configfs: Introduce configfs_dirent_lock
[deliverable/linux.git] / fs / configfs / dir.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * dir.c - Operations for configfs directories.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 *
21 * Based on sysfs:
22 * sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel
23 *
24 * configfs Copyright (C) 2005 Oracle. All rights reserved.
25 */
26
27 #undef DEBUG
28
29 #include <linux/fs.h>
30 #include <linux/mount.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33
34 #include <linux/configfs.h>
35 #include "configfs_internal.h"
36
37 DECLARE_RWSEM(configfs_rename_sem);
38 /*
39 * Protects mutations of configfs_dirent linkage together with proper i_mutex
40 * Mutators of configfs_dirent linkage must *both* have the proper inode locked
41 * and configfs_dirent_lock locked, in that order.
42 * This allows one to safely traverse configfs_dirent trees without having to
43 * lock inodes.
44 */
45 DEFINE_SPINLOCK(configfs_dirent_lock);
46
47 static void configfs_d_iput(struct dentry * dentry,
48 struct inode * inode)
49 {
50 struct configfs_dirent * sd = dentry->d_fsdata;
51
52 if (sd) {
53 BUG_ON(sd->s_dentry != dentry);
54 sd->s_dentry = NULL;
55 configfs_put(sd);
56 }
57 iput(inode);
58 }
59
60 /*
61 * We _must_ delete our dentries on last dput, as the chain-to-parent
62 * behavior is required to clear the parents of default_groups.
63 */
64 static int configfs_d_delete(struct dentry *dentry)
65 {
66 return 1;
67 }
68
69 static struct dentry_operations configfs_dentry_ops = {
70 .d_iput = configfs_d_iput,
71 /* simple_delete_dentry() isn't exported */
72 .d_delete = configfs_d_delete,
73 };
74
75 /*
76 * Allocates a new configfs_dirent and links it to the parent configfs_dirent
77 */
78 static struct configfs_dirent *configfs_new_dirent(struct configfs_dirent * parent_sd,
79 void * element)
80 {
81 struct configfs_dirent * sd;
82
83 sd = kmem_cache_zalloc(configfs_dir_cachep, GFP_KERNEL);
84 if (!sd)
85 return NULL;
86
87 atomic_set(&sd->s_count, 1);
88 INIT_LIST_HEAD(&sd->s_links);
89 INIT_LIST_HEAD(&sd->s_children);
90 sd->s_element = element;
91 spin_lock(&configfs_dirent_lock);
92 list_add(&sd->s_sibling, &parent_sd->s_children);
93 spin_unlock(&configfs_dirent_lock);
94
95 return sd;
96 }
97
98 /*
99 *
100 * Return -EEXIST if there is already a configfs element with the same
101 * name for the same parent.
102 *
103 * called with parent inode's i_mutex held
104 */
105 static int configfs_dirent_exists(struct configfs_dirent *parent_sd,
106 const unsigned char *new)
107 {
108 struct configfs_dirent * sd;
109
110 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
111 if (sd->s_element) {
112 const unsigned char *existing = configfs_get_name(sd);
113 if (strcmp(existing, new))
114 continue;
115 else
116 return -EEXIST;
117 }
118 }
119
120 return 0;
121 }
122
123
124 int configfs_make_dirent(struct configfs_dirent * parent_sd,
125 struct dentry * dentry, void * element,
126 umode_t mode, int type)
127 {
128 struct configfs_dirent * sd;
129
130 sd = configfs_new_dirent(parent_sd, element);
131 if (!sd)
132 return -ENOMEM;
133
134 sd->s_mode = mode;
135 sd->s_type = type;
136 sd->s_dentry = dentry;
137 if (dentry) {
138 dentry->d_fsdata = configfs_get(sd);
139 dentry->d_op = &configfs_dentry_ops;
140 }
141
142 return 0;
143 }
144
145 static int init_dir(struct inode * inode)
146 {
147 inode->i_op = &configfs_dir_inode_operations;
148 inode->i_fop = &configfs_dir_operations;
149
150 /* directory inodes start off with i_nlink == 2 (for "." entry) */
151 inc_nlink(inode);
152 return 0;
153 }
154
155 static int configfs_init_file(struct inode * inode)
156 {
157 inode->i_size = PAGE_SIZE;
158 inode->i_fop = &configfs_file_operations;
159 return 0;
160 }
161
162 static int init_symlink(struct inode * inode)
163 {
164 inode->i_op = &configfs_symlink_inode_operations;
165 return 0;
166 }
167
168 static int create_dir(struct config_item * k, struct dentry * p,
169 struct dentry * d)
170 {
171 int error;
172 umode_t mode = S_IFDIR| S_IRWXU | S_IRUGO | S_IXUGO;
173
174 error = configfs_dirent_exists(p->d_fsdata, d->d_name.name);
175 if (!error)
176 error = configfs_make_dirent(p->d_fsdata, d, k, mode,
177 CONFIGFS_DIR);
178 if (!error) {
179 error = configfs_create(d, mode, init_dir);
180 if (!error) {
181 inc_nlink(p->d_inode);
182 (d)->d_op = &configfs_dentry_ops;
183 } else {
184 struct configfs_dirent *sd = d->d_fsdata;
185 if (sd) {
186 spin_lock(&configfs_dirent_lock);
187 list_del_init(&sd->s_sibling);
188 spin_unlock(&configfs_dirent_lock);
189 configfs_put(sd);
190 }
191 }
192 }
193 return error;
194 }
195
196
197 /**
198 * configfs_create_dir - create a directory for an config_item.
199 * @item: config_itemwe're creating directory for.
200 * @dentry: config_item's dentry.
