Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/nico/orion...
[deliverable/linux.git] / fs / ceph / messenger.c
1 #include "ceph_debug.h"
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <net/tcp.h>
13
14 #include "super.h"
15 #include "messenger.h"
16 #include "decode.h"
17 #include "pagelist.h"
18
19 /*
20 * Ceph uses the messenger to exchange ceph_msg messages with other
21 * hosts in the system. The messenger provides ordered and reliable
22 * delivery. We tolerate TCP disconnects by reconnecting (with
23 * exponential backoff) in the case of a fault (disconnection, bad
24 * crc, protocol error). Acks allow sent messages to be discarded by
25 * the sender.
26 */
27
28 /* static tag bytes (protocol control messages) */
29 static char tag_msg = CEPH_MSGR_TAG_MSG;
30 static char tag_ack = CEPH_MSGR_TAG_ACK;
31 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
32
33 #ifdef CONFIG_LOCKDEP
34 static struct lock_class_key socket_class;
35 #endif
36
37
38 static void queue_con(struct ceph_connection *con);
39 static void con_work(struct work_struct *);
40 static void ceph_fault(struct ceph_connection *con);
41
42 const char *ceph_name_type_str(int t)
43 {
44 switch (t) {
45 case CEPH_ENTITY_TYPE_MON: return "mon";
46 case CEPH_ENTITY_TYPE_MDS: return "mds";
47 case CEPH_ENTITY_TYPE_OSD: return "osd";
48 case CEPH_ENTITY_TYPE_CLIENT: return "client";
49 case CEPH_ENTITY_TYPE_ADMIN: return "admin";
50 default: return "???";
51 }
52 }
53
54 /*
55 * nicely render a sockaddr as a string.
56 */
57 #define MAX_ADDR_STR 20
58 static char addr_str[MAX_ADDR_STR][40];
59 static DEFINE_SPINLOCK(addr_str_lock);
60 static int last_addr_str;
61
62 const char *pr_addr(const struct sockaddr_storage *ss)
63 {
64 int i;
65 char *s;
66 struct sockaddr_in *in4 = (void *)ss;
67 unsigned char *quad = (void *)&in4->sin_addr.s_addr;
68 struct sockaddr_in6 *in6 = (void *)ss;
69
70 spin_lock(&addr_str_lock);
71 i = last_addr_str++;
72 if (last_addr_str == MAX_ADDR_STR)
73 last_addr_str = 0;
74 spin_unlock(&addr_str_lock);
75 s = addr_str[i];
76
77 switch (ss->ss_family) {
78 case AF_INET:
79 sprintf(s, "%u.%u.%u.%u:%u",
80 (unsigned int)quad[0],
81 (unsigned int)quad[1],
82 (unsigned int)quad[2],
83 (unsigned int)quad[3],
84 (unsigned int)ntohs(in4->sin_port));
85 break;
86
87 case AF_INET6:
88 sprintf(s, "%04x:%04x:%04x:%04x:%04x:%04x:%04x:%04x:%u",
89 in6->sin6_addr.s6_addr16[0],
90 in6->sin6_addr.s6_addr16[1],
91 in6->sin6_addr.s6_addr16[2],
92 in6->sin6_addr.s6_addr16[3],
93 in6->sin6_addr.s6_addr16[4],
94 in6->sin6_addr.s6_addr16[5],
95 in6->sin6_addr.s6_addr16[6],
96 in6->sin6_addr.s6_addr16[7],
97 (unsigned int)ntohs(in6->sin6_port));
98 break;
99
100 default:
101 sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
102 }
103
104 return s;
105 }
106
107 static void encode_my_addr(struct ceph_messenger *msgr)
108 {
109 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
110 ceph_encode_addr(&msgr->my_enc_addr);
111 }
112
113 /*
114 * work queue for all reading and writing to/from the socket.
115 */
116 struct workqueue_struct *ceph_msgr_wq;
117
118 int __init ceph_msgr_init(void)
119 {
120 ceph_msgr_wq = create_workqueue("ceph-msgr");
121 if (IS_ERR(ceph_msgr_wq)) {
122 int ret = PTR_ERR(ceph_msgr_wq);
123 pr_err("msgr_init failed to create workqueue: %d\n", ret);
124 ceph_msgr_wq = NULL;
125 return ret;
126 }
127 return 0;
128 }
129
130 void ceph_msgr_exit(void)
131 {
132 destroy_workqueue(ceph_msgr_wq);
133 }
134
135 /*
136 * socket callback functions
137 */
138
139 /* data available on socket, or listen socket received a connect */
140 static void ceph_data_ready(struct sock *sk, int count_unused)
141 {
142 struct ceph_connection *con =
143 (struct ceph_connection *)sk->sk_user_data;
144 if (sk->sk_state != TCP_CLOSE_WAIT) {
145 dout("ceph_data_ready on %p state = %lu, queueing work\n",
146 con, con->state);
147 queue_con(con);
148 }
149 }
150
151 /* socket has buffer space for writing */
152 static void ceph_write_space(struct sock *sk)
153 {
154 struct ceph_connection *con =
155 (struct ceph_connection *)sk->sk_user_data;
156
157 /* only queue to workqueue if there is data we want to write. */
158 if (test_bit(WRITE_PENDING, &con->state)) {
159 dout("ceph_write_space %p queueing write work\n", con);
160 queue_con(con);
161 } else {
162 dout("ceph_write_space %p nothing to write\n", con);
163 }
164
165 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
166 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
167 }
168
169 /* socket's state has changed */
170 static void ceph_state_change(struct sock *sk)
171 {
172 struct ceph_connection *con =
173 (struct ceph_connection *)sk->sk_user_data;
174
175 dout("ceph_state_change %p state = %lu sk_state = %u\n",
176 con, con->state, sk->sk_state);
177
178 if (test_bit(CLOSED, &con->state))
179 return;
180
181 switch (sk->sk_state) {
182 case TCP_CLOSE:
183 dout("ceph_state_change TCP_CLOSE\n");
184 case TCP_CLOSE_WAIT:
185 dout("ceph_state_change TCP_CLOSE_WAIT\n");
186 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
187 if (test_bit(CONNECTING, &con->state))
188 con->error_msg = "connection failed";
189 else
190 con->error_msg = "socket closed";
191 queue_con(con);
192 }
193 break;
194 case TCP_ESTABLISHED:
195 dout("ceph_state_change TCP_ESTABLISHED\n");
196 queue_con(con);
197 break;
198 }
199 }
200
201 /*
202 * set up socket callbacks
203 */
204 static void set_sock_callbacks(struct socket *sock,
205 struct ceph_connection *con)
206 {
207 struct sock *sk = sock->sk;
208 sk->sk_user_data = (void *)con;
209 sk->sk_data_ready = ceph_data_ready;
210 sk->sk_write_space = ceph_write_space;
211 sk->sk_state_change = ceph_state_change;
212 }
213
214
215 /*
216 * socket helpers
217 */
218
219 /*
220 * initiate connection to a remote socket.
221 */
222 static struct socket *ceph_tcp_connect(struct ceph_connection *con)
223 {
224 struct sockaddr *paddr = (struct sockaddr *)&con->peer_addr.in_addr;
225 struct socket *sock;
226 int ret;
227
228 BUG_ON(con->sock);
229 ret = sock_create_kern(AF_INET, SOCK_STREAM, IPPROTO_TCP, &sock);
230 if (ret)
231 return ERR_PTR(ret);
232 con->sock = sock;
233 sock->sk->sk_allocation = GFP_NOFS;
234
235 #ifdef CONFIG_LOCKDEP
236 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
237 #endif
238
239 set_sock_callbacks(sock, con);
240
241 dout("connect %s\n", pr_addr(&con->peer_addr.in_addr));
242
243 ret = sock->ops->connect(sock, paddr, sizeof(*paddr), O_NONBLOCK);
244 if (ret == -EINPROGRESS) {
245 dout("connect %s EINPROGRESS sk_state = %u\n",
246 pr_addr(&con->peer_addr.in_addr),
247 sock->sk->sk_state);
248 ret = 0;
249 }
250 if (ret < 0) {
251 pr_err("connect %s error %d\n",
252 pr_addr(&con->peer_addr.in_addr), ret);
253 sock_release(sock);
254 con->sock = NULL;
255 con->error_msg = "connect error";
256 }
257
258 if (ret < 0)
259 return ERR_PTR(ret);
260 return sock;
261 }
262
263 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
264 {
265 struct kvec iov = {buf, len};
266 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
267
268 return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
269 }
270
271 /*
272 * write something. @more is true if caller will be sending more data
273 * shortly.
274 */
275 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
276 size_t kvlen, size_t len, int more)
277 {
278 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
279
280 if (more)
281 msg.msg_flags |= MSG_MORE;
282 else
283 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
284
285 return kernel_sendmsg(sock, &msg, iov, kvlen, len);
286 }
287
288
289 /*
290 * Shutdown/close the socket for the given connection.
