configfs: Fix failing mkdir() making racing rmdir() fail
[deliverable/linux.git] / fs / configfs / dir.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * dir.c - Operations for configfs directories.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 *
21 * Based on sysfs:
22 * sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel
23 *
24 * configfs Copyright (C) 2005 Oracle. All rights reserved.
25 */
26
27 #undef DEBUG
28
29 #include <linux/fs.h>
30 #include <linux/mount.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/err.h>
34
35 #include <linux/configfs.h>
36 #include "configfs_internal.h"
37
38 DECLARE_RWSEM(configfs_rename_sem);
39 /*
40 * Protects mutations of configfs_dirent linkage together with proper i_mutex
41 * Also protects mutations of symlinks linkage to target configfs_dirent
42 * Mutators of configfs_dirent linkage must *both* have the proper inode locked
43 * and configfs_dirent_lock locked, in that order.
44 * This allows one to safely traverse configfs_dirent trees and symlinks without
45 * having to lock inodes.
46 *
47 * Protects setting of CONFIGFS_USET_DROPPING: checking the flag
48 * unlocked is not reliable unless in detach_groups() called from
49 * rmdir()/unregister() and from configfs_attach_group()
50 */
51 DEFINE_SPINLOCK(configfs_dirent_lock);
52
53 static void configfs_d_iput(struct dentry * dentry,
54 struct inode * inode)
55 {
56 struct configfs_dirent * sd = dentry->d_fsdata;
57
58 if (sd) {
59 BUG_ON(sd->s_dentry != dentry);
60 sd->s_dentry = NULL;
61 configfs_put(sd);
62 }
63 iput(inode);
64 }
65
66 /*
67 * We _must_ delete our dentries on last dput, as the chain-to-parent
68 * behavior is required to clear the parents of default_groups.
69 */
70 static int configfs_d_delete(struct dentry *dentry)
71 {
72 return 1;
73 }
74
75 static struct dentry_operations configfs_dentry_ops = {
76 .d_iput = configfs_d_iput,
77 /* simple_delete_dentry() isn't exported */
78 .d_delete = configfs_d_delete,
79 };
80
81 /*
82 * Allocates a new configfs_dirent and links it to the parent configfs_dirent
83 */
84 static struct configfs_dirent *configfs_new_dirent(struct configfs_dirent * parent_sd,
85 void * element)
86 {
87 struct configfs_dirent * sd;
88
89 sd = kmem_cache_zalloc(configfs_dir_cachep, GFP_KERNEL);
90 if (!sd)
91 return ERR_PTR(-ENOMEM);
92
93 atomic_set(&sd->s_count, 1);
94 INIT_LIST_HEAD(&sd->s_links);
95 INIT_LIST_HEAD(&sd->s_children);
96 sd->s_element = element;
97 spin_lock(&configfs_dirent_lock);
98 if (parent_sd->s_type & CONFIGFS_USET_DROPPING) {
99 spin_unlock(&configfs_dirent_lock);
100 kmem_cache_free(configfs_dir_cachep, sd);
101 return ERR_PTR(-ENOENT);
102 }
103 list_add(&sd->s_sibling, &parent_sd->s_children);
104 spin_unlock(&configfs_dirent_lock);
105
106 return sd;
107 }
108
109 /*
110 *
111 * Return -EEXIST if there is already a configfs element with the same
112 * name for the same parent.
113 *
114 * called with parent inode's i_mutex held
115 */
116 static int configfs_dirent_exists(struct configfs_dirent *parent_sd,
117 const unsigned char *new)
118 {
119 struct configfs_dirent * sd;
120
121 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
122 if (sd->s_element) {
123 const unsigned char *existing = configfs_get_name(sd);
124 if (strcmp(existing, new))
125 continue;
126 else
127 return -EEXIST;
128 }
129 }
130
131 return 0;
132 }
133
134
135 int configfs_make_dirent(struct configfs_dirent * parent_sd,
136 struct dentry * dentry, void * element,
137 umode_t mode, int type)
138 {
139 struct configfs_dirent * sd;
140
141 sd = configfs_new_dirent(parent_sd, element);
142 if (IS_ERR(sd))
143 return PTR_ERR(sd);
144
145 sd->s_mode = mode;
146 sd->s_type = type;
147 sd->s_dentry = dentry;
148 if (dentry) {
149 dentry->d_fsdata = configfs_get(sd);
150 dentry->d_op = &configfs_dentry_ops;
151 }
152
153 return 0;
154 }
155
156 static int init_dir(struct inode * inode)
157 {
158 inode->i_op = &configfs_dir_inode_operations;
159 inode->i_fop = &configfs_dir_operations;
160
161 /* directory inodes start off with i_nlink == 2 (for "." entry) */
162 inc_nlink(inode);
163 return 0;
164 }
165
166 static int configfs_init_file(struct inode * inode)
167 {
168 inode->i_size = PAGE_SIZE;
169 inode->i_fop = &configfs_file_operations;
170 return 0;
171 }
172
173 static int init_symlink(struct inode * inode)
174 {
175 inode->i_op = &configfs_symlink_inode_operations;
176 return 0;
177 }
178
179 static int create_dir(struct config_item * k, struct dentry * p,
180 struct dentry * d)
181 {
182 int error;
183 umode_t mode = S_IFDIR| S_IRWXU | S_IRUGO | S_IXUGO;
184
185 error = configfs_dirent_exists(p->d_fsdata, d->d_name.name);
186 if (!error)
187 error = configfs_make_dirent(p->d_fsdata, d, k, mode,
188 CONFIGFS_DIR);
189 if (!error) {
190 error = configfs_create(d, mode, init_dir);
191 if (!error) {
192 inc_nlink(p->d_inode);
193 (d)->d_op = &configfs_dentry_ops;
194 } else {
195 struct configfs_dirent *sd = d->d_fsdata;
196 if (sd) {
197 spin_lock(&configfs_dirent_lock);
198 list_del_init(&sd->s_sibling);
199 spin_unlock(&configfs_dirent_lock);
200 configfs_put(sd);
201 }
202 }
203 }
204 return error;
205 }
206
207
208 /**
209 * configfs_create_dir - create a directory for an config_item.
210 * @item: config_itemwe're creating directory for.
211 * @dentry: config_item's dentry.
