Merge tag 'for-4.4' of git://git.osdn.jp/gitroot/uclinux-h8/linux
[deliverable/linux.git] / fs / dax.c
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pmem.h>
28 #include <linux/sched.h>
29 #include <linux/uio.h>
30 #include <linux/vmstat.h>
31
32 /*
33 * dax_clear_blocks() is called from within transaction context from XFS,
34 * and hence this means the stack from this point must follow GFP_NOFS
35 * semantics for all operations.
36 */
37 int dax_clear_blocks(struct inode *inode, sector_t block, long size)
38 {
39 struct block_device *bdev = inode->i_sb->s_bdev;
40 sector_t sector = block << (inode->i_blkbits - 9);
41
42 might_sleep();
43 do {
44 void __pmem *addr;
45 unsigned long pfn;
46 long count;
47
48 count = bdev_direct_access(bdev, sector, &addr, &pfn, size);
49 if (count < 0)
50 return count;
51 BUG_ON(size < count);
52 while (count > 0) {
53 unsigned pgsz = PAGE_SIZE - offset_in_page(addr);
54 if (pgsz > count)
55 pgsz = count;
56 clear_pmem(addr, pgsz);
57 addr += pgsz;
58 size -= pgsz;
59 count -= pgsz;
60 BUG_ON(pgsz & 511);
61 sector += pgsz / 512;
62 cond_resched();
63 }
64 } while (size);
65
66 wmb_pmem();
67 return 0;
68 }
69 EXPORT_SYMBOL_GPL(dax_clear_blocks);
70
71 static long dax_get_addr(struct buffer_head *bh, void __pmem **addr,
72 unsigned blkbits)
73 {
74 unsigned long pfn;
75 sector_t sector = bh->b_blocknr << (blkbits - 9);
76 return bdev_direct_access(bh->b_bdev, sector, addr, &pfn, bh->b_size);
77 }
78
79 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
80 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
81 loff_t pos, loff_t end)
82 {
83 loff_t final = end - pos + first; /* The final byte of the buffer */
84
85 if (first > 0)
86 clear_pmem(addr, first);
87 if (final < size)
88 clear_pmem(addr + final, size - final);
89 }
90
91 static bool buffer_written(struct buffer_head *bh)
92 {
93 return buffer_mapped(bh) && !buffer_unwritten(bh);
94 }
95
96 /*
97 * When ext4 encounters a hole, it returns without modifying the buffer_head
98 * which means that we can't trust b_size. To cope with this, we set b_state
99 * to 0 before calling get_block and, if any bit is set, we know we can trust
100 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
101 * and would save us time calling get_block repeatedly.
102 */
103 static bool buffer_size_valid(struct buffer_head *bh)
104 {
105 return bh->b_state != 0;
106 }
107
108 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
109 loff_t start, loff_t end, get_block_t get_block,
110 struct buffer_head *bh)
111 {
112 ssize_t retval = 0;
113 loff_t pos = start;
114 loff_t max = start;
115 loff_t bh_max = start;
116 void __pmem *addr;
117 bool hole = false;
118 bool need_wmb = false;
119
120 if (iov_iter_rw(iter) != WRITE)
121 end = min(end, i_size_read(inode));
122
123 while (pos < end) {
124 size_t len;
125 if (pos == max) {
126 unsigned blkbits = inode->i_blkbits;
127 long page = pos >> PAGE_SHIFT;
128 sector_t block = page << (PAGE_SHIFT - blkbits);
129 unsigned first = pos - (block << blkbits);
130 long size;
131
132 if (pos == bh_max) {
133 bh->b_size = PAGE_ALIGN(end - pos);
134 bh->b_state = 0;
135 retval = get_block(inode, block, bh,
136 iov_iter_rw(iter) == WRITE);
137 if (retval)
138 break;
139 if (!buffer_size_valid(bh))
140 bh->b_size = 1 << blkbits;
