ceph: mount non-default filesystem by name
[deliverable/linux.git] / fs / ceph / mds_client.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/gfp.h>
7 #include <linux/sched.h>
8 #include <linux/debugfs.h>
9 #include <linux/seq_file.h>
10 #include <linux/utsname.h>
11 #include <linux/ratelimit.h>
12
13 #include "super.h"
14 #include "mds_client.h"
15
16 #include <linux/ceph/ceph_features.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 #include <linux/ceph/auth.h>
21 #include <linux/ceph/debugfs.h>
22
23 /*
24 * A cluster of MDS (metadata server) daemons is responsible for
25 * managing the file system namespace (the directory hierarchy and
26 * inodes) and for coordinating shared access to storage. Metadata is
27 * partitioning hierarchically across a number of servers, and that
28 * partition varies over time as the cluster adjusts the distribution
29 * in order to balance load.
30 *
31 * The MDS client is primarily responsible to managing synchronous
32 * metadata requests for operations like open, unlink, and so forth.
33 * If there is a MDS failure, we find out about it when we (possibly
34 * request and) receive a new MDS map, and can resubmit affected
35 * requests.
36 *
37 * For the most part, though, we take advantage of a lossless
38 * communications channel to the MDS, and do not need to worry about
39 * timing out or resubmitting requests.
40 *
41 * We maintain a stateful "session" with each MDS we interact with.
42 * Within each session, we sent periodic heartbeat messages to ensure
43 * any capabilities or leases we have been issues remain valid. If
44 * the session times out and goes stale, our leases and capabilities
45 * are no longer valid.
46 */
47
48 struct ceph_reconnect_state {
49 int nr_caps;
50 struct ceph_pagelist *pagelist;
51 bool flock;
52 };
53
54 static void __wake_requests(struct ceph_mds_client *mdsc,
55 struct list_head *head);
56
57 static const struct ceph_connection_operations mds_con_ops;
58
59
60 /*
61 * mds reply parsing
62 */
63
64 /*
65 * parse individual inode info
66 */
67 static int parse_reply_info_in(void **p, void *end,
68 struct ceph_mds_reply_info_in *info,
69 u64 features)
70 {
71 int err = -EIO;
72
73 info->in = *p;
74 *p += sizeof(struct ceph_mds_reply_inode) +
75 sizeof(*info->in->fragtree.splits) *
76 le32_to_cpu(info->in->fragtree.nsplits);
77
78 ceph_decode_32_safe(p, end, info->symlink_len, bad);
79 ceph_decode_need(p, end, info->symlink_len, bad);
80 info->symlink = *p;
81 *p += info->symlink_len;
82
83 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
84 ceph_decode_copy_safe(p, end, &info->dir_layout,
85 sizeof(info->dir_layout), bad);
86 else
87 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
88
89 ceph_decode_32_safe(p, end, info->xattr_len, bad);
90 ceph_decode_need(p, end, info->xattr_len, bad);
91 info->xattr_data = *p;
92 *p += info->xattr_len;
93
94 if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
95 ceph_decode_64_safe(p, end, info->inline_version, bad);
96 ceph_decode_32_safe(p, end, info->inline_len, bad);
97 ceph_decode_need(p, end, info->inline_len, bad);
98 info->inline_data = *p;
99 *p += info->inline_len;
100 } else
101 info->inline_version = CEPH_INLINE_NONE;
102
103 info->pool_ns_len = 0;
104 info->pool_ns_data = NULL;
105 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) {
106 ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
107 if (info->pool_ns_len > 0) {
108 ceph_decode_need(p, end, info->pool_ns_len, bad);
109 info->pool_ns_data = *p;
110 *p += info->pool_ns_len;
111 }
112 }
113
114 return 0;
115 bad:
116 return err;
117 }
118
119 /*
120 * parse a normal reply, which may contain a (dir+)dentry and/or a
121 * target inode.
122 */
123 static int parse_reply_info_trace(void **p, void *end,
124 struct ceph_mds_reply_info_parsed *info,
125 u64 features)
126 {
127 int err;
128
129 if (info->head->is_dentry) {
130 err = parse_reply_info_in(p, end, &info->diri, features);
131 if (err < 0)
132 goto out_bad;
133
134 if (unlikely(*p + sizeof(*info->dirfrag) > end))
135 goto bad;
136 info->dirfrag = *p;
137 *p += sizeof(*info->dirfrag) +
138 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
139 if (unlikely(*p > end))
140 goto bad;
141
142 ceph_decode_32_safe(p, end, info->dname_len, bad);
143 ceph_decode_need(p, end, info->dname_len, bad);
144 info->dname = *p;
145 *p += info->dname_len;
146 info->dlease = *p;
147 *p += sizeof(*info->dlease);
148 }
149
150 if (info->head->is_target) {
151 err = parse_reply_info_in(p, end, &info->targeti, features);
152 if (err < 0)
153 goto out_bad;
154 }
155
156 if (unlikely(*p != end))
157 goto bad;
158 return 0;
159
160 bad:
161 err = -EIO;
162 out_bad:
163 pr_err("problem parsing mds trace %d\n", err);
164 return err;
165 }
166
167 /*
168 * parse readdir results
169 */
170 static int parse_reply_info_dir(void **p, void *end,
171 struct ceph_mds_reply_info_parsed *info,
172 u64 features)
173 {
174 u32 num, i = 0;
175 int err;
176
177 info->dir_dir = *p;
178 if (*p + sizeof(*info->dir_dir) > end)
179 goto bad;
180 *p += sizeof(*info->dir_dir) +
181 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
182 if (*p > end)
183 goto bad;
184
185 ceph_decode_need(p, end, sizeof(num) + 2, bad);
186 num = ceph_decode_32(p);
187 {
188 u16 flags = ceph_decode_16(p);
189 info->dir_end = !!(flags & CEPH_READDIR_FRAG_END);
190 info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE);
191 info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER);
192 }
193 if (num == 0)
194 goto done;
195
196 BUG_ON(!info->dir_entries);
197 if ((unsigned long)(info->dir_entries + num) >
198 (unsigned long)info->dir_entries + info->dir_buf_size) {
199 pr_err("dir contents are larger than expected\n");
200 WARN_ON(1);
201 goto bad;
202 }
203
204 info->dir_nr = num;
205 while (num) {
206 struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
207 /* dentry */
208 ceph_decode_need(p, end, sizeof(u32)*2, bad);
209 rde->name_len = ceph_decode_32(p);
210 ceph_decode_need(p, end, rde->name_len, bad);
211 rde->name = *p;
212 *p += rde->name_len;
213 dout("parsed dir dname '%.*s'\n", rde->name_len, rde->name);
214 rde->lease = *p;
215 *p += sizeof(struct ceph_mds_reply_lease);
216
217 /* inode */
218 err = parse_reply_info_in(p, end, &rde->inode, features);
219 if (err < 0)
220 goto out_bad;
221 /* ceph_readdir_prepopulate() will update it */
222 rde->offset = 0;
223 i++;
224 num--;
225 }
226
227 done:
228 if (*p != end)
229 goto bad;
230 return 0;
231
232 bad:
233 err = -EIO;
234 out_bad:
235 pr_err("problem parsing dir contents %d\n", err);
236 return err;
237 }
238
239 /*
240 * parse fcntl F_GETLK results
241 */
242 static int parse_reply_info_filelock(void **p, void *end,
243 struct ceph_mds_reply_info_parsed *info,
244 u64 features)
245 {
246 if (*p + sizeof(*info->filelock_reply) > end)
247 goto bad;
248
249 info->filelock_reply = *p;
250 *p += sizeof(*info->filelock_reply);
251
252 if (unlikely(*p != end))
253 goto bad;
254 return 0;
255
256 bad:
257 return -EIO;
258 }
259
260 /*
261 * parse create results
262 */
263 static int parse_reply_info_create(void **p, void *end,
264 struct ceph_mds_reply_info_parsed *info,
265 u64 features)
266 {
267 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
268 if (*p == end) {
269 info->has_create_ino = false;
270 } else {
271 info->has_create_ino = true;
272 info->ino = ceph_decode_64(p);
273 }
274 }
275
276 if (unlikely(*p != end))
277 goto bad;
278 return 0;
279
280 bad:
281 return -EIO;
282 }
283
284 /*
285 * parse extra results
286 */
287 static int parse_reply_info_extra(void **p, void *end,
288 struct ceph_mds_reply_info_parsed *info,
289 u64 features)
290 {
291 if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
292 return parse_reply_info_filelock(p, end, info, features);
293 else if (info->head->op == CEPH_MDS_OP_READDIR ||
294 info->head->op == CEPH_MDS_OP_LSSNAP)
295 return parse_reply_info_dir(p, end, info, features);
296 else if (info->head->op == CEPH_MDS_OP_CREATE)
297 return parse_reply_info_create(p, end, info, features);
298 else
299 return -EIO;
300 }
301
302 /*
303 * parse entire mds reply
304 */
305 static int parse_reply_info(struct ceph_msg *msg,
306 struct ceph_mds_reply_info_parsed *info,
307 u64 features)
308 {
309 void *p, *end;
310 u32 len;
311 int err;
312
313 info->head = msg->front.iov_base;
314 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
315 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
316
317 /* trace */
318 ceph_decode_32_safe(&p, end, len, bad);
319 if (len > 0) {
320 ceph_decode_need(&p, end, len, bad);
321 err = parse_reply_info_trace(&p, p+len, info, features);
322 if (err < 0)
323 goto out_bad;
324 }
325
326 /* extra */
327 ceph_decode_32_safe(&p, end, len, bad);
328 if (len > 0) {
329 ceph_decode_need(&p, end, len, bad);
330 err = parse_reply_info_extra(&p, p+len, info, features);
331 if (err < 0)
332 goto out_bad;
333 }
334
335 /* snap blob */
336 ceph_decode_32_safe(&p, end, len, bad);
337 info->snapblob_len = len;
338 info->snapblob = p;
339 p += len;
340
341 if (p != end)
342 goto bad;
343 return 0;
344
345 bad:
346 err = -EIO;
347 out_bad:
348 pr_err("mds parse_reply err %d\n", err);
349 return err;
350 }
351
352 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
353 {
354 if (!info->dir_entries)
355 return;
356 free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size));
357 }
358
359
360 /*
361 * sessions
362 */
363 const char *ceph_session_state_name(int s)
364 {
365 switch (s) {
366 case CEPH_MDS_SESSION_NEW: return "new";
367 case CEPH_MDS_SESSION_OPENING: return "opening";
368 case CEPH_MDS_SESSION_OPEN: return "open";
369 case CEPH_MDS_SESSION_HUNG: return "hung";
370 case CEPH_MDS_SESSION_CLOSING: return "closing";
371 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
372 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
373 default: return "???";
374 }
375 }
376
377 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
378 {
379 if (atomic_inc_not_zero(&s->s_ref)) {
380 dout("mdsc get_session %p %d -> %d\n", s,
381 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
382 return s;
383 } else {
384 dout("mdsc get_session %p 0 -- FAIL", s);
385 return NULL;
386 }
387 }
388
389 void ceph_put_mds_session(struct ceph_mds_session *s)
390 {
391 dout("mdsc put_session %p %d -> %d\n", s,
392 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
393 if (atomic_dec_and_test(&s->s_ref)) {
394 if (s->s_auth.authorizer)
395 ceph_auth_destroy_authorizer(s->s_auth.authorizer);
396 kfree(s);
397 }
398 }
399
400 /*
401 * called under mdsc->mutex
402 */
403 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
404 int mds)
405 {
406 struct ceph_mds_session *session;
407
408 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
409 return NULL;
410 session = mdsc->sessions[mds];
411 dout("lookup_mds_session %p %d\n", session,
412 atomic_read(&session->s_ref));
413 get_session(session);
414 return session;
415 }
416
417 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
418 {
419 if (mds >= mdsc->max_sessions)
420 return false;
421 return mdsc->sessions[mds];
422 }
423
424 static int __verify_registered_session(struct ceph_mds_client *mdsc,
425 struct ceph_mds_session *s)
426 {
427 if (s->s_mds >= mdsc->max_sessions ||
428 mdsc->sessions[s->s_mds] != s)
429 return -ENOENT;
430 return 0;
431 }
432
433 /*
434 * create+register a new session for given mds.
435 * called under mdsc->mutex.
436 */
437 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
438 int mds)
439 {
440 struct ceph_mds_session *s;
441
442 if (mds >= mdsc->mdsmap->m_max_mds)
443 return ERR_PTR(-EINVAL);
444
445 s = kzalloc(sizeof(*s), GFP_NOFS);
446 if (!s)
447 return ERR_PTR(-ENOMEM);
448 s->s_mdsc = mdsc;
449 s->s_mds = mds;
450 s->s_state = CEPH_MDS_SESSION_NEW;
451 s->s_ttl = 0;
452 s->s_seq = 0;
453 mutex_init(&s->s_mutex);
454
455 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
456
457 spin_lock_init(&s->s_gen_ttl_lock);
458 s->s_cap_gen = 0;
459 s->s_cap_ttl = jiffies - 1;
460
461 spin_lock_init(&s->s_cap_lock);
462 s->s_renew_requested = 0;
463 s->s_renew_seq = 0;
464 INIT_LIST_HEAD(&s->s_caps);
465 s->s_nr_caps = 0;
466 s->s_trim_caps = 0;
467 atomic_set(&s->s_ref, 1);
468 INIT_LIST_HEAD(&s->s_waiting);
469 INIT_LIST_HEAD(&s->s_unsafe);
470 s->s_num_cap_releases = 0;
471 s->s_cap_reconnect = 0;
472 s->s_cap_iterator = NULL;
473 INIT_LIST_HEAD(&s->s_cap_releases);
474 INIT_LIST_HEAD(&s->s_cap_flushing);
475 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
476
477 dout("register_session mds%d\n", mds);
478 if (mds >= mdsc->max_sessions) {
479 int newmax = 1 << get_count_order(mds+1);
480 struct ceph_mds_session **sa;
481
482 dout("register_session realloc to %d\n", newmax);
483 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
484 if (sa == NULL)
485 goto fail_realloc;
486 if (mdsc->sessions) {
487 memcpy(sa, mdsc->sessions,
488 mdsc->max_sessions * sizeof(void *));
489 kfree(mdsc->sessions);
490 }
491 mdsc->sessions = sa;
492 mdsc->max_sessions = newmax;
493 }
494 mdsc->sessions[mds] = s;
495 atomic_inc(&mdsc->num_sessions);
496 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
497
498 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
499 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
500
501 return s;
502
503 fail_realloc:
504 kfree(s);
505 return ERR_PTR(-ENOMEM);
506 }
507
508 /*
509 * called under mdsc->mutex
510 */
511 static void __unregister_session(struct ceph_mds_client *mdsc,
512 struct ceph_mds_session *s)
513 {
514 dout("__unregister_session mds%d %p\n", s->s_mds, s);
515 BUG_ON(mdsc->sessions[s->s_mds] != s);
516 mdsc->sessions[s->s_mds] = NULL;
517 ceph_con_close(&s->s_con);
518 ceph_put_mds_session(s);
519 atomic_dec(&mdsc->num_sessions);
520 }
521
522 /*
523 * drop session refs in request.
524 *
525 * should be last request ref, or hold mdsc->mutex
526 */
527 static void put_request_session(struct ceph_mds_request *req)
528 {
529 if (req->r_session) {
530 ceph_put_mds_session(req->r_session);
531 req->r_session = NULL;
532 }
533 }
534
535 void ceph_mdsc_release_request(struct kref *kref)
536 {
537 struct ceph_mds_request *req = container_of(kref,
538 struct ceph_mds_request,
539 r_kref);
540 destroy_reply_info(&req->r_reply_info);
541 if (req->r_request)
542 ceph_msg_put(req->r_request);
543 if (req->r_reply)
544 ceph_msg_put(req->r_reply);
545 if (req->r_inode) {
546 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
547 iput(req->r_inode);
548 }
549 if (req->r_locked_dir)
550 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
551 iput(req->r_target_inode);
552 if (req->r_dentry)
553 dput(req->r_dentry);
554 if (req->r_old_dentry)
555 dput(req->r_old_dentry);
556 if (req->r_old_dentry_dir) {
557 /*
558 * track (and drop pins for) r_old_dentry_dir
559 * separately, since r_old_dentry's d_parent may have
560 * changed between the dir mutex being dropped and
561 * this request being freed.