201 */
202
203 static int configfs_create_dir(struct config_item * item, struct dentry *dentry)
204 {
205 struct dentry * parent;
206 int error = 0;
207
208 BUG_ON(!item);
209
210 if (item->ci_parent)
211 parent = item->ci_parent->ci_dentry;
212 else if (configfs_mount && configfs_mount->mnt_sb)
213 parent = configfs_mount->mnt_sb->s_root;
214 else
215 return -EFAULT;
216
217 error = create_dir(item,parent,dentry);
218 if (!error)
219 item->ci_dentry = dentry;
220 return error;
221 }
222
223 int configfs_create_link(struct configfs_symlink *sl,
224 struct dentry *parent,
225 struct dentry *dentry)
226 {
227 int err = 0;
228 umode_t mode = S_IFLNK | S_IRWXUGO;
229
230 err = configfs_make_dirent(parent->d_fsdata, dentry, sl, mode,
231 CONFIGFS_ITEM_LINK);
232 if (!err) {
233 err = configfs_create(dentry, mode, init_symlink);
234 if (!err)
235 dentry->d_op = &configfs_dentry_ops;
236 else {
237 struct configfs_dirent *sd = dentry->d_fsdata;
238 if (sd) {
239 spin_lock(&configfs_dirent_lock);
240 list_del_init(&sd->s_sibling);
241 spin_unlock(&configfs_dirent_lock);
242 configfs_put(sd);
243 }
244 }
245 }
246 return err;
247 }
248
249 static void remove_dir(struct dentry * d)
250 {
251 struct dentry * parent = dget(d->d_parent);
252 struct configfs_dirent * sd;
253
254 sd = d->d_fsdata;
255 spin_lock(&configfs_dirent_lock);
256 list_del_init(&sd->s_sibling);
257 spin_unlock(&configfs_dirent_lock);
258 configfs_put(sd);
259 if (d->d_inode)
260 simple_rmdir(parent->d_inode,d);
261
262 pr_debug(" o %s removing done (%d)\n",d->d_name.name,
263 atomic_read(&d->d_count));
264
265 dput(parent);
266 }
267
268 /**
269 * configfs_remove_dir - remove an config_item's directory.
270 * @item: config_item we're removing.
271 *
272 * The only thing special about this is that we remove any files in
273 * the directory before we remove the directory, and we've inlined
274 * what used to be configfs_rmdir() below, instead of calling separately.
275 */
276
277 static void configfs_remove_dir(struct config_item * item)
278 {
279 struct dentry * dentry = dget(item->ci_dentry);
280
281 if (!dentry)
282 return;
283
284 remove_dir(dentry);
285 /**
286 * Drop reference from dget() on entrance.
287 */
288 dput(dentry);
289 }
290
291
292 /* attaches attribute's configfs_dirent to the dentry corresponding to the
293 * attribute file
294 */
295 static int configfs_attach_attr(struct configfs_dirent * sd, struct dentry * dentry)
296 {
297 struct configfs_attribute * attr = sd->s_element;
298 int error;
299
300 dentry->d_fsdata = configfs_get(sd);
301 sd->s_dentry = dentry;
302 error = configfs_create(dentry, (attr->ca_mode & S_IALLUGO) | S_IFREG,
303 configfs_init_file);
304 if (error) {
305 configfs_put(sd);
306 return error;
307 }
308
309 dentry->d_op = &configfs_dentry_ops;
310 d_rehash(dentry);
311
312 return 0;
313 }
314
315 static struct dentry * configfs_lookup(struct inode *dir,
316 struct dentry *dentry,
317 struct nameidata *nd)
318 {
319 struct configfs_dirent * parent_sd = dentry->d_parent->d_fsdata;
320 struct configfs_dirent * sd;
321 int found = 0;
322 int err = 0;
323
324 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
325 if (sd->s_type & CONFIGFS_NOT_PINNED) {
326 const unsigned char * name = configfs_get_name(sd);
327
328 if (strcmp(name, dentry->d_name.name))
329 continue;
330
331 found = 1;
332 err = configfs_attach_attr(sd, dentry);
333 break;
334 }
335 }
336
337 if (!found) {
338 /*
339 * If it doesn't exist and it isn't a NOT_PINNED item,
340 * it must be negative.
341 */
342 return simple_lookup(dir, dentry, nd);
343 }
344
345 return ERR_PTR(err);
346 }
347
348 /*
349 * Only subdirectories count here. Files (CONFIGFS_NOT_PINNED) are
350 * attributes and are removed by rmdir(). We recurse, taking i_mutex
351 * on all children that are candidates for default detach. If the
352 * result is clean, then configfs_detach_group() will handle dropping
353 * i_mutex. If there is an error, the caller will clean up the i_mutex
354 * holders via configfs_detach_rollback().
355 */
356 static int configfs_detach_prep(struct dentry *dentry)
357 {
358 struct configfs_dirent *parent_sd = dentry->d_fsdata;
359 struct configfs_dirent *sd;
360 int ret;
361
362 ret = -EBUSY;
363 if (!list_empty(&parent_sd->s_links))
364 goto out;
365
366 ret = 0;
367 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
368 if (sd->s_type & CONFIGFS_NOT_PINNED)
369 continue;
370 if (sd->s_type & CONFIGFS_USET_DEFAULT) {
371 mutex_lock(&sd->s_dentry->d_inode->i_mutex);
372 /* Mark that we've taken i_mutex */
373 sd->s_type |= CONFIGFS_USET_DROPPING;
374
375 /*
376 * Yup, recursive. If there's a problem, blame
377 * deep nesting of default_groups
378 */
379 ret = configfs_detach_prep(sd->s_dentry);
380 if (!ret)
381 continue;
382 } else
383 ret = -ENOTEMPTY;
384
385 break;
386 }
387
388 out:
389 return ret;
390 }
391
392 /*
393 * Walk the tree, dropping i_mutex wherever CONFIGFS_USET_DROPPING is
394 * set.
