ceph: reset osd after relevant messages timed out
[deliverable/linux.git] / fs / ceph / caps.c
1 #include "ceph_debug.h"
2
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/vmalloc.h>
7 #include <linux/wait.h>
8
9 #include "super.h"
10 #include "decode.h"
11 #include "messenger.h"
12
13 /*
14 * Capability management
15 *
16 * The Ceph metadata servers control client access to inode metadata
17 * and file data by issuing capabilities, granting clients permission
18 * to read and/or write both inode field and file data to OSDs
19 * (storage nodes). Each capability consists of a set of bits
20 * indicating which operations are allowed.
21 *
22 * If the client holds a *_SHARED cap, the client has a coherent value
23 * that can be safely read from the cached inode.
24 *
25 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
26 * client is allowed to change inode attributes (e.g., file size,
27 * mtime), note its dirty state in the ceph_cap, and asynchronously
28 * flush that metadata change to the MDS.
29 *
30 * In the event of a conflicting operation (perhaps by another
31 * client), the MDS will revoke the conflicting client capabilities.
32 *
33 * In order for a client to cache an inode, it must hold a capability
34 * with at least one MDS server. When inodes are released, release
35 * notifications are batched and periodically sent en masse to the MDS
36 * cluster to release server state.
37 */
38
39
40 /*
41 * Generate readable cap strings for debugging output.
42 */
43 #define MAX_CAP_STR 20
44 static char cap_str[MAX_CAP_STR][40];
45 static DEFINE_SPINLOCK(cap_str_lock);
46 static int last_cap_str;
47
48 static char *gcap_string(char *s, int c)
49 {
50 if (c & CEPH_CAP_GSHARED)
51 *s++ = 's';
52 if (c & CEPH_CAP_GEXCL)
53 *s++ = 'x';
54 if (c & CEPH_CAP_GCACHE)
55 *s++ = 'c';
56 if (c & CEPH_CAP_GRD)
57 *s++ = 'r';
58 if (c & CEPH_CAP_GWR)
59 *s++ = 'w';
60 if (c & CEPH_CAP_GBUFFER)
61 *s++ = 'b';
62 if (c & CEPH_CAP_GLAZYIO)
63 *s++ = 'l';
64 return s;
65 }
66
67 const char *ceph_cap_string(int caps)
68 {
69 int i;
70 char *s;
71 int c;
72
73 spin_lock(&cap_str_lock);
74 i = last_cap_str++;
75 if (last_cap_str == MAX_CAP_STR)
76 last_cap_str = 0;
77 spin_unlock(&cap_str_lock);
78
79 s = cap_str[i];
80
81 if (caps & CEPH_CAP_PIN)
82 *s++ = 'p';
83
84 c = (caps >> CEPH_CAP_SAUTH) & 3;
85 if (c) {
86 *s++ = 'A';
87 s = gcap_string(s, c);
88 }
89
90 c = (caps >> CEPH_CAP_SLINK) & 3;
91 if (c) {
92 *s++ = 'L';
93 s = gcap_string(s, c);
94 }
95
96 c = (caps >> CEPH_CAP_SXATTR) & 3;
97 if (c) {
98 *s++ = 'X';
99 s = gcap_string(s, c);
100 }
101
102 c = caps >> CEPH_CAP_SFILE;
103 if (c) {
104 *s++ = 'F';
105 s = gcap_string(s, c);
106 }
107
108 if (s == cap_str[i])
109 *s++ = '-';
110 *s = 0;
111 return cap_str[i];
112 }
113
114 /*
115 * Cap reservations
116 *
117 * Maintain a global pool of preallocated struct ceph_caps, referenced
118 * by struct ceph_caps_reservations. This ensures that we preallocate
119 * memory needed to successfully process an MDS response. (If an MDS
120 * sends us cap information and we fail to process it, we will have
121 * problems due to the client and MDS being out of sync.)
122 *
123 * Reservations are 'owned' by a ceph_cap_reservation context.
124 */
125 static spinlock_t caps_list_lock;
126 static struct list_head caps_list; /* unused (reserved or unreserved) */
127 static int caps_total_count; /* total caps allocated */
128 static int caps_use_count; /* in use */
129 static int caps_reserve_count; /* unused, reserved */
130 static int caps_avail_count; /* unused, unreserved */
131 static int caps_min_count; /* keep at least this many (unreserved) */
132
133 void __init ceph_caps_init(void)
134 {
135 INIT_LIST_HEAD(&caps_list);
136 spin_lock_init(&caps_list_lock);
137 }
138
139 void ceph_caps_finalize(void)
140 {
141 struct ceph_cap *cap;
142
143 spin_lock(&caps_list_lock);
144 while (!list_empty(&caps_list)) {
145 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
146 list_del(&cap->caps_item);
147 kmem_cache_free(ceph_cap_cachep, cap);
148 }
149 caps_total_count = 0;
150 caps_avail_count = 0;
151 caps_use_count = 0;
152 caps_reserve_count = 0;
153 caps_min_count = 0;
154 spin_unlock(&caps_list_lock);
155 }
156
157 void ceph_adjust_min_caps(int delta)
158 {
159 spin_lock(&caps_list_lock);
160 caps_min_count += delta;
161 BUG_ON(caps_min_count < 0);
162 spin_unlock(&caps_list_lock);
163 }
164
165 int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need)
166 {
167 int i;
168 struct ceph_cap *cap;
169 int have;
170 int alloc = 0;
171 LIST_HEAD(newcaps);
172 int ret = 0;
173
174 dout("reserve caps ctx=%p need=%d\n", ctx, need);
175
176 /* first reserve any caps that are already allocated */
177 spin_lock(&caps_list_lock);
178 if (caps_avail_count >= need)
179 have = need;
180 else
181 have = caps_avail_count;
182 caps_avail_count -= have;
183 caps_reserve_count += have;
184 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
185 caps_avail_count);
186 spin_unlock(&caps_list_lock);
187
188 for (i = have; i < need; i++) {
189 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
190 if (!cap) {
191 ret = -ENOMEM;
192 goto out_alloc_count;
193 }
194 list_add(&cap->caps_item, &newcaps);
195 alloc++;
196 }
197 BUG_ON(have + alloc != need);
198
199 spin_lock(&caps_list_lock);
200 caps_total_count += alloc;
201 caps_reserve_count += alloc;
202 list_splice(&newcaps, &caps_list);
203
204 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
205 caps_avail_count);
206 spin_unlock(&caps_list_lock);
207
208 ctx->count = need;
209 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
210 ctx, caps_total_count, caps_use_count, caps_reserve_count,
211 caps_avail_count);
212 return 0;
213
214 out_alloc_count:
215 /* we didn't manage to reserve as much as we needed */
216 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
217 ctx, need, have);
218 return ret;
219 }
220
221 int ceph_unreserve_caps(struct ceph_cap_reservation *ctx)
222 {
223 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
224 if (ctx->count) {
225 spin_lock(&caps_list_lock);
226 BUG_ON(caps_reserve_count < ctx->count);
227 caps_reserve_count -= ctx->count;
228 caps_avail_count += ctx->count;
229 ctx->count = 0;
230 dout("unreserve caps %d = %d used + %d resv + %d avail\n",
231 caps_total_count, caps_use_count, caps_reserve_count,
232 caps_avail_count);
233 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
234 caps_avail_count);
235 spin_unlock(&caps_list_lock);
236 }
237 return 0;
238 }
239
240 static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx)
241 {
242 struct ceph_cap *cap = NULL;
243
244 /* temporary, until we do something about cap import/export */
245 if (!ctx)
246 return kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
247
248 spin_lock(&caps_list_lock);
249 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
250 ctx, ctx->count, caps_total_count, caps_use_count,
251 caps_reserve_count, caps_avail_count);
252 BUG_ON(!ctx->count);
253 BUG_ON(ctx->count > caps_reserve_count);
254 BUG_ON(list_empty(&caps_list));
255
256 ctx->count--;
257 caps_reserve_count--;
258 caps_use_count++;
259
260 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
261 list_del(&cap->caps_item);
262
263 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
264 caps_avail_count);
265 spin_unlock(&caps_list_lock);
266 return cap;
267 }
268
269 void ceph_put_cap(struct ceph_cap *cap)
270 {
271 spin_lock(&caps_list_lock);
272 dout("put_cap %p %d = %d used + %d resv + %d avail\n",
273 cap, caps_total_count, caps_use_count,
274 caps_reserve_count, caps_avail_count);
275 caps_use_count--;
276 /*
277 * Keep some preallocated caps around (ceph_min_count), to
278 * avoid lots of free/alloc churn.
279 */
280 if (caps_avail_count >= caps_reserve_count + caps_min_count) {
281 caps_total_count--;
282 kmem_cache_free(ceph_cap_cachep, cap);
283 } else {
284 caps_avail_count++;
285 list_add(&cap->caps_item, &caps_list);
286 }
287
288 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
289 caps_avail_count);
290 spin_unlock(&caps_list_lock);
291 }
292
293 void ceph_reservation_status(struct ceph_client *client,
294 int *total, int *avail, int *used, int *reserved,
295 int *min)
296 {
297 if (total)
298 *total = caps_total_count;
299 if (avail)
300 *avail = caps_avail_count;
301 if (used)
302 *used = caps_use_count;
303 if (reserved)
304 *reserved = caps_reserve_count;
305 if (min)
306 *min = caps_min_count;
307 }
308
309 /*
310 * Find ceph_cap for given mds, if any.
311 *
312 * Called with i_lock held.
313 */
314 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
315 {
316 struct ceph_cap *cap;
317 struct rb_node *n = ci->i_caps.rb_node;
318
319 while (n) {
320 cap = rb_entry(n, struct ceph_cap, ci_node);
321 if (mds < cap->mds)
322 n = n->rb_left;
323 else if (mds > cap->mds)
324 n = n->rb_right;
325 else
326 return cap;
327 }
328 return NULL;
329 }
330
331 /*
332 * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else
333 * -1.
334 */
335 static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq)
336 {
337 struct ceph_cap *cap;
338 int mds = -1;
339 struct rb_node *p;
340
341 /* prefer mds with WR|WRBUFFER|EXCL caps */
342 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
343 cap = rb_entry(p, struct ceph_cap, ci_node);
344 mds = cap->mds;
345 if (mseq)
346 *mseq = cap->mseq;
347 if (cap->issued & (CEPH_CAP_FILE_WR |
348 CEPH_CAP_FILE_BUFFER |
349 CEPH_CAP_FILE_EXCL))
350 break;
351 }
352 return mds;
353 }
354
355 int ceph_get_cap_mds(struct inode *inode)
356 {
357 int mds;
358 spin_lock(&inode->i_lock);
359 mds = __ceph_get_cap_mds(ceph_inode(inode), NULL);
360 spin_unlock(&inode->i_lock);
361 return mds;
362 }
363
364 /*
365 * Called under i_lock.
366 */
367 static void __insert_cap_node(struct ceph_inode_info *ci,
368 struct ceph_cap *new)
369 {
370 struct rb_node **p = &ci->i_caps.rb_node;
371 struct rb_node *parent = NULL;
372 struct ceph_cap *cap = NULL;
373
374 while (*p) {
375 parent = *p;
376 cap = rb_entry(parent, struct ceph_cap, ci_node);
377 if (new->mds < cap->mds)
378 p = &(*p)->rb_left;
379 else if (new->mds > cap->mds)
380 p = &(*p)->rb_right;
381 else
382 BUG();
383 }
384
385 rb_link_node(&new->ci_node, parent, p);
386 rb_insert_color(&new->ci_node, &ci->i_caps);
387 }
388
389 /*
390 * (re)set cap hold timeouts, which control the delayed release
391 * of unused caps back to the MDS. Should be called on cap use.
392 */
393 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
394 struct ceph_inode_info *ci)
395 {
396 struct ceph_mount_args *ma = mdsc->client->mount_args;
397
398 ci->i_hold_caps_min = round_jiffies(jiffies +
399 ma->caps_wanted_delay_min * HZ);
400 ci->i_hold_caps_max = round_jiffies(jiffies +
401 ma->caps_wanted_delay_max * HZ);
402 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
403 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
404 }
405
406 /*
407 * (Re)queue cap at the end of the delayed cap release list.
408 *
409 * If I_FLUSH is set, leave the inode at the front of the list.