562 */
563 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
564 CEPH_CAP_PIN);
565 iput(req->r_old_dentry_dir);
566 }
567 kfree(req->r_path1);
568 kfree(req->r_path2);
569 if (req->r_pagelist)
570 ceph_pagelist_release(req->r_pagelist);
571 put_request_session(req);
572 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
573 kfree(req);
574 }
575
576 DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node)
577
578 /*
579 * lookup session, bump ref if found.
580 *
581 * called under mdsc->mutex.
582 */
583 static struct ceph_mds_request *
584 lookup_get_request(struct ceph_mds_client *mdsc, u64 tid)
585 {
586 struct ceph_mds_request *req;
587
588 req = lookup_request(&mdsc->request_tree, tid);
589 if (req)
590 ceph_mdsc_get_request(req);
591
592 return req;
593 }
594
595 /*
596 * Register an in-flight request, and assign a tid. Link to directory
597 * are modifying (if any).
598 *
599 * Called under mdsc->mutex.
600 */
601 static void __register_request(struct ceph_mds_client *mdsc,
602 struct ceph_mds_request *req,
603 struct inode *dir)
604 {
605 req->r_tid = ++mdsc->last_tid;
606 if (req->r_num_caps)
607 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
608 req->r_num_caps);
609 dout("__register_request %p tid %lld\n", req, req->r_tid);
610 ceph_mdsc_get_request(req);
611 insert_request(&mdsc->request_tree, req);
612
613 req->r_uid = current_fsuid();
614 req->r_gid = current_fsgid();
615
616 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
617 mdsc->oldest_tid = req->r_tid;
618
619 if (dir) {
620 ihold(dir);
621 req->r_unsafe_dir = dir;
622 }
623 }
624
625 static void __unregister_request(struct ceph_mds_client *mdsc,
626 struct ceph_mds_request *req)
627 {
628 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
629
630 if (req->r_tid == mdsc->oldest_tid) {
631 struct rb_node *p = rb_next(&req->r_node);
632 mdsc->oldest_tid = 0;
633 while (p) {
634 struct ceph_mds_request *next_req =
635 rb_entry(p, struct ceph_mds_request, r_node);
636 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
637 mdsc->oldest_tid = next_req->r_tid;
638 break;
639 }
640 p = rb_next(p);
641 }
642 }
643
644 erase_request(&mdsc->request_tree, req);
645
646 if (req->r_unsafe_dir && req->r_got_unsafe) {
647 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
648 spin_lock(&ci->i_unsafe_lock);
649 list_del_init(&req->r_unsafe_dir_item);
650 spin_unlock(&ci->i_unsafe_lock);
651 }
652 if (req->r_target_inode && req->r_got_unsafe) {
653 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
654 spin_lock(&ci->i_unsafe_lock);
655 list_del_init(&req->r_unsafe_target_item);
656 spin_unlock(&ci->i_unsafe_lock);
657 }
658
659 if (req->r_unsafe_dir) {
660 iput(req->r_unsafe_dir);
661 req->r_unsafe_dir = NULL;
662 }
663
664 complete_all(&req->r_safe_completion);
665
666 ceph_mdsc_put_request(req);
667 }
668
669 /*
670 * Choose mds to send request to next. If there is a hint set in the
671 * request (e.g., due to a prior forward hint from the mds), use that.
672 * Otherwise, consult frag tree and/or caps to identify the
673 * appropriate mds. If all else fails, choose randomly.
674 *
675 * Called under mdsc->mutex.
676 */
677 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
678 {
679 /*
680 * we don't need to worry about protecting the d_parent access
681 * here because we never renaming inside the snapped namespace
682 * except to resplice to another snapdir, and either the old or new
683 * result is a valid result.
684 */
685 while (!IS_ROOT(dentry) && ceph_snap(d_inode(dentry)) != CEPH_NOSNAP)
686 dentry = dentry->d_parent;
687 return dentry;
688 }
689
690 static int __choose_mds(struct ceph_mds_client *mdsc,
691 struct ceph_mds_request *req)
692 {
693 struct inode *inode;
694 struct ceph_inode_info *ci;
695 struct ceph_cap *cap;
696 int mode = req->r_direct_mode;
697 int mds = -1;
698 u32 hash = req->r_direct_hash;
699 bool is_hash = req->r_direct_is_hash;
700
701 /*
702 * is there a specific mds we should try? ignore hint if we have
703 * no session and the mds is not up (active or recovering).
704 */
705 if (req->r_resend_mds >= 0 &&
706 (__have_session(mdsc, req->r_resend_mds) ||
707 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
708 dout("choose_mds using resend_mds mds%d\n",
709 req->r_resend_mds);
710 return req->r_resend_mds;
711 }
712
713 if (mode == USE_RANDOM_MDS)
714 goto random;
715
716 inode = NULL;
717 if (req->r_inode) {
718 inode = req->r_inode;
719 } else if (req->r_dentry) {
720 /* ignore race with rename; old or new d_parent is okay */
721 struct dentry *parent = req->r_dentry->d_parent;
722 struct inode *dir = d_inode(parent);
723
724 if (dir->i_sb != mdsc->fsc->sb) {
725 /* not this fs! */
726 inode = d_inode(req->r_dentry);
727 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
728 /* direct snapped/virtual snapdir requests
729 * based on parent dir inode */
730 struct dentry *dn = get_nonsnap_parent(parent);
731 inode = d_inode(dn);
732 dout("__choose_mds using nonsnap parent %p\n", inode);
733 } else {
734 /* dentry target */
735 inode = d_inode(req->r_dentry);
736 if (!inode || mode == USE_AUTH_MDS) {
737 /* dir + name */
738 inode = dir;
739 hash = ceph_dentry_hash(dir, req->r_dentry);
740 is_hash = true;
741 }
742 }
743 }
744
745 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
746 (int)hash, mode);
747 if (!inode)
748 goto random;
749 ci = ceph_inode(inode);
750
751 if (is_hash && S_ISDIR(inode->i_mode)) {
752 struct ceph_inode_frag frag;
753 int found;
754
755 ceph_choose_frag(ci, hash, &frag, &found);
756 if (found) {
757 if (mode == USE_ANY_MDS && frag.ndist > 0) {
758 u8 r;
759
760 /* choose a random replica */
761 get_random_bytes(&r, 1);
762 r %= frag.ndist;
763 mds = frag.dist[r];
764 dout("choose_mds %p %llx.%llx "
765 "frag %u mds%d (%d/%d)\n",
766 inode, ceph_vinop(inode),
767 frag.frag, mds,
768 (int)r, frag.ndist);
769 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
770 CEPH_MDS_STATE_ACTIVE)
771 return mds;
772 }
773
774 /* since this file/dir wasn't known to be
775 * replicated, then we want to look for the
776 * authoritative mds. */
777 mode = USE_AUTH_MDS;
778 if (frag.mds >= 0) {
779 /* choose auth mds */
780 mds = frag.mds;
781 dout("choose_mds %p %llx.%llx "
782 "frag %u mds%d (auth)\n",
783 inode, ceph_vinop(inode), frag.frag, mds);
784 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
785 CEPH_MDS_STATE_ACTIVE)
786 return mds;
787 }
788 }
789 }
790
791 spin_lock(&ci->i_ceph_lock);
792 cap = NULL;
793 if (mode == USE_AUTH_MDS)
794 cap = ci->i_auth_cap;
795 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
796 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
797 if (!cap) {
798 spin_unlock(&ci->i_ceph_lock);
799 goto random;
800 }
801 mds = cap->session->s_mds;
802 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
803 inode, ceph_vinop(inode), mds,
804 cap == ci->i_auth_cap ? "auth " : "", cap);
805 spin_unlock(&ci->i_ceph_lock);
806 return mds;
807
808 random:
809 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
810 dout("choose_mds chose random mds%d\n", mds);
811 return mds;
812 }
813
814
815 /*
816 * session messages
817 */
818 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
819 {
820 struct ceph_msg *msg;
821 struct ceph_mds_session_head *h;
822
823 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
824 false);
825 if (!msg) {
826 pr_err("create_session_msg ENOMEM creating msg\n");
827 return NULL;
828 }
829 h = msg->front.iov_base;
830 h->op = cpu_to_le32(op);
831 h->seq = cpu_to_le64(seq);
832
833 return msg;
834 }
835
836 /*
837 * session message, specialization for CEPH_SESSION_REQUEST_OPEN
838 * to include additional client metadata fields.
839 */
840 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
841 {
842 struct ceph_msg *msg;
843 struct ceph_mds_session_head *h;
844 int i = -1;
845 int metadata_bytes = 0;
846 int metadata_key_count = 0;
847 struct ceph_options *opt = mdsc->fsc->client->options;
848 struct ceph_mount_options *fsopt = mdsc->fsc->mount_options;
849 void *p;
850
851 const char* metadata[][2] = {
852 {"hostname", utsname()->nodename},
853 {"kernel_version", utsname()->release},
854 {"entity_id", opt->name ? : ""},
855 {"root", fsopt->server_path ? : "/"},
856 {NULL, NULL}
857 };
858
859 /* Calculate serialized length of metadata */
860 metadata_bytes = 4; /* map length */
861 for (i = 0; metadata[i][0] != NULL; ++i) {
862 metadata_bytes += 8 + strlen(metadata[i][0]) +
863 strlen(metadata[i][1]);
864 metadata_key_count++;
865 }
866
867 /* Allocate the message */
868 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes,
869 GFP_NOFS, false);
870 if (!msg) {
871 pr_err("create_session_msg ENOMEM creating msg\n");
872 return NULL;
873 }
874 h = msg->front.iov_base;
875 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
876 h->seq = cpu_to_le64(seq);
877
878 /*
879 * Serialize client metadata into waiting buffer space, using
880 * the format that userspace expects for map<string, string>
881 *
882 * ClientSession messages with metadata are v2
883 */
884 msg->hdr.version = cpu_to_le16(2);
885 msg->hdr.compat_version = cpu_to_le16(1);
886
887 /* The write pointer, following the session_head structure */
888 p = msg->front.iov_base + sizeof(*h);
889
890 /* Number of entries in the map */
891 ceph_encode_32(&p, metadata_key_count);
892
893 /* Two length-prefixed strings for each entry in the map */
894 for (i = 0; metadata[i][0] != NULL; ++i) {
895 size_t const key_len = strlen(metadata[i][0]);
896 size_t const val_len = strlen(metadata[i][1]);
897
898 ceph_encode_32(&p, key_len);
899 memcpy(p, metadata[i][0], key_len);
900 p += key_len;
901 ceph_encode_32(&p, val_len);
902 memcpy(p, metadata[i][1], val_len);
903 p += val_len;
904 }
905
906 return msg;
907 }
908
909 /*
910 * send session open request.
911 *
912 * called under mdsc->mutex
913 */
914 static int __open_session(struct ceph_mds_client *mdsc,
915 struct ceph_mds_session *session)
916 {
917 struct ceph_msg *msg;
918 int mstate;
919 int mds = session->s_mds;
920
921 /* wait for mds to go active? */
922 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
923 dout("open_session to mds%d (%s)\n", mds,
924 ceph_mds_state_name(mstate));
925 session->s_state = CEPH_MDS_SESSION_OPENING;
926 session->s_renew_requested = jiffies;
927
928 /* send connect message */
929 msg = create_session_open_msg(mdsc, session->s_seq);
930 if (!msg)
931 return -ENOMEM;
932 ceph_con_send(&session->s_con, msg);
933 return 0;
934 }
935
936 /*
937 * open sessions for any export targets for the given mds
938 *
939 * called under mdsc->mutex
940 */
941 static struct ceph_mds_session *
942 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
943 {
944 struct ceph_mds_session *session;
945
946 session = __ceph_lookup_mds_session(mdsc, target);
947 if (!session) {
948 session = register_session(mdsc, target);
949 if (IS_ERR(session))
950 return session;
951 }
952 if (session->s_state == CEPH_MDS_SESSION_NEW ||
953 session->s_state == CEPH_MDS_SESSION_CLOSING)
954 __open_session(mdsc, session);
955
956 return session;
957 }
958
959 struct ceph_mds_session *
960 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
961 {
962 struct ceph_mds_session *session;
963
964 dout("open_export_target_session to mds%d\n", target);
965
966 mutex_lock(&mdsc->mutex);
967 session = __open_export_target_session(mdsc, target);
968 mutex_unlock(&mdsc->mutex);
969
970 return session;
971 }
972
973 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
974 struct ceph_mds_session *session)
975 {
976 struct ceph_mds_info *mi;
977 struct ceph_mds_session *ts;
978 int i, mds = session->s_mds;
979
980 if (mds >= mdsc->mdsmap->m_max_mds)
981 return;
982
983 mi = &mdsc->mdsmap->m_info[mds];
984 dout("open_export_target_sessions for mds%d (%d targets)\n",
985 session->s_mds, mi->num_export_targets);
986
987 for (i = 0; i < mi->num_export_targets; i++) {
988 ts = __open_export_target_session(mdsc, mi->export_targets[i]);
989 if (!IS_ERR(ts))
990 ceph_put_mds_session(ts);
991 }
992 }
993
994 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
995 struct ceph_mds_session *session)
996 {
997 mutex_lock(&mdsc->mutex);
998 __open_export_target_sessions(mdsc, session);
999 mutex_unlock(&mdsc->mutex);
1000 }
1001
1002 /*
1003 * session caps
1004 */
1005
1006 /* caller holds s_cap_lock, we drop it */
1007 static void cleanup_cap_releases(struct ceph_mds_client *mdsc,
1008 struct ceph_mds_session *session)
1009 __releases(session->s_cap_lock)
1010 {
1011 LIST_HEAD(tmp_list);
1012 list_splice_init(&session->s_cap_releases, &tmp_list);
1013 session->s_num_cap_releases = 0;
1014 spin_unlock(&session->s_cap_lock);
1015
1016 dout("cleanup_cap_releases mds%d\n", session->s_mds);
1017 while (!list_empty(&tmp_list)) {
1018 struct ceph_cap *cap;
1019 /* zero out the in-progress message */
1020 cap = list_first_entry(&tmp_list,
1021 struct ceph_cap, session_caps);
1022 list_del(&cap->session_caps);
1023 ceph_put_cap(mdsc, cap);
1024 }
1025 }
1026
1027 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1028 struct ceph_mds_session *session)
1029 {
1030 struct ceph_mds_request *req;
1031 struct rb_node *p;
1032
1033 dout("cleanup_session_requests mds%d\n", session->s_mds);
1034 mutex_lock(&mdsc->mutex);
1035 while (!list_empty(&session->s_unsafe)) {
1036 req = list_first_entry(&session->s_unsafe,
1037 struct ceph_mds_request, r_unsafe_item);
1038 list_del_init(&req->r_unsafe_item);
1039 pr_warn_ratelimited(" dropping unsafe request %llu\n",
1040 req->r_tid);
1041 __unregister_request(mdsc, req);
1042 }
1043 /* zero r_attempts, so kick_requests() will re-send requests */
1044 p = rb_first(&mdsc->request_tree);
1045 while (p) {
1046 req = rb_entry(p, struct ceph_mds_request, r_node);
1047 p = rb_next(p);
1048 if (req->r_session &&
1049 req->r_session->s_mds == session->s_mds)
1050 req->r_attempts = 0;
1051 }
1052 mutex_unlock(&mdsc->mutex);
1053 }
1054
1055 /*
1056 * Helper to safely iterate over all caps associated with a session, with
1057 * special care taken to handle a racing __ceph_remove_cap().
1058 *
1059 * Caller must hold session s_mutex.