395 */
396 static void configfs_detach_rollback(struct dentry *dentry)
397 {
398 struct configfs_dirent *parent_sd = dentry->d_fsdata;
399 struct configfs_dirent *sd;
400
401 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
402 if (sd->s_type & CONFIGFS_USET_DEFAULT) {
403 configfs_detach_rollback(sd->s_dentry);
404
405 if (sd->s_type & CONFIGFS_USET_DROPPING) {
406 sd->s_type &= ~CONFIGFS_USET_DROPPING;
407 mutex_unlock(&sd->s_dentry->d_inode->i_mutex);
408 }
409 }
410 }
411 }
412
413 static void detach_attrs(struct config_item * item)
414 {
415 struct dentry * dentry = dget(item->ci_dentry);
416 struct configfs_dirent * parent_sd;
417 struct configfs_dirent * sd, * tmp;
418
419 if (!dentry)
420 return;
421
422 pr_debug("configfs %s: dropping attrs for dir\n",
423 dentry->d_name.name);
424
425 parent_sd = dentry->d_fsdata;
426 list_for_each_entry_safe(sd, tmp, &parent_sd->s_children, s_sibling) {
427 if (!sd->s_element || !(sd->s_type & CONFIGFS_NOT_PINNED))
428 continue;
429 spin_lock(&configfs_dirent_lock);
430 list_del_init(&sd->s_sibling);
431 spin_unlock(&configfs_dirent_lock);
432 configfs_drop_dentry(sd, dentry);
433 configfs_put(sd);
434 }
435
436 /**
437 * Drop reference from dget() on entrance.
438 */
439 dput(dentry);
440 }
441
442 static int populate_attrs(struct config_item *item)
443 {
444 struct config_item_type *t = item->ci_type;
445 struct configfs_attribute *attr;
446 int error = 0;
447 int i;
448
449 if (!t)
450 return -EINVAL;
451 if (t->ct_attrs) {
452 for (i = 0; (attr = t->ct_attrs[i]) != NULL; i++) {
453 if ((error = configfs_create_file(item, attr)))
454 break;
455 }
456 }
457
458 if (error)
459 detach_attrs(item);
460
461 return error;
462 }
463
464 static int configfs_attach_group(struct config_item *parent_item,
465 struct config_item *item,
466 struct dentry *dentry);
467 static void configfs_detach_group(struct config_item *item);
468
469 static void detach_groups(struct config_group *group)
470 {
471 struct dentry * dentry = dget(group->cg_item.ci_dentry);
472 struct dentry *child;
473 struct configfs_dirent *parent_sd;
474 struct configfs_dirent *sd, *tmp;
475
476 if (!dentry)
477 return;
478
479 parent_sd = dentry->d_fsdata;
480 list_for_each_entry_safe(sd, tmp, &parent_sd->s_children, s_sibling) {
481 if (!sd->s_element ||
482 !(sd->s_type & CONFIGFS_USET_DEFAULT))
483 continue;
484
485 child = sd->s_dentry;
486
487 configfs_detach_group(sd->s_element);
488 child->d_inode->i_flags |= S_DEAD;
489
490 /*
491 * From rmdir/unregister, a configfs_detach_prep() pass
492 * has taken our i_mutex for us. Drop it.
493 * From mkdir/register cleanup, there is no sem held.
494 */
495 if (sd->s_type & CONFIGFS_USET_DROPPING)
496 mutex_unlock(&child->d_inode->i_mutex);
497
498 d_delete(child);
499 dput(child);
500 }
501
502 /**
503 * Drop reference from dget() on entrance.
504 */
505 dput(dentry);
506 }
507
508 /*
509 * This fakes mkdir(2) on a default_groups[] entry. It
510 * creates a dentry, attachs it, and then does fixup
511 * on the sd->s_type.
512 *
513 * We could, perhaps, tweak our parent's ->mkdir for a minute and
514 * try using vfs_mkdir. Just a thought.
515 */
516 static int create_default_group(struct config_group *parent_group,
517 struct config_group *group)
518 {
519 int ret;
520 struct qstr name;
521 struct configfs_dirent *sd;
522 /* We trust the caller holds a reference to parent */
523 struct dentry *child, *parent = parent_group->cg_item.ci_dentry;
524
525 if (!group->cg_item.ci_name)
526 group->cg_item.ci_name = group->cg_item.ci_namebuf;
527 name.name = group->cg_item.ci_name;
528 name.len = strlen(name.name);
529 name.hash = full_name_hash(name.name, name.len);
530
531 ret = -ENOMEM;
532 child = d_alloc(parent, &name);
533 if (child) {
534 d_add(child, NULL);
535
536 ret = configfs_attach_group(&parent_group->cg_item,
537 &group->cg_item, child);
538 if (!ret) {
539 sd = child->d_fsdata;
540 sd->s_type |= CONFIGFS_USET_DEFAULT;
541 } else {
542 d_delete(child);
543 dput(child);
544 }
545 }
546
547 return ret;
548 }
549
550 static int populate_groups(struct config_group *group)
551 {
552 struct config_group *new_group;
553 struct dentry *dentry = group->cg_item.ci_dentry;
554 int ret = 0;
555 int i;
556
557 if (group->default_groups) {
558 /*
559 * FYI, we're faking mkdir here
560 * I'm not sure we need this semaphore, as we're called
561 * from our parent's mkdir. That holds our parent's
562 * i_mutex, so afaik lookup cannot continue through our
563 * parent to find us, let alone mess with our tree.
564 * That said, taking our i_mutex is closer to mkdir
565 * emulation, and shouldn't hurt.
566 */
567 mutex_lock_nested(&dentry->d_inode->i_mutex, I_MUTEX_CHILD);
568
569 for (i = 0; group->default_groups[i]; i++) {
570 new_group = group->default_groups[i];
571
572 ret = create_default_group(group, new_group);
573 if (ret)
574 break;
575 }
576
577 mutex_unlock(&dentry->d_inode->i_mutex);
578 }
579
580 if (ret)
581 detach_groups(group);
582
583 return ret;
584 }
585
586 /*
587 * All of link_obj/unlink_obj/link_group/unlink_group require that
588 * subsys->su_mutex is held.
