dcache.c: call ->d_prune() regardless of d_unhashed()
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43
44 /*
45 * Usage:
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
58 * - d_count
59 * - d_unhashed()
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_alias, d_inode
63 *
64 * Ordering:
65 * dentry->d_inode->i_lock
66 * dentry->d_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
69 * s_anon lock
70 *
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 unsigned int hash)
107 {
108 hash += (unsigned long) parent / L1_CACHE_BYTES;
109 return dentry_hashtable + hash_32(hash, d_hash_shift);
110 }
111
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat = {
114 .age_limit = 45,
115 };
116
117 static DEFINE_PER_CPU(long, nr_dentry);
118 static DEFINE_PER_CPU(long, nr_dentry_unused);
119
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121
122 /*
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
126 *
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
130 *
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
133 */
134 static long get_nr_dentry(void)
135 {
136 int i;
137 long sum = 0;
138 for_each_possible_cpu(i)
139 sum += per_cpu(nr_dentry, i);
140 return sum < 0 ? 0 : sum;
141 }
142
143 static long get_nr_dentry_unused(void)
144 {
145 int i;
146 long sum = 0;
147 for_each_possible_cpu(i)
148 sum += per_cpu(nr_dentry_unused, i);
149 return sum < 0 ? 0 : sum;
150 }
151
152 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
153 size_t *lenp, loff_t *ppos)
154 {
155 dentry_stat.nr_dentry = get_nr_dentry();
156 dentry_stat.nr_unused = get_nr_dentry_unused();
157 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
158 }
159 #endif
160
161 /*
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
164 */
165 #ifdef CONFIG_DCACHE_WORD_ACCESS
166
167 #include <asm/word-at-a-time.h>
168 /*
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
173 *
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
176 */
177 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
178 {
179 unsigned long a,b,mask;
180
181 for (;;) {
182 a = *(unsigned long *)cs;
183 b = load_unaligned_zeropad(ct);
184 if (tcount < sizeof(unsigned long))
185 break;
186 if (unlikely(a != b))
187 return 1;
188 cs += sizeof(unsigned long);
189 ct += sizeof(unsigned long);
190 tcount -= sizeof(unsigned long);
191 if (!tcount)
192 return 0;
193 }
194 mask = bytemask_from_count(tcount);
195 return unlikely(!!((a ^ b) & mask));
196 }
197
198 #else
199
200 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
201 {
202 do {
203 if (*cs != *ct)
204 return 1;
205 cs++;
206 ct++;
207 tcount--;
208 } while (tcount);
209 return 0;
210 }
211
212 #endif
213
214 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
215 {
216 const unsigned char *cs;
217 /*
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
220 *
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
228 *
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
232 */
233 cs = ACCESS_ONCE(dentry->d_name.name);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs, ct, tcount);
236 }
237
238 struct external_name {
239 union {
240 atomic_t count;
241 struct rcu_head head;
242 } u;
243 unsigned char name[];
244 };
245
246 static inline struct external_name *external_name(struct dentry *dentry)
247 {
248 return container_of(dentry->d_name.name, struct external_name, name[0]);
249 }
250
251 static void __d_free(struct rcu_head *head)
252 {
253 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
254
255 WARN_ON(!hlist_unhashed(&dentry->d_alias));
256 kmem_cache_free(dentry_cache, dentry);
257 }
258
259 static void __d_free_external(struct rcu_head *head)
260 {
261 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
262 WARN_ON(!hlist_unhashed(&dentry->d_alias));
263 kfree(external_name(dentry));
264 kmem_cache_free(dentry_cache, dentry);
265 }
266
267 static void dentry_free(struct dentry *dentry)
268 {
269 if (unlikely(dname_external(dentry))) {
270 struct external_name *p = external_name(dentry);
271 if (likely(atomic_dec_and_test(&p->u.count))) {
272 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
273 return;
274 }
275 }
276 /* if dentry was never visible to RCU, immediate free is OK */
277 if (!(dentry->d_flags & DCACHE_RCUACCESS))
278 __d_free(&dentry->d_u.d_rcu);
279 else
280 call_rcu(&dentry->d_u.d_rcu, __d_free);
281 }
282
283 /**
284 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
285 * @dentry: the target dentry
286 * After this call, in-progress rcu-walk path lookup will fail. This
287 * should be called after unhashing, and after changing d_inode (if
288 * the dentry has not already been unhashed).
289 */
290 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
291 {
292 assert_spin_locked(&dentry->d_lock);
293 /* Go through a barrier */
294 write_seqcount_barrier(&dentry->d_seq);
295 }
296
297 /*
298 * Release the dentry's inode, using the filesystem
299 * d_iput() operation if defined. Dentry has no refcount
300 * and is unhashed.
301 */
302 static void dentry_iput(struct dentry * dentry)
303 __releases(dentry->d_lock)
304 __releases(dentry->d_inode->i_lock)
305 {
306 struct inode *inode = dentry->d_inode;
307 if (inode) {
308 dentry->d_inode = NULL;
309 hlist_del_init(&dentry->d_alias);
310 spin_unlock(&dentry->d_lock);
311 spin_unlock(&inode->i_lock);
312 if (!inode->i_nlink)
313 fsnotify_inoderemove(inode);
314 if (dentry->d_op && dentry->d_op->d_iput)
315 dentry->d_op->d_iput(dentry, inode);
316 else
317 iput(inode);
318 } else {
319 spin_unlock(&dentry->d_lock);
320 }
321 }
322
323 /*
324 * Release the dentry's inode, using the filesystem
325 * d_iput() operation if defined. dentry remains in-use.
326 */
327 static void dentry_unlink_inode(struct dentry * dentry)
328 __releases(dentry->d_lock)
329 __releases(dentry->d_inode->i_lock)
330 {
331 struct inode *inode = dentry->d_inode;
332 __d_clear_type(dentry);
333 dentry->d_inode = NULL;
334 hlist_del_init(&dentry->d_alias);
335 dentry_rcuwalk_barrier(dentry);
336 spin_unlock(&dentry->d_lock);
337 spin_unlock(&inode->i_lock);
338 if (!inode->i_nlink)
339 fsnotify_inoderemove(inode);
340 if (dentry->d_op && dentry->d_op->d_iput)
341 dentry->d_op->d_iput(dentry, inode);
342 else
343 iput(inode);
344 }
345
346 /*
347 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
348 * is in use - which includes both the "real" per-superblock
349 * LRU list _and_ the DCACHE_SHRINK_LIST use.
350 *
351 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
352 * on the shrink list (ie not on the superblock LRU list).
353 *
354 * The per-cpu "nr_dentry_unused" counters are updated with
355 * the DCACHE_LRU_LIST bit.
356 *
357 * These helper functions make sure we always follow the
358 * rules. d_lock must be held by the caller.
359 */
360 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
361 static void d_lru_add(struct dentry *dentry)
362 {
363 D_FLAG_VERIFY(dentry, 0);
364 dentry->d_flags |= DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
367 }
368
369 static void d_lru_del(struct dentry *dentry)
370 {
371 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
372 dentry->d_flags &= ~DCACHE_LRU_LIST;
373 this_cpu_dec(nr_dentry_unused);
374 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
375 }
376
377 static void d_shrink_del(struct dentry *dentry)
378 {
379 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
380 list_del_init(&dentry->d_lru);
381 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
382 this_cpu_dec(nr_dentry_unused);
383 }
384
385 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
386 {
387 D_FLAG_VERIFY(dentry, 0);
388 list_add(&dentry->d_lru, list);
389 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
390 this_cpu_inc(nr_dentry_unused);
391 }
392
393 /*
394 * These can only be called under the global LRU lock, ie during the
395 * callback for freeing the LRU list. "isolate" removes it from the
396 * LRU lists entirely, while shrink_move moves it to the indicated
397 * private list.
398 */
399 static void d_lru_isolate(struct dentry *dentry)
400 {
401 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 dentry->d_flags &= ~DCACHE_LRU_LIST;
403 this_cpu_dec(nr_dentry_unused);
404 list_del_init(&dentry->d_lru);
405 }
406
407 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
408 {
409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 dentry->d_flags |= DCACHE_SHRINK_LIST;
411 list_move_tail(&dentry->d_lru, list);
412 }
413
414 /*
415 * dentry_lru_(add|del)_list) must be called with d_lock held.
416 */
417 static void dentry_lru_add(struct dentry *dentry)
418 {
419 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
420 d_lru_add(dentry);
421 }
422
423 /**
424 * d_drop - drop a dentry
425 * @dentry: dentry to drop
426 *
427 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
428 * be found through a VFS lookup any more. Note that this is different from
429 * deleting the dentry - d_delete will try to mark the dentry negative if
430 * possible, giving a successful _negative_ lookup, while d_drop will
431 * just make the cache lookup fail.
432 *
433 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
434 * reason (NFS timeouts or autofs deletes).
435 *
436 * __d_drop requires dentry->d_lock.
437 */
438 void __d_drop(struct dentry *dentry)
439 {
440 if (!d_unhashed(dentry)) {
441 struct hlist_bl_head *b;
442 /*
443 * Hashed dentries are normally on the dentry hashtable,
444 * with the exception of those newly allocated by
445 * d_obtain_alias, which are always IS_ROOT:
446 */
447 if (unlikely(IS_ROOT(dentry)))
448 b = &dentry->d_sb->s_anon;
449 else
450 b = d_hash(dentry->d_parent, dentry->d_name.hash);
451
452 hlist_bl_lock(b);
453 __hlist_bl_del(&dentry->d_hash);
454 dentry->d_hash.pprev = NULL;
455 hlist_bl_unlock(b);
456 dentry_rcuwalk_barrier(dentry);
457 }
458 }
459 EXPORT_SYMBOL(__d_drop);
460
461 void d_drop(struct dentry *dentry)
462 {
463 spin_lock(&dentry->d_lock);
464 __d_drop(dentry);
465 spin_unlock(&dentry->d_lock);
466 }
467 EXPORT_SYMBOL(d_drop);
468
469 static void __dentry_kill(struct dentry *dentry)
470 {
471 struct dentry *parent = NULL;
472 bool can_free = true;
473 if (!IS_ROOT(dentry))
474 parent = dentry->d_parent;
475
476 /*
477 * The dentry is now unrecoverably dead to the world.