410 *
411 * Caller holds i_lock
412 * -> we take mdsc->cap_delay_lock
413 */
414 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
415 struct ceph_inode_info *ci)
416 {
417 __cap_set_timeouts(mdsc, ci);
418 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
419 ci->i_ceph_flags, ci->i_hold_caps_max);
420 if (!mdsc->stopping) {
421 spin_lock(&mdsc->cap_delay_lock);
422 if (!list_empty(&ci->i_cap_delay_list)) {
423 if (ci->i_ceph_flags & CEPH_I_FLUSH)
424 goto no_change;
425 list_del_init(&ci->i_cap_delay_list);
426 }
427 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
428 no_change:
429 spin_unlock(&mdsc->cap_delay_lock);
430 }
431 }
432
433 /*
434 * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
435 * indicating we should send a cap message to flush dirty metadata
436 * asap, and move to the front of the delayed cap list.
437 */
438 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
439 struct ceph_inode_info *ci)
440 {
441 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
442 spin_lock(&mdsc->cap_delay_lock);
443 ci->i_ceph_flags |= CEPH_I_FLUSH;
444 if (!list_empty(&ci->i_cap_delay_list))
445 list_del_init(&ci->i_cap_delay_list);
446 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
447 spin_unlock(&mdsc->cap_delay_lock);
448 }
449
450 /*
451 * Cancel delayed work on cap.
452 *
453 * Caller must hold i_lock.
454 */
455 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
456 struct ceph_inode_info *ci)
457 {
458 dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
459 if (list_empty(&ci->i_cap_delay_list))
460 return;
461 spin_lock(&mdsc->cap_delay_lock);
462 list_del_init(&ci->i_cap_delay_list);
463 spin_unlock(&mdsc->cap_delay_lock);
464 }
465
466 /*
467 * Common issue checks for add_cap, handle_cap_grant.
468 */
469 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
470 unsigned issued)
471 {
472 unsigned had = __ceph_caps_issued(ci, NULL);
473
474 /*
475 * Each time we receive FILE_CACHE anew, we increment
476 * i_rdcache_gen.
477 */
478 if ((issued & CEPH_CAP_FILE_CACHE) &&
479 (had & CEPH_CAP_FILE_CACHE) == 0)
480 ci->i_rdcache_gen++;
481
482 /*
483 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we
484 * don't know what happened to this directory while we didn't
485 * have the cap.
486 */
487 if ((issued & CEPH_CAP_FILE_SHARED) &&
488 (had & CEPH_CAP_FILE_SHARED) == 0) {
489 ci->i_shared_gen++;
490 if (S_ISDIR(ci->vfs_inode.i_mode)) {
491 dout(" marking %p NOT complete\n", &ci->vfs_inode);
492 ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
493 }
494 }
495 }
496
497 /*
498 * Add a capability under the given MDS session.
499 *
500 * Caller should hold session snap_rwsem (read) and s_mutex.
501 *
502 * @fmode is the open file mode, if we are opening a file, otherwise
503 * it is < 0. (This is so we can atomically add the cap and add an
504 * open file reference to it.)
505 */
506 int ceph_add_cap(struct inode *inode,
507 struct ceph_mds_session *session, u64 cap_id,
508 int fmode, unsigned issued, unsigned wanted,
509 unsigned seq, unsigned mseq, u64 realmino, int flags,
510 struct ceph_cap_reservation *caps_reservation)
511 {
512 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
513 struct ceph_inode_info *ci = ceph_inode(inode);
514 struct ceph_cap *new_cap = NULL;
515 struct ceph_cap *cap;
516 int mds = session->s_mds;
517 int actual_wanted;
518
519 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
520 session->s_mds, cap_id, ceph_cap_string(issued), seq);
521
522 /*
523 * If we are opening the file, include file mode wanted bits
524 * in wanted.
525 */
526 if (fmode >= 0)
527 wanted |= ceph_caps_for_mode(fmode);
528
529 retry:
530 spin_lock(&inode->i_lock);
531 cap = __get_cap_for_mds(ci, mds);
532 if (!cap) {
533 if (new_cap) {
534 cap = new_cap;
535 new_cap = NULL;
536 } else {
537 spin_unlock(&inode->i_lock);
538 new_cap = get_cap(caps_reservation);
539 if (new_cap == NULL)
540 return -ENOMEM;
541 goto retry;
542 }
543
544 cap->issued = 0;
545 cap->implemented = 0;
546 cap->mds = mds;
547 cap->mds_wanted = 0;
548
549 cap->ci = ci;
550 __insert_cap_node(ci, cap);
551
552 /* clear out old exporting info? (i.e. on cap import) */
553 if (ci->i_cap_exporting_mds == mds) {
554 ci->i_cap_exporting_issued = 0;
555 ci->i_cap_exporting_mseq = 0;
556 ci->i_cap_exporting_mds = -1;
557 }
558
559 /* add to session cap list */
560 cap->session = session;
561 spin_lock(&session->s_cap_lock);
562 list_add_tail(&cap->session_caps, &session->s_caps);
563 session->s_nr_caps++;
564 spin_unlock(&session->s_cap_lock);
565 }
566
567 if (!ci->i_snap_realm) {
568 /*
569 * add this inode to the appropriate snap realm
570 */
571 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
572 realmino);
573 if (realm) {
574 ceph_get_snap_realm(mdsc, realm);
575 spin_lock(&realm->inodes_with_caps_lock);
576 ci->i_snap_realm = realm;
577 list_add(&ci->i_snap_realm_item,
578 &realm->inodes_with_caps);
579 spin_unlock(&realm->inodes_with_caps_lock);
580 } else {
581 pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
582 realmino);
583 }
584 }
585
586 __check_cap_issue(ci, cap, issued);
587
588 /*
589 * If we are issued caps we don't want, or the mds' wanted
590 * value appears to be off, queue a check so we'll release
591 * later and/or update the mds wanted value.
592 */
593 actual_wanted = __ceph_caps_wanted(ci);
594 if ((wanted & ~actual_wanted) ||
595 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
596 dout(" issued %s, mds wanted %s, actual %s, queueing\n",
597 ceph_cap_string(issued), ceph_cap_string(wanted),
598 ceph_cap_string(actual_wanted));
599 __cap_delay_requeue(mdsc, ci);
600 }
601
602 if (flags & CEPH_CAP_FLAG_AUTH)
603 ci->i_auth_cap = cap;
604 else if (ci->i_auth_cap == cap)
605 ci->i_auth_cap = NULL;
606
607 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
608 inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
609 ceph_cap_string(issued|cap->issued), seq, mds);
610 cap->cap_id = cap_id;
611 cap->issued = issued;
612 cap->implemented |= issued;
613 cap->mds_wanted |= wanted;
614 cap->seq = seq;
615 cap->issue_seq = seq;
616 cap->mseq = mseq;
617 cap->cap_gen = session->s_cap_gen;
618
619 if (fmode >= 0)
620 __ceph_get_fmode(ci, fmode);
621 spin_unlock(&inode->i_lock);
622 wake_up(&ci->i_cap_wq);
623 return 0;
624 }
625
626 /*
627 * Return true if cap has not timed out and belongs to the current
628 * generation of the MDS session (i.e. has not gone 'stale' due to
629 * us losing touch with the mds).
630 */
631 static int __cap_is_valid(struct ceph_cap *cap)
632 {
633 unsigned long ttl;
634 u32 gen;
635
636 spin_lock(&cap->session->s_cap_lock);
637 gen = cap->session->s_cap_gen;
638 ttl = cap->session->s_cap_ttl;
639 spin_unlock(&cap->session->s_cap_lock);
640
641 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
642 dout("__cap_is_valid %p cap %p issued %s "
643 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
644 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
645 return 0;
646 }
647
648 return 1;
649 }
650
651 /*
652 * Return set of valid cap bits issued to us. Note that caps time
653 * out, and may be invalidated in bulk if the client session times out
654 * and session->s_cap_gen is bumped.
655 */
656 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
657 {
658 int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
659 struct ceph_cap *cap;
660 struct rb_node *p;
661
662 if (implemented)
663 *implemented = 0;
664 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
665 cap = rb_entry(p, struct ceph_cap, ci_node);
666 if (!__cap_is_valid(cap))
667 continue;
668 dout("__ceph_caps_issued %p cap %p issued %s\n",
669 &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
670 have |= cap->issued;
671 if (implemented)
672 *implemented |= cap->implemented;
673 }
674 return have;
675 }
676
677 /*
678 * Get cap bits issued by caps other than @ocap
679 */
680 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
681 {
682 int have = ci->i_snap_caps;
683 struct ceph_cap *cap;
684 struct rb_node *p;
685
686 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
687 cap = rb_entry(p, struct ceph_cap, ci_node);
688 if (cap == ocap)
689 continue;
690 if (!__cap_is_valid(cap))
691 continue;
692 have |= cap->issued;
693 }
694 return have;
695 }
696
697 /*
698 * Move a cap to the end of the LRU (oldest caps at list head, newest
699 * at list tail).
700 */
701 static void __touch_cap(struct ceph_cap *cap)
702 {
703 struct ceph_mds_session *s = cap->session;
704
705 spin_lock(&s->s_cap_lock);
706 if (s->s_cap_iterator == NULL) {
707 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
708 s->s_mds);
709 list_move_tail(&cap->session_caps, &s->s_caps);
710 } else {
711 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
712 &cap->ci->vfs_inode, cap, s->s_mds);
713 }
714 spin_unlock(&s->s_cap_lock);
715 }
716
717 /*
718 * Check if we hold the given mask. If so, move the cap(s) to the
719 * front of their respective LRUs. (This is the preferred way for
720 * callers to check for caps they want.)
721 */
722 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
723 {
724 struct ceph_cap *cap;
725 struct rb_node *p;
726 int have = ci->i_snap_caps;
727
728 if ((have & mask) == mask) {
729 dout("__ceph_caps_issued_mask %p snap issued %s"
730 " (mask %s)\n", &ci->vfs_inode,
731 ceph_cap_string(have),
732 ceph_cap_string(mask));
733 return 1;
734 }
735
736 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
737 cap = rb_entry(p, struct ceph_cap, ci_node);
738 if (!__cap_is_valid(cap))
739 continue;
740 if ((cap->issued & mask) == mask) {
741 dout("__ceph_caps_issued_mask %p cap %p issued %s"
742 " (mask %s)\n", &ci->vfs_inode, cap,
743 ceph_cap_string(cap->issued),
744 ceph_cap_string(mask));
745 if (touch)
746 __touch_cap(cap);
747 return 1;
748 }
749
750 /* does a combination of caps satisfy mask? */
751 have |= cap->issued;
752 if ((have & mask) == mask) {
753 dout("__ceph_caps_issued_mask %p combo issued %s"
754 " (mask %s)\n", &ci->vfs_inode,
755 ceph_cap_string(cap->issued),
756 ceph_cap_string(mask));
757 if (touch) {
758 struct rb_node *q;
759
760 /* touch this + preceeding caps */
761 __touch_cap(cap);
762 for (q = rb_first(&ci->i_caps); q != p;
763 q = rb_next(q)) {
764 cap = rb_entry(q, struct ceph_cap,
765 ci_node);
766 if (!__cap_is_valid(cap))
767 continue;
768 __touch_cap(cap);
769 }
770 }
771 return 1;
772 }
773 }
774
775 return 0;
776 }
777
778 /*
779 * Return true if mask caps are currently being revoked by an MDS.
780 */
781 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
782 {
783 struct inode *inode = &ci->vfs_inode;
784 struct ceph_cap *cap;
785 struct rb_node *p;
786 int ret = 0;
787
788 spin_lock(&inode->i_lock);
789 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
790 cap = rb_entry(p, struct ceph_cap, ci_node);
791 if (__cap_is_valid(cap) &&
792 (cap->implemented & ~cap->issued & mask)) {
793 ret = 1;
794 break;
795 }
796 }
797 spin_unlock(&inode->i_lock);
798 dout("ceph_caps_revoking %p %s = %d\n", inode,
799 ceph_cap_string(mask), ret);
800 return ret;
801 }
802
803 int __ceph_caps_used(struct ceph_inode_info *ci)
804 {
805 int used = 0;
806 if (ci->i_pin_ref)
807 used |= CEPH_CAP_PIN;
808 if (ci->i_rd_ref)
809 used |= CEPH_CAP_FILE_RD;
810 if (ci->i_rdcache_ref || ci->i_rdcache_gen)
811 used |= CEPH_CAP_FILE_CACHE;
812 if (ci->i_wr_ref)
813 used |= CEPH_CAP_FILE_WR;
814 if (ci->i_wrbuffer_ref)
815 used |= CEPH_CAP_FILE_BUFFER;
816 return used;
817 }
818
819 /*
820 * wanted, by virtue of open file modes
821 */
822 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
823 {
824 int want = 0;
825 int mode;
826 for (mode = 0; mode < 4; mode++)
827 if (ci->i_nr_by_mode[mode])
828 want |= ceph_caps_for_mode(mode);
829 return want;
830 }
831
832 /*
833 * Return caps we have registered with the MDS(s) as 'wanted'.