1060 */
1061 static int iterate_session_caps(struct ceph_mds_session *session,
1062 int (*cb)(struct inode *, struct ceph_cap *,
1063 void *), void *arg)
1064 {
1065 struct list_head *p;
1066 struct ceph_cap *cap;
1067 struct inode *inode, *last_inode = NULL;
1068 struct ceph_cap *old_cap = NULL;
1069 int ret;
1070
1071 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
1072 spin_lock(&session->s_cap_lock);
1073 p = session->s_caps.next;
1074 while (p != &session->s_caps) {
1075 cap = list_entry(p, struct ceph_cap, session_caps);
1076 inode = igrab(&cap->ci->vfs_inode);
1077 if (!inode) {
1078 p = p->next;
1079 continue;
1080 }
1081 session->s_cap_iterator = cap;
1082 spin_unlock(&session->s_cap_lock);
1083
1084 if (last_inode) {
1085 iput(last_inode);
1086 last_inode = NULL;
1087 }
1088 if (old_cap) {
1089 ceph_put_cap(session->s_mdsc, old_cap);
1090 old_cap = NULL;
1091 }
1092
1093 ret = cb(inode, cap, arg);
1094 last_inode = inode;
1095
1096 spin_lock(&session->s_cap_lock);
1097 p = p->next;
1098 if (cap->ci == NULL) {
1099 dout("iterate_session_caps finishing cap %p removal\n",
1100 cap);
1101 BUG_ON(cap->session != session);
1102 cap->session = NULL;
1103 list_del_init(&cap->session_caps);
1104 session->s_nr_caps--;
1105 if (cap->queue_release) {
1106 list_add_tail(&cap->session_caps,
1107 &session->s_cap_releases);
1108 session->s_num_cap_releases++;
1109 } else {
1110 old_cap = cap; /* put_cap it w/o locks held */
1111 }
1112 }
1113 if (ret < 0)
1114 goto out;
1115 }
1116 ret = 0;
1117 out:
1118 session->s_cap_iterator = NULL;
1119 spin_unlock(&session->s_cap_lock);
1120
1121 iput(last_inode);
1122 if (old_cap)
1123 ceph_put_cap(session->s_mdsc, old_cap);
1124
1125 return ret;
1126 }
1127
1128 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1129 void *arg)
1130 {
1131 struct ceph_fs_client *fsc = (struct ceph_fs_client *)arg;
1132 struct ceph_inode_info *ci = ceph_inode(inode);
1133 LIST_HEAD(to_remove);
1134 bool drop = false;
1135 bool invalidate = false;
1136
1137 dout("removing cap %p, ci is %p, inode is %p\n",
1138 cap, ci, &ci->vfs_inode);
1139 spin_lock(&ci->i_ceph_lock);
1140 __ceph_remove_cap(cap, false);
1141 if (!ci->i_auth_cap) {
1142 struct ceph_cap_flush *cf;
1143 struct ceph_mds_client *mdsc = fsc->mdsc;
1144
1145 ci->i_ceph_flags |= CEPH_I_CAP_DROPPED;
1146
1147 if (ci->i_wrbuffer_ref > 0 &&
1148 ACCESS_ONCE(fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
1149 invalidate = true;
1150
1151 while (true) {
1152 struct rb_node *n = rb_first(&ci->i_cap_flush_tree);
1153 if (!n)
1154 break;
1155 cf = rb_entry(n, struct ceph_cap_flush, i_node);
1156 rb_erase(&cf->i_node, &ci->i_cap_flush_tree);
1157 list_add(&cf->list, &to_remove);
1158 }
1159
1160 spin_lock(&mdsc->cap_dirty_lock);
1161
1162 list_for_each_entry(cf, &to_remove, list)
1163 rb_erase(&cf->g_node, &mdsc->cap_flush_tree);
1164
1165 if (!list_empty(&ci->i_dirty_item)) {
1166 pr_warn_ratelimited(
1167 " dropping dirty %s state for %p %lld\n",
1168 ceph_cap_string(ci->i_dirty_caps),
1169 inode, ceph_ino(inode));
1170 ci->i_dirty_caps = 0;
1171 list_del_init(&ci->i_dirty_item);
1172 drop = true;
1173 }
1174 if (!list_empty(&ci->i_flushing_item)) {
1175 pr_warn_ratelimited(
1176 " dropping dirty+flushing %s state for %p %lld\n",
1177 ceph_cap_string(ci->i_flushing_caps),
1178 inode, ceph_ino(inode));
1179 ci->i_flushing_caps = 0;
1180 list_del_init(&ci->i_flushing_item);
1181 mdsc->num_cap_flushing--;
1182 drop = true;
1183 }
1184 spin_unlock(&mdsc->cap_dirty_lock);
1185
1186 if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) {
1187 list_add(&ci->i_prealloc_cap_flush->list, &to_remove);
1188 ci->i_prealloc_cap_flush = NULL;
1189 }
1190 }
1191 spin_unlock(&ci->i_ceph_lock);
1192 while (!list_empty(&to_remove)) {
1193 struct ceph_cap_flush *cf;
1194 cf = list_first_entry(&to_remove,
1195 struct ceph_cap_flush, list);
1196 list_del(&cf->list);
1197 ceph_free_cap_flush(cf);
1198 }
1199
1200 wake_up_all(&ci->i_cap_wq);
1201 if (invalidate)
1202 ceph_queue_invalidate(inode);
1203 if (drop)
1204 iput(inode);
1205 return 0;
1206 }
1207
1208 /*
1209 * caller must hold session s_mutex
1210 */
1211 static void remove_session_caps(struct ceph_mds_session *session)
1212 {
1213 struct ceph_fs_client *fsc = session->s_mdsc->fsc;
1214 struct super_block *sb = fsc->sb;
1215 dout("remove_session_caps on %p\n", session);
1216 iterate_session_caps(session, remove_session_caps_cb, fsc);
1217
1218 spin_lock(&session->s_cap_lock);
1219 if (session->s_nr_caps > 0) {
1220 struct inode *inode;
1221 struct ceph_cap *cap, *prev = NULL;
1222 struct ceph_vino vino;
1223 /*
1224 * iterate_session_caps() skips inodes that are being
1225 * deleted, we need to wait until deletions are complete.
1226 * __wait_on_freeing_inode() is designed for the job,
1227 * but it is not exported, so use lookup inode function
1228 * to access it.
1229 */
1230 while (!list_empty(&session->s_caps)) {
1231 cap = list_entry(session->s_caps.next,
1232 struct ceph_cap, session_caps);
1233 if (cap == prev)
1234 break;
1235 prev = cap;
1236 vino = cap->ci->i_vino;
1237 spin_unlock(&session->s_cap_lock);
1238
1239 inode = ceph_find_inode(sb, vino);
1240 iput(inode);
1241
1242 spin_lock(&session->s_cap_lock);
1243 }
1244 }
1245
1246 // drop cap expires and unlock s_cap_lock
1247 cleanup_cap_releases(session->s_mdsc, session);
1248
1249 BUG_ON(session->s_nr_caps > 0);
1250 BUG_ON(!list_empty(&session->s_cap_flushing));
1251 }
1252
1253 /*
1254 * wake up any threads waiting on this session's caps. if the cap is
1255 * old (didn't get renewed on the client reconnect), remove it now.
1256 *
1257 * caller must hold s_mutex.
1258 */
1259 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1260 void *arg)
1261 {
1262 struct ceph_inode_info *ci = ceph_inode(inode);
1263
1264 if (arg) {
1265 spin_lock(&ci->i_ceph_lock);
1266 ci->i_wanted_max_size = 0;
1267 ci->i_requested_max_size = 0;
1268 spin_unlock(&ci->i_ceph_lock);
1269 }
1270 wake_up_all(&ci->i_cap_wq);
1271 return 0;
1272 }
1273
1274 static void wake_up_session_caps(struct ceph_mds_session *session,
1275 int reconnect)
1276 {
1277 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1278 iterate_session_caps(session, wake_up_session_cb,
1279 (void *)(unsigned long)reconnect);
1280 }
1281
1282 /*
1283 * Send periodic message to MDS renewing all currently held caps. The
1284 * ack will reset the expiration for all caps from this session.
1285 *
1286 * caller holds s_mutex
1287 */
1288 static int send_renew_caps(struct ceph_mds_client *mdsc,
1289 struct ceph_mds_session *session)
1290 {
1291 struct ceph_msg *msg;
1292 int state;
1293
1294 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1295 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1296 pr_info("mds%d caps stale\n", session->s_mds);
1297 session->s_renew_requested = jiffies;
1298
1299 /* do not try to renew caps until a recovering mds has reconnected
1300 * with its clients. */
1301 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1302 if (state < CEPH_MDS_STATE_RECONNECT) {
1303 dout("send_renew_caps ignoring mds%d (%s)\n",
1304 session->s_mds, ceph_mds_state_name(state));
1305 return 0;
1306 }
1307
1308 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1309 ceph_mds_state_name(state));
1310 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1311 ++session->s_renew_seq);
1312 if (!msg)
1313 return -ENOMEM;
1314 ceph_con_send(&session->s_con, msg);
1315 return 0;
1316 }
1317
1318 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1319 struct ceph_mds_session *session, u64 seq)
1320 {
1321 struct ceph_msg *msg;
1322
1323 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1324 session->s_mds, ceph_session_state_name(session->s_state), seq);
1325 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1326 if (!msg)
1327 return -ENOMEM;
1328 ceph_con_send(&session->s_con, msg);
1329 return 0;
1330 }
1331
1332
1333 /*
1334 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1335 *
1336 * Called under session->s_mutex
1337 */
1338 static void renewed_caps(struct ceph_mds_client *mdsc,
1339 struct ceph_mds_session *session, int is_renew)
1340 {
1341 int was_stale;
1342 int wake = 0;
1343
1344 spin_lock(&session->s_cap_lock);
1345 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1346
1347 session->s_cap_ttl = session->s_renew_requested +
1348 mdsc->mdsmap->m_session_timeout*HZ;
1349
1350 if (was_stale) {
1351 if (time_before(jiffies, session->s_cap_ttl)) {
1352 pr_info("mds%d caps renewed\n", session->s_mds);
1353 wake = 1;
1354 } else {
1355 pr_info("mds%d caps still stale\n", session->s_mds);
1356 }
1357 }
1358 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1359 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1360 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1361 spin_unlock(&session->s_cap_lock);
1362
1363 if (wake)
1364 wake_up_session_caps(session, 0);
1365 }
1366
1367 /*
1368 * send a session close request
1369 */
1370 static int request_close_session(struct ceph_mds_client *mdsc,
1371 struct ceph_mds_session *session)
1372 {
1373 struct ceph_msg *msg;
1374
1375 dout("request_close_session mds%d state %s seq %lld\n",
1376 session->s_mds, ceph_session_state_name(session->s_state),
1377 session->s_seq);
1378 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1379 if (!msg)
1380 return -ENOMEM;
1381 ceph_con_send(&session->s_con, msg);
1382 return 0;
1383 }
1384
1385 /*
1386 * Called with s_mutex held.
1387 */
1388 static int __close_session(struct ceph_mds_client *mdsc,
1389 struct ceph_mds_session *session)
1390 {
1391 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1392 return 0;
1393 session->s_state = CEPH_MDS_SESSION_CLOSING;
1394 return request_close_session(mdsc, session);
1395 }
1396
1397 /*
1398 * Trim old(er) caps.
1399 *
1400 * Because we can't cache an inode without one or more caps, we do
1401 * this indirectly: if a cap is unused, we prune its aliases, at which
1402 * point the inode will hopefully get dropped to.
1403 *
1404 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1405 * memory pressure from the MDS, though, so it needn't be perfect.
1406 */
1407 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1408 {
1409 struct ceph_mds_session *session = arg;
1410 struct ceph_inode_info *ci = ceph_inode(inode);
1411 int used, wanted, oissued, mine;
1412
1413 if (session->s_trim_caps <= 0)
1414 return -1;
1415
1416 spin_lock(&ci->i_ceph_lock);
1417 mine = cap->issued | cap->implemented;
1418 used = __ceph_caps_used(ci);
1419 wanted = __ceph_caps_file_wanted(ci);
1420 oissued = __ceph_caps_issued_other(ci, cap);
1421
1422 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1423 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1424 ceph_cap_string(used), ceph_cap_string(wanted));
1425 if (cap == ci->i_auth_cap) {
1426 if (ci->i_dirty_caps || ci->i_flushing_caps ||
1427 !list_empty(&ci->i_cap_snaps))
1428 goto out;
1429 if ((used | wanted) & CEPH_CAP_ANY_WR)
1430 goto out;
1431 }
1432 /* The inode has cached pages, but it's no longer used.
1433 * we can safely drop it */
1434 if (wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
1435 !(oissued & CEPH_CAP_FILE_CACHE)) {
1436 used = 0;
1437 oissued = 0;
1438 }
1439 if ((used | wanted) & ~oissued & mine)
1440 goto out; /* we need these caps */
1441
1442 session->s_trim_caps--;
1443 if (oissued) {
1444 /* we aren't the only cap.. just remove us */
1445 __ceph_remove_cap(cap, true);
1446 } else {
1447 /* try dropping referring dentries */
1448 spin_unlock(&ci->i_ceph_lock);
1449 d_prune_aliases(inode);
1450 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1451 inode, cap, atomic_read(&inode->i_count));
1452 return 0;
1453 }
1454
1455 out:
1456 spin_unlock(&ci->i_ceph_lock);
1457 return 0;
1458 }
1459
1460 /*
1461 * Trim session cap count down to some max number.
1462 */
1463 static int trim_caps(struct ceph_mds_client *mdsc,
1464 struct ceph_mds_session *session,
1465 int max_caps)
1466 {
1467 int trim_caps = session->s_nr_caps - max_caps;
1468
1469 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1470 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1471 if (trim_caps > 0) {
1472 session->s_trim_caps = trim_caps;
1473 iterate_session_caps(session, trim_caps_cb, session);
1474 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1475 session->s_mds, session->s_nr_caps, max_caps,
1476 trim_caps - session->s_trim_caps);
1477 session->s_trim_caps = 0;
1478 }
1479
1480 ceph_send_cap_releases(mdsc, session);
1481 return 0;
1482 }
1483
1484 static int check_capsnap_flush(struct ceph_inode_info *ci,
1485 u64 want_snap_seq)
1486 {
1487 int ret = 1;
1488 spin_lock(&ci->i_ceph_lock);
1489 if (want_snap_seq > 0 && !list_empty(&ci->i_cap_snaps)) {
1490 struct ceph_cap_snap *capsnap =
1491 list_first_entry(&ci->i_cap_snaps,
1492 struct ceph_cap_snap, ci_item);
1493 ret = capsnap->follows >= want_snap_seq;
1494 }
1495 spin_unlock(&ci->i_ceph_lock);
1496 return ret;
1497 }
1498
1499 static int check_caps_flush(struct ceph_mds_client *mdsc,
1500 u64 want_flush_tid)
1501 {
1502 struct rb_node *n;
1503 struct ceph_cap_flush *cf;
1504 int ret = 1;
1505
1506 spin_lock(&mdsc->cap_dirty_lock);
1507 n = rb_first(&mdsc->cap_flush_tree);
1508 cf = n ? rb_entry(n, struct ceph_cap_flush, g_node) : NULL;
1509 if (cf && cf->tid <= want_flush_tid) {
1510 dout("check_caps_flush still flushing tid %llu <= %llu\n",
1511 cf->tid, want_flush_tid);
1512 ret = 0;
1513 }
1514 spin_unlock(&mdsc->cap_dirty_lock);
1515 return ret;
1516 }
1517
1518 /*
1519 * flush all dirty inode data to disk.