478 */
479 lockref_mark_dead(&dentry->d_lockref);
480
481 /*
482 * inform the fs via d_prune that this dentry is about to be
483 * unhashed and destroyed.
484 */
485 if (dentry->d_flags & DCACHE_OP_PRUNE)
486 dentry->d_op->d_prune(dentry);
487
488 if (dentry->d_flags & DCACHE_LRU_LIST) {
489 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
490 d_lru_del(dentry);
491 }
492 /* if it was on the hash then remove it */
493 __d_drop(dentry);
494 list_del(&dentry->d_u.d_child);
495 /*
496 * Inform d_walk() that we are no longer attached to the
497 * dentry tree
498 */
499 dentry->d_flags |= DCACHE_DENTRY_KILLED;
500 if (parent)
501 spin_unlock(&parent->d_lock);
502 dentry_iput(dentry);
503 /*
504 * dentry_iput drops the locks, at which point nobody (except
505 * transient RCU lookups) can reach this dentry.
506 */
507 BUG_ON((int)dentry->d_lockref.count > 0);
508 this_cpu_dec(nr_dentry);
509 if (dentry->d_op && dentry->d_op->d_release)
510 dentry->d_op->d_release(dentry);
511
512 spin_lock(&dentry->d_lock);
513 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
514 dentry->d_flags |= DCACHE_MAY_FREE;
515 can_free = false;
516 }
517 spin_unlock(&dentry->d_lock);
518 if (likely(can_free))
519 dentry_free(dentry);
520 }
521
522 /*
523 * Finish off a dentry we've decided to kill.
524 * dentry->d_lock must be held, returns with it unlocked.
525 * If ref is non-zero, then decrement the refcount too.
526 * Returns dentry requiring refcount drop, or NULL if we're done.
527 */
528 static struct dentry *dentry_kill(struct dentry *dentry)
529 __releases(dentry->d_lock)
530 {
531 struct inode *inode = dentry->d_inode;
532 struct dentry *parent = NULL;
533
534 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
535 goto failed;
536
537 if (!IS_ROOT(dentry)) {
538 parent = dentry->d_parent;
539 if (unlikely(!spin_trylock(&parent->d_lock))) {
540 if (inode)
541 spin_unlock(&inode->i_lock);
542 goto failed;
543 }
544 }
545
546 __dentry_kill(dentry);
547 return parent;
548
549 failed:
550 spin_unlock(&dentry->d_lock);
551 cpu_relax();
552 return dentry; /* try again with same dentry */
553 }
554
555 static inline struct dentry *lock_parent(struct dentry *dentry)
556 {
557 struct dentry *parent = dentry->d_parent;
558 if (IS_ROOT(dentry))
559 return NULL;
560 if (unlikely((int)dentry->d_lockref.count < 0))
561 return NULL;
562 if (likely(spin_trylock(&parent->d_lock)))
563 return parent;
564 rcu_read_lock();
565 spin_unlock(&dentry->d_lock);
566 again:
567 parent = ACCESS_ONCE(dentry->d_parent);
568 spin_lock(&parent->d_lock);
569 /*
570 * We can't blindly lock dentry until we are sure
571 * that we won't violate the locking order.
572 * Any changes of dentry->d_parent must have
573 * been done with parent->d_lock held, so
574 * spin_lock() above is enough of a barrier
575 * for checking if it's still our child.
576 */
577 if (unlikely(parent != dentry->d_parent)) {
578 spin_unlock(&parent->d_lock);
579 goto again;
580 }
581 rcu_read_unlock();
582 if (parent != dentry)
583 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
584 else
585 parent = NULL;
586 return parent;
587 }
588
589 /*
590 * This is dput
591 *
592 * This is complicated by the fact that we do not want to put
593 * dentries that are no longer on any hash chain on the unused
594 * list: we'd much rather just get rid of them immediately.
595 *
596 * However, that implies that we have to traverse the dentry
597 * tree upwards to the parents which might _also_ now be
598 * scheduled for deletion (it may have been only waiting for
599 * its last child to go away).
600 *
601 * This tail recursion is done by hand as we don't want to depend
602 * on the compiler to always get this right (gcc generally doesn't).
603 * Real recursion would eat up our stack space.
604 */
605
606 /*
607 * dput - release a dentry
608 * @dentry: dentry to release
609 *
610 * Release a dentry. This will drop the usage count and if appropriate
611 * call the dentry unlink method as well as removing it from the queues and
612 * releasing its resources. If the parent dentries were scheduled for release
613 * they too may now get deleted.
614 */
615 void dput(struct dentry *dentry)
616 {
617 if (unlikely(!dentry))
618 return;
619
620 repeat:
621 if (lockref_put_or_lock(&dentry->d_lockref))
622 return;
623
624 /* Unreachable? Get rid of it */
625 if (unlikely(d_unhashed(dentry)))
626 goto kill_it;
627
628 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
629 if (dentry->d_op->d_delete(dentry))
630 goto kill_it;
631 }
632
633 if (!(dentry->d_flags & DCACHE_REFERENCED))
634 dentry->d_flags |= DCACHE_REFERENCED;
635 dentry_lru_add(dentry);
636
637 dentry->d_lockref.count--;
638 spin_unlock(&dentry->d_lock);
639 return;
640
641 kill_it:
642 dentry = dentry_kill(dentry);
643 if (dentry)
644 goto repeat;
645 }
646 EXPORT_SYMBOL(dput);
647
648
649 /* This must be called with d_lock held */
650 static inline void __dget_dlock(struct dentry *dentry)
651 {
652 dentry->d_lockref.count++;
653 }
654
655 static inline void __dget(struct dentry *dentry)
656 {
657 lockref_get(&dentry->d_lockref);
658 }
659
660 struct dentry *dget_parent(struct dentry *dentry)
661 {
662 int gotref;
663 struct dentry *ret;
664
665 /*
666 * Do optimistic parent lookup without any
667 * locking.
668 */
669 rcu_read_lock();
670 ret = ACCESS_ONCE(dentry->d_parent);
671 gotref = lockref_get_not_zero(&ret->d_lockref);
672 rcu_read_unlock();
673 if (likely(gotref)) {
674 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
675 return ret;
676 dput(ret);
677 }
678
679 repeat:
680 /*
681 * Don't need rcu_dereference because we re-check it was correct under
682 * the lock.
683 */
684 rcu_read_lock();
685 ret = dentry->d_parent;
686 spin_lock(&ret->d_lock);
687 if (unlikely(ret != dentry->d_parent)) {
688 spin_unlock(&ret->d_lock);
689 rcu_read_unlock();
690 goto repeat;
691 }
692 rcu_read_unlock();
693 BUG_ON(!ret->d_lockref.count);
694 ret->d_lockref.count++;
695 spin_unlock(&ret->d_lock);
696 return ret;
697 }
698 EXPORT_SYMBOL(dget_parent);
699
700 /**
701 * d_find_alias - grab a hashed alias of inode
702 * @inode: inode in question
703 *
704 * If inode has a hashed alias, or is a directory and has any alias,
705 * acquire the reference to alias and return it. Otherwise return NULL.
706 * Notice that if inode is a directory there can be only one alias and
707 * it can be unhashed only if it has no children, or if it is the root
708 * of a filesystem, or if the directory was renamed and d_revalidate
709 * was the first vfs operation to notice.
710 *
711 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
712 * any other hashed alias over that one.
713 */
714 static struct dentry *__d_find_alias(struct inode *inode)
715 {
716 struct dentry *alias, *discon_alias;
717
718 again:
719 discon_alias = NULL;
720 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
721 spin_lock(&alias->d_lock);
722 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
723 if (IS_ROOT(alias) &&
724 (alias->d_flags & DCACHE_DISCONNECTED)) {
725 discon_alias = alias;
726 } else {
727 __dget_dlock(alias);
728 spin_unlock(&alias->d_lock);
729 return alias;
730 }
731 }
732 spin_unlock(&alias->d_lock);
733 }
734 if (discon_alias) {
735 alias = discon_alias;
736 spin_lock(&alias->d_lock);
737 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
738 __dget_dlock(alias);
739 spin_unlock(&alias->d_lock);
740 return alias;
741 }
742 spin_unlock(&alias->d_lock);
743 goto again;
744 }
745 return NULL;
746 }
747
748 struct dentry *d_find_alias(struct inode *inode)
749 {
750 struct dentry *de = NULL;
751
752 if (!hlist_empty(&inode->i_dentry)) {
753 spin_lock(&inode->i_lock);
754 de = __d_find_alias(inode);
755 spin_unlock(&inode->i_lock);
756 }
757 return de;
758 }
759 EXPORT_SYMBOL(d_find_alias);
760
761 /*
762 * Try to kill dentries associated with this inode.
763 * WARNING: you must own a reference to inode.
764 */
765 void d_prune_aliases(struct inode *inode)
766 {
767 struct dentry *dentry;
768 restart:
769 spin_lock(&inode->i_lock);
770 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
771 spin_lock(&dentry->d_lock);
772 if (!dentry->d_lockref.count) {
773 struct dentry *parent = lock_parent(dentry);
774 if (likely(!dentry->d_lockref.count)) {
775 __dentry_kill(dentry);
776 goto restart;
777 }
778 if (parent)
779 spin_unlock(&parent->d_lock);
780 }
781 spin_unlock(&dentry->d_lock);
782 }
783 spin_unlock(&inode->i_lock);
784 }
785 EXPORT_SYMBOL(d_prune_aliases);
786
787 static void shrink_dentry_list(struct list_head *list)
788 {
789 struct dentry *dentry, *parent;
790
791 while (!list_empty(list)) {
792 struct inode *inode;
793 dentry = list_entry(list->prev, struct dentry, d_lru);
794 spin_lock(&dentry->d_lock);
795 parent = lock_parent(dentry);
796
797 /*
798 * The dispose list is isolated and dentries are not accounted
799 * to the LRU here, so we can simply remove it from the list
800 * here regardless of whether it is referenced or not.
801 */
802 d_shrink_del(dentry);
803
804 /*
805 * We found an inuse dentry which was not removed from
806 * the LRU because of laziness during lookup. Do not free it.
