Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[deliverable/linux.git] / fs / dax.c
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pmem.h>
28 #include <linux/sched.h>
29 #include <linux/uio.h>
30 #include <linux/vmstat.h>
31
32 int dax_clear_blocks(struct inode *inode, sector_t block, long size)
33 {
34 struct block_device *bdev = inode->i_sb->s_bdev;
35 sector_t sector = block << (inode->i_blkbits - 9);
36
37 might_sleep();
38 do {
39 void __pmem *addr;
40 unsigned long pfn;
41 long count;
42
43 count = bdev_direct_access(bdev, sector, &addr, &pfn, size);
44 if (count < 0)
45 return count;
46 BUG_ON(size < count);
47 while (count > 0) {
48 unsigned pgsz = PAGE_SIZE - offset_in_page(addr);
49 if (pgsz > count)
50 pgsz = count;
51 clear_pmem(addr, pgsz);
52 addr += pgsz;
53 size -= pgsz;
54 count -= pgsz;
55 BUG_ON(pgsz & 511);
56 sector += pgsz / 512;
57 cond_resched();
58 }
59 } while (size);
60
61 wmb_pmem();
62 return 0;
63 }
64 EXPORT_SYMBOL_GPL(dax_clear_blocks);
65
66 static long dax_get_addr(struct buffer_head *bh, void __pmem **addr,
67 unsigned blkbits)
68 {
69 unsigned long pfn;
70 sector_t sector = bh->b_blocknr << (blkbits - 9);
71 return bdev_direct_access(bh->b_bdev, sector, addr, &pfn, bh->b_size);
72 }
73
74 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
75 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
76 loff_t pos, loff_t end)
77 {
78 loff_t final = end - pos + first; /* The final byte of the buffer */
79
80 if (first > 0)
81 clear_pmem(addr, first);
82 if (final < size)
83 clear_pmem(addr + final, size - final);
84 }
85
86 static bool buffer_written(struct buffer_head *bh)
87 {
88 return buffer_mapped(bh) && !buffer_unwritten(bh);
89 }
90
91 /*
92 * When ext4 encounters a hole, it returns without modifying the buffer_head
93 * which means that we can't trust b_size. To cope with this, we set b_state
94 * to 0 before calling get_block and, if any bit is set, we know we can trust
95 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
96 * and would save us time calling get_block repeatedly.
97 */
98 static bool buffer_size_valid(struct buffer_head *bh)
99 {
100 return bh->b_state != 0;
101 }
102
103 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
104 loff_t start, loff_t end, get_block_t get_block,
105 struct buffer_head *bh)
106 {
107 ssize_t retval = 0;
108 loff_t pos = start;
109 loff_t max = start;
110 loff_t bh_max = start;
111 void __pmem *addr;
112 bool hole = false;
113 bool need_wmb = false;
114
115 if (iov_iter_rw(iter) != WRITE)
116 end = min(end, i_size_read(inode));
117
118 while (pos < end) {
119 size_t len;
120 if (pos == max) {
121 unsigned blkbits = inode->i_blkbits;
122 long page = pos >> PAGE_SHIFT;
123 sector_t block = page << (PAGE_SHIFT - blkbits);
124 unsigned first = pos - (block << blkbits);
125 long size;
126
127 if (pos == bh_max) {
128 bh->b_size = PAGE_ALIGN(end - pos);
129 bh->b_state = 0;
130 retval = get_block(inode, block, bh,
131 iov_iter_rw(iter) == WRITE);
132 if (retval)
133 break;
134 if (!buffer_size_valid(bh))
135 bh->b_size = 1 << blkbits;
136 bh_max = pos - first + bh->b_size;
137 } else {
138 unsigned done = bh->b_size -
139 (bh_max - (pos - first));
140 bh->b_blocknr += done >> blkbits;
141 bh->b_size -= done;
142 }
143
144 hole = iov_iter_rw(iter) != WRITE && !buffer_written(bh);
145 if (hole) {
146 addr = NULL;
147 size = bh->b_size - first;
148 } else {
149 retval = dax_get_addr(bh, &addr, blkbits);
150 if (retval < 0)
151 break;
152 if (buffer_unwritten(bh) || buffer_new(bh)) {
153 dax_new_buf(addr, retval, first, pos,
154 end);
155 need_wmb = true;
156 }
157 addr += first;
158 size = retval - first;
159 }
160 max = min(pos + size, end);
161 }
162
163 if (iov_iter_rw(iter) == WRITE) {
164 len = copy_from_iter_pmem(addr, max - pos, iter);
165 need_wmb = true;
166 } else if (!hole)
167 len = copy_to_iter((void __force *)addr, max - pos,