589 */
590
591 static void unlink_obj(struct config_item *item)
592 {
593 struct config_group *group;
594
595 group = item->ci_group;
596 if (group) {
597 list_del_init(&item->ci_entry);
598
599 item->ci_group = NULL;
600 item->ci_parent = NULL;
601
602 /* Drop the reference for ci_entry */
603 config_item_put(item);
604
605 /* Drop the reference for ci_parent */
606 config_group_put(group);
607 }
608 }
609
610 static void link_obj(struct config_item *parent_item, struct config_item *item)
611 {
612 /*
613 * Parent seems redundant with group, but it makes certain
614 * traversals much nicer.
615 */
616 item->ci_parent = parent_item;
617
618 /*
619 * We hold a reference on the parent for the child's ci_parent
620 * link.
621 */
622 item->ci_group = config_group_get(to_config_group(parent_item));
623 list_add_tail(&item->ci_entry, &item->ci_group->cg_children);
624
625 /*
626 * We hold a reference on the child for ci_entry on the parent's
627 * cg_children
628 */
629 config_item_get(item);
630 }
631
632 static void unlink_group(struct config_group *group)
633 {
634 int i;
635 struct config_group *new_group;
636
637 if (group->default_groups) {
638 for (i = 0; group->default_groups[i]; i++) {
639 new_group = group->default_groups[i];
640 unlink_group(new_group);
641 }
642 }
643
644 group->cg_subsys = NULL;
645 unlink_obj(&group->cg_item);
646 }
647
648 static void link_group(struct config_group *parent_group, struct config_group *group)
649 {
650 int i;
651 struct config_group *new_group;
652 struct configfs_subsystem *subsys = NULL; /* gcc is a turd */
653
654 link_obj(&parent_group->cg_item, &group->cg_item);
655
656 if (parent_group->cg_subsys)
657 subsys = parent_group->cg_subsys;
658 else if (configfs_is_root(&parent_group->cg_item))
659 subsys = to_configfs_subsystem(group);
660 else
661 BUG();
662 group->cg_subsys = subsys;
663
664 if (group->default_groups) {
665 for (i = 0; group->default_groups[i]; i++) {
666 new_group = group->default_groups[i];
667 link_group(group, new_group);
668 }
669 }
670 }
671
672 /*
673 * The goal is that configfs_attach_item() (and
674 * configfs_attach_group()) can be called from either the VFS or this
675 * module. That is, they assume that the items have been created,
676 * the dentry allocated, and the dcache is all ready to go.
677 *
678 * If they fail, they must clean up after themselves as if they
679 * had never been called. The caller (VFS or local function) will
680 * handle cleaning up the dcache bits.
681 *
682 * configfs_detach_group() and configfs_detach_item() behave similarly on
683 * the way out. They assume that the proper semaphores are held, they
684 * clean up the configfs items, and they expect their callers will
685 * handle the dcache bits.
686 */
687 static int configfs_attach_item(struct config_item *parent_item,
688 struct config_item *item,
689 struct dentry *dentry)
690 {
691 int ret;
692
693 ret = configfs_create_dir(item, dentry);
694 if (!ret) {
695 ret = populate_attrs(item);
696 if (ret) {
697 configfs_remove_dir(item);
698 d_delete(dentry);
699 }
700 }
701
702 return ret;
703 }
704
705 static void configfs_detach_item(struct config_item *item)
706 {
707 detach_attrs(item);
708 configfs_remove_dir(item);
709 }
710
711 static int configfs_attach_group(struct config_item *parent_item,
712 struct config_item *item,
713 struct dentry *dentry)
714 {
715 int ret;
716 struct configfs_dirent *sd;
717
718 ret = configfs_attach_item(parent_item, item, dentry);
719 if (!ret) {
720 sd = dentry->d_fsdata;
721 sd->s_type |= CONFIGFS_USET_DIR;
722
723 ret = populate_groups(to_config_group(item));
724 if (ret) {
725 configfs_detach_item(item);
726 d_delete(dentry);
727 }
728 }
729
730 return ret;
731 }
732
733 static void configfs_detach_group(struct config_item *item)
734 {
735 detach_groups(to_config_group(item));
736 configfs_detach_item(item);
737 }
738
739 /*
740 * After the item has been detached from the filesystem view, we are
741 * ready to tear it out of the hierarchy. Notify the client before
742 * we do that so they can perform any cleanup that requires
743 * navigating the hierarchy. A client does not need to provide this
744 * callback. The subsystem semaphore MUST be held by the caller, and
745 * references must be valid for both items. It also assumes the
746 * caller has validated ci_type.
747 */
748 static void client_disconnect_notify(struct config_item *parent_item,
749 struct config_item *item)
750 {
751 struct config_item_type *type;
752
753 type = parent_item->ci_type;
754 BUG_ON(!type);
755
756 if (type->ct_group_ops && type->ct_group_ops->disconnect_notify)
757 type->ct_group_ops->disconnect_notify(to_config_group(parent_item),
758 item);
759 }
760
761 /*
762 * Drop the initial reference from make_item()/make_group()
763 * This function assumes that reference is held on item
764 * and that item holds a valid reference to the parent. Also, it
765 * assumes the caller has validated ci_type.
766 */
767 static void client_drop_item(struct config_item *parent_item,
768 struct config_item *item)
769 {
770 struct config_item_type *type;
771
772 type = parent_item->ci_type;
773 BUG_ON(!type);
774
775 /*
776 * If ->drop_item() exists, it is responsible for the
777 * config_item_put().
