vfs: Document the effect of d_revalidate on d_find_alias
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43
44 /*
45 * Usage:
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
58 * - d_count
59 * - d_unhashed()
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_alias, d_inode
63 *
64 * Ordering:
65 * dentry->d_inode->i_lock
66 * dentry->d_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
69 * s_anon lock
70 *
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 unsigned int hash)
107 {
108 hash += (unsigned long) parent / L1_CACHE_BYTES;
109 return dentry_hashtable + hash_32(hash, d_hash_shift);
110 }
111
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat = {
114 .age_limit = 45,
115 };
116
117 static DEFINE_PER_CPU(long, nr_dentry);
118 static DEFINE_PER_CPU(long, nr_dentry_unused);
119
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121
122 /*
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
126 *
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
130 *
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
133 */
134 static long get_nr_dentry(void)
135 {
136 int i;
137 long sum = 0;
138 for_each_possible_cpu(i)
139 sum += per_cpu(nr_dentry, i);
140 return sum < 0 ? 0 : sum;
141 }
142
143 static long get_nr_dentry_unused(void)
144 {
145 int i;
146 long sum = 0;
147 for_each_possible_cpu(i)
148 sum += per_cpu(nr_dentry_unused, i);
149 return sum < 0 ? 0 : sum;
150 }
151
152 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
153 size_t *lenp, loff_t *ppos)
154 {
155 dentry_stat.nr_dentry = get_nr_dentry();
156 dentry_stat.nr_unused = get_nr_dentry_unused();
157 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
158 }
159 #endif
160
161 /*
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
164 */
165 #ifdef CONFIG_DCACHE_WORD_ACCESS
166
167 #include <asm/word-at-a-time.h>
168 /*
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
173 *
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
176 */
177 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
178 {
179 unsigned long a,b,mask;
180
181 for (;;) {
182 a = *(unsigned long *)cs;
183 b = load_unaligned_zeropad(ct);
184 if (tcount < sizeof(unsigned long))
185 break;
186 if (unlikely(a != b))
187 return 1;
188 cs += sizeof(unsigned long);
189 ct += sizeof(unsigned long);
190 tcount -= sizeof(unsigned long);
191 if (!tcount)
192 return 0;
193 }
194 mask = bytemask_from_count(tcount);
195 return unlikely(!!((a ^ b) & mask));
196 }
197
198 #else
199
200 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
201 {
202 do {
203 if (*cs != *ct)
204 return 1;
205 cs++;
206 ct++;
207 tcount--;
208 } while (tcount);
209 return 0;
210 }
211
212 #endif
213
214 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
215 {
216 const unsigned char *cs;
217 /*
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
220 *
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
228 *
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
232 */
233 cs = ACCESS_ONCE(dentry->d_name.name);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs, ct, tcount);
236 }
237
238 struct external_name {
239 union {
240 atomic_t count;
241 struct rcu_head head;
242 } u;
243 unsigned char name[];
244 };
245
246 static inline struct external_name *external_name(struct dentry *dentry)
247 {
248 return container_of(dentry->d_name.name, struct external_name, name[0]);
249 }
250
251 static void __d_free(struct rcu_head *head)
252 {
253 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
254
255 WARN_ON(!hlist_unhashed(&dentry->d_alias));
256 kmem_cache_free(dentry_cache, dentry);
257 }
258
259 static void __d_free_external(struct rcu_head *head)
260 {
261 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
262 WARN_ON(!hlist_unhashed(&dentry->d_alias));
263 kfree(external_name(dentry));
264 kmem_cache_free(dentry_cache, dentry);
265 }
266
267 static void dentry_free(struct dentry *dentry)
268 {
269 if (unlikely(dname_external(dentry))) {
270 struct external_name *p = external_name(dentry);
271 if (likely(atomic_dec_and_test(&p->u.count))) {
272 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
273 return;
274 }
275 }
276 /* if dentry was never visible to RCU, immediate free is OK */
277 if (!(dentry->d_flags & DCACHE_RCUACCESS))
278 __d_free(&dentry->d_u.d_rcu);
279 else
280 call_rcu(&dentry->d_u.d_rcu, __d_free);
281 }
282
283 /**
284 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
285 * @dentry: the target dentry
286 * After this call, in-progress rcu-walk path lookup will fail. This
287 * should be called after unhashing, and after changing d_inode (if
288 * the dentry has not already been unhashed).
289 */
290 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
291 {
292 assert_spin_locked(&dentry->d_lock);
293 /* Go through a barrier */
294 write_seqcount_barrier(&dentry->d_seq);
295 }
296
297 /*
298 * Release the dentry's inode, using the filesystem
299 * d_iput() operation if defined. Dentry has no refcount
300 * and is unhashed.
301 */
302 static void dentry_iput(struct dentry * dentry)
303 __releases(dentry->d_lock)
304 __releases(dentry->d_inode->i_lock)
305 {
306 struct inode *inode = dentry->d_inode;
307 if (inode) {
308 dentry->d_inode = NULL;
309 hlist_del_init(&dentry->d_alias);
310 spin_unlock(&dentry->d_lock);
311 spin_unlock(&inode->i_lock);
312 if (!inode->i_nlink)
313 fsnotify_inoderemove(inode);
314 if (dentry->d_op && dentry->d_op->d_iput)
315 dentry->d_op->d_iput(dentry, inode);
316 else
317 iput(inode);
318 } else {
319 spin_unlock(&dentry->d_lock);
320 }
321 }
322
323 /*
324 * Release the dentry's inode, using the filesystem
325 * d_iput() operation if defined. dentry remains in-use.
326 */
327 static void dentry_unlink_inode(struct dentry * dentry)
328 __releases(dentry->d_lock)
329 __releases(dentry->d_inode->i_lock)
330 {
331 struct inode *inode = dentry->d_inode;
332 __d_clear_type(dentry);
333 dentry->d_inode = NULL;
334 hlist_del_init(&dentry->d_alias);
335 dentry_rcuwalk_barrier(dentry);
336 spin_unlock(&dentry->d_lock);
337 spin_unlock(&inode->i_lock);
338 if (!inode->i_nlink)
339 fsnotify_inoderemove(inode);
340 if (dentry->d_op && dentry->d_op->d_iput)
341 dentry->d_op->d_iput(dentry, inode);
342 else
343 iput(inode);
344 }
345
346 /*
347 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
348 * is in use - which includes both the "real" per-superblock
349 * LRU list _and_ the DCACHE_SHRINK_LIST use.
350 *
351 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
352 * on the shrink list (ie not on the superblock LRU list).
353 *
354 * The per-cpu "nr_dentry_unused" counters are updated with
355 * the DCACHE_LRU_LIST bit.
356 *
357 * These helper functions make sure we always follow the
358 * rules. d_lock must be held by the caller.
359 */
360 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
361 static void d_lru_add(struct dentry *dentry)
362 {
363 D_FLAG_VERIFY(dentry, 0);
364 dentry->d_flags |= DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
367 }
368
369 static void d_lru_del(struct dentry *dentry)
370 {
371 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
372 dentry->d_flags &= ~DCACHE_LRU_LIST;
373 this_cpu_dec(nr_dentry_unused);
374 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
375 }
376
377 static void d_shrink_del(struct dentry *dentry)
378 {
379 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
380 list_del_init(&dentry->d_lru);
381 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
382 this_cpu_dec(nr_dentry_unused);
383 }
384
385 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
386 {
387 D_FLAG_VERIFY(dentry, 0);
388 list_add(&dentry->d_lru, list);
389 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
390 this_cpu_inc(nr_dentry_unused);
391 }
392
393 /*
394 * These can only be called under the global LRU lock, ie during the
395 * callback for freeing the LRU list. "isolate" removes it from the
396 * LRU lists entirely, while shrink_move moves it to the indicated
397 * private list.
398 */
399 static void d_lru_isolate(struct dentry *dentry)
400 {
401 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 dentry->d_flags &= ~DCACHE_LRU_LIST;
403 this_cpu_dec(nr_dentry_unused);
404 list_del_init(&dentry->d_lru);
405 }
406
407 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
408 {
409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 dentry->d_flags |= DCACHE_SHRINK_LIST;
411 list_move_tail(&dentry->d_lru, list);
412 }
413
414 /*
415 * dentry_lru_(add|del)_list) must be called with d_lock held.
416 */
417 static void dentry_lru_add(struct dentry *dentry)
418 {
419 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
420 d_lru_add(dentry);
421 }
422
423 /**
424 * d_drop - drop a dentry
425 * @dentry: dentry to drop
426 *
427 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
428 * be found through a VFS lookup any more. Note that this is different from
429 * deleting the dentry - d_delete will try to mark the dentry negative if
430 * possible, giving a successful _negative_ lookup, while d_drop will
431 * just make the cache lookup fail.
432 *
433 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
434 * reason (NFS timeouts or autofs deletes).
435 *
436 * __d_drop requires dentry->d_lock.
437 */
438 void __d_drop(struct dentry *dentry)
439 {
440 if (!d_unhashed(dentry)) {
441 struct hlist_bl_head *b;
442 /*
443 * Hashed dentries are normally on the dentry hashtable,
444 * with the exception of those newly allocated by
445 * d_obtain_alias, which are always IS_ROOT:
446 */
447 if (unlikely(IS_ROOT(dentry)))
448 b = &dentry->d_sb->s_anon;
449 else
450 b = d_hash(dentry->d_parent, dentry->d_name.hash);
451
452 hlist_bl_lock(b);
453 __hlist_bl_del(&dentry->d_hash);
454 dentry->d_hash.pprev = NULL;
455 hlist_bl_unlock(b);
456 dentry_rcuwalk_barrier(dentry);
457 }
458 }
459 EXPORT_SYMBOL(__d_drop);
460
461 void d_drop(struct dentry *dentry)
462 {
463 spin_lock(&dentry->d_lock);
464 __d_drop(dentry);
465 spin_unlock(&dentry->d_lock);
466 }
467 EXPORT_SYMBOL(d_drop);
468
469 static void __dentry_kill(struct dentry *dentry)
470 {
471 struct dentry *parent = NULL;
472 bool can_free = true;
473 if (!IS_ROOT(dentry))
474 parent = dentry->d_parent;
475
476 /*
477 * The dentry is now unrecoverably dead to the world.
478 */
479 lockref_mark_dead(&dentry->d_lockref);
480
481 /*
482 * inform the fs via d_prune that this dentry is about to be
483 * unhashed and destroyed.
484 */
485 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
486 dentry->d_op->d_prune(dentry);
487
488 if (dentry->d_flags & DCACHE_LRU_LIST) {
489 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
490 d_lru_del(dentry);
491 }
492 /* if it was on the hash then remove it */
493 __d_drop(dentry);
494 list_del(&dentry->d_u.d_child);
495 /*
496 * Inform d_walk() that we are no longer attached to the
497 * dentry tree
498 */
499 dentry->d_flags |= DCACHE_DENTRY_KILLED;
500 if (parent)
501 spin_unlock(&parent->d_lock);
502 dentry_iput(dentry);
503 /*
504 * dentry_iput drops the locks, at which point nobody (except
505 * transient RCU lookups) can reach this dentry.
506 */
507 BUG_ON((int)dentry->d_lockref.count > 0);
508 this_cpu_dec(nr_dentry);
509 if (dentry->d_op && dentry->d_op->d_release)
510 dentry->d_op->d_release(dentry);
511
512 spin_lock(&dentry->d_lock);
513 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
514 dentry->d_flags |= DCACHE_MAY_FREE;
515 can_free = false;
516 }
517 spin_unlock(&dentry->d_lock);
518 if (likely(can_free))
519 dentry_free(dentry);
520 }
521
522 /*
523 * Finish off a dentry we've decided to kill.
524 * dentry->d_lock must be held, returns with it unlocked.
525 * If ref is non-zero, then decrement the refcount too.
526 * Returns dentry requiring refcount drop, or NULL if we're done.
527 */
528 static struct dentry *dentry_kill(struct dentry *dentry)
529 __releases(dentry->d_lock)
530 {
531 struct inode *inode = dentry->d_inode;
532 struct dentry *parent = NULL;
533
534 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
535 goto failed;
536
537 if (!IS_ROOT(dentry)) {
538 parent = dentry->d_parent;
539 if (unlikely(!spin_trylock(&parent->d_lock))) {
540 if (inode)
541 spin_unlock(&inode->i_lock);
542 goto failed;
543 }
544 }
545
546 __dentry_kill(dentry);
547 return parent;
548
549 failed:
550 spin_unlock(&dentry->d_lock);
551 cpu_relax();
552 return dentry; /* try again with same dentry */
553 }
554
555 static inline struct dentry *lock_parent(struct dentry *dentry)
556 {
557 struct dentry *parent = dentry->d_parent;
558 if (IS_ROOT(dentry))
559 return NULL;
560 if (unlikely((int)dentry->d_lockref.count < 0))
561 return NULL;
562 if (likely(spin_trylock(&parent->d_lock)))
563 return parent;
564 rcu_read_lock();
565 spin_unlock(&dentry->d_lock);
566 again:
567 parent = ACCESS_ONCE(dentry->d_parent);
568 spin_lock(&parent->d_lock);
569 /*
570 * We can't blindly lock dentry until we are sure
571 * that we won't violate the locking order.