807 */
808 if ((int)dentry->d_lockref.count > 0) {
809 spin_unlock(&dentry->d_lock);
810 if (parent)
811 spin_unlock(&parent->d_lock);
812 continue;
813 }
814
815
816 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
817 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
818 spin_unlock(&dentry->d_lock);
819 if (parent)
820 spin_unlock(&parent->d_lock);
821 if (can_free)
822 dentry_free(dentry);
823 continue;
824 }
825
826 inode = dentry->d_inode;
827 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
828 d_shrink_add(dentry, list);
829 spin_unlock(&dentry->d_lock);
830 if (parent)
831 spin_unlock(&parent->d_lock);
832 continue;
833 }
834
835 __dentry_kill(dentry);
836
837 /*
838 * We need to prune ancestors too. This is necessary to prevent
839 * quadratic behavior of shrink_dcache_parent(), but is also
840 * expected to be beneficial in reducing dentry cache
841 * fragmentation.
842 */
843 dentry = parent;
844 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
845 parent = lock_parent(dentry);
846 if (dentry->d_lockref.count != 1) {
847 dentry->d_lockref.count--;
848 spin_unlock(&dentry->d_lock);
849 if (parent)
850 spin_unlock(&parent->d_lock);
851 break;
852 }
853 inode = dentry->d_inode; /* can't be NULL */
854 if (unlikely(!spin_trylock(&inode->i_lock))) {
855 spin_unlock(&dentry->d_lock);
856 if (parent)
857 spin_unlock(&parent->d_lock);
858 cpu_relax();
859 continue;
860 }
861 __dentry_kill(dentry);
862 dentry = parent;
863 }
864 }
865 }
866
867 static enum lru_status
868 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
869 {
870 struct list_head *freeable = arg;
871 struct dentry *dentry = container_of(item, struct dentry, d_lru);
872
873
874 /*
875 * we are inverting the lru lock/dentry->d_lock here,
876 * so use a trylock. If we fail to get the lock, just skip
877 * it
878 */
879 if (!spin_trylock(&dentry->d_lock))
880 return LRU_SKIP;
881
882 /*
883 * Referenced dentries are still in use. If they have active
884 * counts, just remove them from the LRU. Otherwise give them
885 * another pass through the LRU.
886 */
887 if (dentry->d_lockref.count) {
888 d_lru_isolate(dentry);
889 spin_unlock(&dentry->d_lock);
890 return LRU_REMOVED;
891 }
892
893 if (dentry->d_flags & DCACHE_REFERENCED) {
894 dentry->d_flags &= ~DCACHE_REFERENCED;
895 spin_unlock(&dentry->d_lock);
896
897 /*
898 * The list move itself will be made by the common LRU code. At
899 * this point, we've dropped the dentry->d_lock but keep the
900 * lru lock. This is safe to do, since every list movement is
901 * protected by the lru lock even if both locks are held.
902 *
903 * This is guaranteed by the fact that all LRU management
904 * functions are intermediated by the LRU API calls like
905 * list_lru_add and list_lru_del. List movement in this file
906 * only ever occur through this functions or through callbacks
907 * like this one, that are called from the LRU API.
908 *
909 * The only exceptions to this are functions like
910 * shrink_dentry_list, and code that first checks for the
911 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
912 * operating only with stack provided lists after they are
913 * properly isolated from the main list. It is thus, always a
914 * local access.
915 */
916 return LRU_ROTATE;
917 }
918
919 d_lru_shrink_move(dentry, freeable);
920 spin_unlock(&dentry->d_lock);
921
922 return LRU_REMOVED;
923 }
924
925 /**
926 * prune_dcache_sb - shrink the dcache
927 * @sb: superblock
928 * @nr_to_scan : number of entries to try to free
929 * @nid: which node to scan for freeable entities
930 *
931 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
932 * done when we need more memory an called from the superblock shrinker
933 * function.
934 *
935 * This function may fail to free any resources if all the dentries are in
936 * use.
937 */
938 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
939 int nid)
940 {
941 LIST_HEAD(dispose);
942 long freed;
943
944 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
945 &dispose, &nr_to_scan);
946 shrink_dentry_list(&dispose);
947 return freed;
948 }
949
950 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
951 spinlock_t *lru_lock, void *arg)
952 {
953 struct list_head *freeable = arg;
954 struct dentry *dentry = container_of(item, struct dentry, d_lru);
955
956 /*
957 * we are inverting the lru lock/dentry->d_lock here,
958 * so use a trylock. If we fail to get the lock, just skip
959 * it
960 */
961 if (!spin_trylock(&dentry->d_lock))
962 return LRU_SKIP;
963
964 d_lru_shrink_move(dentry, freeable);
965 spin_unlock(&dentry->d_lock);
966
967 return LRU_REMOVED;
968 }
969
970
971 /**
972 * shrink_dcache_sb - shrink dcache for a superblock
973 * @sb: superblock
974 *
975 * Shrink the dcache for the specified super block. This is used to free
976 * the dcache before unmounting a file system.
977 */
978 void shrink_dcache_sb(struct super_block *sb)
979 {
980 long freed;
981
982 do {
983 LIST_HEAD(dispose);
984
985 freed = list_lru_walk(&sb->s_dentry_lru,
986 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
987
988 this_cpu_sub(nr_dentry_unused, freed);
989 shrink_dentry_list(&dispose);
990 } while (freed > 0);
991 }
992 EXPORT_SYMBOL(shrink_dcache_sb);
993
994 /**
995 * enum d_walk_ret - action to talke during tree walk
996 * @D_WALK_CONTINUE: contrinue walk
997 * @D_WALK_QUIT: quit walk
998 * @D_WALK_NORETRY: quit when retry is needed
999 * @D_WALK_SKIP: skip this dentry and its children
1000 */
1001 enum d_walk_ret {
1002 D_WALK_CONTINUE,
1003 D_WALK_QUIT,
1004 D_WALK_NORETRY,
1005 D_WALK_SKIP,
1006 };
1007
1008 /**
1009 * d_walk - walk the dentry tree
1010 * @parent: start of walk
1011 * @data: data passed to @enter() and @finish()
1012 * @enter: callback when first entering the dentry
1013 * @finish: callback when successfully finished the walk
1014 *
1015 * The @enter() and @finish() callbacks are called with d_lock held.
1016 */
1017 static void d_walk(struct dentry *parent, void *data,
1018 enum d_walk_ret (*enter)(void *, struct dentry *),
1019 void (*finish)(void *))
1020 {
1021 struct dentry *this_parent;
1022 struct list_head *next;
1023 unsigned seq = 0;
1024 enum d_walk_ret ret;
1025 bool retry = true;
1026
1027 again:
1028 read_seqbegin_or_lock(&rename_lock, &seq);
1029 this_parent = parent;
1030 spin_lock(&this_parent->d_lock);
1031
1032 ret = enter(data, this_parent);
1033 switch (ret) {
1034 case D_WALK_CONTINUE:
1035 break;
1036 case D_WALK_QUIT:
1037 case D_WALK_SKIP:
1038 goto out_unlock;
1039 case D_WALK_NORETRY:
1040 retry = false;
1041 break;
1042 }
1043 repeat:
1044 next = this_parent->d_subdirs.next;
1045 resume:
1046 while (next != &this_parent->d_subdirs) {
1047 struct list_head *tmp = next;
1048 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1049 next = tmp->next;
1050
1051 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1052
1053 ret = enter(data, dentry);
1054 switch (ret) {
1055 case D_WALK_CONTINUE:
1056 break;
1057 case D_WALK_QUIT:
1058 spin_unlock(&dentry->d_lock);
1059 goto out_unlock;
1060 case D_WALK_NORETRY:
1061 retry = false;
1062 break;
1063 case D_WALK_SKIP:
1064 spin_unlock(&dentry->d_lock);
1065 continue;
1066 }
1067
1068 if (!list_empty(&dentry->d_subdirs)) {
1069 spin_unlock(&this_parent->d_lock);
1070 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1071 this_parent = dentry;
1072 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1073 goto repeat;
1074 }
1075 spin_unlock(&dentry->d_lock);
1076 }
1077 /*
1078 * All done at this level ... ascend and resume the search.
1079 */
1080 if (this_parent != parent) {
1081 struct dentry *child = this_parent;
1082 this_parent = child->d_parent;
1083
1084 rcu_read_lock();
1085 spin_unlock(&child->d_lock);
1086 spin_lock(&this_parent->d_lock);
1087
1088 /*
1089 * might go back up the wrong parent if we have had a rename
1090 * or deletion
1091 */
1092 if (this_parent != child->d_parent ||
1093 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1094 need_seqretry(&rename_lock, seq)) {
1095 spin_unlock(&this_parent->d_lock);
1096 rcu_read_unlock();
1097 goto rename_retry;
1098 }
1099 rcu_read_unlock();
1100 next = child->d_u.d_child.next;
1101 goto resume;
1102 }
1103 if (need_seqretry(&rename_lock, seq)) {
1104 spin_unlock(&this_parent->d_lock);
1105 goto rename_retry;
1106 }
1107 if (finish)
1108 finish(data);
1109
1110 out_unlock:
1111 spin_unlock(&this_parent->d_lock);
1112 done_seqretry(&rename_lock, seq);
1113 return;
1114
1115 rename_retry:
1116 if (!retry)
1117 return;
1118 seq = 1;
1119 goto again;
1120 }
1121
1122 /*
1123 * Search for at least 1 mount point in the dentry's subdirs.
1124 * We descend to the next level whenever the d_subdirs
1125 * list is non-empty and continue searching.
1126 */
1127
1128 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1129 {
1130 int *ret = data;
1131 if (d_mountpoint(dentry)) {
1132 *ret = 1;
1133 return D_WALK_QUIT;
1134 }
1135 return D_WALK_CONTINUE;
1136 }
1137
1138 /**
1139 * have_submounts - check for mounts over a dentry
1140 * @parent: dentry to check.
1141 *
1142 * Return true if the parent or its subdirectories contain
1143 * a mount point
1144 */
1145 int have_submounts(struct dentry *parent)
1146 {
1147 int ret = 0;
1148
1149 d_walk(parent, &ret, check_mount, NULL);
1150
1151 return ret;
1152 }
1153 EXPORT_SYMBOL(have_submounts);
1154
1155 /*
1156 * Called by mount code to set a mountpoint and check if the mountpoint is
1157 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1158 * subtree can become unreachable).
1159 *
1160 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1161 * this reason take rename_lock and d_lock on dentry and ancestors.
