ceph: use rbtree for mds requests
[deliverable/linux.git] / fs / ceph / mds_client.c
1 #include "ceph_debug.h"
2
3 #include <linux/wait.h>
4 #include <linux/sched.h>
5
6 #include "mds_client.h"
7 #include "mon_client.h"
8 #include "super.h"
9 #include "messenger.h"
10 #include "decode.h"
11 #include "auth.h"
12 #include "pagelist.h"
13
14 /*
15 * A cluster of MDS (metadata server) daemons is responsible for
16 * managing the file system namespace (the directory hierarchy and
17 * inodes) and for coordinating shared access to storage. Metadata is
18 * partitioning hierarchically across a number of servers, and that
19 * partition varies over time as the cluster adjusts the distribution
20 * in order to balance load.
21 *
22 * The MDS client is primarily responsible to managing synchronous
23 * metadata requests for operations like open, unlink, and so forth.
24 * If there is a MDS failure, we find out about it when we (possibly
25 * request and) receive a new MDS map, and can resubmit affected
26 * requests.
27 *
28 * For the most part, though, we take advantage of a lossless
29 * communications channel to the MDS, and do not need to worry about
30 * timing out or resubmitting requests.
31 *
32 * We maintain a stateful "session" with each MDS we interact with.
33 * Within each session, we sent periodic heartbeat messages to ensure
34 * any capabilities or leases we have been issues remain valid. If
35 * the session times out and goes stale, our leases and capabilities
36 * are no longer valid.
37 */
38
39 static void __wake_requests(struct ceph_mds_client *mdsc,
40 struct list_head *head);
41
42 const static struct ceph_connection_operations mds_con_ops;
43
44
45 /*
46 * mds reply parsing
47 */
48
49 /*
50 * parse individual inode info
51 */
52 static int parse_reply_info_in(void **p, void *end,
53 struct ceph_mds_reply_info_in *info)
54 {
55 int err = -EIO;
56
57 info->in = *p;
58 *p += sizeof(struct ceph_mds_reply_inode) +
59 sizeof(*info->in->fragtree.splits) *
60 le32_to_cpu(info->in->fragtree.nsplits);
61
62 ceph_decode_32_safe(p, end, info->symlink_len, bad);
63 ceph_decode_need(p, end, info->symlink_len, bad);
64 info->symlink = *p;
65 *p += info->symlink_len;
66
67 ceph_decode_32_safe(p, end, info->xattr_len, bad);
68 ceph_decode_need(p, end, info->xattr_len, bad);
69 info->xattr_data = *p;
70 *p += info->xattr_len;
71 return 0;
72 bad:
73 return err;
74 }
75
76 /*
77 * parse a normal reply, which may contain a (dir+)dentry and/or a
78 * target inode.
79 */
80 static int parse_reply_info_trace(void **p, void *end,
81 struct ceph_mds_reply_info_parsed *info)
82 {
83 int err;
84
85 if (info->head->is_dentry) {
86 err = parse_reply_info_in(p, end, &info->diri);
87 if (err < 0)
88 goto out_bad;
89
90 if (unlikely(*p + sizeof(*info->dirfrag) > end))
91 goto bad;
92 info->dirfrag = *p;
93 *p += sizeof(*info->dirfrag) +
94 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
95 if (unlikely(*p > end))
96 goto bad;
97
98 ceph_decode_32_safe(p, end, info->dname_len, bad);
99 ceph_decode_need(p, end, info->dname_len, bad);
100 info->dname = *p;
101 *p += info->dname_len;
102 info->dlease = *p;
103 *p += sizeof(*info->dlease);
104 }
105
106 if (info->head->is_target) {
107 err = parse_reply_info_in(p, end, &info->targeti);
108 if (err < 0)
109 goto out_bad;
110 }
111
112 if (unlikely(*p != end))
113 goto bad;
114 return 0;
115
116 bad:
117 err = -EIO;
118 out_bad:
119 pr_err("problem parsing mds trace %d\n", err);
120 return err;
121 }
122
123 /*
124 * parse readdir results
125 */
126 static int parse_reply_info_dir(void **p, void *end,
127 struct ceph_mds_reply_info_parsed *info)
128 {
129 u32 num, i = 0;
130 int err;
131
132 info->dir_dir = *p;
133 if (*p + sizeof(*info->dir_dir) > end)
134 goto bad;
135 *p += sizeof(*info->dir_dir) +
136 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
137 if (*p > end)
138 goto bad;
139
140 ceph_decode_need(p, end, sizeof(num) + 2, bad);
141 num = ceph_decode_32(p);
142 info->dir_end = ceph_decode_8(p);
143 info->dir_complete = ceph_decode_8(p);
144 if (num == 0)
145 goto done;
146
147 /* alloc large array */
148 info->dir_nr = num;
149 info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
150 sizeof(*info->dir_dname) +
151 sizeof(*info->dir_dname_len) +
152 sizeof(*info->dir_dlease),
153 GFP_NOFS);
154 if (info->dir_in == NULL) {
155 err = -ENOMEM;
156 goto out_bad;
157 }
158 info->dir_dname = (void *)(info->dir_in + num);
159 info->dir_dname_len = (void *)(info->dir_dname + num);
160 info->dir_dlease = (void *)(info->dir_dname_len + num);
161
162 while (num) {
163 /* dentry */
164 ceph_decode_need(p, end, sizeof(u32)*2, bad);
165 info->dir_dname_len[i] = ceph_decode_32(p);
166 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
167 info->dir_dname[i] = *p;
168 *p += info->dir_dname_len[i];
169 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
170 info->dir_dname[i]);
171 info->dir_dlease[i] = *p;
172 *p += sizeof(struct ceph_mds_reply_lease);
173
174 /* inode */
175 err = parse_reply_info_in(p, end, &info->dir_in[i]);
176 if (err < 0)
177 goto out_bad;
178 i++;
179 num--;
180 }
181
182 done:
183 if (*p != end)
184 goto bad;
185 return 0;
186
187 bad:
188 err = -EIO;
189 out_bad:
190 pr_err("problem parsing dir contents %d\n", err);
191 return err;
192 }
193
194 /*
195 * parse entire mds reply
196 */
197 static int parse_reply_info(struct ceph_msg *msg,
198 struct ceph_mds_reply_info_parsed *info)
199 {
200 void *p, *end;
201 u32 len;
202 int err;
203
204 info->head = msg->front.iov_base;
205 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
206 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
207
208 /* trace */
209 ceph_decode_32_safe(&p, end, len, bad);
210 if (len > 0) {
211 err = parse_reply_info_trace(&p, p+len, info);
212 if (err < 0)
213 goto out_bad;
214 }
215
216 /* dir content */
217 ceph_decode_32_safe(&p, end, len, bad);
218 if (len > 0) {
219 err = parse_reply_info_dir(&p, p+len, info);
220 if (err < 0)
221 goto out_bad;
222 }
223
224 /* snap blob */
225 ceph_decode_32_safe(&p, end, len, bad);
226 info->snapblob_len = len;
227 info->snapblob = p;
228 p += len;
229
230 if (p != end)
231 goto bad;
232 return 0;
233
234 bad:
235 err = -EIO;
236 out_bad:
237 pr_err("mds parse_reply err %d\n", err);
238 return err;
239 }
240
241 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
242 {
243 kfree(info->dir_in);
244 }
245
246
247 /*
248 * sessions
249 */
250 static const char *session_state_name(int s)
251 {
252 switch (s) {
253 case CEPH_MDS_SESSION_NEW: return "new";
254 case CEPH_MDS_SESSION_OPENING: return "opening";
255 case CEPH_MDS_SESSION_OPEN: return "open";
256 case CEPH_MDS_SESSION_HUNG: return "hung";
257 case CEPH_MDS_SESSION_CLOSING: return "closing";
258 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
259 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
260 default: return "???";
261 }
262 }
263
264 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
265 {
266 if (atomic_inc_not_zero(&s->s_ref)) {
267 dout("mdsc get_session %p %d -> %d\n", s,
268 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
269 return s;
270 } else {
271 dout("mdsc get_session %p 0 -- FAIL", s);
272 return NULL;
273 }
274 }
275
276 void ceph_put_mds_session(struct ceph_mds_session *s)
277 {
278 dout("mdsc put_session %p %d -> %d\n", s,
279 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
280 if (atomic_dec_and_test(&s->s_ref)) {
281 if (s->s_authorizer)
282 s->s_mdsc->client->monc.auth->ops->destroy_authorizer(
283 s->s_mdsc->client->monc.auth, s->s_authorizer);
284 kfree(s);
285 }
286 }
287
288 /*
289 * called under mdsc->mutex
290 */
291 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
292 int mds)
293 {
294 struct ceph_mds_session *session;
295
296 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
297 return NULL;
298 session = mdsc->sessions[mds];
299 dout("lookup_mds_session %p %d\n", session,
300 atomic_read(&session->s_ref));
301 get_session(session);
302 return session;
303 }
304
305 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
306 {
307 if (mds >= mdsc->max_sessions)
308 return false;
309 return mdsc->sessions[mds];
310 }
311
312 /*
313 * create+register a new session for given mds.
314 * called under mdsc->mutex.
315 */
316 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
317 int mds)
318 {
319 struct ceph_mds_session *s;
320
321 s = kzalloc(sizeof(*s), GFP_NOFS);
322 s->s_mdsc = mdsc;
323 s->s_mds = mds;
324 s->s_state = CEPH_MDS_SESSION_NEW;
325 s->s_ttl = 0;
326 s->s_seq = 0;
327 mutex_init(&s->s_mutex);
328
329 ceph_con_init(mdsc->client->msgr, &s->s_con);
330 s->s_con.private = s;
331 s->s_con.ops = &mds_con_ops;
332 s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS;
333 s->s_con.peer_name.num = cpu_to_le64(mds);
334
335 spin_lock_init(&s->s_cap_lock);
336 s->s_cap_gen = 0;
337 s->s_cap_ttl = 0;
338 s->s_renew_requested = 0;
339 s->s_renew_seq = 0;
340 INIT_LIST_HEAD(&s->s_caps);
341 s->s_nr_caps = 0;
342 s->s_trim_caps = 0;
343 atomic_set(&s->s_ref, 1);
344 INIT_LIST_HEAD(&s->s_waiting);
345 INIT_LIST_HEAD(&s->s_unsafe);
346 s->s_num_cap_releases = 0;
347 s->s_iterating_caps = false;
348 INIT_LIST_HEAD(&s->s_cap_releases);
349 INIT_LIST_HEAD(&s->s_cap_releases_done);
350 INIT_LIST_HEAD(&s->s_cap_flushing);
351 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
352
353 dout("register_session mds%d\n", mds);
354 if (mds >= mdsc->max_sessions) {
355 int newmax = 1 << get_count_order(mds+1);
356 struct ceph_mds_session **sa;
357
358 dout("register_session realloc to %d\n", newmax);
359 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
360 if (sa == NULL)
361 goto fail_realloc;
362 if (mdsc->sessions) {
363 memcpy(sa, mdsc->sessions,
364 mdsc->max_sessions * sizeof(void *));
365 kfree(mdsc->sessions);
366 }
367 mdsc->sessions = sa;
368 mdsc->max_sessions = newmax;
369 }
370 mdsc->sessions[mds] = s;
371 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
372
373 ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
374
375 return s;
376
377 fail_realloc:
378 kfree(s);
379 return ERR_PTR(-ENOMEM);
380 }
381
382 /*
383 * called under mdsc->mutex
384 */
385 static void unregister_session(struct ceph_mds_client *mdsc,
386 struct ceph_mds_session *s)
387 {
388 dout("unregister_session mds%d %p\n", s->s_mds, s);
389 mdsc->sessions[s->s_mds] = NULL;
390 ceph_con_close(&s->s_con);
391 ceph_put_mds_session(s);
392 }
393
394 /*
395 * drop session refs in request.