168 iter);
169 else
170 len = iov_iter_zero(max - pos, iter);
171
172 if (!len)
173 break;
174
175 pos += len;
176 addr += len;
177 }
178
179 if (need_wmb)
180 wmb_pmem();
181
182 return (pos == start) ? retval : pos - start;
183 }
184
185 /**
186 * dax_do_io - Perform I/O to a DAX file
187 * @iocb: The control block for this I/O
188 * @inode: The file which the I/O is directed at
189 * @iter: The addresses to do I/O from or to
190 * @pos: The file offset where the I/O starts
191 * @get_block: The filesystem method used to translate file offsets to blocks
192 * @end_io: A filesystem callback for I/O completion
193 * @flags: See below
194 *
195 * This function uses the same locking scheme as do_blockdev_direct_IO:
196 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
197 * caller for writes. For reads, we take and release the i_mutex ourselves.
198 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
199 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
200 * is in progress.
201 */
202 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
203 struct iov_iter *iter, loff_t pos, get_block_t get_block,
204 dio_iodone_t end_io, int flags)
205 {
206 struct buffer_head bh;
207 ssize_t retval = -EINVAL;
208 loff_t end = pos + iov_iter_count(iter);
209
210 memset(&bh, 0, sizeof(bh));
211
212 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
213 struct address_space *mapping = inode->i_mapping;
214 mutex_lock(&inode->i_mutex);
215 retval = filemap_write_and_wait_range(mapping, pos, end - 1);
216 if (retval) {
217 mutex_unlock(&inode->i_mutex);
218 goto out;
219 }
220 }
221
222 /* Protects against truncate */
223 if (!(flags & DIO_SKIP_DIO_COUNT))
224 inode_dio_begin(inode);
225
226 retval = dax_io(inode, iter, pos, end, get_block, &bh);
227
228 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
229 mutex_unlock(&inode->i_mutex);
230
231 if ((retval > 0) && end_io)
232 end_io(iocb, pos, retval, bh.b_private);
233
234 if (!(flags & DIO_SKIP_DIO_COUNT))
235 inode_dio_end(inode);
236 out:
237 return retval;
238 }
239 EXPORT_SYMBOL_GPL(dax_do_io);
240
241 /*
242 * The user has performed a load from a hole in the file. Allocating
243 * a new page in the file would cause excessive storage usage for
244 * workloads with sparse files. We allocate a page cache page instead.
245 * We'll kick it out of the page cache if it's ever written to,
246 * otherwise it will simply fall out of the page cache under memory
247 * pressure without ever having been dirtied.
248 */
249 static int dax_load_hole(struct address_space *mapping, struct page *page,
250 struct vm_fault *vmf)
251 {
252 unsigned long size;
253 struct inode *inode = mapping->host;
254 if (!page)
255 page = find_or_create_page(mapping, vmf->pgoff,
256 GFP_KERNEL | __GFP_ZERO);
257 if (!page)
258 return VM_FAULT_OOM;
259 /* Recheck i_size under page lock to avoid truncate race */
260 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
261 if (vmf->pgoff >= size) {
262 unlock_page(page);
263 page_cache_release(page);
264 return VM_FAULT_SIGBUS;
265 }
266
267 vmf->page = page;
268 return VM_FAULT_LOCKED;
269 }
270
271 static int copy_user_bh(struct page *to, struct buffer_head *bh,
272 unsigned blkbits, unsigned long vaddr)
273 {
274 void __pmem *vfrom;
275 void *vto;
276
277 if (dax_get_addr(bh, &vfrom, blkbits) < 0)
278 return -EIO;
279 vto = kmap_atomic(to);
280 copy_user_page(vto, (void __force *)vfrom, vaddr, to);
281 kunmap_atomic(vto);
282 return 0;
283 }
284
285 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
286 struct vm_area_struct *vma, struct vm_fault *vmf)
287 {
288 sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
289 unsigned long vaddr = (unsigned long)vmf->virtual_address;
290 void __pmem *addr;
291 unsigned long pfn;
292 pgoff_t size;
293 int error;
294
295 /*
296 * Check truncate didn't happen while we were allocating a block.