212 */
213
214 static int configfs_create_dir(struct config_item * item, struct dentry *dentry)
215 {
216 struct dentry * parent;
217 int error = 0;
218
219 BUG_ON(!item);
220
221 if (item->ci_parent)
222 parent = item->ci_parent->ci_dentry;
223 else if (configfs_mount && configfs_mount->mnt_sb)
224 parent = configfs_mount->mnt_sb->s_root;
225 else
226 return -EFAULT;
227
228 error = create_dir(item,parent,dentry);
229 if (!error)
230 item->ci_dentry = dentry;
231 return error;
232 }
233
234 int configfs_create_link(struct configfs_symlink *sl,
235 struct dentry *parent,
236 struct dentry *dentry)
237 {
238 int err = 0;
239 umode_t mode = S_IFLNK | S_IRWXUGO;
240
241 err = configfs_make_dirent(parent->d_fsdata, dentry, sl, mode,
242 CONFIGFS_ITEM_LINK);
243 if (!err) {
244 err = configfs_create(dentry, mode, init_symlink);
245 if (!err)
246 dentry->d_op = &configfs_dentry_ops;
247 else {
248 struct configfs_dirent *sd = dentry->d_fsdata;
249 if (sd) {
250 spin_lock(&configfs_dirent_lock);
251 list_del_init(&sd->s_sibling);
252 spin_unlock(&configfs_dirent_lock);
253 configfs_put(sd);
254 }
255 }
256 }
257 return err;
258 }
259
260 static void remove_dir(struct dentry * d)
261 {
262 struct dentry * parent = dget(d->d_parent);
263 struct configfs_dirent * sd;
264
265 sd = d->d_fsdata;
266 spin_lock(&configfs_dirent_lock);
267 list_del_init(&sd->s_sibling);
268 spin_unlock(&configfs_dirent_lock);
269 configfs_put(sd);
270 if (d->d_inode)
271 simple_rmdir(parent->d_inode,d);
272
273 pr_debug(" o %s removing done (%d)\n",d->d_name.name,
274 atomic_read(&d->d_count));
275
276 dput(parent);
277 }
278
279 /**
280 * configfs_remove_dir - remove an config_item's directory.
281 * @item: config_item we're removing.
282 *
283 * The only thing special about this is that we remove any files in
284 * the directory before we remove the directory, and we've inlined
285 * what used to be configfs_rmdir() below, instead of calling separately.
286 */
287
288 static void configfs_remove_dir(struct config_item * item)
289 {
290 struct dentry * dentry = dget(item->ci_dentry);
291
292 if (!dentry)
293 return;
294
295 remove_dir(dentry);
296 /**
297 * Drop reference from dget() on entrance.
298 */
299 dput(dentry);
300 }
301
302
303 /* attaches attribute's configfs_dirent to the dentry corresponding to the
304 * attribute file
305 */
306 static int configfs_attach_attr(struct configfs_dirent * sd, struct dentry * dentry)
307 {
308 struct configfs_attribute * attr = sd->s_element;
309 int error;
310
311 dentry->d_fsdata = configfs_get(sd);
312 sd->s_dentry = dentry;
313 error = configfs_create(dentry, (attr->ca_mode & S_IALLUGO) | S_IFREG,
314 configfs_init_file);
315 if (error) {
316 configfs_put(sd);
317 return error;
318 }
319
320 dentry->d_op = &configfs_dentry_ops;
321 d_rehash(dentry);
322
323 return 0;
324 }
325
326 static struct dentry * configfs_lookup(struct inode *dir,
327 struct dentry *dentry,
328 struct nameidata *nd)
329 {
330 struct configfs_dirent * parent_sd = dentry->d_parent->d_fsdata;
331 struct configfs_dirent * sd;
332 int found = 0;
333 int err = 0;
334
335 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
336 if (sd->s_type & CONFIGFS_NOT_PINNED) {
337 const unsigned char * name = configfs_get_name(sd);
338
339 if (strcmp(name, dentry->d_name.name))
340 continue;
341
342 found = 1;
343 err = configfs_attach_attr(sd, dentry);
344 break;
345 }
346 }
347
348 if (!found) {
349 /*
350 * If it doesn't exist and it isn't a NOT_PINNED item,
351 * it must be negative.
352 */
353 return simple_lookup(dir, dentry, nd);
354 }
355
356 return ERR_PTR(err);
357 }
358
359 /*
360 * Only subdirectories count here. Files (CONFIGFS_NOT_PINNED) are
361 * attributes and are removed by rmdir(). We recurse, setting
362 * CONFIGFS_USET_DROPPING on all children that are candidates for
363 * default detach.
364 * If there is an error, the caller will reset the flags via
365 * configfs_detach_rollback().
366 */
367 static int configfs_detach_prep(struct dentry *dentry, struct mutex **wait_mutex)
368 {
369 struct configfs_dirent *parent_sd = dentry->d_fsdata;
370 struct configfs_dirent *sd;
371 int ret;
372
373 ret = -EBUSY;
374 if (!list_empty(&parent_sd->s_links))
375 goto out;
376
377 ret = 0;
378 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
379 if (sd->s_type & CONFIGFS_NOT_PINNED)
380 continue;
381 if (sd->s_type & CONFIGFS_USET_DEFAULT) {
382 /* Abort if racing with mkdir() */
383 if (sd->s_type & CONFIGFS_USET_IN_MKDIR) {
384 if (wait_mutex)
385 *wait_mutex = &sd->s_dentry->d_inode->i_mutex;
386 return -EAGAIN;
387 }
388 /* Mark that we're trying to drop the group */
389 sd->s_type |= CONFIGFS_USET_DROPPING;
390
391 /*
392 * Yup, recursive. If there's a problem, blame
393 * deep nesting of default_groups
394 */
395 ret = configfs_detach_prep(sd->s_dentry, wait_mutex);
396 if (!ret)
397 continue;
398 } else
399 ret = -ENOTEMPTY;
400
401 break;
402 }
403
404 out:
405 return ret;
406 }
407
408 /*
409 * Walk the tree, resetting CONFIGFS_USET_DROPPING wherever it was
410 * set.