834 */
835 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
836 {
837 struct ceph_cap *cap;
838 struct rb_node *p;
839 int mds_wanted = 0;
840
841 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
842 cap = rb_entry(p, struct ceph_cap, ci_node);
843 if (!__cap_is_valid(cap))
844 continue;
845 mds_wanted |= cap->mds_wanted;
846 }
847 return mds_wanted;
848 }
849
850 /*
851 * called under i_lock
852 */
853 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
854 {
855 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
856 }
857
858 /*
859 * caller should hold i_lock.
860 * caller will not hold session s_mutex if called from destroy_inode.
861 */
862 void __ceph_remove_cap(struct ceph_cap *cap)
863 {
864 struct ceph_mds_session *session = cap->session;
865 struct ceph_inode_info *ci = cap->ci;
866 struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
867
868 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
869
870 /* remove from inode list */
871 rb_erase(&cap->ci_node, &ci->i_caps);
872 cap->ci = NULL;
873 if (ci->i_auth_cap == cap)
874 ci->i_auth_cap = NULL;
875
876 /* remove from session list */
877 spin_lock(&session->s_cap_lock);
878 if (session->s_cap_iterator == cap) {
879 /* not yet, we are iterating over this very cap */
880 dout("__ceph_remove_cap delaying %p removal from session %p\n",
881 cap, cap->session);
882 } else {
883 list_del_init(&cap->session_caps);
884 session->s_nr_caps--;
885 cap->session = NULL;
886 }
887 spin_unlock(&session->s_cap_lock);
888
889 if (cap->session == NULL)
890 ceph_put_cap(cap);
891
892 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
893 struct ceph_snap_realm *realm = ci->i_snap_realm;
894 spin_lock(&realm->inodes_with_caps_lock);
895 list_del_init(&ci->i_snap_realm_item);
896 ci->i_snap_realm_counter++;
897 ci->i_snap_realm = NULL;
898 spin_unlock(&realm->inodes_with_caps_lock);
899 ceph_put_snap_realm(mdsc, realm);
900 }
901 if (!__ceph_is_any_real_caps(ci))
902 __cap_delay_cancel(mdsc, ci);
903 }
904
905 /*
906 * Build and send a cap message to the given MDS.
907 *
908 * Caller should be holding s_mutex.
909 */
910 static int send_cap_msg(struct ceph_mds_session *session,
911 u64 ino, u64 cid, int op,
912 int caps, int wanted, int dirty,
913 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
914 u64 size, u64 max_size,
915 struct timespec *mtime, struct timespec *atime,
916 u64 time_warp_seq,
917 uid_t uid, gid_t gid, mode_t mode,
918 u64 xattr_version,
919 struct ceph_buffer *xattrs_buf,
920 u64 follows)
921 {
922 struct ceph_mds_caps *fc;
923 struct ceph_msg *msg;
924
925 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
926 " seq %u/%u mseq %u follows %lld size %llu/%llu"
927 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
928 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
929 ceph_cap_string(dirty),
930 seq, issue_seq, mseq, follows, size, max_size,
931 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
932
933 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), 0, 0, NULL);
934 if (IS_ERR(msg))
935 return PTR_ERR(msg);
936
937 msg->hdr.tid = cpu_to_le64(flush_tid);
938
939 fc = msg->front.iov_base;
940 memset(fc, 0, sizeof(*fc));
941
942 fc->cap_id = cpu_to_le64(cid);
943 fc->op = cpu_to_le32(op);
944 fc->seq = cpu_to_le32(seq);
945 fc->issue_seq = cpu_to_le32(issue_seq);
946 fc->migrate_seq = cpu_to_le32(mseq);
947 fc->caps = cpu_to_le32(caps);
948 fc->wanted = cpu_to_le32(wanted);
949 fc->dirty = cpu_to_le32(dirty);
950 fc->ino = cpu_to_le64(ino);
951 fc->snap_follows = cpu_to_le64(follows);
952
953 fc->size = cpu_to_le64(size);
954 fc->max_size = cpu_to_le64(max_size);
955 if (mtime)
956 ceph_encode_timespec(&fc->mtime, mtime);
957 if (atime)
958 ceph_encode_timespec(&fc->atime, atime);
959 fc->time_warp_seq = cpu_to_le32(time_warp_seq);
960
961 fc->uid = cpu_to_le32(uid);
962 fc->gid = cpu_to_le32(gid);
963 fc->mode = cpu_to_le32(mode);
964
965 fc->xattr_version = cpu_to_le64(xattr_version);
966 if (xattrs_buf) {
967 msg->middle = ceph_buffer_get(xattrs_buf);
968 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
969 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
970 }
971
972 ceph_con_send(&session->s_con, msg);
973 return 0;
974 }
975
976 /*
977 * Queue cap releases when an inode is dropped from our cache. Since
978 * inode is about to be destroyed, there is no need for i_lock.
979 */
980 void ceph_queue_caps_release(struct inode *inode)
981 {
982 struct ceph_inode_info *ci = ceph_inode(inode);
983 struct rb_node *p;
984
985 p = rb_first(&ci->i_caps);
986 while (p) {
987 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
988 struct ceph_mds_session *session = cap->session;
989 struct ceph_msg *msg;
990 struct ceph_mds_cap_release *head;
991 struct ceph_mds_cap_item *item;
992
993 spin_lock(&session->s_cap_lock);
994 BUG_ON(!session->s_num_cap_releases);
995 msg = list_first_entry(&session->s_cap_releases,
996 struct ceph_msg, list_head);
997
998 dout(" adding %p release to mds%d msg %p (%d left)\n",
999 inode, session->s_mds, msg, session->s_num_cap_releases);
1000
1001 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1002 head = msg->front.iov_base;
1003 head->num = cpu_to_le32(le32_to_cpu(head->num) + 1);
1004 item = msg->front.iov_base + msg->front.iov_len;
1005 item->ino = cpu_to_le64(ceph_ino(inode));
1006 item->cap_id = cpu_to_le64(cap->cap_id);
1007 item->migrate_seq = cpu_to_le32(cap->mseq);
1008 item->seq = cpu_to_le32(cap->issue_seq);
1009
1010 session->s_num_cap_releases--;
1011
1012 msg->front.iov_len += sizeof(*item);
1013 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1014 dout(" release msg %p full\n", msg);
1015 list_move_tail(&msg->list_head,
1016 &session->s_cap_releases_done);
1017 } else {
1018 dout(" release msg %p at %d/%d (%d)\n", msg,
1019 (int)le32_to_cpu(head->num),
1020 (int)CEPH_CAPS_PER_RELEASE,
1021 (int)msg->front.iov_len);
1022 }
1023 spin_unlock(&session->s_cap_lock);
1024 p = rb_next(p);
1025 __ceph_remove_cap(cap);
1026 }
1027 }
1028
1029 /*
1030 * Send a cap msg on the given inode. Update our caps state, then
1031 * drop i_lock and send the message.
1032 *
1033 * Make note of max_size reported/requested from mds, revoked caps
1034 * that have now been implemented.
1035 *
1036 * Make half-hearted attempt ot to invalidate page cache if we are
1037 * dropping RDCACHE. Note that this will leave behind locked pages
1038 * that we'll then need to deal with elsewhere.
1039 *
1040 * Return non-zero if delayed release, or we experienced an error
1041 * such that the caller should requeue + retry later.
1042 *
1043 * called with i_lock, then drops it.
1044 * caller should hold snap_rwsem (read), s_mutex.
1045 */
1046 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1047 int op, int used, int want, int retain, int flushing,
1048 unsigned *pflush_tid)
1049 __releases(cap->ci->vfs_inode->i_lock)
1050 {
1051 struct ceph_inode_info *ci = cap->ci;
1052 struct inode *inode = &ci->vfs_inode;
1053 u64 cap_id = cap->cap_id;
1054 int held, revoking, dropping, keep;
1055 u64 seq, issue_seq, mseq, time_warp_seq, follows;
1056 u64 size, max_size;
1057 struct timespec mtime, atime;
1058 int wake = 0;
1059 mode_t mode;
1060 uid_t uid;
1061 gid_t gid;
1062 struct ceph_mds_session *session;
1063 u64 xattr_version = 0;
1064 int delayed = 0;
1065 u64 flush_tid = 0;
1066 int i;
1067 int ret;
1068
1069 held = cap->issued | cap->implemented;
1070 revoking = cap->implemented & ~cap->issued;
1071 retain &= ~revoking;
1072 dropping = cap->issued & ~retain;
1073
1074 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1075 inode, cap, cap->session,
1076 ceph_cap_string(held), ceph_cap_string(held & retain),
1077 ceph_cap_string(revoking));
1078 BUG_ON((retain & CEPH_CAP_PIN) == 0);
1079
1080 session = cap->session;
1081
1082 /* don't release wanted unless we've waited a bit. */
1083 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1084 time_before(jiffies, ci->i_hold_caps_min)) {
1085 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1086 ceph_cap_string(cap->issued),
1087 ceph_cap_string(cap->issued & retain),
1088 ceph_cap_string(cap->mds_wanted),
1089 ceph_cap_string(want));
1090 want |= cap->mds_wanted;
1091 retain |= cap->issued;
1092 delayed = 1;
1093 }
1094 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1095
1096 cap->issued &= retain; /* drop bits we don't want */
1097 if (cap->implemented & ~cap->issued) {
1098 /*
1099 * Wake up any waiters on wanted -> needed transition.
1100 * This is due to the weird transition from buffered
1101 * to sync IO... we need to flush dirty pages _before_
1102 * allowing sync writes to avoid reordering.
1103 */
1104 wake = 1;
1105 }
1106 cap->implemented &= cap->issued | used;
1107 cap->mds_wanted = want;
1108
1109 if (flushing) {
1110 /*
1111 * assign a tid for flush operations so we can avoid
1112 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1113 * clean type races. track latest tid for every bit
1114 * so we can handle flush AxFw, flush Fw, and have the
1115 * first ack clean Ax.
1116 */
1117 flush_tid = ++ci->i_cap_flush_last_tid;
1118 if (pflush_tid)
1119 *pflush_tid = flush_tid;
1120 dout(" cap_flush_tid %d\n", (int)flush_tid);
1121 for (i = 0; i < CEPH_CAP_BITS; i++)
1122 if (flushing & (1 << i))
1123 ci->i_cap_flush_tid[i] = flush_tid;
1124 }
1125
1126 keep = cap->implemented;
1127 seq = cap->seq;
1128 issue_seq = cap->issue_seq;
1129 mseq = cap->mseq;
1130 size = inode->i_size;
1131 ci->i_reported_size = size;
1132 max_size = ci->i_wanted_max_size;
1133 ci->i_requested_max_size = max_size;
1134 mtime = inode->i_mtime;
1135 atime = inode->i_atime;
1136 time_warp_seq = ci->i_time_warp_seq;
1137 follows = ci->i_snap_realm->cached_context->seq;
1138 uid = inode->i_uid;
1139 gid = inode->i_gid;
1140 mode = inode->i_mode;
1141
1142 if (dropping & CEPH_CAP_XATTR_EXCL) {
1143 __ceph_build_xattrs_blob(ci);
1144 xattr_version = ci->i_xattrs.version + 1;
1145 }
1146
1147 spin_unlock(&inode->i_lock);
1148
1149 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1150 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1151 size, max_size, &mtime, &atime, time_warp_seq,
1152 uid, gid, mode,
1153 xattr_version,
1154 (flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL,
1155 follows);
1156 if (ret < 0) {
1157 dout("error sending cap msg, must requeue %p\n", inode);
1158 delayed = 1;
1159 }
1160
1161 if (wake)
1162 wake_up(&ci->i_cap_wq);
1163
1164 return delayed;
1165 }
1166
1167 /*
1168 * When a snapshot is taken, clients accumulate dirty metadata on
1169 * inodes with capabilities in ceph_cap_snaps to describe the file
1170 * state at the time the snapshot was taken. This must be flushed
1171 * asynchronously back to the MDS once sync writes complete and dirty
1172 * data is written out.