572 * Any changes of dentry->d_parent must have
573 * been done with parent->d_lock held, so
574 * spin_lock() above is enough of a barrier
575 * for checking if it's still our child.
576 */
577 if (unlikely(parent != dentry->d_parent)) {
578 spin_unlock(&parent->d_lock);
579 goto again;
580 }
581 rcu_read_unlock();
582 if (parent != dentry)
583 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
584 else
585 parent = NULL;
586 return parent;
587 }
588
589 /*
590 * This is dput
591 *
592 * This is complicated by the fact that we do not want to put
593 * dentries that are no longer on any hash chain on the unused
594 * list: we'd much rather just get rid of them immediately.
595 *
596 * However, that implies that we have to traverse the dentry
597 * tree upwards to the parents which might _also_ now be
598 * scheduled for deletion (it may have been only waiting for
599 * its last child to go away).
600 *
601 * This tail recursion is done by hand as we don't want to depend
602 * on the compiler to always get this right (gcc generally doesn't).
603 * Real recursion would eat up our stack space.
604 */
605
606 /*
607 * dput - release a dentry
608 * @dentry: dentry to release
609 *
610 * Release a dentry. This will drop the usage count and if appropriate
611 * call the dentry unlink method as well as removing it from the queues and
612 * releasing its resources. If the parent dentries were scheduled for release
613 * they too may now get deleted.
614 */
615 void dput(struct dentry *dentry)
616 {
617 if (unlikely(!dentry))
618 return;
619
620 repeat:
621 if (lockref_put_or_lock(&dentry->d_lockref))
622 return;
623
624 /* Unreachable? Get rid of it */
625 if (unlikely(d_unhashed(dentry)))
626 goto kill_it;
627
628 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
629 if (dentry->d_op->d_delete(dentry))
630 goto kill_it;
631 }
632
633 if (!(dentry->d_flags & DCACHE_REFERENCED))
634 dentry->d_flags |= DCACHE_REFERENCED;
635 dentry_lru_add(dentry);
636
637 dentry->d_lockref.count--;
638 spin_unlock(&dentry->d_lock);
639 return;
640
641 kill_it:
642 dentry = dentry_kill(dentry);
643 if (dentry)
644 goto repeat;
645 }
646 EXPORT_SYMBOL(dput);
647
648 /**
649 * d_invalidate - invalidate a dentry
650 * @dentry: dentry to invalidate
651 *
652 * Try to invalidate the dentry if it turns out to be
653 * possible. If there are other dentries that can be
654 * reached through this one we can't delete it and we
655 * return -EBUSY. On success we return 0.
656 *
657 * no dcache lock.
658 */
659
660 int d_invalidate(struct dentry * dentry)
661 {
662 /*
663 * If it's already been dropped, return OK.
664 */
665 spin_lock(&dentry->d_lock);
666 if (d_unhashed(dentry)) {
667 spin_unlock(&dentry->d_lock);
668 return 0;
669 }
670 /*
671 * Check whether to do a partial shrink_dcache
672 * to get rid of unused child entries.
673 */
674 if (!list_empty(&dentry->d_subdirs)) {
675 spin_unlock(&dentry->d_lock);
676 shrink_dcache_parent(dentry);
677 spin_lock(&dentry->d_lock);
678 }
679
680 /*
681 * Somebody else still using it?
682 *
683 * If it's a directory, we can't drop it
684 * for fear of somebody re-populating it
685 * with children (even though dropping it
686 * would make it unreachable from the root,
687 * we might still populate it if it was a
688 * working directory or similar).
689 * We also need to leave mountpoints alone,
690 * directory or not.
691 */
692 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
693 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
694 spin_unlock(&dentry->d_lock);
695 return -EBUSY;
696 }
697 }
698
699 __d_drop(dentry);
700 spin_unlock(&dentry->d_lock);
701 return 0;
702 }
703 EXPORT_SYMBOL(d_invalidate);
704
705 /* This must be called with d_lock held */
706 static inline void __dget_dlock(struct dentry *dentry)
707 {
708 dentry->d_lockref.count++;
709 }
710
711 static inline void __dget(struct dentry *dentry)
712 {
713 lockref_get(&dentry->d_lockref);
714 }
715
716 struct dentry *dget_parent(struct dentry *dentry)
717 {
718 int gotref;
719 struct dentry *ret;
720
721 /*
722 * Do optimistic parent lookup without any
723 * locking.
724 */
725 rcu_read_lock();
726 ret = ACCESS_ONCE(dentry->d_parent);
727 gotref = lockref_get_not_zero(&ret->d_lockref);
728 rcu_read_unlock();
729 if (likely(gotref)) {
730 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
731 return ret;
732 dput(ret);
733 }
734
735 repeat:
736 /*
737 * Don't need rcu_dereference because we re-check it was correct under
738 * the lock.
739 */
740 rcu_read_lock();
741 ret = dentry->d_parent;
742 spin_lock(&ret->d_lock);
743 if (unlikely(ret != dentry->d_parent)) {
744 spin_unlock(&ret->d_lock);
745 rcu_read_unlock();
746 goto repeat;
747 }
748 rcu_read_unlock();
749 BUG_ON(!ret->d_lockref.count);
750 ret->d_lockref.count++;
751 spin_unlock(&ret->d_lock);
752 return ret;
753 }
754 EXPORT_SYMBOL(dget_parent);
755
756 /**
757 * d_find_alias - grab a hashed alias of inode
758 * @inode: inode in question
759 *
760 * If inode has a hashed alias, or is a directory and has any alias,
761 * acquire the reference to alias and return it. Otherwise return NULL.
762 * Notice that if inode is a directory there can be only one alias and
763 * it can be unhashed only if it has no children, or if it is the root
764 * of a filesystem, or if the directory was renamed and d_revalidate
765 * was the first vfs operation to notice.
766 *
767 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
768 * any other hashed alias over that one.
769 */
770 static struct dentry *__d_find_alias(struct inode *inode)
771 {
772 struct dentry *alias, *discon_alias;
773
774 again:
775 discon_alias = NULL;
776 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
777 spin_lock(&alias->d_lock);
778 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
779 if (IS_ROOT(alias) &&
780 (alias->d_flags & DCACHE_DISCONNECTED)) {
781 discon_alias = alias;
782 } else {
783 __dget_dlock(alias);
784 spin_unlock(&alias->d_lock);
785 return alias;
786 }
787 }
788 spin_unlock(&alias->d_lock);
789 }
790 if (discon_alias) {
791 alias = discon_alias;
792 spin_lock(&alias->d_lock);
793 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
794 __dget_dlock(alias);
795 spin_unlock(&alias->d_lock);
796 return alias;
797 }
798 spin_unlock(&alias->d_lock);
799 goto again;
800 }
801 return NULL;
802 }
803
804 struct dentry *d_find_alias(struct inode *inode)
805 {
806 struct dentry *de = NULL;
807
808 if (!hlist_empty(&inode->i_dentry)) {
809 spin_lock(&inode->i_lock);
810 de = __d_find_alias(inode);
811 spin_unlock(&inode->i_lock);
812 }
813 return de;
814 }
815 EXPORT_SYMBOL(d_find_alias);
816
817 /*
818 * Try to kill dentries associated with this inode.
819 * WARNING: you must own a reference to inode.
820 */
821 void d_prune_aliases(struct inode *inode)
822 {
823 struct dentry *dentry;
824 restart:
825 spin_lock(&inode->i_lock);
826 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
827 spin_lock(&dentry->d_lock);
828 if (!dentry->d_lockref.count) {
829 /*
830 * inform the fs via d_prune that this dentry
831 * is about to be unhashed and destroyed.
832 */
833 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
834 !d_unhashed(dentry))
835 dentry->d_op->d_prune(dentry);
836
837 __dget_dlock(dentry);
838 __d_drop(dentry);
839 spin_unlock(&dentry->d_lock);
840 spin_unlock(&inode->i_lock);
841 dput(dentry);
842 goto restart;
843 }
844 spin_unlock(&dentry->d_lock);
845 }
846 spin_unlock(&inode->i_lock);
847 }
848 EXPORT_SYMBOL(d_prune_aliases);
849
850 static void shrink_dentry_list(struct list_head *list)
851 {
852 struct dentry *dentry, *parent;
853
854 while (!list_empty(list)) {
855 struct inode *inode;
856 dentry = list_entry(list->prev, struct dentry, d_lru);
857 spin_lock(&dentry->d_lock);
858 parent = lock_parent(dentry);
859
860 /*
861 * The dispose list is isolated and dentries are not accounted
862 * to the LRU here, so we can simply remove it from the list
863 * here regardless of whether it is referenced or not.
864 */
865 d_shrink_del(dentry);
866
867 /*
868 * We found an inuse dentry which was not removed from
869 * the LRU because of laziness during lookup. Do not free it.
870 */
871 if ((int)dentry->d_lockref.count > 0) {
872 spin_unlock(&dentry->d_lock);
873 if (parent)
874 spin_unlock(&parent->d_lock);
875 continue;
876 }
877
878
879 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
880 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
881 spin_unlock(&dentry->d_lock);
882 if (parent)
883 spin_unlock(&parent->d_lock);
884 if (can_free)
885 dentry_free(dentry);
886 continue;
887 }
888
889 inode = dentry->d_inode;
890 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
891 d_shrink_add(dentry, list);
892 spin_unlock(&dentry->d_lock);
893 if (parent)
894 spin_unlock(&parent->d_lock);
895 continue;
896 }
897
898 __dentry_kill(dentry);
899
900 /*
901 * We need to prune ancestors too. This is necessary to prevent
902 * quadratic behavior of shrink_dcache_parent(), but is also
903 * expected to be beneficial in reducing dentry cache
904 * fragmentation.
905 */
906 dentry = parent;
907 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
908 parent = lock_parent(dentry);
909 if (dentry->d_lockref.count != 1) {
910 dentry->d_lockref.count--;
911 spin_unlock(&dentry->d_lock);
912 if (parent)
913 spin_unlock(&parent->d_lock);
914 break;
915 }
916 inode = dentry->d_inode; /* can't be NULL */
917 if (unlikely(!spin_trylock(&inode->i_lock))) {
918 spin_unlock(&dentry->d_lock);
919 if (parent)
920 spin_unlock(&parent->d_lock);
921 cpu_relax();
922 continue;
923 }
924 __dentry_kill(dentry);
925 dentry = parent;
926 }
927 }
928 }
929
930 static enum lru_status
931 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
932 {
933 struct list_head *freeable = arg;
934 struct dentry *dentry = container_of(item, struct dentry, d_lru);
935
936
937 /*
938 * we are inverting the lru lock/dentry->d_lock here,
939 * so use a trylock. If we fail to get the lock, just skip
940 * it
941 */
942 if (!spin_trylock(&dentry->d_lock))
943 return LRU_SKIP;
944
945 /*
946 * Referenced dentries are still in use. If they have active
947 * counts, just remove them from the LRU. Otherwise give them
948 * another pass through the LRU.
949 */
950 if (dentry->d_lockref.count) {
951 d_lru_isolate(dentry);
952 spin_unlock(&dentry->d_lock);
953 return LRU_REMOVED;
954 }
955
956 if (dentry->d_flags & DCACHE_REFERENCED) {
957 dentry->d_flags &= ~DCACHE_REFERENCED;
958 spin_unlock(&dentry->d_lock);
959
960 /*
961 * The list move itself will be made by the common LRU code. At
962 * this point, we've dropped the dentry->d_lock but keep the
963 * lru lock. This is safe to do, since every list movement is
964 * protected by the lru lock even if both locks are held.
965 *
966 * This is guaranteed by the fact that all LRU management
967 * functions are intermediated by the LRU API calls like
968 * list_lru_add and list_lru_del. List movement in this file
969 * only ever occur through this functions or through callbacks
970 * like this one, that are called from the LRU API.
971 *
972 * The only exceptions to this are functions like
973 * shrink_dentry_list, and code that first checks for the
974 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
975 * operating only with stack provided lists after they are
976 * properly isolated from the main list. It is thus, always a
977 * local access.
978 */
979 return LRU_ROTATE;
980 }
981
982 d_lru_shrink_move(dentry, freeable);
983 spin_unlock(&dentry->d_lock);
984
985 return LRU_REMOVED;
986 }
987
988 /**
989 * prune_dcache_sb - shrink the dcache
990 * @sb: superblock
991 * @nr_to_scan : number of entries to try to free
992 * @nid: which node to scan for freeable entities
993 *
994 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
995 * done when we need more memory an called from the superblock shrinker
996 * function.
997 *
998 * This function may fail to free any resources if all the dentries are in
999 * use.