291 */
292 static int con_close_socket(struct ceph_connection *con)
293 {
294 int rc;
295
296 dout("con_close_socket on %p sock %p\n", con, con->sock);
297 if (!con->sock)
298 return 0;
299 set_bit(SOCK_CLOSED, &con->state);
300 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
301 sock_release(con->sock);
302 con->sock = NULL;
303 clear_bit(SOCK_CLOSED, &con->state);
304 return rc;
305 }
306
307 /*
308 * Reset a connection. Discard all incoming and outgoing messages
309 * and clear *_seq state.
310 */
311 static void ceph_msg_remove(struct ceph_msg *msg)
312 {
313 list_del_init(&msg->list_head);
314 ceph_msg_put(msg);
315 }
316 static void ceph_msg_remove_list(struct list_head *head)
317 {
318 while (!list_empty(head)) {
319 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
320 list_head);
321 ceph_msg_remove(msg);
322 }
323 }
324
325 static void reset_connection(struct ceph_connection *con)
326 {
327 /* reset connection, out_queue, msg_ and connect_seq */
328 /* discard existing out_queue and msg_seq */
329 ceph_msg_remove_list(&con->out_queue);
330 ceph_msg_remove_list(&con->out_sent);
331
332 if (con->in_msg) {
333 ceph_msg_put(con->in_msg);
334 con->in_msg = NULL;
335 }
336
337 con->connect_seq = 0;
338 con->out_seq = 0;
339 if (con->out_msg) {
340 ceph_msg_put(con->out_msg);
341 con->out_msg = NULL;
342 }
343 con->in_seq = 0;
344 con->in_seq_acked = 0;
345 }
346
347 /*
348 * mark a peer down. drop any open connections.
349 */
350 void ceph_con_close(struct ceph_connection *con)
351 {
352 dout("con_close %p peer %s\n", con, pr_addr(&con->peer_addr.in_addr));
353 set_bit(CLOSED, &con->state); /* in case there's queued work */
354 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
355 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
356 clear_bit(KEEPALIVE_PENDING, &con->state);
357 clear_bit(WRITE_PENDING, &con->state);
358 mutex_lock(&con->mutex);
359 reset_connection(con);
360 cancel_delayed_work(&con->work);
361 mutex_unlock(&con->mutex);
362 queue_con(con);
363 }
364
365 /*
366 * Reopen a closed connection, with a new peer address.
367 */
368 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
369 {
370 dout("con_open %p %s\n", con, pr_addr(&addr->in_addr));
371 set_bit(OPENING, &con->state);
372 clear_bit(CLOSED, &con->state);
373 memcpy(&con->peer_addr, addr, sizeof(*addr));
374 con->delay = 0; /* reset backoff memory */
375 queue_con(con);
376 }
377
378 /*
379 * return true if this connection ever successfully opened
380 */
381 bool ceph_con_opened(struct ceph_connection *con)
382 {
383 return con->connect_seq > 0;
384 }
385
386 /*
387 * generic get/put
388 */
389 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
390 {
391 dout("con_get %p nref = %d -> %d\n", con,
392 atomic_read(&con->nref), atomic_read(&con->nref) + 1);
393 if (atomic_inc_not_zero(&con->nref))
394 return con;
395 return NULL;
396 }
397
398 void ceph_con_put(struct ceph_connection *con)
399 {
400 dout("con_put %p nref = %d -> %d\n", con,
401 atomic_read(&con->nref), atomic_read(&con->nref) - 1);
402 BUG_ON(atomic_read(&con->nref) == 0);
403 if (atomic_dec_and_test(&con->nref)) {
404 BUG_ON(con->sock);
405 kfree(con);
406 }
407 }
408
409 /*
410 * initialize a new connection.
411 */
412 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
413 {
414 dout("con_init %p\n", con);
415 memset(con, 0, sizeof(*con));
416 atomic_set(&con->nref, 1);
417 con->msgr = msgr;
418 mutex_init(&con->mutex);
419 INIT_LIST_HEAD(&con->out_queue);
420 INIT_LIST_HEAD(&con->out_sent);
421 INIT_DELAYED_WORK(&con->work, con_work);
422 }
423
424
425 /*
426 * We maintain a global counter to order connection attempts. Get
427 * a unique seq greater than @gt.
428 */
429 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
430 {
431 u32 ret;
432
433 spin_lock(&msgr->global_seq_lock);
434 if (msgr->global_seq < gt)
435 msgr->global_seq = gt;
436 ret = ++msgr->global_seq;
437 spin_unlock(&msgr->global_seq_lock);
438 return ret;
439 }
440
441
442 /*
443 * Prepare footer for currently outgoing message, and finish things
444 * off. Assumes out_kvec* are already valid.. we just add on to the end.
445 */
446 static void prepare_write_message_footer(struct ceph_connection *con, int v)
447 {
448 struct ceph_msg *m = con->out_msg;
449
450 dout("prepare_write_message_footer %p\n", con);
451 con->out_kvec_is_msg = true;
452 con->out_kvec[v].iov_base = &m->footer;
453 con->out_kvec[v].iov_len = sizeof(m->footer);
454 con->out_kvec_bytes += sizeof(m->footer);
455 con->out_kvec_left++;
456 con->out_more = m->more_to_follow;
457 con->out_msg_done = true;
458 }
459
460 /*
461 * Prepare headers for the next outgoing message.
462 */
463 static void prepare_write_message(struct ceph_connection *con)
464 {
465 struct ceph_msg *m;
466 int v = 0;
467
468 con->out_kvec_bytes = 0;
469 con->out_kvec_is_msg = true;
470 con->out_msg_done = false;
471
472 /* Sneak an ack in there first? If we can get it into the same
473 * TCP packet that's a good thing. */
474 if (con->in_seq > con->in_seq_acked) {
475 con->in_seq_acked = con->in_seq;
476 con->out_kvec[v].iov_base = &tag_ack;
477 con->out_kvec[v++].iov_len = 1;
478 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
479 con->out_kvec[v].iov_base = &con->out_temp_ack;
480 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
481 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
482 }
483
484 m = list_first_entry(&con->out_queue,
485 struct ceph_msg, list_head);
486 con->out_msg = m;
487 if (test_bit(LOSSYTX, &con->state)) {
488 list_del_init(&m->list_head);
489 } else {
490 /* put message on sent list */
491 ceph_msg_get(m);
492 list_move_tail(&m->list_head, &con->out_sent);
493 }
494
495 m->hdr.seq = cpu_to_le64(++con->out_seq);
496
497 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
498 m, con->out_seq, le16_to_cpu(m->hdr.type),
499 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
500 le32_to_cpu(m->hdr.data_len),
501 m->nr_pages);
502 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
503
504 /* tag + hdr + front + middle */
505 con->out_kvec[v].iov_base = &tag_msg;
506 con->out_kvec[v++].iov_len = 1;
507 con->out_kvec[v].iov_base = &m->hdr;
508 con->out_kvec[v++].iov_len = sizeof(m->hdr);
509 con->out_kvec[v++] = m->front;
510 if (m->middle)
511 con->out_kvec[v++] = m->middle->vec;
512 con->out_kvec_left = v;
513 con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
514 (m->middle ? m->middle->vec.iov_len : 0);
515 con->out_kvec_cur = con->out_kvec;
516
517 /* fill in crc (except data pages), footer */
518 con->out_msg->hdr.crc =
519 cpu_to_le32(crc32c(0, (void *)&m->hdr,
520 sizeof(m->hdr) - sizeof(m->hdr.crc)));
521 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
522 con->out_msg->footer.front_crc =
523 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
524 if (m->middle)
525 con->out_msg->footer.middle_crc =
526 cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
527 m->middle->vec.iov_len));
528 else
529 con->out_msg->footer.middle_crc = 0;
530 con->out_msg->footer.data_crc = 0;
531 dout("prepare_write_message front_crc %u data_crc %u\n",
532 le32_to_cpu(con->out_msg->footer.front_crc),
533 le32_to_cpu(con->out_msg->footer.middle_crc));
534
535 /* is there a data payload? */
536 if (le32_to_cpu(m->hdr.data_len) > 0) {
537 /* initialize page iterator */
538 con->out_msg_pos.page = 0;
539 con->out_msg_pos.page_pos =
540 le16_to_cpu(m->hdr.data_off) & ~PAGE_MASK;
541 con->out_msg_pos.data_pos = 0;
542 con->out_msg_pos.did_page_crc = 0;
543 con->out_more = 1; /* data + footer will follow */
544 } else {
545 /* no, queue up footer too and be done */
546 prepare_write_message_footer(con, v);
547 }
548
549 set_bit(WRITE_PENDING, &con->state);
550 }
551
552 /*
553 * Prepare an ack.
554 */
555 static void prepare_write_ack(struct ceph_connection *con)
556 {
557 dout("prepare_write_ack %p %llu -> %llu\n", con,
558 con->in_seq_acked, con->in_seq);
559 con->in_seq_acked = con->in_seq;
560
561 con->out_kvec[0].iov_base = &tag_ack;
562 con->out_kvec[0].iov_len = 1;
563 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
564 con->out_kvec[1].iov_base = &con->out_temp_ack;
565 con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
566 con->out_kvec_left = 2;
567 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
568 con->out_kvec_cur = con->out_kvec;
569 con->out_more = 1; /* more will follow.. eventually.. */
570 set_bit(WRITE_PENDING, &con->state);
571 }
572
573 /*
574 * Prepare to write keepalive byte.