1173 *
1174 * Called under i_lock. Takes s_mutex as needed.
1175 */
1176 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1177 struct ceph_mds_session **psession)
1178 {
1179 struct inode *inode = &ci->vfs_inode;
1180 int mds;
1181 struct ceph_cap_snap *capsnap;
1182 u32 mseq;
1183 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
1184 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1185 session->s_mutex */
1186 u64 next_follows = 0; /* keep track of how far we've gotten through the
1187 i_cap_snaps list, and skip these entries next time
1188 around to avoid an infinite loop */
1189
1190 if (psession)
1191 session = *psession;
1192
1193 dout("__flush_snaps %p\n", inode);
1194 retry:
1195 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1196 /* avoid an infiniute loop after retry */
1197 if (capsnap->follows < next_follows)
1198 continue;
1199 /*
1200 * we need to wait for sync writes to complete and for dirty
1201 * pages to be written out.
1202 */
1203 if (capsnap->dirty_pages || capsnap->writing)
1204 continue;
1205
1206 /* pick mds, take s_mutex */
1207 mds = __ceph_get_cap_mds(ci, &mseq);
1208 if (session && session->s_mds != mds) {
1209 dout("oops, wrong session %p mutex\n", session);
1210 mutex_unlock(&session->s_mutex);
1211 ceph_put_mds_session(session);
1212 session = NULL;
1213 }
1214 if (!session) {
1215 spin_unlock(&inode->i_lock);
1216 mutex_lock(&mdsc->mutex);
1217 session = __ceph_lookup_mds_session(mdsc, mds);
1218 mutex_unlock(&mdsc->mutex);
1219 if (session) {
1220 dout("inverting session/ino locks on %p\n",
1221 session);
1222 mutex_lock(&session->s_mutex);
1223 }
1224 /*
1225 * if session == NULL, we raced against a cap
1226 * deletion. retry, and we'll get a better
1227 * @mds value next time.
1228 */
1229 spin_lock(&inode->i_lock);
1230 goto retry;
1231 }
1232
1233 capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1234 atomic_inc(&capsnap->nref);
1235 if (!list_empty(&capsnap->flushing_item))
1236 list_del_init(&capsnap->flushing_item);
1237 list_add_tail(&capsnap->flushing_item,
1238 &session->s_cap_snaps_flushing);
1239 spin_unlock(&inode->i_lock);
1240
1241 dout("flush_snaps %p cap_snap %p follows %lld size %llu\n",
1242 inode, capsnap, next_follows, capsnap->size);
1243 send_cap_msg(session, ceph_vino(inode).ino, 0,
1244 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1245 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1246 capsnap->size, 0,
1247 &capsnap->mtime, &capsnap->atime,
1248 capsnap->time_warp_seq,
1249 capsnap->uid, capsnap->gid, capsnap->mode,
1250 0, NULL,
1251 capsnap->follows);
1252
1253 next_follows = capsnap->follows + 1;
1254 ceph_put_cap_snap(capsnap);
1255
1256 spin_lock(&inode->i_lock);
1257 goto retry;
1258 }
1259
1260 /* we flushed them all; remove this inode from the queue */
1261 spin_lock(&mdsc->snap_flush_lock);
1262 list_del_init(&ci->i_snap_flush_item);
1263 spin_unlock(&mdsc->snap_flush_lock);
1264
1265 if (psession)
1266 *psession = session;
1267 else if (session) {
1268 mutex_unlock(&session->s_mutex);
1269 ceph_put_mds_session(session);
1270 }
1271 }
1272
1273 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1274 {
1275 struct inode *inode = &ci->vfs_inode;
1276
1277 spin_lock(&inode->i_lock);
1278 __ceph_flush_snaps(ci, NULL);
1279 spin_unlock(&inode->i_lock);
1280 }
1281
1282 /*
1283 * Mark caps dirty. If inode is newly dirty, add to the global dirty
1284 * list.
1285 */
1286 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1287 {
1288 struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
1289 struct inode *inode = &ci->vfs_inode;
1290 int was = ci->i_dirty_caps;
1291 int dirty = 0;
1292
1293 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1294 ceph_cap_string(mask), ceph_cap_string(was),
1295 ceph_cap_string(was | mask));
1296 ci->i_dirty_caps |= mask;
1297 if (was == 0) {
1298 dout(" inode %p now dirty\n", &ci->vfs_inode);
1299 BUG_ON(!list_empty(&ci->i_dirty_item));
1300 spin_lock(&mdsc->cap_dirty_lock);
1301 list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1302 spin_unlock(&mdsc->cap_dirty_lock);
1303 if (ci->i_flushing_caps == 0) {
1304 igrab(inode);
1305 dirty |= I_DIRTY_SYNC;
1306 }
1307 }
1308 BUG_ON(list_empty(&ci->i_dirty_item));
1309 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1310 (mask & CEPH_CAP_FILE_BUFFER))
1311 dirty |= I_DIRTY_DATASYNC;
1312 if (dirty)
1313 __mark_inode_dirty(inode, dirty);
1314 __cap_delay_requeue(mdsc, ci);
1315 }
1316
1317 /*
1318 * Add dirty inode to the flushing list. Assigned a seq number so we
1319 * can wait for caps to flush without starving.
1320 *
1321 * Called under i_lock.
1322 */
1323 static int __mark_caps_flushing(struct inode *inode,
1324 struct ceph_mds_session *session)
1325 {
1326 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1327 struct ceph_inode_info *ci = ceph_inode(inode);
1328 int flushing;
1329
1330 BUG_ON(ci->i_dirty_caps == 0);
1331 BUG_ON(list_empty(&ci->i_dirty_item));
1332
1333 flushing = ci->i_dirty_caps;
1334 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1335 ceph_cap_string(flushing),
1336 ceph_cap_string(ci->i_flushing_caps),
1337 ceph_cap_string(ci->i_flushing_caps | flushing));
1338 ci->i_flushing_caps |= flushing;
1339 ci->i_dirty_caps = 0;
1340 dout(" inode %p now !dirty\n", inode);
1341
1342 spin_lock(&mdsc->cap_dirty_lock);
1343 list_del_init(&ci->i_dirty_item);
1344
1345 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1346 if (list_empty(&ci->i_flushing_item)) {
1347 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1348 mdsc->num_cap_flushing++;
1349 dout(" inode %p now flushing seq %lld\n", inode,
1350 ci->i_cap_flush_seq);
1351 } else {
1352 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1353 dout(" inode %p now flushing (more) seq %lld\n", inode,
1354 ci->i_cap_flush_seq);
1355 }
1356 spin_unlock(&mdsc->cap_dirty_lock);
1357
1358 return flushing;
1359 }
1360
1361 /*
1362 * try to invalidate mapping pages without blocking.
1363 */
1364 static int mapping_is_empty(struct address_space *mapping)
1365 {
1366 struct page *page = find_get_page(mapping, 0);
1367
1368 if (!page)
1369 return 1;
1370
1371 put_page(page);
1372 return 0;
1373 }
1374
1375 static int try_nonblocking_invalidate(struct inode *inode)
1376 {
1377 struct ceph_inode_info *ci = ceph_inode(inode);
1378 u32 invalidating_gen = ci->i_rdcache_gen;
1379
1380 spin_unlock(&inode->i_lock);
1381 invalidate_mapping_pages(&inode->i_data, 0, -1);
1382 spin_lock(&inode->i_lock);
1383
1384 if (mapping_is_empty(&inode->i_data) &&
1385 invalidating_gen == ci->i_rdcache_gen) {
1386 /* success. */
1387 dout("try_nonblocking_invalidate %p success\n", inode);
1388 ci->i_rdcache_gen = 0;
1389 ci->i_rdcache_revoking = 0;
1390 return 0;
1391 }
1392 dout("try_nonblocking_invalidate %p failed\n", inode);
1393 return -1;
1394 }
1395
1396 /*
1397 * Swiss army knife function to examine currently used and wanted
1398 * versus held caps. Release, flush, ack revoked caps to mds as
1399 * appropriate.
1400 *
1401 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1402 * cap release further.
1403 * CHECK_CAPS_AUTHONLY - we should only check the auth cap
1404 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1405 * further delay.
1406 */
1407 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1408 struct ceph_mds_session *session)
1409 {
1410 struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode);
1411 struct ceph_mds_client *mdsc = &client->mdsc;
1412 struct inode *inode = &ci->vfs_inode;
1413 struct ceph_cap *cap;
1414 int file_wanted, used;
1415 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
1416 int drop_session_lock = session ? 0 : 1;
1417 int issued, implemented, want, retain, revoking, flushing = 0;
1418 int mds = -1; /* keep track of how far we've gone through i_caps list
1419 to avoid an infinite loop on retry */
1420 struct rb_node *p;
1421 int tried_invalidate = 0;
1422 int delayed = 0, sent = 0, force_requeue = 0, num;
1423 int queue_invalidate = 0;
1424 int is_delayed = flags & CHECK_CAPS_NODELAY;
1425
1426 /* if we are unmounting, flush any unused caps immediately. */
1427 if (mdsc->stopping)
1428 is_delayed = 1;
1429
1430 spin_lock(&inode->i_lock);
1431
1432 if (ci->i_ceph_flags & CEPH_I_FLUSH)
1433 flags |= CHECK_CAPS_FLUSH;
1434
1435 /* flush snaps first time around only */
1436 if (!list_empty(&ci->i_cap_snaps))
1437 __ceph_flush_snaps(ci, &session);
1438 goto retry_locked;
1439 retry:
1440 spin_lock(&inode->i_lock);
1441 retry_locked:
1442 file_wanted = __ceph_caps_file_wanted(ci);
1443 used = __ceph_caps_used(ci);
1444 want = file_wanted | used;
1445 issued = __ceph_caps_issued(ci, &implemented);
1446 revoking = implemented & ~issued;
1447
1448 retain = want | CEPH_CAP_PIN;
1449 if (!mdsc->stopping && inode->i_nlink > 0) {
1450 if (want) {
1451 retain |= CEPH_CAP_ANY; /* be greedy */
1452 } else {
1453 retain |= CEPH_CAP_ANY_SHARED;
1454 /*
1455 * keep RD only if we didn't have the file open RW,
1456 * because then the mds would revoke it anyway to
1457 * journal max_size=0.
1458 */
1459 if (ci->i_max_size == 0)
1460 retain |= CEPH_CAP_ANY_RD;
1461 }
1462 }
1463
1464 dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1465 " issued %s revoking %s retain %s %s%s%s\n", inode,
1466 ceph_cap_string(file_wanted),
1467 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1468 ceph_cap_string(ci->i_flushing_caps),
1469 ceph_cap_string(issued), ceph_cap_string(revoking),
1470 ceph_cap_string(retain),
1471 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1472 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1473 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1474
1475 /*
1476 * If we no longer need to hold onto old our caps, and we may
1477 * have cached pages, but don't want them, then try to invalidate.
1478 * If we fail, it's because pages are locked.... try again later.
