BUG_ON() Conversion in fs/buffer.c
[deliverable/linux.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/writeback.h>
36 #include <linux/hash.h>
37 #include <linux/suspend.h>
38 #include <linux/buffer_head.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 static void invalidate_bh_lrus(void);
48
49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50
51 inline void
52 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
53 {
54 bh->b_end_io = handler;
55 bh->b_private = private;
56 }
57
58 static int sync_buffer(void *word)
59 {
60 struct block_device *bd;
61 struct buffer_head *bh
62 = container_of(word, struct buffer_head, b_state);
63
64 smp_mb();
65 bd = bh->b_bdev;
66 if (bd)
67 blk_run_address_space(bd->bd_inode->i_mapping);
68 io_schedule();
69 return 0;
70 }
71
72 void fastcall __lock_buffer(struct buffer_head *bh)
73 {
74 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75 TASK_UNINTERRUPTIBLE);
76 }
77 EXPORT_SYMBOL(__lock_buffer);
78
79 void fastcall unlock_buffer(struct buffer_head *bh)
80 {
81 clear_buffer_locked(bh);
82 smp_mb__after_clear_bit();
83 wake_up_bit(&bh->b_state, BH_Lock);
84 }
85
86 /*
87 * Block until a buffer comes unlocked. This doesn't stop it
88 * from becoming locked again - you have to lock it yourself
89 * if you want to preserve its state.
90 */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95
96 static void
97 __clear_page_buffers(struct page *page)
98 {
99 ClearPagePrivate(page);
100 set_page_private(page, 0);
101 page_cache_release(page);
102 }
103
104 static void buffer_io_error(struct buffer_head *bh)
105 {
106 char b[BDEVNAME_SIZE];
107
108 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
109 bdevname(bh->b_bdev, b),
110 (unsigned long long)bh->b_blocknr);
111 }
112
113 /*
114 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
115 * unlock the buffer. This is what ll_rw_block uses too.
116 */
117 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
118 {
119 if (uptodate) {
120 set_buffer_uptodate(bh);
121 } else {
122 /* This happens, due to failed READA attempts. */
123 clear_buffer_uptodate(bh);
124 }
125 unlock_buffer(bh);
126 put_bh(bh);
127 }
128
129 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
130 {
131 char b[BDEVNAME_SIZE];
132
133 if (uptodate) {
134 set_buffer_uptodate(bh);
135 } else {
136 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
137 buffer_io_error(bh);
138 printk(KERN_WARNING "lost page write due to "
139 "I/O error on %s\n",
140 bdevname(bh->b_bdev, b));
141 }
142 set_buffer_write_io_error(bh);
143 clear_buffer_uptodate(bh);
144 }
145 unlock_buffer(bh);
146 put_bh(bh);
147 }
148
149 /*
150 * Write out and wait upon all the dirty data associated with a block
151 * device via its mapping. Does not take the superblock lock.
152 */
153 int sync_blockdev(struct block_device *bdev)
154 {
155 int ret = 0;
156
157 if (bdev)
158 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
159 return ret;
160 }
161 EXPORT_SYMBOL(sync_blockdev);
162
163 static void __fsync_super(struct super_block *sb)
164 {
165 sync_inodes_sb(sb, 0);
166 DQUOT_SYNC(sb);
167 lock_super(sb);
168 if (sb->s_dirt && sb->s_op->write_super)
169 sb->s_op->write_super(sb);
170 unlock_super(sb);
171 if (sb->s_op->sync_fs)
172 sb->s_op->sync_fs(sb, 1);
173 sync_blockdev(sb->s_bdev);
174 sync_inodes_sb(sb, 1);
175 }
176
177 /*
178 * Write out and wait upon all dirty data associated with this
179 * superblock. Filesystem data as well as the underlying block
180 * device. Takes the superblock lock.
181 */
182 int fsync_super(struct super_block *sb)
183 {
184 __fsync_super(sb);
185 return sync_blockdev(sb->s_bdev);
186 }
187
188 /*
189 * Write out and wait upon all dirty data associated with this
190 * device. Filesystem data as well as the underlying block
191 * device. Takes the superblock lock.
192 */
193 int fsync_bdev(struct block_device *bdev)
194 {
195 struct super_block *sb = get_super(bdev);
196 if (sb) {
197 int res = fsync_super(sb);
198 drop_super(sb);
199 return res;
200 }
201 return sync_blockdev(bdev);
202 }
203
204 /**
205 * freeze_bdev -- lock a filesystem and force it into a consistent state
206 * @bdev: blockdevice to lock
207 *
208 * This takes the block device bd_mount_mutex to make sure no new mounts
209 * happen on bdev until thaw_bdev() is called.
210 * If a superblock is found on this device, we take the s_umount semaphore
211 * on it to make sure nobody unmounts until the snapshot creation is done.
212 */
213 struct super_block *freeze_bdev(struct block_device *bdev)
214 {
215 struct super_block *sb;
216
217 mutex_lock(&bdev->bd_mount_mutex);
218 sb = get_super(bdev);
219 if (sb && !(sb->s_flags & MS_RDONLY)) {
220 sb->s_frozen = SB_FREEZE_WRITE;
221 smp_wmb();
222
223 __fsync_super(sb);
224
225 sb->s_frozen = SB_FREEZE_TRANS;
226 smp_wmb();
227
228 sync_blockdev(sb->s_bdev);
229
230 if (sb->s_op->write_super_lockfs)
231 sb->s_op->write_super_lockfs(sb);
232 }
233
234 sync_blockdev(bdev);
235 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
236 }
237 EXPORT_SYMBOL(freeze_bdev);
238
239 /**
240 * thaw_bdev -- unlock filesystem
241 * @bdev: blockdevice to unlock
242 * @sb: associated superblock
243 *
244 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
245 */
246 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
247 {
248 if (sb) {
249 BUG_ON(sb->s_bdev != bdev);
250
251 if (sb->s_op->unlockfs)
252 sb->s_op->unlockfs(sb);
253 sb->s_frozen = SB_UNFROZEN;
254 smp_wmb();
255 wake_up(&sb->s_wait_unfrozen);
256 drop_super(sb);
257 }
258
259 mutex_unlock(&bdev->bd_mount_mutex);
260 }
261 EXPORT_SYMBOL(thaw_bdev);
262
263 /*
264 * sync everything. Start out by waking pdflush, because that writes back
265 * all queues in parallel.
266 */
267 static void do_sync(unsigned long wait)
268 {
269 wakeup_pdflush(0);
270 sync_inodes(0); /* All mappings, inodes and their blockdevs */
271 DQUOT_SYNC(NULL);
272 sync_supers(); /* Write the superblocks */
273 sync_filesystems(0); /* Start syncing the filesystems */
274 sync_filesystems(wait); /* Waitingly sync the filesystems */
275 sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */
276 if (!wait)
277 printk("Emergency Sync complete\n");
278 if (unlikely(laptop_mode))
279 laptop_sync_completion();
280 }
281
282 asmlinkage long sys_sync(void)
283 {
284 do_sync(1);
285 return 0;
286 }
287
288 void emergency_sync(void)
289 {
290 pdflush_operation(do_sync, 0);
291 }
292
293 /*
294 * Generic function to fsync a file.
295 *
296 * filp may be NULL if called via the msync of a vma.
297 */
298
299 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
300 {
301 struct inode * inode = dentry->d_inode;
302 struct super_block * sb;
303 int ret, err;
304
305 /* sync the inode to buffers */
306 ret = write_inode_now(inode, 0);
307
308 /* sync the superblock to buffers */
309 sb = inode->i_sb;
310 lock_super(sb);
311 if (sb->s_op->write_super)
312 sb->s_op->write_super(sb);
313 unlock_super(sb);
314
315 /* .. finally sync the buffers to disk */
316 err = sync_blockdev(sb->s_bdev);
317 if (!ret)
318 ret = err;
319 return ret;
320 }
321
322 long do_fsync(struct file *file, int datasync)
323 {
324 int ret;
325 int err;
326 struct address_space *mapping = file->f_mapping;
327
328 if (!file->f_op || !file->f_op->fsync) {
329 /* Why? We can still call filemap_fdatawrite */
330 ret = -EINVAL;
331 goto out;
332 }
333
334 current->flags |= PF_SYNCWRITE;
335 ret = filemap_fdatawrite(mapping);
336
337 /*
338 * We need to protect against concurrent writers, which could cause
339 * livelocks in fsync_buffers_list().
340 */
341 mutex_lock(&mapping->host->i_mutex);
342 err = file->f_op->fsync(file, file->f_dentry, datasync);
343 if (!ret)
344 ret = err;
345 mutex_unlock(&mapping->host->i_mutex);
346 err = filemap_fdatawait(mapping);
347 if (!ret)
348 ret = err;
349 current->flags &= ~PF_SYNCWRITE;
350 out:
351 return ret;
352 }
353
354 static long __do_fsync(unsigned int fd, int datasync)
355 {
356 struct file *file;
357 int ret = -EBADF;
358
359 file = fget(fd);
360 if (file) {
361 ret = do_fsync(file, datasync);
362 fput(file);
363 }
364 return ret;
365 }
366
367 asmlinkage long sys_fsync(unsigned int fd)
368 {
369 return __do_fsync(fd, 0);
370 }
371
372 asmlinkage long sys_fdatasync(unsigned int fd)
373 {
374 return __do_fsync(fd, 1);
375 }
376
377 /*
378 * Various filesystems appear to want __find_get_block to be non-blocking.
379 * But it's the page lock which protects the buffers. To get around this,
380 * we get exclusion from try_to_free_buffers with the blockdev mapping's
381 * private_lock.
382 *
383 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
384 * may be quite high. This code could TryLock the page, and if that
385 * succeeds, there is no need to take private_lock. (But if
386 * private_lock is contended then so is mapping->tree_lock).
387 */
388 static struct buffer_head *
389 __find_get_block_slow(struct block_device *bdev, sector_t block)
390 {
391 struct inode *bd_inode = bdev->bd_inode;
392 struct address_space *bd_mapping = bd_inode->i_mapping;
393 struct buffer_head *ret = NULL;
394 pgoff_t index;
395 struct buffer_head *bh;
396 struct buffer_head *head;
397 struct page *page;
398 int all_mapped = 1;
399
400 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
401 page = find_get_page(bd_mapping, index);
402 if (!page)
403 goto out;
404
405 spin_lock(&bd_mapping->private_lock);
406 if (!page_has_buffers(page))
407 goto out_unlock;
408 head = page_buffers(page);
409 bh = head;
410 do {
411 if (bh->b_blocknr == block) {
412 ret = bh;
413 get_bh(bh);
414 goto out_unlock;
415 }
416 if (!buffer_mapped(bh))
417 all_mapped = 0;
418 bh = bh->b_this_page;
419 } while (bh != head);
420
421 /* we might be here because some of the buffers on this page are
422 * not mapped. This is due to various races between
423 * file io on the block device and getblk. It gets dealt with
424 * elsewhere, don't buffer_error if we had some unmapped buffers
425 */
426 if (all_mapped) {
427 printk("__find_get_block_slow() failed. "
428 "block=%llu, b_blocknr=%llu\n",
429 (unsigned long long)block, (unsigned long long)bh->b_blocknr);
430 printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size);
431 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
432 }
433 out_unlock:
434 spin_unlock(&bd_mapping->private_lock);
435 page_cache_release(page);
436 out:
437 return ret;
438 }
439
440 /* If invalidate_buffers() will trash dirty buffers, it means some kind
441 of fs corruption is going on. Trashing dirty data always imply losing
442 information that was supposed to be just stored on the physical layer
443 by the user.
444
445 Thus invalidate_buffers in general usage is not allwowed to trash
446 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
447 be preserved. These buffers are simply skipped.
448
449 We also skip buffers which are still in use. For example this can
450 happen if a userspace program is reading the block device.
451
452 NOTE: In the case where the user removed a removable-media-disk even if
453 there's still dirty data not synced on disk (due a bug in the device driver
454 or due an error of the user), by not destroying the dirty buffers we could
455 generate corruption also on the next media inserted, thus a parameter is
456 necessary to handle this case in the most safe way possible (trying
457 to not corrupt also the new disk inserted with the data belonging to
458 the old now corrupted disk). Also for the ramdisk the natural thing
459 to do in order to release the ramdisk memory is to destroy dirty buffers.
460
461 These are two special cases. Normal usage imply the device driver
462 to issue a sync on the device (without waiting I/O completion) and
463 then an invalidate_buffers call that doesn't trash dirty buffers.