1162 */
1163 int d_set_mounted(struct dentry *dentry)
1164 {
1165 struct dentry *p;
1166 int ret = -ENOENT;
1167 write_seqlock(&rename_lock);
1168 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1169 /* Need exclusion wrt. d_invalidate() */
1170 spin_lock(&p->d_lock);
1171 if (unlikely(d_unhashed(p))) {
1172 spin_unlock(&p->d_lock);
1173 goto out;
1174 }
1175 spin_unlock(&p->d_lock);
1176 }
1177 spin_lock(&dentry->d_lock);
1178 if (!d_unlinked(dentry)) {
1179 dentry->d_flags |= DCACHE_MOUNTED;
1180 ret = 0;
1181 }
1182 spin_unlock(&dentry->d_lock);
1183 out:
1184 write_sequnlock(&rename_lock);
1185 return ret;
1186 }
1187
1188 /*
1189 * Search the dentry child list of the specified parent,
1190 * and move any unused dentries to the end of the unused
1191 * list for prune_dcache(). We descend to the next level
1192 * whenever the d_subdirs list is non-empty and continue
1193 * searching.
1194 *
1195 * It returns zero iff there are no unused children,
1196 * otherwise it returns the number of children moved to
1197 * the end of the unused list. This may not be the total
1198 * number of unused children, because select_parent can
1199 * drop the lock and return early due to latency
1200 * constraints.
1201 */
1202
1203 struct select_data {
1204 struct dentry *start;
1205 struct list_head dispose;
1206 int found;
1207 };
1208
1209 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1210 {
1211 struct select_data *data = _data;
1212 enum d_walk_ret ret = D_WALK_CONTINUE;
1213
1214 if (data->start == dentry)
1215 goto out;
1216
1217 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1218 data->found++;
1219 } else {
1220 if (dentry->d_flags & DCACHE_LRU_LIST)
1221 d_lru_del(dentry);
1222 if (!dentry->d_lockref.count) {
1223 d_shrink_add(dentry, &data->dispose);
1224 data->found++;
1225 }
1226 }
1227 /*
1228 * We can return to the caller if we have found some (this
1229 * ensures forward progress). We'll be coming back to find
1230 * the rest.
1231 */
1232 if (!list_empty(&data->dispose))
1233 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1234 out:
1235 return ret;
1236 }
1237
1238 /**
1239 * shrink_dcache_parent - prune dcache
1240 * @parent: parent of entries to prune
1241 *
1242 * Prune the dcache to remove unused children of the parent dentry.
1243 */
1244 void shrink_dcache_parent(struct dentry *parent)
1245 {
1246 for (;;) {
1247 struct select_data data;
1248
1249 INIT_LIST_HEAD(&data.dispose);
1250 data.start = parent;
1251 data.found = 0;
1252
1253 d_walk(parent, &data, select_collect, NULL);
1254 if (!data.found)
1255 break;
1256
1257 shrink_dentry_list(&data.dispose);
1258 cond_resched();
1259 }
1260 }
1261 EXPORT_SYMBOL(shrink_dcache_parent);
1262
1263 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1264 {
1265 /* it has busy descendents; complain about those instead */
1266 if (!list_empty(&dentry->d_subdirs))
1267 return D_WALK_CONTINUE;
1268
1269 /* root with refcount 1 is fine */
1270 if (dentry == _data && dentry->d_lockref.count == 1)
1271 return D_WALK_CONTINUE;
1272
1273 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1274 " still in use (%d) [unmount of %s %s]\n",
1275 dentry,
1276 dentry->d_inode ?
1277 dentry->d_inode->i_ino : 0UL,
1278 dentry,
1279 dentry->d_lockref.count,
1280 dentry->d_sb->s_type->name,
1281 dentry->d_sb->s_id);
1282 WARN_ON(1);
1283 return D_WALK_CONTINUE;
1284 }
1285
1286 static void do_one_tree(struct dentry *dentry)
1287 {
1288 shrink_dcache_parent(dentry);
1289 d_walk(dentry, dentry, umount_check, NULL);
1290 d_drop(dentry);
1291 dput(dentry);
1292 }
1293
1294 /*
1295 * destroy the dentries attached to a superblock on unmounting
1296 */
1297 void shrink_dcache_for_umount(struct super_block *sb)
1298 {
1299 struct dentry *dentry;
1300
1301 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1302
1303 dentry = sb->s_root;
1304 sb->s_root = NULL;
1305 do_one_tree(dentry);
1306
1307 while (!hlist_bl_empty(&sb->s_anon)) {
1308 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1309 do_one_tree(dentry);
1310 }
1311 }
1312
1313 struct detach_data {
1314 struct select_data select;
1315 struct dentry *mountpoint;
1316 };
1317 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1318 {
1319 struct detach_data *data = _data;
1320
1321 if (d_mountpoint(dentry)) {
1322 __dget_dlock(dentry);
1323 data->mountpoint = dentry;
1324 return D_WALK_QUIT;
1325 }
1326
1327 return select_collect(&data->select, dentry);
1328 }
1329
1330 static void check_and_drop(void *_data)
1331 {
1332 struct detach_data *data = _data;
1333
1334 if (!data->mountpoint && !data->select.found)
1335 __d_drop(data->select.start);
1336 }
1337
1338 /**
1339 * d_invalidate - detach submounts, prune dcache, and drop
1340 * @dentry: dentry to invalidate (aka detach, prune and drop)
1341 *
1342 * no dcache lock.
1343 *
1344 * The final d_drop is done as an atomic operation relative to
1345 * rename_lock ensuring there are no races with d_set_mounted. This
1346 * ensures there are no unhashed dentries on the path to a mountpoint.
1347 */
1348 void d_invalidate(struct dentry *dentry)
1349 {
1350 /*
1351 * If it's already been dropped, return OK.
1352 */
1353 spin_lock(&dentry->d_lock);
1354 if (d_unhashed(dentry)) {
1355 spin_unlock(&dentry->d_lock);
1356 return;
1357 }
1358 spin_unlock(&dentry->d_lock);
1359
1360 /* Negative dentries can be dropped without further checks */
1361 if (!dentry->d_inode) {
1362 d_drop(dentry);
1363 return;
1364 }
1365
1366 for (;;) {
1367 struct detach_data data;
1368
1369 data.mountpoint = NULL;
1370 INIT_LIST_HEAD(&data.select.dispose);
1371 data.select.start = dentry;
1372 data.select.found = 0;
1373
1374 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1375
1376 if (data.select.found)
1377 shrink_dentry_list(&data.select.dispose);
1378
1379 if (data.mountpoint) {
1380 detach_mounts(data.mountpoint);
1381 dput(data.mountpoint);
1382 }
1383
1384 if (!data.mountpoint && !data.select.found)
1385 break;
1386
1387 cond_resched();
1388 }
1389 }
1390 EXPORT_SYMBOL(d_invalidate);
1391
1392 /**
1393 * __d_alloc - allocate a dcache entry
1394 * @sb: filesystem it will belong to
1395 * @name: qstr of the name
1396 *
1397 * Allocates a dentry. It returns %NULL if there is insufficient memory
1398 * available. On a success the dentry is returned. The name passed in is
1399 * copied and the copy passed in may be reused after this call.
1400 */
1401
1402 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1403 {
1404 struct dentry *dentry;
1405 char *dname;
1406
1407 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1408 if (!dentry)
1409 return NULL;
1410
1411 /*
1412 * We guarantee that the inline name is always NUL-terminated.
1413 * This way the memcpy() done by the name switching in rename
1414 * will still always have a NUL at the end, even if we might
1415 * be overwriting an internal NUL character
1416 */
1417 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1418 if (name->len > DNAME_INLINE_LEN-1) {
1419 size_t size = offsetof(struct external_name, name[1]);
1420 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1421 if (!p) {
1422 kmem_cache_free(dentry_cache, dentry);
1423 return NULL;
1424 }
1425 atomic_set(&p->u.count, 1);
1426 dname = p->name;
1427 } else {
1428 dname = dentry->d_iname;
1429 }
1430
1431 dentry->d_name.len = name->len;
1432 dentry->d_name.hash = name->hash;
1433 memcpy(dname, name->name, name->len);
1434 dname[name->len] = 0;
1435
1436 /* Make sure we always see the terminating NUL character */
1437 smp_wmb();
1438 dentry->d_name.name = dname;
1439
1440 dentry->d_lockref.count = 1;
1441 dentry->d_flags = 0;
1442 spin_lock_init(&dentry->d_lock);
1443 seqcount_init(&dentry->d_seq);
1444 dentry->d_inode = NULL;
1445 dentry->d_parent = dentry;
1446 dentry->d_sb = sb;
1447 dentry->d_op = NULL;
1448 dentry->d_fsdata = NULL;
1449 INIT_HLIST_BL_NODE(&dentry->d_hash);
1450 INIT_LIST_HEAD(&dentry->d_lru);
1451 INIT_LIST_HEAD(&dentry->d_subdirs);
1452 INIT_HLIST_NODE(&dentry->d_alias);
1453 INIT_LIST_HEAD(&dentry->d_u.d_child);
1454 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1455
1456 this_cpu_inc(nr_dentry);
1457
1458 return dentry;
1459 }
1460
1461 /**
1462 * d_alloc - allocate a dcache entry
1463 * @parent: parent of entry to allocate
1464 * @name: qstr of the name
1465 *
1466 * Allocates a dentry. It returns %NULL if there is insufficient memory
1467 * available. On a success the dentry is returned. The name passed in is
1468 * copied and the copy passed in may be reused after this call.
1469 */
1470 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1471 {
1472 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1473 if (!dentry)
1474 return NULL;
1475
1476 spin_lock(&parent->d_lock);
1477 /*
1478 * don't need child lock because it is not subject
1479 * to concurrency here
1480 */
1481 __dget_dlock(parent);
1482 dentry->d_parent = parent;
1483 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1484 spin_unlock(&parent->d_lock);
1485
1486 return dentry;
1487 }
1488 EXPORT_SYMBOL(d_alloc);
1489
1490 /**
1491 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1492 * @sb: the superblock
1493 * @name: qstr of the name
1494 *
1495 * For a filesystem that just pins its dentries in memory and never
1496 * performs lookups at all, return an unhashed IS_ROOT dentry.
