ceph: handle SESSION_FORCE_RO message
[deliverable/linux.git] / fs / ceph / caps.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
10
11 #include "super.h"
12 #include "mds_client.h"
13 #include "cache.h"
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/messenger.h>
16
17 /*
18 * Capability management
19 *
20 * The Ceph metadata servers control client access to inode metadata
21 * and file data by issuing capabilities, granting clients permission
22 * to read and/or write both inode field and file data to OSDs
23 * (storage nodes). Each capability consists of a set of bits
24 * indicating which operations are allowed.
25 *
26 * If the client holds a *_SHARED cap, the client has a coherent value
27 * that can be safely read from the cached inode.
28 *
29 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
30 * client is allowed to change inode attributes (e.g., file size,
31 * mtime), note its dirty state in the ceph_cap, and asynchronously
32 * flush that metadata change to the MDS.
33 *
34 * In the event of a conflicting operation (perhaps by another
35 * client), the MDS will revoke the conflicting client capabilities.
36 *
37 * In order for a client to cache an inode, it must hold a capability
38 * with at least one MDS server. When inodes are released, release
39 * notifications are batched and periodically sent en masse to the MDS
40 * cluster to release server state.
41 */
42
43
44 /*
45 * Generate readable cap strings for debugging output.
46 */
47 #define MAX_CAP_STR 20
48 static char cap_str[MAX_CAP_STR][40];
49 static DEFINE_SPINLOCK(cap_str_lock);
50 static int last_cap_str;
51
52 static char *gcap_string(char *s, int c)
53 {
54 if (c & CEPH_CAP_GSHARED)
55 *s++ = 's';
56 if (c & CEPH_CAP_GEXCL)
57 *s++ = 'x';
58 if (c & CEPH_CAP_GCACHE)
59 *s++ = 'c';
60 if (c & CEPH_CAP_GRD)
61 *s++ = 'r';
62 if (c & CEPH_CAP_GWR)
63 *s++ = 'w';
64 if (c & CEPH_CAP_GBUFFER)
65 *s++ = 'b';
66 if (c & CEPH_CAP_GLAZYIO)
67 *s++ = 'l';
68 return s;
69 }
70
71 const char *ceph_cap_string(int caps)
72 {
73 int i;
74 char *s;
75 int c;
76
77 spin_lock(&cap_str_lock);
78 i = last_cap_str++;
79 if (last_cap_str == MAX_CAP_STR)
80 last_cap_str = 0;
81 spin_unlock(&cap_str_lock);
82
83 s = cap_str[i];
84
85 if (caps & CEPH_CAP_PIN)
86 *s++ = 'p';
87
88 c = (caps >> CEPH_CAP_SAUTH) & 3;
89 if (c) {
90 *s++ = 'A';
91 s = gcap_string(s, c);
92 }
93
94 c = (caps >> CEPH_CAP_SLINK) & 3;
95 if (c) {
96 *s++ = 'L';
97 s = gcap_string(s, c);
98 }
99
100 c = (caps >> CEPH_CAP_SXATTR) & 3;
101 if (c) {
102 *s++ = 'X';
103 s = gcap_string(s, c);
104 }
105
106 c = caps >> CEPH_CAP_SFILE;
107 if (c) {
108 *s++ = 'F';
109 s = gcap_string(s, c);
110 }
111
112 if (s == cap_str[i])
113 *s++ = '-';
114 *s = 0;
115 return cap_str[i];
116 }
117
118 void ceph_caps_init(struct ceph_mds_client *mdsc)
119 {
120 INIT_LIST_HEAD(&mdsc->caps_list);
121 spin_lock_init(&mdsc->caps_list_lock);
122 }
123
124 void ceph_caps_finalize(struct ceph_mds_client *mdsc)
125 {
126 struct ceph_cap *cap;
127
128 spin_lock(&mdsc->caps_list_lock);
129 while (!list_empty(&mdsc->caps_list)) {
130 cap = list_first_entry(&mdsc->caps_list,
131 struct ceph_cap, caps_item);
132 list_del(&cap->caps_item);
133 kmem_cache_free(ceph_cap_cachep, cap);
134 }
135 mdsc->caps_total_count = 0;
136 mdsc->caps_avail_count = 0;
137 mdsc->caps_use_count = 0;
138 mdsc->caps_reserve_count = 0;
139 mdsc->caps_min_count = 0;
140 spin_unlock(&mdsc->caps_list_lock);
141 }
142
143 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
144 {
145 spin_lock(&mdsc->caps_list_lock);
146 mdsc->caps_min_count += delta;
147 BUG_ON(mdsc->caps_min_count < 0);
148 spin_unlock(&mdsc->caps_list_lock);
149 }
150
151 void ceph_reserve_caps(struct ceph_mds_client *mdsc,
152 struct ceph_cap_reservation *ctx, int need)
153 {
154 int i;
155 struct ceph_cap *cap;
156 int have;
157 int alloc = 0;
158 LIST_HEAD(newcaps);
159
160 dout("reserve caps ctx=%p need=%d\n", ctx, need);
161
162 /* first reserve any caps that are already allocated */
163 spin_lock(&mdsc->caps_list_lock);
164 if (mdsc->caps_avail_count >= need)
165 have = need;
166 else
167 have = mdsc->caps_avail_count;
168 mdsc->caps_avail_count -= have;
169 mdsc->caps_reserve_count += have;
170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
171 mdsc->caps_reserve_count +
172 mdsc->caps_avail_count);
173 spin_unlock(&mdsc->caps_list_lock);
174
175 for (i = have; i < need; i++) {
176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
177 if (!cap)
178 break;
179 list_add(&cap->caps_item, &newcaps);
180 alloc++;
181 }
182 /* we didn't manage to reserve as much as we needed */
183 if (have + alloc != need)
184 pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
185 ctx, need, have + alloc);
186
187 spin_lock(&mdsc->caps_list_lock);
188 mdsc->caps_total_count += alloc;
189 mdsc->caps_reserve_count += alloc;
190 list_splice(&newcaps, &mdsc->caps_list);
191
192 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
193 mdsc->caps_reserve_count +
194 mdsc->caps_avail_count);
195 spin_unlock(&mdsc->caps_list_lock);
196
197 ctx->count = need;
198 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
199 ctx, mdsc->caps_total_count, mdsc->caps_use_count,
200 mdsc->caps_reserve_count, mdsc->caps_avail_count);
201 }
202
203 int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
204 struct ceph_cap_reservation *ctx)
205 {
206 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
207 if (ctx->count) {
208 spin_lock(&mdsc->caps_list_lock);
209 BUG_ON(mdsc->caps_reserve_count < ctx->count);
210 mdsc->caps_reserve_count -= ctx->count;
211 mdsc->caps_avail_count += ctx->count;
212 ctx->count = 0;
213 dout("unreserve caps %d = %d used + %d resv + %d avail\n",
214 mdsc->caps_total_count, mdsc->caps_use_count,
215 mdsc->caps_reserve_count, mdsc->caps_avail_count);
216 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
217 mdsc->caps_reserve_count +
218 mdsc->caps_avail_count);
219 spin_unlock(&mdsc->caps_list_lock);
220 }
221 return 0;
222 }
223
224 struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc,
225 struct ceph_cap_reservation *ctx)
226 {
227 struct ceph_cap *cap = NULL;
228
229 /* temporary, until we do something about cap import/export */
230 if (!ctx) {
231 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
232 if (cap) {
233 spin_lock(&mdsc->caps_list_lock);
234 mdsc->caps_use_count++;
235 mdsc->caps_total_count++;
236 spin_unlock(&mdsc->caps_list_lock);
237 }
238 return cap;
239 }
240
241 spin_lock(&mdsc->caps_list_lock);
242 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
243 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
244 mdsc->caps_reserve_count, mdsc->caps_avail_count);
245 BUG_ON(!ctx->count);
246 BUG_ON(ctx->count > mdsc->caps_reserve_count);
247 BUG_ON(list_empty(&mdsc->caps_list));
248
249 ctx->count--;
250 mdsc->caps_reserve_count--;
251 mdsc->caps_use_count++;
252
253 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
254 list_del(&cap->caps_item);
255
256 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
257 mdsc->caps_reserve_count + mdsc->caps_avail_count);
258 spin_unlock(&mdsc->caps_list_lock);
259 return cap;
260 }
261
262 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
263 {
264 spin_lock(&mdsc->caps_list_lock);
265 dout("put_cap %p %d = %d used + %d resv + %d avail\n",
266 cap, mdsc->caps_total_count, mdsc->caps_use_count,
267 mdsc->caps_reserve_count, mdsc->caps_avail_count);
268 mdsc->caps_use_count--;
269 /*
270 * Keep some preallocated caps around (ceph_min_count), to
271 * avoid lots of free/alloc churn.
272 */
273 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
274 mdsc->caps_min_count) {
275 mdsc->caps_total_count--;
276 kmem_cache_free(ceph_cap_cachep, cap);
277 } else {
278 mdsc->caps_avail_count++;
279 list_add(&cap->caps_item, &mdsc->caps_list);
280 }
281
282 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
283 mdsc->caps_reserve_count + mdsc->caps_avail_count);
284 spin_unlock(&mdsc->caps_list_lock);
285 }
286
287 void ceph_reservation_status(struct ceph_fs_client *fsc,
288 int *total, int *avail, int *used, int *reserved,
289 int *min)
290 {
291 struct ceph_mds_client *mdsc = fsc->mdsc;
292
293 if (total)
294 *total = mdsc->caps_total_count;
295 if (avail)
296 *avail = mdsc->caps_avail_count;
297 if (used)
298 *used = mdsc->caps_use_count;
299 if (reserved)
300 *reserved = mdsc->caps_reserve_count;
301 if (min)
302 *min = mdsc->caps_min_count;
303 }
304
305 /*
306 * Find ceph_cap for given mds, if any.
307 *
308 * Called with i_ceph_lock held.
309 */
310 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
311 {
312 struct ceph_cap *cap;
313 struct rb_node *n = ci->i_caps.rb_node;
314
315 while (n) {
316 cap = rb_entry(n, struct ceph_cap, ci_node);
317 if (mds < cap->mds)
318 n = n->rb_left;
319 else if (mds > cap->mds)
320 n = n->rb_right;
321 else
322 return cap;
323 }
324 return NULL;
325 }
326
327 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
328 {
329 struct ceph_cap *cap;
330
331 spin_lock(&ci->i_ceph_lock);
332 cap = __get_cap_for_mds(ci, mds);
333 spin_unlock(&ci->i_ceph_lock);
334 return cap;
335 }
336
337 /*
338 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
339 */
340 static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
341 {
342 struct ceph_cap *cap;
343 int mds = -1;
344 struct rb_node *p;
345
346 /* prefer mds with WR|BUFFER|EXCL caps */
347 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
348 cap = rb_entry(p, struct ceph_cap, ci_node);
349 mds = cap->mds;
350 if (cap->issued & (CEPH_CAP_FILE_WR |
351 CEPH_CAP_FILE_BUFFER |
352 CEPH_CAP_FILE_EXCL))
353 break;
354 }
355 return mds;
356 }
357
358 int ceph_get_cap_mds(struct inode *inode)
359 {
360 struct ceph_inode_info *ci = ceph_inode(inode);
361 int mds;
362 spin_lock(&ci->i_ceph_lock);
363 mds = __ceph_get_cap_mds(ceph_inode(inode));
364 spin_unlock(&ci->i_ceph_lock);
365 return mds;
366 }
367
368 /*
369 * Called under i_ceph_lock.
370 */
371 static void __insert_cap_node(struct ceph_inode_info *ci,
372 struct ceph_cap *new)
373 {
374 struct rb_node **p = &ci->i_caps.rb_node;
375 struct rb_node *parent = NULL;
376 struct ceph_cap *cap = NULL;
377
378 while (*p) {
379 parent = *p;
380 cap = rb_entry(parent, struct ceph_cap, ci_node);
381 if (new->mds < cap->mds)
382 p = &(*p)->rb_left;
383 else if (new->mds > cap->mds)
384 p = &(*p)->rb_right;
385 else
386 BUG();
387 }
388
389 rb_link_node(&new->ci_node, parent, p);
390 rb_insert_color(&new->ci_node, &ci->i_caps);
391 }
392
393 /*
394 * (re)set cap hold timeouts, which control the delayed release
395 * of unused caps back to the MDS. Should be called on cap use.
396 */
397 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
398 struct ceph_inode_info *ci)
399 {
400 struct ceph_mount_options *ma = mdsc->fsc->mount_options;
401
402 ci->i_hold_caps_min = round_jiffies(jiffies +
403 ma->caps_wanted_delay_min * HZ);
404 ci->i_hold_caps_max = round_jiffies(jiffies +
405 ma->caps_wanted_delay_max * HZ);
406 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
407 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
408 }
409
410 /*
411 * (Re)queue cap at the end of the delayed cap release list.
412 *
413 * If I_FLUSH is set, leave the inode at the front of the list.
414 *
415 * Caller holds i_ceph_lock
416 * -> we take mdsc->cap_delay_lock
417 */
418 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
419 struct ceph_inode_info *ci)
420 {
421 __cap_set_timeouts(mdsc, ci);
422 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
423 ci->i_ceph_flags, ci->i_hold_caps_max);
424 if (!mdsc->stopping) {
425 spin_lock(&mdsc->cap_delay_lock);
426 if (!list_empty(&ci->i_cap_delay_list)) {
427 if (ci->i_ceph_flags & CEPH_I_FLUSH)
428 goto no_change;
429 list_del_init(&ci->i_cap_delay_list);
430 }
431 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
432 no_change:
433 spin_unlock(&mdsc->cap_delay_lock);
434 }
435 }
436
437 /*
438 * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
439 * indicating we should send a cap message to flush dirty metadata
440 * asap, and move to the front of the delayed cap list.
441 */
442 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
443 struct ceph_inode_info *ci)
444 {
445 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
446 spin_lock(&mdsc->cap_delay_lock);
447 ci->i_ceph_flags |= CEPH_I_FLUSH;
448 if (!list_empty(&ci->i_cap_delay_list))
449 list_del_init(&ci->i_cap_delay_list);
450 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
451 spin_unlock(&mdsc->cap_delay_lock);
452 }
453
454 /*
455 * Cancel delayed work on cap.
456 *
457 * Caller must hold i_ceph_lock.
458 */
459 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
460 struct ceph_inode_info *ci)
461 {
462 dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
463 if (list_empty(&ci->i_cap_delay_list))
464 return;
465 spin_lock(&mdsc->cap_delay_lock);
466 list_del_init(&ci->i_cap_delay_list);
467 spin_unlock(&mdsc->cap_delay_lock);
468 }
469
470 /*
471 * Common issue checks for add_cap, handle_cap_grant.
472 */
473 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
474 unsigned issued)
475 {
476 unsigned had = __ceph_caps_issued(ci, NULL);
477
478 /*
479 * Each time we receive FILE_CACHE anew, we increment
480 * i_rdcache_gen.