1000 */
1001 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
1002 int nid)
1003 {
1004 LIST_HEAD(dispose);
1005 long freed;
1006
1007 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
1008 &dispose, &nr_to_scan);
1009 shrink_dentry_list(&dispose);
1010 return freed;
1011 }
1012
1013 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1014 spinlock_t *lru_lock, void *arg)
1015 {
1016 struct list_head *freeable = arg;
1017 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1018
1019 /*
1020 * we are inverting the lru lock/dentry->d_lock here,
1021 * so use a trylock. If we fail to get the lock, just skip
1022 * it
1023 */
1024 if (!spin_trylock(&dentry->d_lock))
1025 return LRU_SKIP;
1026
1027 d_lru_shrink_move(dentry, freeable);
1028 spin_unlock(&dentry->d_lock);
1029
1030 return LRU_REMOVED;
1031 }
1032
1033
1034 /**
1035 * shrink_dcache_sb - shrink dcache for a superblock
1036 * @sb: superblock
1037 *
1038 * Shrink the dcache for the specified super block. This is used to free
1039 * the dcache before unmounting a file system.
1040 */
1041 void shrink_dcache_sb(struct super_block *sb)
1042 {
1043 long freed;
1044
1045 do {
1046 LIST_HEAD(dispose);
1047
1048 freed = list_lru_walk(&sb->s_dentry_lru,
1049 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1050
1051 this_cpu_sub(nr_dentry_unused, freed);
1052 shrink_dentry_list(&dispose);
1053 } while (freed > 0);
1054 }
1055 EXPORT_SYMBOL(shrink_dcache_sb);
1056
1057 /**
1058 * enum d_walk_ret - action to talke during tree walk
1059 * @D_WALK_CONTINUE: contrinue walk
1060 * @D_WALK_QUIT: quit walk
1061 * @D_WALK_NORETRY: quit when retry is needed
1062 * @D_WALK_SKIP: skip this dentry and its children
1063 */
1064 enum d_walk_ret {
1065 D_WALK_CONTINUE,
1066 D_WALK_QUIT,
1067 D_WALK_NORETRY,
1068 D_WALK_SKIP,
1069 };
1070
1071 /**
1072 * d_walk - walk the dentry tree
1073 * @parent: start of walk
1074 * @data: data passed to @enter() and @finish()
1075 * @enter: callback when first entering the dentry
1076 * @finish: callback when successfully finished the walk
1077 *
1078 * The @enter() and @finish() callbacks are called with d_lock held.
1079 */
1080 static void d_walk(struct dentry *parent, void *data,
1081 enum d_walk_ret (*enter)(void *, struct dentry *),
1082 void (*finish)(void *))
1083 {
1084 struct dentry *this_parent;
1085 struct list_head *next;
1086 unsigned seq = 0;
1087 enum d_walk_ret ret;
1088 bool retry = true;
1089
1090 again:
1091 read_seqbegin_or_lock(&rename_lock, &seq);
1092 this_parent = parent;
1093 spin_lock(&this_parent->d_lock);
1094
1095 ret = enter(data, this_parent);
1096 switch (ret) {
1097 case D_WALK_CONTINUE:
1098 break;
1099 case D_WALK_QUIT:
1100 case D_WALK_SKIP:
1101 goto out_unlock;
1102 case D_WALK_NORETRY:
1103 retry = false;
1104 break;
1105 }
1106 repeat:
1107 next = this_parent->d_subdirs.next;
1108 resume:
1109 while (next != &this_parent->d_subdirs) {
1110 struct list_head *tmp = next;
1111 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1112 next = tmp->next;
1113
1114 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1115
1116 ret = enter(data, dentry);
1117 switch (ret) {
1118 case D_WALK_CONTINUE:
1119 break;
1120 case D_WALK_QUIT:
1121 spin_unlock(&dentry->d_lock);
1122 goto out_unlock;
1123 case D_WALK_NORETRY:
1124 retry = false;
1125 break;
1126 case D_WALK_SKIP:
1127 spin_unlock(&dentry->d_lock);
1128 continue;
1129 }
1130
1131 if (!list_empty(&dentry->d_subdirs)) {
1132 spin_unlock(&this_parent->d_lock);
1133 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1134 this_parent = dentry;
1135 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1136 goto repeat;
1137 }
1138 spin_unlock(&dentry->d_lock);
1139 }
1140 /*
1141 * All done at this level ... ascend and resume the search.
1142 */
1143 if (this_parent != parent) {
1144 struct dentry *child = this_parent;
1145 this_parent = child->d_parent;
1146
1147 rcu_read_lock();
1148 spin_unlock(&child->d_lock);
1149 spin_lock(&this_parent->d_lock);
1150
1151 /*
1152 * might go back up the wrong parent if we have had a rename
1153 * or deletion
1154 */
1155 if (this_parent != child->d_parent ||
1156 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1157 need_seqretry(&rename_lock, seq)) {
1158 spin_unlock(&this_parent->d_lock);
1159 rcu_read_unlock();
1160 goto rename_retry;
1161 }
1162 rcu_read_unlock();
1163 next = child->d_u.d_child.next;
1164 goto resume;
1165 }
1166 if (need_seqretry(&rename_lock, seq)) {
1167 spin_unlock(&this_parent->d_lock);
1168 goto rename_retry;
1169 }
1170 if (finish)
1171 finish(data);
1172
1173 out_unlock:
1174 spin_unlock(&this_parent->d_lock);
1175 done_seqretry(&rename_lock, seq);
1176 return;
1177
1178 rename_retry:
1179 if (!retry)
1180 return;
1181 seq = 1;
1182 goto again;
1183 }
1184
1185 /*
1186 * Search for at least 1 mount point in the dentry's subdirs.
1187 * We descend to the next level whenever the d_subdirs
1188 * list is non-empty and continue searching.
1189 */
1190
1191 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1192 {
1193 int *ret = data;
1194 if (d_mountpoint(dentry)) {
1195 *ret = 1;
1196 return D_WALK_QUIT;
1197 }
1198 return D_WALK_CONTINUE;
1199 }
1200
1201 /**
1202 * have_submounts - check for mounts over a dentry
1203 * @parent: dentry to check.
1204 *
1205 * Return true if the parent or its subdirectories contain
1206 * a mount point
1207 */
1208 int have_submounts(struct dentry *parent)
1209 {
1210 int ret = 0;
1211
1212 d_walk(parent, &ret, check_mount, NULL);
1213
1214 return ret;
1215 }
1216 EXPORT_SYMBOL(have_submounts);
1217
1218 /*
1219 * Called by mount code to set a mountpoint and check if the mountpoint is
1220 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1221 * subtree can become unreachable).
1222 *
1223 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1224 * this reason take rename_lock and d_lock on dentry and ancestors.
1225 */
1226 int d_set_mounted(struct dentry *dentry)
1227 {
1228 struct dentry *p;
1229 int ret = -ENOENT;
1230 write_seqlock(&rename_lock);
1231 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1232 /* Need exclusion wrt. check_submounts_and_drop() */
1233 spin_lock(&p->d_lock);
1234 if (unlikely(d_unhashed(p))) {
1235 spin_unlock(&p->d_lock);
1236 goto out;
1237 }
1238 spin_unlock(&p->d_lock);
1239 }
1240 spin_lock(&dentry->d_lock);
1241 if (!d_unlinked(dentry)) {
1242 dentry->d_flags |= DCACHE_MOUNTED;
1243 ret = 0;
1244 }
1245 spin_unlock(&dentry->d_lock);
1246 out:
1247 write_sequnlock(&rename_lock);
1248 return ret;
1249 }
1250
1251 /*
1252 * Search the dentry child list of the specified parent,
1253 * and move any unused dentries to the end of the unused
1254 * list for prune_dcache(). We descend to the next level
1255 * whenever the d_subdirs list is non-empty and continue
1256 * searching.
1257 *
1258 * It returns zero iff there are no unused children,
1259 * otherwise it returns the number of children moved to
1260 * the end of the unused list. This may not be the total
1261 * number of unused children, because select_parent can
1262 * drop the lock and return early due to latency
1263 * constraints.
1264 */
1265
1266 struct select_data {
1267 struct dentry *start;
1268 struct list_head dispose;
1269 int found;
1270 };
1271
1272 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1273 {
1274 struct select_data *data = _data;
1275 enum d_walk_ret ret = D_WALK_CONTINUE;
1276
1277 if (data->start == dentry)
1278 goto out;
1279
1280 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1281 data->found++;
1282 } else {
1283 if (dentry->d_flags & DCACHE_LRU_LIST)
1284 d_lru_del(dentry);
1285 if (!dentry->d_lockref.count) {
1286 d_shrink_add(dentry, &data->dispose);
1287 data->found++;
1288 }
1289 }
1290 /*
1291 * We can return to the caller if we have found some (this
1292 * ensures forward progress). We'll be coming back to find
1293 * the rest.
1294 */
1295 if (!list_empty(&data->dispose))
1296 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1297 out:
1298 return ret;
1299 }
1300
1301 /**
1302 * shrink_dcache_parent - prune dcache
1303 * @parent: parent of entries to prune
1304 *
1305 * Prune the dcache to remove unused children of the parent dentry.
1306 */
1307 void shrink_dcache_parent(struct dentry *parent)
1308 {
1309 for (;;) {
1310 struct select_data data;
1311
1312 INIT_LIST_HEAD(&data.dispose);
1313 data.start = parent;
1314 data.found = 0;
1315
1316 d_walk(parent, &data, select_collect, NULL);
1317 if (!data.found)
1318 break;
1319
1320 shrink_dentry_list(&data.dispose);
1321 cond_resched();
1322 }
1323 }
1324 EXPORT_SYMBOL(shrink_dcache_parent);
1325
1326 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1327 {
1328 /* it has busy descendents; complain about those instead */
1329 if (!list_empty(&dentry->d_subdirs))
1330 return D_WALK_CONTINUE;
1331
1332 /* root with refcount 1 is fine */
1333 if (dentry == _data && dentry->d_lockref.count == 1)
1334 return D_WALK_CONTINUE;
1335
1336 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1337 " still in use (%d) [unmount of %s %s]\n",
1338 dentry,
1339 dentry->d_inode ?
1340 dentry->d_inode->i_ino : 0UL,
1341 dentry,
1342 dentry->d_lockref.count,
1343 dentry->d_sb->s_type->name,
1344 dentry->d_sb->s_id);
1345 WARN_ON(1);
1346 return D_WALK_CONTINUE;
1347 }
1348
1349 static void do_one_tree(struct dentry *dentry)
1350 {
1351 shrink_dcache_parent(dentry);
1352 d_walk(dentry, dentry, umount_check, NULL);
1353 d_drop(dentry);
1354 dput(dentry);
1355 }
1356
1357 /*
1358 * destroy the dentries attached to a superblock on unmounting
1359 */
1360 void shrink_dcache_for_umount(struct super_block *sb)
1361 {
1362 struct dentry *dentry;
1363
1364 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1365
1366 dentry = sb->s_root;
1367 sb->s_root = NULL;
1368 do_one_tree(dentry);
1369
1370 while (!hlist_bl_empty(&sb->s_anon)) {
1371 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1372 do_one_tree(dentry);
1373 }
1374 }
1375
1376 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1377 {
1378 struct select_data *data = _data;
1379
1380 if (d_mountpoint(dentry)) {
1381 data->found = -EBUSY;
1382 return D_WALK_QUIT;
1383 }
1384
1385 return select_collect(_data, dentry);
1386 }
1387
1388 static void check_and_drop(void *_data)
1389 {
1390 struct select_data *data = _data;
1391
1392 if (d_mountpoint(data->start))
1393 data->found = -EBUSY;
1394 if (!data->found)
1395 __d_drop(data->start);
1396 }
1397
1398 /**
1399 * check_submounts_and_drop - prune dcache, check for submounts and drop
1400 *
1401 * All done as a single atomic operation relative to has_unlinked_ancestor().
1402 * Returns 0 if successfully unhashed @parent. If there were submounts then
1403 * return -EBUSY.
1404 *
1405 * @dentry: dentry to prune and drop
1406 */
1407 int check_submounts_and_drop(struct dentry *dentry)
1408 {
1409 int ret = 0;
1410
1411 /* Negative dentries can be dropped without further checks */
1412 if (!dentry->d_inode) {
1413 d_drop(dentry);
1414 goto out;
1415 }
1416
1417 for (;;) {
1418 struct select_data data;
1419
1420 INIT_LIST_HEAD(&data.dispose);
1421 data.start = dentry;
1422 data.found = 0;
1423
1424 d_walk(dentry, &data, check_and_collect, check_and_drop);
1425 ret = data.found;
1426
1427 if (!list_empty(&data.dispose))
1428 shrink_dentry_list(&data.dispose);
1429
1430 if (ret <= 0)
1431 break;
1432
1433 cond_resched();
1434 }
1435
1436 out:
1437 return ret;
1438 }
1439 EXPORT_SYMBOL(check_submounts_and_drop);
1440
1441 /**
1442 * __d_alloc - allocate a dcache entry
1443 * @sb: filesystem it will belong to
1444 * @name: qstr of the name
1445 *
1446 * Allocates a dentry. It returns %NULL if there is insufficient memory
1447 * available. On a success the dentry is returned. The name passed in is
1448 * copied and the copy passed in may be reused after this call.