411 */
412 static void configfs_detach_rollback(struct dentry *dentry)
413 {
414 struct configfs_dirent *parent_sd = dentry->d_fsdata;
415 struct configfs_dirent *sd;
416
417 list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
418 if (sd->s_type & CONFIGFS_USET_DEFAULT) {
419 configfs_detach_rollback(sd->s_dentry);
420 sd->s_type &= ~CONFIGFS_USET_DROPPING;
421 }
422 }
423 }
424
425 static void detach_attrs(struct config_item * item)
426 {
427 struct dentry * dentry = dget(item->ci_dentry);
428 struct configfs_dirent * parent_sd;
429 struct configfs_dirent * sd, * tmp;
430
431 if (!dentry)
432 return;
433
434 pr_debug("configfs %s: dropping attrs for dir\n",
435 dentry->d_name.name);
436
437 parent_sd = dentry->d_fsdata;
438 list_for_each_entry_safe(sd, tmp, &parent_sd->s_children, s_sibling) {
439 if (!sd->s_element || !(sd->s_type & CONFIGFS_NOT_PINNED))
440 continue;
441 spin_lock(&configfs_dirent_lock);
442 list_del_init(&sd->s_sibling);
443 spin_unlock(&configfs_dirent_lock);
444 configfs_drop_dentry(sd, dentry);
445 configfs_put(sd);
446 }
447
448 /**
449 * Drop reference from dget() on entrance.
450 */
451 dput(dentry);
452 }
453
454 static int populate_attrs(struct config_item *item)
455 {
456 struct config_item_type *t = item->ci_type;
457 struct configfs_attribute *attr;
458 int error = 0;
459 int i;
460
461 if (!t)
462 return -EINVAL;
463 if (t->ct_attrs) {
464 for (i = 0; (attr = t->ct_attrs[i]) != NULL; i++) {
465 if ((error = configfs_create_file(item, attr)))
466 break;
467 }
468 }
469
470 if (error)
471 detach_attrs(item);
472
473 return error;
474 }
475
476 static int configfs_attach_group(struct config_item *parent_item,
477 struct config_item *item,
478 struct dentry *dentry);
479 static void configfs_detach_group(struct config_item *item);
480
481 static void detach_groups(struct config_group *group)
482 {
483 struct dentry * dentry = dget(group->cg_item.ci_dentry);
484 struct dentry *child;
485 struct configfs_dirent *parent_sd;
486 struct configfs_dirent *sd, *tmp;
487
488 if (!dentry)
489 return;
490
491 parent_sd = dentry->d_fsdata;
492 list_for_each_entry_safe(sd, tmp, &parent_sd->s_children, s_sibling) {
493 if (!sd->s_element ||
494 !(sd->s_type & CONFIGFS_USET_DEFAULT))
495 continue;
496
497 child = sd->s_dentry;
498
499 mutex_lock(&child->d_inode->i_mutex);
500
501 configfs_detach_group(sd->s_element);
502 child->d_inode->i_flags |= S_DEAD;
503
504 mutex_unlock(&child->d_inode->i_mutex);
505
506 d_delete(child);
507 dput(child);
508 }
509
510 /**
511 * Drop reference from dget() on entrance.
512 */
513 dput(dentry);
514 }
515
516 /*
517 * This fakes mkdir(2) on a default_groups[] entry. It
518 * creates a dentry, attachs it, and then does fixup
519 * on the sd->s_type.
520 *
521 * We could, perhaps, tweak our parent's ->mkdir for a minute and
522 * try using vfs_mkdir. Just a thought.
523 */
524 static int create_default_group(struct config_group *parent_group,
525 struct config_group *group)
526 {
527 int ret;
528 struct qstr name;
529 struct configfs_dirent *sd;
530 /* We trust the caller holds a reference to parent */
531 struct dentry *child, *parent = parent_group->cg_item.ci_dentry;
532
533 if (!group->cg_item.ci_name)
534 group->cg_item.ci_name = group->cg_item.ci_namebuf;
535 name.name = group->cg_item.ci_name;
536 name.len = strlen(name.name);
537 name.hash = full_name_hash(name.name, name.len);
538
539 ret = -ENOMEM;
540 child = d_alloc(parent, &name);
541 if (child) {
542 d_add(child, NULL);
543
544 ret = configfs_attach_group(&parent_group->cg_item,
545 &group->cg_item, child);
546 if (!ret) {
547 sd = child->d_fsdata;
548 sd->s_type |= CONFIGFS_USET_DEFAULT;
549 } else {
550 d_delete(child);
551 dput(child);
552 }
553 }
554
555 return ret;
556 }
557
558 static int populate_groups(struct config_group *group)
559 {
560 struct config_group *new_group;
561 struct dentry *dentry = group->cg_item.ci_dentry;
562 int ret = 0;
563 int i;
564
565 if (group->default_groups) {
566 /*
567 * FYI, we're faking mkdir here
568 * I'm not sure we need this semaphore, as we're called
569 * from our parent's mkdir. That holds our parent's
570 * i_mutex, so afaik lookup cannot continue through our
571 * parent to find us, let alone mess with our tree.
572 * That said, taking our i_mutex is closer to mkdir
573 * emulation, and shouldn't hurt.
574 */
575 mutex_lock_nested(&dentry->d_inode->i_mutex, I_MUTEX_CHILD);
576
577 for (i = 0; group->default_groups[i]; i++) {
578 new_group = group->default_groups[i];
579
580 ret = create_default_group(group, new_group);
581 if (ret)
582 break;
583 }
584
585 mutex_unlock(&dentry->d_inode->i_mutex);
586 }
587
588 if (ret)
589 detach_groups(group);
590
591 return ret;
592 }
593
594 /*
595 * All of link_obj/unlink_obj/link_group/unlink_group require that
596 * subsys->su_mutex is held.
597 */
598
599 static void unlink_obj(struct config_item *item)
600 {
601 struct config_group *group;
602
603 group = item->ci_group;
604 if (group) {
605 list_del_init(&item->ci_entry);
606
607 item->ci_group = NULL;
608 item->ci_parent = NULL;
609
610 /* Drop the reference for ci_entry */
611 config_item_put(item);
612
613 /* Drop the reference for ci_parent */
614 config_group_put(group);
615 }
616 }
617
618 static void link_obj(struct config_item *parent_item, struct config_item *item)
619 {
620 /*
621 * Parent seems redundant with group, but it makes certain
622 * traversals much nicer.