141 bh_max = pos - first + bh->b_size;
142 } else {
143 unsigned done = bh->b_size -
144 (bh_max - (pos - first));
145 bh->b_blocknr += done >> blkbits;
146 bh->b_size -= done;
147 }
148
149 hole = iov_iter_rw(iter) != WRITE && !buffer_written(bh);
150 if (hole) {
151 addr = NULL;
152 size = bh->b_size - first;
153 } else {
154 retval = dax_get_addr(bh, &addr, blkbits);
155 if (retval < 0)
156 break;
157 if (buffer_unwritten(bh) || buffer_new(bh)) {
158 dax_new_buf(addr, retval, first, pos,
159 end);
160 need_wmb = true;
161 }
162 addr += first;
163 size = retval - first;
164 }
165 max = min(pos + size, end);
166 }
167
168 if (iov_iter_rw(iter) == WRITE) {
169 len = copy_from_iter_pmem(addr, max - pos, iter);
170 need_wmb = true;
171 } else if (!hole)
172 len = copy_to_iter((void __force *)addr, max - pos,
173 iter);
174 else
175 len = iov_iter_zero(max - pos, iter);
176
177 if (!len)
178 break;
179
180 pos += len;
181 addr += len;
182 }
183
184 if (need_wmb)
185 wmb_pmem();
186
187 return (pos == start) ? retval : pos - start;
188 }
189
190 /**
191 * dax_do_io - Perform I/O to a DAX file
192 * @iocb: The control block for this I/O
193 * @inode: The file which the I/O is directed at
194 * @iter: The addresses to do I/O from or to
195 * @pos: The file offset where the I/O starts
196 * @get_block: The filesystem method used to translate file offsets to blocks
197 * @end_io: A filesystem callback for I/O completion
198 * @flags: See below
199 *
200 * This function uses the same locking scheme as do_blockdev_direct_IO:
201 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
202 * caller for writes. For reads, we take and release the i_mutex ourselves.
203 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
204 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
205 * is in progress.
206 */
207 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
208 struct iov_iter *iter, loff_t pos, get_block_t get_block,
209 dio_iodone_t end_io, int flags)
210 {
211 struct buffer_head bh;
212 ssize_t retval = -EINVAL;
213 loff_t end = pos + iov_iter_count(iter);
214
215 memset(&bh, 0, sizeof(bh));
216
217 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
218 struct address_space *mapping = inode->i_mapping;
219 mutex_lock(&inode->i_mutex);
220 retval = filemap_write_and_wait_range(mapping, pos, end - 1);
221 if (retval) {
222 mutex_unlock(&inode->i_mutex);
223 goto out;
224 }
225 }
226
227 /* Protects against truncate */
228 if (!(flags & DIO_SKIP_DIO_COUNT))
229 inode_dio_begin(inode);
230
231 retval = dax_io(inode, iter, pos, end, get_block, &bh);
232
233 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
234 mutex_unlock(&inode->i_mutex);
235
236 if ((retval > 0) && end_io)
237 end_io(iocb, pos, retval, bh.b_private);
238
239 if (!(flags & DIO_SKIP_DIO_COUNT))
240 inode_dio_end(inode);
241 out:
242 return retval;
243 }
244 EXPORT_SYMBOL_GPL(dax_do_io);
245
246 /*
247 * The user has performed a load from a hole in the file. Allocating
248 * a new page in the file would cause excessive storage usage for
249 * workloads with sparse files. We allocate a page cache page instead.
250 * We'll kick it out of the page cache if it's ever written to,
251 * otherwise it will simply fall out of the page cache under memory
252 * pressure without ever having been dirtied.