778 */
779 if (type->ct_group_ops && type->ct_group_ops->drop_item)
780 type->ct_group_ops->drop_item(to_config_group(parent_item),
781 item);
782 else
783 config_item_put(item);
784 }
785
786 #ifdef DEBUG
787 static void configfs_dump_one(struct configfs_dirent *sd, int level)
788 {
789 printk(KERN_INFO "%*s\"%s\":\n", level, " ", configfs_get_name(sd));
790
791 #define type_print(_type) if (sd->s_type & _type) printk(KERN_INFO "%*s %s\n", level, " ", #_type);
792 type_print(CONFIGFS_ROOT);
793 type_print(CONFIGFS_DIR);
794 type_print(CONFIGFS_ITEM_ATTR);
795 type_print(CONFIGFS_ITEM_LINK);
796 type_print(CONFIGFS_USET_DIR);
797 type_print(CONFIGFS_USET_DEFAULT);
798 type_print(CONFIGFS_USET_DROPPING);
799 #undef type_print
800 }
801
802 static int configfs_dump(struct configfs_dirent *sd, int level)
803 {
804 struct configfs_dirent *child_sd;
805 int ret = 0;
806
807 configfs_dump_one(sd, level);
808
809 if (!(sd->s_type & (CONFIGFS_DIR|CONFIGFS_ROOT)))
810 return 0;
811
812 list_for_each_entry(child_sd, &sd->s_children, s_sibling) {
813 ret = configfs_dump(child_sd, level + 2);
814 if (ret)
815 break;
816 }
817
818 return ret;
819 }
820 #endif
821
822
823 /*
824 * configfs_depend_item() and configfs_undepend_item()
825 *
826 * WARNING: Do not call these from a configfs callback!
827 *
828 * This describes these functions and their helpers.
829 *
830 * Allow another kernel system to depend on a config_item. If this
831 * happens, the item cannot go away until the dependant can live without
832 * it. The idea is to give client modules as simple an interface as
833 * possible. When a system asks them to depend on an item, they just
834 * call configfs_depend_item(). If the item is live and the client
835 * driver is in good shape, we'll happily do the work for them.
836 *
837 * Why is the locking complex? Because configfs uses the VFS to handle
838 * all locking, but this function is called outside the normal
839 * VFS->configfs path. So it must take VFS locks to prevent the
840 * VFS->configfs stuff (configfs_mkdir(), configfs_rmdir(), etc). This is
841 * why you can't call these functions underneath configfs callbacks.
842 *
843 * Note, btw, that this can be called at *any* time, even when a configfs
844 * subsystem isn't registered, or when configfs is loading or unloading.
845 * Just like configfs_register_subsystem(). So we take the same
846 * precautions. We pin the filesystem. We lock each i_mutex _in_order_
847 * on our way down the tree. If we can find the target item in the
848 * configfs tree, it must be part of the subsystem tree as well, so we
849 * do not need the subsystem semaphore. Holding the i_mutex chain locks
850 * out mkdir() and rmdir(), who might be racing us.
851 */
852
853 /*
854 * configfs_depend_prep()
855 *
856 * Only subdirectories count here. Files (CONFIGFS_NOT_PINNED) are
857 * attributes. This is similar but not the same to configfs_detach_prep().
858 * Note that configfs_detach_prep() expects the parent to be locked when it
859 * is called, but we lock the parent *inside* configfs_depend_prep(). We
860 * do that so we can unlock it if we find nothing.
861 *
862 * Here we do a depth-first search of the dentry hierarchy looking for
863 * our object. We take i_mutex on each step of the way down. IT IS
864 * ESSENTIAL THAT i_mutex LOCKING IS ORDERED. If we come back up a branch,
865 * we'll drop the i_mutex.
866 *
867 * If the target is not found, -ENOENT is bubbled up and we have released
868 * all locks. If the target was found, the locks will be cleared by
869 * configfs_depend_rollback().
870 *
871 * This adds a requirement that all config_items be unique!
872 *
873 * This is recursive because the locking traversal is tricky. There isn't
874 * much on the stack, though, so folks that need this function - be careful
875 * about your stack! Patches will be accepted to make it iterative.
876 */
877 static int configfs_depend_prep(struct dentry *origin,
878 struct config_item *target)
879 {
880 struct configfs_dirent *child_sd, *sd = origin->d_fsdata;
881 int ret = 0;
882
883 BUG_ON(!origin || !sd);
884
885 /* Lock this guy on the way down */
886 mutex_lock(&sd->s_dentry->d_inode->i_mutex);
887 if (sd->s_element == target) /* Boo-yah */
888 goto out;
889
890 list_for_each_entry(child_sd, &sd->s_children, s_sibling) {
891 if (child_sd->s_type & CONFIGFS_DIR) {
892 ret = configfs_depend_prep(child_sd->s_dentry,
893 target);
894 if (!ret)
895 goto out; /* Child path boo-yah */
896 }
897 }
898
899 /* We looped all our children and didn't find target */
900 mutex_unlock(&sd->s_dentry->d_inode->i_mutex);
901 ret = -ENOENT;
902
903 out:
904 return ret;
905 }
906
907 /*
908 * This is ONLY called if configfs_depend_prep() did its job. So we can
909 * trust the entire path from item back up to origin.
910 *
911 * We walk backwards from item, unlocking each i_mutex. We finish by
912 * unlocking origin.
913 */
914 static void configfs_depend_rollback(struct dentry *origin,
915 struct config_item *item)
916 {
917 struct dentry *dentry = item->ci_dentry;
918
919 while (dentry != origin) {
920 mutex_unlock(&dentry->d_inode->i_mutex);
921 dentry = dentry->d_parent;
922 }
923
924 mutex_unlock(&origin->d_inode->i_mutex);
925 }
926
927 int configfs_depend_item(struct configfs_subsystem *subsys,
928 struct config_item *target)
929 {
930 int ret;
931 struct configfs_dirent *p, *root_sd, *subsys_sd = NULL;
932 struct config_item *s_item = &subsys->su_group.cg_item;
933
934 /*
935 * Pin the configfs filesystem. This means we can safely access
936 * the root of the configfs filesystem.
937 */
938 ret = configfs_pin_fs();
939 if (ret)
940 return ret;
941
942 /*
943 * Next, lock the root directory. We're going to check that the
944 * subsystem is really registered, and so we need to lock out
945 * configfs_[un]register_subsystem().