623 */
624 item->ci_parent = parent_item;
625
626 /*
627 * We hold a reference on the parent for the child's ci_parent
628 * link.
629 */
630 item->ci_group = config_group_get(to_config_group(parent_item));
631 list_add_tail(&item->ci_entry, &item->ci_group->cg_children);
632
633 /*
634 * We hold a reference on the child for ci_entry on the parent's
635 * cg_children
636 */
637 config_item_get(item);
638 }
639
640 static void unlink_group(struct config_group *group)
641 {
642 int i;
643 struct config_group *new_group;
644
645 if (group->default_groups) {
646 for (i = 0; group->default_groups[i]; i++) {
647 new_group = group->default_groups[i];
648 unlink_group(new_group);
649 }
650 }
651
652 group->cg_subsys = NULL;
653 unlink_obj(&group->cg_item);
654 }
655
656 static void link_group(struct config_group *parent_group, struct config_group *group)
657 {
658 int i;
659 struct config_group *new_group;
660 struct configfs_subsystem *subsys = NULL; /* gcc is a turd */
661
662 link_obj(&parent_group->cg_item, &group->cg_item);
663
664 if (parent_group->cg_subsys)
665 subsys = parent_group->cg_subsys;
666 else if (configfs_is_root(&parent_group->cg_item))
667 subsys = to_configfs_subsystem(group);
668 else
669 BUG();
670 group->cg_subsys = subsys;
671
672 if (group->default_groups) {
673 for (i = 0; group->default_groups[i]; i++) {
674 new_group = group->default_groups[i];
675 link_group(group, new_group);
676 }
677 }
678 }
679
680 /*
681 * The goal is that configfs_attach_item() (and
682 * configfs_attach_group()) can be called from either the VFS or this
683 * module. That is, they assume that the items have been created,
684 * the dentry allocated, and the dcache is all ready to go.
685 *
686 * If they fail, they must clean up after themselves as if they
687 * had never been called. The caller (VFS or local function) will
688 * handle cleaning up the dcache bits.
689 *
690 * configfs_detach_group() and configfs_detach_item() behave similarly on
691 * the way out. They assume that the proper semaphores are held, they
692 * clean up the configfs items, and they expect their callers will
693 * handle the dcache bits.
694 */
695 static int configfs_attach_item(struct config_item *parent_item,
696 struct config_item *item,
697 struct dentry *dentry)
698 {
699 int ret;
700
701 ret = configfs_create_dir(item, dentry);
702 if (!ret) {
703 ret = populate_attrs(item);
704 if (ret) {
705 configfs_remove_dir(item);
706 d_delete(dentry);
707 }
708 }
709
710 return ret;
711 }
712
713 static void configfs_detach_item(struct config_item *item)
714 {
715 detach_attrs(item);
716 configfs_remove_dir(item);
717 }
718
719 static int configfs_attach_group(struct config_item *parent_item,
720 struct config_item *item,
721 struct dentry *dentry)
722 {
723 int ret;
724 struct configfs_dirent *sd;
725
726 ret = configfs_attach_item(parent_item, item, dentry);
727 if (!ret) {
728 sd = dentry->d_fsdata;
729 sd->s_type |= CONFIGFS_USET_DIR;
730
731 ret = populate_groups(to_config_group(item));
732 if (ret) {
733 configfs_detach_item(item);
734 d_delete(dentry);
735 }
736 }
737
738 return ret;
739 }
740
741 static void configfs_detach_group(struct config_item *item)
742 {
743 detach_groups(to_config_group(item));
744 configfs_detach_item(item);
745 }
746
747 /*
748 * After the item has been detached from the filesystem view, we are
749 * ready to tear it out of the hierarchy. Notify the client before
750 * we do that so they can perform any cleanup that requires
751 * navigating the hierarchy. A client does not need to provide this
752 * callback. The subsystem semaphore MUST be held by the caller, and
753 * references must be valid for both items. It also assumes the
754 * caller has validated ci_type.
755 */
756 static void client_disconnect_notify(struct config_item *parent_item,
757 struct config_item *item)
758 {
759 struct config_item_type *type;
760
761 type = parent_item->ci_type;
762 BUG_ON(!type);
763
764 if (type->ct_group_ops && type->ct_group_ops->disconnect_notify)
765 type->ct_group_ops->disconnect_notify(to_config_group(parent_item),
766 item);
767 }
768
769 /*
770 * Drop the initial reference from make_item()/make_group()
771 * This function assumes that reference is held on item
772 * and that item holds a valid reference to the parent. Also, it
773 * assumes the caller has validated ci_type.
774 */
775 static void client_drop_item(struct config_item *parent_item,
776 struct config_item *item)
777 {
778 struct config_item_type *type;
779
780 type = parent_item->ci_type;
781 BUG_ON(!type);
782
783 /*
784 * If ->drop_item() exists, it is responsible for the
785 * config_item_put().
786 */
787 if (type->ct_group_ops && type->ct_group_ops->drop_item)
788 type->ct_group_ops->drop_item(to_config_group(parent_item),
789 item);
790 else
791 config_item_put(item);
792 }
793
794 #ifdef DEBUG
795 static void configfs_dump_one(struct configfs_dirent *sd, int level)
796 {
797 printk(KERN_INFO "%*s\"%s\":\n", level, " ", configfs_get_name(sd));
798
799 #define type_print(_type) if (sd->s_type & _type) printk(KERN_INFO "%*s %s\n", level, " ", #_type);
800 type_print(CONFIGFS_ROOT);
801 type_print(CONFIGFS_DIR);
802 type_print(CONFIGFS_ITEM_ATTR);
803 type_print(CONFIGFS_ITEM_LINK);
804 type_print(CONFIGFS_USET_DIR);
805 type_print(CONFIGFS_USET_DEFAULT);
806 type_print(CONFIGFS_USET_DROPPING);
807 #undef type_print
808 }
809
810 static int configfs_dump(struct configfs_dirent *sd, int level)
811 {
812 struct configfs_dirent *child_sd;
813 int ret = 0;
814
815 configfs_dump_one(sd, level);
816
817 if (!(sd->s_type & (CONFIGFS_DIR|CONFIGFS_ROOT)))
818 return 0;
819
820 list_for_each_entry(child_sd, &sd->s_children, s_sibling) {
821 ret = configfs_dump(child_sd, level + 2);
822 if (ret)
823 break;
824 }
825
826 return ret;
827 }
828 #endif
829
830
831 /*
832 * configfs_depend_item() and configfs_undepend_item()
833 *
834 * WARNING: Do not call these from a configfs callback!