575 */
576 static void prepare_write_keepalive(struct ceph_connection *con)
577 {
578 dout("prepare_write_keepalive %p\n", con);
579 con->out_kvec[0].iov_base = &tag_keepalive;
580 con->out_kvec[0].iov_len = 1;
581 con->out_kvec_left = 1;
582 con->out_kvec_bytes = 1;
583 con->out_kvec_cur = con->out_kvec;
584 set_bit(WRITE_PENDING, &con->state);
585 }
586
587 /*
588 * Connection negotiation.
589 */
590
591 static void prepare_connect_authorizer(struct ceph_connection *con)
592 {
593 void *auth_buf;
594 int auth_len = 0;
595 int auth_protocol = 0;
596
597 mutex_unlock(&con->mutex);
598 if (con->ops->get_authorizer)
599 con->ops->get_authorizer(con, &auth_buf, &auth_len,
600 &auth_protocol, &con->auth_reply_buf,
601 &con->auth_reply_buf_len,
602 con->auth_retry);
603 mutex_lock(&con->mutex);
604
605 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
606 con->out_connect.authorizer_len = cpu_to_le32(auth_len);
607
608 con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
609 con->out_kvec[con->out_kvec_left].iov_len = auth_len;
610 con->out_kvec_left++;
611 con->out_kvec_bytes += auth_len;
612 }
613
614 /*
615 * We connected to a peer and are saying hello.
616 */
617 static void prepare_write_banner(struct ceph_messenger *msgr,
618 struct ceph_connection *con)
619 {
620 int len = strlen(CEPH_BANNER);
621
622 con->out_kvec[0].iov_base = CEPH_BANNER;
623 con->out_kvec[0].iov_len = len;
624 con->out_kvec[1].iov_base = &msgr->my_enc_addr;
625 con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
626 con->out_kvec_left = 2;
627 con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
628 con->out_kvec_cur = con->out_kvec;
629 con->out_more = 0;
630 set_bit(WRITE_PENDING, &con->state);
631 }
632
633 static void prepare_write_connect(struct ceph_messenger *msgr,
634 struct ceph_connection *con,
635 int after_banner)
636 {
637 unsigned global_seq = get_global_seq(con->msgr, 0);
638 int proto;
639
640 switch (con->peer_name.type) {
641 case CEPH_ENTITY_TYPE_MON:
642 proto = CEPH_MONC_PROTOCOL;
643 break;
644 case CEPH_ENTITY_TYPE_OSD:
645 proto = CEPH_OSDC_PROTOCOL;
646 break;
647 case CEPH_ENTITY_TYPE_MDS:
648 proto = CEPH_MDSC_PROTOCOL;
649 break;
650 default:
651 BUG();
652 }
653
654 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
655 con->connect_seq, global_seq, proto);
656
657 con->out_connect.features = CEPH_FEATURE_SUPPORTED;
658 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
659 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
660 con->out_connect.global_seq = cpu_to_le32(global_seq);
661 con->out_connect.protocol_version = cpu_to_le32(proto);
662 con->out_connect.flags = 0;
663
664 if (!after_banner) {
665 con->out_kvec_left = 0;
666 con->out_kvec_bytes = 0;
667 }
668 con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
669 con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
670 con->out_kvec_left++;
671 con->out_kvec_bytes += sizeof(con->out_connect);
672 con->out_kvec_cur = con->out_kvec;
673 con->out_more = 0;
674 set_bit(WRITE_PENDING, &con->state);
675
676 prepare_connect_authorizer(con);
677 }
678
679
680 /*
681 * write as much of pending kvecs to the socket as we can.
682 * 1 -> done
683 * 0 -> socket full, but more to do
684 * <0 -> error
685 */
686 static int write_partial_kvec(struct ceph_connection *con)
687 {
688 int ret;
689
690 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
691 while (con->out_kvec_bytes > 0) {
692 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
693 con->out_kvec_left, con->out_kvec_bytes,
694 con->out_more);
695 if (ret <= 0)
696 goto out;
697 con->out_kvec_bytes -= ret;
698 if (con->out_kvec_bytes == 0)
699 break; /* done */
700 while (ret > 0) {
701 if (ret >= con->out_kvec_cur->iov_len) {
702 ret -= con->out_kvec_cur->iov_len;
703 con->out_kvec_cur++;
704 con->out_kvec_left--;
705 } else {
706 con->out_kvec_cur->iov_len -= ret;
707 con->out_kvec_cur->iov_base += ret;
708 ret = 0;
709 break;
710 }
711 }
712 }
713 con->out_kvec_left = 0;
714 con->out_kvec_is_msg = false;
715 ret = 1;
716 out:
717 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
718 con->out_kvec_bytes, con->out_kvec_left, ret);
719 return ret; /* done! */
720 }
721
722 /*
723 * Write as much message data payload as we can. If we finish, queue
724 * up the footer.
725 * 1 -> done, footer is now queued in out_kvec[].
726 * 0 -> socket full, but more to do
727 * <0 -> error
728 */
729 static int write_partial_msg_pages(struct ceph_connection *con)
730 {
731 struct ceph_msg *msg = con->out_msg;
732 unsigned data_len = le32_to_cpu(msg->hdr.data_len);
733 size_t len;
734 int crc = con->msgr->nocrc;
735 int ret;
736
737 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
738 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
739 con->out_msg_pos.page_pos);
740
741 while (con->out_msg_pos.page < con->out_msg->nr_pages) {
742 struct page *page = NULL;
743 void *kaddr = NULL;
744
745 /*
746 * if we are calculating the data crc (the default), we need
747 * to map the page. if our pages[] has been revoked, use the
748 * zero page.
749 */
750 if (msg->pages) {
751 page = msg->pages[con->out_msg_pos.page];
752 if (crc)
753 kaddr = kmap(page);
754 } else if (msg->pagelist) {
755 page = list_first_entry(&msg->pagelist->head,
756 struct page, lru);
757 if (crc)
758 kaddr = kmap(page);
759 } else {
760 page = con->msgr->zero_page;
761 if (crc)
762 kaddr = page_address(con->msgr->zero_page);
763 }
764 len = min((int)(PAGE_SIZE - con->out_msg_pos.page_pos),
765 (int)(data_len - con->out_msg_pos.data_pos));
766 if (crc && !con->out_msg_pos.did_page_crc) {
767 void *base = kaddr + con->out_msg_pos.page_pos;
768 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
769
770 BUG_ON(kaddr == NULL);
771 con->out_msg->footer.data_crc =
772 cpu_to_le32(crc32c(tmpcrc, base, len));
773 con->out_msg_pos.did_page_crc = 1;
774 }
775
776 ret = kernel_sendpage(con->sock, page,
777 con->out_msg_pos.page_pos, len,
778 MSG_DONTWAIT | MSG_NOSIGNAL |
779 MSG_MORE);
780
781 if (crc && (msg->pages || msg->pagelist))
782 kunmap(page);
783
784 if (ret <= 0)
785 goto out;
786
787 con->out_msg_pos.data_pos += ret;
788 con->out_msg_pos.page_pos += ret;
789 if (ret == len) {
790 con->out_msg_pos.page_pos = 0;
791 con->out_msg_pos.page++;
792 con->out_msg_pos.did_page_crc = 0;
793 if (msg->pagelist)
794 list_move_tail(&page->lru,
795 &msg->pagelist->head);
796 }
797 }
798
799 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
800
801 /* prepare and queue up footer, too */
802 if (!crc)
803 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
804 con->out_kvec_bytes = 0;
805 con->out_kvec_left = 0;
806 con->out_kvec_cur = con->out_kvec;
807 prepare_write_message_footer(con, 0);
808 ret = 1;
809 out:
810 return ret;
811 }
812
813 /*
814 * write some zeros
815 */
816 static int write_partial_skip(struct ceph_connection *con)
817 {
818 int ret;
819
820 while (con->out_skip > 0) {
821 struct kvec iov = {
822 .iov_base = page_address(con->msgr->zero_page),
823 .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
824 };
825
826 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
827 if (ret <= 0)
828 goto out;
829 con->out_skip -= ret;
830 }
831 ret = 1;
832 out:
833 return ret;
834 }
835
836 /*
837 * Prepare to read connection handshake, or an ack.
838 */
839 static void prepare_read_banner(struct ceph_connection *con)
840 {
841 dout("prepare_read_banner %p\n", con);
842 con->in_base_pos = 0;
843 }
844
845 static void prepare_read_connect(struct ceph_connection *con)
846 {
847 dout("prepare_read_connect %p\n", con);
848 con->in_base_pos = 0;
849 }
850
851 static void prepare_read_ack(struct ceph_connection *con)
852 {
853 dout("prepare_read_ack %p\n", con);
854 con->in_base_pos = 0;
855 }
856
857 static void prepare_read_tag(struct ceph_connection *con)
858 {
859 dout("prepare_read_tag %p\n", con);
860 con->in_base_pos = 0;
861 con->in_tag = CEPH_MSGR_TAG_READY;
862 }
863
864 /*
865 * Prepare to read a message.