1497 */
1498 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1499 {
1500 return __d_alloc(sb, name);
1501 }
1502 EXPORT_SYMBOL(d_alloc_pseudo);
1503
1504 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1505 {
1506 struct qstr q;
1507
1508 q.name = name;
1509 q.len = strlen(name);
1510 q.hash = full_name_hash(q.name, q.len);
1511 return d_alloc(parent, &q);
1512 }
1513 EXPORT_SYMBOL(d_alloc_name);
1514
1515 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1516 {
1517 WARN_ON_ONCE(dentry->d_op);
1518 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1519 DCACHE_OP_COMPARE |
1520 DCACHE_OP_REVALIDATE |
1521 DCACHE_OP_WEAK_REVALIDATE |
1522 DCACHE_OP_DELETE ));
1523 dentry->d_op = op;
1524 if (!op)
1525 return;
1526 if (op->d_hash)
1527 dentry->d_flags |= DCACHE_OP_HASH;
1528 if (op->d_compare)
1529 dentry->d_flags |= DCACHE_OP_COMPARE;
1530 if (op->d_revalidate)
1531 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1532 if (op->d_weak_revalidate)
1533 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1534 if (op->d_delete)
1535 dentry->d_flags |= DCACHE_OP_DELETE;
1536 if (op->d_prune)
1537 dentry->d_flags |= DCACHE_OP_PRUNE;
1538
1539 }
1540 EXPORT_SYMBOL(d_set_d_op);
1541
1542 static unsigned d_flags_for_inode(struct inode *inode)
1543 {
1544 unsigned add_flags = DCACHE_FILE_TYPE;
1545
1546 if (!inode)
1547 return DCACHE_MISS_TYPE;
1548
1549 if (S_ISDIR(inode->i_mode)) {
1550 add_flags = DCACHE_DIRECTORY_TYPE;
1551 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1552 if (unlikely(!inode->i_op->lookup))
1553 add_flags = DCACHE_AUTODIR_TYPE;
1554 else
1555 inode->i_opflags |= IOP_LOOKUP;
1556 }
1557 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1558 if (unlikely(inode->i_op->follow_link))
1559 add_flags = DCACHE_SYMLINK_TYPE;
1560 else
1561 inode->i_opflags |= IOP_NOFOLLOW;
1562 }
1563
1564 if (unlikely(IS_AUTOMOUNT(inode)))
1565 add_flags |= DCACHE_NEED_AUTOMOUNT;
1566 return add_flags;
1567 }
1568
1569 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1570 {
1571 unsigned add_flags = d_flags_for_inode(inode);
1572
1573 spin_lock(&dentry->d_lock);
1574 __d_set_type(dentry, add_flags);
1575 if (inode)
1576 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1577 dentry->d_inode = inode;
1578 dentry_rcuwalk_barrier(dentry);
1579 spin_unlock(&dentry->d_lock);
1580 fsnotify_d_instantiate(dentry, inode);
1581 }
1582
1583 /**
1584 * d_instantiate - fill in inode information for a dentry
1585 * @entry: dentry to complete
1586 * @inode: inode to attach to this dentry
1587 *
1588 * Fill in inode information in the entry.
1589 *
1590 * This turns negative dentries into productive full members
1591 * of society.
1592 *
1593 * NOTE! This assumes that the inode count has been incremented
1594 * (or otherwise set) by the caller to indicate that it is now
1595 * in use by the dcache.
1596 */
1597
1598 void d_instantiate(struct dentry *entry, struct inode * inode)
1599 {
1600 BUG_ON(!hlist_unhashed(&entry->d_alias));
1601 if (inode)
1602 spin_lock(&inode->i_lock);
1603 __d_instantiate(entry, inode);
1604 if (inode)
1605 spin_unlock(&inode->i_lock);
1606 security_d_instantiate(entry, inode);
1607 }
1608 EXPORT_SYMBOL(d_instantiate);
1609
1610 /**
1611 * d_instantiate_unique - instantiate a non-aliased dentry
1612 * @entry: dentry to instantiate
1613 * @inode: inode to attach to this dentry
1614 *
1615 * Fill in inode information in the entry. On success, it returns NULL.
1616 * If an unhashed alias of "entry" already exists, then we return the
1617 * aliased dentry instead and drop one reference to inode.
1618 *
1619 * Note that in order to avoid conflicts with rename() etc, the caller
1620 * had better be holding the parent directory semaphore.
1621 *
1622 * This also assumes that the inode count has been incremented
1623 * (or otherwise set) by the caller to indicate that it is now
1624 * in use by the dcache.
1625 */
1626 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1627 struct inode *inode)
1628 {
1629 struct dentry *alias;
1630 int len = entry->d_name.len;
1631 const char *name = entry->d_name.name;
1632 unsigned int hash = entry->d_name.hash;
1633
1634 if (!inode) {
1635 __d_instantiate(entry, NULL);
1636 return NULL;
1637 }
1638
1639 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1640 /*
1641 * Don't need alias->d_lock here, because aliases with
1642 * d_parent == entry->d_parent are not subject to name or
1643 * parent changes, because the parent inode i_mutex is held.
1644 */
1645 if (alias->d_name.hash != hash)
1646 continue;
1647 if (alias->d_parent != entry->d_parent)
1648 continue;
1649 if (alias->d_name.len != len)
1650 continue;
1651 if (dentry_cmp(alias, name, len))
1652 continue;
1653 __dget(alias);
1654 return alias;
1655 }
1656
1657 __d_instantiate(entry, inode);
1658 return NULL;
1659 }
1660
1661 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1662 {
1663 struct dentry *result;
1664
1665 BUG_ON(!hlist_unhashed(&entry->d_alias));
1666
1667 if (inode)
1668 spin_lock(&inode->i_lock);
1669 result = __d_instantiate_unique(entry, inode);
1670 if (inode)
1671 spin_unlock(&inode->i_lock);
1672
1673 if (!result) {
1674 security_d_instantiate(entry, inode);
1675 return NULL;
1676 }
1677
1678 BUG_ON(!d_unhashed(result));
1679 iput(inode);
1680 return result;
1681 }
1682
1683 EXPORT_SYMBOL(d_instantiate_unique);
1684
1685 /**
1686 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1687 * @entry: dentry to complete
1688 * @inode: inode to attach to this dentry
1689 *
1690 * Fill in inode information in the entry. If a directory alias is found, then
1691 * return an error (and drop inode). Together with d_materialise_unique() this
1692 * guarantees that a directory inode may never have more than one alias.
1693 */
1694 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1695 {
1696 BUG_ON(!hlist_unhashed(&entry->d_alias));
1697
1698 spin_lock(&inode->i_lock);
1699 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1700 spin_unlock(&inode->i_lock);
1701 iput(inode);
1702 return -EBUSY;
1703 }
1704 __d_instantiate(entry, inode);
1705 spin_unlock(&inode->i_lock);
1706 security_d_instantiate(entry, inode);
1707
1708 return 0;
1709 }
1710 EXPORT_SYMBOL(d_instantiate_no_diralias);
1711
1712 struct dentry *d_make_root(struct inode *root_inode)
1713 {
1714 struct dentry *res = NULL;
1715
1716 if (root_inode) {
1717 static const struct qstr name = QSTR_INIT("/", 1);
1718
1719 res = __d_alloc(root_inode->i_sb, &name);
1720 if (res)
1721 d_instantiate(res, root_inode);
1722 else
1723 iput(root_inode);
1724 }
1725 return res;
1726 }
1727 EXPORT_SYMBOL(d_make_root);
1728
1729 static struct dentry * __d_find_any_alias(struct inode *inode)
1730 {
1731 struct dentry *alias;
1732
1733 if (hlist_empty(&inode->i_dentry))
1734 return NULL;
1735 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1736 __dget(alias);
1737 return alias;
1738 }
1739
1740 /**
1741 * d_find_any_alias - find any alias for a given inode
1742 * @inode: inode to find an alias for
1743 *
1744 * If any aliases exist for the given inode, take and return a
1745 * reference for one of them. If no aliases exist, return %NULL.
1746 */
1747 struct dentry *d_find_any_alias(struct inode *inode)
1748 {
1749 struct dentry *de;
1750
1751 spin_lock(&inode->i_lock);
1752 de = __d_find_any_alias(inode);
1753 spin_unlock(&inode->i_lock);
1754 return de;
1755 }
1756 EXPORT_SYMBOL(d_find_any_alias);
1757
1758 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1759 {
1760 static const struct qstr anonstring = QSTR_INIT("/", 1);
1761 struct dentry *tmp;
1762 struct dentry *res;
1763 unsigned add_flags;
1764
1765 if (!inode)
1766 return ERR_PTR(-ESTALE);
1767 if (IS_ERR(inode))
1768 return ERR_CAST(inode);
1769
1770 res = d_find_any_alias(inode);
1771 if (res)
1772 goto out_iput;
1773
1774 tmp = __d_alloc(inode->i_sb, &anonstring);
1775 if (!tmp) {
1776 res = ERR_PTR(-ENOMEM);
1777 goto out_iput;
1778 }
1779
1780 spin_lock(&inode->i_lock);
1781 res = __d_find_any_alias(inode);
1782 if (res) {
1783 spin_unlock(&inode->i_lock);
1784 dput(tmp);
1785 goto out_iput;
1786 }
1787
1788 /* attach a disconnected dentry */
1789 add_flags = d_flags_for_inode(inode);
1790
1791 if (disconnected)
1792 add_flags |= DCACHE_DISCONNECTED;
1793
1794 spin_lock(&tmp->d_lock);
1795 tmp->d_inode = inode;
1796 tmp->d_flags |= add_flags;
1797 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1798 hlist_bl_lock(&tmp->d_sb->s_anon);
1799 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1800 hlist_bl_unlock(&tmp->d_sb->s_anon);
1801 spin_unlock(&tmp->d_lock);
1802 spin_unlock(&inode->i_lock);
1803 security_d_instantiate(tmp, inode);
1804
1805 return tmp;
1806
1807 out_iput:
1808 if (res && !IS_ERR(res))
1809 security_d_instantiate(res, inode);
1810 iput(inode);
1811 return res;
1812 }
1813
1814 /**
1815 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1816 * @inode: inode to allocate the dentry for
1817 *
1818 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1819 * similar open by handle operations. The returned dentry may be anonymous,
1820 * or may have a full name (if the inode was already in the cache).
1821 *
1822 * When called on a directory inode, we must ensure that the inode only ever
1823 * has one dentry. If a dentry is found, that is returned instead of
1824 * allocating a new one.