396 *
397 * should be last request ref, or hold mdsc->mutex
398 */
399 static void put_request_session(struct ceph_mds_request *req)
400 {
401 if (req->r_session) {
402 ceph_put_mds_session(req->r_session);
403 req->r_session = NULL;
404 }
405 }
406
407 void ceph_mdsc_release_request(struct kref *kref)
408 {
409 struct ceph_mds_request *req = container_of(kref,
410 struct ceph_mds_request,
411 r_kref);
412 if (req->r_request)
413 ceph_msg_put(req->r_request);
414 if (req->r_reply) {
415 ceph_msg_put(req->r_reply);
416 destroy_reply_info(&req->r_reply_info);
417 }
418 if (req->r_inode) {
419 ceph_put_cap_refs(ceph_inode(req->r_inode),
420 CEPH_CAP_PIN);
421 iput(req->r_inode);
422 }
423 if (req->r_locked_dir)
424 ceph_put_cap_refs(ceph_inode(req->r_locked_dir),
425 CEPH_CAP_PIN);
426 if (req->r_target_inode)
427 iput(req->r_target_inode);
428 if (req->r_dentry)
429 dput(req->r_dentry);
430 if (req->r_old_dentry) {
431 ceph_put_cap_refs(
432 ceph_inode(req->r_old_dentry->d_parent->d_inode),
433 CEPH_CAP_PIN);
434 dput(req->r_old_dentry);
435 }
436 kfree(req->r_path1);
437 kfree(req->r_path2);
438 put_request_session(req);
439 ceph_unreserve_caps(&req->r_caps_reservation);
440 kfree(req);
441 }
442
443 /*
444 * lookup session, bump ref if found.
445 *
446 * called under mdsc->mutex.
447 */
448 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
449 u64 tid)
450 {
451 struct ceph_mds_request *req;
452 struct rb_node *n = mdsc->request_tree.rb_node;
453
454 while (n) {
455 req = rb_entry(n, struct ceph_mds_request, r_node);
456 if (tid < req->r_tid)
457 n = n->rb_left;
458 else if (tid > req->r_tid)
459 n = n->rb_right;
460 else {
461 ceph_mdsc_get_request(req);
462 return req;
463 }
464 }
465 return NULL;
466 }
467
468 static void __insert_request(struct ceph_mds_client *mdsc,
469 struct ceph_mds_request *new)
470 {
471 struct rb_node **p = &mdsc->request_tree.rb_node;
472 struct rb_node *parent = NULL;
473 struct ceph_mds_request *req = NULL;
474
475 while (*p) {
476 parent = *p;
477 req = rb_entry(parent, struct ceph_mds_request, r_node);
478 if (new->r_tid < req->r_tid)
479 p = &(*p)->rb_left;
480 else if (new->r_tid > req->r_tid)
481 p = &(*p)->rb_right;
482 else
483 BUG();
484 }
485
486 rb_link_node(&new->r_node, parent, p);
487 rb_insert_color(&new->r_node, &mdsc->request_tree);
488 }
489
490 /*
491 * Register an in-flight request, and assign a tid. Link to directory
492 * are modifying (if any).
493 *
494 * Called under mdsc->mutex.
495 */
496 static void __register_request(struct ceph_mds_client *mdsc,
497 struct ceph_mds_request *req,
498 struct inode *dir)
499 {
500 req->r_tid = ++mdsc->last_tid;
501 if (req->r_num_caps)
502 ceph_reserve_caps(&req->r_caps_reservation, req->r_num_caps);
503 dout("__register_request %p tid %lld\n", req, req->r_tid);
504 ceph_mdsc_get_request(req);
505 __insert_request(mdsc, req);
506
507 if (dir) {
508 struct ceph_inode_info *ci = ceph_inode(dir);
509
510 spin_lock(&ci->i_unsafe_lock);
511 req->r_unsafe_dir = dir;
512 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
513 spin_unlock(&ci->i_unsafe_lock);
514 }
515 }
516
517 static void __unregister_request(struct ceph_mds_client *mdsc,
518 struct ceph_mds_request *req)
519 {
520 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
521 rb_erase(&req->r_node, &mdsc->request_tree);
522 ceph_mdsc_put_request(req);
523
524 if (req->r_unsafe_dir) {
525 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
526
527 spin_lock(&ci->i_unsafe_lock);
528 list_del_init(&req->r_unsafe_dir_item);
529 spin_unlock(&ci->i_unsafe_lock);
530 }
531 }
532
533 /*
534 * Choose mds to send request to next. If there is a hint set in the
535 * request (e.g., due to a prior forward hint from the mds), use that.
536 * Otherwise, consult frag tree and/or caps to identify the
537 * appropriate mds. If all else fails, choose randomly.
538 *
539 * Called under mdsc->mutex.
540 */
541 static int __choose_mds(struct ceph_mds_client *mdsc,
542 struct ceph_mds_request *req)
543 {
544 struct inode *inode;
545 struct ceph_inode_info *ci;
546 struct ceph_cap *cap;
547 int mode = req->r_direct_mode;
548 int mds = -1;
549 u32 hash = req->r_direct_hash;
550 bool is_hash = req->r_direct_is_hash;
551
552 /*
553 * is there a specific mds we should try? ignore hint if we have
554 * no session and the mds is not up (active or recovering).
555 */
556 if (req->r_resend_mds >= 0 &&
557 (__have_session(mdsc, req->r_resend_mds) ||
558 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
559 dout("choose_mds using resend_mds mds%d\n",
560 req->r_resend_mds);
561 return req->r_resend_mds;
562 }
563
564 if (mode == USE_RANDOM_MDS)
565 goto random;
566
567 inode = NULL;
568 if (req->r_inode) {
569 inode = req->r_inode;
570 } else if (req->r_dentry) {
571 if (req->r_dentry->d_inode) {
572 inode = req->r_dentry->d_inode;
573 } else {
574 inode = req->r_dentry->d_parent->d_inode;
575 hash = req->r_dentry->d_name.hash;
576 is_hash = true;
577 }
578 }
579 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
580 (int)hash, mode);
581 if (!inode)
582 goto random;
583 ci = ceph_inode(inode);
584
585 if (is_hash && S_ISDIR(inode->i_mode)) {
586 struct ceph_inode_frag frag;
587 int found;
588
589 ceph_choose_frag(ci, hash, &frag, &found);
590 if (found) {
591 if (mode == USE_ANY_MDS && frag.ndist > 0) {
592 u8 r;
593
594 /* choose a random replica */
595 get_random_bytes(&r, 1);
596 r %= frag.ndist;
597 mds = frag.dist[r];
598 dout("choose_mds %p %llx.%llx "
599 "frag %u mds%d (%d/%d)\n",
600 inode, ceph_vinop(inode),
601 frag.frag, frag.mds,
602 (int)r, frag.ndist);
603 return mds;
604 }
605
606 /* since this file/dir wasn't known to be
607 * replicated, then we want to look for the
608 * authoritative mds. */
609 mode = USE_AUTH_MDS;
610 if (frag.mds >= 0) {
611 /* choose auth mds */
612 mds = frag.mds;
613 dout("choose_mds %p %llx.%llx "
614 "frag %u mds%d (auth)\n",
615 inode, ceph_vinop(inode), frag.frag, mds);
616 return mds;
617 }
618 }
619 }
620
621 spin_lock(&inode->i_lock);
622 cap = NULL;
623 if (mode == USE_AUTH_MDS)
624 cap = ci->i_auth_cap;
625 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
626 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
627 if (!cap) {
628 spin_unlock(&inode->i_lock);
629 goto random;
630 }
631 mds = cap->session->s_mds;
632 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
633 inode, ceph_vinop(inode), mds,
634 cap == ci->i_auth_cap ? "auth " : "", cap);
635 spin_unlock(&inode->i_lock);
636 return mds;
637
638 random:
639 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
640 dout("choose_mds chose random mds%d\n", mds);
641 return mds;
642 }
643
644
645 /*
646 * session messages
647 */
648 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
649 {
650 struct ceph_msg *msg;
651 struct ceph_mds_session_head *h;
652
653 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), 0, 0, NULL);
654 if (IS_ERR(msg)) {
655 pr_err("create_session_msg ENOMEM creating msg\n");
656 return ERR_PTR(PTR_ERR(msg));
657 }
658 h = msg->front.iov_base;
659 h->op = cpu_to_le32(op);
660 h->seq = cpu_to_le64(seq);
661 return msg;
662 }
663
664 /*
665 * send session open request.
666 *
667 * called under mdsc->mutex
668 */
669 static int __open_session(struct ceph_mds_client *mdsc,
670 struct ceph_mds_session *session)
671 {
672 struct ceph_msg *msg;
673 int mstate;
674 int mds = session->s_mds;
675 int err = 0;
676
677 /* wait for mds to go active? */
678 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
679 dout("open_session to mds%d (%s)\n", mds,
680 ceph_mds_state_name(mstate));
681 session->s_state = CEPH_MDS_SESSION_OPENING;
682 session->s_renew_requested = jiffies;
683
684 /* send connect message */
685 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
686 if (IS_ERR(msg)) {
687 err = PTR_ERR(msg);
688 goto out;
689 }
690 ceph_con_send(&session->s_con, msg);
691
692 out:
693 return 0;
694 }
695
696 /*
697 * session caps
698 */
699
700 /*
701 * Free preallocated cap messages assigned to this session
702 */
703 static void cleanup_cap_releases(struct ceph_mds_session *session)
704 {
705 struct ceph_msg *msg;
706
707 spin_lock(&session->s_cap_lock);
708 while (!list_empty(&session->s_cap_releases)) {
709 msg = list_first_entry(&session->s_cap_releases,
710 struct ceph_msg, list_head);
711 list_del_init(&msg->list_head);
712 ceph_msg_put(msg);
713 }
714 while (!list_empty(&session->s_cap_releases_done)) {
715 msg = list_first_entry(&session->s_cap_releases_done,
716 struct ceph_msg, list_head);
717 list_del_init(&msg->list_head);
718 ceph_msg_put(msg);
719 }
720 spin_unlock(&session->s_cap_lock);
721 }
722
723 /*
724 * Helper to safely iterate over all caps associated with a session.
725 *
726 * caller must hold session s_mutex
727 */
728 static int iterate_session_caps(struct ceph_mds_session *session,
729 int (*cb)(struct inode *, struct ceph_cap *,
730 void *), void *arg)
731 {
732 struct ceph_cap *cap, *ncap;
733 struct inode *inode;
734 int ret;
735
736 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
737 spin_lock(&session->s_cap_lock);
738 session->s_iterating_caps = true;
739 list_for_each_entry_safe(cap, ncap, &session->s_caps, session_caps) {
740 inode = igrab(&cap->ci->vfs_inode);
741 if (!inode)
742 continue;
743 spin_unlock(&session->s_cap_lock);
744 ret = cb(inode, cap, arg);
745 iput(inode);
746 spin_lock(&session->s_cap_lock);
747 if (ret < 0)
748 goto out;
749 }
750 ret = 0;
751 out:
752 session->s_iterating_caps = false;
753 spin_unlock(&session->s_cap_lock);
754 return ret;
755 }
756
757 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
758 void *arg)
759 {
760 struct ceph_inode_info *ci = ceph_inode(inode);
761 dout("removing cap %p, ci is %p, inode is %p\n",
762 cap, ci, &ci->vfs_inode);
763 ceph_remove_cap(cap);
764 return 0;
765 }
766
767 /*
768 * caller must hold session s_mutex
769 */
770 static void remove_session_caps(struct ceph_mds_session *session)
771 {
772 dout("remove_session_caps on %p\n", session);
773 iterate_session_caps(session, remove_session_caps_cb, NULL);
774 BUG_ON(session->s_nr_caps > 0);
775 cleanup_cap_releases(session);
776 }
777
778 /*
779 * wake up any threads waiting on this session's caps. if the cap is
780 * old (didn't get renewed on the client reconnect), remove it now.
781 *
782 * caller must hold s_mutex.
783 */
784 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
785 void *arg)
786 {
787 struct ceph_inode_info *ci = ceph_inode(inode);
788
789 wake_up(&ci->i_cap_wq);
790 if (arg) {
791 spin_lock(&inode->i_lock);
792 ci->i_wanted_max_size = 0;
793 ci->i_requested_max_size = 0;
794 spin_unlock(&inode->i_lock);
795 }
796 return 0;
797 }
798
799 static void wake_up_session_caps(struct ceph_mds_session *session,
800 int reconnect)
801 {
802 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
803 iterate_session_caps(session, wake_up_session_cb,
804 (void *)(unsigned long)reconnect);
805 }
806
807 /*
808 * Send periodic message to MDS renewing all currently held caps. The
809 * ack will reset the expiration for all caps from this session.