835 *
836 * This describes these functions and their helpers.
837 *
838 * Allow another kernel system to depend on a config_item. If this
839 * happens, the item cannot go away until the dependant can live without
840 * it. The idea is to give client modules as simple an interface as
841 * possible. When a system asks them to depend on an item, they just
842 * call configfs_depend_item(). If the item is live and the client
843 * driver is in good shape, we'll happily do the work for them.
844 *
845 * Why is the locking complex? Because configfs uses the VFS to handle
846 * all locking, but this function is called outside the normal
847 * VFS->configfs path. So it must take VFS locks to prevent the
848 * VFS->configfs stuff (configfs_mkdir(), configfs_rmdir(), etc). This is
849 * why you can't call these functions underneath configfs callbacks.
850 *
851 * Note, btw, that this can be called at *any* time, even when a configfs
852 * subsystem isn't registered, or when configfs is loading or unloading.
853 * Just like configfs_register_subsystem(). So we take the same
854 * precautions. We pin the filesystem. We lock each i_mutex _in_order_
855 * on our way down the tree. If we can find the target item in the
856 * configfs tree, it must be part of the subsystem tree as well, so we
857 * do not need the subsystem semaphore. Holding the i_mutex chain locks
858 * out mkdir() and rmdir(), who might be racing us.
859 */
860
861 /*
862 * configfs_depend_prep()
863 *
864 * Only subdirectories count here. Files (CONFIGFS_NOT_PINNED) are
865 * attributes. This is similar but not the same to configfs_detach_prep().
866 * Note that configfs_detach_prep() expects the parent to be locked when it
867 * is called, but we lock the parent *inside* configfs_depend_prep(). We
868 * do that so we can unlock it if we find nothing.
869 *
870 * Here we do a depth-first search of the dentry hierarchy looking for
871 * our object. We take i_mutex on each step of the way down. IT IS
872 * ESSENTIAL THAT i_mutex LOCKING IS ORDERED. If we come back up a branch,
873 * we'll drop the i_mutex.
874 *
875 * If the target is not found, -ENOENT is bubbled up and we have released
876 * all locks. If the target was found, the locks will be cleared by
877 * configfs_depend_rollback().
878 *
879 * This adds a requirement that all config_items be unique!
880 *
881 * This is recursive because the locking traversal is tricky. There isn't
882 * much on the stack, though, so folks that need this function - be careful
883 * about your stack! Patches will be accepted to make it iterative.
884 */
885 static int configfs_depend_prep(struct dentry *origin,
886 struct config_item *target)
887 {
888 struct configfs_dirent *child_sd, *sd = origin->d_fsdata;
889 int ret = 0;
890
891 BUG_ON(!origin || !sd);
892
893 /* Lock this guy on the way down */
894 mutex_lock(&sd->s_dentry->d_inode->i_mutex);
895 if (sd->s_element == target) /* Boo-yah */
896 goto out;
897
898 list_for_each_entry(child_sd, &sd->s_children, s_sibling) {
899 if (child_sd->s_type & CONFIGFS_DIR) {
900 ret = configfs_depend_prep(child_sd->s_dentry,
901 target);
902 if (!ret)
903 goto out; /* Child path boo-yah */
904 }
905 }
906
907 /* We looped all our children and didn't find target */
908 mutex_unlock(&sd->s_dentry->d_inode->i_mutex);
909 ret = -ENOENT;
910
911 out:
912 return ret;
913 }
914
915 /*
916 * This is ONLY called if configfs_depend_prep() did its job. So we can
917 * trust the entire path from item back up to origin.
918 *
919 * We walk backwards from item, unlocking each i_mutex. We finish by
920 * unlocking origin.
921 */
922 static void configfs_depend_rollback(struct dentry *origin,
923 struct config_item *item)
924 {
925 struct dentry *dentry = item->ci_dentry;
926
927 while (dentry != origin) {
928 mutex_unlock(&dentry->d_inode->i_mutex);
929 dentry = dentry->d_parent;
930 }
931
932 mutex_unlock(&origin->d_inode->i_mutex);
933 }
934
935 int configfs_depend_item(struct configfs_subsystem *subsys,
936 struct config_item *target)
937 {
938 int ret;
939 struct configfs_dirent *p, *root_sd, *subsys_sd = NULL;
940 struct config_item *s_item = &subsys->su_group.cg_item;
941
942 /*
943 * Pin the configfs filesystem. This means we can safely access
944 * the root of the configfs filesystem.
945 */
946 ret = configfs_pin_fs();
947 if (ret)
948 return ret;
949
950 /*
951 * Next, lock the root directory. We're going to check that the
952 * subsystem is really registered, and so we need to lock out
953 * configfs_[un]register_subsystem().
954 */
955 mutex_lock(&configfs_sb->s_root->d_inode->i_mutex);
956
957 root_sd = configfs_sb->s_root->d_fsdata;
958
959 list_for_each_entry(p, &root_sd->s_children, s_sibling) {
960 if (p->s_type & CONFIGFS_DIR) {
961 if (p->s_element == s_item) {
962 subsys_sd = p;
963 break;
964 }
965 }
966 }
967
968 if (!subsys_sd) {
969 ret = -ENOENT;
970 goto out_unlock_fs;
971 }
972
973 /* Ok, now we can trust subsys/s_item */
974
975 /* Scan the tree, locking i_mutex recursively, return 0 if found */
976 ret = configfs_depend_prep(subsys_sd->s_dentry, target);
977 if (ret)
978 goto out_unlock_fs;
979
980 /* We hold all i_mutexes from the subsystem down to the target */
981 p = target->ci_dentry->d_fsdata;
982 p->s_dependent_count += 1;
983
984 configfs_depend_rollback(subsys_sd->s_dentry, target);
985
986 out_unlock_fs:
987 mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex);
988
989 /*
990 * If we succeeded, the fs is pinned via other methods. If not,
991 * we're done with it anyway. So release_fs() is always right.