1520 *
1521 * returns true if we've flushed through want_flush_tid
1522 */
1523 static void wait_caps_flush(struct ceph_mds_client *mdsc,
1524 u64 want_flush_tid, u64 want_snap_seq)
1525 {
1526 int mds;
1527
1528 dout("check_caps_flush want %llu snap want %llu\n",
1529 want_flush_tid, want_snap_seq);
1530 mutex_lock(&mdsc->mutex);
1531 for (mds = 0; mds < mdsc->max_sessions; ) {
1532 struct ceph_mds_session *session = mdsc->sessions[mds];
1533 struct inode *inode = NULL;
1534
1535 if (!session) {
1536 mds++;
1537 continue;
1538 }
1539 get_session(session);
1540 mutex_unlock(&mdsc->mutex);
1541
1542 mutex_lock(&session->s_mutex);
1543 if (!list_empty(&session->s_cap_snaps_flushing)) {
1544 struct ceph_cap_snap *capsnap =
1545 list_first_entry(&session->s_cap_snaps_flushing,
1546 struct ceph_cap_snap,
1547 flushing_item);
1548 struct ceph_inode_info *ci = capsnap->ci;
1549 if (!check_capsnap_flush(ci, want_snap_seq)) {
1550 dout("check_cap_flush still flushing snap %p "
1551 "follows %lld <= %lld to mds%d\n",
1552 &ci->vfs_inode, capsnap->follows,
1553 want_snap_seq, mds);
1554 inode = igrab(&ci->vfs_inode);
1555 }
1556 }
1557 mutex_unlock(&session->s_mutex);
1558 ceph_put_mds_session(session);
1559
1560 if (inode) {
1561 wait_event(mdsc->cap_flushing_wq,
1562 check_capsnap_flush(ceph_inode(inode),
1563 want_snap_seq));
1564 iput(inode);
1565 } else {
1566 mds++;
1567 }
1568
1569 mutex_lock(&mdsc->mutex);
1570 }
1571 mutex_unlock(&mdsc->mutex);
1572
1573 wait_event(mdsc->cap_flushing_wq,
1574 check_caps_flush(mdsc, want_flush_tid));
1575
1576 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid);
1577 }
1578
1579 /*
1580 * called under s_mutex
1581 */
1582 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1583 struct ceph_mds_session *session)
1584 {
1585 struct ceph_msg *msg = NULL;
1586 struct ceph_mds_cap_release *head;
1587 struct ceph_mds_cap_item *item;
1588 struct ceph_cap *cap;
1589 LIST_HEAD(tmp_list);
1590 int num_cap_releases;
1591
1592 spin_lock(&session->s_cap_lock);
1593 again:
1594 list_splice_init(&session->s_cap_releases, &tmp_list);
1595 num_cap_releases = session->s_num_cap_releases;
1596 session->s_num_cap_releases = 0;
1597 spin_unlock(&session->s_cap_lock);
1598
1599 while (!list_empty(&tmp_list)) {
1600 if (!msg) {
1601 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
1602 PAGE_SIZE, GFP_NOFS, false);
1603 if (!msg)
1604 goto out_err;
1605 head = msg->front.iov_base;
1606 head->num = cpu_to_le32(0);
1607 msg->front.iov_len = sizeof(*head);
1608 }
1609 cap = list_first_entry(&tmp_list, struct ceph_cap,
1610 session_caps);
1611 list_del(&cap->session_caps);
1612 num_cap_releases--;
1613
1614 head = msg->front.iov_base;
1615 le32_add_cpu(&head->num, 1);
1616 item = msg->front.iov_base + msg->front.iov_len;
1617 item->ino = cpu_to_le64(cap->cap_ino);
1618 item->cap_id = cpu_to_le64(cap->cap_id);
1619 item->migrate_seq = cpu_to_le32(cap->mseq);
1620 item->seq = cpu_to_le32(cap->issue_seq);
1621 msg->front.iov_len += sizeof(*item);
1622
1623 ceph_put_cap(mdsc, cap);
1624
1625 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1626 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1627 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1628 ceph_con_send(&session->s_con, msg);
1629 msg = NULL;
1630 }
1631 }
1632
1633 BUG_ON(num_cap_releases != 0);
1634
1635 spin_lock(&session->s_cap_lock);
1636 if (!list_empty(&session->s_cap_releases))
1637 goto again;
1638 spin_unlock(&session->s_cap_lock);
1639
1640 if (msg) {
1641 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1642 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1643 ceph_con_send(&session->s_con, msg);
1644 }
1645 return;
1646 out_err:
1647 pr_err("send_cap_releases mds%d, failed to allocate message\n",
1648 session->s_mds);
1649 spin_lock(&session->s_cap_lock);
1650 list_splice(&tmp_list, &session->s_cap_releases);
1651 session->s_num_cap_releases += num_cap_releases;
1652 spin_unlock(&session->s_cap_lock);
1653 }
1654
1655 /*
1656 * requests
1657 */
1658
1659 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
1660 struct inode *dir)
1661 {
1662 struct ceph_inode_info *ci = ceph_inode(dir);
1663 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
1664 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
1665 size_t size = sizeof(struct ceph_mds_reply_dir_entry);
1666 int order, num_entries;
1667
1668 spin_lock(&ci->i_ceph_lock);
1669 num_entries = ci->i_files + ci->i_subdirs;
1670 spin_unlock(&ci->i_ceph_lock);
1671 num_entries = max(num_entries, 1);
1672 num_entries = min(num_entries, opt->max_readdir);
1673
1674 order = get_order(size * num_entries);
1675 while (order >= 0) {
1676 rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL |
1677 __GFP_NOWARN,
1678 order);
1679 if (rinfo->dir_entries)
1680 break;
1681 order--;
1682 }
1683 if (!rinfo->dir_entries)
1684 return -ENOMEM;
1685
1686 num_entries = (PAGE_SIZE << order) / size;
1687 num_entries = min(num_entries, opt->max_readdir);
1688
1689 rinfo->dir_buf_size = PAGE_SIZE << order;
1690 req->r_num_caps = num_entries + 1;
1691 req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
1692 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
1693 return 0;
1694 }
1695
1696 /*
1697 * Create an mds request.
1698 */
1699 struct ceph_mds_request *
1700 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1701 {
1702 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1703
1704 if (!req)
1705 return ERR_PTR(-ENOMEM);
1706
1707 mutex_init(&req->r_fill_mutex);
1708 req->r_mdsc = mdsc;
1709 req->r_started = jiffies;
1710 req->r_resend_mds = -1;
1711 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1712 INIT_LIST_HEAD(&req->r_unsafe_target_item);
1713 req->r_fmode = -1;
1714 kref_init(&req->r_kref);
1715 RB_CLEAR_NODE(&req->r_node);
1716 INIT_LIST_HEAD(&req->r_wait);
1717 init_completion(&req->r_completion);
1718 init_completion(&req->r_safe_completion);
1719 INIT_LIST_HEAD(&req->r_unsafe_item);
1720
1721 req->r_stamp = current_fs_time(mdsc->fsc->sb);
1722
1723 req->r_op = op;
1724 req->r_direct_mode = mode;
1725 return req;
1726 }
1727
1728 /*
1729 * return oldest (lowest) request, tid in request tree, 0 if none.
1730 *
1731 * called under mdsc->mutex.
1732 */
1733 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1734 {
1735 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1736 return NULL;
1737 return rb_entry(rb_first(&mdsc->request_tree),
1738 struct ceph_mds_request, r_node);
1739 }
1740
1741 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1742 {
1743 return mdsc->oldest_tid;
1744 }
1745
1746 /*
1747 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1748 * on build_path_from_dentry in fs/cifs/dir.c.
1749 *
1750 * If @stop_on_nosnap, generate path relative to the first non-snapped
1751 * inode.
1752 *
1753 * Encode hidden .snap dirs as a double /, i.e.
1754 * foo/.snap/bar -> foo//bar
1755 */
1756 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1757 int stop_on_nosnap)
1758 {
1759 struct dentry *temp;
1760 char *path;
1761 int len, pos;
1762 unsigned seq;
1763
1764 if (dentry == NULL)
1765 return ERR_PTR(-EINVAL);
1766
1767 retry:
1768 len = 0;
1769 seq = read_seqbegin(&rename_lock);
1770 rcu_read_lock();
1771 for (temp = dentry; !IS_ROOT(temp);) {
1772 struct inode *inode = d_inode(temp);
1773 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1774 len++; /* slash only */
1775 else if (stop_on_nosnap && inode &&
1776 ceph_snap(inode) == CEPH_NOSNAP)
1777 break;
1778 else
1779 len += 1 + temp->d_name.len;
1780 temp = temp->d_parent;
1781 }
1782 rcu_read_unlock();
1783 if (len)
1784 len--; /* no leading '/' */
1785
1786 path = kmalloc(len+1, GFP_NOFS);
1787 if (path == NULL)
1788 return ERR_PTR(-ENOMEM);
1789 pos = len;
1790 path[pos] = 0; /* trailing null */
1791 rcu_read_lock();
1792 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1793 struct inode *inode;
1794
1795 spin_lock(&temp->d_lock);
1796 inode = d_inode(temp);
1797 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1798 dout("build_path path+%d: %p SNAPDIR\n",
1799 pos, temp);
1800 } else if (stop_on_nosnap && inode &&
1801 ceph_snap(inode) == CEPH_NOSNAP) {
1802 spin_unlock(&temp->d_lock);
1803 break;
1804 } else {
1805 pos -= temp->d_name.len;
1806 if (pos < 0) {
1807 spin_unlock(&temp->d_lock);
1808 break;
1809 }
1810 strncpy(path + pos, temp->d_name.name,
1811 temp->d_name.len);
1812 }
1813 spin_unlock(&temp->d_lock);
1814 if (pos)
1815 path[--pos] = '/';
1816 temp = temp->d_parent;
1817 }
1818 rcu_read_unlock();
1819 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1820 pr_err("build_path did not end path lookup where "
1821 "expected, namelen is %d, pos is %d\n", len, pos);
1822 /* presumably this is only possible if racing with a
1823 rename of one of the parent directories (we can not
1824 lock the dentries above us to prevent this, but
1825 retrying should be harmless) */
1826 kfree(path);
1827 goto retry;
1828 }
1829
1830 *base = ceph_ino(d_inode(temp));
1831 *plen = len;
1832 dout("build_path on %p %d built %llx '%.*s'\n",
1833 dentry, d_count(dentry), *base, len, path);
1834 return path;
1835 }
1836
1837 static int build_dentry_path(struct dentry *dentry,
1838 const char **ppath, int *ppathlen, u64 *pino,
1839 int *pfreepath)
1840 {
1841 char *path;
1842
1843 if (ceph_snap(d_inode(dentry->d_parent)) == CEPH_NOSNAP) {
1844 *pino = ceph_ino(d_inode(dentry->d_parent));
1845 *ppath = dentry->d_name.name;
1846 *ppathlen = dentry->d_name.len;
1847 return 0;
1848 }
1849 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1850 if (IS_ERR(path))
1851 return PTR_ERR(path);
1852 *ppath = path;
1853 *pfreepath = 1;
1854 return 0;
1855 }
1856
1857 static int build_inode_path(struct inode *inode,
1858 const char **ppath, int *ppathlen, u64 *pino,
1859 int *pfreepath)
1860 {
1861 struct dentry *dentry;
1862 char *path;
1863
1864 if (ceph_snap(inode) == CEPH_NOSNAP) {
1865 *pino = ceph_ino(inode);
1866 *ppathlen = 0;
1867 return 0;
1868 }
1869 dentry = d_find_alias(inode);
1870 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1871 dput(dentry);
1872 if (IS_ERR(path))
1873 return PTR_ERR(path);
1874 *ppath = path;
1875 *pfreepath = 1;
1876 return 0;
1877 }
1878
1879 /*
1880 * request arguments may be specified via an inode *, a dentry *, or
1881 * an explicit ino+path.
1882 */
1883 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1884 const char *rpath, u64 rino,
1885 const char **ppath, int *pathlen,
1886 u64 *ino, int *freepath)
1887 {
1888 int r = 0;
1889
1890 if (rinode) {
1891 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1892 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1893 ceph_snap(rinode));
1894 } else if (rdentry) {
1895 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1896 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1897 *ppath);
1898 } else if (rpath || rino) {
1899 *ino = rino;
1900 *ppath = rpath;
1901 *pathlen = rpath ? strlen(rpath) : 0;
1902 dout(" path %.*s\n", *pathlen, rpath);
1903 }
1904
1905 return r;
1906 }
1907
1908 /*
1909 * called under mdsc->mutex
1910 */
1911 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1912 struct ceph_mds_request *req,
1913 int mds, bool drop_cap_releases)
1914 {
1915 struct ceph_msg *msg;
1916 struct ceph_mds_request_head *head;
1917 const char *path1 = NULL;
1918 const char *path2 = NULL;
1919 u64 ino1 = 0, ino2 = 0;
1920 int pathlen1 = 0, pathlen2 = 0;
1921 int freepath1 = 0, freepath2 = 0;
1922 int len;
1923 u16 releases;
1924 void *p, *end;
1925 int ret;
1926
1927 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1928 req->r_path1, req->r_ino1.ino,
1929 &path1, &pathlen1, &ino1, &freepath1);
1930 if (ret < 0) {
1931 msg = ERR_PTR(ret);
1932 goto out;
1933 }
1934
1935 ret = set_request_path_attr(NULL, req->r_old_dentry,
1936 req->r_path2, req->r_ino2.ino,
1937 &path2, &pathlen2, &ino2, &freepath2);
1938 if (ret < 0) {
1939 msg = ERR_PTR(ret);
1940 goto out_free1;
1941 }
1942
1943 len = sizeof(*head) +
1944 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
1945 sizeof(struct ceph_timespec);
1946
1947 /* calculate (max) length for cap releases */
1948 len += sizeof(struct ceph_mds_request_release) *
1949 (!!req->r_inode_drop + !!req->r_dentry_drop +
1950 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1951 if (req->r_dentry_drop)
1952 len += req->r_dentry->d_name.len;
1953 if (req->r_old_dentry_drop)
1954 len += req->r_old_dentry->d_name.len;
1955
1956 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1957 if (!msg) {
1958 msg = ERR_PTR(-ENOMEM);
1959 goto out_free2;
1960 }
1961
1962 msg->hdr.version = cpu_to_le16(2);
1963 msg->hdr.tid = cpu_to_le64(req->r_tid);
1964
1965 head = msg->front.iov_base;
1966 p = msg->front.iov_base + sizeof(*head);
1967 end = msg->front.iov_base + msg->front.iov_len;
1968
1969 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1970 head->op = cpu_to_le32(req->r_op);
1971 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1972 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1973 head->args = req->r_args;
1974
1975 ceph_encode_filepath(&p, end, ino1, path1);
1976 ceph_encode_filepath(&p, end, ino2, path2);
1977
1978 /* make note of release offset, in case we need to replay */
1979 req->r_request_release_offset = p - msg->front.iov_base;
1980
1981 /* cap releases */
1982 releases = 0;
1983 if (req->r_inode_drop)
1984 releases += ceph_encode_inode_release(&p,
1985 req->r_inode ? req->r_inode : d_inode(req->r_dentry),
1986 mds, req->r_inode_drop, req->r_inode_unless, 0);
1987 if (req->r_dentry_drop)
1988 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1989 mds, req->r_dentry_drop, req->r_dentry_unless);
1990 if (req->r_old_dentry_drop)
1991 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1992 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1993 if (req->r_old_inode_drop)
1994 releases += ceph_encode_inode_release(&p,
1995 d_inode(req->r_old_dentry),
1996 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1997
1998 if (drop_cap_releases) {
1999 releases = 0;
2000 p = msg->front.iov_base + req->r_request_release_offset;
2001 }
2002
2003 head->num_releases = cpu_to_le16(releases);
2004
2005 /* time stamp */
2006 {
2007 struct ceph_timespec ts;
2008 ceph_encode_timespec(&ts, &req->r_stamp);
2009 ceph_encode_copy(&p, &ts, sizeof(ts));
2010 }
2011
2012 BUG_ON(p > end);
2013 msg->front.iov_len = p - msg->front.iov_base;
2014 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2015
2016 if (req->r_pagelist) {
2017 struct ceph_pagelist *pagelist = req->r_pagelist;
2018 atomic_inc(&pagelist->refcnt);
2019 ceph_msg_data_add_pagelist(msg, pagelist);
2020 msg->hdr.data_len = cpu_to_le32(pagelist->length);
2021 } else {
2022 msg->hdr.data_len = 0;
2023 }
2024
2025 msg->hdr.data_off = cpu_to_le16(0);
2026
2027 out_free2:
2028 if (freepath2)
2029 kfree((char *)path2);
2030 out_free1:
2031 if (freepath1)
2032 kfree((char *)path1);
2033 out:
2034 return msg;
2035 }
2036
2037 /*
2038 * called under mdsc->mutex if error, under no mutex if
2039 * success.