866 */
867 static int prepare_read_message(struct ceph_connection *con)
868 {
869 dout("prepare_read_message %p\n", con);
870 BUG_ON(con->in_msg != NULL);
871 con->in_base_pos = 0;
872 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
873 return 0;
874 }
875
876
877 static int read_partial(struct ceph_connection *con,
878 int *to, int size, void *object)
879 {
880 *to += size;
881 while (con->in_base_pos < *to) {
882 int left = *to - con->in_base_pos;
883 int have = size - left;
884 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
885 if (ret <= 0)
886 return ret;
887 con->in_base_pos += ret;
888 }
889 return 1;
890 }
891
892
893 /*
894 * Read all or part of the connect-side handshake on a new connection
895 */
896 static int read_partial_banner(struct ceph_connection *con)
897 {
898 int ret, to = 0;
899
900 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
901
902 /* peer's banner */
903 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
904 if (ret <= 0)
905 goto out;
906 ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
907 &con->actual_peer_addr);
908 if (ret <= 0)
909 goto out;
910 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
911 &con->peer_addr_for_me);
912 if (ret <= 0)
913 goto out;
914 out:
915 return ret;
916 }
917
918 static int read_partial_connect(struct ceph_connection *con)
919 {
920 int ret, to = 0;
921
922 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
923
924 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
925 if (ret <= 0)
926 goto out;
927 ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
928 con->auth_reply_buf);
929 if (ret <= 0)
930 goto out;
931
932 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
933 con, (int)con->in_reply.tag,
934 le32_to_cpu(con->in_reply.connect_seq),
935 le32_to_cpu(con->in_reply.global_seq));
936 out:
937 return ret;
938
939 }
940
941 /*
942 * Verify the hello banner looks okay.
943 */
944 static int verify_hello(struct ceph_connection *con)
945 {
946 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
947 pr_err("connect to %s got bad banner\n",
948 pr_addr(&con->peer_addr.in_addr));
949 con->error_msg = "protocol error, bad banner";
950 return -1;
951 }
952 return 0;
953 }
954
955 static bool addr_is_blank(struct sockaddr_storage *ss)
956 {
957 switch (ss->ss_family) {
958 case AF_INET:
959 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
960 case AF_INET6:
961 return
962 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
963 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
964 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
965 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
966 }
967 return false;
968 }
969
970 static int addr_port(struct sockaddr_storage *ss)
971 {
972 switch (ss->ss_family) {
973 case AF_INET:
974 return ntohs(((struct sockaddr_in *)ss)->sin_port);
975 case AF_INET6:
976 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
977 }
978 return 0;
979 }
980
981 static void addr_set_port(struct sockaddr_storage *ss, int p)
982 {
983 switch (ss->ss_family) {
984 case AF_INET:
985 ((struct sockaddr_in *)ss)->sin_port = htons(p);
986 case AF_INET6:
987 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
988 }
989 }
990
991 /*
992 * Parse an ip[:port] list into an addr array. Use the default
993 * monitor port if a port isn't specified.
994 */
995 int ceph_parse_ips(const char *c, const char *end,
996 struct ceph_entity_addr *addr,
997 int max_count, int *count)
998 {
999 int i;
1000 const char *p = c;
1001
1002 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1003 for (i = 0; i < max_count; i++) {
1004 const char *ipend;
1005 struct sockaddr_storage *ss = &addr[i].in_addr;
1006 struct sockaddr_in *in4 = (void *)ss;
1007 struct sockaddr_in6 *in6 = (void *)ss;
1008 int port;
1009
1010 memset(ss, 0, sizeof(*ss));
1011 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1012 ',', &ipend)) {
1013 ss->ss_family = AF_INET;
1014 } else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1015 ',', &ipend)) {
1016 ss->ss_family = AF_INET6;
1017 } else {
1018 goto bad;
1019 }
1020 p = ipend;
1021
1022 /* port? */
1023 if (p < end && *p == ':') {
1024 port = 0;
1025 p++;
1026 while (p < end && *p >= '0' && *p <= '9') {
1027 port = (port * 10) + (*p - '0');
1028 p++;
1029 }
1030 if (port > 65535 || port == 0)
1031 goto bad;
1032 } else {
1033 port = CEPH_MON_PORT;
1034 }
1035
1036 addr_set_port(ss, port);
1037
1038 dout("parse_ips got %s\n", pr_addr(ss));
1039
1040 if (p == end)
1041 break;
1042 if (*p != ',')
1043 goto bad;
1044 p++;
1045 }
1046
1047 if (p != end)
1048 goto bad;
1049
1050 if (count)
1051 *count = i + 1;
1052 return 0;
1053
1054 bad:
1055 pr_err("parse_ips bad ip '%s'\n", c);
1056 return -EINVAL;
1057 }
1058
1059 static int process_banner(struct ceph_connection *con)
1060 {
1061 dout("process_banner on %p\n", con);
1062
1063 if (verify_hello(con) < 0)
1064 return -1;
1065
1066 ceph_decode_addr(&con->actual_peer_addr);
1067 ceph_decode_addr(&con->peer_addr_for_me);
1068
1069 /*
1070 * Make sure the other end is who we wanted. note that the other
1071 * end may not yet know their ip address, so if it's 0.0.0.0, give
1072 * them the benefit of the doubt.
1073 */
1074 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1075 sizeof(con->peer_addr)) != 0 &&
1076 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1077 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1078 pr_warning("wrong peer, want %s/%lld, got %s/%lld\n",
1079 pr_addr(&con->peer_addr.in_addr),
1080 le64_to_cpu(con->peer_addr.nonce),
1081 pr_addr(&con->actual_peer_addr.in_addr),
1082 le64_to_cpu(con->actual_peer_addr.nonce));
1083 con->error_msg = "wrong peer at address";
1084 return -1;
1085 }
1086
1087 /*
1088 * did we learn our address?
1089 */
1090 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1091 int port = addr_port(&con->msgr->inst.addr.in_addr);
1092
1093 memcpy(&con->msgr->inst.addr.in_addr,
1094 &con->peer_addr_for_me.in_addr,
1095 sizeof(con->peer_addr_for_me.in_addr));
1096 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1097 encode_my_addr(con->msgr);
1098 dout("process_banner learned my addr is %s\n",
1099 pr_addr(&con->msgr->inst.addr.in_addr));
1100 }
1101
1102 set_bit(NEGOTIATING, &con->state);
1103 prepare_read_connect(con);
1104 return 0;
1105 }
1106
1107 static void fail_protocol(struct ceph_connection *con)
1108 {
1109 reset_connection(con);
1110 set_bit(CLOSED, &con->state); /* in case there's queued work */
1111
1112 mutex_unlock(&con->mutex);
1113 if (con->ops->bad_proto)
1114 con->ops->bad_proto(con);
1115 mutex_lock(&con->mutex);
1116 }
1117
1118 static int process_connect(struct ceph_connection *con)
1119 {
1120 u64 sup_feat = CEPH_FEATURE_SUPPORTED;
1121 u64 req_feat = CEPH_FEATURE_REQUIRED;
1122 u64 server_feat = le64_to_cpu(con->in_reply.features);
1123
1124 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1125
1126 switch (con->in_reply.tag) {
1127 case CEPH_MSGR_TAG_FEATURES:
1128 pr_err("%s%lld %s feature set mismatch,"
1129 " my %llx < server's %llx, missing %llx\n",
1130 ENTITY_NAME(con->peer_name),
1131 pr_addr(&con->peer_addr.in_addr),
1132 sup_feat, server_feat, server_feat & ~sup_feat);
1133 con->error_msg = "missing required protocol features";
1134 fail_protocol(con);
1135 return -1;
1136
1137 case CEPH_MSGR_TAG_BADPROTOVER:
1138 pr_err("%s%lld %s protocol version mismatch,"
1139 " my %d != server's %d\n",
1140 ENTITY_NAME(con->peer_name),
1141 pr_addr(&con->peer_addr.in_addr),
1142 le32_to_cpu(con->out_connect.protocol_version),
1143 le32_to_cpu(con->in_reply.protocol_version));
1144 con->error_msg = "protocol version mismatch";
1145 fail_protocol(con);
1146 return -1;
1147
1148 case CEPH_MSGR_TAG_BADAUTHORIZER:
1149 con->auth_retry++;
1150 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1151 con->auth_retry);
1152 if (con->auth_retry == 2) {
1153 con->error_msg = "connect authorization failure";
1154 reset_connection(con);
1155 set_bit(CLOSED, &con->state);
1156 return -1;
1157 }
1158 con->auth_retry = 1;
1159 prepare_write_connect(con->msgr, con, 0);
1160 prepare_read_connect(con);
1161 break;
1162
1163 case CEPH_MSGR_TAG_RESETSESSION:
1164 /*
1165 * If we connected with a large connect_seq but the peer
1166 * has no record of a session with us (no connection, or
1167 * connect_seq == 0), they will send RESETSESION to indicate
1168 * that they must have reset their session, and may have
1169 * dropped messages.