464
465 For handling cache coherency with the blkdev pagecache the 'update' case
466 is been introduced. It is needed to re-read from disk any pinned
467 buffer. NOTE: re-reading from disk is destructive so we can do it only
468 when we assume nobody is changing the buffercache under our I/O and when
469 we think the disk contains more recent information than the buffercache.
470 The update == 1 pass marks the buffers we need to update, the update == 2
471 pass does the actual I/O. */
472 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
473 {
474 invalidate_bh_lrus();
475 /*
476 * FIXME: what about destroy_dirty_buffers?
477 * We really want to use invalidate_inode_pages2() for
478 * that, but not until that's cleaned up.
479 */
480 invalidate_inode_pages(bdev->bd_inode->i_mapping);
481 }
482
483 /*
484 * Kick pdflush then try to free up some ZONE_NORMAL memory.
485 */
486 static void free_more_memory(void)
487 {
488 struct zone **zones;
489 pg_data_t *pgdat;
490
491 wakeup_pdflush(1024);
492 yield();
493
494 for_each_pgdat(pgdat) {
495 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
496 if (*zones)
497 try_to_free_pages(zones, GFP_NOFS);
498 }
499 }
500
501 /*
502 * I/O completion handler for block_read_full_page() - pages
503 * which come unlocked at the end of I/O.
504 */
505 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
506 {
507 unsigned long flags;
508 struct buffer_head *first;
509 struct buffer_head *tmp;
510 struct page *page;
511 int page_uptodate = 1;
512
513 BUG_ON(!buffer_async_read(bh));
514
515 page = bh->b_page;
516 if (uptodate) {
517 set_buffer_uptodate(bh);
518 } else {
519 clear_buffer_uptodate(bh);
520 if (printk_ratelimit())
521 buffer_io_error(bh);
522 SetPageError(page);
523 }
524
525 /*
526 * Be _very_ careful from here on. Bad things can happen if
527 * two buffer heads end IO at almost the same time and both
528 * decide that the page is now completely done.
529 */
530 first = page_buffers(page);
531 local_irq_save(flags);
532 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
533 clear_buffer_async_read(bh);
534 unlock_buffer(bh);
535 tmp = bh;
536 do {
537 if (!buffer_uptodate(tmp))
538 page_uptodate = 0;
539 if (buffer_async_read(tmp)) {
540 BUG_ON(!buffer_locked(tmp));
541 goto still_busy;
542 }
543 tmp = tmp->b_this_page;
544 } while (tmp != bh);
545 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
546 local_irq_restore(flags);
547
548 /*
549 * If none of the buffers had errors and they are all
550 * uptodate then we can set the page uptodate.
551 */
552 if (page_uptodate && !PageError(page))
553 SetPageUptodate(page);
554 unlock_page(page);
555 return;
556
557 still_busy:
558 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
559 local_irq_restore(flags);
560 return;
561 }
562
563 /*
564 * Completion handler for block_write_full_page() - pages which are unlocked
565 * during I/O, and which have PageWriteback cleared upon I/O completion.
566 */
567 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
568 {
569 char b[BDEVNAME_SIZE];
570 unsigned long flags;
571 struct buffer_head *first;
572 struct buffer_head *tmp;
573 struct page *page;
574
575 BUG_ON(!buffer_async_write(bh));
576
577 page = bh->b_page;
578 if (uptodate) {
579 set_buffer_uptodate(bh);
580 } else {
581 if (printk_ratelimit()) {
582 buffer_io_error(bh);
583 printk(KERN_WARNING "lost page write due to "
584 "I/O error on %s\n",
585 bdevname(bh->b_bdev, b));
586 }
587 set_bit(AS_EIO, &page->mapping->flags);
588 clear_buffer_uptodate(bh);
589 SetPageError(page);
590 }
591
592 first = page_buffers(page);
593 local_irq_save(flags);
594 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
595
596 clear_buffer_async_write(bh);
597 unlock_buffer(bh);
598 tmp = bh->b_this_page;
599 while (tmp != bh) {
600 if (buffer_async_write(tmp)) {
601 BUG_ON(!buffer_locked(tmp));
602 goto still_busy;
603 }
604 tmp = tmp->b_this_page;
605 }
606 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
607 local_irq_restore(flags);
608 end_page_writeback(page);
609 return;
610
611 still_busy:
612 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
613 local_irq_restore(flags);
614 return;
615 }
616
617 /*
618 * If a page's buffers are under async readin (end_buffer_async_read
619 * completion) then there is a possibility that another thread of
620 * control could lock one of the buffers after it has completed
621 * but while some of the other buffers have not completed. This
622 * locked buffer would confuse end_buffer_async_read() into not unlocking
623 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
624 * that this buffer is not under async I/O.
625 *
626 * The page comes unlocked when it has no locked buffer_async buffers
627 * left.
628 *
629 * PageLocked prevents anyone starting new async I/O reads any of
630 * the buffers.
631 *
632 * PageWriteback is used to prevent simultaneous writeout of the same
633 * page.
634 *
635 * PageLocked prevents anyone from starting writeback of a page which is
636 * under read I/O (PageWriteback is only ever set against a locked page).
637 */
638 static void mark_buffer_async_read(struct buffer_head *bh)
639 {
640 bh->b_end_io = end_buffer_async_read;
641 set_buffer_async_read(bh);
642 }
643
644 void mark_buffer_async_write(struct buffer_head *bh)
645 {
646 bh->b_end_io = end_buffer_async_write;
647 set_buffer_async_write(bh);
648 }
649 EXPORT_SYMBOL(mark_buffer_async_write);
650
651
652 /*
653 * fs/buffer.c contains helper functions for buffer-backed address space's
654 * fsync functions. A common requirement for buffer-based filesystems is
655 * that certain data from the backing blockdev needs to be written out for
656 * a successful fsync(). For example, ext2 indirect blocks need to be
657 * written back and waited upon before fsync() returns.
658 *
659 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
660 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
661 * management of a list of dependent buffers at ->i_mapping->private_list.
662 *
663 * Locking is a little subtle: try_to_free_buffers() will remove buffers
664 * from their controlling inode's queue when they are being freed. But
665 * try_to_free_buffers() will be operating against the *blockdev* mapping
666 * at the time, not against the S_ISREG file which depends on those buffers.
667 * So the locking for private_list is via the private_lock in the address_space
668 * which backs the buffers. Which is different from the address_space
669 * against which the buffers are listed. So for a particular address_space,
670 * mapping->private_lock does *not* protect mapping->private_list! In fact,
671 * mapping->private_list will always be protected by the backing blockdev's
672 * ->private_lock.
673 *
674 * Which introduces a requirement: all buffers on an address_space's
675 * ->private_list must be from the same address_space: the blockdev's.
676 *
677 * address_spaces which do not place buffers at ->private_list via these
678 * utility functions are free to use private_lock and private_list for
679 * whatever they want. The only requirement is that list_empty(private_list)
680 * be true at clear_inode() time.
681 *
682 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
683 * filesystems should do that. invalidate_inode_buffers() should just go
684 * BUG_ON(!list_empty).
685 *
686 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
687 * take an address_space, not an inode. And it should be called
688 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
689 * queued up.
690 *
691 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
692 * list if it is already on a list. Because if the buffer is on a list,
693 * it *must* already be on the right one. If not, the filesystem is being
694 * silly. This will save a ton of locking. But first we have to ensure
695 * that buffers are taken *off* the old inode's list when they are freed
696 * (presumably in truncate). That requires careful auditing of all
697 * filesystems (do it inside bforget()). It could also be done by bringing
698 * b_inode back.
699 */
700
701 /*
702 * The buffer's backing address_space's private_lock must be held
703 */
704 static inline void __remove_assoc_queue(struct buffer_head *bh)
705 {
706 list_del_init(&bh->b_assoc_buffers);
707 }
708
709 int inode_has_buffers(struct inode *inode)
710 {
711 return !list_empty(&inode->i_data.private_list);
712 }
713
714 /*
715 * osync is designed to support O_SYNC io. It waits synchronously for
716 * all already-submitted IO to complete, but does not queue any new
717 * writes to the disk.
718 *
719 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
720 * you dirty the buffers, and then use osync_inode_buffers to wait for
721 * completion. Any other dirty buffers which are not yet queued for
722 * write will not be flushed to disk by the osync.
723 */
724 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
725 {
726 struct buffer_head *bh;
727 struct list_head *p;
728 int err = 0;
729
730 spin_lock(lock);
731 repeat:
732 list_for_each_prev(p, list) {
733 bh = BH_ENTRY(p);
734 if (buffer_locked(bh)) {
735 get_bh(bh);
736 spin_unlock(lock);
737 wait_on_buffer(bh);
738 if (!buffer_uptodate(bh))
739 err = -EIO;
740 brelse(bh);
741 spin_lock(lock);
742 goto repeat;
743 }
744 }
745 spin_unlock(lock);
746 return err;
747 }
748
749 /**
750 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
751 * buffers
752 * @mapping: the mapping which wants those buffers written
753 *
754 * Starts I/O against the buffers at mapping->private_list, and waits upon
755 * that I/O.
756 *
757 * Basically, this is a convenience function for fsync().
758 * @mapping is a file or directory which needs those buffers to be written for
759 * a successful fsync().
760 */
761 int sync_mapping_buffers(struct address_space *mapping)
762 {
763 struct address_space *buffer_mapping = mapping->assoc_mapping;
764
765 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
766 return 0;
767
768 return fsync_buffers_list(&buffer_mapping->private_lock,
769 &mapping->private_list);
770 }
771 EXPORT_SYMBOL(sync_mapping_buffers);
772
773 /*
774 * Called when we've recently written block `bblock', and it is known that
775 * `bblock' was for a buffer_boundary() buffer. This means that the block at
776 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
777 * dirty, schedule it for IO. So that indirects merge nicely with their data.
778 */
779 void write_boundary_block(struct block_device *bdev,
780 sector_t bblock, unsigned blocksize)
781 {
782 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
783 if (bh) {
784 if (buffer_dirty(bh))
785 ll_rw_block(WRITE, 1, &bh);
786 put_bh(bh);
787 }
788 }
789
790 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
791 {
792 struct address_space *mapping = inode->i_mapping;
793 struct address_space *buffer_mapping = bh->b_page->mapping;
794
795 mark_buffer_dirty(bh);
796 if (!mapping->assoc_mapping) {
797 mapping->assoc_mapping = buffer_mapping;
798 } else {
799 BUG_ON(mapping->assoc_mapping != buffer_mapping);
800 }
801 if (list_empty(&bh->b_assoc_buffers)) {
802 spin_lock(&buffer_mapping->private_lock);
803 list_move_tail(&bh->b_assoc_buffers,
804 &mapping->private_list);
805 spin_unlock(&buffer_mapping->private_lock);
806 }
807 }
808 EXPORT_SYMBOL(mark_buffer_dirty_inode);
809
810 /*
811 * Add a page to the dirty page list.
812 *
813 * It is a sad fact of life that this function is called from several places
814 * deeply under spinlocking. It may not sleep.
815 *
816 * If the page has buffers, the uptodate buffers are set dirty, to preserve
817 * dirty-state coherency between the page and the buffers. It the page does
818 * not have buffers then when they are later attached they will all be set
819 * dirty.
820 *
821 * The buffers are dirtied before the page is dirtied. There's a small race
822 * window in which a writepage caller may see the page cleanness but not the
823 * buffer dirtiness. That's fine. If this code were to set the page dirty
824 * before the buffers, a concurrent writepage caller could clear the page dirty
825 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
826 * page on the dirty page list.
827 *
828 * We use private_lock to lock against try_to_free_buffers while using the
829 * page's buffer list. Also use this to protect against clean buffers being
830 * added to the page after it was set dirty.
831 *
832 * FIXME: may need to call ->reservepage here as well. That's rather up to the
833 * address_space though.
834 */
835 int __set_page_dirty_buffers(struct page *page)
836 {
837 struct address_space * const mapping = page->mapping;
838
839 spin_lock(&mapping->private_lock);
840 if (page_has_buffers(page)) {
841 struct buffer_head *head = page_buffers(page);
842 struct buffer_head *bh = head;
843
844 do {
845 set_buffer_dirty(bh);
846 bh = bh->b_this_page;
847 } while (bh != head);
848 }
849 spin_unlock(&mapping->private_lock);
850
851 if (!TestSetPageDirty(page)) {
852 write_lock_irq(&mapping->tree_lock);
853 if (page->mapping) { /* Race with truncate? */
854 if (mapping_cap_account_dirty(mapping))
855 inc_page_state(nr_dirty);
856 radix_tree_tag_set(&mapping->page_tree,
857 page_index(page),
858 PAGECACHE_TAG_DIRTY);
859 }
860 write_unlock_irq(&mapping->tree_lock);
861 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
862 return 1;
863 }
864 return 0;
865 }
866 EXPORT_SYMBOL(__set_page_dirty_buffers);
867
868 /*
869 * Write out and wait upon a list of buffers.