946 */
947 mutex_lock(&configfs_sb->s_root->d_inode->i_mutex);
948
949 root_sd = configfs_sb->s_root->d_fsdata;
950
951 list_for_each_entry(p, &root_sd->s_children, s_sibling) {
952 if (p->s_type & CONFIGFS_DIR) {
953 if (p->s_element == s_item) {
954 subsys_sd = p;
955 break;
956 }
957 }
958 }
959
960 if (!subsys_sd) {
961 ret = -ENOENT;
962 goto out_unlock_fs;
963 }
964
965 /* Ok, now we can trust subsys/s_item */
966
967 /* Scan the tree, locking i_mutex recursively, return 0 if found */
968 ret = configfs_depend_prep(subsys_sd->s_dentry, target);
969 if (ret)
970 goto out_unlock_fs;
971
972 /* We hold all i_mutexes from the subsystem down to the target */
973 p = target->ci_dentry->d_fsdata;
974 p->s_dependent_count += 1;
975
976 configfs_depend_rollback(subsys_sd->s_dentry, target);
977
978 out_unlock_fs:
979 mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex);
980
981 /*
982 * If we succeeded, the fs is pinned via other methods. If not,
983 * we're done with it anyway. So release_fs() is always right.
984 */
985 configfs_release_fs();
986
987 return ret;
988 }
989 EXPORT_SYMBOL(configfs_depend_item);
990
991 /*
992 * Release the dependent linkage. This is much simpler than
993 * configfs_depend_item() because we know that that the client driver is
994 * pinned, thus the subsystem is pinned, and therefore configfs is pinned.
995 */
996 void configfs_undepend_item(struct configfs_subsystem *subsys,
997 struct config_item *target)
998 {
999 struct configfs_dirent *sd;
1000
1001 /*
1002 * Since we can trust everything is pinned, we just need i_mutex
1003 * on the item.
1004 */
1005 mutex_lock(&target->ci_dentry->d_inode->i_mutex);
1006
1007 sd = target->ci_dentry->d_fsdata;
1008 BUG_ON(sd->s_dependent_count < 1);
1009
1010 sd->s_dependent_count -= 1;
1011
1012 /*
1013 * After this unlock, we cannot trust the item to stay alive!
1014 * DO NOT REFERENCE item after this unlock.
1015 */
1016 mutex_unlock(&target->ci_dentry->d_inode->i_mutex);
1017 }
1018 EXPORT_SYMBOL(configfs_undepend_item);
1019
1020 static int configfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1021 {
1022 int ret, module_got = 0;
1023 struct config_group *group;
1024 struct config_item *item;
1025 struct config_item *parent_item;
1026 struct configfs_subsystem *subsys;
1027 struct configfs_dirent *sd;
1028 struct config_item_type *type;
1029 struct module *owner = NULL;
1030 char *name;
1031
1032 if (dentry->d_parent == configfs_sb->s_root) {
1033 ret = -EPERM;
1034 goto out;
1035 }
1036
1037 sd = dentry->d_parent->d_fsdata;
1038 if (!(sd->s_type & CONFIGFS_USET_DIR)) {
1039 ret = -EPERM;
1040 goto out;
1041 }
1042
1043 /* Get a working ref for the duration of this function */
1044 parent_item = configfs_get_config_item(dentry->d_parent);
1045 type = parent_item->ci_type;
1046 subsys = to_config_group(parent_item)->cg_subsys;
1047 BUG_ON(!subsys);
1048
1049 if (!type || !type->ct_group_ops ||
1050 (!type->ct_group_ops->make_group &&
1051 !type->ct_group_ops->make_item)) {
1052 ret = -EPERM; /* Lack-of-mkdir returns -EPERM */
1053 goto out_put;
1054 }
1055
1056 name = kmalloc(dentry->d_name.len + 1, GFP_KERNEL);
1057 if (!name) {
1058 ret = -ENOMEM;
1059 goto out_put;
1060 }
1061
1062 snprintf(name, dentry->d_name.len + 1, "%s", dentry->d_name.name);
1063
1064 mutex_lock(&subsys->su_mutex);
1065 group = NULL;
1066 item = NULL;
1067 if (type->ct_group_ops->make_group) {
1068 group = type->ct_group_ops->make_group(to_config_group(parent_item), name);
1069 if (group) {
1070 link_group(to_config_group(parent_item), group);
1071 item = &group->cg_item;
1072 }
1073 } else {
1074 item = type->ct_group_ops->make_item(to_config_group(parent_item), name);
1075 if (item)
1076 link_obj(parent_item, item);
1077 }
1078 mutex_unlock(&subsys->su_mutex);
1079
1080 kfree(name);
1081 if (!item) {
1082 /*
1083 * If item == NULL, then link_obj() was never called.
1084 * There are no extra references to clean up.
1085 */
1086 ret = -ENOMEM;
1087 goto out_put;
1088 }
1089
1090 /*
1091 * link_obj() has been called (via link_group() for groups).
1092 * From here on out, errors must clean that up.
1093 */
1094
1095 type = item->ci_type;
1096 if (!type) {
1097 ret = -EINVAL;
1098 goto out_unlink;
1099 }
1100
1101 owner = type->ct_owner;
1102 if (!try_module_get(owner)) {
1103 ret = -EINVAL;
1104 goto out_unlink;
1105 }
1106
1107 /*
1108 * I hate doing it this way, but if there is
1109 * an error, module_put() probably should
1110 * happen after any cleanup.
1111 */
1112 module_got = 1;
1113
1114 if (group)
1115 ret = configfs_attach_group(parent_item, item, dentry);
1116 else
1117 ret = configfs_attach_item(parent_item, item, dentry);
1118
1119 out_unlink:
1120 if (ret) {
1121 /* Tear down everything we built up */
1122 mutex_lock(&subsys->su_mutex);
1123
1124 client_disconnect_notify(parent_item, item);
1125 if (group)
1126 unlink_group(group);
1127 else
1128 unlink_obj(item);
1129 client_drop_item(parent_item, item);
1130
1131 mutex_unlock(&subsys->su_mutex);
1132
1133 if (module_got)
1134 module_put(owner);
1135 }
1136
1137 out_put:
1138 /*
1139 * link_obj()/link_group() took a reference from child->parent,
1140 * so the parent is safely pinned. We can drop our working
1141 * reference.