297 * If it did, this block may or may not be still allocated to the
298 * file. We can't tell the filesystem to free it because we can't
299 * take i_mutex here. In the worst case, the file still has blocks
300 * allocated past the end of the file.
301 */
302 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
303 if (unlikely(vmf->pgoff >= size)) {
304 error = -EIO;
305 goto out;
306 }
307
308 error = bdev_direct_access(bh->b_bdev, sector, &addr, &pfn, bh->b_size);
309 if (error < 0)
310 goto out;
311 if (error < PAGE_SIZE) {
312 error = -EIO;
313 goto out;
314 }
315
316 if (buffer_unwritten(bh) || buffer_new(bh)) {
317 clear_pmem(addr, PAGE_SIZE);
318 wmb_pmem();
319 }
320
321 error = vm_insert_mixed(vma, vaddr, pfn);
322
323 out:
324 return error;
325 }
326
327 /**
328 * __dax_fault - handle a page fault on a DAX file
329 * @vma: The virtual memory area where the fault occurred
330 * @vmf: The description of the fault
331 * @get_block: The filesystem method used to translate file offsets to blocks
332 * @complete_unwritten: The filesystem method used to convert unwritten blocks
333 * to written so the data written to them is exposed. This is required for
334 * required by write faults for filesystems that will return unwritten
335 * extent mappings from @get_block, but it is optional for reads as
336 * dax_insert_mapping() will always zero unwritten blocks. If the fs does
337 * not support unwritten extents, the it should pass NULL.
338 *
339 * When a page fault occurs, filesystems may call this helper in their
340 * fault handler for DAX files. __dax_fault() assumes the caller has done all
341 * the necessary locking for the page fault to proceed successfully.
342 */
343 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
344 get_block_t get_block, dax_iodone_t complete_unwritten)
345 {
346 struct file *file = vma->vm_file;
347 struct address_space *mapping = file->f_mapping;
348 struct inode *inode = mapping->host;
349 struct page *page;
350 struct buffer_head bh;
351 unsigned long vaddr = (unsigned long)vmf->virtual_address;
352 unsigned blkbits = inode->i_blkbits;
353 sector_t block;
354 pgoff_t size;
355 int error;
356 int major = 0;
357
358 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
359 if (vmf->pgoff >= size)
360 return VM_FAULT_SIGBUS;
361
362 memset(&bh, 0, sizeof(bh));
363 block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
364 bh.b_size = PAGE_SIZE;
365
366 repeat:
367 page = find_get_page(mapping, vmf->pgoff);
368 if (page) {
369 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
370 page_cache_release(page);
371 return VM_FAULT_RETRY;
372 }
373 if (unlikely(page->mapping != mapping)) {
374 unlock_page(page);
375 page_cache_release(page);
376 goto repeat;
377 }
378 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
379 if (unlikely(vmf->pgoff >= size)) {
380 /*
381 * We have a struct page covering a hole in the file
382 * from a read fault and we've raced with a truncate
383 */
384 error = -EIO;
385 goto unlock;
386 }
387 } else {
388 i_mmap_lock_write(mapping);
389 }
390
391 error = get_block(inode, block, &bh, 0);
392 if (!error && (bh.b_size < PAGE_SIZE))
393 error = -EIO; /* fs corruption? */
394 if (error)
395 goto unlock;
396
397 if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
398 if (vmf->flags & FAULT_FLAG_WRITE) {
399 error = get_block(inode, block, &bh, 1);
400 count_vm_event(PGMAJFAULT);