1170 */
1171 dout("process_connect got RESET peer seq %u\n",
1172 le32_to_cpu(con->in_connect.connect_seq));
1173 pr_err("%s%lld %s connection reset\n",
1174 ENTITY_NAME(con->peer_name),
1175 pr_addr(&con->peer_addr.in_addr));
1176 reset_connection(con);
1177 prepare_write_connect(con->msgr, con, 0);
1178 prepare_read_connect(con);
1179
1180 /* Tell ceph about it. */
1181 mutex_unlock(&con->mutex);
1182 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1183 if (con->ops->peer_reset)
1184 con->ops->peer_reset(con);
1185 mutex_lock(&con->mutex);
1186 break;
1187
1188 case CEPH_MSGR_TAG_RETRY_SESSION:
1189 /*
1190 * If we sent a smaller connect_seq than the peer has, try
1191 * again with a larger value.
1192 */
1193 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1194 le32_to_cpu(con->out_connect.connect_seq),
1195 le32_to_cpu(con->in_connect.connect_seq));
1196 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1197 prepare_write_connect(con->msgr, con, 0);
1198 prepare_read_connect(con);
1199 break;
1200
1201 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1202 /*
1203 * If we sent a smaller global_seq than the peer has, try
1204 * again with a larger value.
1205 */
1206 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1207 con->peer_global_seq,
1208 le32_to_cpu(con->in_connect.global_seq));
1209 get_global_seq(con->msgr,
1210 le32_to_cpu(con->in_connect.global_seq));
1211 prepare_write_connect(con->msgr, con, 0);
1212 prepare_read_connect(con);
1213 break;
1214
1215 case CEPH_MSGR_TAG_READY:
1216 if (req_feat & ~server_feat) {
1217 pr_err("%s%lld %s protocol feature mismatch,"
1218 " my required %llx > server's %llx, need %llx\n",
1219 ENTITY_NAME(con->peer_name),
1220 pr_addr(&con->peer_addr.in_addr),
1221 req_feat, server_feat, req_feat & ~server_feat);
1222 con->error_msg = "missing required protocol features";
1223 fail_protocol(con);
1224 return -1;
1225 }
1226 clear_bit(CONNECTING, &con->state);
1227 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1228 con->connect_seq++;
1229 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1230 con->peer_global_seq,
1231 le32_to_cpu(con->in_reply.connect_seq),
1232 con->connect_seq);
1233 WARN_ON(con->connect_seq !=
1234 le32_to_cpu(con->in_reply.connect_seq));
1235
1236 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1237 set_bit(LOSSYTX, &con->state);
1238
1239 prepare_read_tag(con);
1240 break;
1241
1242 case CEPH_MSGR_TAG_WAIT:
1243 /*
1244 * If there is a connection race (we are opening
1245 * connections to each other), one of us may just have
1246 * to WAIT. This shouldn't happen if we are the
1247 * client.
1248 */
1249 pr_err("process_connect peer connecting WAIT\n");
1250
1251 default:
1252 pr_err("connect protocol error, will retry\n");
1253 con->error_msg = "protocol error, garbage tag during connect";
1254 return -1;
1255 }
1256 return 0;
1257 }
1258
1259
1260 /*
1261 * read (part of) an ack
1262 */
1263 static int read_partial_ack(struct ceph_connection *con)
1264 {
1265 int to = 0;
1266
1267 return read_partial(con, &to, sizeof(con->in_temp_ack),
1268 &con->in_temp_ack);
1269 }
1270
1271
1272 /*
1273 * We can finally discard anything that's been acked.
1274 */
1275 static void process_ack(struct ceph_connection *con)
1276 {
1277 struct ceph_msg *m;
1278 u64 ack = le64_to_cpu(con->in_temp_ack);
1279 u64 seq;
1280
1281 while (!list_empty(&con->out_sent)) {
1282 m = list_first_entry(&con->out_sent, struct ceph_msg,
1283 list_head);
1284 seq = le64_to_cpu(m->hdr.seq);
1285 if (seq > ack)
1286 break;
1287 dout("got ack for seq %llu type %d at %p\n", seq,
1288 le16_to_cpu(m->hdr.type), m);
1289 ceph_msg_remove(m);
1290 }
1291 prepare_read_tag(con);
1292 }
1293
1294
1295
1296
1297 static int read_partial_message_section(struct ceph_connection *con,
1298 struct kvec *section, unsigned int sec_len,
1299 u32 *crc)
1300 {
1301 int left;
1302 int ret;
1303
1304 BUG_ON(!section);
1305
1306 while (section->iov_len < sec_len) {
1307 BUG_ON(section->iov_base == NULL);
1308 left = sec_len - section->iov_len;
1309 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1310 section->iov_len, left);
1311 if (ret <= 0)
1312 return ret;
1313 section->iov_len += ret;
1314 if (section->iov_len == sec_len)
1315 *crc = crc32c(0, section->iov_base,
1316 section->iov_len);
1317 }
1318
1319 return 1;
1320 }
1321
1322 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1323 struct ceph_msg_header *hdr,
1324 int *skip);
1325 /*
1326 * read (part of) a message.
1327 */
1328 static int read_partial_message(struct ceph_connection *con)
1329 {
1330 struct ceph_msg *m = con->in_msg;
1331 void *p;
1332 int ret;
1333 int to, left;
1334 unsigned front_len, middle_len, data_len, data_off;
1335 int datacrc = con->msgr->nocrc;
1336 int skip;
1337 u64 seq;
1338
1339 dout("read_partial_message con %p msg %p\n", con, m);
1340
1341 /* header */
1342 while (con->in_base_pos < sizeof(con->in_hdr)) {
1343 left = sizeof(con->in_hdr) - con->in_base_pos;
1344 ret = ceph_tcp_recvmsg(con->sock,
1345 (char *)&con->in_hdr + con->in_base_pos,
1346 left);
1347 if (ret <= 0)
1348 return ret;
1349 con->in_base_pos += ret;
1350 if (con->in_base_pos == sizeof(con->in_hdr)) {
1351 u32 crc = crc32c(0, (void *)&con->in_hdr,
1352 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1353 if (crc != le32_to_cpu(con->in_hdr.crc)) {
1354 pr_err("read_partial_message bad hdr "
1355 " crc %u != expected %u\n",
1356 crc, con->in_hdr.crc);
1357 return -EBADMSG;
1358 }
1359 }
1360 }
1361 front_len = le32_to_cpu(con->in_hdr.front_len);
1362 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1363 return -EIO;
1364 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1365 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1366 return -EIO;
1367 data_len = le32_to_cpu(con->in_hdr.data_len);
1368 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1369 return -EIO;
1370 data_off = le16_to_cpu(con->in_hdr.data_off);
1371
1372 /* verify seq# */
1373 seq = le64_to_cpu(con->in_hdr.seq);
1374 if ((s64)seq - (s64)con->in_seq < 1) {
1375 pr_info("skipping %s%lld %s seq %lld, expected %lld\n",
1376 ENTITY_NAME(con->peer_name),
1377 pr_addr(&con->peer_addr.in_addr),
1378 seq, con->in_seq + 1);
1379 con->in_base_pos = -front_len - middle_len - data_len -
1380 sizeof(m->footer);
1381 con->in_tag = CEPH_MSGR_TAG_READY;
1382 con->in_seq++;
1383 return 0;
1384 } else if ((s64)seq - (s64)con->in_seq > 1) {
1385 pr_err("read_partial_message bad seq %lld expected %lld\n",
1386 seq, con->in_seq + 1);
1387 con->error_msg = "bad message sequence # for incoming message";
1388 return -EBADMSG;
1389 }
1390
1391 /* allocate message? */
1392 if (!con->in_msg) {
1393 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1394 con->in_hdr.front_len, con->in_hdr.data_len);
1395 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1396 if (skip) {
1397 /* skip this message */
1398 dout("alloc_msg returned NULL, skipping message\n");
1399 con->in_base_pos = -front_len - middle_len - data_len -
1400 sizeof(m->footer);
1401 con->in_tag = CEPH_MSGR_TAG_READY;
1402 con->in_seq++;
1403 return 0;
1404 }
1405 if (IS_ERR(con->in_msg)) {
1406 ret = PTR_ERR(con->in_msg);
1407 con->in_msg = NULL;
1408 con->error_msg =
1409 "error allocating memory for incoming message";
1410 return ret;
1411 }
1412 m = con->in_msg;
1413 m->front.iov_len = 0; /* haven't read it yet */
1414 if (m->middle)
1415 m->middle->vec.iov_len = 0;
1416
1417 con->in_msg_pos.page = 0;
1418 con->in_msg_pos.page_pos = data_off & ~PAGE_MASK;
1419 con->in_msg_pos.data_pos = 0;
1420 }
1421
1422 /* front */
1423 ret = read_partial_message_section(con, &m->front, front_len,
1424 &con->in_front_crc);
1425 if (ret <= 0)
1426 return ret;
1427
1428 /* middle */
1429 if (m->middle) {
1430 ret = read_partial_message_section(con, &m->middle->vec, middle_len,
1431 &con->in_middle_crc);
1432 if (ret <= 0)
1433 return ret;
1434 }
1435
1436 /* (page) data */
1437 while (con->in_msg_pos.data_pos < data_len) {
1438 left = min((int)(data_len - con->in_msg_pos.data_pos),
1439 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1440 BUG_ON(m->pages == NULL);
1441 p = kmap(m->pages[con->in_msg_pos.page]);
1442 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1443 left);
1444 if (ret > 0 && datacrc)
1445 con->in_data_crc =
1446 crc32c(con->in_data_crc,
1447 p + con->in_msg_pos.page_pos, ret);
1448 kunmap(m->pages[con->in_msg_pos.page]);
1449 if (ret <= 0)
1450 return ret;
1451 con->in_msg_pos.data_pos += ret;
1452 con->in_msg_pos.page_pos += ret;
1453 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1454 con->in_msg_pos.page_pos = 0;
1455 con->in_msg_pos.page++;
1456 }
1457 }
1458
1459 /* footer */
1460 to = sizeof(m->hdr) + sizeof(m->footer);
1461 while (con->in_base_pos < to) {
1462 left = to - con->in_base_pos;
1463 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1464 (con->in_base_pos - sizeof(m->hdr)),
1465 left);
1466 if (ret <= 0)
1467 return ret;
1468 con->in_base_pos += ret;
1469 }
1470 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1471 m, front_len, m->footer.front_crc, middle_len,
1472 m->footer.middle_crc, data_len, m->footer.data_crc);
1473
1474 /* crc ok? */
1475 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1476 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1477 m, con->in_front_crc, m->footer.front_crc);
1478 return -EBADMSG;
1479 }
1480 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1481 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1482 m, con->in_middle_crc, m->footer.middle_crc);
1483 return -EBADMSG;
1484 }
1485 if (datacrc &&
1486 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1487 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1488 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1489 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1490 return -EBADMSG;
1491 }
1492
1493 return 1; /* done! */
1494 }
1495
1496 /*
1497 * Process message. This happens in the worker thread. The callback should
1498 * be careful not to do anything that waits on other incoming messages or it
1499 * may deadlock.