1479 */
1480 if ((!is_delayed || mdsc->stopping) &&
1481 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
1482 ci->i_rdcache_gen && /* may have cached pages */
1483 (file_wanted == 0 || /* no open files */
1484 (revoking & CEPH_CAP_FILE_CACHE)) && /* or revoking cache */
1485 !tried_invalidate) {
1486 dout("check_caps trying to invalidate on %p\n", inode);
1487 if (try_nonblocking_invalidate(inode) < 0) {
1488 if (revoking & CEPH_CAP_FILE_CACHE) {
1489 dout("check_caps queuing invalidate\n");
1490 queue_invalidate = 1;
1491 ci->i_rdcache_revoking = ci->i_rdcache_gen;
1492 } else {
1493 dout("check_caps failed to invalidate pages\n");
1494 /* we failed to invalidate pages. check these
1495 caps again later. */
1496 force_requeue = 1;
1497 __cap_set_timeouts(mdsc, ci);
1498 }
1499 }
1500 tried_invalidate = 1;
1501 goto retry_locked;
1502 }
1503
1504 num = 0;
1505 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1506 cap = rb_entry(p, struct ceph_cap, ci_node);
1507 num++;
1508
1509 /* avoid looping forever */
1510 if (mds >= cap->mds ||
1511 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1512 continue;
1513
1514 /* NOTE: no side-effects allowed, until we take s_mutex */
1515
1516 revoking = cap->implemented & ~cap->issued;
1517 if (revoking)
1518 dout(" mds%d revoking %s\n", cap->mds,
1519 ceph_cap_string(revoking));
1520
1521 if (cap == ci->i_auth_cap &&
1522 (cap->issued & CEPH_CAP_FILE_WR)) {
1523 /* request larger max_size from MDS? */
1524 if (ci->i_wanted_max_size > ci->i_max_size &&
1525 ci->i_wanted_max_size > ci->i_requested_max_size) {
1526 dout("requesting new max_size\n");
1527 goto ack;
1528 }
1529
1530 /* approaching file_max? */
1531 if ((inode->i_size << 1) >= ci->i_max_size &&
1532 (ci->i_reported_size << 1) < ci->i_max_size) {
1533 dout("i_size approaching max_size\n");
1534 goto ack;
1535 }
1536 }
1537 /* flush anything dirty? */
1538 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1539 ci->i_dirty_caps) {
1540 dout("flushing dirty caps\n");
1541 goto ack;
1542 }
1543
1544 /* completed revocation? going down and there are no caps? */
1545 if (revoking && (revoking & used) == 0) {
1546 dout("completed revocation of %s\n",
1547 ceph_cap_string(cap->implemented & ~cap->issued));
1548 goto ack;
1549 }
1550
1551 /* want more caps from mds? */
1552 if (want & ~(cap->mds_wanted | cap->issued))
1553 goto ack;
1554
1555 /* things we might delay */
1556 if ((cap->issued & ~retain) == 0 &&
1557 cap->mds_wanted == want)
1558 continue; /* nope, all good */
1559
1560 if (is_delayed)
1561 goto ack;
1562
1563 /* delay? */
1564 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1565 time_before(jiffies, ci->i_hold_caps_max)) {
1566 dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1567 ceph_cap_string(cap->issued),
1568 ceph_cap_string(cap->issued & retain),
1569 ceph_cap_string(cap->mds_wanted),
1570 ceph_cap_string(want));
1571 delayed++;
1572 continue;
1573 }
1574
1575 ack:
1576 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1577 dout(" skipping %p I_NOFLUSH set\n", inode);
1578 continue;
1579 }
1580
1581 if (session && session != cap->session) {
1582 dout("oops, wrong session %p mutex\n", session);
1583 mutex_unlock(&session->s_mutex);
1584 session = NULL;
1585 }
1586 if (!session) {
1587 session = cap->session;
1588 if (mutex_trylock(&session->s_mutex) == 0) {
1589 dout("inverting session/ino locks on %p\n",
1590 session);
1591 spin_unlock(&inode->i_lock);
1592 if (took_snap_rwsem) {
1593 up_read(&mdsc->snap_rwsem);
1594 took_snap_rwsem = 0;
1595 }
1596 mutex_lock(&session->s_mutex);
1597 goto retry;
1598 }
1599 }
1600 /* take snap_rwsem after session mutex */
1601 if (!took_snap_rwsem) {
1602 if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1603 dout("inverting snap/in locks on %p\n",
1604 inode);
1605 spin_unlock(&inode->i_lock);
1606 down_read(&mdsc->snap_rwsem);
1607 took_snap_rwsem = 1;
1608 goto retry;
1609 }
1610 took_snap_rwsem = 1;
1611 }
1612
1613 if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1614 flushing = __mark_caps_flushing(inode, session);
1615
1616 mds = cap->mds; /* remember mds, so we don't repeat */
1617 sent++;
1618
1619 /* __send_cap drops i_lock */
1620 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1621 retain, flushing, NULL);
1622 goto retry; /* retake i_lock and restart our cap scan. */
1623 }
1624
1625 /*
1626 * Reschedule delayed caps release if we delayed anything,
1627 * otherwise cancel.
1628 */
1629 if (delayed && is_delayed)
1630 force_requeue = 1; /* __send_cap delayed release; requeue */
1631 if (!delayed && !is_delayed)
1632 __cap_delay_cancel(mdsc, ci);
1633 else if (!is_delayed || force_requeue)
1634 __cap_delay_requeue(mdsc, ci);
1635
1636 spin_unlock(&inode->i_lock);
1637
1638 if (queue_invalidate)
1639 ceph_queue_invalidate(inode);
1640
1641 if (session && drop_session_lock)
1642 mutex_unlock(&session->s_mutex);
1643 if (took_snap_rwsem)
1644 up_read(&mdsc->snap_rwsem);
1645 }
1646
1647 /*
1648 * Try to flush dirty caps back to the auth mds.
1649 */
1650 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1651 unsigned *flush_tid)
1652 {
1653 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1654 struct ceph_inode_info *ci = ceph_inode(inode);
1655 int unlock_session = session ? 0 : 1;
1656 int flushing = 0;
1657
1658 retry:
1659 spin_lock(&inode->i_lock);
1660 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1661 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1662 goto out;
1663 }
1664 if (ci->i_dirty_caps && ci->i_auth_cap) {
1665 struct ceph_cap *cap = ci->i_auth_cap;
1666 int used = __ceph_caps_used(ci);
1667 int want = __ceph_caps_wanted(ci);
1668 int delayed;
1669
1670 if (!session) {
1671 spin_unlock(&inode->i_lock);
1672 session = cap->session;
1673 mutex_lock(&session->s_mutex);
1674 goto retry;
1675 }
1676 BUG_ON(session != cap->session);
1677 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1678 goto out;
1679
1680 flushing = __mark_caps_flushing(inode, session);
1681
1682 /* __send_cap drops i_lock */
1683 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1684 cap->issued | cap->implemented, flushing,
1685 flush_tid);
1686 if (!delayed)
1687 goto out_unlocked;
1688
1689 spin_lock(&inode->i_lock);
1690 __cap_delay_requeue(mdsc, ci);
1691 }
1692 out:
1693 spin_unlock(&inode->i_lock);
1694 out_unlocked:
1695 if (session && unlock_session)
1696 mutex_unlock(&session->s_mutex);
1697 return flushing;
1698 }
1699
1700 /*
1701 * Return true if we've flushed caps through the given flush_tid.
1702 */
1703 static int caps_are_flushed(struct inode *inode, unsigned tid)
1704 {
1705 struct ceph_inode_info *ci = ceph_inode(inode);
1706 int dirty, i, ret = 1;
1707
1708 spin_lock(&inode->i_lock);
1709 dirty = __ceph_caps_dirty(ci);
1710 for (i = 0; i < CEPH_CAP_BITS; i++)
1711 if ((ci->i_flushing_caps & (1 << i)) &&
1712 ci->i_cap_flush_tid[i] <= tid) {
1713 /* still flushing this bit */
1714 ret = 0;
1715 break;
1716 }
1717 spin_unlock(&inode->i_lock);
1718 return ret;
1719 }
1720
1721 /*
1722 * Wait on any unsafe replies for the given inode. First wait on the
1723 * newest request, and make that the upper bound. Then, if there are
1724 * more requests, keep waiting on the oldest as long as it is still older
1725 * than the original request.
1726 */
1727 static void sync_write_wait(struct inode *inode)
1728 {
1729 struct ceph_inode_info *ci = ceph_inode(inode);
1730 struct list_head *head = &ci->i_unsafe_writes;
1731 struct ceph_osd_request *req;
1732 u64 last_tid;
1733
1734 spin_lock(&ci->i_unsafe_lock);
1735 if (list_empty(head))
1736 goto out;
1737
1738 /* set upper bound as _last_ entry in chain */
1739 req = list_entry(head->prev, struct ceph_osd_request,
1740 r_unsafe_item);
1741 last_tid = req->r_tid;
1742
1743 do {
1744 ceph_osdc_get_request(req);
1745 spin_unlock(&ci->i_unsafe_lock);
1746 dout("sync_write_wait on tid %llu (until %llu)\n",
1747 req->r_tid, last_tid);
1748 wait_for_completion(&req->r_safe_completion);
1749 spin_lock(&ci->i_unsafe_lock);
1750 ceph_osdc_put_request(req);
1751
1752 /*
1753 * from here on look at first entry in chain, since we
1754 * only want to wait for anything older than last_tid
1755 */
1756 if (list_empty(head))
1757 break;
1758 req = list_entry(head->next, struct ceph_osd_request,
1759 r_unsafe_item);
1760 } while (req->r_tid < last_tid);
1761 out:
1762 spin_unlock(&ci->i_unsafe_lock);
1763 }
1764
1765 int ceph_fsync(struct file *file, struct dentry *dentry, int datasync)
1766 {
1767 struct inode *inode = dentry->d_inode;
1768 struct ceph_inode_info *ci = ceph_inode(inode);
1769 unsigned flush_tid;
1770 int ret;
1771 int dirty;
1772
1773 dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1774 sync_write_wait(inode);
1775
1776 ret = filemap_write_and_wait(inode->i_mapping);
1777 if (ret < 0)
1778 return ret;
1779
1780 dirty = try_flush_caps(inode, NULL, &flush_tid);
1781 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1782
1783 /*
1784 * only wait on non-file metadata writeback (the mds
1785 * can recover size and mtime, so we don't need to
1786 * wait for that)
1787 */
1788 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1789 dout("fsync waiting for flush_tid %u\n", flush_tid);
1790 ret = wait_event_interruptible(ci->i_cap_wq,
1791 caps_are_flushed(inode, flush_tid));
1792 }
1793
1794 dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1795 return ret;
1796 }
1797
1798 /*
1799 * Flush any dirty caps back to the mds. If we aren't asked to wait,
1800 * queue inode for flush but don't do so immediately, because we can
1801 * get by with fewer MDS messages if we wait for data writeback to
1802 * complete first.
1803 */
1804 int ceph_write_inode(struct inode *inode, int wait)
1805 {
1806 struct ceph_inode_info *ci = ceph_inode(inode);
1807 unsigned flush_tid;
1808 int err = 0;
1809 int dirty;
1810
1811 dout("write_inode %p wait=%d\n", inode, wait);
1812 if (wait) {
1813 dirty = try_flush_caps(inode, NULL, &flush_tid);
1814 if (dirty)
1815 err = wait_event_interruptible(ci->i_cap_wq,
1816 caps_are_flushed(inode, flush_tid));
1817 } else {
1818 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1819
1820 spin_lock(&inode->i_lock);
1821 if (__ceph_caps_dirty(ci))
1822 __cap_delay_requeue_front(mdsc, ci);
1823 spin_unlock(&inode->i_lock);
1824 }
1825 return err;
1826 }
1827
1828 /*
1829 * After a recovering MDS goes active, we need to resend any caps
1830 * we were flushing.
1831 *
1832 * Caller holds session->s_mutex.
1833 */
1834 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1835 struct ceph_mds_session *session)
1836 {
1837 struct ceph_cap_snap *capsnap;
1838
1839 dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1840 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1841 flushing_item) {
1842 struct ceph_inode_info *ci = capsnap->ci;
1843 struct inode *inode = &ci->vfs_inode;
1844 struct ceph_cap *cap;
1845
1846 spin_lock(&inode->i_lock);
1847 cap = ci->i_auth_cap;
1848 if (cap && cap->session == session) {
1849 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1850 cap, capsnap);
1851 __ceph_flush_snaps(ci, &session);
1852 } else {
1853 pr_err("%p auth cap %p not mds%d ???\n", inode,
1854 cap, session->s_mds);
1855 spin_unlock(&inode->i_lock);
1856 }
1857 }
1858 }
1859
1860 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1861 struct ceph_mds_session *session)
1862 {
1863 struct ceph_inode_info *ci;
1864
1865 kick_flushing_capsnaps(mdsc, session);
1866
1867 dout("kick_flushing_caps mds%d\n", session->s_mds);
1868 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1869 struct inode *inode = &ci->vfs_inode;
1870 struct ceph_cap *cap;
1871 int delayed = 0;
1872
1873 spin_lock(&inode->i_lock);
1874 cap = ci->i_auth_cap;
1875 if (cap && cap->session == session) {
1876 dout("kick_flushing_caps %p cap %p %s\n", inode,
1877 cap, ceph_cap_string(ci->i_flushing_caps));
1878 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1879 __ceph_caps_used(ci),
1880 __ceph_caps_wanted(ci),
1881 cap->issued | cap->implemented,
1882 ci->i_flushing_caps, NULL);
1883 if (delayed) {
1884 spin_lock(&inode->i_lock);
1885 __cap_delay_requeue(mdsc, ci);
1886 spin_unlock(&inode->i_lock);
1887 }
1888 } else {
1889 pr_err("%p auth cap %p not mds%d ???\n", inode,
1890 cap, session->s_mds);
1891 spin_unlock(&inode->i_lock);
1892 }
1893 }
1894 }
1895
1896
1897 /*
1898 * Take references to capabilities we hold, so that we don't release
1899 * them to the MDS prematurely.