810 *
811 * caller holds s_mutex
812 */
813 static int send_renew_caps(struct ceph_mds_client *mdsc,
814 struct ceph_mds_session *session)
815 {
816 struct ceph_msg *msg;
817 int state;
818
819 if (time_after_eq(jiffies, session->s_cap_ttl) &&
820 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
821 pr_info("mds%d caps stale\n", session->s_mds);
822
823 /* do not try to renew caps until a recovering mds has reconnected
824 * with its clients. */
825 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
826 if (state < CEPH_MDS_STATE_RECONNECT) {
827 dout("send_renew_caps ignoring mds%d (%s)\n",
828 session->s_mds, ceph_mds_state_name(state));
829 return 0;
830 }
831
832 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
833 ceph_mds_state_name(state));
834 session->s_renew_requested = jiffies;
835 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
836 ++session->s_renew_seq);
837 if (IS_ERR(msg))
838 return PTR_ERR(msg);
839 ceph_con_send(&session->s_con, msg);
840 return 0;
841 }
842
843 /*
844 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
845 *
846 * Called under session->s_mutex
847 */
848 static void renewed_caps(struct ceph_mds_client *mdsc,
849 struct ceph_mds_session *session, int is_renew)
850 {
851 int was_stale;
852 int wake = 0;
853
854 spin_lock(&session->s_cap_lock);
855 was_stale = is_renew && (session->s_cap_ttl == 0 ||
856 time_after_eq(jiffies, session->s_cap_ttl));
857
858 session->s_cap_ttl = session->s_renew_requested +
859 mdsc->mdsmap->m_session_timeout*HZ;
860
861 if (was_stale) {
862 if (time_before(jiffies, session->s_cap_ttl)) {
863 pr_info("mds%d caps renewed\n", session->s_mds);
864 wake = 1;
865 } else {
866 pr_info("mds%d caps still stale\n", session->s_mds);
867 }
868 }
869 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
870 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
871 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
872 spin_unlock(&session->s_cap_lock);
873
874 if (wake)
875 wake_up_session_caps(session, 0);
876 }
877
878 /*
879 * send a session close request
880 */
881 static int request_close_session(struct ceph_mds_client *mdsc,
882 struct ceph_mds_session *session)
883 {
884 struct ceph_msg *msg;
885 int err = 0;
886
887 dout("request_close_session mds%d state %s seq %lld\n",
888 session->s_mds, session_state_name(session->s_state),
889 session->s_seq);
890 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
891 if (IS_ERR(msg))
892 err = PTR_ERR(msg);
893 else
894 ceph_con_send(&session->s_con, msg);
895 return err;
896 }
897
898 /*
899 * Called with s_mutex held.
900 */
901 static int __close_session(struct ceph_mds_client *mdsc,
902 struct ceph_mds_session *session)
903 {
904 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
905 return 0;
906 session->s_state = CEPH_MDS_SESSION_CLOSING;
907 return request_close_session(mdsc, session);
908 }
909
910 /*
911 * Trim old(er) caps.
912 *
913 * Because we can't cache an inode without one or more caps, we do
914 * this indirectly: if a cap is unused, we prune its aliases, at which
915 * point the inode will hopefully get dropped to.
916 *
917 * Yes, this is a bit sloppy. Our only real goal here is to respond to
918 * memory pressure from the MDS, though, so it needn't be perfect.
919 */
920 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
921 {
922 struct ceph_mds_session *session = arg;
923 struct ceph_inode_info *ci = ceph_inode(inode);
924 int used, oissued, mine;
925
926 if (session->s_trim_caps <= 0)
927 return -1;
928
929 spin_lock(&inode->i_lock);
930 mine = cap->issued | cap->implemented;
931 used = __ceph_caps_used(ci);
932 oissued = __ceph_caps_issued_other(ci, cap);
933
934 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
935 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
936 ceph_cap_string(used));
937 if (ci->i_dirty_caps)
938 goto out; /* dirty caps */
939 if ((used & ~oissued) & mine)
940 goto out; /* we need these caps */
941
942 session->s_trim_caps--;
943 if (oissued) {
944 /* we aren't the only cap.. just remove us */
945 __ceph_remove_cap(cap, NULL);
946 } else {
947 /* try to drop referring dentries */
948 spin_unlock(&inode->i_lock);
949 d_prune_aliases(inode);
950 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
951 inode, cap, atomic_read(&inode->i_count));
952 return 0;
953 }
954
955 out:
956 spin_unlock(&inode->i_lock);
957 return 0;
958 }
959
960 /*
961 * Trim session cap count down to some max number.
962 */
963 static int trim_caps(struct ceph_mds_client *mdsc,
964 struct ceph_mds_session *session,
965 int max_caps)
966 {
967 int trim_caps = session->s_nr_caps - max_caps;
968
969 dout("trim_caps mds%d start: %d / %d, trim %d\n",
970 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
971 if (trim_caps > 0) {
972 session->s_trim_caps = trim_caps;
973 iterate_session_caps(session, trim_caps_cb, session);
974 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
975 session->s_mds, session->s_nr_caps, max_caps,
976 trim_caps - session->s_trim_caps);
977 session->s_trim_caps = 0;
978 }
979 return 0;
980 }
981
982 /*
983 * Allocate cap_release messages. If there is a partially full message
984 * in the queue, try to allocate enough to cover it's remainder, so that
985 * we can send it immediately.
986 *
987 * Called under s_mutex.
988 */
989 static int add_cap_releases(struct ceph_mds_client *mdsc,
990 struct ceph_mds_session *session,
991 int extra)
992 {
993 struct ceph_msg *msg;
994 struct ceph_mds_cap_release *head;
995 int err = -ENOMEM;
996
997 if (extra < 0)
998 extra = mdsc->client->mount_args->cap_release_safety;
999
1000 spin_lock(&session->s_cap_lock);
1001
1002 if (!list_empty(&session->s_cap_releases)) {
1003 msg = list_first_entry(&session->s_cap_releases,
1004 struct ceph_msg,
1005 list_head);
1006 head = msg->front.iov_base;
1007 extra += CEPH_CAPS_PER_RELEASE - le32_to_cpu(head->num);
1008 }
1009
1010 while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1011 spin_unlock(&session->s_cap_lock);
1012 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1013 0, 0, NULL);
1014 if (!msg)
1015 goto out_unlocked;
1016 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1017 (int)msg->front.iov_len);
1018 head = msg->front.iov_base;
1019 head->num = cpu_to_le32(0);
1020 msg->front.iov_len = sizeof(*head);
1021 spin_lock(&session->s_cap_lock);
1022 list_add(&msg->list_head, &session->s_cap_releases);
1023 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1024 }
1025
1026 if (!list_empty(&session->s_cap_releases)) {
1027 msg = list_first_entry(&session->s_cap_releases,
1028 struct ceph_msg,
1029 list_head);
1030 head = msg->front.iov_base;
1031 if (head->num) {
1032 dout(" queueing non-full %p (%d)\n", msg,
1033 le32_to_cpu(head->num));
1034 list_move_tail(&msg->list_head,
1035 &session->s_cap_releases_done);
1036 session->s_num_cap_releases -=
1037 CEPH_CAPS_PER_RELEASE - le32_to_cpu(head->num);
1038 }
1039 }
1040 err = 0;
1041 spin_unlock(&session->s_cap_lock);
1042 out_unlocked:
1043 return err;
1044 }
1045
1046 /*
1047 * flush all dirty inode data to disk.
1048 *
1049 * returns true if we've flushed through want_flush_seq
1050 */
1051 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1052 {
1053 int mds, ret = 1;
1054
1055 dout("check_cap_flush want %lld\n", want_flush_seq);
1056 mutex_lock(&mdsc->mutex);
1057 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1058 struct ceph_mds_session *session = mdsc->sessions[mds];
1059
1060 if (!session)
1061 continue;
1062 get_session(session);
1063 mutex_unlock(&mdsc->mutex);
1064
1065 mutex_lock(&session->s_mutex);
1066 if (!list_empty(&session->s_cap_flushing)) {
1067 struct ceph_inode_info *ci =
1068 list_entry(session->s_cap_flushing.next,
1069 struct ceph_inode_info,
1070 i_flushing_item);
1071 struct inode *inode = &ci->vfs_inode;
1072
1073 spin_lock(&inode->i_lock);
1074 if (ci->i_cap_flush_seq <= want_flush_seq) {
1075 dout("check_cap_flush still flushing %p "
1076 "seq %lld <= %lld to mds%d\n", inode,
1077 ci->i_cap_flush_seq, want_flush_seq,
1078 session->s_mds);
1079 ret = 0;
1080 }
1081 spin_unlock(&inode->i_lock);
1082 }
1083 mutex_unlock(&session->s_mutex);
1084 ceph_put_mds_session(session);
1085
1086 if (!ret)
1087 return ret;
1088 mutex_lock(&mdsc->mutex);
1089 }
1090
1091 mutex_unlock(&mdsc->mutex);
1092 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1093 return ret;
1094 }
1095
1096 /*
1097 * called under s_mutex
1098 */
1099 static void send_cap_releases(struct ceph_mds_client *mdsc,
1100 struct ceph_mds_session *session)
1101 {
1102 struct ceph_msg *msg;
1103
1104 dout("send_cap_releases mds%d\n", session->s_mds);
1105 while (1) {
1106 spin_lock(&session->s_cap_lock);
1107 if (list_empty(&session->s_cap_releases_done))
1108 break;
1109 msg = list_first_entry(&session->s_cap_releases_done,
1110 struct ceph_msg, list_head);
1111 list_del_init(&msg->list_head);
1112 spin_unlock(&session->s_cap_lock);
1113 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1114 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1115 ceph_con_send(&session->s_con, msg);
1116 }
1117 spin_unlock(&session->s_cap_lock);
1118 }
1119
1120 /*
1121 * requests
1122 */
1123
1124 /*
1125 * Create an mds request.
1126 */
1127 struct ceph_mds_request *
1128 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1129 {
1130 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1131
1132 if (!req)
1133 return ERR_PTR(-ENOMEM);
1134
1135 req->r_started = jiffies;
1136 req->r_resend_mds = -1;
1137 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1138 req->r_fmode = -1;
1139 kref_init(&req->r_kref);
1140 INIT_LIST_HEAD(&req->r_wait);
1141 init_completion(&req->r_completion);
1142 init_completion(&req->r_safe_completion);
1143 INIT_LIST_HEAD(&req->r_unsafe_item);
1144
1145 req->r_op = op;
1146 req->r_direct_mode = mode;
1147 return req;
1148 }
1149
1150 /*
1151 * return oldest (lowest) request, tid in request tree, 0 if none.
1152 *
1153 * called under mdsc->mutex.
1154 */
1155 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1156 {
1157 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1158 return NULL;
1159 return rb_entry(rb_first(&mdsc->request_tree),
1160 struct ceph_mds_request, r_node);
1161 }
1162
1163 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1164 {
1165 struct ceph_mds_request *req = __get_oldest_req(mdsc);
1166
1167 if (req)
1168 return req->r_tid;
1169 return 0;
1170 }
1171
1172 /*
1173 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1174 * on build_path_from_dentry in fs/cifs/dir.c.
1175 *
1176 * If @stop_on_nosnap, generate path relative to the first non-snapped
1177 * inode.
1178 *
1179 * Encode hidden .snap dirs as a double /, i.e.