1449 */
1450
1451 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1452 {
1453 struct dentry *dentry;
1454 char *dname;
1455
1456 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1457 if (!dentry)
1458 return NULL;
1459
1460 /*
1461 * We guarantee that the inline name is always NUL-terminated.
1462 * This way the memcpy() done by the name switching in rename
1463 * will still always have a NUL at the end, even if we might
1464 * be overwriting an internal NUL character
1465 */
1466 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1467 if (name->len > DNAME_INLINE_LEN-1) {
1468 size_t size = offsetof(struct external_name, name[1]);
1469 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1470 if (!p) {
1471 kmem_cache_free(dentry_cache, dentry);
1472 return NULL;
1473 }
1474 atomic_set(&p->u.count, 1);
1475 dname = p->name;
1476 } else {
1477 dname = dentry->d_iname;
1478 }
1479
1480 dentry->d_name.len = name->len;
1481 dentry->d_name.hash = name->hash;
1482 memcpy(dname, name->name, name->len);
1483 dname[name->len] = 0;
1484
1485 /* Make sure we always see the terminating NUL character */
1486 smp_wmb();
1487 dentry->d_name.name = dname;
1488
1489 dentry->d_lockref.count = 1;
1490 dentry->d_flags = 0;
1491 spin_lock_init(&dentry->d_lock);
1492 seqcount_init(&dentry->d_seq);
1493 dentry->d_inode = NULL;
1494 dentry->d_parent = dentry;
1495 dentry->d_sb = sb;
1496 dentry->d_op = NULL;
1497 dentry->d_fsdata = NULL;
1498 INIT_HLIST_BL_NODE(&dentry->d_hash);
1499 INIT_LIST_HEAD(&dentry->d_lru);
1500 INIT_LIST_HEAD(&dentry->d_subdirs);
1501 INIT_HLIST_NODE(&dentry->d_alias);
1502 INIT_LIST_HEAD(&dentry->d_u.d_child);
1503 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1504
1505 this_cpu_inc(nr_dentry);
1506
1507 return dentry;
1508 }
1509
1510 /**
1511 * d_alloc - allocate a dcache entry
1512 * @parent: parent of entry to allocate
1513 * @name: qstr of the name
1514 *
1515 * Allocates a dentry. It returns %NULL if there is insufficient memory
1516 * available. On a success the dentry is returned. The name passed in is
1517 * copied and the copy passed in may be reused after this call.
1518 */
1519 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1520 {
1521 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1522 if (!dentry)
1523 return NULL;
1524
1525 spin_lock(&parent->d_lock);
1526 /*
1527 * don't need child lock because it is not subject
1528 * to concurrency here
1529 */
1530 __dget_dlock(parent);
1531 dentry->d_parent = parent;
1532 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1533 spin_unlock(&parent->d_lock);
1534
1535 return dentry;
1536 }
1537 EXPORT_SYMBOL(d_alloc);
1538
1539 /**
1540 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1541 * @sb: the superblock
1542 * @name: qstr of the name
1543 *
1544 * For a filesystem that just pins its dentries in memory and never
1545 * performs lookups at all, return an unhashed IS_ROOT dentry.
1546 */
1547 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1548 {
1549 return __d_alloc(sb, name);
1550 }
1551 EXPORT_SYMBOL(d_alloc_pseudo);
1552
1553 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1554 {
1555 struct qstr q;
1556
1557 q.name = name;
1558 q.len = strlen(name);
1559 q.hash = full_name_hash(q.name, q.len);
1560 return d_alloc(parent, &q);
1561 }
1562 EXPORT_SYMBOL(d_alloc_name);
1563
1564 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1565 {
1566 WARN_ON_ONCE(dentry->d_op);
1567 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1568 DCACHE_OP_COMPARE |
1569 DCACHE_OP_REVALIDATE |
1570 DCACHE_OP_WEAK_REVALIDATE |
1571 DCACHE_OP_DELETE ));
1572 dentry->d_op = op;
1573 if (!op)
1574 return;
1575 if (op->d_hash)
1576 dentry->d_flags |= DCACHE_OP_HASH;
1577 if (op->d_compare)
1578 dentry->d_flags |= DCACHE_OP_COMPARE;
1579 if (op->d_revalidate)
1580 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1581 if (op->d_weak_revalidate)
1582 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1583 if (op->d_delete)
1584 dentry->d_flags |= DCACHE_OP_DELETE;
1585 if (op->d_prune)
1586 dentry->d_flags |= DCACHE_OP_PRUNE;
1587
1588 }
1589 EXPORT_SYMBOL(d_set_d_op);
1590
1591 static unsigned d_flags_for_inode(struct inode *inode)
1592 {
1593 unsigned add_flags = DCACHE_FILE_TYPE;
1594
1595 if (!inode)
1596 return DCACHE_MISS_TYPE;
1597
1598 if (S_ISDIR(inode->i_mode)) {
1599 add_flags = DCACHE_DIRECTORY_TYPE;
1600 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1601 if (unlikely(!inode->i_op->lookup))
1602 add_flags = DCACHE_AUTODIR_TYPE;
1603 else
1604 inode->i_opflags |= IOP_LOOKUP;
1605 }
1606 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1607 if (unlikely(inode->i_op->follow_link))
1608 add_flags = DCACHE_SYMLINK_TYPE;
1609 else
1610 inode->i_opflags |= IOP_NOFOLLOW;
1611 }
1612
1613 if (unlikely(IS_AUTOMOUNT(inode)))
1614 add_flags |= DCACHE_NEED_AUTOMOUNT;
1615 return add_flags;
1616 }
1617
1618 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1619 {
1620 unsigned add_flags = d_flags_for_inode(inode);
1621
1622 spin_lock(&dentry->d_lock);
1623 __d_set_type(dentry, add_flags);
1624 if (inode)
1625 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1626 dentry->d_inode = inode;
1627 dentry_rcuwalk_barrier(dentry);
1628 spin_unlock(&dentry->d_lock);
1629 fsnotify_d_instantiate(dentry, inode);
1630 }
1631
1632 /**
1633 * d_instantiate - fill in inode information for a dentry
1634 * @entry: dentry to complete
1635 * @inode: inode to attach to this dentry
1636 *
1637 * Fill in inode information in the entry.
1638 *
1639 * This turns negative dentries into productive full members
1640 * of society.
1641 *
1642 * NOTE! This assumes that the inode count has been incremented
1643 * (or otherwise set) by the caller to indicate that it is now
1644 * in use by the dcache.
1645 */
1646
1647 void d_instantiate(struct dentry *entry, struct inode * inode)
1648 {
1649 BUG_ON(!hlist_unhashed(&entry->d_alias));
1650 if (inode)
1651 spin_lock(&inode->i_lock);
1652 __d_instantiate(entry, inode);
1653 if (inode)
1654 spin_unlock(&inode->i_lock);
1655 security_d_instantiate(entry, inode);
1656 }
1657 EXPORT_SYMBOL(d_instantiate);
1658
1659 /**
1660 * d_instantiate_unique - instantiate a non-aliased dentry
1661 * @entry: dentry to instantiate
1662 * @inode: inode to attach to this dentry
1663 *
1664 * Fill in inode information in the entry. On success, it returns NULL.
1665 * If an unhashed alias of "entry" already exists, then we return the
1666 * aliased dentry instead and drop one reference to inode.
1667 *
1668 * Note that in order to avoid conflicts with rename() etc, the caller
1669 * had better be holding the parent directory semaphore.
1670 *
1671 * This also assumes that the inode count has been incremented
1672 * (or otherwise set) by the caller to indicate that it is now
1673 * in use by the dcache.
1674 */
1675 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1676 struct inode *inode)
1677 {
1678 struct dentry *alias;
1679 int len = entry->d_name.len;
1680 const char *name = entry->d_name.name;
1681 unsigned int hash = entry->d_name.hash;
1682
1683 if (!inode) {
1684 __d_instantiate(entry, NULL);
1685 return NULL;
1686 }
1687
1688 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1689 /*
1690 * Don't need alias->d_lock here, because aliases with
1691 * d_parent == entry->d_parent are not subject to name or
1692 * parent changes, because the parent inode i_mutex is held.
1693 */
1694 if (alias->d_name.hash != hash)
1695 continue;
1696 if (alias->d_parent != entry->d_parent)
1697 continue;
1698 if (alias->d_name.len != len)
1699 continue;
1700 if (dentry_cmp(alias, name, len))
1701 continue;
1702 __dget(alias);
1703 return alias;
1704 }
1705
1706 __d_instantiate(entry, inode);
1707 return NULL;
1708 }
1709
1710 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1711 {
1712 struct dentry *result;
1713
1714 BUG_ON(!hlist_unhashed(&entry->d_alias));
1715
1716 if (inode)
1717 spin_lock(&inode->i_lock);
1718 result = __d_instantiate_unique(entry, inode);
1719 if (inode)
1720 spin_unlock(&inode->i_lock);
1721
1722 if (!result) {
1723 security_d_instantiate(entry, inode);
1724 return NULL;
1725 }
1726
1727 BUG_ON(!d_unhashed(result));
1728 iput(inode);
1729 return result;
1730 }
1731
1732 EXPORT_SYMBOL(d_instantiate_unique);
1733
1734 /**
1735 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1736 * @entry: dentry to complete
1737 * @inode: inode to attach to this dentry
1738 *
1739 * Fill in inode information in the entry. If a directory alias is found, then
1740 * return an error (and drop inode). Together with d_materialise_unique() this
1741 * guarantees that a directory inode may never have more than one alias.
1742 */
1743 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1744 {
1745 BUG_ON(!hlist_unhashed(&entry->d_alias));
1746
1747 spin_lock(&inode->i_lock);
1748 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1749 spin_unlock(&inode->i_lock);
1750 iput(inode);
1751 return -EBUSY;
1752 }
1753 __d_instantiate(entry, inode);
1754 spin_unlock(&inode->i_lock);
1755 security_d_instantiate(entry, inode);
1756
1757 return 0;
1758 }
1759 EXPORT_SYMBOL(d_instantiate_no_diralias);
1760
1761 struct dentry *d_make_root(struct inode *root_inode)
1762 {
1763 struct dentry *res = NULL;
1764
1765 if (root_inode) {
1766 static const struct qstr name = QSTR_INIT("/", 1);
1767
1768 res = __d_alloc(root_inode->i_sb, &name);
1769 if (res)
1770 d_instantiate(res, root_inode);
1771 else
1772 iput(root_inode);
1773 }
1774 return res;
1775 }
1776 EXPORT_SYMBOL(d_make_root);
1777
1778 static struct dentry * __d_find_any_alias(struct inode *inode)
1779 {
1780 struct dentry *alias;
1781
1782 if (hlist_empty(&inode->i_dentry))
1783 return NULL;
1784 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1785 __dget(alias);
1786 return alias;
1787 }
1788
1789 /**
1790 * d_find_any_alias - find any alias for a given inode
1791 * @inode: inode to find an alias for
1792 *
1793 * If any aliases exist for the given inode, take and return a
1794 * reference for one of them. If no aliases exist, return %NULL.
1795 */
1796 struct dentry *d_find_any_alias(struct inode *inode)
1797 {
1798 struct dentry *de;
1799
1800 spin_lock(&inode->i_lock);
1801 de = __d_find_any_alias(inode);
1802 spin_unlock(&inode->i_lock);
1803 return de;
1804 }
1805 EXPORT_SYMBOL(d_find_any_alias);
1806
1807 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1808 {
1809 static const struct qstr anonstring = QSTR_INIT("/", 1);
1810 struct dentry *tmp;
1811 struct dentry *res;
1812 unsigned add_flags;
1813
1814 if (!inode)
1815 return ERR_PTR(-ESTALE);
1816 if (IS_ERR(inode))
1817 return ERR_CAST(inode);
1818
1819 res = d_find_any_alias(inode);
1820 if (res)
1821 goto out_iput;
1822
1823 tmp = __d_alloc(inode->i_sb, &anonstring);
1824 if (!tmp) {
1825 res = ERR_PTR(-ENOMEM);
1826 goto out_iput;
1827 }
1828
1829 spin_lock(&inode->i_lock);
1830 res = __d_find_any_alias(inode);
1831 if (res) {
1832 spin_unlock(&inode->i_lock);
1833 dput(tmp);
1834 goto out_iput;
1835 }
1836
1837 /* attach a disconnected dentry */
1838 add_flags = d_flags_for_inode(inode);
1839
1840 if (disconnected)
1841 add_flags |= DCACHE_DISCONNECTED;
1842
1843 spin_lock(&tmp->d_lock);
1844 tmp->d_inode = inode;
1845 tmp->d_flags |= add_flags;
1846 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1847 hlist_bl_lock(&tmp->d_sb->s_anon);
1848 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1849 hlist_bl_unlock(&tmp->d_sb->s_anon);
1850 spin_unlock(&tmp->d_lock);
1851 spin_unlock(&inode->i_lock);
1852 security_d_instantiate(tmp, inode);
1853
1854 return tmp;
1855
1856 out_iput:
1857 if (res && !IS_ERR(res))
1858 security_d_instantiate(res, inode);
1859 iput(inode);
1860 return res;
1861 }
1862
1863 /**
1864 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1865 * @inode: inode to allocate the dentry for
1866 *
1867 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1868 * similar open by handle operations. The returned dentry may be anonymous,
1869 * or may have a full name (if the inode was already in the cache).