253 */
254 static int dax_load_hole(struct address_space *mapping, struct page *page,
255 struct vm_fault *vmf)
256 {
257 unsigned long size;
258 struct inode *inode = mapping->host;
259 if (!page)
260 page = find_or_create_page(mapping, vmf->pgoff,
261 GFP_KERNEL | __GFP_ZERO);
262 if (!page)
263 return VM_FAULT_OOM;
264 /* Recheck i_size under page lock to avoid truncate race */
265 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
266 if (vmf->pgoff >= size) {
267 unlock_page(page);
268 page_cache_release(page);
269 return VM_FAULT_SIGBUS;
270 }
271
272 vmf->page = page;
273 return VM_FAULT_LOCKED;
274 }
275
276 static int copy_user_bh(struct page *to, struct buffer_head *bh,
277 unsigned blkbits, unsigned long vaddr)
278 {
279 void __pmem *vfrom;
280 void *vto;
281
282 if (dax_get_addr(bh, &vfrom, blkbits) < 0)
283 return -EIO;
284 vto = kmap_atomic(to);
285 copy_user_page(vto, (void __force *)vfrom, vaddr, to);
286 kunmap_atomic(vto);
287 return 0;
288 }
289
290 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
291 struct vm_area_struct *vma, struct vm_fault *vmf)
292 {
293 struct address_space *mapping = inode->i_mapping;
294 sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
295 unsigned long vaddr = (unsigned long)vmf->virtual_address;
296 void __pmem *addr;
297 unsigned long pfn;
298 pgoff_t size;
299 int error;
300
301 i_mmap_lock_read(mapping);
302
303 /*
304 * Check truncate didn't happen while we were allocating a block.
305 * If it did, this block may or may not be still allocated to the
306 * file. We can't tell the filesystem to free it because we can't
307 * take i_mutex here. In the worst case, the file still has blocks
308 * allocated past the end of the file.
309 */
310 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
311 if (unlikely(vmf->pgoff >= size)) {
312 error = -EIO;
313 goto out;
314 }
315
316 error = bdev_direct_access(bh->b_bdev, sector, &addr, &pfn, bh->b_size);
317 if (error < 0)
318 goto out;
319 if (error < PAGE_SIZE) {
320 error = -EIO;
321 goto out;
322 }
323
324 if (buffer_unwritten(bh) || buffer_new(bh)) {
325 clear_pmem(addr, PAGE_SIZE);
326 wmb_pmem();
327 }
328
329 error = vm_insert_mixed(vma, vaddr, pfn);
330
331 out:
332 i_mmap_unlock_read(mapping);
333
334 return error;
335 }
336
337 /**
338 * __dax_fault - handle a page fault on a DAX file
339 * @vma: The virtual memory area where the fault occurred
340 * @vmf: The description of the fault
341 * @get_block: The filesystem method used to translate file offsets to blocks
342 * @complete_unwritten: The filesystem method used to convert unwritten blocks
343 * to written so the data written to them is exposed. This is required for
344 * required by write faults for filesystems that will return unwritten
345 * extent mappings from @get_block, but it is optional for reads as
346 * dax_insert_mapping() will always zero unwritten blocks. If the fs does
347 * not support unwritten extents, the it should pass NULL.
348 *
349 * When a page fault occurs, filesystems may call this helper in their
350 * fault handler for DAX files. __dax_fault() assumes the caller has done all
351 * the necessary locking for the page fault to proceed successfully.
352 */
353 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
354 get_block_t get_block, dax_iodone_t complete_unwritten)
355 {
356 struct file *file = vma->vm_file;
357 struct address_space *mapping = file->f_mapping;
358 struct inode *inode = mapping->host;
359 struct page *page;
360 struct buffer_head bh;
361 unsigned long vaddr = (unsigned long)vmf->virtual_address;
362 unsigned blkbits = inode->i_blkbits;
363 sector_t block;
364 pgoff_t size;
365 int error;
366 int major = 0;
367
368 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
369 if (vmf->pgoff >= size)
370 return VM_FAULT_SIGBUS;
371
372 memset(&bh, 0, sizeof(bh));
373 block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
374 bh.b_size = PAGE_SIZE;
375
376 repeat:
377 page = find_get_page(mapping, vmf->pgoff);
378 if (page) {
379 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
380 page_cache_release(page);
381 return VM_FAULT_RETRY;
382 }
