_head(bh);
3265 bh = next;
3266 } while (bh != buffers_to_free);
3267 }
3268 return ret;
3269 }
3270 EXPORT_SYMBOL(try_to_free_buffers);
3271
3272 /*
3273 * There are no bdflush tunables left. But distributions are
3274 * still running obsolete flush daemons, so we terminate them here.
3275 *
3276 * Use of bdflush() is deprecated and will be removed in a future kernel.
3277 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3278 */
3279 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3280 {
3281 static int msg_count;
3282
3283 if (!capable(CAP_SYS_ADMIN))
3284 return -EPERM;
3285
3286 if (msg_count < 5) {
3287 msg_count++;
3288 printk(KERN_INFO
3289 "warning: process `%s' used the obsolete bdflush"
3290 " system call\n", current->comm);
3291 printk(KERN_INFO "Fix your initscripts?\n");
3292 }
3293
3294 if (func == 1)
3295 do_exit(0);
3296 return 0;
3297 }
3298
3299 /*
3300 * Buffer-head allocation
3301 */
3302 static struct kmem_cache *bh_cachep __read_mostly;
3303
3304 /*
3305 * Once the number of bh's in the machine exceeds this level, we start
3306 * stripping them in writeback.
3307 */
3308 static unsigned long max_buffer_heads;
3309
3310 int buffer_heads_over_limit;
3311
3312 struct bh_accounting {
3313 int nr; /* Number of live bh's */
3314 int ratelimit; /* Limit cacheline bouncing */
3315 };
3316
3317 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3318
3319 static void recalc_bh_state(void)
3320 {
3321 int i;
3322 int tot = 0;
3323
3324 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3325 return;
3326 __this_cpu_write(bh_accounting.ratelimit, 0);
3327 for_each_online_cpu(i)
3328 tot += per_cpu(bh_accounting, i).nr;
3329 buffer_heads_over_limit = (tot > max_buffer_heads);
3330 }
3331
3332 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3333 {
3334 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3335 if (ret) {
3336 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3337 preempt_disable();
3338 __this_cpu_inc(bh_accounting.nr);
3339 recalc_bh_state();
3340 preempt_enable();
3341 }
3342 return ret;
3343 }
3344 EXPORT_SYMBOL(alloc_buffer_head);
3345
3346 void free_buffer_head(struct buffer_head *bh)
3347 {
3348 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3349 kmem_cache_free(bh_cachep, bh);
3350 preempt_disable();
3351 __this_cpu_dec(bh_accounting.nr);
3352 recalc_bh_state();
3353 preempt_enable();
3354 }
3355 EXPORT_SYMBOL(free_buffer_head);
3356
3357 static void buffer_exit_cpu(int cpu)
3358 {
3359 int i;
3360 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3361
3362 for (i = 0; i < BH_LRU_SIZE; i++) {
3363 brelse(b->bhs[i]);
3364 b->bhs[i] = NULL;
3365 }
3366 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3367 per_cpu(bh_accounting, cpu).nr = 0;
3368 }
3369
3370 static int buffer_cpu_notify(struct notifier_block *self,
3371 unsigned long action, void *hcpu)
3372 {
3373 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3374 buffer_exit_cpu((unsigned long)hcpu);
3375 return NOTIFY_OK;
3376 }
3377
3378 /**
3379 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3380 * @bh: struct buffer_head
3381 *
3382 * Return true if the buffer is up-to-date and false,
3383 * with the buffer locked, if not.
3384 */
3385 int bh_uptodate_or_lock(struct buffer_head *bh)
3386 {
3387 if (!buffer_uptodate(bh)) {
3388 lock_buffer(bh);
3389 if (!buffer_uptodate(bh))
3390 return 0;
3391 unlock_buffer(bh);
3392 }
3393 return 1;
3394 }
3395 EXPORT_SYMBOL(bh_uptodate_or_lock);
3396
3397 /**
3398 * bh_submit_read - Submit a locked buffer for reading
3399 * @bh: struct buffer_head
3400 *
3401 * Returns zero on success and -EIO on error.
3402 */
3403 int bh_submit_read(struct buffer_head *bh)
3404 {
3405 BUG_ON(!buffer_locked(bh));
3406
3407 if (buffer_uptodate(bh)) {
3408 unlock_buffer(bh);
3409 return 0;
3410 }
3411
3412 get_bh(bh);
3413 bh->b_end_io = end_buffer_read_sync;
3414 submit_bh(READ, bh);
3415 wait_on_buffer(bh);
3416 if (buffer_uptodate(bh))
3417 return 0;
3418 return -EIO;
3419 }
3420 EXPORT_SYMBOL(bh_submit_read);
3421
3422 void __init buffer_init(void)
3423 {
3424 unsigned long nrpages;
3425
3426 bh_cachep = kmem_cache_create("buffer_head",
3427 sizeof(struct buffer_head), 0,
3428 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3429 SLAB_MEM_SPREAD),
3430 NULL);
3431
3432 /*
3433 * Limit the bh occupancy to 10% of ZONE_NORMAL
3434 */
3435 nrpages = (nr_free_buffer_pages() * 10) / 100;
3436 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3437 hotcpu_notifier(buffer_cpu_notify, 0);
3438 }
This page took 0.802833 seconds and 6 git commands to generate.