1825 *
1826 * On successful return, the reference to the inode has been transferred
1827 * to the dentry. In case of an error the reference on the inode is released.
1828 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1829 * be passed in and the error will be propagated to the return value,
1830 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1831 */
1832 struct dentry *d_obtain_alias(struct inode *inode)
1833 {
1834 return __d_obtain_alias(inode, 1);
1835 }
1836 EXPORT_SYMBOL(d_obtain_alias);
1837
1838 /**
1839 * d_obtain_root - find or allocate a dentry for a given inode
1840 * @inode: inode to allocate the dentry for
1841 *
1842 * Obtain an IS_ROOT dentry for the root of a filesystem.
1843 *
1844 * We must ensure that directory inodes only ever have one dentry. If a
1845 * dentry is found, that is returned instead of allocating a new one.
1846 *
1847 * On successful return, the reference to the inode has been transferred
1848 * to the dentry. In case of an error the reference on the inode is
1849 * released. A %NULL or IS_ERR inode may be passed in and will be the
1850 * error will be propagate to the return value, with a %NULL @inode
1851 * replaced by ERR_PTR(-ESTALE).
1852 */
1853 struct dentry *d_obtain_root(struct inode *inode)
1854 {
1855 return __d_obtain_alias(inode, 0);
1856 }
1857 EXPORT_SYMBOL(d_obtain_root);
1858
1859 /**
1860 * d_add_ci - lookup or allocate new dentry with case-exact name
1861 * @inode: the inode case-insensitive lookup has found
1862 * @dentry: the negative dentry that was passed to the parent's lookup func
1863 * @name: the case-exact name to be associated with the returned dentry
1864 *
1865 * This is to avoid filling the dcache with case-insensitive names to the
1866 * same inode, only the actual correct case is stored in the dcache for
1867 * case-insensitive filesystems.
1868 *
1869 * For a case-insensitive lookup match and if the the case-exact dentry
1870 * already exists in in the dcache, use it and return it.
1871 *
1872 * If no entry exists with the exact case name, allocate new dentry with
1873 * the exact case, and return the spliced entry.
1874 */
1875 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1876 struct qstr *name)
1877 {
1878 struct dentry *found;
1879 struct dentry *new;
1880
1881 /*
1882 * First check if a dentry matching the name already exists,
1883 * if not go ahead and create it now.
1884 */
1885 found = d_hash_and_lookup(dentry->d_parent, name);
1886 if (unlikely(IS_ERR(found)))
1887 goto err_out;
1888 if (!found) {
1889 new = d_alloc(dentry->d_parent, name);
1890 if (!new) {
1891 found = ERR_PTR(-ENOMEM);
1892 goto err_out;
1893 }
1894
1895 found = d_splice_alias(inode, new);
1896 if (found) {
1897 dput(new);
1898 return found;
1899 }
1900 return new;
1901 }
1902
1903 /*
1904 * If a matching dentry exists, and it's not negative use it.
1905 *
1906 * Decrement the reference count to balance the iget() done
1907 * earlier on.
1908 */
1909 if (found->d_inode) {
1910 if (unlikely(found->d_inode != inode)) {
1911 /* This can't happen because bad inodes are unhashed. */
1912 BUG_ON(!is_bad_inode(inode));
1913 BUG_ON(!is_bad_inode(found->d_inode));
1914 }
1915 iput(inode);
1916 return found;
1917 }
1918
1919 /*
1920 * Negative dentry: instantiate it unless the inode is a directory and
1921 * already has a dentry.
1922 */
1923 new = d_splice_alias(inode, found);
1924 if (new) {
1925 dput(found);
1926 found = new;
1927 }
1928 return found;
1929
1930 err_out:
1931 iput(inode);
1932 return found;
1933 }
1934 EXPORT_SYMBOL(d_add_ci);
1935
1936 /*
1937 * Do the slow-case of the dentry name compare.
1938 *
1939 * Unlike the dentry_cmp() function, we need to atomically
1940 * load the name and length information, so that the
1941 * filesystem can rely on them, and can use the 'name' and
1942 * 'len' information without worrying about walking off the
1943 * end of memory etc.
1944 *
1945 * Thus the read_seqcount_retry() and the "duplicate" info
1946 * in arguments (the low-level filesystem should not look
1947 * at the dentry inode or name contents directly, since
1948 * rename can change them while we're in RCU mode).
1949 */
1950 enum slow_d_compare {
1951 D_COMP_OK,
1952 D_COMP_NOMATCH,
1953 D_COMP_SEQRETRY,
1954 };
1955
1956 static noinline enum slow_d_compare slow_dentry_cmp(
1957 const struct dentry *parent,
1958 struct dentry *dentry,
1959 unsigned int seq,
1960 const struct qstr *name)
1961 {
1962 int tlen = dentry->d_name.len;
1963 const char *tname = dentry->d_name.name;
1964
1965 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1966 cpu_relax();
1967 return D_COMP_SEQRETRY;
1968 }
1969 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1970 return D_COMP_NOMATCH;
1971 return D_COMP_OK;
1972 }
1973
1974 /**
1975 * __d_lookup_rcu - search for a dentry (racy, store-free)
1976 * @parent: parent dentry
1977 * @name: qstr of name we wish to find
1978 * @seqp: returns d_seq value at the point where the dentry was found
1979 * Returns: dentry, or NULL
1980 *
1981 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1982 * resolution (store-free path walking) design described in
1983 * Documentation/filesystems/path-lookup.txt.
1984 *
1985 * This is not to be used outside core vfs.
1986 *
1987 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1988 * held, and rcu_read_lock held. The returned dentry must not be stored into
1989 * without taking d_lock and checking d_seq sequence count against @seq
1990 * returned here.
1991 *
1992 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
1993 * function.
1994 *
1995 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1996 * the returned dentry, so long as its parent's seqlock is checked after the
1997 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1998 * is formed, giving integrity down the path walk.
1999 *
2000 * NOTE! The caller *has* to check the resulting dentry against the sequence
2001 * number we've returned before using any of the resulting dentry state!
2002 */
2003 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2004 const struct qstr *name,
2005 unsigned *seqp)
2006 {
2007 u64 hashlen = name->hash_len;
2008 const unsigned char *str = name->name;
2009 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2010 struct hlist_bl_node *node;
2011 struct dentry *dentry;
2012
2013 /*
2014 * Note: There is significant duplication with __d_lookup_rcu which is
2015 * required to prevent single threaded performance regressions
2016 * especially on architectures where smp_rmb (in seqcounts) are costly.
2017 * Keep the two functions in sync.
2018 */
2019
2020 /*
2021 * The hash list is protected using RCU.
2022 *
2023 * Carefully use d_seq when comparing a candidate dentry, to avoid
2024 * races with d_move().
2025 *
2026 * It is possible that concurrent renames can mess up our list
2027 * walk here and result in missing our dentry, resulting in the
2028 * false-negative result. d_lookup() protects against concurrent
2029 * renames using rename_lock seqlock.
2030 *
2031 * See Documentation/filesystems/path-lookup.txt for more details.
2032 */
2033 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2034 unsigned seq;
2035
2036 seqretry:
2037 /*
2038 * The dentry sequence count protects us from concurrent
2039 * renames, and thus protects parent and name fields.
2040 *
2041 * The caller must perform a seqcount check in order
2042 * to do anything useful with the returned dentry.
2043 *
2044 * NOTE! We do a "raw" seqcount_begin here. That means that
2045 * we don't wait for the sequence count to stabilize if it
2046 * is in the middle of a sequence change. If we do the slow
2047 * dentry compare, we will do seqretries until it is stable,
2048 * and if we end up with a successful lookup, we actually
2049 * want to exit RCU lookup anyway.
2050 */
2051 seq = raw_seqcount_begin(&dentry->d_seq);
2052 if (dentry->d_parent != parent)
2053 continue;
2054 if (d_unhashed(dentry))
2055 continue;
2056
2057 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2058 if (dentry->d_name.hash != hashlen_hash(hashlen))
2059 continue;
2060 *seqp = seq;
2061 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2062 case D_COMP_OK:
2063 return dentry;
2064 case D_COMP_NOMATCH:
2065 continue;
2066 default:
2067 goto seqretry;
2068 }
2069 }
2070
2071 if (dentry->d_name.hash_len != hashlen)
2072 continue;
2073 *seqp = seq;
2074 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2075 return dentry;
2076 }
2077 return NULL;
2078 }
2079
2080 /**
2081 * d_lookup - search for a dentry
2082 * @parent: parent dentry
2083 * @name: qstr of name we wish to find
2084 * Returns: dentry, or NULL
2085 *
2086 * d_lookup searches the children of the parent dentry for the name in
2087 * question. If the dentry is found its reference count is incremented and the
2088 * dentry is returned. The caller must use dput to free the entry when it has
2089 * finished using it. %NULL is returned if the dentry does not exist.
2090 */
2091 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2092 {
2093 struct dentry *dentry;
2094 unsigned seq;
2095
2096 do {
2097 seq = read_seqbegin(&rename_lock);
2098 dentry = __d_lookup(parent, name);
2099 if (dentry)
2100 break;
2101 } while (read_seqretry(&rename_lock, seq));
2102 return dentry;
2103 }
2104 EXPORT_SYMBOL(d_lookup);
2105
2106 /**
2107 * __d_lookup - search for a dentry (racy)
2108 * @parent: parent dentry
2109 * @name: qstr of name we wish to find
2110 * Returns: dentry, or NULL
2111 *
2112 * __d_lookup is like d_lookup, however it may (rarely) return a
2113 * false-negative result due to unrelated rename activity.
2114 *
2115 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2116 * however it must be used carefully, eg. with a following d_lookup in
2117 * the case of failure.
2118 *
2119 * __d_lookup callers must be commented.
2120 */
2121 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2122 {
2123 unsigned int len = name->len;
2124 unsigned int hash = name->hash;
2125 const unsigned char *str = name->name;
2126 struct hlist_bl_head *b = d_hash(parent, hash);
2127 struct hlist_bl_node *node;
2128 struct dentry *found = NULL;
2129 struct dentry *dentry;
2130
2131 /*
2132 * Note: There is significant duplication with __d_lookup_rcu which is
2133 * required to prevent single threaded performance regressions
2134 * especially on architectures where smp_rmb (in seqcounts) are costly.
2135 * Keep the two functions in sync.
2136 */
2137
2138 /*
2139 * The hash list is protected using RCU.