870 *
871 * We have conflicting pressures: we want to make sure that all
872 * initially dirty buffers get waited on, but that any subsequently
873 * dirtied buffers don't. After all, we don't want fsync to last
874 * forever if somebody is actively writing to the file.
875 *
876 * Do this in two main stages: first we copy dirty buffers to a
877 * temporary inode list, queueing the writes as we go. Then we clean
878 * up, waiting for those writes to complete.
879 *
880 * During this second stage, any subsequent updates to the file may end
881 * up refiling the buffer on the original inode's dirty list again, so
882 * there is a chance we will end up with a buffer queued for write but
883 * not yet completed on that list. So, as a final cleanup we go through
884 * the osync code to catch these locked, dirty buffers without requeuing
885 * any newly dirty buffers for write.
886 */
887 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
888 {
889 struct buffer_head *bh;
890 struct list_head tmp;
891 int err = 0, err2;
892
893 INIT_LIST_HEAD(&tmp);
894
895 spin_lock(lock);
896 while (!list_empty(list)) {
897 bh = BH_ENTRY(list->next);
898 list_del_init(&bh->b_assoc_buffers);
899 if (buffer_dirty(bh) || buffer_locked(bh)) {
900 list_add(&bh->b_assoc_buffers, &tmp);
901 if (buffer_dirty(bh)) {
902 get_bh(bh);
903 spin_unlock(lock);
904 /*
905 * Ensure any pending I/O completes so that
906 * ll_rw_block() actually writes the current
907 * contents - it is a noop if I/O is still in
908 * flight on potentially older contents.
909 */
910 ll_rw_block(SWRITE, 1, &bh);
911 brelse(bh);
912 spin_lock(lock);
913 }
914 }
915 }
916
917 while (!list_empty(&tmp)) {
918 bh = BH_ENTRY(tmp.prev);
919 __remove_assoc_queue(bh);
920 get_bh(bh);
921 spin_unlock(lock);
922 wait_on_buffer(bh);
923 if (!buffer_uptodate(bh))
924 err = -EIO;
925 brelse(bh);
926 spin_lock(lock);
927 }
928
929 spin_unlock(lock);
930 err2 = osync_buffers_list(lock, list);
931 if (err)
932 return err;
933 else
934 return err2;
935 }
936
937 /*
938 * Invalidate any and all dirty buffers on a given inode. We are
939 * probably unmounting the fs, but that doesn't mean we have already
940 * done a sync(). Just drop the buffers from the inode list.
941 *
942 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
943 * assumes that all the buffers are against the blockdev. Not true
944 * for reiserfs.
945 */
946 void invalidate_inode_buffers(struct inode *inode)
947 {
948 if (inode_has_buffers(inode)) {
949 struct address_space *mapping = &inode->i_data;
950 struct list_head *list = &mapping->private_list;
951 struct address_space *buffer_mapping = mapping->assoc_mapping;
952
953 spin_lock(&buffer_mapping->private_lock);
954 while (!list_empty(list))
955 __remove_assoc_queue(BH_ENTRY(list->next));
956 spin_unlock(&buffer_mapping->private_lock);
957 }
958 }
959
960 /*
961 * Remove any clean buffers from the inode's buffer list. This is called
962 * when we're trying to free the inode itself. Those buffers can pin it.
963 *
964 * Returns true if all buffers were removed.
965 */
966 int remove_inode_buffers(struct inode *inode)
967 {
968 int ret = 1;
969
970 if (inode_has_buffers(inode)) {
971 struct address_space *mapping = &inode->i_data;
972 struct list_head *list = &mapping->private_list;
973 struct address_space *buffer_mapping = mapping->assoc_mapping;
974
975 spin_lock(&buffer_mapping->private_lock);
976 while (!list_empty(list)) {
977 struct buffer_head *bh = BH_ENTRY(list->next);
978 if (buffer_dirty(bh)) {
979 ret = 0;
980 break;
981 }
982 __remove_assoc_queue(bh);
983 }
984 spin_unlock(&buffer_mapping->private_lock);
985 }
986 return ret;
987 }
988
989 /*
990 * Create the appropriate buffers when given a page for data area and
991 * the size of each buffer.. Use the bh->b_this_page linked list to
992 * follow the buffers created. Return NULL if unable to create more
993 * buffers.
994 *
995 * The retry flag is used to differentiate async IO (paging, swapping)
996 * which may not fail from ordinary buffer allocations.
997 */
998 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
999 int retry)
1000 {
1001 struct buffer_head *bh, *head;
1002 long offset;
1003
1004 try_again:
1005 head = NULL;
1006 offset = PAGE_SIZE;
1007 while ((offset -= size) >= 0) {
1008 bh = alloc_buffer_head(GFP_NOFS);
1009 if (!bh)
1010 goto no_grow;
1011
1012 bh->b_bdev = NULL;
1013 bh->b_this_page = head;
1014 bh->b_blocknr = -1;
1015 head = bh;
1016
1017 bh->b_state = 0;
1018 atomic_set(&bh->b_count, 0);
1019 bh->b_private = NULL;
1020 bh->b_size = size;
1021
1022 /* Link the buffer to its page */
1023 set_bh_page(bh, page, offset);
1024
1025 init_buffer(bh, NULL, NULL);
1026 }
1027 return head;
1028 /*
1029 * In case anything failed, we just free everything we got.
1030 */
1031 no_grow:
1032 if (head) {
1033 do {
1034 bh = head;
1035 head = head->b_this_page;
1036 free_buffer_head(bh);
1037 } while (head);
1038 }
1039
1040 /*
1041 * Return failure for non-async IO requests. Async IO requests
1042 * are not allowed to fail, so we have to wait until buffer heads
1043 * become available. But we don't want tasks sleeping with
1044 * partially complete buffers, so all were released above.
1045 */
1046 if (!retry)
1047 return NULL;
1048
1049 /* We're _really_ low on memory. Now we just
1050 * wait for old buffer heads to become free due to
1051 * finishing IO. Since this is an async request and
1052 * the reserve list is empty, we're sure there are
1053 * async buffer heads in use.
1054 */
1055 free_more_memory();
1056 goto try_again;
1057 }
1058 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1059
1060 static inline void
1061 link_dev_buffers(struct page *page, struct buffer_head *head)
1062 {
1063 struct buffer_head *bh, *tail;
1064
1065 bh = head;
1066 do {
1067 tail = bh;
1068 bh = bh->b_this_page;
1069 } while (bh);
1070 tail->b_this_page = head;
1071 attach_page_buffers(page, head);
1072 }
1073
1074 /*
1075 * Initialise the state of a blockdev page's buffers.
1076 */
1077 static void
1078 init_page_buffers(struct page *page, struct block_device *bdev,
1079 sector_t block, int size)
1080 {
1081 struct buffer_head *head = page_buffers(page);
1082 struct buffer_head *bh = head;
1083 int uptodate = PageUptodate(page);
1084
1085 do {
1086 if (!buffer_mapped(bh)) {
1087 init_buffer(bh, NULL, NULL);
1088 bh->b_bdev = bdev;
1089 bh->b_blocknr = block;
1090 if (uptodate)
1091 set_buffer_uptodate(bh);
1092 set_buffer_mapped(bh);
1093 }
1094 block++;
1095 bh = bh->b_this_page;
1096 } while (bh != head);
1097 }
1098
1099 /*
1100 * Create the page-cache page that contains the requested block.
1101 *
1102 * This is user purely for blockdev mappings.
1103 */
1104 static struct page *
1105 grow_dev_page(struct block_device *bdev, sector_t block,
1106 pgoff_t index, int size)
1107 {
1108 struct inode *inode = bdev->bd_inode;
1109 struct page *page;
1110 struct buffer_head *bh;
1111
1112 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1113 if (!page)
1114 return NULL;
1115
1116 BUG_ON(!PageLocked(page));
1117
1118 if (page_has_buffers(page)) {
1119 bh = page_buffers(page);
1120 if (bh->b_size == size) {
1121 init_page_buffers(page, bdev, block, size);
1122 return page;
1123 }
1124 if (!try_to_free_buffers(page))
1125 goto failed;
1126 }
1127
1128 /*
1129 * Allocate some buffers for this page
1130 */
1131 bh = alloc_page_buffers(page, size, 0);
1132 if (!bh)
1133 goto failed;
1134
1135 /*
1136 * Link the page to the buffers and initialise them. Take the
1137 * lock to be atomic wrt __find_get_block(), which does not
1138 * run under the page lock.
1139 */
1140 spin_lock(&inode->i_mapping->private_lock);
1141 link_dev_buffers(page, bh);
1142 init_page_buffers(page, bdev, block, size);
1143 spin_unlock(&inode->i_mapping->private_lock);
1144 return page;
1145
1146 failed:
1147 BUG();
1148 unlock_page(page);
1149 page_cache_release(page);
1150 return NULL;
1151 }
1152
1153 /*
1154 * Create buffers for the specified block device block's page. If
1155 * that page was dirty, the buffers are set dirty also.
1156 *
1157 * Except that's a bug. Attaching dirty buffers to a dirty
1158 * blockdev's page can result in filesystem corruption, because
1159 * some of those buffers may be aliases of filesystem data.
1160 * grow_dev_page() will go BUG() if this happens.
1161 */
1162 static int
1163 grow_buffers(struct block_device *bdev, sector_t block, int size)
1164 {
1165 struct page *page;
1166 pgoff_t index;
1167 int sizebits;
1168
1169 sizebits = -1;
1170 do {
1171 sizebits++;
1172 } while ((size << sizebits) < PAGE_SIZE);
1173
1174 index = block >> sizebits;
1175 block = index << sizebits;
1176
1177 /* Create a page with the proper size buffers.. */
1178 page = grow_dev_page(bdev, block, index, size);
1179 if (!page)
1180 return 0;
1181 unlock_page(page);
1182 page_cache_release(page);
1183 return 1;
1184 }
1185
1186 static struct buffer_head *
1187 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1188 {
1189 /* Size must be multiple of hard sectorsize */
1190 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1191 (size < 512 || size > PAGE_SIZE))) {
1192 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1193 size);
1194 printk(KERN_ERR "hardsect size: %d\n",
1195 bdev_hardsect_size(bdev));
1196
1197 dump_stack();
1198 return NULL;
1199 }
1200
1201 for (;;) {
1202 struct buffer_head * bh;
1203
1204 bh = __find_get_block(bdev, block, size);
1205 if (bh)
1206 return bh;
1207
1208 if (!grow_buffers(bdev, block, size))
1209 free_more_memory();
1210 }
1211 }
1212
1213 /*
1214 * The relationship between dirty buffers and dirty pages:
1215 *
1216 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1217 * the page is tagged dirty in its radix tree.
1218 *
1219 * At all times, the dirtiness of the buffers represents the dirtiness of
1220 * subsections of the page. If the page has buffers, the page dirty bit is
1221 * merely a hint about the true dirty state.
1222 *
1223 * When a page is set dirty in its entirety, all its buffers are marked dirty
1224 * (if the page has buffers).
1225 *
1226 * When a buffer is marked dirty, its page is dirtied, but the page's other
1227 * buffers are not.
1228 *
1229 * Also. When blockdev buffers are explicitly read with bread(), they
1230 * individually become uptodate. But their backing page remains not
1231 * uptodate - even if all of its buffers are uptodate. A subsequent
1232 * block_read_full_page() against that page will discover all the uptodate
1233 * buffers, will set the page uptodate and will perform no I/O.
1234 */
1235
1236 /**
1237 * mark_buffer_dirty - mark a buffer_head as needing writeout
1238 * @bh: the buffer_head to mark dirty
1239 *
1240 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1241 * backing page dirty, then tag the page as dirty in its address_space's radix
1242 * tree and then attach the address_space's inode to its superblock's dirty
1243 * inode list.
1244 *
1245 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1246 * mapping->tree_lock and the global inode_lock.