481 */
482 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
483 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) {
484 ci->i_rdcache_gen++;
485 }
486
487 /*
488 * if we are newly issued FILE_SHARED, mark dir not complete; we
489 * don't know what happened to this directory while we didn't
490 * have the cap.
491 */
492 if ((issued & CEPH_CAP_FILE_SHARED) &&
493 (had & CEPH_CAP_FILE_SHARED) == 0) {
494 ci->i_shared_gen++;
495 if (S_ISDIR(ci->vfs_inode.i_mode)) {
496 dout(" marking %p NOT complete\n", &ci->vfs_inode);
497 __ceph_dir_clear_complete(ci);
498 }
499 }
500 }
501
502 /*
503 * Add a capability under the given MDS session.
504 *
505 * Caller should hold session snap_rwsem (read) and s_mutex.
506 *
507 * @fmode is the open file mode, if we are opening a file, otherwise
508 * it is < 0. (This is so we can atomically add the cap and add an
509 * open file reference to it.)
510 */
511 void ceph_add_cap(struct inode *inode,
512 struct ceph_mds_session *session, u64 cap_id,
513 int fmode, unsigned issued, unsigned wanted,
514 unsigned seq, unsigned mseq, u64 realmino, int flags,
515 struct ceph_cap **new_cap)
516 {
517 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
518 struct ceph_inode_info *ci = ceph_inode(inode);
519 struct ceph_cap *cap;
520 int mds = session->s_mds;
521 int actual_wanted;
522
523 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
524 session->s_mds, cap_id, ceph_cap_string(issued), seq);
525
526 /*
527 * If we are opening the file, include file mode wanted bits
528 * in wanted.
529 */
530 if (fmode >= 0)
531 wanted |= ceph_caps_for_mode(fmode);
532
533 cap = __get_cap_for_mds(ci, mds);
534 if (!cap) {
535 cap = *new_cap;
536 *new_cap = NULL;
537
538 cap->issued = 0;
539 cap->implemented = 0;
540 cap->mds = mds;
541 cap->mds_wanted = 0;
542 cap->mseq = 0;
543
544 cap->ci = ci;
545 __insert_cap_node(ci, cap);
546
547 /* add to session cap list */
548 cap->session = session;
549 spin_lock(&session->s_cap_lock);
550 list_add_tail(&cap->session_caps, &session->s_caps);
551 session->s_nr_caps++;
552 spin_unlock(&session->s_cap_lock);
553 } else {
554 /*
555 * auth mds of the inode changed. we received the cap export
556 * message, but still haven't received the cap import message.
557 * handle_cap_export() updated the new auth MDS' cap.
558 *
559 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing
560 * a message that was send before the cap import message. So
561 * don't remove caps.
562 */
563 if (ceph_seq_cmp(seq, cap->seq) <= 0) {
564 WARN_ON(cap != ci->i_auth_cap);
565 WARN_ON(cap->cap_id != cap_id);
566 seq = cap->seq;
567 mseq = cap->mseq;
568 issued |= cap->issued;
569 flags |= CEPH_CAP_FLAG_AUTH;
570 }
571 }
572
573 if (!ci->i_snap_realm) {
574 /*
575 * add this inode to the appropriate snap realm
576 */
577 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
578 realmino);
579 if (realm) {
580 ceph_get_snap_realm(mdsc, realm);
581 spin_lock(&realm->inodes_with_caps_lock);
582 ci->i_snap_realm = realm;
583 list_add(&ci->i_snap_realm_item,
584 &realm->inodes_with_caps);
585 spin_unlock(&realm->inodes_with_caps_lock);
586 } else {
587 pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
588 realmino);
589 WARN_ON(!realm);
590 }
591 }
592
593 __check_cap_issue(ci, cap, issued);
594
595 /*
596 * If we are issued caps we don't want, or the mds' wanted
597 * value appears to be off, queue a check so we'll release
598 * later and/or update the mds wanted value.
599 */
600 actual_wanted = __ceph_caps_wanted(ci);
601 if ((wanted & ~actual_wanted) ||
602 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
603 dout(" issued %s, mds wanted %s, actual %s, queueing\n",
604 ceph_cap_string(issued), ceph_cap_string(wanted),
605 ceph_cap_string(actual_wanted));
606 __cap_delay_requeue(mdsc, ci);
607 }
608
609 if (flags & CEPH_CAP_FLAG_AUTH) {
610 if (ci->i_auth_cap == NULL ||
611 ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0) {
612 ci->i_auth_cap = cap;
613 cap->mds_wanted = wanted;
614 }
615 } else {
616 WARN_ON(ci->i_auth_cap == cap);
617 }
618
619 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
620 inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
621 ceph_cap_string(issued|cap->issued), seq, mds);
622 cap->cap_id = cap_id;
623 cap->issued = issued;
624 cap->implemented |= issued;
625 if (ceph_seq_cmp(mseq, cap->mseq) > 0)
626 cap->mds_wanted = wanted;
627 else
628 cap->mds_wanted |= wanted;
629 cap->seq = seq;
630 cap->issue_seq = seq;
631 cap->mseq = mseq;
632 cap->cap_gen = session->s_cap_gen;
633
634 if (fmode >= 0)
635 __ceph_get_fmode(ci, fmode);
636 }
637
638 /*
639 * Return true if cap has not timed out and belongs to the current
640 * generation of the MDS session (i.e. has not gone 'stale' due to
641 * us losing touch with the mds).
642 */
643 static int __cap_is_valid(struct ceph_cap *cap)
644 {
645 unsigned long ttl;
646 u32 gen;
647
648 spin_lock(&cap->session->s_gen_ttl_lock);
649 gen = cap->session->s_cap_gen;
650 ttl = cap->session->s_cap_ttl;
651 spin_unlock(&cap->session->s_gen_ttl_lock);
652
653 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
654 dout("__cap_is_valid %p cap %p issued %s "
655 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
656 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
657 return 0;
658 }
659
660 return 1;
661 }
662
663 /*
664 * Return set of valid cap bits issued to us. Note that caps time
665 * out, and may be invalidated in bulk if the client session times out
666 * and session->s_cap_gen is bumped.
667 */
668 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
669 {
670 int have = ci->i_snap_caps;
671 struct ceph_cap *cap;
672 struct rb_node *p;
673
674 if (implemented)
675 *implemented = 0;
676 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
677 cap = rb_entry(p, struct ceph_cap, ci_node);
678 if (!__cap_is_valid(cap))
679 continue;
680 dout("__ceph_caps_issued %p cap %p issued %s\n",
681 &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
682 have |= cap->issued;
683 if (implemented)
684 *implemented |= cap->implemented;
685 }
686 /*
687 * exclude caps issued by non-auth MDS, but are been revoking
688 * by the auth MDS. The non-auth MDS should be revoking/exporting
689 * these caps, but the message is delayed.
690 */
691 if (ci->i_auth_cap) {
692 cap = ci->i_auth_cap;
693 have &= ~cap->implemented | cap->issued;
694 }
695 return have;
696 }
697
698 /*
699 * Get cap bits issued by caps other than @ocap
700 */
701 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
702 {
703 int have = ci->i_snap_caps;
704 struct ceph_cap *cap;
705 struct rb_node *p;
706
707 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
708 cap = rb_entry(p, struct ceph_cap, ci_node);
709 if (cap == ocap)
710 continue;
711 if (!__cap_is_valid(cap))
712 continue;
713 have |= cap->issued;
714 }
715 return have;
716 }
717
718 /*
719 * Move a cap to the end of the LRU (oldest caps at list head, newest
720 * at list tail).
721 */
722 static void __touch_cap(struct ceph_cap *cap)
723 {
724 struct ceph_mds_session *s = cap->session;
725
726 spin_lock(&s->s_cap_lock);
727 if (s->s_cap_iterator == NULL) {
728 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
729 s->s_mds);
730 list_move_tail(&cap->session_caps, &s->s_caps);
731 } else {
732 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
733 &cap->ci->vfs_inode, cap, s->s_mds);
734 }
735 spin_unlock(&s->s_cap_lock);
736 }
737
738 /*
739 * Check if we hold the given mask. If so, move the cap(s) to the
740 * front of their respective LRUs. (This is the preferred way for
741 * callers to check for caps they want.)
742 */
743 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
744 {
745 struct ceph_cap *cap;
746 struct rb_node *p;
747 int have = ci->i_snap_caps;
748
749 if ((have & mask) == mask) {
750 dout("__ceph_caps_issued_mask %p snap issued %s"
751 " (mask %s)\n", &ci->vfs_inode,
752 ceph_cap_string(have),
753 ceph_cap_string(mask));
754 return 1;
755 }
756
757 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
758 cap = rb_entry(p, struct ceph_cap, ci_node);
759 if (!__cap_is_valid(cap))
760 continue;
761 if ((cap->issued & mask) == mask) {
762 dout("__ceph_caps_issued_mask %p cap %p issued %s"
763 " (mask %s)\n", &ci->vfs_inode, cap,
764 ceph_cap_string(cap->issued),
765 ceph_cap_string(mask));
766 if (touch)
767 __touch_cap(cap);
768 return 1;
769 }
770
771 /* does a combination of caps satisfy mask? */
772 have |= cap->issued;
773 if ((have & mask) == mask) {
774 dout("__ceph_caps_issued_mask %p combo issued %s"
775 " (mask %s)\n", &ci->vfs_inode,
776 ceph_cap_string(cap->issued),
777 ceph_cap_string(mask));
778 if (touch) {
779 struct rb_node *q;
780
781 /* touch this + preceding caps */
782 __touch_cap(cap);
783 for (q = rb_first(&ci->i_caps); q != p;
784 q = rb_next(q)) {
785 cap = rb_entry(q, struct ceph_cap,
786 ci_node);
787 if (!__cap_is_valid(cap))
788 continue;
789 __touch_cap(cap);
790 }
791 }
792 return 1;
793 }
794 }
795
796 return 0;
797 }
798
799 /*
800 * Return true if mask caps are currently being revoked by an MDS.
801 */
802 int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
803 struct ceph_cap *ocap, int mask)
804 {
805 struct ceph_cap *cap;
806 struct rb_node *p;
807
808 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
809 cap = rb_entry(p, struct ceph_cap, ci_node);
810 if (cap != ocap &&
811 (cap->implemented & ~cap->issued & mask))
812 return 1;
813 }
814 return 0;
815 }
816
817 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
818 {
819 struct inode *inode = &ci->vfs_inode;
820 int ret;
821
822 spin_lock(&ci->i_ceph_lock);
823 ret = __ceph_caps_revoking_other(ci, NULL, mask);
824 spin_unlock(&ci->i_ceph_lock);
825 dout("ceph_caps_revoking %p %s = %d\n", inode,
826 ceph_cap_string(mask), ret);
827 return ret;
828 }
829
830 int __ceph_caps_used(struct ceph_inode_info *ci)
831 {
832 int used = 0;
833 if (ci->i_pin_ref)
834 used |= CEPH_CAP_PIN;
835 if (ci->i_rd_ref)
836 used |= CEPH_CAP_FILE_RD;
837 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
838 used |= CEPH_CAP_FILE_CACHE;
839 if (ci->i_wr_ref)
840 used |= CEPH_CAP_FILE_WR;
841 if (ci->i_wb_ref || ci->i_wrbuffer_ref)
842 used |= CEPH_CAP_FILE_BUFFER;
843 return used;
844 }
845
846 /*
847 * wanted, by virtue of open file modes
848 */
849 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
850 {
851 int want = 0;
852 int mode;
853 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
854 if (ci->i_nr_by_mode[mode])
855 want |= ceph_caps_for_mode(mode);
856 return want;
857 }
858
859 /*
860 * Return caps we have registered with the MDS(s) as 'wanted'.
861 */
862 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
863 {
864 struct ceph_cap *cap;
865 struct rb_node *p;
866 int mds_wanted = 0;
867
868 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
869 cap = rb_entry(p, struct ceph_cap, ci_node);
870 if (!__cap_is_valid(cap))
871 continue;
872 if (cap == ci->i_auth_cap)
873 mds_wanted |= cap->mds_wanted;
874 else
875 mds_wanted |= (cap->mds_wanted & ~CEPH_CAP_ANY_FILE_WR);
876 }
877 return mds_wanted;
878 }
879
880 /*
881 * called under i_ceph_lock
882 */
883 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
884 {
885 return !RB_EMPTY_ROOT(&ci->i_caps);
886 }
887
888 int ceph_is_any_caps(struct inode *inode)
889 {
890 struct ceph_inode_info *ci = ceph_inode(inode);
891 int ret;
892
893 spin_lock(&ci->i_ceph_lock);
894 ret = __ceph_is_any_caps(ci);
895 spin_unlock(&ci->i_ceph_lock);
896
897 return ret;
898 }
899
900 /*
901 * Remove a cap. Take steps to deal with a racing iterate_session_caps.
902 *
903 * caller should hold i_ceph_lock.
904 * caller will not hold session s_mutex if called from destroy_inode.
905 */
906 void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release)
907 {
908 struct ceph_mds_session *session = cap->session;
909 struct ceph_inode_info *ci = cap->ci;
910 struct ceph_mds_client *mdsc =
911 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
912 int removed = 0;
913
914 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
915
916 /* remove from session list */
917 spin_lock(&session->s_cap_lock);
918 /*
919 * s_cap_reconnect is protected by s_cap_lock. no one changes
920 * s_cap_gen while session is in the reconnect state.
921 */
922 if (queue_release &&
923 (!session->s_cap_reconnect ||
924 cap->cap_gen == session->s_cap_gen))
925 __queue_cap_release(session, ci->i_vino.ino, cap->cap_id,
926 cap->mseq, cap->issue_seq);
927
928 if (session->s_cap_iterator == cap) {
929 /* not yet, we are iterating over this very cap */
930 dout("__ceph_remove_cap delaying %p removal from session %p\n",
931 cap, cap->session);
932 } else {
933 list_del_init(&cap->session_caps);
934 session->s_nr_caps--;
935 cap->session = NULL;
936 removed = 1;
937 }
938 /* protect backpointer with s_cap_lock: see iterate_session_caps */
939 cap->ci = NULL;
940 spin_unlock(&session->s_cap_lock);
941
942 /* remove from inode list */
943 rb_erase(&cap->ci_node, &ci->i_caps);
944 if (ci->i_auth_cap == cap)
945 ci->i_auth_cap = NULL;
946
947 if (removed)
948 ceph_put_cap(mdsc, cap);
949
950 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
951 struct ceph_snap_realm *realm = ci->i_snap_realm;
952 spin_lock(&realm->inodes_with_caps_lock);
953 list_del_init(&ci->i_snap_realm_item);
954 ci->i_snap_realm_counter++;
955 ci->i_snap_realm = NULL;
956 spin_unlock(&realm->inodes_with_caps_lock);
957 ceph_put_snap_realm(mdsc, realm);
958 }
959 if (!__ceph_is_any_real_caps(ci))
960 __cap_delay_cancel(mdsc, ci);
961 }
962
963 /*
964 * Build and send a cap message to the given MDS.