1900 *
1901 * Protected by i_lock.
1902 */
1903 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1904 {
1905 if (got & CEPH_CAP_PIN)
1906 ci->i_pin_ref++;
1907 if (got & CEPH_CAP_FILE_RD)
1908 ci->i_rd_ref++;
1909 if (got & CEPH_CAP_FILE_CACHE)
1910 ci->i_rdcache_ref++;
1911 if (got & CEPH_CAP_FILE_WR)
1912 ci->i_wr_ref++;
1913 if (got & CEPH_CAP_FILE_BUFFER) {
1914 if (ci->i_wrbuffer_ref == 0)
1915 igrab(&ci->vfs_inode);
1916 ci->i_wrbuffer_ref++;
1917 dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n",
1918 &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref);
1919 }
1920 }
1921
1922 /*
1923 * Try to grab cap references. Specify those refs we @want, and the
1924 * minimal set we @need. Also include the larger offset we are writing
1925 * to (when applicable), and check against max_size here as well.
1926 * Note that caller is responsible for ensuring max_size increases are
1927 * requested from the MDS.
1928 */
1929 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
1930 int *got, loff_t endoff, int *check_max, int *err)
1931 {
1932 struct inode *inode = &ci->vfs_inode;
1933 int ret = 0;
1934 int have, implemented;
1935 int file_wanted;
1936
1937 dout("get_cap_refs %p need %s want %s\n", inode,
1938 ceph_cap_string(need), ceph_cap_string(want));
1939 spin_lock(&inode->i_lock);
1940
1941 /* make sure file is actually open */
1942 file_wanted = __ceph_caps_file_wanted(ci);
1943 if ((file_wanted & need) == 0) {
1944 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
1945 ceph_cap_string(need), ceph_cap_string(file_wanted));
1946 *err = -EBADF;
1947 ret = 1;
1948 goto out;
1949 }
1950
1951 if (need & CEPH_CAP_FILE_WR) {
1952 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
1953 dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
1954 inode, endoff, ci->i_max_size);
1955 if (endoff > ci->i_wanted_max_size) {
1956 *check_max = 1;
1957 ret = 1;
1958 }
1959 goto out;
1960 }
1961 /*
1962 * If a sync write is in progress, we must wait, so that we
1963 * can get a final snapshot value for size+mtime.
1964 */
1965 if (__ceph_have_pending_cap_snap(ci)) {
1966 dout("get_cap_refs %p cap_snap_pending\n", inode);
1967 goto out;
1968 }
1969 }
1970 have = __ceph_caps_issued(ci, &implemented);
1971
1972 /*
1973 * disallow writes while a truncate is pending
1974 */
1975 if (ci->i_truncate_pending)
1976 have &= ~CEPH_CAP_FILE_WR;
1977
1978 if ((have & need) == need) {
1979 /*
1980 * Look at (implemented & ~have & not) so that we keep waiting
1981 * on transition from wanted -> needed caps. This is needed
1982 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
1983 * going before a prior buffered writeback happens.
1984 */
1985 int not = want & ~(have & need);
1986 int revoking = implemented & ~have;
1987 dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
1988 inode, ceph_cap_string(have), ceph_cap_string(not),
1989 ceph_cap_string(revoking));
1990 if ((revoking & not) == 0) {
1991 *got = need | (have & want);
1992 __take_cap_refs(ci, *got);
1993 ret = 1;
1994 }
1995 } else {
1996 dout("get_cap_refs %p have %s needed %s\n", inode,
1997 ceph_cap_string(have), ceph_cap_string(need));
1998 }
1999 out:
2000 spin_unlock(&inode->i_lock);
2001 dout("get_cap_refs %p ret %d got %s\n", inode,
2002 ret, ceph_cap_string(*got));
2003 return ret;
2004 }
2005
2006 /*
2007 * Check the offset we are writing up to against our current
2008 * max_size. If necessary, tell the MDS we want to write to
2009 * a larger offset.
2010 */
2011 static void check_max_size(struct inode *inode, loff_t endoff)
2012 {
2013 struct ceph_inode_info *ci = ceph_inode(inode);
2014 int check = 0;
2015
2016 /* do we need to explicitly request a larger max_size? */
2017 spin_lock(&inode->i_lock);
2018 if ((endoff >= ci->i_max_size ||
2019 endoff > (inode->i_size << 1)) &&
2020 endoff > ci->i_wanted_max_size) {
2021 dout("write %p at large endoff %llu, req max_size\n",
2022 inode, endoff);
2023 ci->i_wanted_max_size = endoff;
2024 check = 1;
2025 }
2026 spin_unlock(&inode->i_lock);
2027 if (check)
2028 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2029 }
2030
2031 /*
2032 * Wait for caps, and take cap references. If we can't get a WR cap
2033 * due to a small max_size, make sure we check_max_size (and possibly
2034 * ask the mds) so we don't get hung up indefinitely.
2035 */
2036 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2037 loff_t endoff)
2038 {
2039 int check_max, ret, err;
2040
2041 retry:
2042 if (endoff > 0)
2043 check_max_size(&ci->vfs_inode, endoff);
2044 check_max = 0;
2045 err = 0;
2046 ret = wait_event_interruptible(ci->i_cap_wq,
2047 try_get_cap_refs(ci, need, want,
2048 got, endoff,
2049 &check_max, &err));
2050 if (err)
2051 ret = err;
2052 if (check_max)
2053 goto retry;
2054 return ret;
2055 }
2056
2057 /*
2058 * Take cap refs. Caller must already know we hold at least one ref
2059 * on the caps in question or we don't know this is safe.
2060 */
2061 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2062 {
2063 spin_lock(&ci->vfs_inode.i_lock);
2064 __take_cap_refs(ci, caps);
2065 spin_unlock(&ci->vfs_inode.i_lock);
2066 }
2067
2068 /*
2069 * Release cap refs.
2070 *
2071 * If we released the last ref on any given cap, call ceph_check_caps
2072 * to release (or schedule a release).
2073 *
2074 * If we are releasing a WR cap (from a sync write), finalize any affected
2075 * cap_snap, and wake up any waiters.
2076 */
2077 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2078 {
2079 struct inode *inode = &ci->vfs_inode;
2080 int last = 0, put = 0, flushsnaps = 0, wake = 0;
2081 struct ceph_cap_snap *capsnap;
2082
2083 spin_lock(&inode->i_lock);
2084 if (had & CEPH_CAP_PIN)
2085 --ci->i_pin_ref;
2086 if (had & CEPH_CAP_FILE_RD)
2087 if (--ci->i_rd_ref == 0)
2088 last++;
2089 if (had & CEPH_CAP_FILE_CACHE)
2090 if (--ci->i_rdcache_ref == 0)
2091 last++;
2092 if (had & CEPH_CAP_FILE_BUFFER) {
2093 if (--ci->i_wrbuffer_ref == 0) {
2094 last++;
2095 put++;
2096 }
2097 dout("put_cap_refs %p wrbuffer %d -> %d (?)\n",
2098 inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref);
2099 }
2100 if (had & CEPH_CAP_FILE_WR)
2101 if (--ci->i_wr_ref == 0) {
2102 last++;
2103 if (!list_empty(&ci->i_cap_snaps)) {
2104 capsnap = list_first_entry(&ci->i_cap_snaps,
2105 struct ceph_cap_snap,
2106 ci_item);
2107 if (capsnap->writing) {
2108 capsnap->writing = 0;
2109 flushsnaps =
2110 __ceph_finish_cap_snap(ci,
2111 capsnap);
2112 wake = 1;
2113 }
2114 }
2115 }
2116 spin_unlock(&inode->i_lock);
2117
2118 dout("put_cap_refs %p had %s %s\n", inode, ceph_cap_string(had),
2119 last ? "last" : "");
2120
2121 if (last && !flushsnaps)
2122 ceph_check_caps(ci, 0, NULL);
2123 else if (flushsnaps)
2124 ceph_flush_snaps(ci);
2125 if (wake)
2126 wake_up(&ci->i_cap_wq);
2127 if (put)
2128 iput(inode);
2129 }
2130
2131 /*
2132 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2133 * context. Adjust per-snap dirty page accounting as appropriate.
2134 * Once all dirty data for a cap_snap is flushed, flush snapped file
2135 * metadata back to the MDS. If we dropped the last ref, call
2136 * ceph_check_caps.
2137 */
2138 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2139 struct ceph_snap_context *snapc)
2140 {
2141 struct inode *inode = &ci->vfs_inode;
2142 int last = 0;
2143 int last_snap = 0;
2144 int found = 0;
2145 struct ceph_cap_snap *capsnap = NULL;
2146
2147 spin_lock(&inode->i_lock);
2148 ci->i_wrbuffer_ref -= nr;
2149 last = !ci->i_wrbuffer_ref;
2150
2151 if (ci->i_head_snapc == snapc) {
2152 ci->i_wrbuffer_ref_head -= nr;
2153 if (!ci->i_wrbuffer_ref_head) {
2154 ceph_put_snap_context(ci->i_head_snapc);
2155 ci->i_head_snapc = NULL;
2156 }
2157 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2158 inode,
2159 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2160 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2161 last ? " LAST" : "");
2162 } else {
2163 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2164 if (capsnap->context == snapc) {
2165 found = 1;
2166 capsnap->dirty_pages -= nr;
2167 last_snap = !capsnap->dirty_pages;
2168 break;
2169 }
2170 }
2171 BUG_ON(!found);
2172 dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2173 " snap %lld %d/%d -> %d/%d %s%s\n",
2174 inode, capsnap, capsnap->context->seq,
2175 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2176 ci->i_wrbuffer_ref, capsnap->dirty_pages,
2177 last ? " (wrbuffer last)" : "",
2178 last_snap ? " (capsnap last)" : "");
2179 }
2180
2181 spin_unlock(&inode->i_lock);
2182
2183 if (last) {
2184 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2185 iput(inode);
2186 } else if (last_snap) {
2187 ceph_flush_snaps(ci);
2188 wake_up(&ci->i_cap_wq);
2189 }
2190 }
2191
2192 /*
2193 * Handle a cap GRANT message from the MDS. (Note that a GRANT may
2194 * actually be a revocation if it specifies a smaller cap set.)
2195 *
2196 * caller holds s_mutex.
2197 * return value:
2198 * 0 - ok
2199 * 1 - check_caps on auth cap only (writeback)
2200 * 2 - check_caps (ack revoke)
2201 */
2202 static int handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2203 struct ceph_mds_session *session,
2204 struct ceph_cap *cap,
2205 struct ceph_buffer *xattr_buf)
2206 __releases(inode->i_lock)
2207
2208 {
2209 struct ceph_inode_info *ci = ceph_inode(inode);
2210 int mds = session->s_mds;
2211 int seq = le32_to_cpu(grant->seq);
2212 int newcaps = le32_to_cpu(grant->caps);
2213 int issued, implemented, used, wanted, dirty;
2214 u64 size = le64_to_cpu(grant->size);
2215 u64 max_size = le64_to_cpu(grant->max_size);
2216 struct timespec mtime, atime, ctime;
2217 int reply = 0;
2218 int wake = 0;
2219 int writeback = 0;
2220 int revoked_rdcache = 0;
2221 int queue_invalidate = 0;
2222
2223 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2224 inode, cap, mds, seq, ceph_cap_string(newcaps));
2225 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2226 inode->i_size);
2227
2228 /*
2229 * If CACHE is being revoked, and we have no dirty buffers,
2230 * try to invalidate (once). (If there are dirty buffers, we
2231 * will invalidate _after_ writeback.)