1247 */
1248 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1249 {
1250 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1251 __set_page_dirty_nobuffers(bh->b_page);
1252 }
1253
1254 /*
1255 * Decrement a buffer_head's reference count. If all buffers against a page
1256 * have zero reference count, are clean and unlocked, and if the page is clean
1257 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1258 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1259 * a page but it ends up not being freed, and buffers may later be reattached).
1260 */
1261 void __brelse(struct buffer_head * buf)
1262 {
1263 if (atomic_read(&buf->b_count)) {
1264 put_bh(buf);
1265 return;
1266 }
1267 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1268 WARN_ON(1);
1269 }
1270
1271 /*
1272 * bforget() is like brelse(), except it discards any
1273 * potentially dirty data.
1274 */
1275 void __bforget(struct buffer_head *bh)
1276 {
1277 clear_buffer_dirty(bh);
1278 if (!list_empty(&bh->b_assoc_buffers)) {
1279 struct address_space *buffer_mapping = bh->b_page->mapping;
1280
1281 spin_lock(&buffer_mapping->private_lock);
1282 list_del_init(&bh->b_assoc_buffers);
1283 spin_unlock(&buffer_mapping->private_lock);
1284 }
1285 __brelse(bh);
1286 }
1287
1288 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1289 {
1290 lock_buffer(bh);
1291 if (buffer_uptodate(bh)) {
1292 unlock_buffer(bh);
1293 return bh;
1294 } else {
1295 get_bh(bh);
1296 bh->b_end_io = end_buffer_read_sync;
1297 submit_bh(READ, bh);
1298 wait_on_buffer(bh);
1299 if (buffer_uptodate(bh))
1300 return bh;
1301 }
1302 brelse(bh);
1303 return NULL;
1304 }
1305
1306 /*
1307 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1308 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1309 * refcount elevated by one when they're in an LRU. A buffer can only appear
1310 * once in a particular CPU's LRU. A single buffer can be present in multiple
1311 * CPU's LRUs at the same time.
1312 *
1313 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1314 * sb_find_get_block().
1315 *
1316 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1317 * a local interrupt disable for that.
1318 */
1319
1320 #define BH_LRU_SIZE 8
1321
1322 struct bh_lru {
1323 struct buffer_head *bhs[BH_LRU_SIZE];
1324 };
1325
1326 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1327
1328 #ifdef CONFIG_SMP
1329 #define bh_lru_lock() local_irq_disable()
1330 #define bh_lru_unlock() local_irq_enable()
1331 #else
1332 #define bh_lru_lock() preempt_disable()
1333 #define bh_lru_unlock() preempt_enable()
1334 #endif
1335
1336 static inline void check_irqs_on(void)
1337 {
1338 #ifdef irqs_disabled
1339 BUG_ON(irqs_disabled());
1340 #endif
1341 }
1342
1343 /*
1344 * The LRU management algorithm is dopey-but-simple. Sorry.
1345 */
1346 static void bh_lru_install(struct buffer_head *bh)
1347 {
1348 struct buffer_head *evictee = NULL;
1349 struct bh_lru *lru;
1350
1351 check_irqs_on();
1352 bh_lru_lock();
1353 lru = &__get_cpu_var(bh_lrus);
1354 if (lru->bhs[0] != bh) {
1355 struct buffer_head *bhs[BH_LRU_SIZE];
1356 int in;
1357 int out = 0;
1358
1359 get_bh(bh);
1360 bhs[out++] = bh;
1361 for (in = 0; in < BH_LRU_SIZE; in++) {
1362 struct buffer_head *bh2 = lru->bhs[in];
1363
1364 if (bh2 == bh) {
1365 __brelse(bh2);
1366 } else {
1367 if (out >= BH_LRU_SIZE) {
1368 BUG_ON(evictee != NULL);
1369 evictee = bh2;
1370 } else {
1371 bhs[out++] = bh2;
1372 }
1373 }
1374 }
1375 while (out < BH_LRU_SIZE)
1376 bhs[out++] = NULL;
1377 memcpy(lru->bhs, bhs, sizeof(bhs));
1378 }
1379 bh_lru_unlock();
1380
1381 if (evictee)
1382 __brelse(evictee);
1383 }
1384
1385 /*
1386 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1387 */
1388 static struct buffer_head *
1389 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1390 {
1391 struct buffer_head *ret = NULL;
1392 struct bh_lru *lru;
1393 int i;
1394
1395 check_irqs_on();
1396 bh_lru_lock();
1397 lru = &__get_cpu_var(bh_lrus);
1398 for (i = 0; i < BH_LRU_SIZE; i++) {
1399 struct buffer_head *bh = lru->bhs[i];
1400
1401 if (bh && bh->b_bdev == bdev &&
1402 bh->b_blocknr == block && bh->b_size == size) {
1403 if (i) {
1404 while (i) {
1405 lru->bhs[i] = lru->bhs[i - 1];
1406 i--;
1407 }
1408 lru->bhs[0] = bh;
1409 }
1410 get_bh(bh);
1411 ret = bh;
1412 break;
1413 }
1414 }
1415 bh_lru_unlock();
1416 return ret;
1417 }
1418
1419 /*
1420 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1421 * it in the LRU and mark it as accessed. If it is not present then return
1422 * NULL
1423 */
1424 struct buffer_head *
1425 __find_get_block(struct block_device *bdev, sector_t block, int size)
1426 {
1427 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1428
1429 if (bh == NULL) {
1430 bh = __find_get_block_slow(bdev, block);
1431 if (bh)
1432 bh_lru_install(bh);
1433 }
1434 if (bh)
1435 touch_buffer(bh);
1436 return bh;
1437 }
1438 EXPORT_SYMBOL(__find_get_block);
1439
1440 /*
1441 * __getblk will locate (and, if necessary, create) the buffer_head
1442 * which corresponds to the passed block_device, block and size. The
1443 * returned buffer has its reference count incremented.
1444 *
1445 * __getblk() cannot fail - it just keeps trying. If you pass it an
1446 * illegal block number, __getblk() will happily return a buffer_head
1447 * which represents the non-existent block. Very weird.
1448 *
1449 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1450 * attempt is failing. FIXME, perhaps?
1451 */
1452 struct buffer_head *
1453 __getblk(struct block_device *bdev, sector_t block, int size)
1454 {
1455 struct buffer_head *bh = __find_get_block(bdev, block, size);
1456
1457 might_sleep();
1458 if (bh == NULL)
1459 bh = __getblk_slow(bdev, block, size);
1460 return bh;
1461 }
1462 EXPORT_SYMBOL(__getblk);
1463
1464 /*
1465 * Do async read-ahead on a buffer..
1466 */
1467 void __breadahead(struct block_device *bdev, sector_t block, int size)
1468 {
1469 struct buffer_head *bh = __getblk(bdev, block, size);
1470 if (likely(bh)) {
1471 ll_rw_block(READA, 1, &bh);
1472 brelse(bh);
1473 }
1474 }
1475 EXPORT_SYMBOL(__breadahead);
1476
1477 /**
1478 * __bread() - reads a specified block and returns the bh
1479 * @bdev: the block_device to read from
1480 * @block: number of block
1481 * @size: size (in bytes) to read
1482 *
1483 * Reads a specified block, and returns buffer head that contains it.
1484 * It returns NULL if the block was unreadable.
1485 */
1486 struct buffer_head *
1487 __bread(struct block_device *bdev, sector_t block, int size)
1488 {
1489 struct buffer_head *bh = __getblk(bdev, block, size);
1490
1491 if (likely(bh) && !buffer_uptodate(bh))
1492 bh = __bread_slow(bh);
1493 return bh;
1494 }
1495 EXPORT_SYMBOL(__bread);
1496
1497 /*
1498 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1499 * This doesn't race because it runs in each cpu either in irq
1500 * or with preempt disabled.
1501 */
1502 static void invalidate_bh_lru(void *arg)
1503 {
1504 struct bh_lru *b = &get_cpu_var(bh_lrus);
1505 int i;
1506
1507 for (i = 0; i < BH_LRU_SIZE; i++) {
1508 brelse(b->bhs[i]);
1509 b->bhs[i] = NULL;
1510 }
1511 put_cpu_var(bh_lrus);
1512 }
1513
1514 static void invalidate_bh_lrus(void)
1515 {
1516 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1517 }
1518
1519 void set_bh_page(struct buffer_head *bh,
1520 struct page *page, unsigned long offset)
1521 {
1522 bh->b_page = page;
1523 BUG_ON(offset >= PAGE_SIZE);
1524 if (PageHighMem(page))
1525 /*
1526 * This catches illegal uses and preserves the offset:
1527 */
1528 bh->b_data = (char *)(0 + offset);
1529 else
1530 bh->b_data = page_address(page) + offset;
1531 }
1532 EXPORT_SYMBOL(set_bh_page);
1533
1534 /*
1535 * Called when truncating a buffer on a page completely.
1536 */
1537 static void discard_buffer(struct buffer_head * bh)
1538 {
1539 lock_buffer(bh);
1540 clear_buffer_dirty(bh);
1541 bh->b_bdev = NULL;
1542 clear_buffer_mapped(bh);
1543 clear_buffer_req(bh);
1544 clear_buffer_new(bh);
1545 clear_buffer_delay(bh);
1546 unlock_buffer(bh);
1547 }
1548
1549 /**
1550 * try_to_release_page() - release old fs-specific metadata on a page
1551 *
1552 * @page: the page which the kernel is trying to free
1553 * @gfp_mask: memory allocation flags (and I/O mode)
1554 *
1555 * The address_space is to try to release any data against the page
1556 * (presumably at page->private). If the release was successful, return `1'.
1557 * Otherwise return zero.
1558 *
1559 * The @gfp_mask argument specifies whether I/O may be performed to release
1560 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1561 *
1562 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1563 */
1564 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1565 {
1566 struct address_space * const mapping = page->mapping;
1567
1568 BUG_ON(!PageLocked(page));
1569 if (PageWriteback(page))
1570 return 0;
1571
1572 if (mapping && mapping->a_ops->releasepage)
1573 return mapping->a_ops->releasepage(page, gfp_mask);
1574 return try_to_free_buffers(page);
1575 }
1576 EXPORT_SYMBOL(try_to_release_page);
1577
1578 /**
1579 * block_invalidatepage - invalidate part of all of a buffer-backed page
1580 *
1581 * @page: the page which is affected
1582 * @offset: the index of the truncation point
1583 *
1584 * block_invalidatepage() is called when all or part of the page has become
1585 * invalidatedby a truncate operation.
1586 *
1587 * block_invalidatepage() does not have to release all buffers, but it must
1588 * ensure that no dirty buffer is left outside @offset and that no I/O
1589 * is underway against any of the blocks which are outside the truncation
1590 * point. Because the caller is about to free (and possibly reuse) those
1591 * blocks on-disk.
1592 */
1593 int block_invalidatepage(struct page *page, unsigned long offset)
1594 {
1595 struct buffer_head *head, *bh, *next;
1596 unsigned int curr_off = 0;
1597 int ret = 1;
1598
1599 BUG_ON(!PageLocked(page));
1600 if (!page_has_buffers(page))
1601 goto out;
1602
1603 head = page_buffers(page);
1604 bh = head;
1605 do {
1606 unsigned int next_off = curr_off + bh->b_size;
1607 next = bh->b_this_page;
1608
1609 /*
1610 * is this block fully invalidated?
1611 */
1612 if (offset <= curr_off)
1613 discard_buffer(bh);
1614 curr_off = next_off;
1615 bh = next;
1616 } while (bh != head);
1617
1618 /*
1619 * We release buffers only if the entire page is being invalidated.
1620 * The get_block cached value has been unconditionally invalidated,
1621 * so real IO is not possible anymore.
1622 */
1623 if (offset == 0)
1624 ret = try_to_release_page(page, 0);
1625 out:
1626 return ret;
1627 }
1628 EXPORT_SYMBOL(block_invalidatepage);
1629
1630 int do_invalidatepage(struct page *page, unsigned long offset)
1631 {
1632 int (*invalidatepage)(struct page *, unsigned long);
1633 invalidatepage = page->mapping->a_ops->invalidatepage;
1634 if (invalidatepage == NULL)
1635 invalidatepage = block_invalidatepage;
1636 return (*invalidatepage)(page, offset);
1637 }
1638
1639 /*
1640 * We attach and possibly dirty the buffers atomically wrt
1641 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1642 * is already excluded via the page lock.