2040 */
2041 static void complete_request(struct ceph_mds_client *mdsc,
2042 struct ceph_mds_request *req)
2043 {
2044 if (req->r_callback)
2045 req->r_callback(mdsc, req);
2046 else
2047 complete_all(&req->r_completion);
2048 }
2049
2050 /*
2051 * called under mdsc->mutex
2052 */
2053 static int __prepare_send_request(struct ceph_mds_client *mdsc,
2054 struct ceph_mds_request *req,
2055 int mds, bool drop_cap_releases)
2056 {
2057 struct ceph_mds_request_head *rhead;
2058 struct ceph_msg *msg;
2059 int flags = 0;
2060
2061 req->r_attempts++;
2062 if (req->r_inode) {
2063 struct ceph_cap *cap =
2064 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
2065
2066 if (cap)
2067 req->r_sent_on_mseq = cap->mseq;
2068 else
2069 req->r_sent_on_mseq = -1;
2070 }
2071 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
2072 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
2073
2074 if (req->r_got_unsafe) {
2075 void *p;
2076 /*
2077 * Replay. Do not regenerate message (and rebuild
2078 * paths, etc.); just use the original message.
2079 * Rebuilding paths will break for renames because
2080 * d_move mangles the src name.
2081 */
2082 msg = req->r_request;
2083 rhead = msg->front.iov_base;
2084
2085 flags = le32_to_cpu(rhead->flags);
2086 flags |= CEPH_MDS_FLAG_REPLAY;
2087 rhead->flags = cpu_to_le32(flags);
2088
2089 if (req->r_target_inode)
2090 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
2091
2092 rhead->num_retry = req->r_attempts - 1;
2093
2094 /* remove cap/dentry releases from message */
2095 rhead->num_releases = 0;
2096
2097 /* time stamp */
2098 p = msg->front.iov_base + req->r_request_release_offset;
2099 {
2100 struct ceph_timespec ts;
2101 ceph_encode_timespec(&ts, &req->r_stamp);
2102 ceph_encode_copy(&p, &ts, sizeof(ts));
2103 }
2104
2105 msg->front.iov_len = p - msg->front.iov_base;
2106 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2107 return 0;
2108 }
2109
2110 if (req->r_request) {
2111 ceph_msg_put(req->r_request);
2112 req->r_request = NULL;
2113 }
2114 msg = create_request_message(mdsc, req, mds, drop_cap_releases);
2115 if (IS_ERR(msg)) {
2116 req->r_err = PTR_ERR(msg);
2117 return PTR_ERR(msg);
2118 }
2119 req->r_request = msg;
2120
2121 rhead = msg->front.iov_base;
2122 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
2123 if (req->r_got_unsafe)
2124 flags |= CEPH_MDS_FLAG_REPLAY;
2125 if (req->r_locked_dir)
2126 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
2127 rhead->flags = cpu_to_le32(flags);
2128 rhead->num_fwd = req->r_num_fwd;
2129 rhead->num_retry = req->r_attempts - 1;
2130 rhead->ino = 0;
2131
2132 dout(" r_locked_dir = %p\n", req->r_locked_dir);
2133 return 0;
2134 }
2135
2136 /*
2137 * send request, or put it on the appropriate wait list.
2138 */
2139 static int __do_request(struct ceph_mds_client *mdsc,
2140 struct ceph_mds_request *req)
2141 {
2142 struct ceph_mds_session *session = NULL;
2143 int mds = -1;
2144 int err = 0;
2145
2146 if (req->r_err || req->r_got_result) {
2147 if (req->r_aborted)
2148 __unregister_request(mdsc, req);
2149 goto out;
2150 }
2151
2152 if (req->r_timeout &&
2153 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
2154 dout("do_request timed out\n");
2155 err = -EIO;
2156 goto finish;
2157 }
2158 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
2159 dout("do_request forced umount\n");
2160 err = -EIO;
2161 goto finish;
2162 }
2163
2164 put_request_session(req);
2165
2166 mds = __choose_mds(mdsc, req);
2167 if (mds < 0 ||
2168 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
2169 if (mdsc->mdsmap_err) {
2170 err = mdsc->mdsmap_err;
2171 dout("do_request mdsmap err %d\n", err);
2172 goto finish;
2173 }
2174 dout("do_request no mds or not active, waiting for map\n");
2175 list_add(&req->r_wait, &mdsc->waiting_for_map);
2176 goto out;
2177 }
2178
2179 /* get, open session */
2180 session = __ceph_lookup_mds_session(mdsc, mds);
2181 if (!session) {
2182 session = register_session(mdsc, mds);
2183 if (IS_ERR(session)) {
2184 err = PTR_ERR(session);
2185 goto finish;
2186 }
2187 }
2188 req->r_session = get_session(session);
2189
2190 dout("do_request mds%d session %p state %s\n", mds, session,
2191 ceph_session_state_name(session->s_state));
2192 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2193 session->s_state != CEPH_MDS_SESSION_HUNG) {
2194 if (session->s_state == CEPH_MDS_SESSION_NEW ||
2195 session->s_state == CEPH_MDS_SESSION_CLOSING)
2196 __open_session(mdsc, session);
2197 list_add(&req->r_wait, &session->s_waiting);
2198 goto out_session;
2199 }
2200
2201 /* send request */
2202 req->r_resend_mds = -1; /* forget any previous mds hint */
2203
2204 if (req->r_request_started == 0) /* note request start time */
2205 req->r_request_started = jiffies;
2206
2207 err = __prepare_send_request(mdsc, req, mds, false);
2208 if (!err) {
2209 ceph_msg_get(req->r_request);
2210 ceph_con_send(&session->s_con, req->r_request);
2211 }
2212
2213 out_session:
2214 ceph_put_mds_session(session);
2215 finish:
2216 if (err) {
2217 dout("__do_request early error %d\n", err);
2218 req->r_err = err;
2219 complete_request(mdsc, req);
2220 __unregister_request(mdsc, req);
2221 }
2222 out:
2223 return err;
2224 }
2225
2226 /*
2227 * called under mdsc->mutex
2228 */
2229 static void __wake_requests(struct ceph_mds_client *mdsc,
2230 struct list_head *head)
2231 {
2232 struct ceph_mds_request *req;
2233 LIST_HEAD(tmp_list);
2234
2235 list_splice_init(head, &tmp_list);
2236
2237 while (!list_empty(&tmp_list)) {
2238 req = list_entry(tmp_list.next,
2239 struct ceph_mds_request, r_wait);
2240 list_del_init(&req->r_wait);
2241 dout(" wake request %p tid %llu\n", req, req->r_tid);
2242 __do_request(mdsc, req);
2243 }
2244 }
2245
2246 /*
2247 * Wake up threads with requests pending for @mds, so that they can
2248 * resubmit their requests to a possibly different mds.
2249 */
2250 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2251 {
2252 struct ceph_mds_request *req;
2253 struct rb_node *p = rb_first(&mdsc->request_tree);
2254
2255 dout("kick_requests mds%d\n", mds);
2256 while (p) {
2257 req = rb_entry(p, struct ceph_mds_request, r_node);
2258 p = rb_next(p);
2259 if (req->r_got_unsafe)
2260 continue;
2261 if (req->r_attempts > 0)
2262 continue; /* only new requests */
2263 if (req->r_session &&
2264 req->r_session->s_mds == mds) {
2265 dout(" kicking tid %llu\n", req->r_tid);
2266 list_del_init(&req->r_wait);
2267 __do_request(mdsc, req);
2268 }
2269 }
2270 }
2271
2272 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2273 struct ceph_mds_request *req)
2274 {
2275 dout("submit_request on %p\n", req);
2276 mutex_lock(&mdsc->mutex);
2277 __register_request(mdsc, req, NULL);
2278 __do_request(mdsc, req);
2279 mutex_unlock(&mdsc->mutex);
2280 }
2281
2282 /*
2283 * Synchrously perform an mds request. Take care of all of the
2284 * session setup, forwarding, retry details.
2285 */
2286 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2287 struct inode *dir,
2288 struct ceph_mds_request *req)
2289 {
2290 int err;
2291
2292 dout("do_request on %p\n", req);
2293
2294 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2295 if (req->r_inode)
2296 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2297 if (req->r_locked_dir)
2298 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2299 if (req->r_old_dentry_dir)
2300 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2301 CEPH_CAP_PIN);
2302
2303 /* issue */
2304 mutex_lock(&mdsc->mutex);
2305 __register_request(mdsc, req, dir);
2306 __do_request(mdsc, req);
2307
2308 if (req->r_err) {
2309 err = req->r_err;
2310 goto out;
2311 }
2312
2313 /* wait */
2314 mutex_unlock(&mdsc->mutex);
2315 dout("do_request waiting\n");
2316 if (!req->r_timeout && req->r_wait_for_completion) {
2317 err = req->r_wait_for_completion(mdsc, req);
2318 } else {
2319 long timeleft = wait_for_completion_killable_timeout(
2320 &req->r_completion,
2321 ceph_timeout_jiffies(req->r_timeout));
2322 if (timeleft > 0)
2323 err = 0;
2324 else if (!timeleft)
2325 err = -EIO; /* timed out */
2326 else
2327 err = timeleft; /* killed */
2328 }
2329 dout("do_request waited, got %d\n", err);
2330 mutex_lock(&mdsc->mutex);
2331
2332 /* only abort if we didn't race with a real reply */
2333 if (req->r_got_result) {
2334 err = le32_to_cpu(req->r_reply_info.head->result);
2335 } else if (err < 0) {
2336 dout("aborted request %lld with %d\n", req->r_tid, err);
2337
2338 /*
2339 * ensure we aren't running concurrently with
2340 * ceph_fill_trace or ceph_readdir_prepopulate, which
2341 * rely on locks (dir mutex) held by our caller.
2342 */
2343 mutex_lock(&req->r_fill_mutex);
2344 req->r_err = err;
2345 req->r_aborted = true;
2346 mutex_unlock(&req->r_fill_mutex);
2347
2348 if (req->r_locked_dir &&
2349 (req->r_op & CEPH_MDS_OP_WRITE))
2350 ceph_invalidate_dir_request(req);
2351 } else {
2352 err = req->r_err;
2353 }
2354
2355 out:
2356 mutex_unlock(&mdsc->mutex);
2357 dout("do_request %p done, result %d\n", req, err);
2358 return err;
2359 }
2360
2361 /*
2362 * Invalidate dir's completeness, dentry lease state on an aborted MDS
2363 * namespace request.
2364 */
2365 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2366 {
2367 struct inode *inode = req->r_locked_dir;
2368
2369 dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2370
2371 ceph_dir_clear_complete(inode);
2372 if (req->r_dentry)
2373 ceph_invalidate_dentry_lease(req->r_dentry);
2374 if (req->r_old_dentry)
2375 ceph_invalidate_dentry_lease(req->r_old_dentry);
2376 }
2377
2378 /*
2379 * Handle mds reply.
2380 *
2381 * We take the session mutex and parse and process the reply immediately.
2382 * This preserves the logical ordering of replies, capabilities, etc., sent
2383 * by the MDS as they are applied to our local cache.
2384 */
2385 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2386 {
2387 struct ceph_mds_client *mdsc = session->s_mdsc;
2388 struct ceph_mds_request *req;
2389 struct ceph_mds_reply_head *head = msg->front.iov_base;
2390 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2391 struct ceph_snap_realm *realm;
2392 u64 tid;
2393 int err, result;
2394 int mds = session->s_mds;
2395
2396 if (msg->front.iov_len < sizeof(*head)) {
2397 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2398 ceph_msg_dump(msg);
2399 return;
2400 }
2401
2402 /* get request, session */
2403 tid = le64_to_cpu(msg->hdr.tid);
2404 mutex_lock(&mdsc->mutex);
2405 req = lookup_get_request(mdsc, tid);
2406 if (!req) {
2407 dout("handle_reply on unknown tid %llu\n", tid);
2408 mutex_unlock(&mdsc->mutex);
2409 return;
2410 }
2411 dout("handle_reply %p\n", req);
2412
2413 /* correct session? */
2414 if (req->r_session != session) {
2415 pr_err("mdsc_handle_reply got %llu on session mds%d"
2416 " not mds%d\n", tid, session->s_mds,
2417 req->r_session ? req->r_session->s_mds : -1);
2418 mutex_unlock(&mdsc->mutex);
2419 goto out;
2420 }
2421
2422 /* dup? */
2423 if ((req->r_got_unsafe && !head->safe) ||
2424 (req->r_got_safe && head->safe)) {
2425 pr_warn("got a dup %s reply on %llu from mds%d\n",
2426 head->safe ? "safe" : "unsafe", tid, mds);
2427 mutex_unlock(&mdsc->mutex);
2428 goto out;
2429 }
2430 if (req->r_got_safe) {
2431 pr_warn("got unsafe after safe on %llu from mds%d\n",
2432 tid, mds);
2433 mutex_unlock(&mdsc->mutex);
2434 goto out;
2435 }
2436
2437 result = le32_to_cpu(head->result);
2438
2439 /*
2440 * Handle an ESTALE
2441 * if we're not talking to the authority, send to them
2442 * if the authority has changed while we weren't looking,
2443 * send to new authority
2444 * Otherwise we just have to return an ESTALE
2445 */
2446 if (result == -ESTALE) {
2447 dout("got ESTALE on request %llu", req->r_tid);
2448 req->r_resend_mds = -1;
2449 if (req->r_direct_mode != USE_AUTH_MDS) {
2450 dout("not using auth, setting for that now");
2451 req->r_direct_mode = USE_AUTH_MDS;
2452 __do_request(mdsc, req);
2453 mutex_unlock(&mdsc->mutex);
2454 goto out;
2455 } else {
2456 int mds = __choose_mds(mdsc, req);
2457 if (mds >= 0 && mds != req->r_session->s_mds) {
2458 dout("but auth changed, so resending");
2459 __do_request(mdsc, req);
2460 mutex_unlock(&mdsc->mutex);
2461 goto out;
2462 }
2463 }
2464 dout("have to return ESTALE on request %llu", req->r_tid);
2465 }
2466
2467
2468 if (head->safe) {
2469 req->r_got_safe = true;
2470 __unregister_request(mdsc, req);
2471
2472 if (req->r_got_unsafe) {
2473 /*
2474 * We already handled the unsafe response, now do the
2475 * cleanup. No need to examine the response; the MDS
2476 * doesn't include any result info in the safe
2477 * response. And even if it did, there is nothing
2478 * useful we could do with a revised return value.
2479 */
2480 dout("got safe reply %llu, mds%d\n", tid, mds);
2481 list_del_init(&req->r_unsafe_item);
2482
2483 /* last unsafe request during umount? */
2484 if (mdsc->stopping && !__get_oldest_req(mdsc))
2485 complete_all(&mdsc->safe_umount_waiters);
2486 mutex_unlock(&mdsc->mutex);
2487 goto out;
2488 }
2489 } else {
2490 req->r_got_unsafe = true;
2491 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2492 if (req->r_unsafe_dir) {
2493 struct ceph_inode_info *ci =
2494 ceph_inode(req->r_unsafe_dir);
2495 spin_lock(&ci->i_unsafe_lock);
2496 list_add_tail(&req->r_unsafe_dir_item,
2497 &ci->i_unsafe_dirops);
2498 spin_unlock(&ci->i_unsafe_lock);
2499 }
2500 }
2501
2502 dout("handle_reply tid %lld result %d\n", tid, result);
2503 rinfo = &req->r_reply_info;
2504 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2505 mutex_unlock(&mdsc->mutex);
2506
2507 mutex_lock(&session->s_mutex);
2508 if (err < 0) {
2509 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2510 ceph_msg_dump(msg);
2511 goto out_err;
2512 }
2513
2514 /* snap trace */
2515 realm = NULL;
2516 if (rinfo->snapblob_len) {
2517 down_write(&mdsc->snap_rwsem);
2518 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2519 rinfo->snapblob + rinfo->snapblob_len,
2520 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
2521 &realm);
2522 downgrade_write(&mdsc->snap_rwsem);
2523 } else {
2524 down_read(&mdsc->snap_rwsem);
2525 }
2526
2527 /* insert trace into our cache */
2528 mutex_lock(&req->r_fill_mutex);
2529 current->journal_info = req;
2530 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2531 if (err == 0) {
2532 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2533 req->r_op == CEPH_MDS_OP_LSSNAP))
2534 ceph_readdir_prepopulate(req, req->r_session);
2535 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2536 }
2537 current->journal_info = NULL;
2538 mutex_unlock(&req->r_fill_mutex);
2539
2540 up_read(&mdsc->snap_rwsem);
2541 if (realm)
2542 ceph_put_snap_realm(mdsc, realm);
2543
2544 if (err == 0 && req->r_got_unsafe && req->r_target_inode) {
2545 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
2546 spin_lock(&ci->i_unsafe_lock);
2547 list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops);
2548 spin_unlock(&ci->i_unsafe_lock);
2549 }
2550 out_err:
2551 mutex_lock(&mdsc->mutex);
2552 if (!req->r_aborted) {
2553 if (err) {
2554 req->r_err = err;
2555 } else {
2556 req->r_reply = ceph_msg_get(msg);
2557 req->r_got_result = true;
2558 }
2559 } else {
2560 dout("reply arrived after request %lld was aborted\n", tid);
2561 }
2562 mutex_unlock(&mdsc->mutex);
2563
2564 mutex_unlock(&session->s_mutex);
2565
2566 /* kick calling process */
2567 complete_request(mdsc, req);
2568 out:
2569 ceph_mdsc_put_request(req);
2570 return;
2571 }
2572
2573
2574
2575 /*
2576 * handle mds notification that our request has been forwarded.