992 */
993 configfs_release_fs();
994
995 return ret;
996 }
997 EXPORT_SYMBOL(configfs_depend_item);
998
999 /*
1000 * Release the dependent linkage. This is much simpler than
1001 * configfs_depend_item() because we know that that the client driver is
1002 * pinned, thus the subsystem is pinned, and therefore configfs is pinned.
1003 */
1004 void configfs_undepend_item(struct configfs_subsystem *subsys,
1005 struct config_item *target)
1006 {
1007 struct configfs_dirent *sd;
1008
1009 /*
1010 * Since we can trust everything is pinned, we just need i_mutex
1011 * on the item.
1012 */
1013 mutex_lock(&target->ci_dentry->d_inode->i_mutex);
1014
1015 sd = target->ci_dentry->d_fsdata;
1016 BUG_ON(sd->s_dependent_count < 1);
1017
1018 sd->s_dependent_count -= 1;
1019
1020 /*
1021 * After this unlock, we cannot trust the item to stay alive!
1022 * DO NOT REFERENCE item after this unlock.
1023 */
1024 mutex_unlock(&target->ci_dentry->d_inode->i_mutex);
1025 }
1026 EXPORT_SYMBOL(configfs_undepend_item);
1027
1028 static int configfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1029 {
1030 int ret, module_got = 0;
1031 struct config_group *group;
1032 struct config_item *item;
1033 struct config_item *parent_item;
1034 struct configfs_subsystem *subsys;
1035 struct configfs_dirent *sd;
1036 struct config_item_type *type;
1037 struct module *owner = NULL;
1038 char *name;
1039
1040 if (dentry->d_parent == configfs_sb->s_root) {
1041 ret = -EPERM;
1042 goto out;
1043 }
1044
1045 sd = dentry->d_parent->d_fsdata;
1046 if (!(sd->s_type & CONFIGFS_USET_DIR)) {
1047 ret = -EPERM;
1048 goto out;
1049 }
1050
1051 /* Get a working ref for the duration of this function */
1052 parent_item = configfs_get_config_item(dentry->d_parent);
1053 type = parent_item->ci_type;
1054 subsys = to_config_group(parent_item)->cg_subsys;
1055 BUG_ON(!subsys);
1056
1057 if (!type || !type->ct_group_ops ||
1058 (!type->ct_group_ops->make_group &&
1059 !type->ct_group_ops->make_item)) {
1060 ret = -EPERM; /* Lack-of-mkdir returns -EPERM */
1061 goto out_put;
1062 }
1063
1064 name = kmalloc(dentry->d_name.len + 1, GFP_KERNEL);
1065 if (!name) {
1066 ret = -ENOMEM;
1067 goto out_put;
1068 }
1069
1070 snprintf(name, dentry->d_name.len + 1, "%s", dentry->d_name.name);
1071
1072 mutex_lock(&subsys->su_mutex);
1073 group = NULL;
1074 item = NULL;
1075 if (type->ct_group_ops->make_group) {
1076 group = type->ct_group_ops->make_group(to_config_group(parent_item), name);
1077 if (group) {
1078 link_group(to_config_group(parent_item), group);
1079 item = &group->cg_item;
1080 }
1081 } else {
1082 item = type->ct_group_ops->make_item(to_config_group(parent_item), name);
1083 if (item)
1084 link_obj(parent_item, item);
1085 }
1086 mutex_unlock(&subsys->su_mutex);
1087
1088 kfree(name);
1089 if (!item) {
1090 /*
1091 * If item == NULL, then link_obj() was never called.
1092 * There are no extra references to clean up.
1093 */
1094 ret = -ENOMEM;
1095 goto out_put;
1096 }
1097
1098 /*
1099 * link_obj() has been called (via link_group() for groups).
1100 * From here on out, errors must clean that up.
1101 */
1102
1103 type = item->ci_type;
1104 if (!type) {
1105 ret = -EINVAL;
1106 goto out_unlink;
1107 }
1108
1109 owner = type->ct_owner;
1110 if (!try_module_get(owner)) {
1111 ret = -EINVAL;
1112 goto out_unlink;
1113 }
1114
1115 /*
1116 * I hate doing it this way, but if there is
1117 * an error, module_put() probably should
1118 * happen after any cleanup.
1119 */
1120 module_got = 1;
1121
1122 /*
1123 * Make racing rmdir() fail if it did not tag parent with
1124 * CONFIGFS_USET_DROPPING
1125 * Note: if CONFIGFS_USET_DROPPING is already set, attach_group() will
1126 * fail and let rmdir() terminate correctly
1127 */
1128 spin_lock(&configfs_dirent_lock);
1129 /* This will make configfs_detach_prep() fail */
1130 sd->s_type |= CONFIGFS_USET_IN_MKDIR;
1131 spin_unlock(&configfs_dirent_lock);
1132
1133 if (group)
1134 ret = configfs_attach_group(parent_item, item, dentry);
1135 else
1136 ret = configfs_attach_item(parent_item, item, dentry);
1137
1138 spin_lock(&configfs_dirent_lock);
1139 sd->s_type &= ~CONFIGFS_USET_IN_MKDIR;
1140 spin_unlock(&configfs_dirent_lock);
1141
1142 out_unlink:
1143 if (ret) {
1144 /* Tear down everything we built up */
1145 mutex_lock(&subsys->su_mutex);
1146
1147 client_disconnect_notify(parent_item, item);
1148 if (group)
1149 unlink_group(group);
1150 else
1151 unlink_obj(item);
1152 client_drop_item(parent_item, item);
1153
1154 mutex_unlock(&subsys->su_mutex);
1155
1156 if (module_got)
1157 module_put(owner);
1158 }
1159
1160 out_put:
1161 /*
1162 * link_obj()/link_group() took a reference from child->parent,
1163 * so the parent is safely pinned. We can drop our working
1164 * reference.