1870 *
1871 * When called on a directory inode, we must ensure that the inode only ever
1872 * has one dentry. If a dentry is found, that is returned instead of
1873 * allocating a new one.
1874 *
1875 * On successful return, the reference to the inode has been transferred
1876 * to the dentry. In case of an error the reference on the inode is released.
1877 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1878 * be passed in and the error will be propagated to the return value,
1879 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1880 */
1881 struct dentry *d_obtain_alias(struct inode *inode)
1882 {
1883 return __d_obtain_alias(inode, 1);
1884 }
1885 EXPORT_SYMBOL(d_obtain_alias);
1886
1887 /**
1888 * d_obtain_root - find or allocate a dentry for a given inode
1889 * @inode: inode to allocate the dentry for
1890 *
1891 * Obtain an IS_ROOT dentry for the root of a filesystem.
1892 *
1893 * We must ensure that directory inodes only ever have one dentry. If a
1894 * dentry is found, that is returned instead of allocating a new one.
1895 *
1896 * On successful return, the reference to the inode has been transferred
1897 * to the dentry. In case of an error the reference on the inode is
1898 * released. A %NULL or IS_ERR inode may be passed in and will be the
1899 * error will be propagate to the return value, with a %NULL @inode
1900 * replaced by ERR_PTR(-ESTALE).
1901 */
1902 struct dentry *d_obtain_root(struct inode *inode)
1903 {
1904 return __d_obtain_alias(inode, 0);
1905 }
1906 EXPORT_SYMBOL(d_obtain_root);
1907
1908 /**
1909 * d_add_ci - lookup or allocate new dentry with case-exact name
1910 * @inode: the inode case-insensitive lookup has found
1911 * @dentry: the negative dentry that was passed to the parent's lookup func
1912 * @name: the case-exact name to be associated with the returned dentry
1913 *
1914 * This is to avoid filling the dcache with case-insensitive names to the
1915 * same inode, only the actual correct case is stored in the dcache for
1916 * case-insensitive filesystems.
1917 *
1918 * For a case-insensitive lookup match and if the the case-exact dentry
1919 * already exists in in the dcache, use it and return it.
1920 *
1921 * If no entry exists with the exact case name, allocate new dentry with
1922 * the exact case, and return the spliced entry.
1923 */
1924 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1925 struct qstr *name)
1926 {
1927 struct dentry *found;
1928 struct dentry *new;
1929
1930 /*
1931 * First check if a dentry matching the name already exists,
1932 * if not go ahead and create it now.
1933 */
1934 found = d_hash_and_lookup(dentry->d_parent, name);
1935 if (unlikely(IS_ERR(found)))
1936 goto err_out;
1937 if (!found) {
1938 new = d_alloc(dentry->d_parent, name);
1939 if (!new) {
1940 found = ERR_PTR(-ENOMEM);
1941 goto err_out;
1942 }
1943
1944 found = d_splice_alias(inode, new);
1945 if (found) {
1946 dput(new);
1947 return found;
1948 }
1949 return new;
1950 }
1951
1952 /*
1953 * If a matching dentry exists, and it's not negative use it.
1954 *
1955 * Decrement the reference count to balance the iget() done
1956 * earlier on.
1957 */
1958 if (found->d_inode) {
1959 if (unlikely(found->d_inode != inode)) {
1960 /* This can't happen because bad inodes are unhashed. */
1961 BUG_ON(!is_bad_inode(inode));
1962 BUG_ON(!is_bad_inode(found->d_inode));
1963 }
1964 iput(inode);
1965 return found;
1966 }
1967
1968 /*
1969 * Negative dentry: instantiate it unless the inode is a directory and
1970 * already has a dentry.
1971 */
1972 new = d_splice_alias(inode, found);
1973 if (new) {
1974 dput(found);
1975 found = new;
1976 }
1977 return found;
1978
1979 err_out:
1980 iput(inode);
1981 return found;
1982 }
1983 EXPORT_SYMBOL(d_add_ci);
1984
1985 /*
1986 * Do the slow-case of the dentry name compare.
1987 *
1988 * Unlike the dentry_cmp() function, we need to atomically
1989 * load the name and length information, so that the
1990 * filesystem can rely on them, and can use the 'name' and
1991 * 'len' information without worrying about walking off the
1992 * end of memory etc.
1993 *
1994 * Thus the read_seqcount_retry() and the "duplicate" info
1995 * in arguments (the low-level filesystem should not look
1996 * at the dentry inode or name contents directly, since
1997 * rename can change them while we're in RCU mode).
1998 */
1999 enum slow_d_compare {
2000 D_COMP_OK,
2001 D_COMP_NOMATCH,
2002 D_COMP_SEQRETRY,
2003 };
2004
2005 static noinline enum slow_d_compare slow_dentry_cmp(
2006 const struct dentry *parent,
2007 struct dentry *dentry,
2008 unsigned int seq,
2009 const struct qstr *name)
2010 {
2011 int tlen = dentry->d_name.len;
2012 const char *tname = dentry->d_name.name;
2013
2014 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2015 cpu_relax();
2016 return D_COMP_SEQRETRY;
2017 }
2018 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2019 return D_COMP_NOMATCH;
2020 return D_COMP_OK;
2021 }
2022
2023 /**
2024 * __d_lookup_rcu - search for a dentry (racy, store-free)
2025 * @parent: parent dentry
2026 * @name: qstr of name we wish to find
2027 * @seqp: returns d_seq value at the point where the dentry was found
2028 * Returns: dentry, or NULL
2029 *
2030 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2031 * resolution (store-free path walking) design described in
2032 * Documentation/filesystems/path-lookup.txt.
2033 *
2034 * This is not to be used outside core vfs.
2035 *
2036 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2037 * held, and rcu_read_lock held. The returned dentry must not be stored into
2038 * without taking d_lock and checking d_seq sequence count against @seq
2039 * returned here.
2040 *
2041 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2042 * function.
2043 *
2044 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2045 * the returned dentry, so long as its parent's seqlock is checked after the
2046 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2047 * is formed, giving integrity down the path walk.
2048 *
2049 * NOTE! The caller *has* to check the resulting dentry against the sequence
2050 * number we've returned before using any of the resulting dentry state!
2051 */
2052 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2053 const struct qstr *name,
2054 unsigned *seqp)
2055 {
2056 u64 hashlen = name->hash_len;
2057 const unsigned char *str = name->name;
2058 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2059 struct hlist_bl_node *node;
2060 struct dentry *dentry;
2061
2062 /*
2063 * Note: There is significant duplication with __d_lookup_rcu which is
2064 * required to prevent single threaded performance regressions
2065 * especially on architectures where smp_rmb (in seqcounts) are costly.
2066 * Keep the two functions in sync.
2067 */
2068
2069 /*
2070 * The hash list is protected using RCU.
2071 *
2072 * Carefully use d_seq when comparing a candidate dentry, to avoid
2073 * races with d_move().
2074 *
2075 * It is possible that concurrent renames can mess up our list
2076 * walk here and result in missing our dentry, resulting in the
2077 * false-negative result. d_lookup() protects against concurrent
2078 * renames using rename_lock seqlock.
2079 *
2080 * See Documentation/filesystems/path-lookup.txt for more details.
2081 */
2082 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2083 unsigned seq;
2084
2085 seqretry:
2086 /*
2087 * The dentry sequence count protects us from concurrent
2088 * renames, and thus protects parent and name fields.
2089 *
2090 * The caller must perform a seqcount check in order
2091 * to do anything useful with the returned dentry.
2092 *
2093 * NOTE! We do a "raw" seqcount_begin here. That means that
2094 * we don't wait for the sequence count to stabilize if it
2095 * is in the middle of a sequence change. If we do the slow
2096 * dentry compare, we will do seqretries until it is stable,
2097 * and if we end up with a successful lookup, we actually
2098 * want to exit RCU lookup anyway.
2099 */
2100 seq = raw_seqcount_begin(&dentry->d_seq);
2101 if (dentry->d_parent != parent)
2102 continue;
2103 if (d_unhashed(dentry))
2104 continue;
2105
2106 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2107 if (dentry->d_name.hash != hashlen_hash(hashlen))
2108 continue;
2109 *seqp = seq;
2110 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2111 case D_COMP_OK:
2112 return dentry;
2113 case D_COMP_NOMATCH:
2114 continue;
2115 default:
2116 goto seqretry;
2117 }
2118 }
2119
2120 if (dentry->d_name.hash_len != hashlen)
2121 continue;
2122 *seqp = seq;
2123 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2124 return dentry;
2125 }
2126 return NULL;
2127 }
2128
2129 /**
2130 * d_lookup - search for a dentry
2131 * @parent: parent dentry
2132 * @name: qstr of name we wish to find
2133 * Returns: dentry, or NULL
2134 *
2135 * d_lookup searches the children of the parent dentry for the name in
2136 * question. If the dentry is found its reference count is incremented and the
2137 * dentry is returned. The caller must use dput to free the entry when it has
2138 * finished using it. %NULL is returned if the dentry does not exist.
2139 */
2140 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2141 {
2142 struct dentry *dentry;
2143 unsigned seq;
2144
2145 do {
2146 seq = read_seqbegin(&rename_lock);
2147 dentry = __d_lookup(parent, name);
2148 if (dentry)
2149 break;
2150 } while (read_seqretry(&rename_lock, seq));
2151 return dentry;
2152 }
2153 EXPORT_SYMBOL(d_lookup);
2154
2155 /**
2156 * __d_lookup - search for a dentry (racy)
2157 * @parent: parent dentry
2158 * @name: qstr of name we wish to find
2159 * Returns: dentry, or NULL
2160 *
2161 * __d_lookup is like d_lookup, however it may (rarely) return a
2162 * false-negative result due to unrelated rename activity.
2163 *
2164 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2165 * however it must be used carefully, eg. with a following d_lookup in
2166 * the case of failure.
2167 *
2168 * __d_lookup callers must be commented.
2169 */
2170 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2171 {
2172 unsigned int len = name->len;
2173 unsigned int hash = name->hash;
2174 const unsigned char *str = name->name;
2175 struct hlist_bl_head *b = d_hash(parent, hash);
2176 struct hlist_bl_node *node;
2177 struct dentry *found = NULL;
2178 struct dentry *dentry;
2179
2180 /*
2181 * Note: There is significant duplication with __d_lookup_rcu which is
2182 * required to prevent single threaded performance regressions
2183 * especially on architectures where smp_rmb (in seqcounts) are costly.
2184 * Keep the two functions in sync.
2185 */
2186
2187 /*
2188 * The hash list is protected using RCU.
2189 *
2190 * Take d_lock when comparing a candidate dentry, to avoid races
2191 * with d_move().
2192 *
2193 * It is possible that concurrent renames can mess up our list
2194 * walk here and result in missing our dentry, resulting in the
2195 * false-negative result. d_lookup() protects against concurrent
2196 * renames using rename_lock seqlock.
2197 *
2198 * See Documentation/filesystems/path-lookup.txt for more details.
2199 */
2200 rcu_read_lock();
2201
2202 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2203
2204 if (dentry->d_name.hash != hash)
2205 continue;
2206
2207 spin_lock(&dentry->d_lock);
2208 if (dentry->d_parent != parent)
2209 goto next;
2210 if (d_unhashed(dentry))
2211 goto next;
2212
2213 /*
2214 * It is safe to compare names since d_move() cannot
2215 * change the qstr (protected by d_lock).
2216 */
2217 if (parent->d_flags & DCACHE_OP_COMPARE) {
2218 int tlen = dentry->d_name.len;
2219 const char *tname = dentry->d_name.name;
2220 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2221 goto next;
2222 } else {
2223 if (dentry->d_name.len != len)
2224 goto next;
2225 if (dentry_cmp(dentry, str, len))
2226 goto next;
2227 }
2228
2229 dentry->d_lockref.count++;
2230 found = dentry;
2231 spin_unlock(&dentry->d_lock);
2232 break;
2233 next:
2234 spin_unlock(&dentry->d_lock);
2235 }
2236 rcu_read_unlock();
2237
2238 return found;
2239 }
2240
2241 /**
2242 * d_hash_and_lookup - hash the qstr then search for a dentry
2243 * @dir: Directory to search in
2244 * @name: qstr of name we wish to find
2245 *
2246 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2247 */
2248 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2249 {
2250 /*
2251 * Check for a fs-specific hash function. Note that we must
2252 * calculate the standard hash first, as the d_op->d_hash()
2253 * routine may choose to leave the hash value unchanged.