965 *
966 * Caller should be holding s_mutex.
967 */
968 static int send_cap_msg(struct ceph_mds_session *session,
969 u64 ino, u64 cid, int op,
970 int caps, int wanted, int dirty,
971 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
972 u64 size, u64 max_size,
973 struct timespec *mtime, struct timespec *atime,
974 u64 time_warp_seq,
975 kuid_t uid, kgid_t gid, umode_t mode,
976 u64 xattr_version,
977 struct ceph_buffer *xattrs_buf,
978 u64 follows, bool inline_data)
979 {
980 struct ceph_mds_caps *fc;
981 struct ceph_msg *msg;
982 void *p;
983 size_t extra_len;
984
985 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
986 " seq %u/%u mseq %u follows %lld size %llu/%llu"
987 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
988 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
989 ceph_cap_string(dirty),
990 seq, issue_seq, mseq, follows, size, max_size,
991 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
992
993 /* flock buffer size + inline version + inline data size */
994 extra_len = 4 + 8 + 4;
995 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc) + extra_len,
996 GFP_NOFS, false);
997 if (!msg)
998 return -ENOMEM;
999
1000 msg->hdr.tid = cpu_to_le64(flush_tid);
1001
1002 fc = msg->front.iov_base;
1003 memset(fc, 0, sizeof(*fc));
1004
1005 fc->cap_id = cpu_to_le64(cid);
1006 fc->op = cpu_to_le32(op);
1007 fc->seq = cpu_to_le32(seq);
1008 fc->issue_seq = cpu_to_le32(issue_seq);
1009 fc->migrate_seq = cpu_to_le32(mseq);
1010 fc->caps = cpu_to_le32(caps);
1011 fc->wanted = cpu_to_le32(wanted);
1012 fc->dirty = cpu_to_le32(dirty);
1013 fc->ino = cpu_to_le64(ino);
1014 fc->snap_follows = cpu_to_le64(follows);
1015
1016 fc->size = cpu_to_le64(size);
1017 fc->max_size = cpu_to_le64(max_size);
1018 if (mtime)
1019 ceph_encode_timespec(&fc->mtime, mtime);
1020 if (atime)
1021 ceph_encode_timespec(&fc->atime, atime);
1022 fc->time_warp_seq = cpu_to_le32(time_warp_seq);
1023
1024 fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid));
1025 fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid));
1026 fc->mode = cpu_to_le32(mode);
1027
1028 p = fc + 1;
1029 /* flock buffer size */
1030 ceph_encode_32(&p, 0);
1031 /* inline version */
1032 ceph_encode_64(&p, inline_data ? 0 : CEPH_INLINE_NONE);
1033 /* inline data size */
1034 ceph_encode_32(&p, 0);
1035
1036 fc->xattr_version = cpu_to_le64(xattr_version);
1037 if (xattrs_buf) {
1038 msg->middle = ceph_buffer_get(xattrs_buf);
1039 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1040 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1041 }
1042
1043 ceph_con_send(&session->s_con, msg);
1044 return 0;
1045 }
1046
1047 void __queue_cap_release(struct ceph_mds_session *session,
1048 u64 ino, u64 cap_id, u32 migrate_seq,
1049 u32 issue_seq)
1050 {
1051 struct ceph_msg *msg;
1052 struct ceph_mds_cap_release *head;
1053 struct ceph_mds_cap_item *item;
1054
1055 BUG_ON(!session->s_num_cap_releases);
1056 msg = list_first_entry(&session->s_cap_releases,
1057 struct ceph_msg, list_head);
1058
1059 dout(" adding %llx release to mds%d msg %p (%d left)\n",
1060 ino, session->s_mds, msg, session->s_num_cap_releases);
1061
1062 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1063 head = msg->front.iov_base;
1064 le32_add_cpu(&head->num, 1);
1065 item = msg->front.iov_base + msg->front.iov_len;
1066 item->ino = cpu_to_le64(ino);
1067 item->cap_id = cpu_to_le64(cap_id);
1068 item->migrate_seq = cpu_to_le32(migrate_seq);
1069 item->seq = cpu_to_le32(issue_seq);
1070
1071 session->s_num_cap_releases--;
1072
1073 msg->front.iov_len += sizeof(*item);
1074 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1075 dout(" release msg %p full\n", msg);
1076 list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1077 } else {
1078 dout(" release msg %p at %d/%d (%d)\n", msg,
1079 (int)le32_to_cpu(head->num),
1080 (int)CEPH_CAPS_PER_RELEASE,
1081 (int)msg->front.iov_len);
1082 }
1083 }
1084
1085 /*
1086 * Queue cap releases when an inode is dropped from our cache. Since
1087 * inode is about to be destroyed, there is no need for i_ceph_lock.
1088 */
1089 void ceph_queue_caps_release(struct inode *inode)
1090 {
1091 struct ceph_inode_info *ci = ceph_inode(inode);
1092 struct rb_node *p;
1093
1094 p = rb_first(&ci->i_caps);
1095 while (p) {
1096 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1097 p = rb_next(p);
1098 __ceph_remove_cap(cap, true);
1099 }
1100 }
1101
1102 /*
1103 * Send a cap msg on the given inode. Update our caps state, then
1104 * drop i_ceph_lock and send the message.
1105 *
1106 * Make note of max_size reported/requested from mds, revoked caps
1107 * that have now been implemented.
1108 *
1109 * Make half-hearted attempt ot to invalidate page cache if we are
1110 * dropping RDCACHE. Note that this will leave behind locked pages
1111 * that we'll then need to deal with elsewhere.
1112 *
1113 * Return non-zero if delayed release, or we experienced an error
1114 * such that the caller should requeue + retry later.
1115 *
1116 * called with i_ceph_lock, then drops it.
1117 * caller should hold snap_rwsem (read), s_mutex.
1118 */
1119 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1120 int op, int used, int want, int retain, int flushing,
1121 unsigned *pflush_tid)
1122 __releases(cap->ci->i_ceph_lock)
1123 {
1124 struct ceph_inode_info *ci = cap->ci;
1125 struct inode *inode = &ci->vfs_inode;
1126 u64 cap_id = cap->cap_id;
1127 int held, revoking, dropping, keep;
1128 u64 seq, issue_seq, mseq, time_warp_seq, follows;
1129 u64 size, max_size;
1130 struct timespec mtime, atime;
1131 int wake = 0;
1132 umode_t mode;
1133 kuid_t uid;
1134 kgid_t gid;
1135 struct ceph_mds_session *session;
1136 u64 xattr_version = 0;
1137 struct ceph_buffer *xattr_blob = NULL;
1138 int delayed = 0;
1139 u64 flush_tid = 0;
1140 int i;
1141 int ret;
1142 bool inline_data;
1143
1144 held = cap->issued | cap->implemented;
1145 revoking = cap->implemented & ~cap->issued;
1146 retain &= ~revoking;
1147 dropping = cap->issued & ~retain;
1148
1149 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1150 inode, cap, cap->session,
1151 ceph_cap_string(held), ceph_cap_string(held & retain),
1152 ceph_cap_string(revoking));
1153 BUG_ON((retain & CEPH_CAP_PIN) == 0);
1154
1155 session = cap->session;
1156
1157 /* don't release wanted unless we've waited a bit. */
1158 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1159 time_before(jiffies, ci->i_hold_caps_min)) {
1160 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1161 ceph_cap_string(cap->issued),
1162 ceph_cap_string(cap->issued & retain),
1163 ceph_cap_string(cap->mds_wanted),
1164 ceph_cap_string(want));
1165 want |= cap->mds_wanted;
1166 retain |= cap->issued;
1167 delayed = 1;
1168 }
1169 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1170
1171 cap->issued &= retain; /* drop bits we don't want */
1172 if (cap->implemented & ~cap->issued) {
1173 /*
1174 * Wake up any waiters on wanted -> needed transition.
1175 * This is due to the weird transition from buffered
1176 * to sync IO... we need to flush dirty pages _before_
1177 * allowing sync writes to avoid reordering.
1178 */
1179 wake = 1;
1180 }
1181 cap->implemented &= cap->issued | used;
1182 cap->mds_wanted = want;
1183
1184 if (flushing) {
1185 /*
1186 * assign a tid for flush operations so we can avoid
1187 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1188 * clean type races. track latest tid for every bit
1189 * so we can handle flush AxFw, flush Fw, and have the
1190 * first ack clean Ax.
1191 */
1192 flush_tid = ++ci->i_cap_flush_last_tid;
1193 if (pflush_tid)
1194 *pflush_tid = flush_tid;
1195 dout(" cap_flush_tid %d\n", (int)flush_tid);
1196 for (i = 0; i < CEPH_CAP_BITS; i++)
1197 if (flushing & (1 << i))
1198 ci->i_cap_flush_tid[i] = flush_tid;
1199
1200 follows = ci->i_head_snapc->seq;
1201 } else {
1202 follows = 0;
1203 }
1204
1205 keep = cap->implemented;
1206 seq = cap->seq;
1207 issue_seq = cap->issue_seq;
1208 mseq = cap->mseq;
1209 size = inode->i_size;
1210 ci->i_reported_size = size;
1211 max_size = ci->i_wanted_max_size;
1212 ci->i_requested_max_size = max_size;
1213 mtime = inode->i_mtime;
1214 atime = inode->i_atime;
1215 time_warp_seq = ci->i_time_warp_seq;
1216 uid = inode->i_uid;
1217 gid = inode->i_gid;
1218 mode = inode->i_mode;
1219
1220 if (flushing & CEPH_CAP_XATTR_EXCL) {
1221 __ceph_build_xattrs_blob(ci);
1222 xattr_blob = ci->i_xattrs.blob;
1223 xattr_version = ci->i_xattrs.version;
1224 }
1225
1226 inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
1227
1228 spin_unlock(&ci->i_ceph_lock);
1229
1230 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1231 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1232 size, max_size, &mtime, &atime, time_warp_seq,
1233 uid, gid, mode, xattr_version, xattr_blob,
1234 follows, inline_data);
1235 if (ret < 0) {
1236 dout("error sending cap msg, must requeue %p\n", inode);
1237 delayed = 1;
1238 }
1239
1240 if (wake)
1241 wake_up_all(&ci->i_cap_wq);
1242
1243 return delayed;
1244 }
1245
1246 /*
1247 * When a snapshot is taken, clients accumulate dirty metadata on
1248 * inodes with capabilities in ceph_cap_snaps to describe the file
1249 * state at the time the snapshot was taken. This must be flushed
1250 * asynchronously back to the MDS once sync writes complete and dirty
1251 * data is written out.
1252 *
1253 * Unless @again is true, skip cap_snaps that were already sent to
1254 * the MDS (i.e., during this session).
1255 *
1256 * Called under i_ceph_lock. Takes s_mutex as needed.
1257 */
1258 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1259 struct ceph_mds_session **psession,
1260 int again)
1261 __releases(ci->i_ceph_lock)
1262 __acquires(ci->i_ceph_lock)
1263 {
1264 struct inode *inode = &ci->vfs_inode;
1265 int mds;
1266 struct ceph_cap_snap *capsnap;
1267 u32 mseq;
1268 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
1269 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1270 session->s_mutex */
1271 u64 next_follows = 0; /* keep track of how far we've gotten through the
1272 i_cap_snaps list, and skip these entries next time
1273 around to avoid an infinite loop */
1274
1275 if (psession)
1276 session = *psession;
1277
1278 dout("__flush_snaps %p\n", inode);
1279 retry:
1280 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1281 /* avoid an infiniute loop after retry */
1282 if (capsnap->follows < next_follows)
1283 continue;
1284 /*
1285 * we need to wait for sync writes to complete and for dirty
1286 * pages to be written out.
1287 */
1288 if (capsnap->dirty_pages || capsnap->writing)
1289 break;
1290
1291 /*
1292 * if cap writeback already occurred, we should have dropped
1293 * the capsnap in ceph_put_wrbuffer_cap_refs.
1294 */
1295 BUG_ON(capsnap->dirty == 0);
1296
1297 /* pick mds, take s_mutex */
1298 if (ci->i_auth_cap == NULL) {
1299 dout("no auth cap (migrating?), doing nothing\n");
1300 goto out;
1301 }
1302
1303 /* only flush each capsnap once */
1304 if (!again && !list_empty(&capsnap->flushing_item)) {
1305 dout("already flushed %p, skipping\n", capsnap);
1306 continue;
1307 }
1308
1309 mds = ci->i_auth_cap->session->s_mds;
1310 mseq = ci->i_auth_cap->mseq;
1311
1312 if (session && session->s_mds != mds) {
1313 dout("oops, wrong session %p mutex\n", session);
1314 mutex_unlock(&session->s_mutex);
1315 ceph_put_mds_session(session);
1316 session = NULL;
1317 }
1318 if (!session) {
1319 spin_unlock(&ci->i_ceph_lock);
1320 mutex_lock(&mdsc->mutex);
1321 session = __ceph_lookup_mds_session(mdsc, mds);
1322 mutex_unlock(&mdsc->mutex);
1323 if (session) {
1324 dout("inverting session/ino locks on %p\n",
1325 session);
1326 mutex_lock(&session->s_mutex);
1327 }
1328 /*
1329 * if session == NULL, we raced against a cap
1330 * deletion or migration. retry, and we'll
1331 * get a better @mds value next time.
1332 */
1333 spin_lock(&ci->i_ceph_lock);
1334 goto retry;
1335 }
1336
1337 capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1338 atomic_inc(&capsnap->nref);
1339 if (!list_empty(&capsnap->flushing_item))
1340 list_del_init(&capsnap->flushing_item);
1341 list_add_tail(&capsnap->flushing_item,
1342 &session->s_cap_snaps_flushing);
1343 spin_unlock(&ci->i_ceph_lock);
1344
1345 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1346 inode, capsnap, capsnap->follows, capsnap->flush_tid);
1347 send_cap_msg(session, ceph_vino(inode).ino, 0,
1348 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1349 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1350 capsnap->size, 0,
1351 &capsnap->mtime, &capsnap->atime,
1352 capsnap->time_warp_seq,
1353 capsnap->uid, capsnap->gid, capsnap->mode,
1354 capsnap->xattr_version, capsnap->xattr_blob,
1355 capsnap->follows, capsnap->inline_data);
1356
1357 next_follows = capsnap->follows + 1;
1358 ceph_put_cap_snap(capsnap);
1359
1360 spin_lock(&ci->i_ceph_lock);
1361 goto retry;
1362 }
1363
1364 /* we flushed them all; remove this inode from the queue */
1365 spin_lock(&mdsc->snap_flush_lock);
1366 list_del_init(&ci->i_snap_flush_item);
1367 spin_unlock(&mdsc->snap_flush_lock);
1368
1369 out:
1370 if (psession)
1371 *psession = session;
1372 else if (session) {
1373 mutex_unlock(&session->s_mutex);
1374 ceph_put_mds_session(session);
1375 }
1376 }
1377
1378 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1379 {
1380 spin_lock(&ci->i_ceph_lock);
1381 __ceph_flush_snaps(ci, NULL, 0);
1382 spin_unlock(&ci->i_ceph_lock);
1383 }
1384
1385 /*
1386 * Mark caps dirty. If inode is newly dirty, return the dirty flags.