1180 * foo/.snap/bar -> foo//bar
1181 */
1182 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1183 int stop_on_nosnap)
1184 {
1185 struct dentry *temp;
1186 char *path;
1187 int len, pos;
1188
1189 if (dentry == NULL)
1190 return ERR_PTR(-EINVAL);
1191
1192 retry:
1193 len = 0;
1194 for (temp = dentry; !IS_ROOT(temp);) {
1195 struct inode *inode = temp->d_inode;
1196 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1197 len++; /* slash only */
1198 else if (stop_on_nosnap && inode &&
1199 ceph_snap(inode) == CEPH_NOSNAP)
1200 break;
1201 else
1202 len += 1 + temp->d_name.len;
1203 temp = temp->d_parent;
1204 if (temp == NULL) {
1205 pr_err("build_path_dentry corrupt dentry %p\n", dentry);
1206 return ERR_PTR(-EINVAL);
1207 }
1208 }
1209 if (len)
1210 len--; /* no leading '/' */
1211
1212 path = kmalloc(len+1, GFP_NOFS);
1213 if (path == NULL)
1214 return ERR_PTR(-ENOMEM);
1215 pos = len;
1216 path[pos] = 0; /* trailing null */
1217 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1218 struct inode *inode = temp->d_inode;
1219
1220 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1221 dout("build_path_dentry path+%d: %p SNAPDIR\n",
1222 pos, temp);
1223 } else if (stop_on_nosnap && inode &&
1224 ceph_snap(inode) == CEPH_NOSNAP) {
1225 break;
1226 } else {
1227 pos -= temp->d_name.len;
1228 if (pos < 0)
1229 break;
1230 strncpy(path + pos, temp->d_name.name,
1231 temp->d_name.len);
1232 dout("build_path_dentry path+%d: %p '%.*s'\n",
1233 pos, temp, temp->d_name.len, path + pos);
1234 }
1235 if (pos)
1236 path[--pos] = '/';
1237 temp = temp->d_parent;
1238 if (temp == NULL) {
1239 pr_err("build_path_dentry corrupt dentry\n");
1240 kfree(path);
1241 return ERR_PTR(-EINVAL);
1242 }
1243 }
1244 if (pos != 0) {
1245 pr_err("build_path_dentry did not end path lookup where "
1246 "expected, namelen is %d, pos is %d\n", len, pos);
1247 /* presumably this is only possible if racing with a
1248 rename of one of the parent directories (we can not
1249 lock the dentries above us to prevent this, but
1250 retrying should be harmless) */
1251 kfree(path);
1252 goto retry;
1253 }
1254
1255 *base = ceph_ino(temp->d_inode);
1256 *plen = len;
1257 dout("build_path_dentry on %p %d built %llx '%.*s'\n",
1258 dentry, atomic_read(&dentry->d_count), *base, len, path);
1259 return path;
1260 }
1261
1262 static int build_dentry_path(struct dentry *dentry,
1263 const char **ppath, int *ppathlen, u64 *pino,
1264 int *pfreepath)
1265 {
1266 char *path;
1267
1268 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1269 *pino = ceph_ino(dentry->d_parent->d_inode);
1270 *ppath = dentry->d_name.name;
1271 *ppathlen = dentry->d_name.len;
1272 return 0;
1273 }
1274 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1275 if (IS_ERR(path))
1276 return PTR_ERR(path);
1277 *ppath = path;
1278 *pfreepath = 1;
1279 return 0;
1280 }
1281
1282 static int build_inode_path(struct inode *inode,
1283 const char **ppath, int *ppathlen, u64 *pino,
1284 int *pfreepath)
1285 {
1286 struct dentry *dentry;
1287 char *path;
1288
1289 if (ceph_snap(inode) == CEPH_NOSNAP) {
1290 *pino = ceph_ino(inode);
1291 *ppathlen = 0;
1292 return 0;
1293 }
1294 dentry = d_find_alias(inode);
1295 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1296 dput(dentry);
1297 if (IS_ERR(path))
1298 return PTR_ERR(path);
1299 *ppath = path;
1300 *pfreepath = 1;
1301 return 0;
1302 }
1303
1304 /*
1305 * request arguments may be specified via an inode *, a dentry *, or
1306 * an explicit ino+path.
1307 */
1308 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1309 const char *rpath, u64 rino,
1310 const char **ppath, int *pathlen,
1311 u64 *ino, int *freepath)
1312 {
1313 int r = 0;
1314
1315 if (rinode) {
1316 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1317 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1318 ceph_snap(rinode));
1319 } else if (rdentry) {
1320 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1321 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1322 *ppath);
1323 } else if (rpath) {
1324 *ino = rino;
1325 *ppath = rpath;
1326 *pathlen = strlen(rpath);
1327 dout(" path %.*s\n", *pathlen, rpath);
1328 }
1329
1330 return r;
1331 }
1332
1333 /*
1334 * called under mdsc->mutex
1335 */
1336 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1337 struct ceph_mds_request *req,
1338 int mds)
1339 {
1340 struct ceph_msg *msg;
1341 struct ceph_mds_request_head *head;
1342 const char *path1 = NULL;
1343 const char *path2 = NULL;
1344 u64 ino1 = 0, ino2 = 0;
1345 int pathlen1 = 0, pathlen2 = 0;
1346 int freepath1 = 0, freepath2 = 0;
1347 int len;
1348 u16 releases;
1349 void *p, *end;
1350 int ret;
1351
1352 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1353 req->r_path1, req->r_ino1.ino,
1354 &path1, &pathlen1, &ino1, &freepath1);
1355 if (ret < 0) {
1356 msg = ERR_PTR(ret);
1357 goto out;
1358 }
1359
1360 ret = set_request_path_attr(NULL, req->r_old_dentry,
1361 req->r_path2, req->r_ino2.ino,
1362 &path2, &pathlen2, &ino2, &freepath2);
1363 if (ret < 0) {
1364 msg = ERR_PTR(ret);
1365 goto out_free1;
1366 }
1367
1368 len = sizeof(*head) +
1369 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1370
1371 /* calculate (max) length for cap releases */
1372 len += sizeof(struct ceph_mds_request_release) *
1373 (!!req->r_inode_drop + !!req->r_dentry_drop +
1374 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1375 if (req->r_dentry_drop)
1376 len += req->r_dentry->d_name.len;
1377 if (req->r_old_dentry_drop)
1378 len += req->r_old_dentry->d_name.len;
1379
1380 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, 0, 0, NULL);
1381 if (IS_ERR(msg))
1382 goto out_free2;
1383
1384 msg->hdr.tid = cpu_to_le64(req->r_tid);
1385
1386 head = msg->front.iov_base;
1387 p = msg->front.iov_base + sizeof(*head);
1388 end = msg->front.iov_base + msg->front.iov_len;
1389
1390 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1391 head->op = cpu_to_le32(req->r_op);
1392 head->caller_uid = cpu_to_le32(current_fsuid());
1393 head->caller_gid = cpu_to_le32(current_fsgid());
1394 head->args = req->r_args;
1395
1396 ceph_encode_filepath(&p, end, ino1, path1);
1397 ceph_encode_filepath(&p, end, ino2, path2);
1398
1399 /* cap releases */
1400 releases = 0;
1401 if (req->r_inode_drop)
1402 releases += ceph_encode_inode_release(&p,
1403 req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1404 mds, req->r_inode_drop, req->r_inode_unless, 0);
1405 if (req->r_dentry_drop)
1406 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1407 mds, req->r_dentry_drop, req->r_dentry_unless);
1408 if (req->r_old_dentry_drop)
1409 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1410 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1411 if (req->r_old_inode_drop)
1412 releases += ceph_encode_inode_release(&p,
1413 req->r_old_dentry->d_inode,
1414 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1415 head->num_releases = cpu_to_le16(releases);
1416
1417 BUG_ON(p > end);
1418 msg->front.iov_len = p - msg->front.iov_base;
1419 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1420
1421 msg->pages = req->r_pages;
1422 msg->nr_pages = req->r_num_pages;
1423 msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1424 msg->hdr.data_off = cpu_to_le16(0);
1425
1426 out_free2:
1427 if (freepath2)
1428 kfree((char *)path2);
1429 out_free1:
1430 if (freepath1)
1431 kfree((char *)path1);
1432 out:
1433 return msg;
1434 }
1435
1436 /*
1437 * called under mdsc->mutex if error, under no mutex if
1438 * success.
1439 */
1440 static void complete_request(struct ceph_mds_client *mdsc,
1441 struct ceph_mds_request *req)
1442 {
1443 if (req->r_callback)
1444 req->r_callback(mdsc, req);
1445 else
1446 complete(&req->r_completion);
1447 }
1448
1449 /*
1450 * called under mdsc->mutex
1451 */
1452 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1453 struct ceph_mds_request *req,
1454 int mds)
1455 {
1456 struct ceph_mds_request_head *rhead;
1457 struct ceph_msg *msg;
1458 int flags = 0;
1459
1460 req->r_mds = mds;
1461 req->r_attempts++;
1462 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1463 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1464
1465 if (req->r_request) {
1466 ceph_msg_put(req->r_request);
1467 req->r_request = NULL;
1468 }
1469 msg = create_request_message(mdsc, req, mds);
1470 if (IS_ERR(msg)) {
1471 req->r_reply = ERR_PTR(PTR_ERR(msg));
1472 complete_request(mdsc, req);
1473 return -PTR_ERR(msg);
1474 }
1475 req->r_request = msg;
1476
1477 rhead = msg->front.iov_base;
1478 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1479 if (req->r_got_unsafe)
1480 flags |= CEPH_MDS_FLAG_REPLAY;
1481 if (req->r_locked_dir)
1482 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1483 rhead->flags = cpu_to_le32(flags);
1484 rhead->num_fwd = req->r_num_fwd;
1485 rhead->num_retry = req->r_attempts - 1;
1486
1487 dout(" r_locked_dir = %p\n", req->r_locked_dir);
1488
1489 if (req->r_target_inode && req->r_got_unsafe)
1490 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1491 else
1492 rhead->ino = 0;
1493 return 0;
1494 }
1495
1496 /*
1497 * send request, or put it on the appropriate wait list.
1498 */
1499 static int __do_request(struct ceph_mds_client *mdsc,
1500 struct ceph_mds_request *req)
1501 {
1502 struct ceph_mds_session *session = NULL;
1503 int mds = -1;
1504 int err = -EAGAIN;
1505
1506 if (req->r_reply)
1507 goto out;
1508
1509 if (req->r_timeout &&
1510 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1511 dout("do_request timed out\n");
1512 err = -EIO;
1513 goto finish;
1514 }
1515
1516 mds = __choose_mds(mdsc, req);
1517 if (mds < 0 ||
1518 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1519 dout("do_request no mds or not active, waiting for map\n");
1520 list_add(&req->r_wait, &mdsc->waiting_for_map);
1521 goto out;
1522 }
1523
1524 /* get, open session */
1525 session = __ceph_lookup_mds_session(mdsc, mds);
1526 if (!session)
1527 session = register_session(mdsc, mds);
1528 dout("do_request mds%d session %p state %s\n", mds, session,
1529 session_state_name(session->s_state));
1530 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1531 session->s_state != CEPH_MDS_SESSION_HUNG) {
1532 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1533 session->s_state == CEPH_MDS_SESSION_CLOSING)
1534 __open_session(mdsc, session);
1535 list_add(&req->r_wait, &session->s_waiting);
1536 goto out_session;
1537 }
1538
1539 /* send request */
1540 req->r_session = get_session(session);
1541 req->r_resend_mds = -1; /* forget any previous mds hint */
1542
1543 if (req->r_request_started == 0) /* note request start time */
1544 req->r_request_started = jiffies;
1545
1546 err = __prepare_send_request(mdsc, req, mds);
1547 if (!err) {
1548 ceph_msg_get(req->r_request);
1549 ceph_con_send(&session->s_con, req->r_request);
1550 }
1551
1552 out_session:
1553 ceph_put_mds_session(session);
1554 out:
1555 return err;
1556
1557 finish:
1558 req->r_reply = ERR_PTR(err);
1559 complete_request(mdsc, req);
1560 goto out;
1561 }
1562
1563 /*
1564 * called under mdsc->mutex
1565 */
1566 static void __wake_requests(struct ceph_mds_client *mdsc,
1567 struct list_head *head)
1568 {
1569 struct ceph_mds_request *req, *nreq;
1570
1571 list_for_each_entry_safe(req, nreq, head, r_wait) {
1572 list_del_init(&req->r_wait);
1573 __do_request(mdsc, req);
1574 }
1575 }
1576
1577 /*
1578 * Wake up threads with requests pending for @mds, so that they can
1579 * resubmit their requests to a possibly different mds. If @all is set,
1580 * wake up if their requests has been forwarded to @mds, too.