1165 */
1166 config_item_put(parent_item);
1167
1168 out:
1169 return ret;
1170 }
1171
1172 static int configfs_rmdir(struct inode *dir, struct dentry *dentry)
1173 {
1174 struct config_item *parent_item;
1175 struct config_item *item;
1176 struct configfs_subsystem *subsys;
1177 struct configfs_dirent *sd;
1178 struct module *owner = NULL;
1179 int ret;
1180
1181 if (dentry->d_parent == configfs_sb->s_root)
1182 return -EPERM;
1183
1184 sd = dentry->d_fsdata;
1185 if (sd->s_type & CONFIGFS_USET_DEFAULT)
1186 return -EPERM;
1187
1188 /*
1189 * Here's where we check for dependents. We're protected by
1190 * i_mutex.
1191 */
1192 if (sd->s_dependent_count)
1193 return -EBUSY;
1194
1195 /* Get a working ref until we have the child */
1196 parent_item = configfs_get_config_item(dentry->d_parent);
1197 subsys = to_config_group(parent_item)->cg_subsys;
1198 BUG_ON(!subsys);
1199
1200 if (!parent_item->ci_type) {
1201 config_item_put(parent_item);
1202 return -EINVAL;
1203 }
1204
1205 spin_lock(&configfs_dirent_lock);
1206 do {
1207 struct mutex *wait_mutex;
1208
1209 ret = configfs_detach_prep(dentry, &wait_mutex);
1210 if (ret) {
1211 configfs_detach_rollback(dentry);
1212 spin_unlock(&configfs_dirent_lock);
1213 if (ret != -EAGAIN) {
1214 config_item_put(parent_item);
1215 return ret;
1216 }
1217
1218 /* Wait until the racing operation terminates */
1219 mutex_lock(wait_mutex);
1220 mutex_unlock(wait_mutex);
1221
1222 spin_lock(&configfs_dirent_lock);
1223 }
1224 } while (ret == -EAGAIN);
1225 spin_unlock(&configfs_dirent_lock);
1226
1227 /* Get a working ref for the duration of this function */
1228 item = configfs_get_config_item(dentry);
1229
1230 /* Drop reference from above, item already holds one. */
1231 config_item_put(parent_item);
1232
1233 if (item->ci_type)
1234 owner = item->ci_type->ct_owner;
1235
1236 if (sd->s_type & CONFIGFS_USET_DIR) {
1237 configfs_detach_group(item);
1238
1239 mutex_lock(&subsys->su_mutex);
1240 client_disconnect_notify(parent_item, item);
1241 unlink_group(to_config_group(item));
1242 } else {
1243 configfs_detach_item(item);
1244
1245 mutex_lock(&subsys->su_mutex);
1246 client_disconnect_notify(parent_item, item);
1247 unlink_obj(item);
1248 }
1249
1250 client_drop_item(parent_item, item);
1251 mutex_unlock(&subsys->su_mutex);
1252
1253 /* Drop our reference from above */
1254 config_item_put(item);
1255
1256 module_put(owner);
1257
1258 return 0;
1259 }
1260
1261 const struct inode_operations configfs_dir_inode_operations = {
1262 .mkdir = configfs_mkdir,
1263 .rmdir = configfs_rmdir,
1264 .symlink = configfs_symlink,
1265 .unlink = configfs_unlink,
1266 .lookup = configfs_lookup,
1267 .setattr = configfs_setattr,
1268 };
1269
1270 #if 0
1271 int configfs_rename_dir(struct config_item * item, const char *new_name)
1272 {
1273 int error = 0;
1274 struct dentry * new_dentry, * parent;
1275
1276 if (!strcmp(config_item_name(item), new_name))
1277 return -EINVAL;
1278
1279 if (!item->parent)
1280 return -EINVAL;
1281
1282 down_write(&configfs_rename_sem);
1283 parent = item->parent->dentry;
1284
1285 mutex_lock(&parent->d_inode->i_mutex);
1286
1287 new_dentry = lookup_one_len(new_name, parent, strlen(new_name));
1288 if (!IS_ERR(new_dentry)) {
1289 if (!new_dentry->d_inode) {
1290 error = config_item_set_name(item, "%s", new_name);
1291 if (!error) {
1292 d_add(new_dentry, NULL);
1293 d_move(item->dentry, new_dentry);
1294 }
1295 else
1296 d_delete(new_dentry);
1297 } else
1298 error = -EEXIST;
1299 dput(new_dentry);
1300 }
1301 mutex_unlock(&parent->d_inode->i_mutex);
1302 up_write(&configfs_rename_sem);
1303
1304 return error;
1305 }
1306 #endif
1307
1308 static int configfs_dir_open(struct inode *inode, struct file *file)
1309 {
1310 struct dentry * dentry = file->f_path.dentry;
1311 struct configfs_dirent * parent_sd = dentry->d_fsdata;
1312
1313 mutex_lock(&dentry->d_inode->i_mutex);
1314 file->private_data = configfs_new_dirent(parent_sd, NULL);
1315 mutex_unlock(&dentry->d_inode->i_mutex);
1316
1317 return IS_ERR(file->private_data) ? PTR_ERR(file->private_data) : 0;
1318
1319 }
1320
1321 static int configfs_dir_close(struct inode *inode, struct file *file)
1322 {
1323 struct dentry * dentry = file->f_path.dentry;
1324 struct configfs_dirent * cursor = file->private_data;
1325
1326 mutex_lock(&dentry->d_inode->i_mutex);
1327 spin_lock(&configfs_dirent_lock);
1328 list_del_init(&cursor->s_sibling);
1329 spin_unlock(&configfs_dirent_lock);
1330 mutex_unlock(&dentry->d_inode->i_mutex);
1331
1332 release_configfs_dirent(cursor);
1333
1334 return 0;
1335 }
1336
1337 /* Relationship between s_mode and the DT_xxx types */
1338 static inline unsigned char dt_type(struct configfs_dirent *sd)
1339 {
1340 return (sd->s_mode >> 12) & 15;
1341 }
1342
1343 static int configfs_readdir(struct file * filp, void * dirent, filldir_t filldir)
1344 {
1345 struct dentry *dentry = filp->f_path.dentry;
1346 struct configfs_dirent * parent_sd = dentry->d_fsdata;
1347 struct configfs_dirent *cursor = filp->private_data;
1348 struct list_head *p, *q = &cursor->s_sibling;