383 if (unlikely(page->mapping != mapping)) {
384 unlock_page(page);
385 page_cache_release(page);
386 goto repeat;
387 }
388 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
389 if (unlikely(vmf->pgoff >= size)) {
390 /*
391 * We have a struct page covering a hole in the file
392 * from a read fault and we've raced with a truncate
393 */
394 error = -EIO;
395 goto unlock_page;
396 }
397 }
398
399 error = get_block(inode, block, &bh, 0);
400 if (!error && (bh.b_size < PAGE_SIZE))
401 error = -EIO; /* fs corruption? */
402 if (error)
403 goto unlock_page;
404
405 if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
406 if (vmf->flags & FAULT_FLAG_WRITE) {
407 error = get_block(inode, block, &bh, 1);
408 count_vm_event(PGMAJFAULT);
409 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
410 major = VM_FAULT_MAJOR;
411 if (!error && (bh.b_size < PAGE_SIZE))
412 error = -EIO;
413 if (error)
414 goto unlock_page;
415 } else {
416 return dax_load_hole(mapping, page, vmf);
417 }
418 }
419
420 if (vmf->cow_page) {
421 struct page *new_page = vmf->cow_page;
422 if (buffer_written(&bh))
423 error = copy_user_bh(new_page, &bh, blkbits, vaddr);
424 else
425 clear_user_highpage(new_page, vaddr);
426 if (error)
427 goto unlock_page;
428 vmf->page = page;
429 if (!page) {
430 i_mmap_lock_read(mapping);
431 /* Check we didn't race with truncate */
432 size = (i_size_read(inode) + PAGE_SIZE - 1) >>
433 PAGE_SHIFT;
434 if (vmf->pgoff >= size) {
435 i_mmap_unlock_read(mapping);
436 error = -EIO;
437 goto out;
438 }
439 }
440 return VM_FAULT_LOCKED;
441 }
442
443 /* Check we didn't race with a read fault installing a new page */
444 if (!page && major)
445 page = find_lock_page(mapping, vmf->pgoff);
446
447 if (page) {
448 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
449 PAGE_CACHE_SIZE, 0);
450 delete_from_page_cache(page);
451 unlock_page(page);
452 page_cache_release(page);
453 }
454
455 /*
456 * If we successfully insert the new mapping over an unwritten extent,
457 * we need to ensure we convert the unwritten extent. If there is an
458 * error inserting the mapping, the filesystem needs to leave it as
459 * unwritten to prevent exposure of the stale underlying data to
460 * userspace, but we still need to call the completion function so
461 * the private resources on the mapping buffer can be released. We
462 * indicate what the callback should do via the uptodate variable, same
463 * as for normal BH based IO completions.
464 */
465 error = dax_insert_mapping(inode, &bh, vma, vmf);
466 if (buffer_unwritten(&bh)) {
467 if (complete_unwritten)
468 complete_unwritten(&bh, !error);
469 else
470 WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
471 }
472
473 out:
474 if (error == -ENOMEM)
475 return VM_FAULT_OOM | major;
476 /* -EBUSY is fine, somebody else faulted on the same PTE */
477 if ((error < 0) && (error != -EBUSY))
478 return VM_FAULT_SIGBUS | major;
479 return VM_FAULT_NOPAGE | major;
480
481 unlock_page:
482 if (page) {
483 unlock_page(page);
484 page_cache_release(page);
485 }
486 goto out;
487 }
488 EXPORT_SYMBOL(__dax_fault);
489
490 /**
491 * dax_fault - handle a page fault on a DAX file
492 * @vma: The virtual memory area where the fault occurred
493 * @vmf: The description of the fault
494 * @get_block: The filesystem method used to translate file offsets to blocks
495 *
496 * When a page fault occurs, filesystems may call this helper in their
497 * fault handler for DAX files.
498 */
499 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
500 get_block_t get_block, dax_iodone_t complete_unwritten)
501 {
502 int result;
503 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
504
505 if (vmf->flags & FAULT_FLAG_WRITE) {
506 sb_start_pagefault(sb);
507 file_update_time(vma->vm_file);
508 }
509 result = __dax_fault(vma, vmf, get_block, complete_unwritten);
510 if (vmf->flags & FAULT_FLAG_WRITE)
511 sb_end_pagefault(sb);
512
513 return result;
514 }
515 EXPORT_SYMBOL_GPL(dax_fault);
516
517 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
518 /*
519 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
520 * more often than one might expect in the below function.