401 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
402 major = VM_FAULT_MAJOR;
403 if (!error && (bh.b_size < PAGE_SIZE))
404 error = -EIO;
405 if (error)
406 goto unlock;
407 } else {
408 i_mmap_unlock_write(mapping);
409 return dax_load_hole(mapping, page, vmf);
410 }
411 }
412
413 if (vmf->cow_page) {
414 struct page *new_page = vmf->cow_page;
415 if (buffer_written(&bh))
416 error = copy_user_bh(new_page, &bh, blkbits, vaddr);
417 else
418 clear_user_highpage(new_page, vaddr);
419 if (error)
420 goto unlock;
421 vmf->page = page;
422 if (!page) {
423 /* Check we didn't race with truncate */
424 size = (i_size_read(inode) + PAGE_SIZE - 1) >>
425 PAGE_SHIFT;
426 if (vmf->pgoff >= size) {
427 error = -EIO;
428 goto unlock;
429 }
430 }
431 return VM_FAULT_LOCKED;
432 }
433
434 /* Check we didn't race with a read fault installing a new page */
435 if (!page && major)
436 page = find_lock_page(mapping, vmf->pgoff);
437
438 if (page) {
439 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
440 PAGE_CACHE_SIZE, 0);
441 delete_from_page_cache(page);
442 unlock_page(page);
443 page_cache_release(page);
444 }
445
446 /*
447 * If we successfully insert the new mapping over an unwritten extent,
448 * we need to ensure we convert the unwritten extent. If there is an
449 * error inserting the mapping, the filesystem needs to leave it as
450 * unwritten to prevent exposure of the stale underlying data to
451 * userspace, but we still need to call the completion function so
452 * the private resources on the mapping buffer can be released. We
453 * indicate what the callback should do via the uptodate variable, same
454 * as for normal BH based IO completions.
455 */
456 error = dax_insert_mapping(inode, &bh, vma, vmf);
457 if (buffer_unwritten(&bh)) {
458 if (complete_unwritten)
459 complete_unwritten(&bh, !error);
460 else
461 WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
462 }
463
464 if (!page)
465 i_mmap_unlock_write(mapping);
466 out:
467 if (error == -ENOMEM)
468 return VM_FAULT_OOM | major;
469 /* -EBUSY is fine, somebody else faulted on the same PTE */
470 if ((error < 0) && (error != -EBUSY))
471 return VM_FAULT_SIGBUS | major;
472 return VM_FAULT_NOPAGE | major;
473
474 unlock:
475 if (page) {
476 unlock_page(page);
477 page_cache_release(page);
478 } else {
479 i_mmap_unlock_write(mapping);
480 }
481
482 goto out;
483 }
484 EXPORT_SYMBOL(__dax_fault);
485
486 /**
487 * dax_fault - handle a page fault on a DAX file
488 * @vma: The virtual memory area where the fault occurred
489 * @vmf: The description of the fault
490 * @get_block: The filesystem method used to translate file offsets to blocks
491 *
492 * When a page fault occurs, filesystems may call this helper in their
493 * fault handler for DAX files.
494 */
495 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
496 get_block_t get_block, dax_iodone_t complete_unwritten)
497 {
498 int result;
499 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
500
501 if (vmf->flags & FAULT_FLAG_WRITE) {
502 sb_start_pagefault(sb);
503 file_update_time(vma->vm_file);
504 }
505 result = __dax_fault(vma, vmf, get_block, complete_unwritten);
506 if (vmf->flags & FAULT_FLAG_WRITE)
507 sb_end_pagefault(sb);
508
509 return result;
510 }
511 EXPORT_SYMBOL_GPL(dax_fault);
512
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 /*
515 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
516 * more often than one might expect in the below function.