1142 */
1143 config_item_put(parent_item);
1144
1145 out:
1146 return ret;
1147 }
1148
1149 static int configfs_rmdir(struct inode *dir, struct dentry *dentry)
1150 {
1151 struct config_item *parent_item;
1152 struct config_item *item;
1153 struct configfs_subsystem *subsys;
1154 struct configfs_dirent *sd;
1155 struct module *owner = NULL;
1156 int ret;
1157
1158 if (dentry->d_parent == configfs_sb->s_root)
1159 return -EPERM;
1160
1161 sd = dentry->d_fsdata;
1162 if (sd->s_type & CONFIGFS_USET_DEFAULT)
1163 return -EPERM;
1164
1165 /*
1166 * Here's where we check for dependents. We're protected by
1167 * i_mutex.
1168 */
1169 if (sd->s_dependent_count)
1170 return -EBUSY;
1171
1172 /* Get a working ref until we have the child */
1173 parent_item = configfs_get_config_item(dentry->d_parent);
1174 subsys = to_config_group(parent_item)->cg_subsys;
1175 BUG_ON(!subsys);
1176
1177 if (!parent_item->ci_type) {
1178 config_item_put(parent_item);
1179 return -EINVAL;
1180 }
1181
1182 ret = configfs_detach_prep(dentry);
1183 if (ret) {
1184 configfs_detach_rollback(dentry);
1185 config_item_put(parent_item);
1186 return ret;
1187 }
1188
1189 /* Get a working ref for the duration of this function */
1190 item = configfs_get_config_item(dentry);
1191
1192 /* Drop reference from above, item already holds one. */
1193 config_item_put(parent_item);
1194
1195 if (item->ci_type)
1196 owner = item->ci_type->ct_owner;
1197
1198 if (sd->s_type & CONFIGFS_USET_DIR) {
1199 configfs_detach_group(item);
1200
1201 mutex_lock(&subsys->su_mutex);
1202 client_disconnect_notify(parent_item, item);
1203 unlink_group(to_config_group(item));
1204 } else {
1205 configfs_detach_item(item);
1206
1207 mutex_lock(&subsys->su_mutex);
1208 client_disconnect_notify(parent_item, item);
1209 unlink_obj(item);
1210 }
1211
1212 client_drop_item(parent_item, item);
1213 mutex_unlock(&subsys->su_mutex);
1214
1215 /* Drop our reference from above */
1216 config_item_put(item);
1217
1218 module_put(owner);
1219
1220 return 0;
1221 }
1222
1223 const struct inode_operations configfs_dir_inode_operations = {
1224 .mkdir = configfs_mkdir,
1225 .rmdir = configfs_rmdir,
1226 .symlink = configfs_symlink,
1227 .unlink = configfs_unlink,
1228 .lookup = configfs_lookup,
1229 .setattr = configfs_setattr,
1230 };
1231
1232 #if 0
1233 int configfs_rename_dir(struct config_item * item, const char *new_name)
1234 {
1235 int error = 0;
1236 struct dentry * new_dentry, * parent;
1237
1238 if (!strcmp(config_item_name(item), new_name))
1239 return -EINVAL;
1240
1241 if (!item->parent)
1242 return -EINVAL;
1243
1244 down_write(&configfs_rename_sem);
1245 parent = item->parent->dentry;
1246
1247 mutex_lock(&parent->d_inode->i_mutex);
1248
1249 new_dentry = lookup_one_len(new_name, parent, strlen(new_name));
1250 if (!IS_ERR(new_dentry)) {
1251 if (!new_dentry->d_inode) {
1252 error = config_item_set_name(item, "%s", new_name);
1253 if (!error) {
1254 d_add(new_dentry, NULL);
1255 d_move(item->dentry, new_dentry);
1256 }
1257 else
1258 d_delete(new_dentry);
1259 } else
1260 error = -EEXIST;
1261 dput(new_dentry);
1262 }
1263 mutex_unlock(&parent->d_inode->i_mutex);
1264 up_write(&configfs_rename_sem);
1265
1266 return error;
1267 }
1268 #endif
1269
1270 static int configfs_dir_open(struct inode *inode, struct file *file)
1271 {
1272 struct dentry * dentry = file->f_path.dentry;
1273 struct configfs_dirent * parent_sd = dentry->d_fsdata;
1274
1275 mutex_lock(&dentry->d_inode->i_mutex);
1276 file->private_data = configfs_new_dirent(parent_sd, NULL);
1277 mutex_unlock(&dentry->d_inode->i_mutex);
1278
1279 return file->private_data ? 0 : -ENOMEM;
1280
1281 }
1282
1283 static int configfs_dir_close(struct inode *inode, struct file *file)
1284 {
1285 struct dentry * dentry = file->f_path.dentry;
1286 struct configfs_dirent * cursor = file->private_data;
1287
1288 mutex_lock(&dentry->d_inode->i_mutex);
1289 spin_lock(&configfs_dirent_lock);
1290 list_del_init(&cursor->s_sibling);
1291 spin_unlock(&configfs_dirent_lock);
1292 mutex_unlock(&dentry->d_inode->i_mutex);
1293
1294 release_configfs_dirent(cursor);
1295
1296 return 0;
1297 }
1298
1299 /* Relationship between s_mode and the DT_xxx types */
1300 static inline unsigned char dt_type(struct configfs_dirent *sd)
1301 {
1302 return (sd->s_mode >> 12) & 15;
1303 }
1304
1305 static int configfs_readdir(struct file * filp, void * dirent, filldir_t filldir)
1306 {
1307 struct dentry *dentry = filp->f_path.dentry;
1308 struct configfs_dirent * parent_sd = dentry->d_fsdata;
1309 struct configfs_dirent *cursor = filp->private_data;
1310 struct list_head *p, *q = &cursor->s_sibling;
1311 ino_t ino;
1312 int i = filp->f_pos;
1313
1314 switch (i) {
1315 case 0:
1316 ino = dentry->d_inode->i_ino;
1317 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