1643 */
1644 void create_empty_buffers(struct page *page,
1645 unsigned long blocksize, unsigned long b_state)
1646 {
1647 struct buffer_head *bh, *head, *tail;
1648
1649 head = alloc_page_buffers(page, blocksize, 1);
1650 bh = head;
1651 do {
1652 bh->b_state |= b_state;
1653 tail = bh;
1654 bh = bh->b_this_page;
1655 } while (bh);
1656 tail->b_this_page = head;
1657
1658 spin_lock(&page->mapping->private_lock);
1659 if (PageUptodate(page) || PageDirty(page)) {
1660 bh = head;
1661 do {
1662 if (PageDirty(page))
1663 set_buffer_dirty(bh);
1664 if (PageUptodate(page))
1665 set_buffer_uptodate(bh);
1666 bh = bh->b_this_page;
1667 } while (bh != head);
1668 }
1669 attach_page_buffers(page, head);
1670 spin_unlock(&page->mapping->private_lock);
1671 }
1672 EXPORT_SYMBOL(create_empty_buffers);
1673
1674 /*
1675 * We are taking a block for data and we don't want any output from any
1676 * buffer-cache aliases starting from return from that function and
1677 * until the moment when something will explicitly mark the buffer
1678 * dirty (hopefully that will not happen until we will free that block ;-)
1679 * We don't even need to mark it not-uptodate - nobody can expect
1680 * anything from a newly allocated buffer anyway. We used to used
1681 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1682 * don't want to mark the alias unmapped, for example - it would confuse
1683 * anyone who might pick it with bread() afterwards...
1684 *
1685 * Also.. Note that bforget() doesn't lock the buffer. So there can
1686 * be writeout I/O going on against recently-freed buffers. We don't
1687 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1688 * only if we really need to. That happens here.
1689 */
1690 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1691 {
1692 struct buffer_head *old_bh;
1693
1694 might_sleep();
1695
1696 old_bh = __find_get_block_slow(bdev, block);
1697 if (old_bh) {
1698 clear_buffer_dirty(old_bh);
1699 wait_on_buffer(old_bh);
1700 clear_buffer_req(old_bh);
1701 __brelse(old_bh);
1702 }
1703 }
1704 EXPORT_SYMBOL(unmap_underlying_metadata);
1705
1706 /*
1707 * NOTE! All mapped/uptodate combinations are valid:
1708 *
1709 * Mapped Uptodate Meaning
1710 *
1711 * No No "unknown" - must do get_block()
1712 * No Yes "hole" - zero-filled
1713 * Yes No "allocated" - allocated on disk, not read in
1714 * Yes Yes "valid" - allocated and up-to-date in memory.
1715 *
1716 * "Dirty" is valid only with the last case (mapped+uptodate).
1717 */
1718
1719 /*
1720 * While block_write_full_page is writing back the dirty buffers under
1721 * the page lock, whoever dirtied the buffers may decide to clean them
1722 * again at any time. We handle that by only looking at the buffer
1723 * state inside lock_buffer().
1724 *
1725 * If block_write_full_page() is called for regular writeback
1726 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1727 * locked buffer. This only can happen if someone has written the buffer
1728 * directly, with submit_bh(). At the address_space level PageWriteback
1729 * prevents this contention from occurring.
1730 */
1731 static int __block_write_full_page(struct inode *inode, struct page *page,
1732 get_block_t *get_block, struct writeback_control *wbc)
1733 {
1734 int err;
1735 sector_t block;
1736 sector_t last_block;
1737 struct buffer_head *bh, *head;
1738 int nr_underway = 0;
1739
1740 BUG_ON(!PageLocked(page));
1741
1742 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1743
1744 if (!page_has_buffers(page)) {
1745 create_empty_buffers(page, 1 << inode->i_blkbits,
1746 (1 << BH_Dirty)|(1 << BH_Uptodate));
1747 }
1748
1749 /*
1750 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1751 * here, and the (potentially unmapped) buffers may become dirty at
1752 * any time. If a buffer becomes dirty here after we've inspected it
1753 * then we just miss that fact, and the page stays dirty.
1754 *
1755 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1756 * handle that here by just cleaning them.
1757 */
1758
1759 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1760 head = page_buffers(page);
1761 bh = head;
1762
1763 /*
1764 * Get all the dirty buffers mapped to disk addresses and
1765 * handle any aliases from the underlying blockdev's mapping.
1766 */
1767 do {
1768 if (block > last_block) {
1769 /*
1770 * mapped buffers outside i_size will occur, because
1771 * this page can be outside i_size when there is a
1772 * truncate in progress.
1773 */
1774 /*
1775 * The buffer was zeroed by block_write_full_page()
1776 */
1777 clear_buffer_dirty(bh);
1778 set_buffer_uptodate(bh);
1779 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1780 err = get_block(inode, block, bh, 1);
1781 if (err)
1782 goto recover;
1783 if (buffer_new(bh)) {
1784 /* blockdev mappings never come here */
1785 clear_buffer_new(bh);
1786 unmap_underlying_metadata(bh->b_bdev,
1787 bh->b_blocknr);
1788 }
1789 }
1790 bh = bh->b_this_page;
1791 block++;
1792 } while (bh != head);
1793
1794 do {
1795 if (!buffer_mapped(bh))
1796 continue;
1797 /*
1798 * If it's a fully non-blocking write attempt and we cannot
1799 * lock the buffer then redirty the page. Note that this can
1800 * potentially cause a busy-wait loop from pdflush and kswapd
1801 * activity, but those code paths have their own higher-level
1802 * throttling.
1803 */
1804 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1805 lock_buffer(bh);
1806 } else if (test_set_buffer_locked(bh)) {
1807 redirty_page_for_writepage(wbc, page);
1808 continue;
1809 }
1810 if (test_clear_buffer_dirty(bh)) {
1811 mark_buffer_async_write(bh);
1812 } else {
1813 unlock_buffer(bh);
1814 }
1815 } while ((bh = bh->b_this_page) != head);
1816
1817 /*
1818 * The page and its buffers are protected by PageWriteback(), so we can
1819 * drop the bh refcounts early.
1820 */
1821 BUG_ON(PageWriteback(page));
1822 set_page_writeback(page);
1823
1824 do {
1825 struct buffer_head *next = bh->b_this_page;
1826 if (buffer_async_write(bh)) {
1827 submit_bh(WRITE, bh);
1828 nr_underway++;
1829 }
1830 bh = next;
1831 } while (bh != head);
1832 unlock_page(page);
1833
1834 err = 0;
1835 done:
1836 if (nr_underway == 0) {
1837 /*
1838 * The page was marked dirty, but the buffers were
1839 * clean. Someone wrote them back by hand with
1840 * ll_rw_block/submit_bh. A rare case.
1841 */
1842 int uptodate = 1;
1843 do {
1844 if (!buffer_uptodate(bh)) {
1845 uptodate = 0;
1846 break;
1847 }
1848 bh = bh->b_this_page;
1849 } while (bh != head);
1850 if (uptodate)
1851 SetPageUptodate(page);
1852 end_page_writeback(page);
1853 /*
1854 * The page and buffer_heads can be released at any time from
1855 * here on.
1856 */
1857 wbc->pages_skipped++; /* We didn't write this page */
1858 }
1859 return err;
1860
1861 recover:
1862 /*
1863 * ENOSPC, or some other error. We may already have added some
1864 * blocks to the file, so we need to write these out to avoid
1865 * exposing stale data.
1866 * The page is currently locked and not marked for writeback
1867 */
1868 bh = head;
1869 /* Recovery: lock and submit the mapped buffers */
1870 do {
1871 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1872 lock_buffer(bh);
1873 mark_buffer_async_write(bh);
1874 } else {
1875 /*
1876 * The buffer may have been set dirty during
1877 * attachment to a dirty page.
1878 */
1879 clear_buffer_dirty(bh);
1880 }
1881 } while ((bh = bh->b_this_page) != head);
1882 SetPageError(page);
1883 BUG_ON(PageWriteback(page));
1884 set_page_writeback(page);
1885 unlock_page(page);
1886 do {
1887 struct buffer_head *next = bh->b_this_page;
1888 if (buffer_async_write(bh)) {
1889 clear_buffer_dirty(bh);
1890 submit_bh(WRITE, bh);
1891 nr_underway++;
1892 }
1893 bh = next;
1894 } while (bh != head);
1895 goto done;
1896 }
1897
1898 static int __block_prepare_write(struct inode *inode, struct page *page,
1899 unsigned from, unsigned to, get_block_t *get_block)
1900 {
1901 unsigned block_start, block_end;
1902 sector_t block;
1903 int err = 0;
1904 unsigned blocksize, bbits;
1905 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1906
1907 BUG_ON(!PageLocked(page));
1908 BUG_ON(from > PAGE_CACHE_SIZE);
1909 BUG_ON(to > PAGE_CACHE_SIZE);
1910 BUG_ON(from > to);
1911
1912 blocksize = 1 << inode->i_blkbits;
1913 if (!page_has_buffers(page))
1914 create_empty_buffers(page, blocksize, 0);
1915 head = page_buffers(page);
1916
1917 bbits = inode->i_blkbits;
1918 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1919
1920 for(bh = head, block_start = 0; bh != head || !block_start;
1921 block++, block_start=block_end, bh = bh->b_this_page) {
1922 block_end = block_start + blocksize;
1923 if (block_end <= from || block_start >= to) {
1924 if (PageUptodate(page)) {
1925 if (!buffer_uptodate(bh))
1926 set_buffer_uptodate(bh);
1927 }
1928 continue;
1929 }
1930 if (buffer_new(bh))
1931 clear_buffer_new(bh);
1932 if (!buffer_mapped(bh)) {
1933 err = get_block(inode, block, bh, 1);
1934 if (err)
1935 break;
1936 if (buffer_new(bh)) {
1937 unmap_underlying_metadata(bh->b_bdev,
1938 bh->b_blocknr);
1939 if (PageUptodate(page)) {
1940 set_buffer_uptodate(bh);
1941 continue;
1942 }
1943 if (block_end > to || block_start < from) {
1944 void *kaddr;
1945
1946 kaddr = kmap_atomic(page, KM_USER0);
1947 if (block_end > to)
1948 memset(kaddr+to, 0,
1949 block_end-to);
1950 if (block_start < from)
1951 memset(kaddr+block_start,
1952 0, from-block_start);
1953 flush_dcache_page(page);
1954 kunmap_atomic(kaddr, KM_USER0);
1955 }
1956 continue;
1957 }
1958 }
1959 if (PageUptodate(page)) {
1960 if (!buffer_uptodate(bh))
1961 set_buffer_uptodate(bh);
1962 continue;
1963 }
1964 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1965 (block_start < from || block_end > to)) {
1966 ll_rw_block(READ, 1, &bh);
1967 *wait_bh++=bh;
1968 }
1969 }
1970 /*
1971 * If we issued read requests - let them complete.
1972 */
1973 while(wait_bh > wait) {
1974 wait_on_buffer(*--wait_bh);
1975 if (!buffer_uptodate(*wait_bh))
1976 err = -EIO;
1977 }
1978 if (!err) {
1979 bh = head;
1980 do {
1981 if (buffer_new(bh))
1982 clear_buffer_new(bh);
1983 } while ((bh = bh->b_this_page) != head);
1984 return 0;
1985 }
1986 /* Error case: */
1987 /*
1988 * Zero out any newly allocated blocks to avoid exposing stale
1989 * data. If BH_New is set, we know that the block was newly
1990 * allocated in the above loop.
1991 */
1992 bh = head;
1993 block_start = 0;
1994 do {
1995 block_end = block_start+blocksize;
1996 if (block_end <= from)
1997 goto next_bh;
1998 if (block_start >= to)
1999 break;
2000 if (buffer_new(bh)) {
2001 void *kaddr;
2002
2003 clear_buffer_new(bh);
2004 kaddr = kmap_atomic(page, KM_USER0);
2005 memset(kaddr+block_start, 0, bh->b_size);
2006 kunmap_atomic(kaddr, KM_USER0);
2007 set_buffer_uptodate(bh);
2008 mark_buffer_dirty(bh);
2009 }
2010 next_bh:
2011 block_start = block_end;
2012 bh = bh->b_this_page;
2013 } while (bh != head);
2014 return err;
2015 }
2016
2017 static int __block_commit_write(struct inode *inode, struct page *page,
2018 unsigned from, unsigned to)
2019 {
2020 unsigned block_start, block_end;
2021 int partial = 0;
2022 unsigned blocksize;
2023 struct buffer_head *bh, *head;
2024
2025 blocksize = 1 << inode->i_blkbits;
2026
2027 for(bh = head = page_buffers(page), block_start = 0;
2028 bh != head || !block_start;
2029 block_start=block_end, bh = bh->b_this_page) {
2030 block_end = block_start + blocksize;
2031 if (block_end <= from || block_start >= to) {
2032 if (!buffer_uptodate(bh))
2033 partial = 1;
2034 } else {
2035 set_buffer_uptodate(bh);
2036 mark_buffer_dirty(bh);
2037 }
2038 }
2039
2040 /*
2041 * If this is a partial write which happened to make all buffers
2042 * uptodate then we can optimize away a bogus readpage() for
2043 * the next read(). Here we 'discover' whether the page went
2044 * uptodate as a result of this (potentially partial) write.