2254 */
2255 name->hash = full_name_hash(name->name, name->len);
2256 if (dir->d_flags & DCACHE_OP_HASH) {
2257 int err = dir->d_op->d_hash(dir, name);
2258 if (unlikely(err < 0))
2259 return ERR_PTR(err);
2260 }
2261 return d_lookup(dir, name);
2262 }
2263 EXPORT_SYMBOL(d_hash_and_lookup);
2264
2265 /**
2266 * d_validate - verify dentry provided from insecure source (deprecated)
2267 * @dentry: The dentry alleged to be valid child of @dparent
2268 * @dparent: The parent dentry (known to be valid)
2269 *
2270 * An insecure source has sent us a dentry, here we verify it and dget() it.
2271 * This is used by ncpfs in its readdir implementation.
2272 * Zero is returned in the dentry is invalid.
2273 *
2274 * This function is slow for big directories, and deprecated, do not use it.
2275 */
2276 int d_validate(struct dentry *dentry, struct dentry *dparent)
2277 {
2278 struct dentry *child;
2279
2280 spin_lock(&dparent->d_lock);
2281 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2282 if (dentry == child) {
2283 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2284 __dget_dlock(dentry);
2285 spin_unlock(&dentry->d_lock);
2286 spin_unlock(&dparent->d_lock);
2287 return 1;
2288 }
2289 }
2290 spin_unlock(&dparent->d_lock);
2291
2292 return 0;
2293 }
2294 EXPORT_SYMBOL(d_validate);
2295
2296 /*
2297 * When a file is deleted, we have two options:
2298 * - turn this dentry into a negative dentry
2299 * - unhash this dentry and free it.
2300 *
2301 * Usually, we want to just turn this into
2302 * a negative dentry, but if anybody else is
2303 * currently using the dentry or the inode
2304 * we can't do that and we fall back on removing
2305 * it from the hash queues and waiting for
2306 * it to be deleted later when it has no users
2307 */
2308
2309 /**
2310 * d_delete - delete a dentry
2311 * @dentry: The dentry to delete
2312 *
2313 * Turn the dentry into a negative dentry if possible, otherwise
2314 * remove it from the hash queues so it can be deleted later
2315 */
2316
2317 void d_delete(struct dentry * dentry)
2318 {
2319 struct inode *inode;
2320 int isdir = 0;
2321 /*
2322 * Are we the only user?
2323 */
2324 again:
2325 spin_lock(&dentry->d_lock);
2326 inode = dentry->d_inode;
2327 isdir = S_ISDIR(inode->i_mode);
2328 if (dentry->d_lockref.count == 1) {
2329 if (!spin_trylock(&inode->i_lock)) {
2330 spin_unlock(&dentry->d_lock);
2331 cpu_relax();
2332 goto again;
2333 }
2334 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2335 dentry_unlink_inode(dentry);
2336 fsnotify_nameremove(dentry, isdir);
2337 return;
2338 }
2339
2340 if (!d_unhashed(dentry))
2341 __d_drop(dentry);
2342
2343 spin_unlock(&dentry->d_lock);
2344
2345 fsnotify_nameremove(dentry, isdir);
2346 }
2347 EXPORT_SYMBOL(d_delete);
2348
2349 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2350 {
2351 BUG_ON(!d_unhashed(entry));
2352 hlist_bl_lock(b);
2353 entry->d_flags |= DCACHE_RCUACCESS;
2354 hlist_bl_add_head_rcu(&entry->d_hash, b);
2355 hlist_bl_unlock(b);
2356 }
2357
2358 static void _d_rehash(struct dentry * entry)
2359 {
2360 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2361 }
2362
2363 /**
2364 * d_rehash - add an entry back to the hash
2365 * @entry: dentry to add to the hash
2366 *
2367 * Adds a dentry to the hash according to its name.
2368 */
2369
2370 void d_rehash(struct dentry * entry)
2371 {
2372 spin_lock(&entry->d_lock);
2373 _d_rehash(entry);
2374 spin_unlock(&entry->d_lock);
2375 }
2376 EXPORT_SYMBOL(d_rehash);
2377
2378 /**
2379 * dentry_update_name_case - update case insensitive dentry with a new name
2380 * @dentry: dentry to be updated
2381 * @name: new name
2382 *
2383 * Update a case insensitive dentry with new case of name.
2384 *
2385 * dentry must have been returned by d_lookup with name @name. Old and new
2386 * name lengths must match (ie. no d_compare which allows mismatched name
2387 * lengths).
2388 *
2389 * Parent inode i_mutex must be held over d_lookup and into this call (to
2390 * keep renames and concurrent inserts, and readdir(2) away).
2391 */
2392 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2393 {
2394 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2395 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2396
2397 spin_lock(&dentry->d_lock);
2398 write_seqcount_begin(&dentry->d_seq);
2399 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2400 write_seqcount_end(&dentry->d_seq);
2401 spin_unlock(&dentry->d_lock);
2402 }
2403 EXPORT_SYMBOL(dentry_update_name_case);
2404
2405 static void swap_names(struct dentry *dentry, struct dentry *target)
2406 {
2407 if (unlikely(dname_external(target))) {
2408 if (unlikely(dname_external(dentry))) {
2409 /*
2410 * Both external: swap the pointers
2411 */
2412 swap(target->d_name.name, dentry->d_name.name);
2413 } else {
2414 /*
2415 * dentry:internal, target:external. Steal target's
2416 * storage and make target internal.
2417 */
2418 memcpy(target->d_iname, dentry->d_name.name,
2419 dentry->d_name.len + 1);
2420 dentry->d_name.name = target->d_name.name;
2421 target->d_name.name = target->d_iname;
2422 }
2423 } else {
2424 if (unlikely(dname_external(dentry))) {
2425 /*
2426 * dentry:external, target:internal. Give dentry's
2427 * storage to target and make dentry internal
2428 */
2429 memcpy(dentry->d_iname, target->d_name.name,
2430 target->d_name.len + 1);
2431 target->d_name.name = dentry->d_name.name;
2432 dentry->d_name.name = dentry->d_iname;
2433 } else {
2434 /*
2435 * Both are internal.
2436 */
2437 unsigned int i;
2438 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2439 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2440 swap(((long *) &dentry->d_iname)[i],
2441 ((long *) &target->d_iname)[i]);
2442 }
2443 }
2444 }
2445 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2446 }
2447
2448 static void copy_name(struct dentry *dentry, struct dentry *target)
2449 {
2450 struct external_name *old_name = NULL;
2451 if (unlikely(dname_external(dentry)))
2452 old_name = external_name(dentry);
2453 if (unlikely(dname_external(target))) {
2454 atomic_inc(&external_name(target)->u.count);
2455 dentry->d_name = target->d_name;
2456 } else {
2457 memcpy(dentry->d_iname, target->d_name.name,
2458 target->d_name.len + 1);
2459 dentry->d_name.name = dentry->d_iname;
2460 dentry->d_name.hash_len = target->d_name.hash_len;
2461 }
2462 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2463 kfree_rcu(old_name, u.head);
2464 }
2465
2466 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2467 {
2468 /*
2469 * XXXX: do we really need to take target->d_lock?
2470 */
2471 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2472 spin_lock(&target->d_parent->d_lock);
2473 else {
2474 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2475 spin_lock(&dentry->d_parent->d_lock);
2476 spin_lock_nested(&target->d_parent->d_lock,
2477 DENTRY_D_LOCK_NESTED);
2478 } else {
2479 spin_lock(&target->d_parent->d_lock);
2480 spin_lock_nested(&dentry->d_parent->d_lock,
2481 DENTRY_D_LOCK_NESTED);
2482 }
2483 }
2484 if (target < dentry) {
2485 spin_lock_nested(&target->d_lock, 2);
2486 spin_lock_nested(&dentry->d_lock, 3);
2487 } else {
2488 spin_lock_nested(&dentry->d_lock, 2);
2489 spin_lock_nested(&target->d_lock, 3);
2490 }
2491 }
2492
2493 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2494 {
2495 if (target->d_parent != dentry->d_parent)
2496 spin_unlock(&dentry->d_parent->d_lock);
2497 if (target->d_parent != target)
2498 spin_unlock(&target->d_parent->d_lock);
2499 spin_unlock(&target->d_lock);
2500 spin_unlock(&dentry->d_lock);
2501 }
2502
2503 /*
2504 * When switching names, the actual string doesn't strictly have to
2505 * be preserved in the target - because we're dropping the target
2506 * anyway. As such, we can just do a simple memcpy() to copy over
2507 * the new name before we switch, unless we are going to rehash
2508 * it. Note that if we *do* unhash the target, we are not allowed
2509 * to rehash it without giving it a new name/hash key - whether
2510 * we swap or overwrite the names here, resulting name won't match
2511 * the reality in filesystem; it's only there for d_path() purposes.
2512 * Note that all of this is happening under rename_lock, so the
2513 * any hash lookup seeing it in the middle of manipulations will
2514 * be discarded anyway. So we do not care what happens to the hash
2515 * key in that case.
2516 */
2517 /*
2518 * __d_move - move a dentry
2519 * @dentry: entry to move
2520 * @target: new dentry
2521 * @exchange: exchange the two dentries
2522 *
2523 * Update the dcache to reflect the move of a file name. Negative
2524 * dcache entries should not be moved in this way. Caller must hold
2525 * rename_lock, the i_mutex of the source and target directories,
2526 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2527 */
2528 static void __d_move(struct dentry *dentry, struct dentry *target,
2529 bool exchange)
2530 {
2531 if (!dentry->d_inode)
2532 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2533
2534 BUG_ON(d_ancestor(dentry, target));
2535 BUG_ON(d_ancestor(target, dentry));
2536
2537 dentry_lock_for_move(dentry, target);
2538
2539 write_seqcount_begin(&dentry->d_seq);
2540 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2541
2542 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2543
2544 /*
2545 * Move the dentry to the target hash queue. Don't bother checking
2546 * for the same hash queue because of how unlikely it is.
2547 */
2548 __d_drop(dentry);
2549 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2550
2551 /*
2552 * Unhash the target (d_delete() is not usable here). If exchanging
2553 * the two dentries, then rehash onto the other's hash queue.
2554 */
2555 __d_drop(target);
2556 if (exchange) {
2557 __d_rehash(target,
2558 d_hash(dentry->d_parent, dentry->d_name.hash));
2559 }
2560
2561 /* Switch the names.. */
2562 if (exchange)
2563 swap_names(dentry, target);
2564 else
2565 copy_name(dentry, target);
2566
2567 /* ... and switch them in the tree */
2568 if (IS_ROOT(dentry)) {
2569 /* splicing a tree */
2570 dentry->d_parent = target->d_parent;
2571 target->d_parent = target;
2572 list_del_init(&target->d_u.d_child);
2573 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2574 } else {
2575 /* swapping two dentries */
2576 swap(dentry->d_parent, target->d_parent);
2577 list_move(&target->d_u.d_child, &target->d_parent->d_subdirs);
2578 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2579 if (exchange)
2580 fsnotify_d_move(target);
2581 fsnotify_d_move(dentry);
2582 }
2583
2584 write_seqcount_end(&target->d_seq);
2585 write_seqcount_end(&dentry->d_seq);
2586
2587 dentry_unlock_for_move(dentry, target);
2588 }
2589
2590 /*
2591 * d_move - move a dentry
2592 * @dentry: entry to move
2593 * @target: new dentry
2594 *
2595 * Update the dcache to reflect the move of a file name. Negative
2596 * dcache entries should not be moved in this way. See the locking
2597 * requirements for __d_move.
2598 */
2599 void d_move(struct dentry *dentry, struct dentry *target)
2600 {
2601 write_seqlock(&rename_lock);
2602 __d_move(dentry, target, false);
2603 write_sequnlock(&rename_lock);
2604 }
2605 EXPORT_SYMBOL(d_move);
2606
2607 /*
2608 * d_exchange - exchange two dentries
2609 * @dentry1: first dentry
2610 * @dentry2: second dentry
2611 */
2612 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2613 {
2614 write_seqlock(&rename_lock);
2615
2616 WARN_ON(!dentry1->d_inode);
2617 WARN_ON(!dentry2->d_inode);
2618 WARN_ON(IS_ROOT(dentry1));
2619 WARN_ON(IS_ROOT(dentry2));
2620
2621 __d_move(dentry1, dentry2, true);
2622
2623 write_sequnlock(&rename_lock);
2624 }
2625
2626 /**
2627 * d_ancestor - search for an ancestor
2628 * @p1: ancestor dentry
2629 * @p2: child dentry
2630 *
2631 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2632 * an ancestor of p2, else NULL.