517 */
518 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
519
520 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
521 pmd_t *pmd, unsigned int flags, get_block_t get_block,
522 dax_iodone_t complete_unwritten)
523 {
524 struct file *file = vma->vm_file;
525 struct address_space *mapping = file->f_mapping;
526 struct inode *inode = mapping->host;
527 struct buffer_head bh;
528 unsigned blkbits = inode->i_blkbits;
529 unsigned long pmd_addr = address & PMD_MASK;
530 bool write = flags & FAULT_FLAG_WRITE;
531 long length;
532 void __pmem *kaddr;
533 pgoff_t size, pgoff;
534 sector_t block, sector;
535 unsigned long pfn;
536 int result = 0;
537
538 /* Fall back to PTEs if we're going to COW */
539 if (write && !(vma->vm_flags & VM_SHARED))
540 return VM_FAULT_FALLBACK;
541 /* If the PMD would extend outside the VMA */
542 if (pmd_addr < vma->vm_start)
543 return VM_FAULT_FALLBACK;
544 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
545 return VM_FAULT_FALLBACK;
546
547 pgoff = linear_page_index(vma, pmd_addr);
548 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
549 if (pgoff >= size)
550 return VM_FAULT_SIGBUS;
551 /* If the PMD would cover blocks out of the file */
552 if ((pgoff | PG_PMD_COLOUR) >= size)
553 return VM_FAULT_FALLBACK;
554
555 memset(&bh, 0, sizeof(bh));
556 block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
557
558 bh.b_size = PMD_SIZE;
559 i_mmap_lock_write(mapping);
560 length = get_block(inode, block, &bh, write);
561 if (length)
562 return VM_FAULT_SIGBUS;
563
564 /*
565 * If the filesystem isn't willing to tell us the length of a hole,
566 * just fall back to PTEs. Calling get_block 512 times in a loop
567 * would be silly.
568 */
569 if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE)
570 goto fallback;
571
572 if (buffer_unwritten(&bh) || buffer_new(&bh)) {
573 int i;
574 for (i = 0; i < PTRS_PER_PMD; i++)
575 clear_pmem(kaddr + i * PAGE_SIZE, PAGE_SIZE);
576 wmb_pmem();
577 count_vm_event(PGMAJFAULT);
578 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
579 result |= VM_FAULT_MAJOR;
580 }
581
582 /*
583 * If we allocated new storage, make sure no process has any
584 * zero pages covering this hole
585 */
586 if (buffer_new(&bh)) {
587 i_mmap_unlock_write(mapping);
588 unmap_mapping_range(mapping, pgoff << PAGE_SHIFT, PMD_SIZE, 0);
589 i_mmap_lock_write(mapping);
590 }
591
592 /*
593 * If a truncate happened while we were allocating blocks, we may
594 * leave blocks allocated to the file that are beyond EOF. We can't
595 * take i_mutex here, so just leave them hanging; they'll be freed
596 * when the file is deleted.
597 */
598 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
599 if (pgoff >= size) {
600 result = VM_FAULT_SIGBUS;
601 goto out;
602 }
603 if ((pgoff | PG_PMD_COLOUR) >= size)
604 goto fallback;
605
606 if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
607 spinlock_t *ptl;
608 pmd_t entry;
609 struct page *zero_page = get_huge_zero_page();
610
611 if (unlikely(!zero_page))
612 goto fallback;
613
614 ptl = pmd_lock(vma->vm_mm, pmd);
615 if (!pmd_none(*pmd)) {
616 spin_unlock(ptl);
617 goto fallback;
618 }
619
620 entry = mk_pmd(zero_page, vma->vm_page_prot);
621 entry = pmd_mkhuge(entry);
622 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
623 result = VM_FAULT_NOPAGE;
624 spin_unlock(ptl);
625 } else {
626 sector = bh.b_blocknr << (blkbits - 9);
627 length = bdev_direct_access(bh.b_bdev, sector, &kaddr, &pfn,
628 bh.b_size);
629 if (length < 0) {
630 result = VM_FAULT_SIGBUS;
631 goto out;
632 }
633 if ((length < PMD_SIZE) || (pfn & PG_PMD_COLOUR))
634 goto fallback;
635
636 result |= vmf_insert_pfn_pmd(vma, address, pmd, pfn, write);
637 }
638
639 out:
640 if (buffer_unwritten(&bh))
641 complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
642
643 i_mmap_unlock_write(mapping);
644
645 return result;
646
647 fallback:
648 count_vm_event(THP_FAULT_FALLBACK);
649 result = VM_FAULT_FALLBACK;
650 goto out;
651 }
652 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
653
654 /**
655 * dax_pmd_fault - handle a PMD fault on a DAX file
656 * @vma: The virtual memory area where the fault occurred
657 * @vmf: The description of the fault
658 * @get_block: The filesystem method used to translate file offsets to blocks
659 *
660 * When a page fault occurs, filesystems may call this helper in their
661 * pmd_fault handler for DAX files.