1500 */
1501 static void process_message(struct ceph_connection *con)
1502 {
1503 struct ceph_msg *msg;
1504
1505 msg = con->in_msg;
1506 con->in_msg = NULL;
1507
1508 /* if first message, set peer_name */
1509 if (con->peer_name.type == 0)
1510 con->peer_name = msg->hdr.src.name;
1511
1512 con->in_seq++;
1513 mutex_unlock(&con->mutex);
1514
1515 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1516 msg, le64_to_cpu(msg->hdr.seq),
1517 ENTITY_NAME(msg->hdr.src.name),
1518 le16_to_cpu(msg->hdr.type),
1519 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1520 le32_to_cpu(msg->hdr.front_len),
1521 le32_to_cpu(msg->hdr.data_len),
1522 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1523 con->ops->dispatch(con, msg);
1524
1525 mutex_lock(&con->mutex);
1526 prepare_read_tag(con);
1527 }
1528
1529
1530 /*
1531 * Write something to the socket. Called in a worker thread when the
1532 * socket appears to be writeable and we have something ready to send.
1533 */
1534 static int try_write(struct ceph_connection *con)
1535 {
1536 struct ceph_messenger *msgr = con->msgr;
1537 int ret = 1;
1538
1539 dout("try_write start %p state %lu nref %d\n", con, con->state,
1540 atomic_read(&con->nref));
1541
1542 mutex_lock(&con->mutex);
1543 more:
1544 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1545
1546 /* open the socket first? */
1547 if (con->sock == NULL) {
1548 /*
1549 * if we were STANDBY and are reconnecting _this_
1550 * connection, bump connect_seq now. Always bump
1551 * global_seq.
1552 */
1553 if (test_and_clear_bit(STANDBY, &con->state))
1554 con->connect_seq++;
1555
1556 prepare_write_banner(msgr, con);
1557 prepare_write_connect(msgr, con, 1);
1558 prepare_read_banner(con);
1559 set_bit(CONNECTING, &con->state);
1560 clear_bit(NEGOTIATING, &con->state);
1561
1562 BUG_ON(con->in_msg);
1563 con->in_tag = CEPH_MSGR_TAG_READY;
1564 dout("try_write initiating connect on %p new state %lu\n",
1565 con, con->state);
1566 con->sock = ceph_tcp_connect(con);
1567 if (IS_ERR(con->sock)) {
1568 con->sock = NULL;
1569 con->error_msg = "connect error";
1570 ret = -1;
1571 goto out;
1572 }
1573 }
1574
1575 more_kvec:
1576 /* kvec data queued? */
1577 if (con->out_skip) {
1578 ret = write_partial_skip(con);
1579 if (ret <= 0)
1580 goto done;
1581 if (ret < 0) {
1582 dout("try_write write_partial_skip err %d\n", ret);
1583 goto done;
1584 }
1585 }
1586 if (con->out_kvec_left) {
1587 ret = write_partial_kvec(con);
1588 if (ret <= 0)
1589 goto done;
1590 }
1591
1592 /* msg pages? */
1593 if (con->out_msg) {
1594 if (con->out_msg_done) {
1595 ceph_msg_put(con->out_msg);
1596 con->out_msg = NULL; /* we're done with this one */
1597 goto do_next;
1598 }
1599
1600 ret = write_partial_msg_pages(con);
1601 if (ret == 1)
1602 goto more_kvec; /* we need to send the footer, too! */
1603 if (ret == 0)
1604 goto done;
1605 if (ret < 0) {
1606 dout("try_write write_partial_msg_pages err %d\n",
1607 ret);
1608 goto done;
1609 }
1610 }
1611
1612 do_next:
1613 if (!test_bit(CONNECTING, &con->state)) {
1614 /* is anything else pending? */
1615 if (!list_empty(&con->out_queue)) {
1616 prepare_write_message(con);
1617 goto more;
1618 }
1619 if (con->in_seq > con->in_seq_acked) {
1620 prepare_write_ack(con);
1621 goto more;
1622 }
1623 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1624 prepare_write_keepalive(con);
1625 goto more;
1626 }
1627 }
1628
1629 /* Nothing to do! */
1630 clear_bit(WRITE_PENDING, &con->state);
1631 dout("try_write nothing else to write.\n");
1632 done:
1633 ret = 0;
1634 out:
1635 mutex_unlock(&con->mutex);
1636 dout("try_write done on %p\n", con);
1637 return ret;
1638 }
1639
1640
1641
1642 /*
1643 * Read what we can from the socket.
1644 */
1645 static int try_read(struct ceph_connection *con)
1646 {
1647 struct ceph_messenger *msgr;
1648 int ret = -1;
1649
1650 if (!con->sock)
1651 return 0;
1652
1653 if (test_bit(STANDBY, &con->state))
1654 return 0;
1655
1656 dout("try_read start on %p\n", con);
1657 msgr = con->msgr;
1658
1659 mutex_lock(&con->mutex);
1660
1661 more:
1662 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1663 con->in_base_pos);
1664 if (test_bit(CONNECTING, &con->state)) {
1665 if (!test_bit(NEGOTIATING, &con->state)) {
1666 dout("try_read connecting\n");
1667 ret = read_partial_banner(con);
1668 if (ret <= 0)
1669 goto done;
1670 if (process_banner(con) < 0) {
1671 ret = -1;
1672 goto out;
1673 }
1674 }
1675 ret = read_partial_connect(con);
1676 if (ret <= 0)
1677 goto done;
1678 if (process_connect(con) < 0) {
1679 ret = -1;
1680 goto out;
1681 }
1682 goto more;
1683 }
1684
1685 if (con->in_base_pos < 0) {
1686 /*
1687 * skipping + discarding content.
1688 *
1689 * FIXME: there must be a better way to do this!
1690 */
1691 static char buf[1024];
1692 int skip = min(1024, -con->in_base_pos);
1693 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1694 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1695 if (ret <= 0)
1696 goto done;
1697 con->in_base_pos += ret;
1698 if (con->in_base_pos)
1699 goto more;
1700 }
1701 if (con->in_tag == CEPH_MSGR_TAG_READY) {
1702 /*
1703 * what's next?