1581 */
1582 static void kick_requests(struct ceph_mds_client *mdsc, int mds, int all)
1583 {
1584 struct ceph_mds_request *req;
1585 struct rb_node *p;
1586
1587 dout("kick_requests mds%d\n", mds);
1588 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1589 req = rb_entry(p, struct ceph_mds_request, r_node);
1590 if (req->r_got_unsafe)
1591 continue;
1592 if (req->r_session &&
1593 req->r_session->s_mds == mds) {
1594 dout(" kicking tid %llu\n", req->r_tid);
1595 put_request_session(req);
1596 __do_request(mdsc, req);
1597 }
1598 }
1599 }
1600
1601 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1602 struct ceph_mds_request *req)
1603 {
1604 dout("submit_request on %p\n", req);
1605 mutex_lock(&mdsc->mutex);
1606 __register_request(mdsc, req, NULL);
1607 __do_request(mdsc, req);
1608 mutex_unlock(&mdsc->mutex);
1609 }
1610
1611 /*
1612 * Synchrously perform an mds request. Take care of all of the
1613 * session setup, forwarding, retry details.
1614 */
1615 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1616 struct inode *dir,
1617 struct ceph_mds_request *req)
1618 {
1619 int err;
1620
1621 dout("do_request on %p\n", req);
1622
1623 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1624 if (req->r_inode)
1625 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1626 if (req->r_locked_dir)
1627 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1628 if (req->r_old_dentry)
1629 ceph_get_cap_refs(
1630 ceph_inode(req->r_old_dentry->d_parent->d_inode),
1631 CEPH_CAP_PIN);
1632
1633 /* issue */
1634 mutex_lock(&mdsc->mutex);
1635 __register_request(mdsc, req, dir);
1636 __do_request(mdsc, req);
1637
1638 /* wait */
1639 if (!req->r_reply) {
1640 mutex_unlock(&mdsc->mutex);
1641 if (req->r_timeout) {
1642 err = (long)wait_for_completion_interruptible_timeout(
1643 &req->r_completion, req->r_timeout);
1644 if (err == 0)
1645 req->r_reply = ERR_PTR(-EIO);
1646 else if (err < 0)
1647 req->r_reply = ERR_PTR(err);
1648 } else {
1649 err = wait_for_completion_interruptible(
1650 &req->r_completion);
1651 if (err)
1652 req->r_reply = ERR_PTR(err);
1653 }
1654 mutex_lock(&mdsc->mutex);
1655 }
1656
1657 if (IS_ERR(req->r_reply)) {
1658 err = PTR_ERR(req->r_reply);
1659 req->r_reply = NULL;
1660
1661 if (err == -ERESTARTSYS) {
1662 /* aborted */
1663 req->r_aborted = true;
1664
1665 if (req->r_locked_dir &&
1666 (req->r_op & CEPH_MDS_OP_WRITE)) {
1667 struct ceph_inode_info *ci =
1668 ceph_inode(req->r_locked_dir);
1669
1670 dout("aborted, clearing I_COMPLETE on %p\n",
1671 req->r_locked_dir);
1672 spin_lock(&req->r_locked_dir->i_lock);
1673 ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
1674 ci->i_release_count++;
1675 spin_unlock(&req->r_locked_dir->i_lock);
1676 }
1677 } else {
1678 /* clean up this request */
1679 __unregister_request(mdsc, req);
1680 if (!list_empty(&req->r_unsafe_item))
1681 list_del_init(&req->r_unsafe_item);
1682 complete(&req->r_safe_completion);
1683 }
1684 } else if (req->r_err) {
1685 err = req->r_err;
1686 } else {
1687 err = le32_to_cpu(req->r_reply_info.head->result);
1688 }
1689 mutex_unlock(&mdsc->mutex);
1690
1691 dout("do_request %p done, result %d\n", req, err);
1692 return err;
1693 }
1694
1695 /*
1696 * Handle mds reply.
1697 *
1698 * We take the session mutex and parse and process the reply immediately.
1699 * This preserves the logical ordering of replies, capabilities, etc., sent
1700 * by the MDS as they are applied to our local cache.
1701 */
1702 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
1703 {
1704 struct ceph_mds_client *mdsc = session->s_mdsc;
1705 struct ceph_mds_request *req;
1706 struct ceph_mds_reply_head *head = msg->front.iov_base;
1707 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
1708 u64 tid;
1709 int err, result;
1710 int mds;
1711
1712 if (msg->hdr.src.name.type != CEPH_ENTITY_TYPE_MDS)
1713 return;
1714 if (msg->front.iov_len < sizeof(*head)) {
1715 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
1716 ceph_msg_dump(msg);
1717 return;
1718 }
1719
1720 /* get request, session */
1721 tid = le64_to_cpu(msg->hdr.tid);
1722 mutex_lock(&mdsc->mutex);
1723 req = __lookup_request(mdsc, tid);
1724 if (!req) {
1725 dout("handle_reply on unknown tid %llu\n", tid);
1726 mutex_unlock(&mdsc->mutex);
1727 return;
1728 }
1729 dout("handle_reply %p\n", req);
1730 mds = le64_to_cpu(msg->hdr.src.name.num);
1731
1732 /* correct session? */
1733 if (!req->r_session && req->r_session != session) {
1734 pr_err("mdsc_handle_reply got %llu on session mds%d"
1735 " not mds%d\n", tid, session->s_mds,
1736 req->r_session ? req->r_session->s_mds : -1);
1737 mutex_unlock(&mdsc->mutex);
1738 goto out;
1739 }
1740
1741 /* dup? */
1742 if ((req->r_got_unsafe && !head->safe) ||
1743 (req->r_got_safe && head->safe)) {
1744 pr_warning("got a dup %s reply on %llu from mds%d\n",
1745 head->safe ? "safe" : "unsafe", tid, mds);
1746 mutex_unlock(&mdsc->mutex);
1747 goto out;
1748 }
1749
1750 result = le32_to_cpu(head->result);
1751
1752 /*
1753 * Tolerate 2 consecutive ESTALEs from the same mds.
1754 * FIXME: we should be looking at the cap migrate_seq.
1755 */
1756 if (result == -ESTALE) {
1757 req->r_direct_mode = USE_AUTH_MDS;
1758 req->r_num_stale++;
1759 if (req->r_num_stale <= 2) {
1760 __do_request(mdsc, req);
1761 mutex_unlock(&mdsc->mutex);
1762 goto out;
1763 }
1764 } else {
1765 req->r_num_stale = 0;
1766 }
1767
1768 if (head->safe) {
1769 req->r_got_safe = true;
1770 __unregister_request(mdsc, req);
1771 complete(&req->r_safe_completion);
1772
1773 if (req->r_got_unsafe) {
1774 /*
1775 * We already handled the unsafe response, now do the
1776 * cleanup. No need to examine the response; the MDS
1777 * doesn't include any result info in the safe
1778 * response. And even if it did, there is nothing
1779 * useful we could do with a revised return value.
1780 */
1781 dout("got safe reply %llu, mds%d\n", tid, mds);
1782 list_del_init(&req->r_unsafe_item);
1783
1784 /* last unsafe request during umount? */
1785 if (mdsc->stopping && !__get_oldest_req(mdsc))
1786 complete(&mdsc->safe_umount_waiters);
1787 mutex_unlock(&mdsc->mutex);
1788 goto out;
1789 }
1790 }
1791
1792 BUG_ON(req->r_reply);
1793
1794 if (!head->safe) {
1795 req->r_got_unsafe = true;
1796 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
1797 }
1798
1799 dout("handle_reply tid %lld result %d\n", tid, result);
1800 rinfo = &req->r_reply_info;
1801 err = parse_reply_info(msg, rinfo);
1802 mutex_unlock(&mdsc->mutex);
1803
1804 mutex_lock(&session->s_mutex);
1805 if (err < 0) {
1806 pr_err("mdsc_handle_reply got corrupt reply mds%d\n", mds);
1807 ceph_msg_dump(msg);
1808 goto out_err;
1809 }
1810
1811 /* snap trace */
1812 if (rinfo->snapblob_len) {
1813 down_write(&mdsc->snap_rwsem);
1814 ceph_update_snap_trace(mdsc, rinfo->snapblob,
1815 rinfo->snapblob + rinfo->snapblob_len,
1816 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
1817 downgrade_write(&mdsc->snap_rwsem);
1818 } else {
1819 down_read(&mdsc->snap_rwsem);
1820 }
1821
1822 /* insert trace into our cache */
1823 err = ceph_fill_trace(mdsc->client->sb, req, req->r_session);
1824 if (err == 0) {
1825 if (result == 0 && rinfo->dir_nr)
1826 ceph_readdir_prepopulate(req, req->r_session);
1827 ceph_unreserve_caps(&req->r_caps_reservation);
1828 }
1829
1830 up_read(&mdsc->snap_rwsem);
1831 out_err:
1832 if (err) {
1833 req->r_err = err;
1834 } else {
1835 req->r_reply = msg;
1836 ceph_msg_get(msg);
1837 }
1838
1839 add_cap_releases(mdsc, req->r_session, -1);
1840 mutex_unlock(&session->s_mutex);
1841
1842 /* kick calling process */
1843 complete_request(mdsc, req);
1844 out:
1845 ceph_mdsc_put_request(req);
1846 return;
1847 }
1848
1849
1850
1851 /*
1852 * handle mds notification that our request has been forwarded.
1853 */
1854 static void handle_forward(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
1855 {
1856 struct ceph_mds_request *req;
1857 u64 tid;
1858 u32 next_mds;
1859 u32 fwd_seq;
1860 u8 must_resend;
1861 int err = -EINVAL;
1862 void *p = msg->front.iov_base;
1863 void *end = p + msg->front.iov_len;
1864 int from_mds, state;
1865
1866 if (msg->hdr.src.name.type != CEPH_ENTITY_TYPE_MDS)
1867 goto bad;
1868 from_mds = le64_to_cpu(msg->hdr.src.name.num);
1869
1870 ceph_decode_need(&p, end, sizeof(u64)+2*sizeof(u32), bad);
1871 tid = ceph_decode_64(&p);
1872 next_mds = ceph_decode_32(&p);
1873 fwd_seq = ceph_decode_32(&p);
1874 must_resend = ceph_decode_8(&p);
1875
1876 WARN_ON(must_resend); /* shouldn't happen. */
1877
1878 mutex_lock(&mdsc->mutex);
1879 req = __lookup_request(mdsc, tid);
1880 if (!req) {
1881 dout("forward %llu dne\n", tid);
1882 goto out; /* dup reply? */
1883 }
1884
1885 state = mdsc->sessions[next_mds]->s_state;
1886 if (fwd_seq <= req->r_num_fwd) {
1887 dout("forward %llu to mds%d - old seq %d <= %d\n",
1888 tid, next_mds, req->r_num_fwd, fwd_seq);
1889 } else {
1890 /* resend. forward race not possible; mds would drop */
1891 dout("forward %llu to mds%d (we resend)\n", tid, next_mds);
1892 req->r_num_fwd = fwd_seq;
1893 req->r_resend_mds = next_mds;
1894 put_request_session(req);
1895 __do_request(mdsc, req);
1896 }
1897 ceph_mdsc_put_request(req);
1898 out:
1899 mutex_unlock(&mdsc->mutex);
1900 return;
1901
1902 bad:
1903 pr_err("mdsc_handle_forward decode error err=%d\n", err);
1904 }
1905
1906 /*
1907 * handle a mds session control message
1908 */
1909 static void handle_session(struct ceph_mds_session *session,
1910 struct ceph_msg *msg)
1911 {
1912 struct ceph_mds_client *mdsc = session->s_mdsc;
1913 u32 op;
1914 u64 seq;
1915 int mds;
1916 struct ceph_mds_session_head *h = msg->front.iov_base;
1917 int wake = 0;
1918
1919 if (msg->hdr.src.name.type != CEPH_ENTITY_TYPE_MDS)
1920 return;
1921 mds = le64_to_cpu(msg->hdr.src.name.num);
1922
1923 /* decode */
1924 if (msg->front.iov_len != sizeof(*h))
1925 goto bad;
1926 op = le32_to_cpu(h->op);
1927 seq = le64_to_cpu(h->seq);
1928
1929 mutex_lock(&mdsc->mutex);
1930 /* FIXME: this ttl calculation is generous */
1931 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
1932 mutex_unlock(&mdsc->mutex);
1933
1934 mutex_lock(&session->s_mutex);
1935
1936 dout("handle_session mds%d %s %p state %s seq %llu\n",
1937 mds, ceph_session_op_name(op), session,
1938 session_state_name(session->s_state), seq);
1939
1940 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
1941 session->s_state = CEPH_MDS_SESSION_OPEN;
1942 pr_info("mds%d came back\n", session->s_mds);
1943 }
1944
1945 switch (op) {
1946 case CEPH_SESSION_OPEN:
1947 session->s_state = CEPH_MDS_SESSION_OPEN;
1948 renewed_caps(mdsc, session, 0);
1949 wake = 1;
1950 if (mdsc->stopping)
1951 __close_session(mdsc, session);
1952 break;
1953
1954 case CEPH_SESSION_RENEWCAPS:
1955 if (session->s_renew_seq == seq)
1956 renewed_caps(mdsc, session, 1);
1957 break;
1958
1959 case CEPH_SESSION_CLOSE:
1960 unregister_session(mdsc, session);
1961 remove_session_caps(session);
1962 wake = 1; /* for good measure */
1963 complete(&mdsc->session_close_waiters);
1964 kick_requests(mdsc, mds, 0); /* cur only */
1965 break;
1966
1967 case CEPH_SESSION_STALE:
1968 pr_info("mds%d caps went stale, renewing\n",
1969 session->s_mds);
1970 spin_lock(&session->s_cap_lock);
1971 session->s_cap_gen++;
1972 session->s_cap_ttl = 0;
1973 spin_unlock(&session->s_cap_lock);
1974 send_renew_caps(mdsc, session);
1975 break;
1976
1977 case CEPH_SESSION_RECALL_STATE:
1978 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
1979 break;
1980
1981 default:
1982 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
1983 WARN_ON(1);
1984 }
1985
1986 mutex_unlock(&session->s_mutex);
1987 if (wake) {
1988 mutex_lock(&mdsc->mutex);
1989 __wake_requests(mdsc, &session->s_waiting);
1990 mutex_unlock(&mdsc->mutex);
1991 }
1992 return;
1993
1994 bad:
1995 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
1996 (int)msg->front.iov_len);
1997 ceph_msg_dump(msg);
1998 return;
1999 }
2000
2001
2002 /*
2003 * called under session->mutex.