2045 */
2046 if (!partial)
2047 SetPageUptodate(page);
2048 return 0;
2049 }
2050
2051 /*
2052 * Generic "read page" function for block devices that have the normal
2053 * get_block functionality. This is most of the block device filesystems.
2054 * Reads the page asynchronously --- the unlock_buffer() and
2055 * set/clear_buffer_uptodate() functions propagate buffer state into the
2056 * page struct once IO has completed.
2057 */
2058 int block_read_full_page(struct page *page, get_block_t *get_block)
2059 {
2060 struct inode *inode = page->mapping->host;
2061 sector_t iblock, lblock;
2062 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2063 unsigned int blocksize;
2064 int nr, i;
2065 int fully_mapped = 1;
2066
2067 BUG_ON(!PageLocked(page));
2068 blocksize = 1 << inode->i_blkbits;
2069 if (!page_has_buffers(page))
2070 create_empty_buffers(page, blocksize, 0);
2071 head = page_buffers(page);
2072
2073 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2074 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2075 bh = head;
2076 nr = 0;
2077 i = 0;
2078
2079 do {
2080 if (buffer_uptodate(bh))
2081 continue;
2082
2083 if (!buffer_mapped(bh)) {
2084 int err = 0;
2085
2086 fully_mapped = 0;
2087 if (iblock < lblock) {
2088 err = get_block(inode, iblock, bh, 0);
2089 if (err)
2090 SetPageError(page);
2091 }
2092 if (!buffer_mapped(bh)) {
2093 void *kaddr = kmap_atomic(page, KM_USER0);
2094 memset(kaddr + i * blocksize, 0, blocksize);
2095 flush_dcache_page(page);
2096 kunmap_atomic(kaddr, KM_USER0);
2097 if (!err)
2098 set_buffer_uptodate(bh);
2099 continue;
2100 }
2101 /*
2102 * get_block() might have updated the buffer
2103 * synchronously
2104 */
2105 if (buffer_uptodate(bh))
2106 continue;
2107 }
2108 arr[nr++] = bh;
2109 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2110
2111 if (fully_mapped)
2112 SetPageMappedToDisk(page);
2113
2114 if (!nr) {
2115 /*
2116 * All buffers are uptodate - we can set the page uptodate
2117 * as well. But not if get_block() returned an error.
2118 */
2119 if (!PageError(page))
2120 SetPageUptodate(page);
2121 unlock_page(page);
2122 return 0;
2123 }
2124
2125 /* Stage two: lock the buffers */
2126 for (i = 0; i < nr; i++) {
2127 bh = arr[i];
2128 lock_buffer(bh);
2129 mark_buffer_async_read(bh);
2130 }
2131
2132 /*
2133 * Stage 3: start the IO. Check for uptodateness
2134 * inside the buffer lock in case another process reading
2135 * the underlying blockdev brought it uptodate (the sct fix).
2136 */
2137 for (i = 0; i < nr; i++) {
2138 bh = arr[i];
2139 if (buffer_uptodate(bh))
2140 end_buffer_async_read(bh, 1);
2141 else
2142 submit_bh(READ, bh);
2143 }
2144 return 0;
2145 }
2146
2147 /* utility function for filesystems that need to do work on expanding
2148 * truncates. Uses prepare/commit_write to allow the filesystem to
2149 * deal with the hole.
2150 */
2151 static int __generic_cont_expand(struct inode *inode, loff_t size,
2152 pgoff_t index, unsigned int offset)
2153 {
2154 struct address_space *mapping = inode->i_mapping;
2155 struct page *page;
2156 unsigned long limit;
2157 int err;
2158
2159 err = -EFBIG;
2160 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2161 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2162 send_sig(SIGXFSZ, current, 0);
2163 goto out;
2164 }
2165 if (size > inode->i_sb->s_maxbytes)
2166 goto out;
2167
2168 err = -ENOMEM;
2169 page = grab_cache_page(mapping, index);
2170 if (!page)
2171 goto out;
2172 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2173 if (err) {
2174 /*
2175 * ->prepare_write() may have instantiated a few blocks
2176 * outside i_size. Trim these off again.
2177 */
2178 unlock_page(page);
2179 page_cache_release(page);
2180 vmtruncate(inode, inode->i_size);
2181 goto out;
2182 }
2183
2184 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2185
2186 unlock_page(page);
2187 page_cache_release(page);
2188 if (err > 0)
2189 err = 0;
2190 out:
2191 return err;
2192 }
2193
2194 int generic_cont_expand(struct inode *inode, loff_t size)
2195 {
2196 pgoff_t index;
2197 unsigned int offset;
2198
2199 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2200
2201 /* ugh. in prepare/commit_write, if from==to==start of block, we
2202 ** skip the prepare. make sure we never send an offset for the start
2203 ** of a block
2204 */
2205 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2206 /* caller must handle this extra byte. */
2207 offset++;
2208 }
2209 index = size >> PAGE_CACHE_SHIFT;
2210
2211 return __generic_cont_expand(inode, size, index, offset);
2212 }
2213
2214 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2215 {
2216 loff_t pos = size - 1;
2217 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2218 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2219
2220 /* prepare/commit_write can handle even if from==to==start of block. */
2221 return __generic_cont_expand(inode, size, index, offset);
2222 }
2223
2224 /*
2225 * For moronic filesystems that do not allow holes in file.
2226 * We may have to extend the file.
2227 */
2228
2229 int cont_prepare_write(struct page *page, unsigned offset,
2230 unsigned to, get_block_t *get_block, loff_t *bytes)
2231 {
2232 struct address_space *mapping = page->mapping;
2233 struct inode *inode = mapping->host;
2234 struct page *new_page;
2235 pgoff_t pgpos;
2236 long status;
2237 unsigned zerofrom;
2238 unsigned blocksize = 1 << inode->i_blkbits;
2239 void *kaddr;
2240
2241 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2242 status = -ENOMEM;
2243 new_page = grab_cache_page(mapping, pgpos);
2244 if (!new_page)
2245 goto out;
2246 /* we might sleep */
2247 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2248 unlock_page(new_page);
2249 page_cache_release(new_page);
2250 continue;
2251 }
2252 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2253 if (zerofrom & (blocksize-1)) {
2254 *bytes |= (blocksize-1);
2255 (*bytes)++;
2256 }
2257 status = __block_prepare_write(inode, new_page, zerofrom,
2258 PAGE_CACHE_SIZE, get_block);
2259 if (status)
2260 goto out_unmap;
2261 kaddr = kmap_atomic(new_page, KM_USER0);
2262 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2263 flush_dcache_page(new_page);
2264 kunmap_atomic(kaddr, KM_USER0);
2265 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2266 unlock_page(new_page);
2267 page_cache_release(new_page);
2268 }
2269
2270 if (page->index < pgpos) {
2271 /* completely inside the area */
2272 zerofrom = offset;
2273 } else {
2274 /* page covers the boundary, find the boundary offset */
2275 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2276
2277 /* if we will expand the thing last block will be filled */
2278 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2279 *bytes |= (blocksize-1);
2280 (*bytes)++;
2281 }
2282
2283 /* starting below the boundary? Nothing to zero out */
2284 if (offset <= zerofrom)
2285 zerofrom = offset;
2286 }
2287 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2288 if (status)
2289 goto out1;
2290 if (zerofrom < offset) {
2291 kaddr = kmap_atomic(page, KM_USER0);
2292 memset(kaddr+zerofrom, 0, offset-zerofrom);
2293 flush_dcache_page(page);
2294 kunmap_atomic(kaddr, KM_USER0);
2295 __block_commit_write(inode, page, zerofrom, offset);
2296 }
2297 return 0;
2298 out1:
2299 ClearPageUptodate(page);
2300 return status;
2301
2302 out_unmap:
2303 ClearPageUptodate(new_page);
2304 unlock_page(new_page);
2305 page_cache_release(new_page);
2306 out:
2307 return status;
2308 }
2309
2310 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2311 get_block_t *get_block)
2312 {
2313 struct inode *inode = page->mapping->host;
2314 int err = __block_prepare_write(inode, page, from, to, get_block);
2315 if (err)
2316 ClearPageUptodate(page);
2317 return err;
2318 }
2319
2320 int block_commit_write(struct page *page, unsigned from, unsigned to)
2321 {
2322 struct inode *inode = page->mapping->host;
2323 __block_commit_write(inode,page,from,to);
2324 return 0;
2325 }
2326
2327 int generic_commit_write(struct file *file, struct page *page,
2328 unsigned from, unsigned to)
2329 {
2330 struct inode *inode = page->mapping->host;
2331 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2332 __block_commit_write(inode,page,from,to);
2333 /*
2334 * No need to use i_size_read() here, the i_size
2335 * cannot change under us because we hold i_mutex.
2336 */
2337 if (pos > inode->i_size) {
2338 i_size_write(inode, pos);
2339 mark_inode_dirty(inode);
2340 }
2341 return 0;
2342 }
2343
2344
2345 /*
2346 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2347 * immediately, while under the page lock. So it needs a special end_io
2348 * handler which does not touch the bh after unlocking it.
2349 *
2350 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2351 * a race there is benign: unlock_buffer() only use the bh's address for
2352 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2353 * itself.
2354 */
2355 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2356 {
2357 if (uptodate) {
2358 set_buffer_uptodate(bh);
2359 } else {
2360 /* This happens, due to failed READA attempts. */
2361 clear_buffer_uptodate(bh);
2362 }
2363 unlock_buffer(bh);
2364 }
2365
2366 /*
2367 * On entry, the page is fully not uptodate.
2368 * On exit the page is fully uptodate in the areas outside (from,to)
2369 */
2370 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2371 get_block_t *get_block)
2372 {
2373 struct inode *inode = page->mapping->host;
2374 const unsigned blkbits = inode->i_blkbits;
2375 const unsigned blocksize = 1 << blkbits;
2376 struct buffer_head map_bh;
2377 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2378 unsigned block_in_page;
2379 unsigned block_start;
2380 sector_t block_in_file;
2381 char *kaddr;
2382 int nr_reads = 0;
2383 int i;
2384 int ret = 0;
2385 int is_mapped_to_disk = 1;
2386 int dirtied_it = 0;
2387
2388 if (PageMappedToDisk(page))
2389 return 0;
2390
2391 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2392 map_bh.b_page = page;
2393
2394 /*
2395 * We loop across all blocks in the page, whether or not they are
2396 * part of the affected region. This is so we can discover if the
2397 * page is fully mapped-to-disk.
2398 */
2399 for (block_start = 0, block_in_page = 0;
2400 block_start < PAGE_CACHE_SIZE;
2401 block_in_page++, block_start += blocksize) {
2402 unsigned block_end = block_start + blocksize;
2403 int create;
2404
2405 map_bh.b_state = 0;
2406 create = 1;
2407 if (block_start >= to)
2408 create = 0;
2409 ret = get_block(inode, block_in_file + block_in_page,
2410 &map_bh, create);
2411 if (ret)
2412 goto failed;
2413 if (!buffer_mapped(&map_bh))
2414 is_mapped_to_disk = 0;
2415 if (buffer_new(&map_bh))
2416 unmap_underlying_metadata(map_bh.b_bdev,
2417 map_bh.b_blocknr);
2418 if (PageUptodate(page))
2419 continue;
2420 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2421 kaddr = kmap_atomic(page, KM_USER0);
2422 if (block_start < from) {
2423 memset(kaddr+block_start, 0, from-block_start);
2424 dirtied_it = 1;
2425 }
2426 if (block_end > to) {
2427 memset(kaddr + to, 0, block_end - to);
2428 dirtied_it = 1;
2429 }
2430 flush_dcache_page(page);
2431 kunmap_atomic(kaddr, KM_USER0);
2432 continue;
2433 }
2434 if (buffer_uptodate(&map_bh))
2435 continue; /* reiserfs does this */
2436 if (block_start < from || block_end > to) {
2437 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2438
2439 if (!bh) {
2440 ret = -ENOMEM;
2441 goto failed;
2442 }
2443 bh->b_state = map_bh.b_state;
2444 atomic_set(&bh->b_count, 0);
2445 bh->b_this_page = NULL;
2446 bh->b_page = page;
2447 bh->b_blocknr = map_bh.b_blocknr;
2448 bh->b_size = blocksize;
2449 bh->b_data = (char *)(long)block_start;
2450 bh->b_bdev = map_bh.b_bdev;
2451 bh->b_private = NULL;
2452 read_bh[nr_reads++] = bh;
2453 }
2454 }
2455
2456 if (nr_reads) {
2457 struct buffer_head *bh;
2458
2459 /*
2460 * The page is locked, so these buffers are protected from
2461 * any VM or truncate activity. Hence we don't need to care
2462 * for the buffer_head refcounts.