2577 */
2578 static void handle_forward(struct ceph_mds_client *mdsc,
2579 struct ceph_mds_session *session,
2580 struct ceph_msg *msg)
2581 {
2582 struct ceph_mds_request *req;
2583 u64 tid = le64_to_cpu(msg->hdr.tid);
2584 u32 next_mds;
2585 u32 fwd_seq;
2586 int err = -EINVAL;
2587 void *p = msg->front.iov_base;
2588 void *end = p + msg->front.iov_len;
2589
2590 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2591 next_mds = ceph_decode_32(&p);
2592 fwd_seq = ceph_decode_32(&p);
2593
2594 mutex_lock(&mdsc->mutex);
2595 req = lookup_get_request(mdsc, tid);
2596 if (!req) {
2597 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2598 goto out; /* dup reply? */
2599 }
2600
2601 if (req->r_aborted) {
2602 dout("forward tid %llu aborted, unregistering\n", tid);
2603 __unregister_request(mdsc, req);
2604 } else if (fwd_seq <= req->r_num_fwd) {
2605 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2606 tid, next_mds, req->r_num_fwd, fwd_seq);
2607 } else {
2608 /* resend. forward race not possible; mds would drop */
2609 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2610 BUG_ON(req->r_err);
2611 BUG_ON(req->r_got_result);
2612 req->r_attempts = 0;
2613 req->r_num_fwd = fwd_seq;
2614 req->r_resend_mds = next_mds;
2615 put_request_session(req);
2616 __do_request(mdsc, req);
2617 }
2618 ceph_mdsc_put_request(req);
2619 out:
2620 mutex_unlock(&mdsc->mutex);
2621 return;
2622
2623 bad:
2624 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2625 }
2626
2627 /*
2628 * handle a mds session control message
2629 */
2630 static void handle_session(struct ceph_mds_session *session,
2631 struct ceph_msg *msg)
2632 {
2633 struct ceph_mds_client *mdsc = session->s_mdsc;
2634 u32 op;
2635 u64 seq;
2636 int mds = session->s_mds;
2637 struct ceph_mds_session_head *h = msg->front.iov_base;
2638 int wake = 0;
2639
2640 /* decode */
2641 if (msg->front.iov_len != sizeof(*h))
2642 goto bad;
2643 op = le32_to_cpu(h->op);
2644 seq = le64_to_cpu(h->seq);
2645
2646 mutex_lock(&mdsc->mutex);
2647 if (op == CEPH_SESSION_CLOSE)
2648 __unregister_session(mdsc, session);
2649 /* FIXME: this ttl calculation is generous */
2650 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2651 mutex_unlock(&mdsc->mutex);
2652
2653 mutex_lock(&session->s_mutex);
2654
2655 dout("handle_session mds%d %s %p state %s seq %llu\n",
2656 mds, ceph_session_op_name(op), session,
2657 ceph_session_state_name(session->s_state), seq);
2658
2659 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2660 session->s_state = CEPH_MDS_SESSION_OPEN;
2661 pr_info("mds%d came back\n", session->s_mds);
2662 }
2663
2664 switch (op) {
2665 case CEPH_SESSION_OPEN:
2666 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2667 pr_info("mds%d reconnect success\n", session->s_mds);
2668 session->s_state = CEPH_MDS_SESSION_OPEN;
2669 renewed_caps(mdsc, session, 0);
2670 wake = 1;
2671 if (mdsc->stopping)
2672 __close_session(mdsc, session);
2673 break;
2674
2675 case CEPH_SESSION_RENEWCAPS:
2676 if (session->s_renew_seq == seq)
2677 renewed_caps(mdsc, session, 1);
2678 break;
2679
2680 case CEPH_SESSION_CLOSE:
2681 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2682 pr_info("mds%d reconnect denied\n", session->s_mds);
2683 cleanup_session_requests(mdsc, session);
2684 remove_session_caps(session);
2685 wake = 2; /* for good measure */
2686 wake_up_all(&mdsc->session_close_wq);
2687 break;
2688
2689 case CEPH_SESSION_STALE:
2690 pr_info("mds%d caps went stale, renewing\n",
2691 session->s_mds);
2692 spin_lock(&session->s_gen_ttl_lock);
2693 session->s_cap_gen++;
2694 session->s_cap_ttl = jiffies - 1;
2695 spin_unlock(&session->s_gen_ttl_lock);
2696 send_renew_caps(mdsc, session);
2697 break;
2698
2699 case CEPH_SESSION_RECALL_STATE:
2700 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2701 break;
2702
2703 case CEPH_SESSION_FLUSHMSG:
2704 send_flushmsg_ack(mdsc, session, seq);
2705 break;
2706
2707 case CEPH_SESSION_FORCE_RO:
2708 dout("force_session_readonly %p\n", session);
2709 spin_lock(&session->s_cap_lock);
2710 session->s_readonly = true;
2711 spin_unlock(&session->s_cap_lock);
2712 wake_up_session_caps(session, 0);
2713 break;
2714
2715 default:
2716 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2717 WARN_ON(1);
2718 }
2719
2720 mutex_unlock(&session->s_mutex);
2721 if (wake) {
2722 mutex_lock(&mdsc->mutex);
2723 __wake_requests(mdsc, &session->s_waiting);
2724 if (wake == 2)
2725 kick_requests(mdsc, mds);
2726 mutex_unlock(&mdsc->mutex);
2727 }
2728 return;
2729
2730 bad:
2731 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2732 (int)msg->front.iov_len);
2733 ceph_msg_dump(msg);
2734 return;
2735 }
2736
2737
2738 /*
2739 * called under session->mutex.
2740 */
2741 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2742 struct ceph_mds_session *session)
2743 {
2744 struct ceph_mds_request *req, *nreq;
2745 struct rb_node *p;
2746 int err;
2747
2748 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2749
2750 mutex_lock(&mdsc->mutex);
2751 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2752 err = __prepare_send_request(mdsc, req, session->s_mds, true);
2753 if (!err) {
2754 ceph_msg_get(req->r_request);
2755 ceph_con_send(&session->s_con, req->r_request);
2756 }
2757 }
2758
2759 /*
2760 * also re-send old requests when MDS enters reconnect stage. So that MDS
2761 * can process completed request in clientreplay stage.
2762 */
2763 p = rb_first(&mdsc->request_tree);
2764 while (p) {
2765 req = rb_entry(p, struct ceph_mds_request, r_node);
2766 p = rb_next(p);
2767 if (req->r_got_unsafe)
2768 continue;
2769 if (req->r_attempts == 0)
2770 continue; /* only old requests */
2771 if (req->r_session &&
2772 req->r_session->s_mds == session->s_mds) {
2773 err = __prepare_send_request(mdsc, req,
2774 session->s_mds, true);
2775 if (!err) {
2776 ceph_msg_get(req->r_request);
2777 ceph_con_send(&session->s_con, req->r_request);
2778 }
2779 }
2780 }
2781 mutex_unlock(&mdsc->mutex);
2782 }
2783
2784 /*
2785 * Encode information about a cap for a reconnect with the MDS.
2786 */
2787 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2788 void *arg)
2789 {
2790 union {
2791 struct ceph_mds_cap_reconnect v2;
2792 struct ceph_mds_cap_reconnect_v1 v1;
2793 } rec;
2794 size_t reclen;
2795 struct ceph_inode_info *ci;
2796 struct ceph_reconnect_state *recon_state = arg;
2797 struct ceph_pagelist *pagelist = recon_state->pagelist;
2798 char *path;
2799 int pathlen, err;
2800 u64 pathbase;
2801 struct dentry *dentry;
2802
2803 ci = cap->ci;
2804
2805 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2806 inode, ceph_vinop(inode), cap, cap->cap_id,
2807 ceph_cap_string(cap->issued));
2808 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2809 if (err)
2810 return err;
2811
2812 dentry = d_find_alias(inode);
2813 if (dentry) {
2814 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2815 if (IS_ERR(path)) {
2816 err = PTR_ERR(path);
2817 goto out_dput;
2818 }
2819 } else {
2820 path = NULL;
2821 pathlen = 0;
2822 }
2823 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2824 if (err)
2825 goto out_free;
2826
2827 spin_lock(&ci->i_ceph_lock);
2828 cap->seq = 0; /* reset cap seq */
2829 cap->issue_seq = 0; /* and issue_seq */
2830 cap->mseq = 0; /* and migrate_seq */
2831 cap->cap_gen = cap->session->s_cap_gen;
2832
2833 if (recon_state->flock) {
2834 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2835 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2836 rec.v2.issued = cpu_to_le32(cap->issued);
2837 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2838 rec.v2.pathbase = cpu_to_le64(pathbase);
2839 rec.v2.flock_len = 0;
2840 reclen = sizeof(rec.v2);
2841 } else {
2842 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2843 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2844 rec.v1.issued = cpu_to_le32(cap->issued);
2845 rec.v1.size = cpu_to_le64(inode->i_size);
2846 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2847 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2848 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2849 rec.v1.pathbase = cpu_to_le64(pathbase);
2850 reclen = sizeof(rec.v1);
2851 }
2852 spin_unlock(&ci->i_ceph_lock);
2853
2854 if (recon_state->flock) {
2855 int num_fcntl_locks, num_flock_locks;
2856 struct ceph_filelock *flocks;
2857
2858 encode_again:
2859 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2860 flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2861 sizeof(struct ceph_filelock), GFP_NOFS);
2862 if (!flocks) {
2863 err = -ENOMEM;
2864 goto out_free;
2865 }
2866 err = ceph_encode_locks_to_buffer(inode, flocks,
2867 num_fcntl_locks,
2868 num_flock_locks);
2869 if (err) {
2870 kfree(flocks);
2871 if (err == -ENOSPC)
2872 goto encode_again;
2873 goto out_free;
2874 }
2875 /*
2876 * number of encoded locks is stable, so copy to pagelist
2877 */
2878 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2879 (num_fcntl_locks+num_flock_locks) *
2880 sizeof(struct ceph_filelock));
2881 err = ceph_pagelist_append(pagelist, &rec, reclen);
2882 if (!err)
2883 err = ceph_locks_to_pagelist(flocks, pagelist,
2884 num_fcntl_locks,
2885 num_flock_locks);
2886 kfree(flocks);
2887 } else {
2888 err = ceph_pagelist_append(pagelist, &rec, reclen);
2889 }
2890
2891 recon_state->nr_caps++;
2892 out_free:
2893 kfree(path);
2894 out_dput:
2895 dput(dentry);
2896 return err;
2897 }
2898
2899
2900 /*
2901 * If an MDS fails and recovers, clients need to reconnect in order to
2902 * reestablish shared state. This includes all caps issued through
2903 * this session _and_ the snap_realm hierarchy. Because it's not
2904 * clear which snap realms the mds cares about, we send everything we
2905 * know about.. that ensures we'll then get any new info the
2906 * recovering MDS might have.
2907 *
2908 * This is a relatively heavyweight operation, but it's rare.
2909 *
2910 * called with mdsc->mutex held.
2911 */
2912 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2913 struct ceph_mds_session *session)
2914 {
2915 struct ceph_msg *reply;
2916 struct rb_node *p;
2917 int mds = session->s_mds;
2918 int err = -ENOMEM;
2919 int s_nr_caps;
2920 struct ceph_pagelist *pagelist;
2921 struct ceph_reconnect_state recon_state;
2922
2923 pr_info("mds%d reconnect start\n", mds);
2924
2925 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2926 if (!pagelist)
2927 goto fail_nopagelist;
2928 ceph_pagelist_init(pagelist);
2929
2930 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2931 if (!reply)
2932 goto fail_nomsg;
2933
2934 mutex_lock(&session->s_mutex);
2935 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2936 session->s_seq = 0;
2937
2938 dout("session %p state %s\n", session,
2939 ceph_session_state_name(session->s_state));
2940
2941 spin_lock(&session->s_gen_ttl_lock);
2942 session->s_cap_gen++;
2943 spin_unlock(&session->s_gen_ttl_lock);
2944
2945 spin_lock(&session->s_cap_lock);
2946 /* don't know if session is readonly */
2947 session->s_readonly = 0;
2948 /*
2949 * notify __ceph_remove_cap() that we are composing cap reconnect.
2950 * If a cap get released before being added to the cap reconnect,
2951 * __ceph_remove_cap() should skip queuing cap release.
2952 */
2953 session->s_cap_reconnect = 1;
2954 /* drop old cap expires; we're about to reestablish that state */
2955 cleanup_cap_releases(mdsc, session);
2956
2957 /* trim unused caps to reduce MDS's cache rejoin time */
2958 if (mdsc->fsc->sb->s_root)
2959 shrink_dcache_parent(mdsc->fsc->sb->s_root);
2960
2961 ceph_con_close(&session->s_con);
2962 ceph_con_open(&session->s_con,
2963 CEPH_ENTITY_TYPE_MDS, mds,
2964 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2965
2966 /* replay unsafe requests */
2967 replay_unsafe_requests(mdsc, session);
2968
2969 down_read(&mdsc->snap_rwsem);
2970
2971 /* traverse this session's caps */
2972 s_nr_caps = session->s_nr_caps;
2973 err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
2974 if (err)
2975 goto fail;
2976
2977 recon_state.nr_caps = 0;
2978 recon_state.pagelist = pagelist;
2979 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2980 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2981 if (err < 0)
2982 goto fail;
2983
2984 spin_lock(&session->s_cap_lock);
2985 session->s_cap_reconnect = 0;
2986 spin_unlock(&session->s_cap_lock);
2987
2988 /*
2989 * snaprealms. we provide mds with the ino, seq (version), and
2990 * parent for all of our realms. If the mds has any newer info,
2991 * it will tell us.
2992 */
2993 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2994 struct ceph_snap_realm *realm =
2995 rb_entry(p, struct ceph_snap_realm, node);
2996 struct ceph_mds_snaprealm_reconnect sr_rec;
2997
2998 dout(" adding snap realm %llx seq %lld parent %llx\n",
2999 realm->ino, realm->seq, realm->parent_ino);
3000 sr_rec.ino = cpu_to_le64(realm->ino);
3001 sr_rec.seq = cpu_to_le64(realm->seq);
3002 sr_rec.parent = cpu_to_le64(realm->parent_ino);
3003 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
3004 if (err)
3005 goto fail;
3006 }
3007
3008 if (recon_state.flock)
3009 reply->hdr.version = cpu_to_le16(2);
3010
3011 /* raced with cap release? */
3012 if (s_nr_caps != recon_state.nr_caps) {
3013 struct page *page = list_first_entry(&pagelist->head,
3014 struct page, lru);
3015 __le32 *addr = kmap_atomic(page);
3016 *addr = cpu_to_le32(recon_state.nr_caps);
3017 kunmap_atomic(addr);
3018 }
3019
3020 reply->hdr.data_len = cpu_to_le32(pagelist->length);
3021 ceph_msg_data_add_pagelist(reply, pagelist);
3022
3023 ceph_early_kick_flushing_caps(mdsc, session);
3024
3025 ceph_con_send(&session->s_con, reply);
3026
3027 mutex_unlock(&session->s_mutex);
3028
3029 mutex_lock(&mdsc->mutex);
3030 __wake_requests(mdsc, &session->s_waiting);
3031 mutex_unlock(&mdsc->mutex);
3032
3033 up_read(&mdsc->snap_rwsem);
3034 return;
3035
3036 fail:
3037 ceph_msg_put(reply);
3038 up_read(&mdsc->snap_rwsem);
3039 mutex_unlock(&session->s_mutex);
3040 fail_nomsg:
3041 ceph_pagelist_release(pagelist);
3042 fail_nopagelist:
3043 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
3044 return;
3045 }
3046
3047
3048 /*
3049 * compare old and new mdsmaps, kicking requests
3050 * and closing out old connections as necessary
3051 *
3052 * called under mdsc->mutex.