2004 */
2005 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2006 struct ceph_mds_session *session)
2007 {
2008 struct ceph_mds_request *req, *nreq;
2009 int err;
2010
2011 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2012
2013 mutex_lock(&mdsc->mutex);
2014 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2015 err = __prepare_send_request(mdsc, req, session->s_mds);
2016 if (!err) {
2017 ceph_msg_get(req->r_request);
2018 ceph_con_send(&session->s_con, req->r_request);
2019 }
2020 }
2021 mutex_unlock(&mdsc->mutex);
2022 }
2023
2024 /*
2025 * Encode information about a cap for a reconnect with the MDS.
2026 */
2027 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2028 void *arg)
2029 {
2030 struct ceph_mds_cap_reconnect rec;
2031 struct ceph_inode_info *ci;
2032 struct ceph_pagelist *pagelist = arg;
2033 char *path;
2034 int pathlen, err;
2035 u64 pathbase;
2036 struct dentry *dentry;
2037
2038 ci = cap->ci;
2039
2040 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2041 inode, ceph_vinop(inode), cap, cap->cap_id,
2042 ceph_cap_string(cap->issued));
2043 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2044 if (err)
2045 return err;
2046
2047 dentry = d_find_alias(inode);
2048 if (dentry) {
2049 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2050 if (IS_ERR(path)) {
2051 err = PTR_ERR(path);
2052 BUG_ON(err);
2053 }
2054 } else {
2055 path = NULL;
2056 pathlen = 0;
2057 }
2058 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2059 if (err)
2060 goto out;
2061
2062 spin_lock(&inode->i_lock);
2063 cap->seq = 0; /* reset cap seq */
2064 cap->issue_seq = 0; /* and issue_seq */
2065 rec.cap_id = cpu_to_le64(cap->cap_id);
2066 rec.pathbase = cpu_to_le64(pathbase);
2067 rec.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2068 rec.issued = cpu_to_le32(cap->issued);
2069 rec.size = cpu_to_le64(inode->i_size);
2070 ceph_encode_timespec(&rec.mtime, &inode->i_mtime);
2071 ceph_encode_timespec(&rec.atime, &inode->i_atime);
2072 rec.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2073 spin_unlock(&inode->i_lock);
2074
2075 err = ceph_pagelist_append(pagelist, &rec, sizeof(rec));
2076
2077 out:
2078 kfree(path);
2079 dput(dentry);
2080 return err;
2081 }
2082
2083
2084 /*
2085 * If an MDS fails and recovers, clients need to reconnect in order to
2086 * reestablish shared state. This includes all caps issued through
2087 * this session _and_ the snap_realm hierarchy. Because it's not
2088 * clear which snap realms the mds cares about, we send everything we
2089 * know about.. that ensures we'll then get any new info the
2090 * recovering MDS might have.
2091 *
2092 * This is a relatively heavyweight operation, but it's rare.
2093 *
2094 * called with mdsc->mutex held.
2095 */
2096 static void send_mds_reconnect(struct ceph_mds_client *mdsc, int mds)
2097 {
2098 struct ceph_mds_session *session = NULL;
2099 struct ceph_msg *reply;
2100 int err;
2101 int got;
2102 u64 next_snap_ino = 0;
2103 struct ceph_pagelist *pagelist;
2104
2105 pr_info("reconnect to recovering mds%d\n", mds);
2106
2107 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2108 if (!pagelist)
2109 goto fail_nopagelist;
2110 ceph_pagelist_init(pagelist);
2111
2112 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, 0, 0, NULL);
2113 if (IS_ERR(reply)) {
2114 err = PTR_ERR(reply);
2115 goto fail_nomsg;
2116 }
2117
2118 /* find session */
2119 session = __ceph_lookup_mds_session(mdsc, mds);
2120 mutex_unlock(&mdsc->mutex); /* drop lock for duration */
2121
2122 if (session) {
2123 mutex_lock(&session->s_mutex);
2124
2125 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2126 session->s_seq = 0;
2127
2128 ceph_con_open(&session->s_con,
2129 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2130
2131 /* replay unsafe requests */
2132 replay_unsafe_requests(mdsc, session);
2133 } else {
2134 dout("no session for mds%d, will send short reconnect\n",
2135 mds);
2136 }
2137
2138 down_read(&mdsc->snap_rwsem);
2139
2140 if (!session)
2141 goto send;
2142 dout("session %p state %s\n", session,
2143 session_state_name(session->s_state));
2144
2145 /* traverse this session's caps */
2146 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2147 if (err)
2148 goto fail;
2149 err = iterate_session_caps(session, encode_caps_cb, pagelist);
2150 if (err < 0)
2151 goto out;
2152
2153 /*
2154 * snaprealms. we provide mds with the ino, seq (version), and
2155 * parent for all of our realms. If the mds has any newer info,
2156 * it will tell us.
2157 */
2158 next_snap_ino = 0;
2159 while (1) {
2160 struct ceph_snap_realm *realm;
2161 struct ceph_mds_snaprealm_reconnect sr_rec;
2162 got = radix_tree_gang_lookup(&mdsc->snap_realms,
2163 (void **)&realm, next_snap_ino, 1);
2164 if (!got)
2165 break;
2166
2167 dout(" adding snap realm %llx seq %lld parent %llx\n",
2168 realm->ino, realm->seq, realm->parent_ino);
2169 sr_rec.ino = cpu_to_le64(realm->ino);
2170 sr_rec.seq = cpu_to_le64(realm->seq);
2171 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2172 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2173 if (err)
2174 goto fail;
2175 next_snap_ino = realm->ino + 1;
2176 }
2177
2178 send:
2179 reply->pagelist = pagelist;
2180 reply->hdr.data_len = cpu_to_le32(pagelist->length);
2181 reply->nr_pages = calc_pages_for(0, pagelist->length);
2182 ceph_con_send(&session->s_con, reply);
2183
2184 if (session) {
2185 session->s_state = CEPH_MDS_SESSION_OPEN;
2186 __wake_requests(mdsc, &session->s_waiting);
2187 }
2188
2189 out:
2190 up_read(&mdsc->snap_rwsem);
2191 if (session) {
2192 mutex_unlock(&session->s_mutex);
2193 ceph_put_mds_session(session);
2194 }
2195 mutex_lock(&mdsc->mutex);
2196 return;
2197
2198 fail:
2199 ceph_msg_put(reply);
2200 fail_nomsg:
2201 ceph_pagelist_release(pagelist);
2202 kfree(pagelist);
2203 fail_nopagelist:
2204 pr_err("ENOMEM preparing reconnect for mds%d\n", mds);
2205 goto out;
2206 }
2207
2208
2209 /*
2210 * compare old and new mdsmaps, kicking requests
2211 * and closing out old connections as necessary
2212 *
2213 * called under mdsc->mutex.
2214 */
2215 static void check_new_map(struct ceph_mds_client *mdsc,
2216 struct ceph_mdsmap *newmap,
2217 struct ceph_mdsmap *oldmap)
2218 {
2219 int i;
2220 int oldstate, newstate;
2221 struct ceph_mds_session *s;
2222
2223 dout("check_new_map new %u old %u\n",
2224 newmap->m_epoch, oldmap->m_epoch);
2225
2226 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2227 if (mdsc->sessions[i] == NULL)
2228 continue;
2229 s = mdsc->sessions[i];
2230 oldstate = ceph_mdsmap_get_state(oldmap, i);
2231 newstate = ceph_mdsmap_get_state(newmap, i);
2232
2233 dout("check_new_map mds%d state %s -> %s (session %s)\n",
2234 i, ceph_mds_state_name(oldstate),
2235 ceph_mds_state_name(newstate),
2236 session_state_name(s->s_state));
2237
2238 if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2239 ceph_mdsmap_get_addr(newmap, i),
2240 sizeof(struct ceph_entity_addr))) {
2241 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2242 /* the session never opened, just close it
2243 * out now */
2244 __wake_requests(mdsc, &s->s_waiting);
2245 unregister_session(mdsc, s);
2246 } else {
2247 /* just close it */
2248 mutex_unlock(&mdsc->mutex);
2249 mutex_lock(&s->s_mutex);
2250 mutex_lock(&mdsc->mutex);
2251 ceph_con_close(&s->s_con);
2252 mutex_unlock(&s->s_mutex);
2253 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2254 }
2255
2256 /* kick any requests waiting on the recovering mds */
2257 kick_requests(mdsc, i, 1);
2258 } else if (oldstate == newstate) {
2259 continue; /* nothing new with this mds */
2260 }
2261
2262 /*
2263 * send reconnect?
2264 */
2265 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2266 newstate >= CEPH_MDS_STATE_RECONNECT)
2267 send_mds_reconnect(mdsc, i);
2268
2269 /*
2270 * kick requests on any mds that has gone active.
2271 *
2272 * kick requests on cur or forwarder: we may have sent
2273 * the request to mds1, mds1 told us it forwarded it
2274 * to mds2, but then we learn mds1 failed and can't be
2275 * sure it successfully forwarded our request before
2276 * it died.