662 */
663 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
664 pmd_t *pmd, unsigned int flags, get_block_t get_block,
665 dax_iodone_t complete_unwritten)
666 {
667 int result;
668 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
669
670 if (flags & FAULT_FLAG_WRITE) {
671 sb_start_pagefault(sb);
672 file_update_time(vma->vm_file);
673 }
674 result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
675 complete_unwritten);
676 if (flags & FAULT_FLAG_WRITE)
677 sb_end_pagefault(sb);
678
679 return result;
680 }
681 EXPORT_SYMBOL_GPL(dax_pmd_fault);
682 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
683
684 /**
685 * dax_pfn_mkwrite - handle first write to DAX page
686 * @vma: The virtual memory area where the fault occurred
687 * @vmf: The description of the fault
688 *
689 */
690 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
691 {
692 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
693
694 sb_start_pagefault(sb);
695 file_update_time(vma->vm_file);
696 sb_end_pagefault(sb);
697 return VM_FAULT_NOPAGE;
698 }
699 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
700
701 /**
702 * dax_zero_page_range - zero a range within a page of a DAX file
703 * @inode: The file being truncated
704 * @from: The file offset that is being truncated to
705 * @length: The number of bytes to zero
706 * @get_block: The filesystem method used to translate file offsets to blocks
707 *
708 * This function can be called by a filesystem when it is zeroing part of a
709 * page in a DAX file. This is intended for hole-punch operations. If
710 * you are truncating a file, the helper function dax_truncate_page() may be
711 * more convenient.
712 *
713 * We work in terms of PAGE_CACHE_SIZE here for commonality with
714 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
715 * took care of disposing of the unnecessary blocks. Even if the filesystem
716 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
717 * since the file might be mmapped.
718 */
719 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
720 get_block_t get_block)
721 {
722 struct buffer_head bh;
723 pgoff_t index = from >> PAGE_CACHE_SHIFT;
724 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725 int err;
726
727 /* Block boundary? Nothing to do */
728 if (!length)
729 return 0;
730 BUG_ON((offset + length) > PAGE_CACHE_SIZE);
731
732 memset(&bh, 0, sizeof(bh));
733 bh.b_size = PAGE_CACHE_SIZE;
734 err = get_block(inode, index, &bh, 0);
735 if (err < 0)
736 return err;
737 if (buffer_written(&bh)) {
738 void __pmem *addr;
739 err = dax_get_addr(&bh, &addr, inode->i_blkbits);
740 if (err < 0)
741 return err;
742 clear_pmem(addr + offset, length);
743 wmb_pmem();
744 }
745
746 return 0;
747 }
748 EXPORT_SYMBOL_GPL(dax_zero_page_range);
749
750 /**
751 * dax_truncate_page - handle a partial page being truncated in a DAX file
752 * @inode: The file being truncated
753 * @from: The file offset that is being truncated to
754 * @get_block: The filesystem method used to translate file offsets to blocks
755 *
756 * Similar to block_truncate_page(), this function can be called by a
757 * filesystem when it is truncating a DAX file to handle the partial page.
758 *
759 * We work in terms of PAGE_CACHE_SIZE here for commonality with
760 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
761 * took care of disposing of the unnecessary blocks. Even if the filesystem
762 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
763 * since the file might be mmapped.
764 */
765 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
766 {
767 unsigned length = PAGE_CACHE_ALIGN(from) - from;
768 return dax_zero_page_range(inode, from, length, get_block);
769 }
770 EXPORT_SYMBOL_GPL(dax_truncate_page);
This page took 0.060419 seconds and 6 git commands to generate.