521 */
522 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
523
524 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
525 pmd_t *pmd, unsigned int flags, get_block_t get_block,
526 dax_iodone_t complete_unwritten)
527 {
528 struct file *file = vma->vm_file;
529 struct address_space *mapping = file->f_mapping;
530 struct inode *inode = mapping->host;
531 struct buffer_head bh;
532 unsigned blkbits = inode->i_blkbits;
533 unsigned long pmd_addr = address & PMD_MASK;
534 bool write = flags & FAULT_FLAG_WRITE;
535 long length;
536 void __pmem *kaddr;
537 pgoff_t size, pgoff;
538 sector_t block, sector;
539 unsigned long pfn;
540 int result = 0;
541
542 /* Fall back to PTEs if we're going to COW */
543 if (write && !(vma->vm_flags & VM_SHARED))
544 return VM_FAULT_FALLBACK;
545 /* If the PMD would extend outside the VMA */
546 if (pmd_addr < vma->vm_start)
547 return VM_FAULT_FALLBACK;
548 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
549 return VM_FAULT_FALLBACK;
550
551 pgoff = linear_page_index(vma, pmd_addr);
552 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
553 if (pgoff >= size)
554 return VM_FAULT_SIGBUS;
555 /* If the PMD would cover blocks out of the file */
556 if ((pgoff | PG_PMD_COLOUR) >= size)
557 return VM_FAULT_FALLBACK;
558
559 memset(&bh, 0, sizeof(bh));
560 block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
561
562 bh.b_size = PMD_SIZE;
563 length = get_block(inode, block, &bh, write);
564 if (length)
565 return VM_FAULT_SIGBUS;
566 i_mmap_lock_read(mapping);
567
568 /*
569 * If the filesystem isn't willing to tell us the length of a hole,
570 * just fall back to PTEs. Calling get_block 512 times in a loop
571 * would be silly.
572 */
573 if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE)
574 goto fallback;
575
576 /*
577 * If we allocated new storage, make sure no process has any
578 * zero pages covering this hole
579 */
580 if (buffer_new(&bh)) {
581 i_mmap_unlock_read(mapping);
582 unmap_mapping_range(mapping, pgoff << PAGE_SHIFT, PMD_SIZE, 0);
583 i_mmap_lock_read(mapping);
584 }
585
586 /*
587 * If a truncate happened while we were allocating blocks, we may
588 * leave blocks allocated to the file that are beyond EOF. We can't
589 * take i_mutex here, so just leave them hanging; they'll be freed
590 * when the file is deleted.
591 */
592 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
593 if (pgoff >= size) {
594 result = VM_FAULT_SIGBUS;
595 goto out;
596 }
597 if ((pgoff | PG_PMD_COLOUR) >= size)
598 goto fallback;
599
600 if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
601 spinlock_t *ptl;
602 pmd_t entry;
603 struct page *zero_page = get_huge_zero_page();
604
605 if (unlikely(!zero_page))
606 goto fallback;
607
608 ptl = pmd_lock(vma->vm_mm, pmd);
609 if (!pmd_none(*pmd)) {
610 spin_unlock(ptl);
611 goto fallback;
612 }
613
614 entry = mk_pmd(zero_page, vma->vm_page_prot);
615 entry = pmd_mkhuge(entry);
616 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
617 result = VM_FAULT_NOPAGE;
618 spin_unlock(ptl);
619 } else {
620 sector = bh.b_blocknr << (blkbits - 9);
621 length = bdev_direct_access(bh.b_bdev, sector, &kaddr, &pfn,
622 bh.b_size);
623 if (length < 0) {
624 result = VM_FAULT_SIGBUS;
625 goto out;
626 }
627 if ((length < PMD_SIZE) || (pfn & PG_PMD_COLOUR))
628 goto fallback;
629
630 if (buffer_unwritten(&bh) || buffer_new(&bh)) {
631 int i;
632 for (i = 0; i < PTRS_PER_PMD; i++)
633 clear_pmem(kaddr + i * PAGE_SIZE, PAGE_SIZE);
634 wmb_pmem();
635 count_vm_event(PGMAJFAULT);
636 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
637 result |= VM_FAULT_MAJOR;
638 }
639
640 result |= vmf_insert_pfn_pmd(vma, address, pmd, pfn, write);
641 }
642
643 out:
644 i_mmap_unlock_read(mapping);
645
646 if (buffer_unwritten(&bh))
647 complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
648
649 return result;
650
651 fallback:
652 count_vm_event(THP_FAULT_FALLBACK);
653 result = VM_FAULT_FALLBACK;
654 goto out;
655 }
656 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
657
658 /**
659 * dax_pmd_fault - handle a PMD fault on a DAX file
660 * @vma: The virtual memory area where the fault occurred
661 * @vmf: The description of the fault
662 * @get_block: The filesystem method used to translate file offsets to blocks
663 *
664 * When a page fault occurs, filesystems may call this helper in their
665 * pmd_fault handler for DAX files.