1318 break;
1319 filp->f_pos++;
1320 i++;
1321 /* fallthrough */
1322 case 1:
1323 ino = parent_ino(dentry);
1324 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
1325 break;
1326 filp->f_pos++;
1327 i++;
1328 /* fallthrough */
1329 default:
1330 if (filp->f_pos == 2) {
1331 spin_lock(&configfs_dirent_lock);
1332 list_move(q, &parent_sd->s_children);
1333 spin_unlock(&configfs_dirent_lock);
1334 }
1335 for (p=q->next; p!= &parent_sd->s_children; p=p->next) {
1336 struct configfs_dirent *next;
1337 const char * name;
1338 int len;
1339
1340 next = list_entry(p, struct configfs_dirent,
1341 s_sibling);
1342 if (!next->s_element)
1343 continue;
1344
1345 name = configfs_get_name(next);
1346 len = strlen(name);
1347 if (next->s_dentry)
1348 ino = next->s_dentry->d_inode->i_ino;
1349 else
1350 ino = iunique(configfs_sb, 2);
1351
1352 if (filldir(dirent, name, len, filp->f_pos, ino,
1353 dt_type(next)) < 0)
1354 return 0;
1355
1356 spin_lock(&configfs_dirent_lock);
1357 list_move(q, p);
1358 spin_unlock(&configfs_dirent_lock);
1359 p = q;
1360 filp->f_pos++;
1361 }
1362 }
1363 return 0;
1364 }
1365
1366 static loff_t configfs_dir_lseek(struct file * file, loff_t offset, int origin)
1367 {
1368 struct dentry * dentry = file->f_path.dentry;
1369
1370 mutex_lock(&dentry->d_inode->i_mutex);
1371 switch (origin) {
1372 case 1:
1373 offset += file->f_pos;
1374 case 0:
1375 if (offset >= 0)
1376 break;
1377 default:
1378 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
1379 return -EINVAL;
1380 }
1381 if (offset != file->f_pos) {
1382 file->f_pos = offset;
1383 if (file->f_pos >= 2) {
1384 struct configfs_dirent *sd = dentry->d_fsdata;
1385 struct configfs_dirent *cursor = file->private_data;
1386 struct list_head *p;
1387 loff_t n = file->f_pos - 2;
1388
1389 spin_lock(&configfs_dirent_lock);
1390 list_del(&cursor->s_sibling);
1391 p = sd->s_children.next;
1392 while (n && p != &sd->s_children) {
1393 struct configfs_dirent *next;
1394 next = list_entry(p, struct configfs_dirent,
1395 s_sibling);
1396 if (next->s_element)
1397 n--;
1398 p = p->next;
1399 }
1400 list_add_tail(&cursor->s_sibling, p);
1401 spin_unlock(&configfs_dirent_lock);
1402 }
1403 }
1404 mutex_unlock(&dentry->d_inode->i_mutex);
1405 return offset;
1406 }
1407
1408 const struct file_operations configfs_dir_operations = {
1409 .open = configfs_dir_open,
1410 .release = configfs_dir_close,
1411 .llseek = configfs_dir_lseek,
1412 .read = generic_read_dir,
1413 .readdir = configfs_readdir,
1414 };
1415
1416 int configfs_register_subsystem(struct configfs_subsystem *subsys)
1417 {
1418 int err;
1419 struct config_group *group = &subsys->su_group;
1420 struct qstr name;
1421 struct dentry *dentry;
1422 struct configfs_dirent *sd;
1423
1424 err = configfs_pin_fs();
1425 if (err)
1426 return err;
1427
1428 if (!group->cg_item.ci_name)
1429 group->cg_item.ci_name = group->cg_item.ci_namebuf;
1430
1431 sd = configfs_sb->s_root->d_fsdata;
1432 link_group(to_config_group(sd->s_element), group);
1433
1434 mutex_lock_nested(&configfs_sb->s_root->d_inode->i_mutex,
1435 I_MUTEX_PARENT);
1436
1437 name.name = group->cg_item.ci_name;
1438 name.len = strlen(name.name);
1439 name.hash = full_name_hash(name.name, name.len);
1440
1441 err = -ENOMEM;
1442 dentry = d_alloc(configfs_sb->s_root, &name);
1443 if (dentry) {
1444 d_add(dentry, NULL);
1445
1446 err = configfs_attach_group(sd->s_element, &group->cg_item,
1447 dentry);
1448 if (err) {
1449 d_delete(dentry);
1450 dput(dentry);
1451 }
1452 }
1453
1454 mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex);
1455
1456 if (err) {
1457 unlink_group(group);
1458 configfs_release_fs();
1459 }
1460
1461 return err;
1462 }
1463
1464 void configfs_unregister_subsystem(struct configfs_subsystem *subsys)
1465 {
1466 struct config_group *group = &subsys->su_group;
1467 struct dentry *dentry = group->cg_item.ci_dentry;
1468
1469 if (dentry->d_parent != configfs_sb->s_root) {
1470 printk(KERN_ERR "configfs: Tried to unregister non-subsystem!\n");
1471 return;
1472 }
1473
1474 mutex_lock_nested(&configfs_sb->s_root->d_inode->i_mutex,
1475 I_MUTEX_PARENT);
1476 mutex_lock_nested(&dentry->d_inode->i_mutex, I_MUTEX_CHILD);
1477 if (configfs_detach_prep(dentry)) {
1478 printk(KERN_ERR "configfs: Tried to unregister non-empty subsystem!\n");
1479 }
1480 configfs_detach_group(&group->cg_item);
1481 dentry->d_inode->i_flags |= S_DEAD;
1482 mutex_unlock(&dentry->d_inode->i_mutex);
1483
1484 d_delete(dentry);
1485
1486 mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex);
1487
1488 dput(dentry);
1489
1490 unlink_group(group);
1491 configfs_release_fs();
1492 }
1493
1494 EXPORT_SYMBOL(configfs_register_subsystem);
1495 EXPORT_SYMBOL(configfs_unregister_subsystem);
This page took 0.080528 seconds and 5 git commands to generate.