2232 */
2233 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2234 !ci->i_wrbuffer_ref) {
2235 if (try_nonblocking_invalidate(inode) == 0) {
2236 revoked_rdcache = 1;
2237 } else {
2238 /* there were locked pages.. invalidate later
2239 in a separate thread. */
2240 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2241 queue_invalidate = 1;
2242 ci->i_rdcache_revoking = ci->i_rdcache_gen;
2243 }
2244 }
2245 }
2246
2247 /* side effects now are allowed */
2248
2249 issued = __ceph_caps_issued(ci, &implemented);
2250 issued |= implemented | __ceph_caps_dirty(ci);
2251
2252 cap->cap_gen = session->s_cap_gen;
2253
2254 __check_cap_issue(ci, cap, newcaps);
2255
2256 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2257 inode->i_mode = le32_to_cpu(grant->mode);
2258 inode->i_uid = le32_to_cpu(grant->uid);
2259 inode->i_gid = le32_to_cpu(grant->gid);
2260 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2261 inode->i_uid, inode->i_gid);
2262 }
2263
2264 if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2265 inode->i_nlink = le32_to_cpu(grant->nlink);
2266
2267 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2268 int len = le32_to_cpu(grant->xattr_len);
2269 u64 version = le64_to_cpu(grant->xattr_version);
2270
2271 if (version > ci->i_xattrs.version) {
2272 dout(" got new xattrs v%llu on %p len %d\n",
2273 version, inode, len);
2274 if (ci->i_xattrs.blob)
2275 ceph_buffer_put(ci->i_xattrs.blob);
2276 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2277 ci->i_xattrs.version = version;
2278 }
2279 }
2280
2281 /* size/ctime/mtime/atime? */
2282 ceph_fill_file_size(inode, issued,
2283 le32_to_cpu(grant->truncate_seq),
2284 le64_to_cpu(grant->truncate_size), size);
2285 ceph_decode_timespec(&mtime, &grant->mtime);
2286 ceph_decode_timespec(&atime, &grant->atime);
2287 ceph_decode_timespec(&ctime, &grant->ctime);
2288 ceph_fill_file_time(inode, issued,
2289 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2290 &atime);
2291
2292 /* max size increase? */
2293 if (max_size != ci->i_max_size) {
2294 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2295 ci->i_max_size = max_size;
2296 if (max_size >= ci->i_wanted_max_size) {
2297 ci->i_wanted_max_size = 0; /* reset */
2298 ci->i_requested_max_size = 0;
2299 }
2300 wake = 1;
2301 }
2302
2303 /* check cap bits */
2304 wanted = __ceph_caps_wanted(ci);
2305 used = __ceph_caps_used(ci);
2306 dirty = __ceph_caps_dirty(ci);
2307 dout(" my wanted = %s, used = %s, dirty %s\n",
2308 ceph_cap_string(wanted),
2309 ceph_cap_string(used),
2310 ceph_cap_string(dirty));
2311 if (wanted != le32_to_cpu(grant->wanted)) {
2312 dout("mds wanted %s -> %s\n",
2313 ceph_cap_string(le32_to_cpu(grant->wanted)),
2314 ceph_cap_string(wanted));
2315 grant->wanted = cpu_to_le32(wanted);
2316 }
2317
2318 cap->seq = seq;
2319
2320 /* file layout may have changed */
2321 ci->i_layout = grant->layout;
2322
2323 /* revocation, grant, or no-op? */
2324 if (cap->issued & ~newcaps) {
2325 dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued),
2326 ceph_cap_string(newcaps));
2327 if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER)
2328 writeback = 1; /* will delay ack */
2329 else if (dirty & ~newcaps)
2330 reply = 1; /* initiate writeback in check_caps */
2331 else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 ||
2332 revoked_rdcache)
2333 reply = 2; /* send revoke ack in check_caps */
2334 cap->issued = newcaps;
2335 } else if (cap->issued == newcaps) {
2336 dout("caps unchanged: %s -> %s\n",
2337 ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2338 } else {
2339 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2340 ceph_cap_string(newcaps));
2341 cap->issued = newcaps;
2342 cap->implemented |= newcaps; /* add bits only, to
2343 * avoid stepping on a
2344 * pending revocation */
2345 wake = 1;
2346 }
2347
2348 spin_unlock(&inode->i_lock);
2349 if (writeback)
2350 /*
2351 * queue inode for writeback: we can't actually call
2352 * filemap_write_and_wait, etc. from message handler
2353 * context.
2354 */
2355 ceph_queue_writeback(inode);
2356 if (queue_invalidate)
2357 ceph_queue_invalidate(inode);
2358 if (wake)
2359 wake_up(&ci->i_cap_wq);
2360 return reply;
2361 }
2362
2363 /*
2364 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2365 * MDS has been safely committed.
2366 */
2367 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2368 struct ceph_mds_caps *m,
2369 struct ceph_mds_session *session,
2370 struct ceph_cap *cap)
2371 __releases(inode->i_lock)
2372 {
2373 struct ceph_inode_info *ci = ceph_inode(inode);
2374 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
2375 unsigned seq = le32_to_cpu(m->seq);
2376 int dirty = le32_to_cpu(m->dirty);
2377 int cleaned = 0;
2378 int drop = 0;
2379 int i;
2380
2381 for (i = 0; i < CEPH_CAP_BITS; i++)
2382 if ((dirty & (1 << i)) &&
2383 flush_tid == ci->i_cap_flush_tid[i])
2384 cleaned |= 1 << i;
2385
2386 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2387 " flushing %s -> %s\n",
2388 inode, session->s_mds, seq, ceph_cap_string(dirty),
2389 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2390 ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2391
2392 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2393 goto out;
2394
2395 ci->i_flushing_caps &= ~cleaned;
2396
2397 spin_lock(&mdsc->cap_dirty_lock);
2398 if (ci->i_flushing_caps == 0) {
2399 list_del_init(&ci->i_flushing_item);
2400 if (!list_empty(&session->s_cap_flushing))
2401 dout(" mds%d still flushing cap on %p\n",
2402 session->s_mds,
2403 &list_entry(session->s_cap_flushing.next,
2404 struct ceph_inode_info,
2405 i_flushing_item)->vfs_inode);
2406 mdsc->num_cap_flushing--;
2407 wake_up(&mdsc->cap_flushing_wq);
2408 dout(" inode %p now !flushing\n", inode);
2409
2410 if (ci->i_dirty_caps == 0) {
2411 dout(" inode %p now clean\n", inode);
2412 BUG_ON(!list_empty(&ci->i_dirty_item));
2413 drop = 1;
2414 } else {
2415 BUG_ON(list_empty(&ci->i_dirty_item));
2416 }
2417 }
2418 spin_unlock(&mdsc->cap_dirty_lock);
2419 wake_up(&ci->i_cap_wq);
2420
2421 out:
2422 spin_unlock(&inode->i_lock);
2423 if (drop)
2424 iput(inode);
2425 }
2426
2427 /*
2428 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
2429 * throw away our cap_snap.
2430 *
2431 * Caller hold s_mutex.
2432 */
2433 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2434 struct ceph_mds_caps *m,
2435 struct ceph_mds_session *session)
2436 {
2437 struct ceph_inode_info *ci = ceph_inode(inode);
2438 u64 follows = le64_to_cpu(m->snap_follows);
2439 struct ceph_cap_snap *capsnap;
2440 int drop = 0;
2441
2442 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2443 inode, ci, session->s_mds, follows);
2444
2445 spin_lock(&inode->i_lock);
2446 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2447 if (capsnap->follows == follows) {
2448 if (capsnap->flush_tid != flush_tid) {
2449 dout(" cap_snap %p follows %lld tid %lld !="
2450 " %lld\n", capsnap, follows,
2451 flush_tid, capsnap->flush_tid);
2452 break;
2453 }
2454 WARN_ON(capsnap->dirty_pages || capsnap->writing);
2455 dout(" removing cap_snap %p follows %lld\n",
2456 capsnap, follows);
2457 ceph_put_snap_context(capsnap->context);
2458 list_del(&capsnap->ci_item);
2459 list_del(&capsnap->flushing_item);
2460 ceph_put_cap_snap(capsnap);
2461 drop = 1;
2462 break;
2463 } else {
2464 dout(" skipping cap_snap %p follows %lld\n",
2465 capsnap, capsnap->follows);
2466 }
2467 }
2468 spin_unlock(&inode->i_lock);
2469 if (drop)
2470 iput(inode);
2471 }
2472
2473 /*
2474 * Handle TRUNC from MDS, indicating file truncation.
2475 *
2476 * caller hold s_mutex.
2477 */
2478 static void handle_cap_trunc(struct inode *inode,
2479 struct ceph_mds_caps *trunc,
2480 struct ceph_mds_session *session)
2481 __releases(inode->i_lock)
2482 {
2483 struct ceph_inode_info *ci = ceph_inode(inode);
2484 int mds = session->s_mds;
2485 int seq = le32_to_cpu(trunc->seq);
2486 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2487 u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2488 u64 size = le64_to_cpu(trunc->size);
2489 int implemented = 0;
2490 int dirty = __ceph_caps_dirty(ci);
2491 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2492 int queue_trunc = 0;
2493
2494 issued |= implemented | dirty;
2495
2496 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2497 inode, mds, seq, truncate_size, truncate_seq);
2498 queue_trunc = ceph_fill_file_size(inode, issued,
2499 truncate_seq, truncate_size, size);
2500 spin_unlock(&inode->i_lock);
2501
2502 if (queue_trunc)
2503 ceph_queue_vmtruncate(inode);
2504 }
2505
2506 /*
2507 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
2508 * different one. If we are the most recent migration we've seen (as
2509 * indicated by mseq), make note of the migrating cap bits for the
2510 * duration (until we see the corresponding IMPORT).
2511 *
2512 * caller holds s_mutex
2513 */
2514 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2515 struct ceph_mds_session *session)
2516 {
2517 struct ceph_inode_info *ci = ceph_inode(inode);
2518 int mds = session->s_mds;
2519 unsigned mseq = le32_to_cpu(ex->migrate_seq);
2520 struct ceph_cap *cap = NULL, *t;
2521 struct rb_node *p;
2522 int remember = 1;
2523
2524 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2525 inode, ci, mds, mseq);
2526
2527 spin_lock(&inode->i_lock);
2528
2529 /* make sure we haven't seen a higher mseq */
2530 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2531 t = rb_entry(p, struct ceph_cap, ci_node);
2532 if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2533 dout(" higher mseq on cap from mds%d\n",
2534 t->session->s_mds);
2535 remember = 0;
2536 }
2537 if (t->session->s_mds == mds)
2538 cap = t;
2539 }
2540
2541 if (cap) {
2542 if (remember) {
2543 /* make note */
2544 ci->i_cap_exporting_mds = mds;
2545 ci->i_cap_exporting_mseq = mseq;
2546 ci->i_cap_exporting_issued = cap->issued;
2547 }
2548 __ceph_remove_cap(cap);
2549 } else {
2550 WARN_ON(!cap);
2551 }
2552
2553 spin_unlock(&inode->i_lock);
2554 }
2555
2556 /*
2557 * Handle cap IMPORT. If there are temp bits from an older EXPORT,
2558 * clean them up.
2559 *
2560 * caller holds s_mutex.
2561 */
2562 static void handle_cap_import(struct ceph_mds_client *mdsc,
2563 struct inode *inode, struct ceph_mds_caps *im,
2564 struct ceph_mds_session *session,
2565 void *snaptrace, int snaptrace_len)
2566 {
2567 struct ceph_inode_info *ci = ceph_inode(inode);
2568 int mds = session->s_mds;
2569 unsigned issued = le32_to_cpu(im->caps);
2570 unsigned wanted = le32_to_cpu(im->wanted);
2571 unsigned seq = le32_to_cpu(im->seq);
2572 unsigned mseq = le32_to_cpu(im->migrate_seq);
2573 u64 realmino = le64_to_cpu(im->realm);
2574 u64 cap_id = le64_to_cpu(im->cap_id);
2575
2576 if (ci->i_cap_exporting_mds >= 0 &&
2577 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2578 dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2579 " - cleared exporting from mds%d\n",
2580 inode, ci, mds, mseq,
2581 ci->i_cap_exporting_mds);
2582 ci->i_cap_exporting_issued = 0;
2583 ci->i_cap_exporting_mseq = 0;
2584 ci->i_cap_exporting_mds = -1;
2585 } else {
2586 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2587 inode, ci, mds, mseq);
2588 }
2589
2590 down_write(&mdsc->snap_rwsem);
2591 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2592 false);
2593 downgrade_write(&mdsc->snap_rwsem);
2594 ceph_add_cap(inode, session, cap_id, -1,
2595 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2596 NULL /* no caps context */);
2597 try_flush_caps(inode, session, NULL);
2598 up_read(&mdsc->snap_rwsem);
2599 }
2600
2601 /*
2602 * Handle a caps message from the MDS.