1704 */
1705 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1706 if (ret <= 0)
1707 goto done;
1708 dout("try_read got tag %d\n", (int)con->in_tag);
1709 switch (con->in_tag) {
1710 case CEPH_MSGR_TAG_MSG:
1711 prepare_read_message(con);
1712 break;
1713 case CEPH_MSGR_TAG_ACK:
1714 prepare_read_ack(con);
1715 break;
1716 case CEPH_MSGR_TAG_CLOSE:
1717 set_bit(CLOSED, &con->state); /* fixme */
1718 goto done;
1719 default:
1720 goto bad_tag;
1721 }
1722 }
1723 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1724 ret = read_partial_message(con);
1725 if (ret <= 0) {
1726 switch (ret) {
1727 case -EBADMSG:
1728 con->error_msg = "bad crc";
1729 ret = -EIO;
1730 goto out;
1731 case -EIO:
1732 con->error_msg = "io error";
1733 goto out;
1734 default:
1735 goto done;
1736 }
1737 }
1738 if (con->in_tag == CEPH_MSGR_TAG_READY)
1739 goto more;
1740 process_message(con);
1741 goto more;
1742 }
1743 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1744 ret = read_partial_ack(con);
1745 if (ret <= 0)
1746 goto done;
1747 process_ack(con);
1748 goto more;
1749 }
1750
1751 done:
1752 ret = 0;
1753 out:
1754 mutex_unlock(&con->mutex);
1755 dout("try_read done on %p\n", con);
1756 return ret;
1757
1758 bad_tag:
1759 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1760 con->error_msg = "protocol error, garbage tag";
1761 ret = -1;
1762 goto out;
1763 }
1764
1765
1766 /*
1767 * Atomically queue work on a connection. Bump @con reference to
1768 * avoid races with connection teardown.
1769 *
1770 * There is some trickery going on with QUEUED and BUSY because we
1771 * only want a _single_ thread operating on each connection at any
1772 * point in time, but we want to use all available CPUs.
1773 *
1774 * The worker thread only proceeds if it can atomically set BUSY. It
1775 * clears QUEUED and does it's thing. When it thinks it's done, it
1776 * clears BUSY, then rechecks QUEUED.. if it's set again, it loops
1777 * (tries again to set BUSY).
1778 *
1779 * To queue work, we first set QUEUED, _then_ if BUSY isn't set, we
1780 * try to queue work. If that fails (work is already queued, or BUSY)
1781 * we give up (work also already being done or is queued) but leave QUEUED
1782 * set so that the worker thread will loop if necessary.
1783 */
1784 static void queue_con(struct ceph_connection *con)
1785 {
1786 if (test_bit(DEAD, &con->state)) {
1787 dout("queue_con %p ignoring: DEAD\n",
1788 con);
1789 return;
1790 }
1791
1792 if (!con->ops->get(con)) {
1793 dout("queue_con %p ref count 0\n", con);
1794 return;
1795 }
1796
1797 set_bit(QUEUED, &con->state);
1798 if (test_bit(BUSY, &con->state)) {
1799 dout("queue_con %p - already BUSY\n", con);
1800 con->ops->put(con);
1801 } else if (!queue_work(ceph_msgr_wq, &con->work.work)) {
1802 dout("queue_con %p - already queued\n", con);
1803 con->ops->put(con);
1804 } else {
1805 dout("queue_con %p\n", con);
1806 }
1807 }
1808
1809 /*
1810 * Do some work on a connection. Drop a connection ref when we're done.
1811 */
1812 static void con_work(struct work_struct *work)
1813 {
1814 struct ceph_connection *con = container_of(work, struct ceph_connection,
1815 work.work);
1816 int backoff = 0;
1817
1818 more:
1819 if (test_and_set_bit(BUSY, &con->state) != 0) {
1820 dout("con_work %p BUSY already set\n", con);
1821 goto out;
1822 }
1823 dout("con_work %p start, clearing QUEUED\n", con);
1824 clear_bit(QUEUED, &con->state);
1825
1826 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1827 dout("con_work CLOSED\n");
1828 con_close_socket(con);
1829 goto done;
1830 }
1831 if (test_and_clear_bit(OPENING, &con->state)) {
1832 /* reopen w/ new peer */
1833 dout("con_work OPENING\n");
1834 con_close_socket(con);
1835 }
1836
1837 if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1838 try_read(con) < 0 ||
1839 try_write(con) < 0) {
1840 backoff = 1;
1841 ceph_fault(con); /* error/fault path */
1842 }
1843
1844 done:
1845 clear_bit(BUSY, &con->state);
1846 dout("con->state=%lu\n", con->state);
1847 if (test_bit(QUEUED, &con->state)) {
1848 if (!backoff || test_bit(OPENING, &con->state)) {
1849 dout("con_work %p QUEUED reset, looping\n", con);
1850 goto more;
1851 }
1852 dout("con_work %p QUEUED reset, but just faulted\n", con);
1853 clear_bit(QUEUED, &con->state);
1854 }
1855 dout("con_work %p done\n", con);
1856
1857 out:
1858 con->ops->put(con);
1859 }
1860
1861
1862 /*
1863 * Generic error/fault handler. A retry mechanism is used with
1864 * exponential backoff
1865 */
1866 static void ceph_fault(struct ceph_connection *con)
1867 {
1868 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1869 pr_addr(&con->peer_addr.in_addr), con->error_msg);
1870 dout("fault %p state %lu to peer %s\n",
1871 con, con->state, pr_addr(&con->peer_addr.in_addr));
1872
1873 if (test_bit(LOSSYTX, &con->state)) {
1874 dout("fault on LOSSYTX channel\n");
1875 goto out;
1876 }
1877
1878 mutex_lock(&con->mutex);
1879 if (test_bit(CLOSED, &con->state))
1880 goto out_unlock;
1881
1882 con_close_socket(con);
1883
1884 if (con->in_msg) {
1885 ceph_msg_put(con->in_msg);
1886 con->in_msg = NULL;
1887 }
1888
1889 /* Requeue anything that hasn't been acked */
1890 list_splice_init(&con->out_sent, &con->out_queue);
1891
1892 /* If there are no messages in the queue, place the connection
1893 * in a STANDBY state (i.e., don't try to reconnect just yet). */
1894 if (list_empty(&con->out_queue) && !con->out_keepalive_pending) {
1895 dout("fault setting STANDBY\n");
1896 set_bit(STANDBY, &con->state);
1897 } else {
1898 /* retry after a delay. */
1899 if (con->delay == 0)
1900 con->delay = BASE_DELAY_INTERVAL;
1901 else if (con->delay < MAX_DELAY_INTERVAL)
1902 con->delay *= 2;
1903 dout("fault queueing %p delay %lu\n", con, con->delay);
1904 con->ops->get(con);
1905 if (queue_delayed_work(ceph_msgr_wq, &con->work,
1906 round_jiffies_relative(con->delay)) == 0)
1907 con->ops->put(con);
1908 }
1909
1910 out_unlock:
1911 mutex_unlock(&con->mutex);
1912 out:
1913 /*
1914 * in case we faulted due to authentication, invalidate our
1915 * current tickets so that we can get new ones.
1916 */
1917 if (con->auth_retry && con->ops->invalidate_authorizer) {
1918 dout("calling invalidate_authorizer()\n");
1919 con->ops->invalidate_authorizer(con);
1920 }
1921
1922 if (con->ops->fault)
1923 con->ops->fault(con);
1924 }
1925
1926
1927
1928 /*
1929 * create a new messenger instance
1930 */
1931 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr)
1932 {
1933 struct ceph_messenger *msgr;
1934
1935 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
1936 if (msgr == NULL)
1937 return ERR_PTR(-ENOMEM);
1938
1939 spin_lock_init(&msgr->global_seq_lock);
1940
1941 /* the zero page is needed if a request is "canceled" while the message
1942 * is being written over the socket */
1943 msgr->zero_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1944 if (!msgr->zero_page) {
1945 kfree(msgr);
1946 return ERR_PTR(-ENOMEM);
1947 }
1948 kmap(msgr->zero_page);
1949
1950 if (myaddr)
1951 msgr->inst.addr = *myaddr;
1952
1953 /* select a random nonce */
1954 msgr->inst.addr.type = 0;
1955 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
1956 encode_my_addr(msgr);
1957
1958 dout("messenger_create %p\n", msgr);
1959 return msgr;
1960 }
1961
1962 void ceph_messenger_destroy(struct ceph_messenger *msgr)
1963 {
1964 dout("destroy %p\n", msgr);
1965 kunmap(msgr->zero_page);
1966 __free_page(msgr->zero_page);
1967 kfree(msgr);
1968 dout("destroyed messenger %p\n", msgr);
1969 }
1970
1971 /*
1972 * Queue up an outgoing message on the given connection.