1387 * Caller is then responsible for calling __mark_inode_dirty with the
1388 * returned flags value.
1389 */
1390 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1391 {
1392 struct ceph_mds_client *mdsc =
1393 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1394 struct inode *inode = &ci->vfs_inode;
1395 int was = ci->i_dirty_caps;
1396 int dirty = 0;
1397
1398 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1399 ceph_cap_string(mask), ceph_cap_string(was),
1400 ceph_cap_string(was | mask));
1401 ci->i_dirty_caps |= mask;
1402 if (was == 0) {
1403 if (!ci->i_head_snapc)
1404 ci->i_head_snapc = ceph_get_snap_context(
1405 ci->i_snap_realm->cached_context);
1406 dout(" inode %p now dirty snapc %p auth cap %p\n",
1407 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap);
1408 WARN_ON(!ci->i_auth_cap);
1409 BUG_ON(!list_empty(&ci->i_dirty_item));
1410 spin_lock(&mdsc->cap_dirty_lock);
1411 list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1412 spin_unlock(&mdsc->cap_dirty_lock);
1413 if (ci->i_flushing_caps == 0) {
1414 ihold(inode);
1415 dirty |= I_DIRTY_SYNC;
1416 }
1417 }
1418 BUG_ON(list_empty(&ci->i_dirty_item));
1419 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1420 (mask & CEPH_CAP_FILE_BUFFER))
1421 dirty |= I_DIRTY_DATASYNC;
1422 __cap_delay_requeue(mdsc, ci);
1423 return dirty;
1424 }
1425
1426 /*
1427 * Add dirty inode to the flushing list. Assigned a seq number so we
1428 * can wait for caps to flush without starving.
1429 *
1430 * Called under i_ceph_lock.
1431 */
1432 static int __mark_caps_flushing(struct inode *inode,
1433 struct ceph_mds_session *session)
1434 {
1435 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1436 struct ceph_inode_info *ci = ceph_inode(inode);
1437 int flushing;
1438
1439 BUG_ON(ci->i_dirty_caps == 0);
1440 BUG_ON(list_empty(&ci->i_dirty_item));
1441
1442 flushing = ci->i_dirty_caps;
1443 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1444 ceph_cap_string(flushing),
1445 ceph_cap_string(ci->i_flushing_caps),
1446 ceph_cap_string(ci->i_flushing_caps | flushing));
1447 ci->i_flushing_caps |= flushing;
1448 ci->i_dirty_caps = 0;
1449 dout(" inode %p now !dirty\n", inode);
1450
1451 spin_lock(&mdsc->cap_dirty_lock);
1452 list_del_init(&ci->i_dirty_item);
1453
1454 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1455 if (list_empty(&ci->i_flushing_item)) {
1456 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1457 mdsc->num_cap_flushing++;
1458 dout(" inode %p now flushing seq %lld\n", inode,
1459 ci->i_cap_flush_seq);
1460 } else {
1461 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1462 dout(" inode %p now flushing (more) seq %lld\n", inode,
1463 ci->i_cap_flush_seq);
1464 }
1465 spin_unlock(&mdsc->cap_dirty_lock);
1466
1467 return flushing;
1468 }
1469
1470 /*
1471 * try to invalidate mapping pages without blocking.
1472 */
1473 static int try_nonblocking_invalidate(struct inode *inode)
1474 {
1475 struct ceph_inode_info *ci = ceph_inode(inode);
1476 u32 invalidating_gen = ci->i_rdcache_gen;
1477
1478 spin_unlock(&ci->i_ceph_lock);
1479 invalidate_mapping_pages(&inode->i_data, 0, -1);
1480 spin_lock(&ci->i_ceph_lock);
1481
1482 if (inode->i_data.nrpages == 0 &&
1483 invalidating_gen == ci->i_rdcache_gen) {
1484 /* success. */
1485 dout("try_nonblocking_invalidate %p success\n", inode);
1486 /* save any racing async invalidate some trouble */
1487 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
1488 return 0;
1489 }
1490 dout("try_nonblocking_invalidate %p failed\n", inode);
1491 return -1;
1492 }
1493
1494 /*
1495 * Swiss army knife function to examine currently used and wanted
1496 * versus held caps. Release, flush, ack revoked caps to mds as
1497 * appropriate.
1498 *
1499 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1500 * cap release further.
1501 * CHECK_CAPS_AUTHONLY - we should only check the auth cap
1502 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1503 * further delay.
1504 */
1505 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1506 struct ceph_mds_session *session)
1507 {
1508 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1509 struct ceph_mds_client *mdsc = fsc->mdsc;
1510 struct inode *inode = &ci->vfs_inode;
1511 struct ceph_cap *cap;
1512 int file_wanted, used, cap_used;
1513 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
1514 int issued, implemented, want, retain, revoking, flushing = 0;
1515 int mds = -1; /* keep track of how far we've gone through i_caps list
1516 to avoid an infinite loop on retry */
1517 struct rb_node *p;
1518 int tried_invalidate = 0;
1519 int delayed = 0, sent = 0, force_requeue = 0, num;
1520 int queue_invalidate = 0;
1521 int is_delayed = flags & CHECK_CAPS_NODELAY;
1522
1523 /* if we are unmounting, flush any unused caps immediately. */
1524 if (mdsc->stopping)
1525 is_delayed = 1;
1526
1527 spin_lock(&ci->i_ceph_lock);
1528
1529 if (ci->i_ceph_flags & CEPH_I_FLUSH)
1530 flags |= CHECK_CAPS_FLUSH;
1531
1532 /* flush snaps first time around only */
1533 if (!list_empty(&ci->i_cap_snaps))
1534 __ceph_flush_snaps(ci, &session, 0);
1535 goto retry_locked;
1536 retry:
1537 spin_lock(&ci->i_ceph_lock);
1538 retry_locked:
1539 file_wanted = __ceph_caps_file_wanted(ci);
1540 used = __ceph_caps_used(ci);
1541 want = file_wanted | used;
1542 issued = __ceph_caps_issued(ci, &implemented);
1543 revoking = implemented & ~issued;
1544
1545 retain = want | CEPH_CAP_PIN;
1546 if (!mdsc->stopping && inode->i_nlink > 0) {
1547 if (want) {
1548 retain |= CEPH_CAP_ANY; /* be greedy */
1549 } else {
1550 retain |= CEPH_CAP_ANY_SHARED;
1551 /*
1552 * keep RD only if we didn't have the file open RW,
1553 * because then the mds would revoke it anyway to
1554 * journal max_size=0.
1555 */
1556 if (ci->i_max_size == 0)
1557 retain |= CEPH_CAP_ANY_RD;
1558 }
1559 }
1560
1561 dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1562 " issued %s revoking %s retain %s %s%s%s\n", inode,
1563 ceph_cap_string(file_wanted),
1564 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1565 ceph_cap_string(ci->i_flushing_caps),
1566 ceph_cap_string(issued), ceph_cap_string(revoking),
1567 ceph_cap_string(retain),
1568 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1569 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1570 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1571
1572 /*
1573 * If we no longer need to hold onto old our caps, and we may
1574 * have cached pages, but don't want them, then try to invalidate.
1575 * If we fail, it's because pages are locked.... try again later.
1576 */
1577 if ((!is_delayed || mdsc->stopping) &&
1578 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
1579 inode->i_data.nrpages && /* have cached pages */
1580 (file_wanted == 0 || /* no open files */
1581 (revoking & (CEPH_CAP_FILE_CACHE|
1582 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */
1583 !tried_invalidate) {
1584 dout("check_caps trying to invalidate on %p\n", inode);
1585 if (try_nonblocking_invalidate(inode) < 0) {
1586 if (revoking & (CEPH_CAP_FILE_CACHE|
1587 CEPH_CAP_FILE_LAZYIO)) {
1588 dout("check_caps queuing invalidate\n");
1589 queue_invalidate = 1;
1590 ci->i_rdcache_revoking = ci->i_rdcache_gen;
1591 } else {
1592 dout("check_caps failed to invalidate pages\n");
1593 /* we failed to invalidate pages. check these
1594 caps again later. */
1595 force_requeue = 1;
1596 __cap_set_timeouts(mdsc, ci);
1597 }
1598 }
1599 tried_invalidate = 1;
1600 goto retry_locked;
1601 }
1602
1603 num = 0;
1604 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1605 cap = rb_entry(p, struct ceph_cap, ci_node);
1606 num++;
1607
1608 /* avoid looping forever */
1609 if (mds >= cap->mds ||
1610 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1611 continue;
1612
1613 /* NOTE: no side-effects allowed, until we take s_mutex */
1614
1615 cap_used = used;
1616 if (ci->i_auth_cap && cap != ci->i_auth_cap)
1617 cap_used &= ~ci->i_auth_cap->issued;
1618
1619 revoking = cap->implemented & ~cap->issued;
1620 dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n",
1621 cap->mds, cap, ceph_cap_string(cap->issued),
1622 ceph_cap_string(cap_used),
1623 ceph_cap_string(cap->implemented),
1624 ceph_cap_string(revoking));
1625
1626 if (cap == ci->i_auth_cap &&
1627 (cap->issued & CEPH_CAP_FILE_WR)) {
1628 /* request larger max_size from MDS? */
1629 if (ci->i_wanted_max_size > ci->i_max_size &&
1630 ci->i_wanted_max_size > ci->i_requested_max_size) {
1631 dout("requesting new max_size\n");
1632 goto ack;
1633 }
1634
1635 /* approaching file_max? */
1636 if ((inode->i_size << 1) >= ci->i_max_size &&
1637 (ci->i_reported_size << 1) < ci->i_max_size) {
1638 dout("i_size approaching max_size\n");
1639 goto ack;
1640 }
1641 }
1642 /* flush anything dirty? */
1643 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1644 ci->i_dirty_caps) {
1645 dout("flushing dirty caps\n");
1646 goto ack;
1647 }
1648
1649 /* completed revocation? going down and there are no caps? */
1650 if (revoking && (revoking & cap_used) == 0) {
1651 dout("completed revocation of %s\n",
1652 ceph_cap_string(cap->implemented & ~cap->issued));
1653 goto ack;
1654 }
1655
1656 /* want more caps from mds? */
1657 if (want & ~(cap->mds_wanted | cap->issued))
1658 goto ack;
1659
1660 /* things we might delay */
1661 if ((cap->issued & ~retain) == 0 &&
1662 cap->mds_wanted == want)
1663 continue; /* nope, all good */
1664
1665 if (is_delayed)
1666 goto ack;
1667
1668 /* delay? */
1669 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1670 time_before(jiffies, ci->i_hold_caps_max)) {
1671 dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1672 ceph_cap_string(cap->issued),
1673 ceph_cap_string(cap->issued & retain),
1674 ceph_cap_string(cap->mds_wanted),
1675 ceph_cap_string(want));
1676 delayed++;
1677 continue;
1678 }
1679
1680 ack:
1681 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1682 dout(" skipping %p I_NOFLUSH set\n", inode);
1683 continue;
1684 }
1685
1686 if (session && session != cap->session) {
1687 dout("oops, wrong session %p mutex\n", session);
1688 mutex_unlock(&session->s_mutex);
1689 session = NULL;
1690 }
1691 if (!session) {
1692 session = cap->session;
1693 if (mutex_trylock(&session->s_mutex) == 0) {
1694 dout("inverting session/ino locks on %p\n",
1695 session);
1696 spin_unlock(&ci->i_ceph_lock);
1697 if (took_snap_rwsem) {
1698 up_read(&mdsc->snap_rwsem);
1699 took_snap_rwsem = 0;
1700 }
1701 mutex_lock(&session->s_mutex);
1702 goto retry;
1703 }
1704 }
1705 /* take snap_rwsem after session mutex */
1706 if (!took_snap_rwsem) {
1707 if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1708 dout("inverting snap/in locks on %p\n",
1709 inode);
1710 spin_unlock(&ci->i_ceph_lock);
1711 down_read(&mdsc->snap_rwsem);
1712 took_snap_rwsem = 1;
1713 goto retry;
1714 }
1715 took_snap_rwsem = 1;
1716 }
1717
1718 if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1719 flushing = __mark_caps_flushing(inode, session);
1720 else
1721 flushing = 0;
1722
1723 mds = cap->mds; /* remember mds, so we don't repeat */
1724 sent++;
1725
1726 /* __send_cap drops i_ceph_lock */
1727 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used,
1728 want, retain, flushing, NULL);
1729 goto retry; /* retake i_ceph_lock and restart our cap scan. */
1730 }
1731
1732 /*
1733 * Reschedule delayed caps release if we delayed anything,
1734 * otherwise cancel.
1735 */
1736 if (delayed && is_delayed)
1737 force_requeue = 1; /* __send_cap delayed release; requeue */
1738 if (!delayed && !is_delayed)
1739 __cap_delay_cancel(mdsc, ci);
1740 else if (!is_delayed || force_requeue)
1741 __cap_delay_requeue(mdsc, ci);
1742
1743 spin_unlock(&ci->i_ceph_lock);
1744
1745 if (queue_invalidate)
1746 ceph_queue_invalidate(inode);
1747
1748 if (session)
1749 mutex_unlock(&session->s_mutex);
1750 if (took_snap_rwsem)
1751 up_read(&mdsc->snap_rwsem);
1752 }
1753
1754 /*
1755 * Try to flush dirty caps back to the auth mds.
1756 */
1757 static int try_flush_caps(struct inode *inode, unsigned *flush_tid)
1758 {
1759 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1760 struct ceph_inode_info *ci = ceph_inode(inode);
1761 int flushing = 0;
1762 struct ceph_mds_session *session = NULL;
1763
1764 retry:
1765 spin_lock(&ci->i_ceph_lock);
1766 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1767 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1768 goto out;
1769 }
1770 if (ci->i_dirty_caps && ci->i_auth_cap) {
1771 struct ceph_cap *cap = ci->i_auth_cap;
1772 int used = __ceph_caps_used(ci);
1773 int want = __ceph_caps_wanted(ci);
1774 int delayed;
1775
1776 if (!session || session != cap->session) {
1777 spin_unlock(&ci->i_ceph_lock);
1778 if (session)
1779 mutex_unlock(&session->s_mutex);
1780 session = cap->session;
1781 mutex_lock(&session->s_mutex);
1782 goto retry;
1783 }
1784 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1785 goto out;
1786
1787 flushing = __mark_caps_flushing(inode, session);
1788
1789 /* __send_cap drops i_ceph_lock */
1790 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1791 cap->issued | cap->implemented, flushing,
1792 flush_tid);
1793 if (!delayed)
1794 goto out_unlocked;
1795
1796 spin_lock(&ci->i_ceph_lock);
1797 __cap_delay_requeue(mdsc, ci);
1798 }
1799 out:
1800 spin_unlock(&ci->i_ceph_lock);
1801 out_unlocked:
1802 if (session)
1803 mutex_unlock(&session->s_mutex);
1804 return flushing;
1805 }
1806
1807 /*
1808 * Return true if we've flushed caps through the given flush_tid.