2140 *
2141 * Take d_lock when comparing a candidate dentry, to avoid races
2142 * with d_move().
2143 *
2144 * It is possible that concurrent renames can mess up our list
2145 * walk here and result in missing our dentry, resulting in the
2146 * false-negative result. d_lookup() protects against concurrent
2147 * renames using rename_lock seqlock.
2148 *
2149 * See Documentation/filesystems/path-lookup.txt for more details.
2150 */
2151 rcu_read_lock();
2152
2153 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2154
2155 if (dentry->d_name.hash != hash)
2156 continue;
2157
2158 spin_lock(&dentry->d_lock);
2159 if (dentry->d_parent != parent)
2160 goto next;
2161 if (d_unhashed(dentry))
2162 goto next;
2163
2164 /*
2165 * It is safe to compare names since d_move() cannot
2166 * change the qstr (protected by d_lock).
2167 */
2168 if (parent->d_flags & DCACHE_OP_COMPARE) {
2169 int tlen = dentry->d_name.len;
2170 const char *tname = dentry->d_name.name;
2171 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2172 goto next;
2173 } else {
2174 if (dentry->d_name.len != len)
2175 goto next;
2176 if (dentry_cmp(dentry, str, len))
2177 goto next;
2178 }
2179
2180 dentry->d_lockref.count++;
2181 found = dentry;
2182 spin_unlock(&dentry->d_lock);
2183 break;
2184 next:
2185 spin_unlock(&dentry->d_lock);
2186 }
2187 rcu_read_unlock();
2188
2189 return found;
2190 }
2191
2192 /**
2193 * d_hash_and_lookup - hash the qstr then search for a dentry
2194 * @dir: Directory to search in
2195 * @name: qstr of name we wish to find
2196 *
2197 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2198 */
2199 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2200 {
2201 /*
2202 * Check for a fs-specific hash function. Note that we must
2203 * calculate the standard hash first, as the d_op->d_hash()
2204 * routine may choose to leave the hash value unchanged.
2205 */
2206 name->hash = full_name_hash(name->name, name->len);
2207 if (dir->d_flags & DCACHE_OP_HASH) {
2208 int err = dir->d_op->d_hash(dir, name);
2209 if (unlikely(err < 0))
2210 return ERR_PTR(err);
2211 }
2212 return d_lookup(dir, name);
2213 }
2214 EXPORT_SYMBOL(d_hash_and_lookup);
2215
2216 /**
2217 * d_validate - verify dentry provided from insecure source (deprecated)
2218 * @dentry: The dentry alleged to be valid child of @dparent
2219 * @dparent: The parent dentry (known to be valid)
2220 *
2221 * An insecure source has sent us a dentry, here we verify it and dget() it.
2222 * This is used by ncpfs in its readdir implementation.
2223 * Zero is returned in the dentry is invalid.
2224 *
2225 * This function is slow for big directories, and deprecated, do not use it.
2226 */
2227 int d_validate(struct dentry *dentry, struct dentry *dparent)
2228 {
2229 struct dentry *child;
2230
2231 spin_lock(&dparent->d_lock);
2232 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2233 if (dentry == child) {
2234 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2235 __dget_dlock(dentry);
2236 spin_unlock(&dentry->d_lock);
2237 spin_unlock(&dparent->d_lock);
2238 return 1;
2239 }
2240 }
2241 spin_unlock(&dparent->d_lock);
2242
2243 return 0;
2244 }
2245 EXPORT_SYMBOL(d_validate);
2246
2247 /*
2248 * When a file is deleted, we have two options:
2249 * - turn this dentry into a negative dentry
2250 * - unhash this dentry and free it.
2251 *
2252 * Usually, we want to just turn this into
2253 * a negative dentry, but if anybody else is
2254 * currently using the dentry or the inode
2255 * we can't do that and we fall back on removing
2256 * it from the hash queues and waiting for
2257 * it to be deleted later when it has no users
2258 */
2259
2260 /**
2261 * d_delete - delete a dentry
2262 * @dentry: The dentry to delete
2263 *
2264 * Turn the dentry into a negative dentry if possible, otherwise
2265 * remove it from the hash queues so it can be deleted later
2266 */
2267
2268 void d_delete(struct dentry * dentry)
2269 {
2270 struct inode *inode;
2271 int isdir = 0;
2272 /*
2273 * Are we the only user?
2274 */
2275 again:
2276 spin_lock(&dentry->d_lock);
2277 inode = dentry->d_inode;
2278 isdir = S_ISDIR(inode->i_mode);
2279 if (dentry->d_lockref.count == 1) {
2280 if (!spin_trylock(&inode->i_lock)) {
2281 spin_unlock(&dentry->d_lock);
2282 cpu_relax();
2283 goto again;
2284 }
2285 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2286 dentry_unlink_inode(dentry);
2287 fsnotify_nameremove(dentry, isdir);
2288 return;
2289 }
2290
2291 if (!d_unhashed(dentry))
2292 __d_drop(dentry);
2293
2294 spin_unlock(&dentry->d_lock);
2295
2296 fsnotify_nameremove(dentry, isdir);
2297 }
2298 EXPORT_SYMBOL(d_delete);
2299
2300 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2301 {
2302 BUG_ON(!d_unhashed(entry));
2303 hlist_bl_lock(b);
2304 entry->d_flags |= DCACHE_RCUACCESS;
2305 hlist_bl_add_head_rcu(&entry->d_hash, b);
2306 hlist_bl_unlock(b);
2307 }
2308
2309 static void _d_rehash(struct dentry * entry)
2310 {
2311 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2312 }
2313
2314 /**
2315 * d_rehash - add an entry back to the hash
2316 * @entry: dentry to add to the hash
2317 *
2318 * Adds a dentry to the hash according to its name.
2319 */
2320
2321 void d_rehash(struct dentry * entry)
2322 {
2323 spin_lock(&entry->d_lock);
2324 _d_rehash(entry);
2325 spin_unlock(&entry->d_lock);
2326 }
2327 EXPORT_SYMBOL(d_rehash);
2328
2329 /**
2330 * dentry_update_name_case - update case insensitive dentry with a new name
2331 * @dentry: dentry to be updated
2332 * @name: new name
2333 *
2334 * Update a case insensitive dentry with new case of name.
2335 *
2336 * dentry must have been returned by d_lookup with name @name. Old and new
2337 * name lengths must match (ie. no d_compare which allows mismatched name
2338 * lengths).
2339 *
2340 * Parent inode i_mutex must be held over d_lookup and into this call (to
2341 * keep renames and concurrent inserts, and readdir(2) away).
2342 */
2343 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2344 {
2345 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2346 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2347
2348 spin_lock(&dentry->d_lock);
2349 write_seqcount_begin(&dentry->d_seq);
2350 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2351 write_seqcount_end(&dentry->d_seq);
2352 spin_unlock(&dentry->d_lock);
2353 }
2354 EXPORT_SYMBOL(dentry_update_name_case);
2355
2356 static void swap_names(struct dentry *dentry, struct dentry *target)
2357 {
2358 if (unlikely(dname_external(target))) {
2359 if (unlikely(dname_external(dentry))) {
2360 /*
2361 * Both external: swap the pointers
2362 */
2363 swap(target->d_name.name, dentry->d_name.name);
2364 } else {
2365 /*
2366 * dentry:internal, target:external. Steal target's
2367 * storage and make target internal.
2368 */
2369 memcpy(target->d_iname, dentry->d_name.name,
2370 dentry->d_name.len + 1);
2371 dentry->d_name.name = target->d_name.name;
2372 target->d_name.name = target->d_iname;
2373 }
2374 } else {
2375 if (unlikely(dname_external(dentry))) {
2376 /*
2377 * dentry:external, target:internal. Give dentry's
2378 * storage to target and make dentry internal
2379 */
2380 memcpy(dentry->d_iname, target->d_name.name,
2381 target->d_name.len + 1);
2382 target->d_name.name = dentry->d_name.name;
2383 dentry->d_name.name = dentry->d_iname;
2384 } else {
2385 /*
2386 * Both are internal.
2387 */
2388 unsigned int i;
2389 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2390 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2391 swap(((long *) &dentry->d_iname)[i],
2392 ((long *) &target->d_iname)[i]);
2393 }
2394 }
2395 }
2396 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2397 }
2398
2399 static void copy_name(struct dentry *dentry, struct dentry *target)
2400 {
2401 struct external_name *old_name = NULL;
2402 if (unlikely(dname_external(dentry)))
2403 old_name = external_name(dentry);
2404 if (unlikely(dname_external(target))) {
2405 atomic_inc(&external_name(target)->u.count);
2406 dentry->d_name = target->d_name;
2407 } else {
2408 memcpy(dentry->d_iname, target->d_name.name,
2409 target->d_name.len + 1);
2410 dentry->d_name.name = dentry->d_iname;
2411 dentry->d_name.hash_len = target->d_name.hash_len;
2412 }
2413 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2414 kfree_rcu(old_name, u.head);
2415 }
2416
2417 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2418 {
2419 /*
2420 * XXXX: do we really need to take target->d_lock?
2421 */
2422 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2423 spin_lock(&target->d_parent->d_lock);
2424 else {
2425 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2426 spin_lock(&dentry->d_parent->d_lock);
2427 spin_lock_nested(&target->d_parent->d_lock,
2428 DENTRY_D_LOCK_NESTED);
2429 } else {
2430 spin_lock(&target->d_parent->d_lock);
2431 spin_lock_nested(&dentry->d_parent->d_lock,
2432 DENTRY_D_LOCK_NESTED);
2433 }
2434 }
2435 if (target < dentry) {
2436 spin_lock_nested(&target->d_lock, 2);
2437 spin_lock_nested(&dentry->d_lock, 3);
2438 } else {
2439 spin_lock_nested(&dentry->d_lock, 2);
2440 spin_lock_nested(&target->d_lock, 3);
2441 }
2442 }
2443
2444 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2445 {
2446 if (target->d_parent != dentry->d_parent)
2447 spin_unlock(&dentry->d_parent->d_lock);
2448 if (target->d_parent != target)
2449 spin_unlock(&target->d_parent->d_lock);
2450 spin_unlock(&target->d_lock);
2451 spin_unlock(&dentry->d_lock);
2452 }
2453
2454 /*
2455 * When switching names, the actual string doesn't strictly have to
2456 * be preserved in the target - because we're dropping the target
2457 * anyway. As such, we can just do a simple memcpy() to copy over
2458 * the new name before we switch, unless we are going to rehash
2459 * it. Note that if we *do* unhash the target, we are not allowed
2460 * to rehash it without giving it a new name/hash key - whether
2461 * we swap or overwrite the names here, resulting name won't match
2462 * the reality in filesystem; it's only there for d_path() purposes.