2633 */
2634 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2635 {
2636 struct dentry *p;
2637
2638 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2639 if (p->d_parent == p1)
2640 return p;
2641 }
2642 return NULL;
2643 }
2644
2645 /*
2646 * This helper attempts to cope with remotely renamed directories
2647 *
2648 * It assumes that the caller is already holding
2649 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2650 *
2651 * Note: If ever the locking in lock_rename() changes, then please
2652 * remember to update this too...
2653 */
2654 static struct dentry *__d_unalias(struct inode *inode,
2655 struct dentry *dentry, struct dentry *alias)
2656 {
2657 struct mutex *m1 = NULL, *m2 = NULL;
2658 struct dentry *ret = ERR_PTR(-EBUSY);
2659
2660 /* If alias and dentry share a parent, then no extra locks required */
2661 if (alias->d_parent == dentry->d_parent)
2662 goto out_unalias;
2663
2664 /* See lock_rename() */
2665 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2666 goto out_err;
2667 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2668 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2669 goto out_err;
2670 m2 = &alias->d_parent->d_inode->i_mutex;
2671 out_unalias:
2672 if (likely(!d_mountpoint(alias))) {
2673 __d_move(alias, dentry, false);
2674 ret = alias;
2675 }
2676 out_err:
2677 spin_unlock(&inode->i_lock);
2678 if (m2)
2679 mutex_unlock(m2);
2680 if (m1)
2681 mutex_unlock(m1);
2682 return ret;
2683 }
2684
2685 /**
2686 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2687 * @inode: the inode which may have a disconnected dentry
2688 * @dentry: a negative dentry which we want to point to the inode.
2689 *
2690 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2691 * place of the given dentry and return it, else simply d_add the inode
2692 * to the dentry and return NULL.
2693 *
2694 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2695 * we should error out: directories can't have multiple aliases.
2696 *
2697 * This is needed in the lookup routine of any filesystem that is exportable
2698 * (via knfsd) so that we can build dcache paths to directories effectively.
2699 *
2700 * If a dentry was found and moved, then it is returned. Otherwise NULL
2701 * is returned. This matches the expected return value of ->lookup.
2702 *
2703 * Cluster filesystems may call this function with a negative, hashed dentry.
2704 * In that case, we know that the inode will be a regular file, and also this
2705 * will only occur during atomic_open. So we need to check for the dentry
2706 * being already hashed only in the final case.
2707 */
2708 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2709 {
2710 struct dentry *new = NULL;
2711
2712 if (IS_ERR(inode))
2713 return ERR_CAST(inode);
2714
2715 if (inode && S_ISDIR(inode->i_mode)) {
2716 spin_lock(&inode->i_lock);
2717 new = __d_find_any_alias(inode);
2718 if (new) {
2719 if (!IS_ROOT(new)) {
2720 spin_unlock(&inode->i_lock);
2721 dput(new);
2722 return ERR_PTR(-EIO);
2723 }
2724 if (d_ancestor(new, dentry)) {
2725 spin_unlock(&inode->i_lock);
2726 dput(new);
2727 return ERR_PTR(-EIO);
2728 }
2729 write_seqlock(&rename_lock);
2730 __d_move(new, dentry, false);
2731 write_sequnlock(&rename_lock);
2732 spin_unlock(&inode->i_lock);
2733 security_d_instantiate(new, inode);
2734 iput(inode);
2735 } else {
2736 /* already taking inode->i_lock, so d_add() by hand */
2737 __d_instantiate(dentry, inode);
2738 spin_unlock(&inode->i_lock);
2739 security_d_instantiate(dentry, inode);
2740 d_rehash(dentry);
2741 }
2742 } else {
2743 d_instantiate(dentry, inode);
2744 if (d_unhashed(dentry))
2745 d_rehash(dentry);
2746 }
2747 return new;
2748 }
2749 EXPORT_SYMBOL(d_splice_alias);
2750
2751 /**
2752 * d_materialise_unique - introduce an inode into the tree
2753 * @dentry: candidate dentry
2754 * @inode: inode to bind to the dentry, to which aliases may be attached
2755 *
2756 * Introduces an dentry into the tree, substituting an extant disconnected
2757 * root directory alias in its place if there is one. Caller must hold the
2758 * i_mutex of the parent directory.
2759 */
2760 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2761 {
2762 struct dentry *actual;
2763
2764 BUG_ON(!d_unhashed(dentry));
2765
2766 if (!inode) {
2767 actual = dentry;
2768 __d_instantiate(dentry, NULL);
2769 d_rehash(actual);
2770 goto out_nolock;
2771 }
2772
2773 spin_lock(&inode->i_lock);
2774
2775 if (S_ISDIR(inode->i_mode)) {
2776 struct dentry *alias;
2777
2778 /* Does an aliased dentry already exist? */
2779 alias = __d_find_alias(inode);
2780 if (alias) {
2781 actual = alias;
2782 write_seqlock(&rename_lock);
2783
2784 if (d_ancestor(alias, dentry)) {
2785 /* Check for loops */
2786 actual = ERR_PTR(-ELOOP);
2787 spin_unlock(&inode->i_lock);
2788 } else if (IS_ROOT(alias)) {
2789 /* Is this an anonymous mountpoint that we
2790 * could splice into our tree? */
2791 __d_move(alias, dentry, false);
2792 write_sequnlock(&rename_lock);
2793 goto found;
2794 } else {
2795 /* Nope, but we must(!) avoid directory
2796 * aliasing. This drops inode->i_lock */
2797 actual = __d_unalias(inode, dentry, alias);
2798 }
2799 write_sequnlock(&rename_lock);
2800 if (IS_ERR(actual)) {
2801 if (PTR_ERR(actual) == -ELOOP)
2802 pr_warn_ratelimited(
2803 "VFS: Lookup of '%s' in %s %s"
2804 " would have caused loop\n",
2805 dentry->d_name.name,
2806 inode->i_sb->s_type->name,
2807 inode->i_sb->s_id);
2808 dput(alias);
2809 }
2810 goto out_nolock;
2811 }
2812 }
2813
2814 /* Add a unique reference */
2815 actual = __d_instantiate_unique(dentry, inode);
2816 if (!actual)
2817 actual = dentry;
2818
2819 d_rehash(actual);
2820 found:
2821 spin_unlock(&inode->i_lock);
2822 out_nolock:
2823 if (actual == dentry) {
2824 security_d_instantiate(dentry, inode);
2825 return NULL;
2826 }
2827
2828 iput(inode);
2829 return actual;
2830 }
2831 EXPORT_SYMBOL_GPL(d_materialise_unique);
2832
2833 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2834 {
2835 *buflen -= namelen;
2836 if (*buflen < 0)
2837 return -ENAMETOOLONG;
2838 *buffer -= namelen;
2839 memcpy(*buffer, str, namelen);
2840 return 0;
2841 }
2842
2843 /**
2844 * prepend_name - prepend a pathname in front of current buffer pointer
2845 * @buffer: buffer pointer
2846 * @buflen: allocated length of the buffer
2847 * @name: name string and length qstr structure
2848 *
2849 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2850 * make sure that either the old or the new name pointer and length are
2851 * fetched. However, there may be mismatch between length and pointer.
2852 * The length cannot be trusted, we need to copy it byte-by-byte until
2853 * the length is reached or a null byte is found. It also prepends "/" at
2854 * the beginning of the name. The sequence number check at the caller will
2855 * retry it again when a d_move() does happen. So any garbage in the buffer
2856 * due to mismatched pointer and length will be discarded.
2857 *
2858 * Data dependency barrier is needed to make sure that we see that terminating
2859 * NUL. Alpha strikes again, film at 11...
2860 */
2861 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2862 {
2863 const char *dname = ACCESS_ONCE(name->name);
2864 u32 dlen = ACCESS_ONCE(name->len);
2865 char *p;
2866
2867 smp_read_barrier_depends();
2868
2869 *buflen -= dlen + 1;
2870 if (*buflen < 0)
2871 return -ENAMETOOLONG;
2872 p = *buffer -= dlen + 1;
2873 *p++ = '/';
2874 while (dlen--) {
2875 char c = *dname++;
2876 if (!c)
2877 break;
2878 *p++ = c;
2879 }
2880 return 0;
2881 }
2882
2883 /**
2884 * prepend_path - Prepend path string to a buffer
2885 * @path: the dentry/vfsmount to report
2886 * @root: root vfsmnt/dentry
2887 * @buffer: pointer to the end of the buffer
2888 * @buflen: pointer to buffer length
2889 *
2890 * The function will first try to write out the pathname without taking any
2891 * lock other than the RCU read lock to make sure that dentries won't go away.
2892 * It only checks the sequence number of the global rename_lock as any change
2893 * in the dentry's d_seq will be preceded by changes in the rename_lock
2894 * sequence number. If the sequence number had been changed, it will restart
2895 * the whole pathname back-tracing sequence again by taking the rename_lock.
2896 * In this case, there is no need to take the RCU read lock as the recursive
2897 * parent pointer references will keep the dentry chain alive as long as no
2898 * rename operation is performed.
2899 */
2900 static int prepend_path(const struct path *path,
2901 const struct path *root,
2902 char **buffer, int *buflen)
2903 {
2904 struct dentry *dentry;
2905 struct vfsmount *vfsmnt;
2906 struct mount *mnt;
2907 int error = 0;
2908 unsigned seq, m_seq = 0;
2909 char *bptr;
2910 int blen;
2911
2912 rcu_read_lock();
2913 restart_mnt:
2914 read_seqbegin_or_lock(&mount_lock, &m_seq);
2915 seq = 0;
2916 rcu_read_lock();
2917 restart:
2918 bptr = *buffer;
2919 blen = *buflen;
2920 error = 0;
2921 dentry = path->dentry;
2922 vfsmnt = path->mnt;
2923 mnt = real_mount(vfsmnt);
2924 read_seqbegin_or_lock(&rename_lock, &seq);
2925 while (dentry != root->dentry || vfsmnt != root->mnt) {
2926 struct dentry * parent;
2927
2928 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2929 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2930 /* Global root? */
2931 if (mnt != parent) {
2932 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2933 mnt = parent;
2934 vfsmnt = &mnt->mnt;
2935 continue;
2936 }
2937 /*
2938 * Filesystems needing to implement special "root names"
2939 * should do so with ->d_dname()
2940 */
2941 if (IS_ROOT(dentry) &&
2942 (dentry->d_name.len != 1 ||
2943 dentry->d_name.name[0] != '/')) {
2944 WARN(1, "Root dentry has weird name <%.*s>\n",
2945 (int) dentry->d_name.len,
2946 dentry->d_name.name);
2947 }
2948 if (!error)
2949 error = is_mounted(vfsmnt) ? 1 : 2;
2950 break;
2951 }
2952 parent = dentry->d_parent;
2953 prefetch(parent);
2954 error = prepend_name(&bptr, &blen, &dentry->d_name);
2955 if (error)
2956 break;
2957
2958 dentry = parent;
2959 }
2960 if (!(seq & 1))
2961 rcu_read_unlock();
2962 if (need_seqretry(&rename_lock, seq)) {
2963 seq = 1;
2964 goto restart;
2965 }
2966 done_seqretry(&rename_lock, seq);
2967
2968 if (!(m_seq & 1))
2969 rcu_read_unlock();
2970 if (need_seqretry(&mount_lock, m_seq)) {
2971 m_seq = 1;
2972 goto restart_mnt;
2973 }
2974 done_seqretry(&mount_lock, m_seq);
2975
2976 if (error >= 0 && bptr == *buffer) {
2977 if (--blen < 0)
2978 error = -ENAMETOOLONG;
2979 else
2980 *--bptr = '/';
2981 }
2982 *buffer = bptr;
2983 *buflen = blen;
2984 return error;
2985 }
2986
2987 /**
2988 * __d_path - return the path of a dentry
2989 * @path: the dentry/vfsmount to report
2990 * @root: root vfsmnt/dentry
2991 * @buf: buffer to return value in
2992 * @buflen: buffer length
2993 *
2994 * Convert a dentry into an ASCII path name.
2995 *
2996 * Returns a pointer into the buffer or an error code if the
2997 * path was too long.
2998 *
2999 * "buflen" should be positive.
3000 *
3001 * If the path is not reachable from the supplied root, return %NULL.