1809 */
1810 static int caps_are_flushed(struct inode *inode, unsigned tid)
1811 {
1812 struct ceph_inode_info *ci = ceph_inode(inode);
1813 int i, ret = 1;
1814
1815 spin_lock(&ci->i_ceph_lock);
1816 for (i = 0; i < CEPH_CAP_BITS; i++)
1817 if ((ci->i_flushing_caps & (1 << i)) &&
1818 ci->i_cap_flush_tid[i] <= tid) {
1819 /* still flushing this bit */
1820 ret = 0;
1821 break;
1822 }
1823 spin_unlock(&ci->i_ceph_lock);
1824 return ret;
1825 }
1826
1827 /*
1828 * Wait on any unsafe replies for the given inode. First wait on the
1829 * newest request, and make that the upper bound. Then, if there are
1830 * more requests, keep waiting on the oldest as long as it is still older
1831 * than the original request.
1832 */
1833 static void sync_write_wait(struct inode *inode)
1834 {
1835 struct ceph_inode_info *ci = ceph_inode(inode);
1836 struct list_head *head = &ci->i_unsafe_writes;
1837 struct ceph_osd_request *req;
1838 u64 last_tid;
1839
1840 spin_lock(&ci->i_unsafe_lock);
1841 if (list_empty(head))
1842 goto out;
1843
1844 /* set upper bound as _last_ entry in chain */
1845 req = list_entry(head->prev, struct ceph_osd_request,
1846 r_unsafe_item);
1847 last_tid = req->r_tid;
1848
1849 do {
1850 ceph_osdc_get_request(req);
1851 spin_unlock(&ci->i_unsafe_lock);
1852 dout("sync_write_wait on tid %llu (until %llu)\n",
1853 req->r_tid, last_tid);
1854 wait_for_completion(&req->r_safe_completion);
1855 spin_lock(&ci->i_unsafe_lock);
1856 ceph_osdc_put_request(req);
1857
1858 /*
1859 * from here on look at first entry in chain, since we
1860 * only want to wait for anything older than last_tid
1861 */
1862 if (list_empty(head))
1863 break;
1864 req = list_entry(head->next, struct ceph_osd_request,
1865 r_unsafe_item);
1866 } while (req->r_tid < last_tid);
1867 out:
1868 spin_unlock(&ci->i_unsafe_lock);
1869 }
1870
1871 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1872 {
1873 struct inode *inode = file->f_mapping->host;
1874 struct ceph_inode_info *ci = ceph_inode(inode);
1875 unsigned flush_tid;
1876 int ret;
1877 int dirty;
1878
1879 dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1880 sync_write_wait(inode);
1881
1882 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1883 if (ret < 0)
1884 return ret;
1885 mutex_lock(&inode->i_mutex);
1886
1887 dirty = try_flush_caps(inode, &flush_tid);
1888 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1889
1890 /*
1891 * only wait on non-file metadata writeback (the mds
1892 * can recover size and mtime, so we don't need to
1893 * wait for that)
1894 */
1895 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1896 dout("fsync waiting for flush_tid %u\n", flush_tid);
1897 ret = wait_event_interruptible(ci->i_cap_wq,
1898 caps_are_flushed(inode, flush_tid));
1899 }
1900
1901 dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1902 mutex_unlock(&inode->i_mutex);
1903 return ret;
1904 }
1905
1906 /*
1907 * Flush any dirty caps back to the mds. If we aren't asked to wait,
1908 * queue inode for flush but don't do so immediately, because we can
1909 * get by with fewer MDS messages if we wait for data writeback to
1910 * complete first.
1911 */
1912 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1913 {
1914 struct ceph_inode_info *ci = ceph_inode(inode);
1915 unsigned flush_tid;
1916 int err = 0;
1917 int dirty;
1918 int wait = wbc->sync_mode == WB_SYNC_ALL;
1919
1920 dout("write_inode %p wait=%d\n", inode, wait);
1921 if (wait) {
1922 dirty = try_flush_caps(inode, &flush_tid);
1923 if (dirty)
1924 err = wait_event_interruptible(ci->i_cap_wq,
1925 caps_are_flushed(inode, flush_tid));
1926 } else {
1927 struct ceph_mds_client *mdsc =
1928 ceph_sb_to_client(inode->i_sb)->mdsc;
1929
1930 spin_lock(&ci->i_ceph_lock);
1931 if (__ceph_caps_dirty(ci))
1932 __cap_delay_requeue_front(mdsc, ci);
1933 spin_unlock(&ci->i_ceph_lock);
1934 }
1935 return err;
1936 }
1937
1938 /*
1939 * After a recovering MDS goes active, we need to resend any caps
1940 * we were flushing.
1941 *
1942 * Caller holds session->s_mutex.
1943 */
1944 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1945 struct ceph_mds_session *session)
1946 {
1947 struct ceph_cap_snap *capsnap;
1948
1949 dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1950 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1951 flushing_item) {
1952 struct ceph_inode_info *ci = capsnap->ci;
1953 struct inode *inode = &ci->vfs_inode;
1954 struct ceph_cap *cap;
1955
1956 spin_lock(&ci->i_ceph_lock);
1957 cap = ci->i_auth_cap;
1958 if (cap && cap->session == session) {
1959 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1960 cap, capsnap);
1961 __ceph_flush_snaps(ci, &session, 1);
1962 } else {
1963 pr_err("%p auth cap %p not mds%d ???\n", inode,
1964 cap, session->s_mds);
1965 }
1966 spin_unlock(&ci->i_ceph_lock);
1967 }
1968 }
1969
1970 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1971 struct ceph_mds_session *session)
1972 {
1973 struct ceph_inode_info *ci;
1974
1975 kick_flushing_capsnaps(mdsc, session);
1976
1977 dout("kick_flushing_caps mds%d\n", session->s_mds);
1978 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1979 struct inode *inode = &ci->vfs_inode;
1980 struct ceph_cap *cap;
1981 int delayed = 0;
1982
1983 spin_lock(&ci->i_ceph_lock);
1984 cap = ci->i_auth_cap;
1985 if (cap && cap->session == session) {
1986 dout("kick_flushing_caps %p cap %p %s\n", inode,
1987 cap, ceph_cap_string(ci->i_flushing_caps));
1988 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1989 __ceph_caps_used(ci),
1990 __ceph_caps_wanted(ci),
1991 cap->issued | cap->implemented,
1992 ci->i_flushing_caps, NULL);
1993 if (delayed) {
1994 spin_lock(&ci->i_ceph_lock);
1995 __cap_delay_requeue(mdsc, ci);
1996 spin_unlock(&ci->i_ceph_lock);
1997 }
1998 } else {
1999 pr_err("%p auth cap %p not mds%d ???\n", inode,
2000 cap, session->s_mds);
2001 spin_unlock(&ci->i_ceph_lock);
2002 }
2003 }
2004 }
2005
2006 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
2007 struct ceph_mds_session *session,
2008 struct inode *inode)
2009 {
2010 struct ceph_inode_info *ci = ceph_inode(inode);
2011 struct ceph_cap *cap;
2012 int delayed = 0;
2013
2014 spin_lock(&ci->i_ceph_lock);
2015 cap = ci->i_auth_cap;
2016 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
2017 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
2018
2019 __ceph_flush_snaps(ci, &session, 1);
2020
2021 if (ci->i_flushing_caps) {
2022 spin_lock(&mdsc->cap_dirty_lock);
2023 list_move_tail(&ci->i_flushing_item,
2024 &cap->session->s_cap_flushing);
2025 spin_unlock(&mdsc->cap_dirty_lock);
2026
2027 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
2028 __ceph_caps_used(ci),
2029 __ceph_caps_wanted(ci),
2030 cap->issued | cap->implemented,
2031 ci->i_flushing_caps, NULL);
2032 if (delayed) {
2033 spin_lock(&ci->i_ceph_lock);
2034 __cap_delay_requeue(mdsc, ci);
2035 spin_unlock(&ci->i_ceph_lock);
2036 }
2037 } else {
2038 spin_unlock(&ci->i_ceph_lock);
2039 }
2040 }
2041
2042
2043 /*
2044 * Take references to capabilities we hold, so that we don't release
2045 * them to the MDS prematurely.
2046 *
2047 * Protected by i_ceph_lock.
2048 */
2049 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
2050 {
2051 if (got & CEPH_CAP_PIN)
2052 ci->i_pin_ref++;
2053 if (got & CEPH_CAP_FILE_RD)
2054 ci->i_rd_ref++;
2055 if (got & CEPH_CAP_FILE_CACHE)
2056 ci->i_rdcache_ref++;
2057 if (got & CEPH_CAP_FILE_WR)
2058 ci->i_wr_ref++;
2059 if (got & CEPH_CAP_FILE_BUFFER) {
2060 if (ci->i_wb_ref == 0)
2061 ihold(&ci->vfs_inode);
2062 ci->i_wb_ref++;
2063 dout("__take_cap_refs %p wb %d -> %d (?)\n",
2064 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
2065 }
2066 }
2067
2068 /*
2069 * Try to grab cap references. Specify those refs we @want, and the
2070 * minimal set we @need. Also include the larger offset we are writing
2071 * to (when applicable), and check against max_size here as well.
2072 * Note that caller is responsible for ensuring max_size increases are
2073 * requested from the MDS.
2074 */
2075 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
2076 loff_t endoff, int *got, struct page **pinned_page,
2077 int *check_max, int *err)
2078 {
2079 struct inode *inode = &ci->vfs_inode;
2080 int ret = 0;
2081 int have, implemented, _got = 0;
2082 int file_wanted;
2083
2084 dout("get_cap_refs %p need %s want %s\n", inode,
2085 ceph_cap_string(need), ceph_cap_string(want));
2086 again:
2087 spin_lock(&ci->i_ceph_lock);
2088
2089 /* make sure file is actually open */
2090 file_wanted = __ceph_caps_file_wanted(ci);
2091 if ((file_wanted & need) == 0) {
2092 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2093 ceph_cap_string(need), ceph_cap_string(file_wanted));
2094 *err = -EBADF;
2095 ret = 1;
2096 goto out_unlock;
2097 }
2098
2099 /* finish pending truncate */
2100 while (ci->i_truncate_pending) {
2101 spin_unlock(&ci->i_ceph_lock);
2102 __ceph_do_pending_vmtruncate(inode);
2103 spin_lock(&ci->i_ceph_lock);
2104 }
2105
2106 have = __ceph_caps_issued(ci, &implemented);
2107
2108 if (have & need & CEPH_CAP_FILE_WR) {
2109 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2110 dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2111 inode, endoff, ci->i_max_size);
2112 if (endoff > ci->i_requested_max_size) {
2113 *check_max = 1;
2114 ret = 1;
2115 }
2116 goto out_unlock;
2117 }
2118 /*
2119 * If a sync write is in progress, we must wait, so that we
2120 * can get a final snapshot value for size+mtime.
2121 */
2122 if (__ceph_have_pending_cap_snap(ci)) {
2123 dout("get_cap_refs %p cap_snap_pending\n", inode);
2124 goto out_unlock;
2125 }
2126 }
2127
2128 if ((have & need) == need) {
2129 /*
2130 * Look at (implemented & ~have & not) so that we keep waiting
2131 * on transition from wanted -> needed caps. This is needed
2132 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2133 * going before a prior buffered writeback happens.
2134 */
2135 int not = want & ~(have & need);
2136 int revoking = implemented & ~have;
2137 dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2138 inode, ceph_cap_string(have), ceph_cap_string(not),
2139 ceph_cap_string(revoking));
2140 if ((revoking & not) == 0) {
2141 _got = need | (have & want);
2142 __take_cap_refs(ci, _got);
2143 ret = 1;
2144 }
2145 } else {
2146 int session_readonly = false;
2147 if ((need & CEPH_CAP_FILE_WR) && ci->i_auth_cap) {
2148 struct ceph_mds_session *s = ci->i_auth_cap->session;
2149 spin_lock(&s->s_cap_lock);
2150 session_readonly = s->s_readonly;
2151 spin_unlock(&s->s_cap_lock);
2152 }
2153 if (session_readonly) {
2154 dout("get_cap_refs %p needed %s but mds%d readonly\n",
2155 inode, ceph_cap_string(need), ci->i_auth_cap->mds);
2156 *err = -EROFS;
2157 ret = 1;
2158 goto out_unlock;
2159 }
2160
2161 dout("get_cap_refs %p have %s needed %s\n", inode,
2162 ceph_cap_string(have), ceph_cap_string(need));
2163 }
2164 out_unlock:
2165 spin_unlock(&ci->i_ceph_lock);
2166
2167 if (ci->i_inline_version != CEPH_INLINE_NONE &&
2168 (_got & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
2169 i_size_read(inode) > 0) {
2170 int ret1;
2171 struct page *page = find_get_page(inode->i_mapping, 0);
2172 if (page) {
2173 if (PageUptodate(page)) {
2174 *pinned_page = page;
2175 goto out;
2176 }
2177 page_cache_release(page);
2178 }
2179 /*
2180 * drop cap refs first because getattr while holding
2181 * caps refs can cause deadlock.
2182 */
2183 ceph_put_cap_refs(ci, _got);
2184 _got = 0;
2185
2186 /* getattr request will bring inline data into page cache */
2187 ret1 = __ceph_do_getattr(inode, NULL,
2188 CEPH_STAT_CAP_INLINE_DATA, true);
2189 if (ret1 >= 0) {
2190 ret = 0;
2191 goto again;
2192 }
2193 *err = ret1;
2194 ret = 1;
2195 }
2196 out:
2197 dout("get_cap_refs %p ret %d got %s\n", inode,
2198 ret, ceph_cap_string(_got));
2199 *got = _got;
2200 return ret;
2201 }
2202
2203 /*
2204 * Check the offset we are writing up to against our current
2205 * max_size. If necessary, tell the MDS we want to write to
2206 * a larger offset.
2207 */
2208 static void check_max_size(struct inode *inode, loff_t endoff)
2209 {
2210 struct ceph_inode_info *ci = ceph_inode(inode);
2211 int check = 0;
2212
2213 /* do we need to explicitly request a larger max_size? */
2214 spin_lock(&ci->i_ceph_lock);
2215 if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) {
2216 dout("write %p at large endoff %llu, req max_size\n",
2217 inode, endoff);
2218 ci->i_wanted_max_size = endoff;
2219 }
2220 /* duplicate ceph_check_caps()'s logic */
2221 if (ci->i_auth_cap &&
2222 (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) &&
2223 ci->i_wanted_max_size > ci->i_max_size &&
2224 ci->i_wanted_max_size > ci->i_requested_max_size)
2225 check = 1;
2226 spin_unlock(&ci->i_ceph_lock);
2227 if (check)
2228 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2229 }
2230
2231 /*
2232 * Wait for caps, and take cap references. If we can't get a WR cap
2233 * due to a small max_size, make sure we check_max_size (and possibly
2234 * ask the mds) so we don't get hung up indefinitely.