2463 */
2464 for (i = 0; i < nr_reads; i++) {
2465 bh = read_bh[i];
2466 lock_buffer(bh);
2467 bh->b_end_io = end_buffer_read_nobh;
2468 submit_bh(READ, bh);
2469 }
2470 for (i = 0; i < nr_reads; i++) {
2471 bh = read_bh[i];
2472 wait_on_buffer(bh);
2473 if (!buffer_uptodate(bh))
2474 ret = -EIO;
2475 free_buffer_head(bh);
2476 read_bh[i] = NULL;
2477 }
2478 if (ret)
2479 goto failed;
2480 }
2481
2482 if (is_mapped_to_disk)
2483 SetPageMappedToDisk(page);
2484 SetPageUptodate(page);
2485
2486 /*
2487 * Setting the page dirty here isn't necessary for the prepare_write
2488 * function - commit_write will do that. But if/when this function is
2489 * used within the pagefault handler to ensure that all mmapped pages
2490 * have backing space in the filesystem, we will need to dirty the page
2491 * if its contents were altered.
2492 */
2493 if (dirtied_it)
2494 set_page_dirty(page);
2495
2496 return 0;
2497
2498 failed:
2499 for (i = 0; i < nr_reads; i++) {
2500 if (read_bh[i])
2501 free_buffer_head(read_bh[i]);
2502 }
2503
2504 /*
2505 * Error recovery is pretty slack. Clear the page and mark it dirty
2506 * so we'll later zero out any blocks which _were_ allocated.
2507 */
2508 kaddr = kmap_atomic(page, KM_USER0);
2509 memset(kaddr, 0, PAGE_CACHE_SIZE);
2510 kunmap_atomic(kaddr, KM_USER0);
2511 SetPageUptodate(page);
2512 set_page_dirty(page);
2513 return ret;
2514 }
2515 EXPORT_SYMBOL(nobh_prepare_write);
2516
2517 int nobh_commit_write(struct file *file, struct page *page,
2518 unsigned from, unsigned to)
2519 {
2520 struct inode *inode = page->mapping->host;
2521 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2522
2523 set_page_dirty(page);
2524 if (pos > inode->i_size) {
2525 i_size_write(inode, pos);
2526 mark_inode_dirty(inode);
2527 }
2528 return 0;
2529 }
2530 EXPORT_SYMBOL(nobh_commit_write);
2531
2532 /*
2533 * nobh_writepage() - based on block_full_write_page() except
2534 * that it tries to operate without attaching bufferheads to
2535 * the page.
2536 */
2537 int nobh_writepage(struct page *page, get_block_t *get_block,
2538 struct writeback_control *wbc)
2539 {
2540 struct inode * const inode = page->mapping->host;
2541 loff_t i_size = i_size_read(inode);
2542 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2543 unsigned offset;
2544 void *kaddr;
2545 int ret;
2546
2547 /* Is the page fully inside i_size? */
2548 if (page->index < end_index)
2549 goto out;
2550
2551 /* Is the page fully outside i_size? (truncate in progress) */
2552 offset = i_size & (PAGE_CACHE_SIZE-1);
2553 if (page->index >= end_index+1 || !offset) {
2554 /*
2555 * The page may have dirty, unmapped buffers. For example,
2556 * they may have been added in ext3_writepage(). Make them
2557 * freeable here, so the page does not leak.
2558 */
2559 #if 0
2560 /* Not really sure about this - do we need this ? */
2561 if (page->mapping->a_ops->invalidatepage)
2562 page->mapping->a_ops->invalidatepage(page, offset);
2563 #endif
2564 unlock_page(page);
2565 return 0; /* don't care */
2566 }
2567
2568 /*
2569 * The page straddles i_size. It must be zeroed out on each and every
2570 * writepage invocation because it may be mmapped. "A file is mapped
2571 * in multiples of the page size. For a file that is not a multiple of
2572 * the page size, the remaining memory is zeroed when mapped, and
2573 * writes to that region are not written out to the file."
2574 */
2575 kaddr = kmap_atomic(page, KM_USER0);
2576 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2577 flush_dcache_page(page);
2578 kunmap_atomic(kaddr, KM_USER0);
2579 out:
2580 ret = mpage_writepage(page, get_block, wbc);
2581 if (ret == -EAGAIN)
2582 ret = __block_write_full_page(inode, page, get_block, wbc);
2583 return ret;
2584 }
2585 EXPORT_SYMBOL(nobh_writepage);
2586
2587 /*
2588 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2589 */
2590 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2591 {
2592 struct inode *inode = mapping->host;
2593 unsigned blocksize = 1 << inode->i_blkbits;
2594 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2595 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2596 unsigned to;
2597 struct page *page;
2598 struct address_space_operations *a_ops = mapping->a_ops;
2599 char *kaddr;
2600 int ret = 0;
2601
2602 if ((offset & (blocksize - 1)) == 0)
2603 goto out;
2604
2605 ret = -ENOMEM;
2606 page = grab_cache_page(mapping, index);
2607 if (!page)
2608 goto out;
2609
2610 to = (offset + blocksize) & ~(blocksize - 1);
2611 ret = a_ops->prepare_write(NULL, page, offset, to);
2612 if (ret == 0) {
2613 kaddr = kmap_atomic(page, KM_USER0);
2614 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2615 flush_dcache_page(page);
2616 kunmap_atomic(kaddr, KM_USER0);
2617 set_page_dirty(page);
2618 }
2619 unlock_page(page);
2620 page_cache_release(page);
2621 out:
2622 return ret;
2623 }
2624 EXPORT_SYMBOL(nobh_truncate_page);
2625
2626 int block_truncate_page(struct address_space *mapping,
2627 loff_t from, get_block_t *get_block)
2628 {
2629 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2630 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2631 unsigned blocksize;
2632 sector_t iblock;
2633 unsigned length, pos;
2634 struct inode *inode = mapping->host;
2635 struct page *page;
2636 struct buffer_head *bh;
2637 void *kaddr;
2638 int err;
2639
2640 blocksize = 1 << inode->i_blkbits;
2641 length = offset & (blocksize - 1);
2642
2643 /* Block boundary? Nothing to do */
2644 if (!length)
2645 return 0;
2646
2647 length = blocksize - length;
2648 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2649
2650 page = grab_cache_page(mapping, index);
2651 err = -ENOMEM;
2652 if (!page)
2653 goto out;
2654
2655 if (!page_has_buffers(page))
2656 create_empty_buffers(page, blocksize, 0);
2657
2658 /* Find the buffer that contains "offset" */
2659 bh = page_buffers(page);
2660 pos = blocksize;
2661 while (offset >= pos) {
2662 bh = bh->b_this_page;
2663 iblock++;
2664 pos += blocksize;
2665 }
2666
2667 err = 0;
2668 if (!buffer_mapped(bh)) {
2669 err = get_block(inode, iblock, bh, 0);
2670 if (err)
2671 goto unlock;
2672 /* unmapped? It's a hole - nothing to do */
2673 if (!buffer_mapped(bh))
2674 goto unlock;
2675 }
2676
2677 /* Ok, it's mapped. Make sure it's up-to-date */
2678 if (PageUptodate(page))
2679 set_buffer_uptodate(bh);
2680
2681 if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2682 err = -EIO;
2683 ll_rw_block(READ, 1, &bh);
2684 wait_on_buffer(bh);
2685 /* Uhhuh. Read error. Complain and punt. */
2686 if (!buffer_uptodate(bh))
2687 goto unlock;
2688 }
2689
2690 kaddr = kmap_atomic(page, KM_USER0);
2691 memset(kaddr + offset, 0, length);
2692 flush_dcache_page(page);
2693 kunmap_atomic(kaddr, KM_USER0);
2694
2695 mark_buffer_dirty(bh);
2696 err = 0;
2697
2698 unlock:
2699 unlock_page(page);
2700 page_cache_release(page);
2701 out:
2702 return err;
2703 }
2704
2705 /*
2706 * The generic ->writepage function for buffer-backed address_spaces
2707 */
2708 int block_write_full_page(struct page *page, get_block_t *get_block,
2709 struct writeback_control *wbc)
2710 {
2711 struct inode * const inode = page->mapping->host;
2712 loff_t i_size = i_size_read(inode);
2713 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2714 unsigned offset;
2715 void *kaddr;
2716
2717 /* Is the page fully inside i_size? */
2718 if (page->index < end_index)
2719 return __block_write_full_page(inode, page, get_block, wbc);
2720
2721 /* Is the page fully outside i_size? (truncate in progress) */
2722 offset = i_size & (PAGE_CACHE_SIZE-1);
2723 if (page->index >= end_index+1 || !offset) {
2724 /*
2725 * The page may have dirty, unmapped buffers. For example,
2726 * they may have been added in ext3_writepage(). Make them
2727 * freeable here, so the page does not leak.
2728 */
2729 do_invalidatepage(page, 0);
2730 unlock_page(page);
2731 return 0; /* don't care */
2732 }
2733
2734 /*
2735 * The page straddles i_size. It must be zeroed out on each and every
2736 * writepage invokation because it may be mmapped. "A file is mapped
2737 * in multiples of the page size. For a file that is not a multiple of
2738 * the page size, the remaining memory is zeroed when mapped, and
2739 * writes to that region are not written out to the file."
2740 */
2741 kaddr = kmap_atomic(page, KM_USER0);
2742 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2743 flush_dcache_page(page);
2744 kunmap_atomic(kaddr, KM_USER0);
2745 return __block_write_full_page(inode, page, get_block, wbc);
2746 }
2747
2748 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2749 get_block_t *get_block)
2750 {
2751 struct buffer_head tmp;
2752 struct inode *inode = mapping->host;
2753 tmp.b_state = 0;
2754 tmp.b_blocknr = 0;
2755 get_block(inode, block, &tmp, 0);
2756 return tmp.b_blocknr;
2757 }
2758
2759 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2760 {
2761 struct buffer_head *bh = bio->bi_private;
2762
2763 if (bio->bi_size)
2764 return 1;
2765
2766 if (err == -EOPNOTSUPP) {
2767 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2768 set_bit(BH_Eopnotsupp, &bh->b_state);
2769 }
2770
2771 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2772 bio_put(bio);
2773 return 0;
2774 }
2775
2776 int submit_bh(int rw, struct buffer_head * bh)
2777 {
2778 struct bio *bio;
2779 int ret = 0;
2780
2781 BUG_ON(!buffer_locked(bh));
2782 BUG_ON(!buffer_mapped(bh));
2783 BUG_ON(!bh->b_end_io);
2784
2785 if (buffer_ordered(bh) && (rw == WRITE))
2786 rw = WRITE_BARRIER;
2787
2788 /*
2789 * Only clear out a write error when rewriting, should this
2790 * include WRITE_SYNC as well?