3002 */
3003 char *__d_path(const struct path *path,
3004 const struct path *root,
3005 char *buf, int buflen)
3006 {
3007 char *res = buf + buflen;
3008 int error;
3009
3010 prepend(&res, &buflen, "\0", 1);
3011 error = prepend_path(path, root, &res, &buflen);
3012
3013 if (error < 0)
3014 return ERR_PTR(error);
3015 if (error > 0)
3016 return NULL;
3017 return res;
3018 }
3019
3020 char *d_absolute_path(const struct path *path,
3021 char *buf, int buflen)
3022 {
3023 struct path root = {};
3024 char *res = buf + buflen;
3025 int error;
3026
3027 prepend(&res, &buflen, "\0", 1);
3028 error = prepend_path(path, &root, &res, &buflen);
3029
3030 if (error > 1)
3031 error = -EINVAL;
3032 if (error < 0)
3033 return ERR_PTR(error);
3034 return res;
3035 }
3036
3037 /*
3038 * same as __d_path but appends "(deleted)" for unlinked files.
3039 */
3040 static int path_with_deleted(const struct path *path,
3041 const struct path *root,
3042 char **buf, int *buflen)
3043 {
3044 prepend(buf, buflen, "\0", 1);
3045 if (d_unlinked(path->dentry)) {
3046 int error = prepend(buf, buflen, " (deleted)", 10);
3047 if (error)
3048 return error;
3049 }
3050
3051 return prepend_path(path, root, buf, buflen);
3052 }
3053
3054 static int prepend_unreachable(char **buffer, int *buflen)
3055 {
3056 return prepend(buffer, buflen, "(unreachable)", 13);
3057 }
3058
3059 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3060 {
3061 unsigned seq;
3062
3063 do {
3064 seq = read_seqcount_begin(&fs->seq);
3065 *root = fs->root;
3066 } while (read_seqcount_retry(&fs->seq, seq));
3067 }
3068
3069 /**
3070 * d_path - return the path of a dentry
3071 * @path: path to report
3072 * @buf: buffer to return value in
3073 * @buflen: buffer length
3074 *
3075 * Convert a dentry into an ASCII path name. If the entry has been deleted
3076 * the string " (deleted)" is appended. Note that this is ambiguous.
3077 *
3078 * Returns a pointer into the buffer or an error code if the path was
3079 * too long. Note: Callers should use the returned pointer, not the passed
3080 * in buffer, to use the name! The implementation often starts at an offset
3081 * into the buffer, and may leave 0 bytes at the start.
3082 *
3083 * "buflen" should be positive.
3084 */
3085 char *d_path(const struct path *path, char *buf, int buflen)
3086 {
3087 char *res = buf + buflen;
3088 struct path root;
3089 int error;
3090
3091 /*
3092 * We have various synthetic filesystems that never get mounted. On
3093 * these filesystems dentries are never used for lookup purposes, and
3094 * thus don't need to be hashed. They also don't need a name until a
3095 * user wants to identify the object in /proc/pid/fd/. The little hack
3096 * below allows us to generate a name for these objects on demand:
3097 *
3098 * Some pseudo inodes are mountable. When they are mounted
3099 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3100 * and instead have d_path return the mounted path.
3101 */
3102 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3103 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3104 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3105
3106 rcu_read_lock();
3107 get_fs_root_rcu(current->fs, &root);
3108 error = path_with_deleted(path, &root, &res, &buflen);
3109 rcu_read_unlock();
3110
3111 if (error < 0)
3112 res = ERR_PTR(error);
3113 return res;
3114 }
3115 EXPORT_SYMBOL(d_path);
3116
3117 /*
3118 * Helper function for dentry_operations.d_dname() members
3119 */
3120 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3121 const char *fmt, ...)
3122 {
3123 va_list args;
3124 char temp[64];
3125 int sz;
3126
3127 va_start(args, fmt);
3128 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3129 va_end(args);
3130
3131 if (sz > sizeof(temp) || sz > buflen)
3132 return ERR_PTR(-ENAMETOOLONG);
3133
3134 buffer += buflen - sz;
3135 return memcpy(buffer, temp, sz);
3136 }
3137
3138 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3139 {
3140 char *end = buffer + buflen;
3141 /* these dentries are never renamed, so d_lock is not needed */
3142 if (prepend(&end, &buflen, " (deleted)", 11) ||
3143 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3144 prepend(&end, &buflen, "/", 1))
3145 end = ERR_PTR(-ENAMETOOLONG);
3146 return end;
3147 }
3148 EXPORT_SYMBOL(simple_dname);
3149
3150 /*
3151 * Write full pathname from the root of the filesystem into the buffer.
3152 */
3153 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3154 {
3155 struct dentry *dentry;
3156 char *end, *retval;
3157 int len, seq = 0;
3158 int error = 0;
3159
3160 if (buflen < 2)
3161 goto Elong;
3162
3163 rcu_read_lock();
3164 restart:
3165 dentry = d;
3166 end = buf + buflen;
3167 len = buflen;
3168 prepend(&end, &len, "\0", 1);
3169 /* Get '/' right */
3170 retval = end-1;
3171 *retval = '/';
3172 read_seqbegin_or_lock(&rename_lock, &seq);
3173 while (!IS_ROOT(dentry)) {
3174 struct dentry *parent = dentry->d_parent;
3175
3176 prefetch(parent);
3177 error = prepend_name(&end, &len, &dentry->d_name);
3178 if (error)
3179 break;
3180
3181 retval = end;
3182 dentry = parent;
3183 }
3184 if (!(seq & 1))
3185 rcu_read_unlock();
3186 if (need_seqretry(&rename_lock, seq)) {
3187 seq = 1;
3188 goto restart;
3189 }
3190 done_seqretry(&rename_lock, seq);
3191 if (error)
3192 goto Elong;
3193 return retval;
3194 Elong:
3195 return ERR_PTR(-ENAMETOOLONG);
3196 }
3197
3198 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3199 {
3200 return __dentry_path(dentry, buf, buflen);
3201 }
3202 EXPORT_SYMBOL(dentry_path_raw);
3203
3204 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3205 {
3206 char *p = NULL;
3207 char *retval;
3208
3209 if (d_unlinked(dentry)) {
3210 p = buf + buflen;
3211 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3212 goto Elong;
3213 buflen++;
3214 }
3215 retval = __dentry_path(dentry, buf, buflen);
3216 if (!IS_ERR(retval) && p)
3217 *p = '/'; /* restore '/' overriden with '\0' */
3218 return retval;
3219 Elong:
3220 return ERR_PTR(-ENAMETOOLONG);
3221 }
3222
3223 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3224 struct path *pwd)
3225 {
3226 unsigned seq;
3227
3228 do {
3229 seq = read_seqcount_begin(&fs->seq);
3230 *root = fs->root;
3231 *pwd = fs->pwd;
3232 } while (read_seqcount_retry(&fs->seq, seq));
3233 }
3234
3235 /*
3236 * NOTE! The user-level library version returns a
3237 * character pointer. The kernel system call just
3238 * returns the length of the buffer filled (which
3239 * includes the ending '\0' character), or a negative
3240 * error value. So libc would do something like
3241 *
3242 * char *getcwd(char * buf, size_t size)
3243 * {
3244 * int retval;
3245 *
3246 * retval = sys_getcwd(buf, size);
3247 * if (retval >= 0)
3248 * return buf;
3249 * errno = -retval;
3250 * return NULL;
3251 * }
3252 */
3253 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3254 {
3255 int error;
3256 struct path pwd, root;
3257 char *page = __getname();
3258
3259 if (!page)
3260 return -ENOMEM;
3261
3262 rcu_read_lock();
3263 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3264
3265 error = -ENOENT;
3266 if (!d_unlinked(pwd.dentry)) {
3267 unsigned long len;
3268 char *cwd = page + PATH_MAX;
3269 int buflen = PATH_MAX;
3270
3271 prepend(&cwd, &buflen, "\0", 1);
3272 error = prepend_path(&pwd, &root, &cwd, &buflen);
3273 rcu_read_unlock();
3274
3275 if (error < 0)
3276 goto out;
3277
3278 /* Unreachable from current root */
3279 if (error > 0) {
3280 error = prepend_unreachable(&cwd, &buflen);
3281 if (error)
3282 goto out;
3283 }
3284
3285 error = -ERANGE;
3286 len = PATH_MAX + page - cwd;
3287 if (len <= size) {
3288 error = len;
3289 if (copy_to_user(buf, cwd, len))
3290 error = -EFAULT;
3291 }
3292 } else {
3293 rcu_read_unlock();
3294 }
3295
3296 out:
3297 __putname(page);
3298 return error;
3299 }
3300
3301 /*
3302 * Test whether new_dentry is a subdirectory of old_dentry.
3303 *
3304 * Trivially implemented using the dcache structure
3305 */
3306
3307 /**
3308 * is_subdir - is new dentry a subdirectory of old_dentry
3309 * @new_dentry: new dentry
3310 * @old_dentry: old dentry
3311 *
3312 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3313 * Returns 0 otherwise.
3314 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3315 */
3316
3317 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3318 {
3319 int result;
3320 unsigned seq;
3321
3322 if (new_dentry == old_dentry)
3323 return 1;
3324
3325 do {
3326 /* for restarting inner loop in case of seq retry */
3327 seq = read_seqbegin(&rename_lock);
3328 /*
3329 * Need rcu_readlock to protect against the d_parent trashing
3330 * due to d_move
3331 */
3332 rcu_read_lock();
3333 if (d_ancestor(old_dentry, new_dentry))
3334 result = 1;
3335 else
3336 result = 0;
3337 rcu_read_unlock();
3338 } while (read_seqretry(&rename_lock, seq));
3339
3340 return result;
3341 }
3342
3343 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3344 {
3345 struct dentry *root = data;
3346 if (dentry != root) {
3347 if (d_unhashed(dentry) || !dentry->d_inode)
3348 return D_WALK_SKIP;
3349
3350 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3351 dentry->d_flags |= DCACHE_GENOCIDE;
3352 dentry->d_lockref.count--;
3353 }
3354 }
3355 return D_WALK_CONTINUE;
3356 }
3357
3358 void d_genocide(struct dentry *parent)
3359 {
3360 d_walk(parent, parent, d_genocide_kill, NULL);
3361 }
3362
3363 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3364 {
3365 inode_dec_link_count(inode);
3366 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3367 !hlist_unhashed(&dentry->d_alias) ||
3368 !d_unlinked(dentry));
3369 spin_lock(&dentry->d_parent->d_lock);
3370 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3371 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3372 (unsigned long long)inode->i_ino);
3373 spin_unlock(&dentry->d_lock);
3374 spin_unlock(&dentry->d_parent->d_lock);
3375 d_instantiate(dentry, inode);
3376 }
3377 EXPORT_SYMBOL(d_tmpfile);
3378
3379 static __initdata unsigned long dhash_entries;
3380 static int __init set_dhash_entries(char *str)
3381 {
3382 if (!str)
3383 return 0;
3384 dhash_entries = simple_strtoul(str, &str, 0);
3385 return 1;
3386 }
3387 __setup("dhash_entries=", set_dhash_entries);
3388
3389 static void __init dcache_init_early(void)
3390 {
3391 unsigned int loop;
3392
3393 /* If hashes are distributed across NUMA nodes, defer
3394 * hash allocation until vmalloc space is available.
3395 */
3396 if (hashdist)
3397 return;
3398
3399 dentry_hashtable =
3400 alloc_large_system_hash("Dentry cache",
3401 sizeof(struct hlist_bl_head),
3402 dhash_entries,
3403 13,
3404 HASH_EARLY,
3405 &d_hash_shift,
3406 &d_hash_mask,
3407 0,
3408 0);
3409
3410 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3411 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3412 }
3413
3414 static void __init dcache_init(void)
3415 {
3416 unsigned int loop;
3417
3418 /*
3419 * A constructor could be added for stable state like the lists,
3420 * but it is probably not worth it because of the cache nature
3421 * of the dcache.
3422 */
3423 dentry_cache = KMEM_CACHE(dentry,
3424 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3425
3426 /* Hash may have been set up in dcache_init_early */
3427 if (!hashdist)
3428 return;
3429
3430 dentry_hashtable =
3431 alloc_large_system_hash("Dentry cache",
3432 sizeof(struct hlist_bl_head),
3433 dhash_entries,
3434 13,
3435 0,
3436 &d_hash_shift,
3437 &d_hash_mask,
3438 0,
3439 0);
3440
3441 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3442 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3443 }
3444
3445 /* SLAB cache for __getname() consumers */
3446 struct kmem_cache *names_cachep __read_mostly;
3447 EXPORT_SYMBOL(names_cachep);
3448
3449 EXPORT_SYMBOL(d_genocide);
3450
3451 void __init vfs_caches_init_early(void)
3452 {
3453 dcache_init_early();
3454 inode_init_early();
3455 }
3456
3457 void __init vfs_caches_init(unsigned long mempages)
3458 {
3459 unsigned long reserve;
3460
3461 /* Base hash sizes on available memory, with a reserve equal to
3462 150% of current kernel size */
3463
3464 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3465 mempages -= reserve;
3466
3467 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3468 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3469
3470 dcache_init();
3471 inode_init();
3472 files_init(mempages);
3473 mnt_init();
3474 bdev_cache_init();
3475 chrdev_init();
3476 }
This page took 0.144132 seconds and 5 git commands to generate.