2277 */
2278 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2279 newstate >= CEPH_MDS_STATE_ACTIVE) {
2280 pr_info("mds%d reconnect completed\n", s->s_mds);
2281 kick_requests(mdsc, i, 1);
2282 ceph_kick_flushing_caps(mdsc, s);
2283 wake_up_session_caps(s, 1);
2284 }
2285 }
2286 }
2287
2288
2289
2290 /*
2291 * leases
2292 */
2293
2294 /*
2295 * caller must hold session s_mutex, dentry->d_lock
2296 */
2297 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2298 {
2299 struct ceph_dentry_info *di = ceph_dentry(dentry);
2300
2301 ceph_put_mds_session(di->lease_session);
2302 di->lease_session = NULL;
2303 }
2304
2305 static void handle_lease(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
2306 {
2307 struct super_block *sb = mdsc->client->sb;
2308 struct inode *inode;
2309 struct ceph_mds_session *session;
2310 struct ceph_inode_info *ci;
2311 struct dentry *parent, *dentry;
2312 struct ceph_dentry_info *di;
2313 int mds;
2314 struct ceph_mds_lease *h = msg->front.iov_base;
2315 struct ceph_vino vino;
2316 int mask;
2317 struct qstr dname;
2318 int release = 0;
2319
2320 if (msg->hdr.src.name.type != CEPH_ENTITY_TYPE_MDS)
2321 return;
2322 mds = le64_to_cpu(msg->hdr.src.name.num);
2323 dout("handle_lease from mds%d\n", mds);
2324
2325 /* decode */
2326 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2327 goto bad;
2328 vino.ino = le64_to_cpu(h->ino);
2329 vino.snap = CEPH_NOSNAP;
2330 mask = le16_to_cpu(h->mask);
2331 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2332 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2333 if (dname.len != get_unaligned_le32(h+1))
2334 goto bad;
2335
2336 /* find session */
2337 mutex_lock(&mdsc->mutex);
2338 session = __ceph_lookup_mds_session(mdsc, mds);
2339 mutex_unlock(&mdsc->mutex);
2340 if (!session) {
2341 pr_err("handle_lease got lease but no session mds%d\n", mds);
2342 return;
2343 }
2344
2345 mutex_lock(&session->s_mutex);
2346 session->s_seq++;
2347
2348 /* lookup inode */
2349 inode = ceph_find_inode(sb, vino);
2350 dout("handle_lease '%s', mask %d, ino %llx %p\n",
2351 ceph_lease_op_name(h->action), mask, vino.ino, inode);
2352 if (inode == NULL) {
2353 dout("handle_lease no inode %llx\n", vino.ino);
2354 goto release;
2355 }
2356 ci = ceph_inode(inode);
2357
2358 /* dentry */
2359 parent = d_find_alias(inode);
2360 if (!parent) {
2361 dout("no parent dentry on inode %p\n", inode);
2362 WARN_ON(1);
2363 goto release; /* hrm... */
2364 }
2365 dname.hash = full_name_hash(dname.name, dname.len);
2366 dentry = d_lookup(parent, &dname);
2367 dput(parent);
2368 if (!dentry)
2369 goto release;
2370
2371 spin_lock(&dentry->d_lock);
2372 di = ceph_dentry(dentry);
2373 switch (h->action) {
2374 case CEPH_MDS_LEASE_REVOKE:
2375 if (di && di->lease_session == session) {
2376 h->seq = cpu_to_le32(di->lease_seq);
2377 __ceph_mdsc_drop_dentry_lease(dentry);
2378 }
2379 release = 1;
2380 break;
2381
2382 case CEPH_MDS_LEASE_RENEW:
2383 if (di && di->lease_session == session &&
2384 di->lease_gen == session->s_cap_gen &&
2385 di->lease_renew_from &&
2386 di->lease_renew_after == 0) {
2387 unsigned long duration =
2388 le32_to_cpu(h->duration_ms) * HZ / 1000;
2389
2390 di->lease_seq = le32_to_cpu(h->seq);
2391 dentry->d_time = di->lease_renew_from + duration;
2392 di->lease_renew_after = di->lease_renew_from +
2393 (duration >> 1);
2394 di->lease_renew_from = 0;
2395 }
2396 break;
2397 }
2398 spin_unlock(&dentry->d_lock);
2399 dput(dentry);
2400
2401 if (!release)
2402 goto out;
2403
2404 release:
2405 /* let's just reuse the same message */
2406 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2407 ceph_msg_get(msg);
2408 ceph_con_send(&session->s_con, msg);
2409
2410 out:
2411 iput(inode);
2412 mutex_unlock(&session->s_mutex);
2413 ceph_put_mds_session(session);
2414 return;
2415
2416 bad:
2417 pr_err("corrupt lease message\n");
2418 ceph_msg_dump(msg);
2419 }
2420
2421 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2422 struct inode *inode,
2423 struct dentry *dentry, char action,
2424 u32 seq)
2425 {
2426 struct ceph_msg *msg;
2427 struct ceph_mds_lease *lease;
2428 int len = sizeof(*lease) + sizeof(u32);
2429 int dnamelen = 0;
2430
2431 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2432 inode, dentry, ceph_lease_op_name(action), session->s_mds);
2433 dnamelen = dentry->d_name.len;
2434 len += dnamelen;
2435
2436 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, 0, 0, NULL);
2437 if (IS_ERR(msg))
2438 return;
2439 lease = msg->front.iov_base;
2440 lease->action = action;
2441 lease->mask = cpu_to_le16(CEPH_LOCK_DN);
2442 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2443 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2444 lease->seq = cpu_to_le32(seq);
2445 put_unaligned_le32(dnamelen, lease + 1);
2446 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2447
2448 /*
2449 * if this is a preemptive lease RELEASE, no need to
2450 * flush request stream, since the actual request will
2451 * soon follow.
2452 */
2453 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2454
2455 ceph_con_send(&session->s_con, msg);
2456 }
2457
2458 /*
2459 * Preemptively release a lease we expect to invalidate anyway.
2460 * Pass @inode always, @dentry is optional.
2461 */
2462 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2463 struct dentry *dentry, int mask)
2464 {
2465 struct ceph_dentry_info *di;
2466 struct ceph_mds_session *session;
2467 u32 seq;
2468
2469 BUG_ON(inode == NULL);
2470 BUG_ON(dentry == NULL);
2471 BUG_ON(mask != CEPH_LOCK_DN);
2472
2473 /* is dentry lease valid? */
2474 spin_lock(&dentry->d_lock);
2475 di = ceph_dentry(dentry);
2476 if (!di || !di->lease_session ||
2477 di->lease_session->s_mds < 0 ||
2478 di->lease_gen != di->lease_session->s_cap_gen ||
2479 !time_before(jiffies, dentry->d_time)) {
2480 dout("lease_release inode %p dentry %p -- "
2481 "no lease on %d\n",
2482 inode, dentry, mask);
2483 spin_unlock(&dentry->d_lock);
2484 return;
2485 }
2486
2487 /* we do have a lease on this dentry; note mds and seq */
2488 session = ceph_get_mds_session(di->lease_session);
2489 seq = di->lease_seq;
2490 __ceph_mdsc_drop_dentry_lease(dentry);
2491 spin_unlock(&dentry->d_lock);
2492
2493 dout("lease_release inode %p dentry %p mask %d to mds%d\n",
2494 inode, dentry, mask, session->s_mds);
2495 ceph_mdsc_lease_send_msg(session, inode, dentry,
2496 CEPH_MDS_LEASE_RELEASE, seq);
2497 ceph_put_mds_session(session);
2498 }
2499
2500 /*
2501 * drop all leases (and dentry refs) in preparation for umount
2502 */
2503 static void drop_leases(struct ceph_mds_client *mdsc)
2504 {
2505 int i;
2506
2507 dout("drop_leases\n");
2508 mutex_lock(&mdsc->mutex);
2509 for (i = 0; i < mdsc->max_sessions; i++) {
2510 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2511 if (!s)
2512 continue;
2513 mutex_unlock(&mdsc->mutex);
2514 mutex_lock(&s->s_mutex);
2515 mutex_unlock(&s->s_mutex);
2516 ceph_put_mds_session(s);
2517 mutex_lock(&mdsc->mutex);
2518 }
2519 mutex_unlock(&mdsc->mutex);
2520 }
2521
2522
2523
2524 /*
2525 * delayed work -- periodically trim expired leases, renew caps with mds
2526 */
2527 static void schedule_delayed(struct ceph_mds_client *mdsc)
2528 {
2529 int delay = 5;
2530 unsigned hz = round_jiffies_relative(HZ * delay);
2531 schedule_delayed_work(&mdsc->delayed_work, hz);
2532 }
2533
2534 static void delayed_work(struct work_struct *work)
2535 {
2536 int i;
2537 struct ceph_mds_client *mdsc =
2538 container_of(work, struct ceph_mds_client, delayed_work.work);
2539 int renew_interval;
2540 int renew_caps;
2541
2542 dout("mdsc delayed_work\n");
2543 ceph_check_delayed_caps(mdsc);
2544
2545 mutex_lock(&mdsc->mutex);
2546 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2547 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2548 mdsc->last_renew_caps);
2549 if (renew_caps)
2550 mdsc->last_renew_caps = jiffies;
2551
2552 for (i = 0; i < mdsc->max_sessions; i++) {
2553 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2554 if (s == NULL)
2555 continue;
2556 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2557 dout("resending session close request for mds%d\n",
2558 s->s_mds);
2559 request_close_session(mdsc, s);
2560 ceph_put_mds_session(s);
2561 continue;
2562 }
2563 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2564 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2565 s->s_state = CEPH_MDS_SESSION_HUNG;
2566 pr_info("mds%d hung\n", s->s_mds);
2567 }
2568 }
2569 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2570 /* this mds is failed or recovering, just wait */
2571 ceph_put_mds_session(s);
2572 continue;
2573 }
2574 mutex_unlock(&mdsc->mutex);
2575
2576 mutex_lock(&s->s_mutex);
2577 if (renew_caps)
2578 send_renew_caps(mdsc, s);
2579 else
2580 ceph_con_keepalive(&s->s_con);
2581 add_cap_releases(mdsc, s, -1);
2582 send_cap_releases(mdsc, s);
2583 mutex_unlock(&s->s_mutex);
2584 ceph_put_mds_session(s);
2585
2586 mutex_lock(&mdsc->mutex);
2587 }
2588 mutex_unlock(&mdsc->mutex);
2589
2590 schedule_delayed(mdsc);
2591 }
2592
2593
2594 int ceph_mdsc_init(struct ceph_mds_client *mdsc, struct ceph_client *client)
2595 {
2596 mdsc->client = client;
2597 mutex_init(&mdsc->mutex);
2598 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
2599 init_completion(&mdsc->safe_umount_waiters);
2600 init_completion(&mdsc->session_close_waiters);
2601 INIT_LIST_HEAD(&mdsc->waiting_for_map);
2602 mdsc->sessions = NULL;
2603 mdsc->max_sessions = 0;
2604 mdsc->stopping = 0;
2605 init_rwsem(&mdsc->snap_rwsem);
2606 INIT_RADIX_TREE(&mdsc->snap_realms, GFP_NOFS);
2607 INIT_LIST_HEAD(&mdsc->snap_empty);
2608 spin_lock_init(&mdsc->snap_empty_lock);
2609 mdsc->last_tid = 0;
2610 mdsc->request_tree = RB_ROOT;
2611 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
2612 mdsc->last_renew_caps = jiffies;
2613 INIT_LIST_HEAD(&mdsc->cap_delay_list);
2614 spin_lock_init(&mdsc->cap_delay_lock);
2615 INIT_LIST_HEAD(&mdsc->snap_flush_list);
2616 spin_lock_init(&mdsc->snap_flush_lock);
2617 mdsc->cap_flush_seq = 0;
2618 INIT_LIST_HEAD(&mdsc->cap_dirty);
2619 mdsc->num_cap_flushing = 0;
2620 spin_lock_init(&mdsc->cap_dirty_lock);
2621 init_waitqueue_head(&mdsc->cap_flushing_wq);
2622 spin_lock_init(&mdsc->dentry_lru_lock);
2623 INIT_LIST_HEAD(&mdsc->dentry_lru);
2624 return 0;
2625 }
2626
2627 /*
2628 * Wait for safe replies on open mds requests. If we time out, drop
2629 * all requests from the tree to avoid dangling dentry refs.
2630 */
2631 static void wait_requests(struct ceph_mds_client *mdsc)
2632 {
2633 struct ceph_mds_request *req;
2634 struct ceph_client *client = mdsc->client;
2635
2636 mutex_lock(&mdsc->mutex);
2637 if (__get_oldest_req(mdsc)) {
2638 mutex_unlock(&mdsc->mutex);
2639
2640 dout("wait_requests waiting for requests\n");
2641 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
2642 client->mount_args->mount_timeout * HZ);
2643
2644 /* tear down remaining requests */
2645 mutex_lock(&mdsc->mutex);
2646 while ((req = __get_oldest_req(mdsc))) {
2647 dout("wait_requests timed out on tid %llu\n",
2648 req->r_tid);
2649 __unregister_request(mdsc, req);
2650 }
2651 }
2652 mutex_unlock(&mdsc->mutex);
2653 dout("wait_requests done\n");
2654 }
2655
2656 /*
2657 * called before mount is ro, and before dentries are torn down.