2791 */
2792 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2793 clear_buffer_write_io_error(bh);
2794
2795 /*
2796 * from here on down, it's all bio -- do the initial mapping,
2797 * submit_bio -> generic_make_request may further map this bio around
2798 */
2799 bio = bio_alloc(GFP_NOIO, 1);
2800
2801 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2802 bio->bi_bdev = bh->b_bdev;
2803 bio->bi_io_vec[0].bv_page = bh->b_page;
2804 bio->bi_io_vec[0].bv_len = bh->b_size;
2805 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2806
2807 bio->bi_vcnt = 1;
2808 bio->bi_idx = 0;
2809 bio->bi_size = bh->b_size;
2810
2811 bio->bi_end_io = end_bio_bh_io_sync;
2812 bio->bi_private = bh;
2813
2814 bio_get(bio);
2815 submit_bio(rw, bio);
2816
2817 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2818 ret = -EOPNOTSUPP;
2819
2820 bio_put(bio);
2821 return ret;
2822 }
2823
2824 /**
2825 * ll_rw_block: low-level access to block devices (DEPRECATED)
2826 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2827 * @nr: number of &struct buffer_heads in the array
2828 * @bhs: array of pointers to &struct buffer_head
2829 *
2830 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2831 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2832 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2833 * are sent to disk. The fourth %READA option is described in the documentation
2834 * for generic_make_request() which ll_rw_block() calls.
2835 *
2836 * This function drops any buffer that it cannot get a lock on (with the
2837 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2838 * clean when doing a write request, and any buffer that appears to be
2839 * up-to-date when doing read request. Further it marks as clean buffers that
2840 * are processed for writing (the buffer cache won't assume that they are
2841 * actually clean until the buffer gets unlocked).
2842 *
2843 * ll_rw_block sets b_end_io to simple completion handler that marks
2844 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2845 * any waiters.
2846 *
2847 * All of the buffers must be for the same device, and must also be a
2848 * multiple of the current approved size for the device.
2849 */
2850 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2851 {
2852 int i;
2853
2854 for (i = 0; i < nr; i++) {
2855 struct buffer_head *bh = bhs[i];
2856
2857 if (rw == SWRITE)
2858 lock_buffer(bh);
2859 else if (test_set_buffer_locked(bh))
2860 continue;
2861
2862 if (rw == WRITE || rw == SWRITE) {
2863 if (test_clear_buffer_dirty(bh)) {
2864 bh->b_end_io = end_buffer_write_sync;
2865 get_bh(bh);
2866 submit_bh(WRITE, bh);
2867 continue;
2868 }
2869 } else {
2870 if (!buffer_uptodate(bh)) {
2871 bh->b_end_io = end_buffer_read_sync;
2872 get_bh(bh);
2873 submit_bh(rw, bh);
2874 continue;
2875 }
2876 }
2877 unlock_buffer(bh);
2878 }
2879 }
2880
2881 /*
2882 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2883 * and then start new I/O and then wait upon it. The caller must have a ref on
2884 * the buffer_head.
2885 */
2886 int sync_dirty_buffer(struct buffer_head *bh)
2887 {
2888 int ret = 0;
2889
2890 WARN_ON(atomic_read(&bh->b_count) < 1);
2891 lock_buffer(bh);
2892 if (test_clear_buffer_dirty(bh)) {
2893 get_bh(bh);
2894 bh->b_end_io = end_buffer_write_sync;
2895 ret = submit_bh(WRITE, bh);
2896 wait_on_buffer(bh);
2897 if (buffer_eopnotsupp(bh)) {
2898 clear_buffer_eopnotsupp(bh);
2899 ret = -EOPNOTSUPP;
2900 }
2901 if (!ret && !buffer_uptodate(bh))
2902 ret = -EIO;
2903 } else {
2904 unlock_buffer(bh);
2905 }
2906 return ret;
2907 }
2908
2909 /*
2910 * try_to_free_buffers() checks if all the buffers on this particular page
2911 * are unused, and releases them if so.
2912 *
2913 * Exclusion against try_to_free_buffers may be obtained by either
2914 * locking the page or by holding its mapping's private_lock.
2915 *
2916 * If the page is dirty but all the buffers are clean then we need to
2917 * be sure to mark the page clean as well. This is because the page
2918 * may be against a block device, and a later reattachment of buffers
2919 * to a dirty page will set *all* buffers dirty. Which would corrupt
2920 * filesystem data on the same device.
2921 *
2922 * The same applies to regular filesystem pages: if all the buffers are
2923 * clean then we set the page clean and proceed. To do that, we require
2924 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2925 * private_lock.
2926 *
2927 * try_to_free_buffers() is non-blocking.
2928 */
2929 static inline int buffer_busy(struct buffer_head *bh)
2930 {
2931 return atomic_read(&bh->b_count) |
2932 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2933 }
2934
2935 static int
2936 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2937 {
2938 struct buffer_head *head = page_buffers(page);
2939 struct buffer_head *bh;
2940
2941 bh = head;
2942 do {
2943 if (buffer_write_io_error(bh) && page->mapping)
2944 set_bit(AS_EIO, &page->mapping->flags);
2945 if (buffer_busy(bh))
2946 goto failed;
2947 bh = bh->b_this_page;
2948 } while (bh != head);
2949
2950 do {
2951 struct buffer_head *next = bh->b_this_page;
2952
2953 if (!list_empty(&bh->b_assoc_buffers))
2954 __remove_assoc_queue(bh);
2955 bh = next;
2956 } while (bh != head);
2957 *buffers_to_free = head;
2958 __clear_page_buffers(page);
2959 return 1;
2960 failed:
2961 return 0;
2962 }
2963
2964 int try_to_free_buffers(struct page *page)
2965 {
2966 struct address_space * const mapping = page->mapping;
2967 struct buffer_head *buffers_to_free = NULL;
2968 int ret = 0;
2969
2970 BUG_ON(!PageLocked(page));
2971 if (PageWriteback(page))
2972 return 0;
2973
2974 if (mapping == NULL) { /* can this still happen? */
2975 ret = drop_buffers(page, &buffers_to_free);
2976 goto out;
2977 }
2978
2979 spin_lock(&mapping->private_lock);
2980 ret = drop_buffers(page, &buffers_to_free);
2981 if (ret) {
2982 /*
2983 * If the filesystem writes its buffers by hand (eg ext3)
2984 * then we can have clean buffers against a dirty page. We
2985 * clean the page here; otherwise later reattachment of buffers
2986 * could encounter a non-uptodate page, which is unresolvable.
2987 * This only applies in the rare case where try_to_free_buffers
2988 * succeeds but the page is not freed.
2989 */
2990 clear_page_dirty(page);
2991 }
2992 spin_unlock(&mapping->private_lock);
2993 out:
2994 if (buffers_to_free) {
2995 struct buffer_head *bh = buffers_to_free;
2996
2997 do {
2998 struct buffer_head *next = bh->b_this_page;
2999 free_buffer_head(bh);
3000 bh = next;
3001 } while (bh != buffers_to_free);
3002 }
3003 return ret;
3004 }
3005 EXPORT_SYMBOL(try_to_free_buffers);
3006
3007 int block_sync_page(struct page *page)
3008 {
3009 struct address_space *mapping;
3010
3011 smp_mb();
3012 mapping = page_mapping(page);
3013 if (mapping)
3014 blk_run_backing_dev(mapping->backing_dev_info, page);
3015 return 0;
3016 }
3017
3018 /*
3019 * There are no bdflush tunables left. But distributions are
3020 * still running obsolete flush daemons, so we terminate them here.
3021 *
3022 * Use of bdflush() is deprecated and will be removed in a future kernel.
3023 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3024 */
3025 asmlinkage long sys_bdflush(int func, long data)
3026 {
3027 static int msg_count;
3028
3029 if (!capable(CAP_SYS_ADMIN))
3030 return -EPERM;
3031
3032 if (msg_count < 5) {
3033 msg_count++;
3034 printk(KERN_INFO
3035 "warning: process `%s' used the obsolete bdflush"
3036 " system call\n", current->comm);
3037 printk(KERN_INFO "Fix your initscripts?\n");
3038 }
3039
3040 if (func == 1)
3041 do_exit(0);
3042 return 0;
3043 }
3044
3045 /*
3046 * Buffer-head allocation
3047 */
3048 static kmem_cache_t *bh_cachep;
3049
3050 /*
3051 * Once the number of bh's in the machine exceeds this level, we start
3052 * stripping them in writeback.
3053 */
3054 static int max_buffer_heads;
3055
3056 int buffer_heads_over_limit;
3057
3058 struct bh_accounting {
3059 int nr; /* Number of live bh's */
3060 int ratelimit; /* Limit cacheline bouncing */
3061 };
3062
3063 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3064
3065 static void recalc_bh_state(void)
3066 {
3067 int i;
3068 int tot = 0;
3069
3070 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3071 return;
3072 __get_cpu_var(bh_accounting).ratelimit = 0;
3073 for_each_online_cpu(i)
3074 tot += per_cpu(bh_accounting, i).nr;
3075 buffer_heads_over_limit = (tot > max_buffer_heads);
3076 }
3077
3078 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3079 {
3080 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3081 if (ret) {
3082 get_cpu_var(bh_accounting).nr++;
3083 recalc_bh_state();
3084 put_cpu_var(bh_accounting);
3085 }
3086 return ret;
3087 }
3088 EXPORT_SYMBOL(alloc_buffer_head);
3089
3090 void free_buffer_head(struct buffer_head *bh)
3091 {
3092 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3093 kmem_cache_free(bh_cachep, bh);
3094 get_cpu_var(bh_accounting).nr--;
3095 recalc_bh_state();
3096 put_cpu_var(bh_accounting);
3097 }
3098 EXPORT_SYMBOL(free_buffer_head);
3099
3100 static void
3101 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3102 {
3103 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3104 SLAB_CTOR_CONSTRUCTOR) {
3105 struct buffer_head * bh = (struct buffer_head *)data;
3106
3107 memset(bh, 0, sizeof(*bh));
3108 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3109 }
3110 }
3111
3112 #ifdef CONFIG_HOTPLUG_CPU
3113 static void buffer_exit_cpu(int cpu)
3114 {
3115 int i;
3116 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3117
3118 for (i = 0; i < BH_LRU_SIZE; i++) {
3119 brelse(b->bhs[i]);
3120 b->bhs[i] = NULL;
3121 }
3122 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3123 per_cpu(bh_accounting, cpu).nr = 0;
3124 put_cpu_var(bh_accounting);
3125 }
3126
3127 static int buffer_cpu_notify(struct notifier_block *self,
3128 unsigned long action, void *hcpu)
3129 {
3130 if (action == CPU_DEAD)
3131 buffer_exit_cpu((unsigned long)hcpu);
3132 return NOTIFY_OK;
3133 }
3134 #endif /* CONFIG_HOTPLUG_CPU */
3135
3136 void __init buffer_init(void)
3137 {
3138 int nrpages;
3139
3140 bh_cachep = kmem_cache_create("buffer_head",
3141 sizeof(struct buffer_head), 0,
3142 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3143 SLAB_MEM_SPREAD),
3144 init_buffer_head,
3145 NULL);
3146
3147 /*
3148 * Limit the bh occupancy to 10% of ZONE_NORMAL
3149 */
3150 nrpages = (nr_free_buffer_pages() * 10) / 100;
3151 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3152 hotcpu_notifier(buffer_cpu_notify, 0);
3153 }
3154
3155 EXPORT_SYMBOL(__bforget);
3156 EXPORT_SYMBOL(__brelse);
3157 EXPORT_SYMBOL(__wait_on_buffer);
3158 EXPORT_SYMBOL(block_commit_write);
3159 EXPORT_SYMBOL(block_prepare_write);
3160 EXPORT_SYMBOL(block_read_full_page);
3161 EXPORT_SYMBOL(block_sync_page);
3162 EXPORT_SYMBOL(block_truncate_page);
3163 EXPORT_SYMBOL(block_write_full_page);
3164 EXPORT_SYMBOL(cont_prepare_write);
3165 EXPORT_SYMBOL(end_buffer_async_write);
3166 EXPORT_SYMBOL(end_buffer_read_sync);
3167 EXPORT_SYMBOL(end_buffer_write_sync);
3168 EXPORT_SYMBOL(file_fsync);
3169 EXPORT_SYMBOL(fsync_bdev);
3170 EXPORT_SYMBOL(generic_block_bmap);
3171 EXPORT_SYMBOL(generic_commit_write);
3172 EXPORT_SYMBOL(generic_cont_expand);
3173 EXPORT_SYMBOL(generic_cont_expand_simple);
3174 EXPORT_SYMBOL(init_buffer);
3175 EXPORT_SYMBOL(invalidate_bdev);
3176 EXPORT_SYMBOL(ll_rw_block);
3177 EXPORT_SYMBOL(mark_buffer_dirty);
3178 EXPORT_SYMBOL(submit_bh);
3179 EXPORT_SYMBOL(sync_dirty_buffer);
3180 EXPORT_SYMBOL(unlock_buffer);
This page took 0.127233 seconds and 6 git commands to generate.