3053 */
3054 static void check_new_map(struct ceph_mds_client *mdsc,
3055 struct ceph_mdsmap *newmap,
3056 struct ceph_mdsmap *oldmap)
3057 {
3058 int i;
3059 int oldstate, newstate;
3060 struct ceph_mds_session *s;
3061
3062 dout("check_new_map new %u old %u\n",
3063 newmap->m_epoch, oldmap->m_epoch);
3064
3065 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
3066 if (mdsc->sessions[i] == NULL)
3067 continue;
3068 s = mdsc->sessions[i];
3069 oldstate = ceph_mdsmap_get_state(oldmap, i);
3070 newstate = ceph_mdsmap_get_state(newmap, i);
3071
3072 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
3073 i, ceph_mds_state_name(oldstate),
3074 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
3075 ceph_mds_state_name(newstate),
3076 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
3077 ceph_session_state_name(s->s_state));
3078
3079 if (i >= newmap->m_max_mds ||
3080 memcmp(ceph_mdsmap_get_addr(oldmap, i),
3081 ceph_mdsmap_get_addr(newmap, i),
3082 sizeof(struct ceph_entity_addr))) {
3083 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
3084 /* the session never opened, just close it
3085 * out now */
3086 __wake_requests(mdsc, &s->s_waiting);
3087 __unregister_session(mdsc, s);
3088 } else {
3089 /* just close it */
3090 mutex_unlock(&mdsc->mutex);
3091 mutex_lock(&s->s_mutex);
3092 mutex_lock(&mdsc->mutex);
3093 ceph_con_close(&s->s_con);
3094 mutex_unlock(&s->s_mutex);
3095 s->s_state = CEPH_MDS_SESSION_RESTARTING;
3096 }
3097 } else if (oldstate == newstate) {
3098 continue; /* nothing new with this mds */
3099 }
3100
3101 /*
3102 * send reconnect?
3103 */
3104 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
3105 newstate >= CEPH_MDS_STATE_RECONNECT) {
3106 mutex_unlock(&mdsc->mutex);
3107 send_mds_reconnect(mdsc, s);
3108 mutex_lock(&mdsc->mutex);
3109 }
3110
3111 /*
3112 * kick request on any mds that has gone active.
3113 */
3114 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
3115 newstate >= CEPH_MDS_STATE_ACTIVE) {
3116 if (oldstate != CEPH_MDS_STATE_CREATING &&
3117 oldstate != CEPH_MDS_STATE_STARTING)
3118 pr_info("mds%d recovery completed\n", s->s_mds);
3119 kick_requests(mdsc, i);
3120 ceph_kick_flushing_caps(mdsc, s);
3121 wake_up_session_caps(s, 1);
3122 }
3123 }
3124
3125 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
3126 s = mdsc->sessions[i];
3127 if (!s)
3128 continue;
3129 if (!ceph_mdsmap_is_laggy(newmap, i))
3130 continue;
3131 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3132 s->s_state == CEPH_MDS_SESSION_HUNG ||
3133 s->s_state == CEPH_MDS_SESSION_CLOSING) {
3134 dout(" connecting to export targets of laggy mds%d\n",
3135 i);
3136 __open_export_target_sessions(mdsc, s);
3137 }
3138 }
3139 }
3140
3141
3142
3143 /*
3144 * leases
3145 */
3146
3147 /*
3148 * caller must hold session s_mutex, dentry->d_lock
3149 */
3150 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
3151 {
3152 struct ceph_dentry_info *di = ceph_dentry(dentry);
3153
3154 ceph_put_mds_session(di->lease_session);
3155 di->lease_session = NULL;
3156 }
3157
3158 static void handle_lease(struct ceph_mds_client *mdsc,
3159 struct ceph_mds_session *session,
3160 struct ceph_msg *msg)
3161 {
3162 struct super_block *sb = mdsc->fsc->sb;
3163 struct inode *inode;
3164 struct dentry *parent, *dentry;
3165 struct ceph_dentry_info *di;
3166 int mds = session->s_mds;
3167 struct ceph_mds_lease *h = msg->front.iov_base;
3168 u32 seq;
3169 struct ceph_vino vino;
3170 struct qstr dname;
3171 int release = 0;
3172
3173 dout("handle_lease from mds%d\n", mds);
3174
3175 /* decode */
3176 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
3177 goto bad;
3178 vino.ino = le64_to_cpu(h->ino);
3179 vino.snap = CEPH_NOSNAP;
3180 seq = le32_to_cpu(h->seq);
3181 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
3182 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
3183 if (dname.len != get_unaligned_le32(h+1))
3184 goto bad;
3185
3186 /* lookup inode */
3187 inode = ceph_find_inode(sb, vino);
3188 dout("handle_lease %s, ino %llx %p %.*s\n",
3189 ceph_lease_op_name(h->action), vino.ino, inode,
3190 dname.len, dname.name);
3191
3192 mutex_lock(&session->s_mutex);
3193 session->s_seq++;
3194
3195 if (inode == NULL) {
3196 dout("handle_lease no inode %llx\n", vino.ino);
3197 goto release;
3198 }
3199
3200 /* dentry */
3201 parent = d_find_alias(inode);
3202 if (!parent) {
3203 dout("no parent dentry on inode %p\n", inode);
3204 WARN_ON(1);
3205 goto release; /* hrm... */
3206 }
3207 dname.hash = full_name_hash(dname.name, dname.len);
3208 dentry = d_lookup(parent, &dname);
3209 dput(parent);
3210 if (!dentry)
3211 goto release;
3212
3213 spin_lock(&dentry->d_lock);
3214 di = ceph_dentry(dentry);
3215 switch (h->action) {
3216 case CEPH_MDS_LEASE_REVOKE:
3217 if (di->lease_session == session) {
3218 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
3219 h->seq = cpu_to_le32(di->lease_seq);
3220 __ceph_mdsc_drop_dentry_lease(dentry);
3221 }
3222 release = 1;
3223 break;
3224
3225 case CEPH_MDS_LEASE_RENEW:
3226 if (di->lease_session == session &&
3227 di->lease_gen == session->s_cap_gen &&
3228 di->lease_renew_from &&
3229 di->lease_renew_after == 0) {
3230 unsigned long duration =
3231 msecs_to_jiffies(le32_to_cpu(h->duration_ms));
3232
3233 di->lease_seq = seq;
3234 di->time = di->lease_renew_from + duration;
3235 di->lease_renew_after = di->lease_renew_from +
3236 (duration >> 1);
3237 di->lease_renew_from = 0;
3238 }
3239 break;
3240 }
3241 spin_unlock(&dentry->d_lock);
3242 dput(dentry);
3243
3244 if (!release)
3245 goto out;
3246
3247 release:
3248 /* let's just reuse the same message */
3249 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
3250 ceph_msg_get(msg);
3251 ceph_con_send(&session->s_con, msg);
3252
3253 out:
3254 iput(inode);
3255 mutex_unlock(&session->s_mutex);
3256 return;
3257
3258 bad:
3259 pr_err("corrupt lease message\n");
3260 ceph_msg_dump(msg);
3261 }
3262
3263 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
3264 struct inode *inode,
3265 struct dentry *dentry, char action,
3266 u32 seq)
3267 {
3268 struct ceph_msg *msg;
3269 struct ceph_mds_lease *lease;
3270 int len = sizeof(*lease) + sizeof(u32);
3271 int dnamelen = 0;
3272
3273 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3274 inode, dentry, ceph_lease_op_name(action), session->s_mds);
3275 dnamelen = dentry->d_name.len;
3276 len += dnamelen;
3277
3278 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
3279 if (!msg)
3280 return;
3281 lease = msg->front.iov_base;
3282 lease->action = action;
3283 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
3284 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
3285 lease->seq = cpu_to_le32(seq);
3286 put_unaligned_le32(dnamelen, lease + 1);
3287 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
3288
3289 /*
3290 * if this is a preemptive lease RELEASE, no need to
3291 * flush request stream, since the actual request will
3292 * soon follow.
3293 */
3294 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
3295
3296 ceph_con_send(&session->s_con, msg);
3297 }
3298
3299 /*
3300 * drop all leases (and dentry refs) in preparation for umount
3301 */
3302 static void drop_leases(struct ceph_mds_client *mdsc)
3303 {
3304 int i;
3305
3306 dout("drop_leases\n");
3307 mutex_lock(&mdsc->mutex);
3308 for (i = 0; i < mdsc->max_sessions; i++) {
3309 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3310 if (!s)
3311 continue;
3312 mutex_unlock(&mdsc->mutex);
3313 mutex_lock(&s->s_mutex);
3314 mutex_unlock(&s->s_mutex);
3315 ceph_put_mds_session(s);
3316 mutex_lock(&mdsc->mutex);
3317 }
3318 mutex_unlock(&mdsc->mutex);
3319 }
3320
3321
3322
3323 /*
3324 * delayed work -- periodically trim expired leases, renew caps with mds
3325 */
3326 static void schedule_delayed(struct ceph_mds_client *mdsc)
3327 {
3328 int delay = 5;
3329 unsigned hz = round_jiffies_relative(HZ * delay);
3330 schedule_delayed_work(&mdsc->delayed_work, hz);
3331 }
3332
3333 static void delayed_work(struct work_struct *work)
3334 {
3335 int i;
3336 struct ceph_mds_client *mdsc =
3337 container_of(work, struct ceph_mds_client, delayed_work.work);
3338 int renew_interval;
3339 int renew_caps;
3340
3341 dout("mdsc delayed_work\n");
3342 ceph_check_delayed_caps(mdsc);
3343
3344 mutex_lock(&mdsc->mutex);
3345 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3346 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3347 mdsc->last_renew_caps);
3348 if (renew_caps)
3349 mdsc->last_renew_caps = jiffies;
3350
3351 for (i = 0; i < mdsc->max_sessions; i++) {
3352 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3353 if (s == NULL)
3354 continue;
3355 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3356 dout("resending session close request for mds%d\n",
3357 s->s_mds);
3358 request_close_session(mdsc, s);
3359 ceph_put_mds_session(s);
3360 continue;
3361 }
3362 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3363 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3364 s->s_state = CEPH_MDS_SESSION_HUNG;
3365 pr_info("mds%d hung\n", s->s_mds);
3366 }
3367 }
3368 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3369 /* this mds is failed or recovering, just wait */
3370 ceph_put_mds_session(s);
3371 continue;
3372 }
3373 mutex_unlock(&mdsc->mutex);
3374
3375 mutex_lock(&s->s_mutex);
3376 if (renew_caps)
3377 send_renew_caps(mdsc, s);
3378 else
3379 ceph_con_keepalive(&s->s_con);
3380 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3381 s->s_state == CEPH_MDS_SESSION_HUNG)
3382 ceph_send_cap_releases(mdsc, s);
3383 mutex_unlock(&s->s_mutex);
3384 ceph_put_mds_session(s);
3385
3386 mutex_lock(&mdsc->mutex);
3387 }
3388 mutex_unlock(&mdsc->mutex);
3389
3390 schedule_delayed(mdsc);
3391 }
3392
3393 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3394
3395 {
3396 struct ceph_mds_client *mdsc;
3397
3398 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3399 if (!mdsc)
3400 return -ENOMEM;
3401 mdsc->fsc = fsc;
3402 fsc->mdsc = mdsc;
3403 mutex_init(&mdsc->mutex);
3404 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3405 if (mdsc->mdsmap == NULL) {
3406 kfree(mdsc);
3407 return -ENOMEM;
3408 }
3409
3410 init_completion(&mdsc->safe_umount_waiters);
3411 init_waitqueue_head(&mdsc->session_close_wq);
3412 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3413 mdsc->sessions = NULL;
3414 atomic_set(&mdsc->num_sessions, 0);
3415 mdsc->max_sessions = 0;
3416 mdsc->stopping = 0;
3417 mdsc->last_snap_seq = 0;
3418 init_rwsem(&mdsc->snap_rwsem);
3419 mdsc->snap_realms = RB_ROOT;
3420 INIT_LIST_HEAD(&mdsc->snap_empty);
3421 spin_lock_init(&mdsc->snap_empty_lock);
3422 mdsc->last_tid = 0;
3423 mdsc->oldest_tid = 0;
3424 mdsc->request_tree = RB_ROOT;
3425 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3426 mdsc->last_renew_caps = jiffies;
3427 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3428 spin_lock_init(&mdsc->cap_delay_lock);
3429 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3430 spin_lock_init(&mdsc->snap_flush_lock);
3431 mdsc->last_cap_flush_tid = 1;
3432 mdsc->cap_flush_tree = RB_ROOT;
3433 INIT_LIST_HEAD(&mdsc->cap_dirty);
3434 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3435 mdsc->num_cap_flushing = 0;
3436 spin_lock_init(&mdsc->cap_dirty_lock);
3437 init_waitqueue_head(&mdsc->cap_flushing_wq);
3438 spin_lock_init(&mdsc->dentry_lru_lock);
3439 INIT_LIST_HEAD(&mdsc->dentry_lru);
3440
3441 ceph_caps_init(mdsc);
3442 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3443
3444 init_rwsem(&mdsc->pool_perm_rwsem);
3445 mdsc->pool_perm_tree = RB_ROOT;
3446
3447 return 0;
3448 }
3449
3450 /*
3451 * Wait for safe replies on open mds requests. If we time out, drop
3452 * all requests from the tree to avoid dangling dentry refs.
3453 */
3454 static void wait_requests(struct ceph_mds_client *mdsc)
3455 {
3456 struct ceph_options *opts = mdsc->fsc->client->options;
3457 struct ceph_mds_request *req;
3458
3459 mutex_lock(&mdsc->mutex);
3460 if (__get_oldest_req(mdsc)) {
3461 mutex_unlock(&mdsc->mutex);
3462
3463 dout("wait_requests waiting for requests\n");
3464 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3465 ceph_timeout_jiffies(opts->mount_timeout));
3466
3467 /* tear down remaining requests */
3468 mutex_lock(&mdsc->mutex);
3469 while ((req = __get_oldest_req(mdsc))) {
3470 dout("wait_requests timed out on tid %llu\n",
3471 req->r_tid);
3472 __unregister_request(mdsc, req);
3473 }
3474 }
3475 mutex_unlock(&mdsc->mutex);
3476 dout("wait_requests done\n");
3477 }
3478
3479 /*
3480 * called before mount is ro, and before dentries are torn down.
3481 * (hmm, does this still race with new lookups?)
3482 */
3483 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3484 {
3485 dout("pre_umount\n");
3486 mdsc->stopping = 1;
3487
3488 drop_leases(mdsc);
3489 ceph_flush_dirty_caps(mdsc);
3490 wait_requests(mdsc);
3491
3492 /*
3493 * wait for reply handlers to drop their request refs and
3494 * their inode/dcache refs
3495 */
3496 ceph_msgr_flush();
3497 }
3498
3499 /*
3500 * wait for all write mds requests to flush.