1349 ino_t ino;
1350 int i = filp->f_pos;
1351
1352 switch (i) {
1353 case 0:
1354 ino = dentry->d_inode->i_ino;
1355 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
1356 break;
1357 filp->f_pos++;
1358 i++;
1359 /* fallthrough */
1360 case 1:
1361 ino = parent_ino(dentry);
1362 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
1363 break;
1364 filp->f_pos++;
1365 i++;
1366 /* fallthrough */
1367 default:
1368 if (filp->f_pos == 2) {
1369 spin_lock(&configfs_dirent_lock);
1370 list_move(q, &parent_sd->s_children);
1371 spin_unlock(&configfs_dirent_lock);
1372 }
1373 for (p=q->next; p!= &parent_sd->s_children; p=p->next) {
1374 struct configfs_dirent *next;
1375 const char * name;
1376 int len;
1377
1378 next = list_entry(p, struct configfs_dirent,
1379 s_sibling);
1380 if (!next->s_element)
1381 continue;
1382
1383 name = configfs_get_name(next);
1384 len = strlen(name);
1385 if (next->s_dentry)
1386 ino = next->s_dentry->d_inode->i_ino;
1387 else
1388 ino = iunique(configfs_sb, 2);
1389
1390 if (filldir(dirent, name, len, filp->f_pos, ino,
1391 dt_type(next)) < 0)
1392 return 0;
1393
1394 spin_lock(&configfs_dirent_lock);
1395 list_move(q, p);
1396 spin_unlock(&configfs_dirent_lock);
1397 p = q;
1398 filp->f_pos++;
1399 }
1400 }
1401 return 0;
1402 }
1403
1404 static loff_t configfs_dir_lseek(struct file * file, loff_t offset, int origin)
1405 {
1406 struct dentry * dentry = file->f_path.dentry;
1407
1408 mutex_lock(&dentry->d_inode->i_mutex);
1409 switch (origin) {
1410 case 1:
1411 offset += file->f_pos;
1412 case 0:
1413 if (offset >= 0)
1414 break;
1415 default:
1416 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
1417 return -EINVAL;
1418 }
1419 if (offset != file->f_pos) {
1420 file->f_pos = offset;
1421 if (file->f_pos >= 2) {
1422 struct configfs_dirent *sd = dentry->d_fsdata;
1423 struct configfs_dirent *cursor = file->private_data;
1424 struct list_head *p;
1425 loff_t n = file->f_pos - 2;
1426
1427 spin_lock(&configfs_dirent_lock);
1428 list_del(&cursor->s_sibling);
1429 p = sd->s_children.next;
1430 while (n && p != &sd->s_children) {
1431 struct configfs_dirent *next;
1432 next = list_entry(p, struct configfs_dirent,
1433 s_sibling);
1434 if (next->s_element)
1435 n--;
1436 p = p->next;
1437 }
1438 list_add_tail(&cursor->s_sibling, p);
1439 spin_unlock(&configfs_dirent_lock);
1440 }
1441 }
1442 mutex_unlock(&dentry->d_inode->i_mutex);
1443 return offset;
1444 }
1445
1446 const struct file_operations configfs_dir_operations = {
1447 .open = configfs_dir_open,
1448 .release = configfs_dir_close,
1449 .llseek = configfs_dir_lseek,
1450 .read = generic_read_dir,
1451 .readdir = configfs_readdir,
1452 };
1453
1454 int configfs_register_subsystem(struct configfs_subsystem *subsys)
1455 {
1456 int err;
1457 struct config_group *group = &subsys->su_group;
1458 struct qstr name;
1459 struct dentry *dentry;
1460 struct configfs_dirent *sd;
1461
1462 err = configfs_pin_fs();
1463 if (err)
1464 return err;
1465
1466 if (!group->cg_item.ci_name)
1467 group->cg_item.ci_name = group->cg_item.ci_namebuf;
1468
1469 sd = configfs_sb->s_root->d_fsdata;
1470 link_group(to_config_group(sd->s_element), group);
1471
1472 mutex_lock_nested(&configfs_sb->s_root->d_inode->i_mutex,
1473 I_MUTEX_PARENT);
1474
1475 name.name = group->cg_item.ci_name;
1476 name.len = strlen(name.name);
1477 name.hash = full_name_hash(name.name, name.len);
1478
1479 err = -ENOMEM;
1480 dentry = d_alloc(configfs_sb->s_root, &name);
1481 if (dentry) {
1482 d_add(dentry, NULL);
1483
1484 err = configfs_attach_group(sd->s_element, &group->cg_item,
1485 dentry);
1486 if (err) {
1487 d_delete(dentry);
1488 dput(dentry);
1489 }
1490 }
1491
1492 mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex);
1493
1494 if (err) {
1495 unlink_group(group);
1496 configfs_release_fs();
1497 }
1498
1499 return err;
1500 }
1501
1502 void configfs_unregister_subsystem(struct configfs_subsystem *subsys)
1503 {
1504 struct config_group *group = &subsys->su_group;
1505 struct dentry *dentry = group->cg_item.ci_dentry;
1506
1507 if (dentry->d_parent != configfs_sb->s_root) {
1508 printk(KERN_ERR "configfs: Tried to unregister non-subsystem!\n");
1509 return;
1510 }
1511
1512 mutex_lock_nested(&configfs_sb->s_root->d_inode->i_mutex,
1513 I_MUTEX_PARENT);
1514 mutex_lock_nested(&dentry->d_inode->i_mutex, I_MUTEX_CHILD);
1515 spin_lock(&configfs_dirent_lock);
1516 if (configfs_detach_prep(dentry, NULL)) {
1517 printk(KERN_ERR "configfs: Tried to unregister non-empty subsystem!\n");
1518 }
1519 spin_unlock(&configfs_dirent_lock);
1520 configfs_detach_group(&group->cg_item);
1521 dentry->d_inode->i_flags |= S_DEAD;
1522 mutex_unlock(&dentry->d_inode->i_mutex);
1523
1524 d_delete(dentry);
1525
1526 mutex_unlock(&configfs_sb->s_root->d_inode->i_mutex);
1527
1528 dput(dentry);
1529
1530 unlink_group(group);
1531 configfs_release_fs();
1532 }
1533
1534 EXPORT_SYMBOL(configfs_register_subsystem);
1535 EXPORT_SYMBOL(configfs_unregister_subsystem);
This page took 0.078626 seconds and 5 git commands to generate.