2235 */
2236 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want,
2237 loff_t endoff, int *got, struct page **pinned_page)
2238 {
2239 int check_max, ret, err;
2240
2241 retry:
2242 if (endoff > 0)
2243 check_max_size(&ci->vfs_inode, endoff);
2244 check_max = 0;
2245 err = 0;
2246 ret = wait_event_interruptible(ci->i_cap_wq,
2247 try_get_cap_refs(ci, need, want, endoff,
2248 got, pinned_page,
2249 &check_max, &err));
2250 if (err)
2251 ret = err;
2252 if (check_max)
2253 goto retry;
2254 return ret;
2255 }
2256
2257 /*
2258 * Take cap refs. Caller must already know we hold at least one ref
2259 * on the caps in question or we don't know this is safe.
2260 */
2261 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2262 {
2263 spin_lock(&ci->i_ceph_lock);
2264 __take_cap_refs(ci, caps);
2265 spin_unlock(&ci->i_ceph_lock);
2266 }
2267
2268 /*
2269 * Release cap refs.
2270 *
2271 * If we released the last ref on any given cap, call ceph_check_caps
2272 * to release (or schedule a release).
2273 *
2274 * If we are releasing a WR cap (from a sync write), finalize any affected
2275 * cap_snap, and wake up any waiters.
2276 */
2277 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2278 {
2279 struct inode *inode = &ci->vfs_inode;
2280 int last = 0, put = 0, flushsnaps = 0, wake = 0;
2281 struct ceph_cap_snap *capsnap;
2282
2283 spin_lock(&ci->i_ceph_lock);
2284 if (had & CEPH_CAP_PIN)
2285 --ci->i_pin_ref;
2286 if (had & CEPH_CAP_FILE_RD)
2287 if (--ci->i_rd_ref == 0)
2288 last++;
2289 if (had & CEPH_CAP_FILE_CACHE)
2290 if (--ci->i_rdcache_ref == 0)
2291 last++;
2292 if (had & CEPH_CAP_FILE_BUFFER) {
2293 if (--ci->i_wb_ref == 0) {
2294 last++;
2295 put++;
2296 }
2297 dout("put_cap_refs %p wb %d -> %d (?)\n",
2298 inode, ci->i_wb_ref+1, ci->i_wb_ref);
2299 }
2300 if (had & CEPH_CAP_FILE_WR)
2301 if (--ci->i_wr_ref == 0) {
2302 last++;
2303 if (!list_empty(&ci->i_cap_snaps)) {
2304 capsnap = list_first_entry(&ci->i_cap_snaps,
2305 struct ceph_cap_snap,
2306 ci_item);
2307 if (capsnap->writing) {
2308 capsnap->writing = 0;
2309 flushsnaps =
2310 __ceph_finish_cap_snap(ci,
2311 capsnap);
2312 wake = 1;
2313 }
2314 }
2315 }
2316 spin_unlock(&ci->i_ceph_lock);
2317
2318 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2319 last ? " last" : "", put ? " put" : "");
2320
2321 if (last && !flushsnaps)
2322 ceph_check_caps(ci, 0, NULL);
2323 else if (flushsnaps)
2324 ceph_flush_snaps(ci);
2325 if (wake)
2326 wake_up_all(&ci->i_cap_wq);
2327 if (put)
2328 iput(inode);
2329 }
2330
2331 /*
2332 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2333 * context. Adjust per-snap dirty page accounting as appropriate.
2334 * Once all dirty data for a cap_snap is flushed, flush snapped file
2335 * metadata back to the MDS. If we dropped the last ref, call
2336 * ceph_check_caps.
2337 */
2338 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2339 struct ceph_snap_context *snapc)
2340 {
2341 struct inode *inode = &ci->vfs_inode;
2342 int last = 0;
2343 int complete_capsnap = 0;
2344 int drop_capsnap = 0;
2345 int found = 0;
2346 struct ceph_cap_snap *capsnap = NULL;
2347
2348 spin_lock(&ci->i_ceph_lock);
2349 ci->i_wrbuffer_ref -= nr;
2350 last = !ci->i_wrbuffer_ref;
2351
2352 if (ci->i_head_snapc == snapc) {
2353 ci->i_wrbuffer_ref_head -= nr;
2354 if (ci->i_wrbuffer_ref_head == 0 &&
2355 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
2356 BUG_ON(!ci->i_head_snapc);
2357 ceph_put_snap_context(ci->i_head_snapc);
2358 ci->i_head_snapc = NULL;
2359 }
2360 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2361 inode,
2362 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2363 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2364 last ? " LAST" : "");
2365 } else {
2366 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2367 if (capsnap->context == snapc) {
2368 found = 1;
2369 break;
2370 }
2371 }
2372 BUG_ON(!found);
2373 capsnap->dirty_pages -= nr;
2374 if (capsnap->dirty_pages == 0) {
2375 complete_capsnap = 1;
2376 if (capsnap->dirty == 0)
2377 /* cap writeback completed before we created
2378 * the cap_snap; no FLUSHSNAP is needed */
2379 drop_capsnap = 1;
2380 }
2381 dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2382 " snap %lld %d/%d -> %d/%d %s%s%s\n",
2383 inode, capsnap, capsnap->context->seq,
2384 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2385 ci->i_wrbuffer_ref, capsnap->dirty_pages,
2386 last ? " (wrbuffer last)" : "",
2387 complete_capsnap ? " (complete capsnap)" : "",
2388 drop_capsnap ? " (drop capsnap)" : "");
2389 if (drop_capsnap) {
2390 ceph_put_snap_context(capsnap->context);
2391 list_del(&capsnap->ci_item);
2392 list_del(&capsnap->flushing_item);
2393 ceph_put_cap_snap(capsnap);
2394 }
2395 }
2396
2397 spin_unlock(&ci->i_ceph_lock);
2398
2399 if (last) {
2400 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2401 iput(inode);
2402 } else if (complete_capsnap) {
2403 ceph_flush_snaps(ci);
2404 wake_up_all(&ci->i_cap_wq);
2405 }
2406 if (drop_capsnap)
2407 iput(inode);
2408 }
2409
2410 /*
2411 * Invalidate unlinked inode's aliases, so we can drop the inode ASAP.
2412 */
2413 static void invalidate_aliases(struct inode *inode)
2414 {
2415 struct dentry *dn, *prev = NULL;
2416
2417 dout("invalidate_aliases inode %p\n", inode);
2418 d_prune_aliases(inode);
2419 /*
2420 * For non-directory inode, d_find_alias() only returns
2421 * hashed dentry. After calling d_invalidate(), the
2422 * dentry becomes unhashed.
2423 *
2424 * For directory inode, d_find_alias() can return
2425 * unhashed dentry. But directory inode should have
2426 * one alias at most.
2427 */
2428 while ((dn = d_find_alias(inode))) {
2429 if (dn == prev) {
2430 dput(dn);
2431 break;
2432 }
2433 d_invalidate(dn);
2434 if (prev)
2435 dput(prev);
2436 prev = dn;
2437 }
2438 if (prev)
2439 dput(prev);
2440 }
2441
2442 /*
2443 * Handle a cap GRANT message from the MDS. (Note that a GRANT may
2444 * actually be a revocation if it specifies a smaller cap set.)
2445 *
2446 * caller holds s_mutex and i_ceph_lock, we drop both.
2447 */
2448 static void handle_cap_grant(struct ceph_mds_client *mdsc,
2449 struct inode *inode, struct ceph_mds_caps *grant,
2450 void *snaptrace, int snaptrace_len,
2451 u64 inline_version,
2452 void *inline_data, int inline_len,
2453 struct ceph_buffer *xattr_buf,
2454 struct ceph_mds_session *session,
2455 struct ceph_cap *cap, int issued)
2456 __releases(ci->i_ceph_lock)
2457 {
2458 struct ceph_inode_info *ci = ceph_inode(inode);
2459 int mds = session->s_mds;
2460 int seq = le32_to_cpu(grant->seq);
2461 int newcaps = le32_to_cpu(grant->caps);
2462 int used, wanted, dirty;
2463 u64 size = le64_to_cpu(grant->size);
2464 u64 max_size = le64_to_cpu(grant->max_size);
2465 struct timespec mtime, atime, ctime;
2466 int check_caps = 0;
2467 bool wake = false;
2468 bool writeback = false;
2469 bool queue_trunc = false;
2470 bool queue_invalidate = false;
2471 bool queue_revalidate = false;
2472 bool deleted_inode = false;
2473 bool fill_inline = false;
2474
2475 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2476 inode, cap, mds, seq, ceph_cap_string(newcaps));
2477 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2478 inode->i_size);
2479
2480
2481 /*
2482 * auth mds of the inode changed. we received the cap export message,
2483 * but still haven't received the cap import message. handle_cap_export
2484 * updated the new auth MDS' cap.
2485 *
2486 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing a message
2487 * that was sent before the cap import message. So don't remove caps.
2488 */
2489 if (ceph_seq_cmp(seq, cap->seq) <= 0) {
2490 WARN_ON(cap != ci->i_auth_cap);
2491 WARN_ON(cap->cap_id != le64_to_cpu(grant->cap_id));
2492 seq = cap->seq;
2493 newcaps |= cap->issued;
2494 }
2495
2496 /*
2497 * If CACHE is being revoked, and we have no dirty buffers,
2498 * try to invalidate (once). (If there are dirty buffers, we
2499 * will invalidate _after_ writeback.)
2500 */
2501 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2502 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2503 !ci->i_wrbuffer_ref) {
2504 if (try_nonblocking_invalidate(inode)) {
2505 /* there were locked pages.. invalidate later
2506 in a separate thread. */
2507 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2508 queue_invalidate = true;
2509 ci->i_rdcache_revoking = ci->i_rdcache_gen;
2510 }
2511 }
2512
2513 ceph_fscache_invalidate(inode);
2514 }
2515
2516 /* side effects now are allowed */
2517 cap->cap_gen = session->s_cap_gen;
2518 cap->seq = seq;
2519
2520 __check_cap_issue(ci, cap, newcaps);
2521
2522 if ((newcaps & CEPH_CAP_AUTH_SHARED) &&
2523 (issued & CEPH_CAP_AUTH_EXCL) == 0) {
2524 inode->i_mode = le32_to_cpu(grant->mode);
2525 inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid));
2526 inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid));
2527 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2528 from_kuid(&init_user_ns, inode->i_uid),
2529 from_kgid(&init_user_ns, inode->i_gid));
2530 }
2531
2532 if ((newcaps & CEPH_CAP_AUTH_SHARED) &&
2533 (issued & CEPH_CAP_LINK_EXCL) == 0) {
2534 set_nlink(inode, le32_to_cpu(grant->nlink));
2535 if (inode->i_nlink == 0 &&
2536 (newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL)))
2537 deleted_inode = true;
2538 }
2539
2540 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2541 int len = le32_to_cpu(grant->xattr_len);
2542 u64 version = le64_to_cpu(grant->xattr_version);
2543
2544 if (version > ci->i_xattrs.version) {
2545 dout(" got new xattrs v%llu on %p len %d\n",
2546 version, inode, len);
2547 if (ci->i_xattrs.blob)
2548 ceph_buffer_put(ci->i_xattrs.blob);
2549 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2550 ci->i_xattrs.version = version;
2551 ceph_forget_all_cached_acls(inode);
2552 }
2553 }
2554
2555 /* Do we need to revalidate our fscache cookie. Don't bother on the
2556 * first cache cap as we already validate at cookie creation time. */
2557 if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1)
2558 queue_revalidate = true;
2559
2560 if (newcaps & CEPH_CAP_ANY_RD) {
2561 /* ctime/mtime/atime? */
2562 ceph_decode_timespec(&mtime, &grant->mtime);
2563 ceph_decode_timespec(&atime, &grant->atime);
2564 ceph_decode_timespec(&ctime, &grant->ctime);
2565 ceph_fill_file_time(inode, issued,
2566 le32_to_cpu(grant->time_warp_seq),
2567 &ctime, &mtime, &atime);
2568 }
2569
2570 if (newcaps & (CEPH_CAP_ANY_FILE_RD | CEPH_CAP_ANY_FILE_WR)) {
2571 /* file layout may have changed */
2572 ci->i_layout = grant->layout;
2573 /* size/truncate_seq? */
2574 queue_trunc = ceph_fill_file_size(inode, issued,
2575 le32_to_cpu(grant->truncate_seq),
2576 le64_to_cpu(grant->truncate_size),
2577 size);
2578 /* max size increase? */
2579 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) {
2580 dout("max_size %lld -> %llu\n",
2581 ci->i_max_size, max_size);
2582 ci->i_max_size = max_size;
2583 if (max_size >= ci->i_wanted_max_size) {
2584 ci->i_wanted_max_size = 0; /* reset */
2585 ci->i_requested_max_size = 0;
2586 }
2587 wake = true;
2588 }
2589 }
2590
2591 /* check cap bits */
2592 wanted = __ceph_caps_wanted(ci);
2593 used = __ceph_caps_used(ci);
2594 dirty = __ceph_caps_dirty(ci);
2595 dout(" my wanted = %s, used = %s, dirty %s\n",
2596 ceph_cap_string(wanted),
2597 ceph_cap_string(used),
2598 ceph_cap_string(dirty));
2599 if (wanted != le32_to_cpu(grant->wanted)) {
2600 dout("mds wanted %s -> %s\n",
2601 ceph_cap_string(le32_to_cpu(grant->wanted)),
2602 ceph_cap_string(wanted));
2603 /* imported cap may not have correct mds_wanted */
2604 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT)
2605 check_caps = 1;
2606 }
2607
2608 /* revocation, grant, or no-op? */
2609 if (cap->issued & ~newcaps) {
2610 int revoking = cap->issued & ~newcaps;
2611
2612 dout("revocation: %s -> %s (revoking %s)\n",
2613 ceph_cap_string(cap->issued),
2614 ceph_cap_string(newcaps),
2615 ceph_cap_string(revoking));
2616 if (revoking & used & CEPH_CAP_FILE_BUFFER)
2617 writeback = true; /* initiate writeback; will delay ack */
2618 else if (revoking == CEPH_CAP_FILE_CACHE &&
2619 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2620 queue_invalidate)
2621 ; /* do nothing yet, invalidation will be queued */
2622 else if (cap == ci->i_auth_cap)
2623 check_caps = 1; /* check auth cap only */
2624 else
2625 check_caps = 2; /* check all caps */
2626 cap->issued = newcaps;
2627 cap->implemented |= newcaps;
2628 } else if (cap->issued == newcaps) {
2629 dout("caps unchanged: %s -> %s\n",
2630 ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2631 } else {
2632 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2633 ceph_cap_string(newcaps));
2634 /* non-auth MDS is revoking the newly grant caps ? */
2635 if (cap == ci->i_auth_cap &&
2636 __ceph_caps_revoking_other(ci, cap, newcaps))
2637 check_caps = 2;
2638
2639 cap->issued = newcaps;
2640 cap->implemented |= newcaps; /* add bits only, to
2641 * avoid stepping on a
2642 * pending revocation */
2643 wake = true;
2644 }
2645 BUG_ON(cap->issued & ~cap->implemented);
2646
2647 if (inline_version > 0 && inline_version >= ci->i_inline_version) {
2648 ci->i_inline_version = inline_version;
2649 if (ci->i_inline_version != CEPH_INLINE_NONE &&
2650 (newcaps & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)))
2651 fill_inline = true;
2652 }
2653
2654 spin_unlock(&ci->i_ceph_lock);
2655
2656 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) {
2657 down_write(&mdsc->snap_rwsem);
2658 ceph_update_snap_trace(mdsc, snaptrace,
2659 snaptrace + snaptrace_len, false);
2660 downgrade_write(&mdsc->snap_rwsem);
2661 kick_flushing_inode_caps(mdsc, session, inode);
2662 up_read(&mdsc->snap_rwsem);
2663 if (newcaps & ~issued)
2664 wake = true;
2665 }
2666
2667 if (fill_inline)
2668 ceph_fill_inline_data(inode, NULL, inline_data, inline_len);
2669
2670 if (queue_trunc) {
2671 ceph_queue_vmtruncate(inode);
2672 ceph_queue_revalidate(inode);
2673 } else if (queue_revalidate)
2674 ceph_queue_revalidate(inode);
2675
2676 if (writeback)
2677 /*
2678 * queue inode for writeback: we can't actually call
2679 * filemap_write_and_wait, etc. from message handler
2680 * context.