3501 */
3502 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3503 {
3504 struct ceph_mds_request *req = NULL, *nextreq;
3505 struct rb_node *n;
3506
3507 mutex_lock(&mdsc->mutex);
3508 dout("wait_unsafe_requests want %lld\n", want_tid);
3509 restart:
3510 req = __get_oldest_req(mdsc);
3511 while (req && req->r_tid <= want_tid) {
3512 /* find next request */
3513 n = rb_next(&req->r_node);
3514 if (n)
3515 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3516 else
3517 nextreq = NULL;
3518 if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
3519 (req->r_op & CEPH_MDS_OP_WRITE)) {
3520 /* write op */
3521 ceph_mdsc_get_request(req);
3522 if (nextreq)
3523 ceph_mdsc_get_request(nextreq);
3524 mutex_unlock(&mdsc->mutex);
3525 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3526 req->r_tid, want_tid);
3527 wait_for_completion(&req->r_safe_completion);
3528 mutex_lock(&mdsc->mutex);
3529 ceph_mdsc_put_request(req);
3530 if (!nextreq)
3531 break; /* next dne before, so we're done! */
3532 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3533 /* next request was removed from tree */
3534 ceph_mdsc_put_request(nextreq);
3535 goto restart;
3536 }
3537 ceph_mdsc_put_request(nextreq); /* won't go away */
3538 }
3539 req = nextreq;
3540 }
3541 mutex_unlock(&mdsc->mutex);
3542 dout("wait_unsafe_requests done\n");
3543 }
3544
3545 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3546 {
3547 u64 want_tid, want_flush, want_snap;
3548
3549 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3550 return;
3551
3552 dout("sync\n");
3553 mutex_lock(&mdsc->mutex);
3554 want_tid = mdsc->last_tid;
3555 mutex_unlock(&mdsc->mutex);
3556
3557 ceph_flush_dirty_caps(mdsc);
3558 spin_lock(&mdsc->cap_dirty_lock);
3559 want_flush = mdsc->last_cap_flush_tid;
3560 spin_unlock(&mdsc->cap_dirty_lock);
3561
3562 down_read(&mdsc->snap_rwsem);
3563 want_snap = mdsc->last_snap_seq;
3564 up_read(&mdsc->snap_rwsem);
3565
3566 dout("sync want tid %lld flush_seq %lld snap_seq %lld\n",
3567 want_tid, want_flush, want_snap);
3568
3569 wait_unsafe_requests(mdsc, want_tid);
3570 wait_caps_flush(mdsc, want_flush, want_snap);
3571 }
3572
3573 /*
3574 * true if all sessions are closed, or we force unmount
3575 */
3576 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3577 {
3578 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3579 return true;
3580 return atomic_read(&mdsc->num_sessions) == 0;
3581 }
3582
3583 /*
3584 * called after sb is ro.
3585 */
3586 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3587 {
3588 struct ceph_options *opts = mdsc->fsc->client->options;
3589 struct ceph_mds_session *session;
3590 int i;
3591
3592 dout("close_sessions\n");
3593
3594 /* close sessions */
3595 mutex_lock(&mdsc->mutex);
3596 for (i = 0; i < mdsc->max_sessions; i++) {
3597 session = __ceph_lookup_mds_session(mdsc, i);
3598 if (!session)
3599 continue;
3600 mutex_unlock(&mdsc->mutex);
3601 mutex_lock(&session->s_mutex);
3602 __close_session(mdsc, session);
3603 mutex_unlock(&session->s_mutex);
3604 ceph_put_mds_session(session);
3605 mutex_lock(&mdsc->mutex);
3606 }
3607 mutex_unlock(&mdsc->mutex);
3608
3609 dout("waiting for sessions to close\n");
3610 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3611 ceph_timeout_jiffies(opts->mount_timeout));
3612
3613 /* tear down remaining sessions */
3614 mutex_lock(&mdsc->mutex);
3615 for (i = 0; i < mdsc->max_sessions; i++) {
3616 if (mdsc->sessions[i]) {
3617 session = get_session(mdsc->sessions[i]);
3618 __unregister_session(mdsc, session);
3619 mutex_unlock(&mdsc->mutex);
3620 mutex_lock(&session->s_mutex);
3621 remove_session_caps(session);
3622 mutex_unlock(&session->s_mutex);
3623 ceph_put_mds_session(session);
3624 mutex_lock(&mdsc->mutex);
3625 }
3626 }
3627 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3628 mutex_unlock(&mdsc->mutex);
3629
3630 ceph_cleanup_empty_realms(mdsc);
3631
3632 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3633
3634 dout("stopped\n");
3635 }
3636
3637 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
3638 {
3639 struct ceph_mds_session *session;
3640 int mds;
3641
3642 dout("force umount\n");
3643
3644 mutex_lock(&mdsc->mutex);
3645 for (mds = 0; mds < mdsc->max_sessions; mds++) {
3646 session = __ceph_lookup_mds_session(mdsc, mds);
3647 if (!session)
3648 continue;
3649 mutex_unlock(&mdsc->mutex);
3650 mutex_lock(&session->s_mutex);
3651 __close_session(mdsc, session);
3652 if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
3653 cleanup_session_requests(mdsc, session);
3654 remove_session_caps(session);
3655 }
3656 mutex_unlock(&session->s_mutex);
3657 ceph_put_mds_session(session);
3658 mutex_lock(&mdsc->mutex);
3659 kick_requests(mdsc, mds);
3660 }
3661 __wake_requests(mdsc, &mdsc->waiting_for_map);
3662 mutex_unlock(&mdsc->mutex);
3663 }
3664
3665 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3666 {
3667 dout("stop\n");
3668 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3669 if (mdsc->mdsmap)
3670 ceph_mdsmap_destroy(mdsc->mdsmap);
3671 kfree(mdsc->sessions);
3672 ceph_caps_finalize(mdsc);
3673 ceph_pool_perm_destroy(mdsc);
3674 }
3675
3676 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3677 {
3678 struct ceph_mds_client *mdsc = fsc->mdsc;
3679
3680 dout("mdsc_destroy %p\n", mdsc);
3681 ceph_mdsc_stop(mdsc);
3682
3683 /* flush out any connection work with references to us */
3684 ceph_msgr_flush();
3685
3686 fsc->mdsc = NULL;
3687 kfree(mdsc);
3688 dout("mdsc_destroy %p done\n", mdsc);
3689 }
3690
3691 void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3692 {
3693 struct ceph_fs_client *fsc = mdsc->fsc;
3694 const char *mds_namespace = fsc->mount_options->mds_namespace;
3695 void *p = msg->front.iov_base;
3696 void *end = p + msg->front.iov_len;
3697 u32 epoch;
3698 u32 map_len;
3699 u32 num_fs;
3700 u32 mount_fscid = (u32)-1;
3701 u8 struct_v, struct_cv;
3702 int err = -EINVAL;
3703
3704 ceph_decode_need(&p, end, sizeof(u32), bad);
3705 epoch = ceph_decode_32(&p);
3706
3707 dout("handle_fsmap epoch %u\n", epoch);
3708
3709 ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
3710 struct_v = ceph_decode_8(&p);
3711 struct_cv = ceph_decode_8(&p);
3712 map_len = ceph_decode_32(&p);
3713
3714 ceph_decode_need(&p, end, sizeof(u32) * 3, bad);
3715 p += sizeof(u32) * 2; /* skip epoch and legacy_client_fscid */
3716
3717 num_fs = ceph_decode_32(&p);
3718 while (num_fs-- > 0) {
3719 void *info_p, *info_end;
3720 u32 info_len;
3721 u8 info_v, info_cv;
3722 u32 fscid, namelen;
3723
3724 ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
3725 info_v = ceph_decode_8(&p);
3726 info_cv = ceph_decode_8(&p);
3727 info_len = ceph_decode_32(&p);
3728 ceph_decode_need(&p, end, info_len, bad);
3729 info_p = p;
3730 info_end = p + info_len;
3731 p = info_end;
3732
3733 ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad);
3734 fscid = ceph_decode_32(&info_p);
3735 namelen = ceph_decode_32(&info_p);
3736 ceph_decode_need(&info_p, info_end, namelen, bad);
3737
3738 if (mds_namespace &&
3739 strlen(mds_namespace) == namelen &&
3740 !strncmp(mds_namespace, (char *)info_p, namelen)) {
3741 mount_fscid = fscid;
3742 break;
3743 }
3744 }
3745
3746 ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch);
3747 if (mount_fscid != (u32)-1) {
3748 fsc->client->monc.fs_cluster_id = mount_fscid;
3749 ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP,
3750 0, true);
3751 ceph_monc_renew_subs(&fsc->client->monc);
3752 } else {
3753 err = -ENOENT;
3754 goto err_out;
3755 }
3756 return;
3757 bad:
3758 pr_err("error decoding fsmap\n");
3759 err_out:
3760 mutex_lock(&mdsc->mutex);
3761 mdsc->mdsmap_err = -ENOENT;
3762 __wake_requests(mdsc, &mdsc->waiting_for_map);
3763 mutex_unlock(&mdsc->mutex);
3764 return;
3765 }
3766
3767 /*
3768 * handle mds map update.
3769 */
3770 void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3771 {
3772 u32 epoch;
3773 u32 maplen;
3774 void *p = msg->front.iov_base;
3775 void *end = p + msg->front.iov_len;
3776 struct ceph_mdsmap *newmap, *oldmap;
3777 struct ceph_fsid fsid;
3778 int err = -EINVAL;
3779
3780 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3781 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3782 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3783 return;
3784 epoch = ceph_decode_32(&p);
3785 maplen = ceph_decode_32(&p);
3786 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3787
3788 /* do we need it? */
3789 mutex_lock(&mdsc->mutex);
3790 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3791 dout("handle_map epoch %u <= our %u\n",
3792 epoch, mdsc->mdsmap->m_epoch);
3793 mutex_unlock(&mdsc->mutex);
3794 return;
3795 }
3796
3797 newmap = ceph_mdsmap_decode(&p, end);
3798 if (IS_ERR(newmap)) {
3799 err = PTR_ERR(newmap);
3800 goto bad_unlock;
3801 }
3802
3803 /* swap into place */
3804 if (mdsc->mdsmap) {
3805 oldmap = mdsc->mdsmap;
3806 mdsc->mdsmap = newmap;
3807 check_new_map(mdsc, newmap, oldmap);
3808 ceph_mdsmap_destroy(oldmap);
3809 } else {
3810 mdsc->mdsmap = newmap; /* first mds map */
3811 }
3812 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3813
3814 __wake_requests(mdsc, &mdsc->waiting_for_map);
3815 ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP,
3816 mdsc->mdsmap->m_epoch);
3817
3818 mutex_unlock(&mdsc->mutex);
3819 schedule_delayed(mdsc);
3820 return;
3821
3822 bad_unlock:
3823 mutex_unlock(&mdsc->mutex);
3824 bad:
3825 pr_err("error decoding mdsmap %d\n", err);
3826 return;
3827 }
3828
3829 static struct ceph_connection *con_get(struct ceph_connection *con)
3830 {
3831 struct ceph_mds_session *s = con->private;
3832
3833 if (get_session(s)) {
3834 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3835 return con;
3836 }
3837 dout("mdsc con_get %p FAIL\n", s);
3838 return NULL;
3839 }
3840
3841 static void con_put(struct ceph_connection *con)
3842 {
3843 struct ceph_mds_session *s = con->private;
3844
3845 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3846 ceph_put_mds_session(s);
3847 }
3848
3849 /*
3850 * if the client is unresponsive for long enough, the mds will kill
3851 * the session entirely.
3852 */
3853 static void peer_reset(struct ceph_connection *con)
3854 {
3855 struct ceph_mds_session *s = con->private;
3856 struct ceph_mds_client *mdsc = s->s_mdsc;
3857
3858 pr_warn("mds%d closed our session\n", s->s_mds);
3859 send_mds_reconnect(mdsc, s);
3860 }
3861
3862 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3863 {
3864 struct ceph_mds_session *s = con->private;
3865 struct ceph_mds_client *mdsc = s->s_mdsc;
3866 int type = le16_to_cpu(msg->hdr.type);
3867
3868 mutex_lock(&mdsc->mutex);
3869 if (__verify_registered_session(mdsc, s) < 0) {
3870 mutex_unlock(&mdsc->mutex);
3871 goto out;
3872 }
3873 mutex_unlock(&mdsc->mutex);
3874
3875 switch (type) {
3876 case CEPH_MSG_MDS_MAP:
3877 ceph_mdsc_handle_mdsmap(mdsc, msg);
3878 break;
3879 case CEPH_MSG_FS_MAP_USER:
3880 ceph_mdsc_handle_fsmap(mdsc, msg);
3881 break;
3882 case CEPH_MSG_CLIENT_SESSION:
3883 handle_session(s, msg);
3884 break;
3885 case CEPH_MSG_CLIENT_REPLY:
3886 handle_reply(s, msg);
3887 break;
3888 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3889 handle_forward(mdsc, s, msg);
3890 break;
3891 case CEPH_MSG_CLIENT_CAPS:
3892 ceph_handle_caps(s, msg);
3893 break;
3894 case CEPH_MSG_CLIENT_SNAP:
3895 ceph_handle_snap(mdsc, s, msg);
3896 break;
3897 case CEPH_MSG_CLIENT_LEASE:
3898 handle_lease(mdsc, s, msg);
3899 break;
3900
3901 default:
3902 pr_err("received unknown message type %d %s\n", type,
3903 ceph_msg_type_name(type));
3904 }
3905 out:
3906 ceph_msg_put(msg);
3907 }
3908
3909 /*
3910 * authentication
3911 */
3912
3913 /*
3914 * Note: returned pointer is the address of a structure that's
3915 * managed separately. Caller must *not* attempt to free it.
3916 */
3917 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3918 int *proto, int force_new)
3919 {
3920 struct ceph_mds_session *s = con->private;
3921 struct ceph_mds_client *mdsc = s->s_mdsc;
3922 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3923 struct ceph_auth_handshake *auth = &s->s_auth;
3924
3925 if (force_new && auth->authorizer) {
3926 ceph_auth_destroy_authorizer(auth->authorizer);
3927 auth->authorizer = NULL;
3928 }
3929 if (!auth->authorizer) {
3930 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3931 auth);
3932 if (ret)
3933 return ERR_PTR(ret);
3934 } else {
3935 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3936 auth);
3937 if (ret)
3938 return ERR_PTR(ret);
3939 }
3940 *proto = ac->protocol;
3941
3942 return auth;
3943 }
3944
3945
3946 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3947 {
3948 struct ceph_mds_session *s = con->private;
3949 struct ceph_mds_client *mdsc = s->s_mdsc;
3950 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3951
3952 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3953 }
3954
3955 static int invalidate_authorizer(struct ceph_connection *con)
3956 {
3957 struct ceph_mds_session *s = con->private;
3958 struct ceph_mds_client *mdsc = s->s_mdsc;
3959 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3960
3961 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3962
3963 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3964 }
3965
3966 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3967 struct ceph_msg_header *hdr, int *skip)
3968 {
3969 struct ceph_msg *msg;
3970 int type = (int) le16_to_cpu(hdr->type);
3971 int front_len = (int) le32_to_cpu(hdr->front_len);
3972
3973 if (con->in_msg)
3974 return con->in_msg;
3975
3976 *skip = 0;
3977 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3978 if (!msg) {
3979 pr_err("unable to allocate msg type %d len %d\n",
3980 type, front_len);
3981 return NULL;
3982 }
3983
3984 return msg;
3985 }
3986
3987 static int mds_sign_message(struct ceph_msg *msg)
3988 {
3989 struct ceph_mds_session *s = msg->con->private;
3990 struct ceph_auth_handshake *auth = &s->s_auth;
3991
3992 return ceph_auth_sign_message(auth, msg);
3993 }
3994
3995 static int mds_check_message_signature(struct ceph_msg *msg)
3996 {
3997 struct ceph_mds_session *s = msg->con->private;
3998 struct ceph_auth_handshake *auth = &s->s_auth;
3999
4000 return ceph_auth_check_message_signature(auth, msg);
4001 }
4002
4003 static const struct ceph_connection_operations mds_con_ops = {
4004 .get = con_get,
4005 .put = con_put,
4006 .dispatch = dispatch,
4007 .get_authorizer = get_authorizer,
4008 .verify_authorizer_reply = verify_authorizer_reply,
4009 .invalidate_authorizer = invalidate_authorizer,
4010 .peer_reset = peer_reset,
4011 .alloc_msg = mds_alloc_msg,
4012 .sign_message = mds_sign_message,
4013 .check_message_signature = mds_check_message_signature,
4014 };
4015
4016 /* eof */
This page took 0.112859 seconds and 5 git commands to generate.