2603 *
2604 * Identify the appropriate session, inode, and call the right handler
2605 * based on the cap op.
2606 */
2607 void ceph_handle_caps(struct ceph_mds_session *session,
2608 struct ceph_msg *msg)
2609 {
2610 struct ceph_mds_client *mdsc = session->s_mdsc;
2611 struct super_block *sb = mdsc->client->sb;
2612 struct inode *inode;
2613 struct ceph_cap *cap;
2614 struct ceph_mds_caps *h;
2615 int mds = session->s_mds;
2616 int op;
2617 u32 seq;
2618 struct ceph_vino vino;
2619 u64 cap_id;
2620 u64 size, max_size;
2621 u64 tid;
2622 int check_caps = 0;
2623 void *snaptrace;
2624 int r;
2625
2626 dout("handle_caps from mds%d\n", mds);
2627
2628 /* decode */
2629 tid = le64_to_cpu(msg->hdr.tid);
2630 if (msg->front.iov_len < sizeof(*h))
2631 goto bad;
2632 h = msg->front.iov_base;
2633 snaptrace = h + 1;
2634 op = le32_to_cpu(h->op);
2635 vino.ino = le64_to_cpu(h->ino);
2636 vino.snap = CEPH_NOSNAP;
2637 cap_id = le64_to_cpu(h->cap_id);
2638 seq = le32_to_cpu(h->seq);
2639 size = le64_to_cpu(h->size);
2640 max_size = le64_to_cpu(h->max_size);
2641
2642 mutex_lock(&session->s_mutex);
2643 session->s_seq++;
2644 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2645 (unsigned)seq);
2646
2647 /* lookup ino */
2648 inode = ceph_find_inode(sb, vino);
2649 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2650 vino.snap, inode);
2651 if (!inode) {
2652 dout(" i don't have ino %llx\n", vino.ino);
2653 goto done;
2654 }
2655
2656 /* these will work even if we don't have a cap yet */
2657 switch (op) {
2658 case CEPH_CAP_OP_FLUSHSNAP_ACK:
2659 handle_cap_flushsnap_ack(inode, tid, h, session);
2660 goto done;
2661
2662 case CEPH_CAP_OP_EXPORT:
2663 handle_cap_export(inode, h, session);
2664 goto done;
2665
2666 case CEPH_CAP_OP_IMPORT:
2667 handle_cap_import(mdsc, inode, h, session,
2668 snaptrace, le32_to_cpu(h->snap_trace_len));
2669 check_caps = 1; /* we may have sent a RELEASE to the old auth */
2670 goto done;
2671 }
2672
2673 /* the rest require a cap */
2674 spin_lock(&inode->i_lock);
2675 cap = __get_cap_for_mds(ceph_inode(inode), mds);
2676 if (!cap) {
2677 dout("no cap on %p ino %llx.%llx from mds%d, releasing\n",
2678 inode, ceph_ino(inode), ceph_snap(inode), mds);
2679 spin_unlock(&inode->i_lock);
2680 goto done;
2681 }
2682
2683 /* note that each of these drops i_lock for us */
2684 switch (op) {
2685 case CEPH_CAP_OP_REVOKE:
2686 case CEPH_CAP_OP_GRANT:
2687 r = handle_cap_grant(inode, h, session, cap, msg->middle);
2688 if (r == 1)
2689 ceph_check_caps(ceph_inode(inode),
2690 CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2691 session);
2692 else if (r == 2)
2693 ceph_check_caps(ceph_inode(inode),
2694 CHECK_CAPS_NODELAY,
2695 session);
2696 break;
2697
2698 case CEPH_CAP_OP_FLUSH_ACK:
2699 handle_cap_flush_ack(inode, tid, h, session, cap);
2700 break;
2701
2702 case CEPH_CAP_OP_TRUNC:
2703 handle_cap_trunc(inode, h, session);
2704 break;
2705
2706 default:
2707 spin_unlock(&inode->i_lock);
2708 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2709 ceph_cap_op_name(op));
2710 }
2711
2712 done:
2713 mutex_unlock(&session->s_mutex);
2714
2715 if (check_caps)
2716 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY, NULL);
2717 if (inode)
2718 iput(inode);
2719 return;
2720
2721 bad:
2722 pr_err("ceph_handle_caps: corrupt message\n");
2723 ceph_msg_dump(msg);
2724 return;
2725 }
2726
2727 /*
2728 * Delayed work handler to process end of delayed cap release LRU list.
2729 */
2730 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2731 {
2732 struct ceph_inode_info *ci;
2733 int flags = CHECK_CAPS_NODELAY;
2734
2735 dout("check_delayed_caps\n");
2736 while (1) {
2737 spin_lock(&mdsc->cap_delay_lock);
2738 if (list_empty(&mdsc->cap_delay_list))
2739 break;
2740 ci = list_first_entry(&mdsc->cap_delay_list,
2741 struct ceph_inode_info,
2742 i_cap_delay_list);
2743 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2744 time_before(jiffies, ci->i_hold_caps_max))
2745 break;
2746 list_del_init(&ci->i_cap_delay_list);
2747 spin_unlock(&mdsc->cap_delay_lock);
2748 dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2749 ceph_check_caps(ci, flags, NULL);
2750 }
2751 spin_unlock(&mdsc->cap_delay_lock);
2752 }
2753
2754 /*
2755 * Flush all dirty caps to the mds
2756 */
2757 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2758 {
2759 struct ceph_inode_info *ci, *nci = NULL;
2760 struct inode *inode, *ninode = NULL;
2761 struct list_head *p, *n;
2762
2763 dout("flush_dirty_caps\n");
2764 spin_lock(&mdsc->cap_dirty_lock);
2765 list_for_each_safe(p, n, &mdsc->cap_dirty) {
2766 if (nci) {
2767 ci = nci;
2768 inode = ninode;
2769 ci->i_ceph_flags &= ~CEPH_I_NOFLUSH;
2770 dout("flush_dirty_caps inode %p (was next inode)\n",
2771 inode);
2772 } else {
2773 ci = list_entry(p, struct ceph_inode_info,
2774 i_dirty_item);
2775 inode = igrab(&ci->vfs_inode);
2776 BUG_ON(!inode);
2777 dout("flush_dirty_caps inode %p\n", inode);
2778 }
2779 if (n != &mdsc->cap_dirty) {
2780 nci = list_entry(n, struct ceph_inode_info,
2781 i_dirty_item);
2782 ninode = igrab(&nci->vfs_inode);
2783 BUG_ON(!ninode);
2784 nci->i_ceph_flags |= CEPH_I_NOFLUSH;
2785 dout("flush_dirty_caps next inode %p, noflush\n",
2786 ninode);
2787 } else {
2788 nci = NULL;
2789 ninode = NULL;
2790 }
2791 spin_unlock(&mdsc->cap_dirty_lock);
2792 if (inode) {
2793 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH,
2794 NULL);
2795 iput(inode);
2796 }
2797 spin_lock(&mdsc->cap_dirty_lock);
2798 }
2799 spin_unlock(&mdsc->cap_dirty_lock);
2800 }
2801
2802 /*
2803 * Drop open file reference. If we were the last open file,
2804 * we may need to release capabilities to the MDS (or schedule
2805 * their delayed release).
2806 */
2807 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2808 {
2809 struct inode *inode = &ci->vfs_inode;
2810 int last = 0;
2811
2812 spin_lock(&inode->i_lock);
2813 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2814 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2815 BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2816 if (--ci->i_nr_by_mode[fmode] == 0)
2817 last++;
2818 spin_unlock(&inode->i_lock);
2819
2820 if (last && ci->i_vino.snap == CEPH_NOSNAP)
2821 ceph_check_caps(ci, 0, NULL);
2822 }
2823
2824 /*
2825 * Helpers for embedding cap and dentry lease releases into mds
2826 * requests.
2827 *
2828 * @force is used by dentry_release (below) to force inclusion of a
2829 * record for the directory inode, even when there aren't any caps to
2830 * drop.
2831 */
2832 int ceph_encode_inode_release(void **p, struct inode *inode,
2833 int mds, int drop, int unless, int force)
2834 {
2835 struct ceph_inode_info *ci = ceph_inode(inode);
2836 struct ceph_cap *cap;
2837 struct ceph_mds_request_release *rel = *p;
2838 int ret = 0;
2839
2840 dout("encode_inode_release %p mds%d drop %s unless %s\n", inode,
2841 mds, ceph_cap_string(drop), ceph_cap_string(unless));
2842
2843 spin_lock(&inode->i_lock);
2844 cap = __get_cap_for_mds(ci, mds);
2845 if (cap && __cap_is_valid(cap)) {
2846 if (force ||
2847 ((cap->issued & drop) &&
2848 (cap->issued & unless) == 0)) {
2849 if ((cap->issued & drop) &&
2850 (cap->issued & unless) == 0) {
2851 dout("encode_inode_release %p cap %p %s -> "
2852 "%s\n", inode, cap,
2853 ceph_cap_string(cap->issued),
2854 ceph_cap_string(cap->issued & ~drop));
2855 cap->issued &= ~drop;
2856 cap->implemented &= ~drop;
2857 if (ci->i_ceph_flags & CEPH_I_NODELAY) {
2858 int wanted = __ceph_caps_wanted(ci);
2859 dout(" wanted %s -> %s (act %s)\n",
2860 ceph_cap_string(cap->mds_wanted),
2861 ceph_cap_string(cap->mds_wanted &
2862 ~wanted),
2863 ceph_cap_string(wanted));
2864 cap->mds_wanted &= wanted;
2865 }
2866 } else {
2867 dout("encode_inode_release %p cap %p %s"
2868 " (force)\n", inode, cap,
2869 ceph_cap_string(cap->issued));
2870 }
2871
2872 rel->ino = cpu_to_le64(ceph_ino(inode));
2873 rel->cap_id = cpu_to_le64(cap->cap_id);
2874 rel->seq = cpu_to_le32(cap->seq);
2875 rel->issue_seq = cpu_to_le32(cap->issue_seq),
2876 rel->mseq = cpu_to_le32(cap->mseq);
2877 rel->caps = cpu_to_le32(cap->issued);
2878 rel->wanted = cpu_to_le32(cap->mds_wanted);
2879 rel->dname_len = 0;
2880 rel->dname_seq = 0;
2881 *p += sizeof(*rel);
2882 ret = 1;
2883 } else {
2884 dout("encode_inode_release %p cap %p %s\n",
2885 inode, cap, ceph_cap_string(cap->issued));
2886 }
2887 }
2888 spin_unlock(&inode->i_lock);
2889 return ret;
2890 }
2891
2892 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
2893 int mds, int drop, int unless)
2894 {
2895 struct inode *dir = dentry->d_parent->d_inode;
2896 struct ceph_mds_request_release *rel = *p;
2897 struct ceph_dentry_info *di = ceph_dentry(dentry);
2898 int force = 0;
2899 int ret;
2900
2901 /*
2902 * force an record for the directory caps if we have a dentry lease.
2903 * this is racy (can't take i_lock and d_lock together), but it
2904 * doesn't have to be perfect; the mds will revoke anything we don't
2905 * release.
2906 */
2907 spin_lock(&dentry->d_lock);
2908 if (di->lease_session && di->lease_session->s_mds == mds)
2909 force = 1;
2910 spin_unlock(&dentry->d_lock);
2911
2912 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
2913
2914 spin_lock(&dentry->d_lock);
2915 if (ret && di->lease_session && di->lease_session->s_mds == mds) {
2916 dout("encode_dentry_release %p mds%d seq %d\n",
2917 dentry, mds, (int)di->lease_seq);
2918 rel->dname_len = cpu_to_le32(dentry->d_name.len);
2919 memcpy(*p, dentry->d_name.name, dentry->d_name.len);
2920 *p += dentry->d_name.len;
2921 rel->dname_seq = cpu_to_le32(di->lease_seq);
2922 }
2923 spin_unlock(&dentry->d_lock);
2924 return ret;
2925 }
This page took 0.092818 seconds and 5 git commands to generate.