2681 */
2682 ceph_queue_writeback(inode);
2683 if (queue_invalidate)
2684 ceph_queue_invalidate(inode);
2685 if (deleted_inode)
2686 invalidate_aliases(inode);
2687 if (wake)
2688 wake_up_all(&ci->i_cap_wq);
2689
2690 if (check_caps == 1)
2691 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2692 session);
2693 else if (check_caps == 2)
2694 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2695 else
2696 mutex_unlock(&session->s_mutex);
2697 }
2698
2699 /*
2700 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2701 * MDS has been safely committed.
2702 */
2703 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2704 struct ceph_mds_caps *m,
2705 struct ceph_mds_session *session,
2706 struct ceph_cap *cap)
2707 __releases(ci->i_ceph_lock)
2708 {
2709 struct ceph_inode_info *ci = ceph_inode(inode);
2710 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
2711 unsigned seq = le32_to_cpu(m->seq);
2712 int dirty = le32_to_cpu(m->dirty);
2713 int cleaned = 0;
2714 int drop = 0;
2715 int i;
2716
2717 for (i = 0; i < CEPH_CAP_BITS; i++)
2718 if ((dirty & (1 << i)) &&
2719 (u16)flush_tid == ci->i_cap_flush_tid[i])
2720 cleaned |= 1 << i;
2721
2722 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2723 " flushing %s -> %s\n",
2724 inode, session->s_mds, seq, ceph_cap_string(dirty),
2725 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2726 ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2727
2728 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2729 goto out;
2730
2731 ci->i_flushing_caps &= ~cleaned;
2732
2733 spin_lock(&mdsc->cap_dirty_lock);
2734 if (ci->i_flushing_caps == 0) {
2735 list_del_init(&ci->i_flushing_item);
2736 if (!list_empty(&session->s_cap_flushing))
2737 dout(" mds%d still flushing cap on %p\n",
2738 session->s_mds,
2739 &list_entry(session->s_cap_flushing.next,
2740 struct ceph_inode_info,
2741 i_flushing_item)->vfs_inode);
2742 mdsc->num_cap_flushing--;
2743 wake_up_all(&mdsc->cap_flushing_wq);
2744 dout(" inode %p now !flushing\n", inode);
2745
2746 if (ci->i_dirty_caps == 0) {
2747 dout(" inode %p now clean\n", inode);
2748 BUG_ON(!list_empty(&ci->i_dirty_item));
2749 drop = 1;
2750 if (ci->i_wrbuffer_ref_head == 0) {
2751 BUG_ON(!ci->i_head_snapc);
2752 ceph_put_snap_context(ci->i_head_snapc);
2753 ci->i_head_snapc = NULL;
2754 }
2755 } else {
2756 BUG_ON(list_empty(&ci->i_dirty_item));
2757 }
2758 }
2759 spin_unlock(&mdsc->cap_dirty_lock);
2760 wake_up_all(&ci->i_cap_wq);
2761
2762 out:
2763 spin_unlock(&ci->i_ceph_lock);
2764 if (drop)
2765 iput(inode);
2766 }
2767
2768 /*
2769 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
2770 * throw away our cap_snap.
2771 *
2772 * Caller hold s_mutex.
2773 */
2774 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2775 struct ceph_mds_caps *m,
2776 struct ceph_mds_session *session)
2777 {
2778 struct ceph_inode_info *ci = ceph_inode(inode);
2779 u64 follows = le64_to_cpu(m->snap_follows);
2780 struct ceph_cap_snap *capsnap;
2781 int drop = 0;
2782
2783 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2784 inode, ci, session->s_mds, follows);
2785
2786 spin_lock(&ci->i_ceph_lock);
2787 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2788 if (capsnap->follows == follows) {
2789 if (capsnap->flush_tid != flush_tid) {
2790 dout(" cap_snap %p follows %lld tid %lld !="
2791 " %lld\n", capsnap, follows,
2792 flush_tid, capsnap->flush_tid);
2793 break;
2794 }
2795 WARN_ON(capsnap->dirty_pages || capsnap->writing);
2796 dout(" removing %p cap_snap %p follows %lld\n",
2797 inode, capsnap, follows);
2798 ceph_put_snap_context(capsnap->context);
2799 list_del(&capsnap->ci_item);
2800 list_del(&capsnap->flushing_item);
2801 ceph_put_cap_snap(capsnap);
2802 drop = 1;
2803 break;
2804 } else {
2805 dout(" skipping cap_snap %p follows %lld\n",
2806 capsnap, capsnap->follows);
2807 }
2808 }
2809 spin_unlock(&ci->i_ceph_lock);
2810 if (drop)
2811 iput(inode);
2812 }
2813
2814 /*
2815 * Handle TRUNC from MDS, indicating file truncation.
2816 *
2817 * caller hold s_mutex.
2818 */
2819 static void handle_cap_trunc(struct inode *inode,
2820 struct ceph_mds_caps *trunc,
2821 struct ceph_mds_session *session)
2822 __releases(ci->i_ceph_lock)
2823 {
2824 struct ceph_inode_info *ci = ceph_inode(inode);
2825 int mds = session->s_mds;
2826 int seq = le32_to_cpu(trunc->seq);
2827 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2828 u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2829 u64 size = le64_to_cpu(trunc->size);
2830 int implemented = 0;
2831 int dirty = __ceph_caps_dirty(ci);
2832 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2833 int queue_trunc = 0;
2834
2835 issued |= implemented | dirty;
2836
2837 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2838 inode, mds, seq, truncate_size, truncate_seq);
2839 queue_trunc = ceph_fill_file_size(inode, issued,
2840 truncate_seq, truncate_size, size);
2841 spin_unlock(&ci->i_ceph_lock);
2842
2843 if (queue_trunc) {
2844 ceph_queue_vmtruncate(inode);
2845 ceph_fscache_invalidate(inode);
2846 }
2847 }
2848
2849 /*
2850 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
2851 * different one. If we are the most recent migration we've seen (as
2852 * indicated by mseq), make note of the migrating cap bits for the
2853 * duration (until we see the corresponding IMPORT).
2854 *
2855 * caller holds s_mutex
2856 */
2857 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2858 struct ceph_mds_cap_peer *ph,
2859 struct ceph_mds_session *session)
2860 {
2861 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
2862 struct ceph_mds_session *tsession = NULL;
2863 struct ceph_cap *cap, *tcap, *new_cap = NULL;
2864 struct ceph_inode_info *ci = ceph_inode(inode);
2865 u64 t_cap_id;
2866 unsigned mseq = le32_to_cpu(ex->migrate_seq);
2867 unsigned t_seq, t_mseq;
2868 int target, issued;
2869 int mds = session->s_mds;
2870
2871 if (ph) {
2872 t_cap_id = le64_to_cpu(ph->cap_id);
2873 t_seq = le32_to_cpu(ph->seq);
2874 t_mseq = le32_to_cpu(ph->mseq);
2875 target = le32_to_cpu(ph->mds);
2876 } else {
2877 t_cap_id = t_seq = t_mseq = 0;
2878 target = -1;
2879 }
2880
2881 dout("handle_cap_export inode %p ci %p mds%d mseq %d target %d\n",
2882 inode, ci, mds, mseq, target);
2883 retry:
2884 spin_lock(&ci->i_ceph_lock);
2885 cap = __get_cap_for_mds(ci, mds);
2886 if (!cap || cap->cap_id != le64_to_cpu(ex->cap_id))
2887 goto out_unlock;
2888
2889 if (target < 0) {
2890 __ceph_remove_cap(cap, false);
2891 goto out_unlock;
2892 }
2893
2894 /*
2895 * now we know we haven't received the cap import message yet
2896 * because the exported cap still exist.
2897 */
2898
2899 issued = cap->issued;
2900 WARN_ON(issued != cap->implemented);
2901
2902 tcap = __get_cap_for_mds(ci, target);
2903 if (tcap) {
2904 /* already have caps from the target */
2905 if (tcap->cap_id != t_cap_id ||
2906 ceph_seq_cmp(tcap->seq, t_seq) < 0) {
2907 dout(" updating import cap %p mds%d\n", tcap, target);
2908 tcap->cap_id = t_cap_id;
2909 tcap->seq = t_seq - 1;
2910 tcap->issue_seq = t_seq - 1;
2911 tcap->mseq = t_mseq;
2912 tcap->issued |= issued;
2913 tcap->implemented |= issued;
2914 if (cap == ci->i_auth_cap)
2915 ci->i_auth_cap = tcap;
2916 if (ci->i_flushing_caps && ci->i_auth_cap == tcap) {
2917 spin_lock(&mdsc->cap_dirty_lock);
2918 list_move_tail(&ci->i_flushing_item,
2919 &tcap->session->s_cap_flushing);
2920 spin_unlock(&mdsc->cap_dirty_lock);
2921 }
2922 }
2923 __ceph_remove_cap(cap, false);
2924 goto out_unlock;
2925 } else if (tsession) {
2926 /* add placeholder for the export tagert */
2927 int flag = (cap == ci->i_auth_cap) ? CEPH_CAP_FLAG_AUTH : 0;
2928 ceph_add_cap(inode, tsession, t_cap_id, -1, issued, 0,
2929 t_seq - 1, t_mseq, (u64)-1, flag, &new_cap);
2930
2931 __ceph_remove_cap(cap, false);
2932 goto out_unlock;
2933 }
2934
2935 spin_unlock(&ci->i_ceph_lock);
2936 mutex_unlock(&session->s_mutex);
2937
2938 /* open target session */
2939 tsession = ceph_mdsc_open_export_target_session(mdsc, target);
2940 if (!IS_ERR(tsession)) {
2941 if (mds > target) {
2942 mutex_lock(&session->s_mutex);
2943 mutex_lock_nested(&tsession->s_mutex,
2944 SINGLE_DEPTH_NESTING);
2945 } else {
2946 mutex_lock(&tsession->s_mutex);
2947 mutex_lock_nested(&session->s_mutex,
2948 SINGLE_DEPTH_NESTING);
2949 }
2950 ceph_add_cap_releases(mdsc, tsession);
2951 new_cap = ceph_get_cap(mdsc, NULL);
2952 } else {
2953 WARN_ON(1);
2954 tsession = NULL;
2955 target = -1;
2956 }
2957 goto retry;
2958
2959 out_unlock:
2960 spin_unlock(&ci->i_ceph_lock);
2961 mutex_unlock(&session->s_mutex);
2962 if (tsession) {
2963 mutex_unlock(&tsession->s_mutex);
2964 ceph_put_mds_session(tsession);
2965 }
2966 if (new_cap)
2967 ceph_put_cap(mdsc, new_cap);
2968 }
2969
2970 /*
2971 * Handle cap IMPORT.
2972 *
2973 * caller holds s_mutex. acquires i_ceph_lock
2974 */
2975 static void handle_cap_import(struct ceph_mds_client *mdsc,
2976 struct inode *inode, struct ceph_mds_caps *im,
2977 struct ceph_mds_cap_peer *ph,
2978 struct ceph_mds_session *session,
2979 struct ceph_cap **target_cap, int *old_issued)
2980 __acquires(ci->i_ceph_lock)
2981 {
2982 struct ceph_inode_info *ci = ceph_inode(inode);
2983 struct ceph_cap *cap, *ocap, *new_cap = NULL;
2984 int mds = session->s_mds;
2985 int issued;
2986 unsigned caps = le32_to_cpu(im->caps);
2987 unsigned wanted = le32_to_cpu(im->wanted);
2988 unsigned seq = le32_to_cpu(im->seq);
2989 unsigned mseq = le32_to_cpu(im->migrate_seq);
2990 u64 realmino = le64_to_cpu(im->realm);
2991 u64 cap_id = le64_to_cpu(im->cap_id);
2992 u64 p_cap_id;
2993 int peer;
2994
2995 if (ph) {
2996 p_cap_id = le64_to_cpu(ph->cap_id);
2997 peer = le32_to_cpu(ph->mds);
2998 } else {
2999 p_cap_id = 0;
3000 peer = -1;
3001 }
3002
3003 dout("handle_cap_import inode %p ci %p mds%d mseq %d peer %d\n",
3004 inode, ci, mds, mseq, peer);
3005
3006 retry:
3007 spin_lock(&ci->i_ceph_lock);
3008 cap = __get_cap_for_mds(ci, mds);
3009 if (!cap) {
3010 if (!new_cap) {
3011 spin_unlock(&ci->i_ceph_lock);
3012 new_cap = ceph_get_cap(mdsc, NULL);
3013 goto retry;
3014 }
3015 cap = new_cap;
3016 } else {
3017 if (new_cap) {
3018 ceph_put_cap(mdsc, new_cap);
3019 new_cap = NULL;
3020 }
3021 }
3022
3023 __ceph_caps_issued(ci, &issued);
3024 issued |= __ceph_caps_dirty(ci);
3025
3026 ceph_add_cap(inode, session, cap_id, -1, caps, wanted, seq, mseq,
3027 realmino, CEPH_CAP_FLAG_AUTH, &new_cap);
3028
3029 ocap = peer >= 0 ? __get_cap_for_mds(ci, peer) : NULL;
3030 if (ocap && ocap->cap_id == p_cap_id) {
3031 dout(" remove export cap %p mds%d flags %d\n",
3032 ocap, peer, ph->flags);
3033 if ((ph->flags & CEPH_CAP_FLAG_AUTH) &&
3034 (ocap->seq != le32_to_cpu(ph->seq) ||
3035 ocap->mseq != le32_to_cpu(ph->mseq))) {
3036 pr_err("handle_cap_import: mismatched seq/mseq: "
3037 "ino (%llx.%llx) mds%d seq %d mseq %d "
3038 "importer mds%d has peer seq %d mseq %d\n",
3039 ceph_vinop(inode), peer, ocap->seq,
3040 ocap->mseq, mds, le32_to_cpu(ph->seq),
3041 le32_to_cpu(ph->mseq));
3042 }
3043 __ceph_remove_cap(ocap, (ph->flags & CEPH_CAP_FLAG_RELEASE));
3044 }
3045
3046 /* make sure we re-request max_size, if necessary */
3047 ci->i_wanted_max_size = 0;
3048 ci->i_requested_max_size = 0;
3049
3050 *old_issued = issued;
3051 *target_cap = cap;
3052 }
3053
3054 /*
3055 * Handle a caps message from the MDS.