2658 * (hmm, does this still race with new lookups?)
2659 */
2660 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
2661 {
2662 dout("pre_umount\n");
2663 mdsc->stopping = 1;
2664
2665 drop_leases(mdsc);
2666 ceph_flush_dirty_caps(mdsc);
2667 wait_requests(mdsc);
2668 }
2669
2670 /*
2671 * wait for all write mds requests to flush.
2672 */
2673 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
2674 {
2675 struct ceph_mds_request *req = NULL;
2676 struct rb_node *n;
2677
2678 mutex_lock(&mdsc->mutex);
2679 dout("wait_unsafe_requests want %lld\n", want_tid);
2680 req = __get_oldest_req(mdsc);
2681 while (req && req->r_tid <= want_tid) {
2682 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
2683 /* write op */
2684 ceph_mdsc_get_request(req);
2685 mutex_unlock(&mdsc->mutex);
2686 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
2687 req->r_tid, want_tid);
2688 wait_for_completion(&req->r_safe_completion);
2689 mutex_lock(&mdsc->mutex);
2690 n = rb_next(&req->r_node);
2691 ceph_mdsc_put_request(req);
2692 } else {
2693 n = rb_next(&req->r_node);
2694 }
2695 if (!n)
2696 break;
2697 req = rb_entry(n, struct ceph_mds_request, r_node);
2698 }
2699 mutex_unlock(&mdsc->mutex);
2700 dout("wait_unsafe_requests done\n");
2701 }
2702
2703 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
2704 {
2705 u64 want_tid, want_flush;
2706
2707 dout("sync\n");
2708 mutex_lock(&mdsc->mutex);
2709 want_tid = mdsc->last_tid;
2710 want_flush = mdsc->cap_flush_seq;
2711 mutex_unlock(&mdsc->mutex);
2712 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
2713
2714 ceph_flush_dirty_caps(mdsc);
2715
2716 wait_unsafe_requests(mdsc, want_tid);
2717 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
2718 }
2719
2720
2721 /*
2722 * called after sb is ro.
2723 */
2724 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
2725 {
2726 struct ceph_mds_session *session;
2727 int i;
2728 int n;
2729 struct ceph_client *client = mdsc->client;
2730 unsigned long started, timeout = client->mount_args->mount_timeout * HZ;
2731
2732 dout("close_sessions\n");
2733
2734 mutex_lock(&mdsc->mutex);
2735
2736 /* close sessions */
2737 started = jiffies;
2738 while (time_before(jiffies, started + timeout)) {
2739 dout("closing sessions\n");
2740 n = 0;
2741 for (i = 0; i < mdsc->max_sessions; i++) {
2742 session = __ceph_lookup_mds_session(mdsc, i);
2743 if (!session)
2744 continue;
2745 mutex_unlock(&mdsc->mutex);
2746 mutex_lock(&session->s_mutex);
2747 __close_session(mdsc, session);
2748 mutex_unlock(&session->s_mutex);
2749 ceph_put_mds_session(session);
2750 mutex_lock(&mdsc->mutex);
2751 n++;
2752 }
2753 if (n == 0)
2754 break;
2755
2756 if (client->mount_state == CEPH_MOUNT_SHUTDOWN)
2757 break;
2758
2759 dout("waiting for sessions to close\n");
2760 mutex_unlock(&mdsc->mutex);
2761 wait_for_completion_timeout(&mdsc->session_close_waiters,
2762 timeout);
2763 mutex_lock(&mdsc->mutex);
2764 }
2765
2766 /* tear down remaining sessions */
2767 for (i = 0; i < mdsc->max_sessions; i++) {
2768 if (mdsc->sessions[i]) {
2769 session = get_session(mdsc->sessions[i]);
2770 unregister_session(mdsc, session);
2771 mutex_unlock(&mdsc->mutex);
2772 mutex_lock(&session->s_mutex);
2773 remove_session_caps(session);
2774 mutex_unlock(&session->s_mutex);
2775 ceph_put_mds_session(session);
2776 mutex_lock(&mdsc->mutex);
2777 }
2778 }
2779
2780 WARN_ON(!list_empty(&mdsc->cap_delay_list));
2781
2782 mutex_unlock(&mdsc->mutex);
2783
2784 ceph_cleanup_empty_realms(mdsc);
2785
2786 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
2787
2788 dout("stopped\n");
2789 }
2790
2791 void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
2792 {
2793 dout("stop\n");
2794 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
2795 if (mdsc->mdsmap)
2796 ceph_mdsmap_destroy(mdsc->mdsmap);
2797 kfree(mdsc->sessions);
2798 }
2799
2800
2801 /*
2802 * handle mds map update.
2803 */
2804 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
2805 {
2806 u32 epoch;
2807 u32 maplen;
2808 void *p = msg->front.iov_base;
2809 void *end = p + msg->front.iov_len;
2810 struct ceph_mdsmap *newmap, *oldmap;
2811 struct ceph_fsid fsid;
2812 int err = -EINVAL;
2813
2814 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
2815 ceph_decode_copy(&p, &fsid, sizeof(fsid));
2816 if (ceph_check_fsid(mdsc->client, &fsid) < 0)
2817 return;
2818 epoch = ceph_decode_32(&p);
2819 maplen = ceph_decode_32(&p);
2820 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
2821
2822 /* do we need it? */
2823 ceph_monc_got_mdsmap(&mdsc->client->monc, epoch);
2824 mutex_lock(&mdsc->mutex);
2825 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
2826 dout("handle_map epoch %u <= our %u\n",
2827 epoch, mdsc->mdsmap->m_epoch);
2828 mutex_unlock(&mdsc->mutex);
2829 return;
2830 }
2831
2832 newmap = ceph_mdsmap_decode(&p, end);
2833 if (IS_ERR(newmap)) {
2834 err = PTR_ERR(newmap);
2835 goto bad_unlock;
2836 }
2837
2838 /* swap into place */
2839 if (mdsc->mdsmap) {
2840 oldmap = mdsc->mdsmap;
2841 mdsc->mdsmap = newmap;
2842 check_new_map(mdsc, newmap, oldmap);
2843 ceph_mdsmap_destroy(oldmap);
2844 } else {
2845 mdsc->mdsmap = newmap; /* first mds map */
2846 }
2847 mdsc->client->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
2848
2849 __wake_requests(mdsc, &mdsc->waiting_for_map);
2850
2851 mutex_unlock(&mdsc->mutex);
2852 schedule_delayed(mdsc);
2853 return;
2854
2855 bad_unlock:
2856 mutex_unlock(&mdsc->mutex);
2857 bad:
2858 pr_err("error decoding mdsmap %d\n", err);
2859 return;
2860 }
2861
2862 static struct ceph_connection *con_get(struct ceph_connection *con)
2863 {
2864 struct ceph_mds_session *s = con->private;
2865
2866 if (get_session(s)) {
2867 dout("mdsc con_get %p %d -> %d\n", s,
2868 atomic_read(&s->s_ref) - 1, atomic_read(&s->s_ref));
2869 return con;
2870 }
2871 dout("mdsc con_get %p FAIL\n", s);
2872 return NULL;
2873 }
2874
2875 static void con_put(struct ceph_connection *con)
2876 {
2877 struct ceph_mds_session *s = con->private;
2878
2879 dout("mdsc con_put %p %d -> %d\n", s, atomic_read(&s->s_ref),
2880 atomic_read(&s->s_ref) - 1);
2881 ceph_put_mds_session(s);
2882 }
2883
2884 /*
2885 * if the client is unresponsive for long enough, the mds will kill
2886 * the session entirely.
2887 */
2888 static void peer_reset(struct ceph_connection *con)
2889 {
2890 struct ceph_mds_session *s = con->private;
2891
2892 pr_err("mds%d gave us the boot. IMPLEMENT RECONNECT.\n",
2893 s->s_mds);
2894 }
2895
2896 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
2897 {
2898 struct ceph_mds_session *s = con->private;
2899 struct ceph_mds_client *mdsc = s->s_mdsc;
2900 int type = le16_to_cpu(msg->hdr.type);
2901
2902 switch (type) {
2903 case CEPH_MSG_MDS_MAP:
2904 ceph_mdsc_handle_map(mdsc, msg);
2905 break;
2906 case CEPH_MSG_CLIENT_SESSION:
2907 handle_session(s, msg);
2908 break;
2909 case CEPH_MSG_CLIENT_REPLY:
2910 handle_reply(s, msg);
2911 break;
2912 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
2913 handle_forward(mdsc, msg);
2914 break;
2915 case CEPH_MSG_CLIENT_CAPS:
2916 ceph_handle_caps(s, msg);
2917 break;
2918 case CEPH_MSG_CLIENT_SNAP:
2919 ceph_handle_snap(mdsc, msg);
2920 break;
2921 case CEPH_MSG_CLIENT_LEASE:
2922 handle_lease(mdsc, msg);
2923 break;
2924
2925 default:
2926 pr_err("received unknown message type %d %s\n", type,
2927 ceph_msg_type_name(type));
2928 }
2929 ceph_msg_put(msg);
2930 }
2931
2932 /*
2933 * authentication
2934 */
2935 static int get_authorizer(struct ceph_connection *con,
2936 void **buf, int *len, int *proto,
2937 void **reply_buf, int *reply_len, int force_new)
2938 {
2939 struct ceph_mds_session *s = con->private;
2940 struct ceph_mds_client *mdsc = s->s_mdsc;
2941 struct ceph_auth_client *ac = mdsc->client->monc.auth;
2942 int ret = 0;
2943
2944 if (force_new && s->s_authorizer) {
2945 ac->ops->destroy_authorizer(ac, s->s_authorizer);
2946 s->s_authorizer = NULL;
2947 }
2948 if (s->s_authorizer == NULL) {
2949 if (ac->ops->create_authorizer) {
2950 ret = ac->ops->create_authorizer(
2951 ac, CEPH_ENTITY_TYPE_MDS,
2952 &s->s_authorizer,
2953 &s->s_authorizer_buf,
2954 &s->s_authorizer_buf_len,
2955 &s->s_authorizer_reply_buf,
2956 &s->s_authorizer_reply_buf_len);
2957 if (ret)
2958 return ret;
2959 }
2960 }
2961
2962 *proto = ac->protocol;
2963 *buf = s->s_authorizer_buf;
2964 *len = s->s_authorizer_buf_len;
2965 *reply_buf = s->s_authorizer_reply_buf;
2966 *reply_len = s->s_authorizer_reply_buf_len;
2967 return 0;
2968 }
2969
2970
2971 static int verify_authorizer_reply(struct ceph_connection *con, int len)
2972 {
2973 struct ceph_mds_session *s = con->private;
2974 struct ceph_mds_client *mdsc = s->s_mdsc;
2975 struct ceph_auth_client *ac = mdsc->client->monc.auth;
2976
2977 return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len);
2978 }
2979
2980 static int invalidate_authorizer(struct ceph_connection *con)
2981 {
2982 struct ceph_mds_session *s = con->private;
2983 struct ceph_mds_client *mdsc = s->s_mdsc;
2984 struct ceph_auth_client *ac = mdsc->client->monc.auth;
2985
2986 if (ac->ops->invalidate_authorizer)
2987 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
2988
2989 return ceph_monc_validate_auth(&mdsc->client->monc);
2990 }
2991
2992 const static struct ceph_connection_operations mds_con_ops = {
2993 .get = con_get,
2994 .put = con_put,
2995 .dispatch = dispatch,
2996 .get_authorizer = get_authorizer,
2997 .verify_authorizer_reply = verify_authorizer_reply,
2998 .invalidate_authorizer = invalidate_authorizer,
2999 .peer_reset = peer_reset,
3000 };
3001
3002
3003
3004
3005 /* eof */
This page took 0.143386 seconds and 5 git commands to generate.