1973 */
1974 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1975 {
1976 if (test_bit(CLOSED, &con->state)) {
1977 dout("con_send %p closed, dropping %p\n", con, msg);
1978 ceph_msg_put(msg);
1979 return;
1980 }
1981
1982 /* set src+dst */
1983 msg->hdr.src.name = con->msgr->inst.name;
1984 msg->hdr.src.addr = con->msgr->my_enc_addr;
1985 msg->hdr.orig_src = msg->hdr.src;
1986
1987 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1988
1989 /* queue */
1990 mutex_lock(&con->mutex);
1991 BUG_ON(!list_empty(&msg->list_head));
1992 list_add_tail(&msg->list_head, &con->out_queue);
1993 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1994 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1995 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1996 le32_to_cpu(msg->hdr.front_len),
1997 le32_to_cpu(msg->hdr.middle_len),
1998 le32_to_cpu(msg->hdr.data_len));
1999 mutex_unlock(&con->mutex);
2000
2001 /* if there wasn't anything waiting to send before, queue
2002 * new work */
2003 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2004 queue_con(con);
2005 }
2006
2007 /*
2008 * Revoke a message that was previously queued for send
2009 */
2010 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2011 {
2012 mutex_lock(&con->mutex);
2013 if (!list_empty(&msg->list_head)) {
2014 dout("con_revoke %p msg %p\n", con, msg);
2015 list_del_init(&msg->list_head);
2016 ceph_msg_put(msg);
2017 msg->hdr.seq = 0;
2018 if (con->out_msg == msg) {
2019 ceph_msg_put(con->out_msg);
2020 con->out_msg = NULL;
2021 }
2022 if (con->out_kvec_is_msg) {
2023 con->out_skip = con->out_kvec_bytes;
2024 con->out_kvec_is_msg = false;
2025 }
2026 } else {
2027 dout("con_revoke %p msg %p - not queued (sent?)\n", con, msg);
2028 }
2029 mutex_unlock(&con->mutex);
2030 }
2031
2032 /*
2033 * Revoke a message that we may be reading data into
2034 */
2035 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2036 {
2037 mutex_lock(&con->mutex);
2038 if (con->in_msg && con->in_msg == msg) {
2039 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2040 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2041 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2042
2043 /* skip rest of message */
2044 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2045 con->in_base_pos = con->in_base_pos -
2046 sizeof(struct ceph_msg_header) -
2047 front_len -
2048 middle_len -
2049 data_len -
2050 sizeof(struct ceph_msg_footer);
2051 ceph_msg_put(con->in_msg);
2052 con->in_msg = NULL;
2053 con->in_tag = CEPH_MSGR_TAG_READY;
2054 con->in_seq++;
2055 } else {
2056 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2057 con, con->in_msg, msg);
2058 }
2059 mutex_unlock(&con->mutex);
2060 }
2061
2062 /*
2063 * Queue a keepalive byte to ensure the tcp connection is alive.
2064 */
2065 void ceph_con_keepalive(struct ceph_connection *con)
2066 {
2067 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2068 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2069 queue_con(con);
2070 }
2071
2072
2073 /*
2074 * construct a new message with given type, size
2075 * the new msg has a ref count of 1.
2076 */
2077 struct ceph_msg *ceph_msg_new(int type, int front_len,
2078 int page_len, int page_off, struct page **pages)
2079 {
2080 struct ceph_msg *m;
2081
2082 m = kmalloc(sizeof(*m), GFP_NOFS);
2083 if (m == NULL)
2084 goto out;
2085 kref_init(&m->kref);
2086 INIT_LIST_HEAD(&m->list_head);
2087
2088 m->hdr.type = cpu_to_le16(type);
2089 m->hdr.front_len = cpu_to_le32(front_len);
2090 m->hdr.middle_len = 0;
2091 m->hdr.data_len = cpu_to_le32(page_len);
2092 m->hdr.data_off = cpu_to_le16(page_off);
2093 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2094 m->footer.front_crc = 0;
2095 m->footer.middle_crc = 0;
2096 m->footer.data_crc = 0;
2097 m->front_max = front_len;
2098 m->front_is_vmalloc = false;
2099 m->more_to_follow = false;
2100 m->pool = NULL;
2101
2102 /* front */
2103 if (front_len) {
2104 if (front_len > PAGE_CACHE_SIZE) {
2105 m->front.iov_base = __vmalloc(front_len, GFP_NOFS,
2106 PAGE_KERNEL);
2107 m->front_is_vmalloc = true;
2108 } else {
2109 m->front.iov_base = kmalloc(front_len, GFP_NOFS);
2110 }
2111 if (m->front.iov_base == NULL) {
2112 pr_err("msg_new can't allocate %d bytes\n",
2113 front_len);
2114 goto out2;
2115 }
2116 } else {
2117 m->front.iov_base = NULL;
2118 }
2119 m->front.iov_len = front_len;
2120
2121 /* middle */
2122 m->middle = NULL;
2123
2124 /* data */
2125 m->nr_pages = calc_pages_for(page_off, page_len);
2126 m->pages = pages;
2127 m->pagelist = NULL;
2128
2129 dout("ceph_msg_new %p page %d~%d -> %d\n", m, page_off, page_len,
2130 m->nr_pages);
2131 return m;
2132
2133 out2:
2134 ceph_msg_put(m);
2135 out:
2136 pr_err("msg_new can't create type %d len %d\n", type, front_len);
2137 return ERR_PTR(-ENOMEM);
2138 }
2139
2140 /*
2141 * Allocate "middle" portion of a message, if it is needed and wasn't
2142 * allocated by alloc_msg. This allows us to read a small fixed-size
2143 * per-type header in the front and then gracefully fail (i.e.,
2144 * propagate the error to the caller based on info in the front) when
2145 * the middle is too large.
2146 */
2147 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2148 {
2149 int type = le16_to_cpu(msg->hdr.type);
2150 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2151
2152 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2153 ceph_msg_type_name(type), middle_len);
2154 BUG_ON(!middle_len);
2155 BUG_ON(msg->middle);
2156
2157 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2158 if (!msg->middle)
2159 return -ENOMEM;
2160 return 0;
2161 }
2162
2163 /*
2164 * Generic message allocator, for incoming messages.
2165 */
2166 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2167 struct ceph_msg_header *hdr,
2168 int *skip)
2169 {
2170 int type = le16_to_cpu(hdr->type);
2171 int front_len = le32_to_cpu(hdr->front_len);
2172 int middle_len = le32_to_cpu(hdr->middle_len);
2173 struct ceph_msg *msg = NULL;
2174 int ret;
2175
2176 if (con->ops->alloc_msg) {
2177 mutex_unlock(&con->mutex);
2178 msg = con->ops->alloc_msg(con, hdr, skip);
2179 mutex_lock(&con->mutex);
2180 if (IS_ERR(msg))
2181 return msg;
2182
2183 if (*skip)
2184 return NULL;
2185 }
2186 if (!msg) {
2187 *skip = 0;
2188 msg = ceph_msg_new(type, front_len, 0, 0, NULL);
2189 if (!msg) {
2190 pr_err("unable to allocate msg type %d len %d\n",
2191 type, front_len);
2192 return ERR_PTR(-ENOMEM);
2193 }
2194 }
2195 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2196
2197 if (middle_len) {
2198 ret = ceph_alloc_middle(con, msg);
2199
2200 if (ret < 0) {
2201 ceph_msg_put(msg);
2202 return msg;
2203 }
2204 }
2205
2206 return msg;
2207 }
2208
2209
2210 /*
2211 * Free a generically kmalloc'd message.
2212 */
2213 void ceph_msg_kfree(struct ceph_msg *m)
2214 {
2215 dout("msg_kfree %p\n", m);
2216 if (m->front_is_vmalloc)
2217 vfree(m->front.iov_base);
2218 else
2219 kfree(m->front.iov_base);
2220 kfree(m);
2221 }
2222
2223 /*
2224 * Drop a msg ref. Destroy as needed.
2225 */
2226 void ceph_msg_last_put(struct kref *kref)
2227 {
2228 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2229
2230 dout("ceph_msg_put last one on %p\n", m);
2231 WARN_ON(!list_empty(&m->list_head));
2232
2233 /* drop middle, data, if any */
2234 if (m->middle) {
2235 ceph_buffer_put(m->middle);
2236 m->middle = NULL;
2237 }
2238 m->nr_pages = 0;
2239 m->pages = NULL;
2240
2241 if (m->pagelist) {
2242 ceph_pagelist_release(m->pagelist);
2243 kfree(m->pagelist);
2244 m->pagelist = NULL;
2245 }
2246
2247 if (m->pool)
2248 ceph_msgpool_put(m->pool, m);
2249 else
2250 ceph_msg_kfree(m);
2251 }
2252
2253 void ceph_msg_dump(struct ceph_msg *msg)
2254 {
2255 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2256 msg->front_max, msg->nr_pages);
2257 print_hex_dump(KERN_DEBUG, "header: ",
2258 DUMP_PREFIX_OFFSET, 16, 1,
2259 &msg->hdr, sizeof(msg->hdr), true);
2260 print_hex_dump(KERN_DEBUG, " front: ",
2261 DUMP_PREFIX_OFFSET, 16, 1,
2262 msg->front.iov_base, msg->front.iov_len, true);
2263 if (msg->middle)
2264 print_hex_dump(KERN_DEBUG, "middle: ",
2265 DUMP_PREFIX_OFFSET, 16, 1,
2266 msg->middle->vec.iov_base,
2267 msg->middle->vec.iov_len, true);
2268 print_hex_dump(KERN_DEBUG, "footer: ",
2269 DUMP_PREFIX_OFFSET, 16, 1,
2270 &msg->footer, sizeof(msg->footer), true);
2271 }
This page took 0.128821 seconds and 5 git commands to generate.