3056 *
3057 * Identify the appropriate session, inode, and call the right handler
3058 * based on the cap op.
3059 */
3060 void ceph_handle_caps(struct ceph_mds_session *session,
3061 struct ceph_msg *msg)
3062 {
3063 struct ceph_mds_client *mdsc = session->s_mdsc;
3064 struct super_block *sb = mdsc->fsc->sb;
3065 struct inode *inode;
3066 struct ceph_inode_info *ci;
3067 struct ceph_cap *cap;
3068 struct ceph_mds_caps *h;
3069 struct ceph_mds_cap_peer *peer = NULL;
3070 int mds = session->s_mds;
3071 int op, issued;
3072 u32 seq, mseq;
3073 struct ceph_vino vino;
3074 u64 cap_id;
3075 u64 size, max_size;
3076 u64 tid;
3077 u64 inline_version = 0;
3078 void *inline_data = NULL;
3079 u32 inline_len = 0;
3080 void *snaptrace;
3081 size_t snaptrace_len;
3082 void *p, *end;
3083
3084 dout("handle_caps from mds%d\n", mds);
3085
3086 /* decode */
3087 end = msg->front.iov_base + msg->front.iov_len;
3088 tid = le64_to_cpu(msg->hdr.tid);
3089 if (msg->front.iov_len < sizeof(*h))
3090 goto bad;
3091 h = msg->front.iov_base;
3092 op = le32_to_cpu(h->op);
3093 vino.ino = le64_to_cpu(h->ino);
3094 vino.snap = CEPH_NOSNAP;
3095 cap_id = le64_to_cpu(h->cap_id);
3096 seq = le32_to_cpu(h->seq);
3097 mseq = le32_to_cpu(h->migrate_seq);
3098 size = le64_to_cpu(h->size);
3099 max_size = le64_to_cpu(h->max_size);
3100
3101 snaptrace = h + 1;
3102 snaptrace_len = le32_to_cpu(h->snap_trace_len);
3103 p = snaptrace + snaptrace_len;
3104
3105 if (le16_to_cpu(msg->hdr.version) >= 2) {
3106 u32 flock_len;
3107 ceph_decode_32_safe(&p, end, flock_len, bad);
3108 if (p + flock_len > end)
3109 goto bad;
3110 p += flock_len;
3111 }
3112
3113 if (le16_to_cpu(msg->hdr.version) >= 3) {
3114 if (op == CEPH_CAP_OP_IMPORT) {
3115 if (p + sizeof(*peer) > end)
3116 goto bad;
3117 peer = p;
3118 p += sizeof(*peer);
3119 } else if (op == CEPH_CAP_OP_EXPORT) {
3120 /* recorded in unused fields */
3121 peer = (void *)&h->size;
3122 }
3123 }
3124
3125 if (le16_to_cpu(msg->hdr.version) >= 4) {
3126 ceph_decode_64_safe(&p, end, inline_version, bad);
3127 ceph_decode_32_safe(&p, end, inline_len, bad);
3128 if (p + inline_len > end)
3129 goto bad;
3130 inline_data = p;
3131 p += inline_len;
3132 }
3133
3134 /* lookup ino */
3135 inode = ceph_find_inode(sb, vino);
3136 ci = ceph_inode(inode);
3137 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
3138 vino.snap, inode);
3139
3140 mutex_lock(&session->s_mutex);
3141 session->s_seq++;
3142 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
3143 (unsigned)seq);
3144
3145 if (op == CEPH_CAP_OP_IMPORT)
3146 ceph_add_cap_releases(mdsc, session);
3147
3148 if (!inode) {
3149 dout(" i don't have ino %llx\n", vino.ino);
3150
3151 if (op == CEPH_CAP_OP_IMPORT) {
3152 spin_lock(&session->s_cap_lock);
3153 __queue_cap_release(session, vino.ino, cap_id,
3154 mseq, seq);
3155 spin_unlock(&session->s_cap_lock);
3156 }
3157 goto flush_cap_releases;
3158 }
3159
3160 /* these will work even if we don't have a cap yet */
3161 switch (op) {
3162 case CEPH_CAP_OP_FLUSHSNAP_ACK:
3163 handle_cap_flushsnap_ack(inode, tid, h, session);
3164 goto done;
3165
3166 case CEPH_CAP_OP_EXPORT:
3167 handle_cap_export(inode, h, peer, session);
3168 goto done_unlocked;
3169
3170 case CEPH_CAP_OP_IMPORT:
3171 handle_cap_import(mdsc, inode, h, peer, session,
3172 &cap, &issued);
3173 handle_cap_grant(mdsc, inode, h, snaptrace, snaptrace_len,
3174 inline_version, inline_data, inline_len,
3175 msg->middle, session, cap, issued);
3176 goto done_unlocked;
3177 }
3178
3179 /* the rest require a cap */
3180 spin_lock(&ci->i_ceph_lock);
3181 cap = __get_cap_for_mds(ceph_inode(inode), mds);
3182 if (!cap) {
3183 dout(" no cap on %p ino %llx.%llx from mds%d\n",
3184 inode, ceph_ino(inode), ceph_snap(inode), mds);
3185 spin_unlock(&ci->i_ceph_lock);
3186 goto flush_cap_releases;
3187 }
3188
3189 /* note that each of these drops i_ceph_lock for us */
3190 switch (op) {
3191 case CEPH_CAP_OP_REVOKE:
3192 case CEPH_CAP_OP_GRANT:
3193 __ceph_caps_issued(ci, &issued);
3194 issued |= __ceph_caps_dirty(ci);
3195 handle_cap_grant(mdsc, inode, h, NULL, 0,
3196 inline_version, inline_data, inline_len,
3197 msg->middle, session, cap, issued);
3198 goto done_unlocked;
3199
3200 case CEPH_CAP_OP_FLUSH_ACK:
3201 handle_cap_flush_ack(inode, tid, h, session, cap);
3202 break;
3203
3204 case CEPH_CAP_OP_TRUNC:
3205 handle_cap_trunc(inode, h, session);
3206 break;
3207
3208 default:
3209 spin_unlock(&ci->i_ceph_lock);
3210 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
3211 ceph_cap_op_name(op));
3212 }
3213
3214 goto done;
3215
3216 flush_cap_releases:
3217 /*
3218 * send any full release message to try to move things
3219 * along for the mds (who clearly thinks we still have this
3220 * cap).
3221 */
3222 ceph_add_cap_releases(mdsc, session);
3223 ceph_send_cap_releases(mdsc, session);
3224
3225 done:
3226 mutex_unlock(&session->s_mutex);
3227 done_unlocked:
3228 iput(inode);
3229 return;
3230
3231 bad:
3232 pr_err("ceph_handle_caps: corrupt message\n");
3233 ceph_msg_dump(msg);
3234 return;
3235 }
3236
3237 /*
3238 * Delayed work handler to process end of delayed cap release LRU list.
3239 */
3240 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
3241 {
3242 struct ceph_inode_info *ci;
3243 int flags = CHECK_CAPS_NODELAY;
3244
3245 dout("check_delayed_caps\n");
3246 while (1) {
3247 spin_lock(&mdsc->cap_delay_lock);
3248 if (list_empty(&mdsc->cap_delay_list))
3249 break;
3250 ci = list_first_entry(&mdsc->cap_delay_list,
3251 struct ceph_inode_info,
3252 i_cap_delay_list);
3253 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
3254 time_before(jiffies, ci->i_hold_caps_max))
3255 break;
3256 list_del_init(&ci->i_cap_delay_list);
3257 spin_unlock(&mdsc->cap_delay_lock);
3258 dout("check_delayed_caps on %p\n", &ci->vfs_inode);
3259 ceph_check_caps(ci, flags, NULL);
3260 }
3261 spin_unlock(&mdsc->cap_delay_lock);
3262 }
3263
3264 /*
3265 * Flush all dirty caps to the mds
3266 */
3267 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
3268 {
3269 struct ceph_inode_info *ci;
3270 struct inode *inode;
3271
3272 dout("flush_dirty_caps\n");
3273 spin_lock(&mdsc->cap_dirty_lock);
3274 while (!list_empty(&mdsc->cap_dirty)) {
3275 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
3276 i_dirty_item);
3277 inode = &ci->vfs_inode;
3278 ihold(inode);
3279 dout("flush_dirty_caps %p\n", inode);
3280 spin_unlock(&mdsc->cap_dirty_lock);
3281 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
3282 iput(inode);
3283 spin_lock(&mdsc->cap_dirty_lock);
3284 }
3285 spin_unlock(&mdsc->cap_dirty_lock);
3286 dout("flush_dirty_caps done\n");
3287 }
3288
3289 /*
3290 * Drop open file reference. If we were the last open file,
3291 * we may need to release capabilities to the MDS (or schedule
3292 * their delayed release).
3293 */
3294 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
3295 {
3296 struct inode *inode = &ci->vfs_inode;
3297 int last = 0;
3298
3299 spin_lock(&ci->i_ceph_lock);
3300 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
3301 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
3302 BUG_ON(ci->i_nr_by_mode[fmode] == 0);
3303 if (--ci->i_nr_by_mode[fmode] == 0)
3304 last++;
3305 spin_unlock(&ci->i_ceph_lock);
3306
3307 if (last && ci->i_vino.snap == CEPH_NOSNAP)
3308 ceph_check_caps(ci, 0, NULL);
3309 }
3310
3311 /*
3312 * Helpers for embedding cap and dentry lease releases into mds
3313 * requests.
3314 *
3315 * @force is used by dentry_release (below) to force inclusion of a
3316 * record for the directory inode, even when there aren't any caps to
3317 * drop.
3318 */
3319 int ceph_encode_inode_release(void **p, struct inode *inode,
3320 int mds, int drop, int unless, int force)
3321 {
3322 struct ceph_inode_info *ci = ceph_inode(inode);
3323 struct ceph_cap *cap;
3324 struct ceph_mds_request_release *rel = *p;
3325 int used, dirty;
3326 int ret = 0;
3327
3328 spin_lock(&ci->i_ceph_lock);
3329 used = __ceph_caps_used(ci);
3330 dirty = __ceph_caps_dirty(ci);
3331
3332 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
3333 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
3334 ceph_cap_string(unless));
3335
3336 /* only drop unused, clean caps */
3337 drop &= ~(used | dirty);
3338
3339 cap = __get_cap_for_mds(ci, mds);
3340 if (cap && __cap_is_valid(cap)) {
3341 if (force ||
3342 ((cap->issued & drop) &&
3343 (cap->issued & unless) == 0)) {
3344 if ((cap->issued & drop) &&
3345 (cap->issued & unless) == 0) {
3346 int wanted = __ceph_caps_wanted(ci);
3347 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0)
3348 wanted |= cap->mds_wanted;
3349 dout("encode_inode_release %p cap %p "
3350 "%s -> %s, wanted %s -> %s\n", inode, cap,
3351 ceph_cap_string(cap->issued),
3352 ceph_cap_string(cap->issued & ~drop),
3353 ceph_cap_string(cap->mds_wanted),
3354 ceph_cap_string(wanted));
3355
3356 cap->issued &= ~drop;
3357 cap->implemented &= ~drop;
3358 cap->mds_wanted = wanted;
3359 } else {
3360 dout("encode_inode_release %p cap %p %s"
3361 " (force)\n", inode, cap,
3362 ceph_cap_string(cap->issued));
3363 }
3364
3365 rel->ino = cpu_to_le64(ceph_ino(inode));
3366 rel->cap_id = cpu_to_le64(cap->cap_id);
3367 rel->seq = cpu_to_le32(cap->seq);
3368 rel->issue_seq = cpu_to_le32(cap->issue_seq);
3369 rel->mseq = cpu_to_le32(cap->mseq);
3370 rel->caps = cpu_to_le32(cap->implemented);
3371 rel->wanted = cpu_to_le32(cap->mds_wanted);
3372 rel->dname_len = 0;
3373 rel->dname_seq = 0;
3374 *p += sizeof(*rel);
3375 ret = 1;
3376 } else {
3377 dout("encode_inode_release %p cap %p %s\n",
3378 inode, cap, ceph_cap_string(cap->issued));
3379 }
3380 }
3381 spin_unlock(&ci->i_ceph_lock);
3382 return ret;
3383 }
3384
3385 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3386 int mds, int drop, int unless)
3387 {
3388 struct inode *dir = dentry->d_parent->d_inode;
3389 struct ceph_mds_request_release *rel = *p;
3390 struct ceph_dentry_info *di = ceph_dentry(dentry);
3391 int force = 0;
3392 int ret;
3393
3394 /*
3395 * force an record for the directory caps if we have a dentry lease.
3396 * this is racy (can't take i_ceph_lock and d_lock together), but it
3397 * doesn't have to be perfect; the mds will revoke anything we don't
3398 * release.
3399 */
3400 spin_lock(&dentry->d_lock);
3401 if (di->lease_session && di->lease_session->s_mds == mds)
3402 force = 1;
3403 spin_unlock(&dentry->d_lock);
3404
3405 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3406
3407 spin_lock(&dentry->d_lock);
3408 if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3409 dout("encode_dentry_release %p mds%d seq %d\n",
3410 dentry, mds, (int)di->lease_seq);
3411 rel->dname_len = cpu_to_le32(dentry->d_name.len);
3412 memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3413 *p += dentry->d_name.len;
3414 rel->dname_seq = cpu_to_le32(di->lease_seq);
3415 __ceph_mdsc_drop_dentry_lease(dentry);
3416 }
3417 spin_unlock(&dentry->d_lock);
3418 return ret;
3419 }
This page took 0.098675 seconds and 5 git commands to generate.