666 */
667 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
668 pmd_t *pmd, unsigned int flags, get_block_t get_block,
669 dax_iodone_t complete_unwritten)
670 {
671 int result;
672 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
673
674 if (flags & FAULT_FLAG_WRITE) {
675 sb_start_pagefault(sb);
676 file_update_time(vma->vm_file);
677 }
678 result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
679 complete_unwritten);
680 if (flags & FAULT_FLAG_WRITE)
681 sb_end_pagefault(sb);
682
683 return result;
684 }
685 EXPORT_SYMBOL_GPL(dax_pmd_fault);
686 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
687
688 /**
689 * dax_pfn_mkwrite - handle first write to DAX page
690 * @vma: The virtual memory area where the fault occurred
691 * @vmf: The description of the fault
692 *
693 */
694 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
695 {
696 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
697
698 sb_start_pagefault(sb);
699 file_update_time(vma->vm_file);
700 sb_end_pagefault(sb);
701 return VM_FAULT_NOPAGE;
702 }
703 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
704
705 /**
706 * dax_zero_page_range - zero a range within a page of a DAX file
707 * @inode: The file being truncated
708 * @from: The file offset that is being truncated to
709 * @length: The number of bytes to zero
710 * @get_block: The filesystem method used to translate file offsets to blocks
711 *
712 * This function can be called by a filesystem when it is zeroing part of a
713 * page in a DAX file. This is intended for hole-punch operations. If
714 * you are truncating a file, the helper function dax_truncate_page() may be
715 * more convenient.
716 *
717 * We work in terms of PAGE_CACHE_SIZE here for commonality with
718 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
719 * took care of disposing of the unnecessary blocks. Even if the filesystem
720 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
721 * since the file might be mmapped.
722 */
723 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
724 get_block_t get_block)
725 {
726 struct buffer_head bh;
727 pgoff_t index = from >> PAGE_CACHE_SHIFT;
728 unsigned offset = from & (PAGE_CACHE_SIZE-1);
729 int err;
730
731 /* Block boundary? Nothing to do */
732 if (!length)
733 return 0;
734 BUG_ON((offset + length) > PAGE_CACHE_SIZE);
735
736 memset(&bh, 0, sizeof(bh));
737 bh.b_size = PAGE_CACHE_SIZE;
738 err = get_block(inode, index, &bh, 0);
739 if (err < 0)
740 return err;
741 if (buffer_written(&bh)) {
742 void __pmem *addr;
743 err = dax_get_addr(&bh, &addr, inode->i_blkbits);
744 if (err < 0)
745 return err;
746 clear_pmem(addr + offset, length);
747 wmb_pmem();
748 }
749
750 return 0;
751 }
752 EXPORT_SYMBOL_GPL(dax_zero_page_range);
753
754 /**
755 * dax_truncate_page - handle a partial page being truncated in a DAX file
756 * @inode: The file being truncated
757 * @from: The file offset that is being truncated to
758 * @get_block: The filesystem method used to translate file offsets to blocks
759 *
760 * Similar to block_truncate_page(), this function can be called by a
761 * filesystem when it is truncating a DAX file to handle the partial page.
762 *
763 * We work in terms of PAGE_CACHE_SIZE here for commonality with
764 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
765 * took care of disposing of the unnecessary blocks. Even if the filesystem
766 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
767 * since the file might be mmapped.
768 */
769 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
770 {
771 unsigned length = PAGE_CACHE_ALIGN(from) - from;
772 return dax_zero_page_range(inode, from, length, get_block);
773 }
774 EXPORT_SYMBOL_GPL(dax_truncate_page);
This page took 0.0621 seconds and 6 git commands to generate.