2463 * Note that all of this is happening under rename_lock, so the
2464 * any hash lookup seeing it in the middle of manipulations will
2465 * be discarded anyway. So we do not care what happens to the hash
2466 * key in that case.
2467 */
2468 /*
2469 * __d_move - move a dentry
2470 * @dentry: entry to move
2471 * @target: new dentry
2472 * @exchange: exchange the two dentries
2473 *
2474 * Update the dcache to reflect the move of a file name. Negative
2475 * dcache entries should not be moved in this way. Caller must hold
2476 * rename_lock, the i_mutex of the source and target directories,
2477 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2478 */
2479 static void __d_move(struct dentry *dentry, struct dentry *target,
2480 bool exchange)
2481 {
2482 if (!dentry->d_inode)
2483 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2484
2485 BUG_ON(d_ancestor(dentry, target));
2486 BUG_ON(d_ancestor(target, dentry));
2487
2488 dentry_lock_for_move(dentry, target);
2489
2490 write_seqcount_begin(&dentry->d_seq);
2491 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2492
2493 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2494
2495 /*
2496 * Move the dentry to the target hash queue. Don't bother checking
2497 * for the same hash queue because of how unlikely it is.
2498 */
2499 __d_drop(dentry);
2500 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2501
2502 /*
2503 * Unhash the target (d_delete() is not usable here). If exchanging
2504 * the two dentries, then rehash onto the other's hash queue.
2505 */
2506 __d_drop(target);
2507 if (exchange) {
2508 __d_rehash(target,
2509 d_hash(dentry->d_parent, dentry->d_name.hash));
2510 }
2511
2512 /* Switch the names.. */
2513 if (exchange)
2514 swap_names(dentry, target);
2515 else
2516 copy_name(dentry, target);
2517
2518 /* ... and switch them in the tree */
2519 if (IS_ROOT(dentry)) {
2520 /* splicing a tree */
2521 dentry->d_parent = target->d_parent;
2522 target->d_parent = target;
2523 list_del_init(&target->d_u.d_child);
2524 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2525 } else {
2526 /* swapping two dentries */
2527 swap(dentry->d_parent, target->d_parent);
2528 list_move(&target->d_u.d_child, &target->d_parent->d_subdirs);
2529 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2530 if (exchange)
2531 fsnotify_d_move(target);
2532 fsnotify_d_move(dentry);
2533 }
2534
2535 write_seqcount_end(&target->d_seq);
2536 write_seqcount_end(&dentry->d_seq);
2537
2538 dentry_unlock_for_move(dentry, target);
2539 }
2540
2541 /*
2542 * d_move - move a dentry
2543 * @dentry: entry to move
2544 * @target: new dentry
2545 *
2546 * Update the dcache to reflect the move of a file name. Negative
2547 * dcache entries should not be moved in this way. See the locking
2548 * requirements for __d_move.
2549 */
2550 void d_move(struct dentry *dentry, struct dentry *target)
2551 {
2552 write_seqlock(&rename_lock);
2553 __d_move(dentry, target, false);
2554 write_sequnlock(&rename_lock);
2555 }
2556 EXPORT_SYMBOL(d_move);
2557
2558 /*
2559 * d_exchange - exchange two dentries
2560 * @dentry1: first dentry
2561 * @dentry2: second dentry
2562 */
2563 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2564 {
2565 write_seqlock(&rename_lock);
2566
2567 WARN_ON(!dentry1->d_inode);
2568 WARN_ON(!dentry2->d_inode);
2569 WARN_ON(IS_ROOT(dentry1));
2570 WARN_ON(IS_ROOT(dentry2));
2571
2572 __d_move(dentry1, dentry2, true);
2573
2574 write_sequnlock(&rename_lock);
2575 }
2576
2577 /**
2578 * d_ancestor - search for an ancestor
2579 * @p1: ancestor dentry
2580 * @p2: child dentry
2581 *
2582 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2583 * an ancestor of p2, else NULL.
2584 */
2585 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2586 {
2587 struct dentry *p;
2588
2589 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2590 if (p->d_parent == p1)
2591 return p;
2592 }
2593 return NULL;
2594 }
2595
2596 /*
2597 * This helper attempts to cope with remotely renamed directories
2598 *
2599 * It assumes that the caller is already holding
2600 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2601 *
2602 * Note: If ever the locking in lock_rename() changes, then please
2603 * remember to update this too...
2604 */
2605 static struct dentry *__d_unalias(struct inode *inode,
2606 struct dentry *dentry, struct dentry *alias)
2607 {
2608 struct mutex *m1 = NULL, *m2 = NULL;
2609 struct dentry *ret = ERR_PTR(-EBUSY);
2610
2611 /* If alias and dentry share a parent, then no extra locks required */
2612 if (alias->d_parent == dentry->d_parent)
2613 goto out_unalias;
2614
2615 /* See lock_rename() */
2616 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2617 goto out_err;
2618 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2619 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2620 goto out_err;
2621 m2 = &alias->d_parent->d_inode->i_mutex;
2622 out_unalias:
2623 __d_move(alias, dentry, false);
2624 ret = alias;
2625 out_err:
2626 spin_unlock(&inode->i_lock);
2627 if (m2)
2628 mutex_unlock(m2);
2629 if (m1)
2630 mutex_unlock(m1);
2631 return ret;
2632 }
2633
2634 /**
2635 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2636 * @inode: the inode which may have a disconnected dentry
2637 * @dentry: a negative dentry which we want to point to the inode.
2638 *
2639 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2640 * place of the given dentry and return it, else simply d_add the inode
2641 * to the dentry and return NULL.
2642 *
2643 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2644 * we should error out: directories can't have multiple aliases.
2645 *
2646 * This is needed in the lookup routine of any filesystem that is exportable
2647 * (via knfsd) so that we can build dcache paths to directories effectively.
2648 *
2649 * If a dentry was found and moved, then it is returned. Otherwise NULL
2650 * is returned. This matches the expected return value of ->lookup.
2651 *
2652 * Cluster filesystems may call this function with a negative, hashed dentry.
2653 * In that case, we know that the inode will be a regular file, and also this
2654 * will only occur during atomic_open. So we need to check for the dentry
2655 * being already hashed only in the final case.
2656 */
2657 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2658 {
2659 struct dentry *new = NULL;
2660
2661 if (IS_ERR(inode))
2662 return ERR_CAST(inode);
2663
2664 if (inode && S_ISDIR(inode->i_mode)) {
2665 spin_lock(&inode->i_lock);
2666 new = __d_find_any_alias(inode);
2667 if (new) {
2668 if (!IS_ROOT(new)) {
2669 spin_unlock(&inode->i_lock);
2670 dput(new);
2671 return ERR_PTR(-EIO);
2672 }
2673 if (d_ancestor(new, dentry)) {
2674 spin_unlock(&inode->i_lock);
2675 dput(new);
2676 return ERR_PTR(-EIO);
2677 }
2678 write_seqlock(&rename_lock);
2679 __d_move(new, dentry, false);
2680 write_sequnlock(&rename_lock);
2681 spin_unlock(&inode->i_lock);
2682 security_d_instantiate(new, inode);
2683 iput(inode);
2684 } else {
2685 /* already taking inode->i_lock, so d_add() by hand */
2686 __d_instantiate(dentry, inode);
2687 spin_unlock(&inode->i_lock);
2688 security_d_instantiate(dentry, inode);
2689 d_rehash(dentry);
2690 }
2691 } else {
2692 d_instantiate(dentry, inode);
2693 if (d_unhashed(dentry))
2694 d_rehash(dentry);
2695 }
2696 return new;
2697 }
2698 EXPORT_SYMBOL(d_splice_alias);
2699
2700 /**
2701 * d_materialise_unique - introduce an inode into the tree
2702 * @dentry: candidate dentry
2703 * @inode: inode to bind to the dentry, to which aliases may be attached
2704 *
2705 * Introduces an dentry into the tree, substituting an extant disconnected
2706 * root directory alias in its place if there is one. Caller must hold the
2707 * i_mutex of the parent directory.
2708 */
2709 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2710 {
2711 struct dentry *actual;
2712
2713 BUG_ON(!d_unhashed(dentry));
2714
2715 if (!inode) {
2716 actual = dentry;
2717 __d_instantiate(dentry, NULL);
2718 d_rehash(actual);
2719 goto out_nolock;
2720 }
2721
2722 spin_lock(&inode->i_lock);
2723
2724 if (S_ISDIR(inode->i_mode)) {
2725 struct dentry *alias;
2726
2727 /* Does an aliased dentry already exist? */
2728 alias = __d_find_alias(inode);
2729 if (alias) {
2730 actual = alias;
2731 write_seqlock(&rename_lock);
2732
2733 if (d_ancestor(alias, dentry)) {
2734 /* Check for loops */
2735 actual = ERR_PTR(-ELOOP);
2736 spin_unlock(&inode->i_lock);
2737 } else if (IS_ROOT(alias)) {
2738 /* Is this an anonymous mountpoint that we
2739 * could splice into our tree? */
2740 __d_move(alias, dentry, false);
2741 write_sequnlock(&rename_lock);
2742 goto found;
2743 } else {
2744 /* Nope, but we must(!) avoid directory
2745 * aliasing. This drops inode->i_lock */
2746 actual = __d_unalias(inode, dentry, alias);
2747 }
2748 write_sequnlock(&rename_lock);
2749 if (IS_ERR(actual)) {
2750 if (PTR_ERR(actual) == -ELOOP)
2751 pr_warn_ratelimited(
2752 "VFS: Lookup of '%s' in %s %s"
2753 " would have caused loop\n",
2754 dentry->d_name.name,
2755 inode->i_sb->s_type->name,
2756 inode->i_sb->s_id);
2757 dput(alias);
2758 }
2759 goto out_nolock;
2760 }
2761 }
2762
2763 /* Add a unique reference */
2764 actual = __d_instantiate_unique(dentry, inode);
2765 if (!actual)
2766 actual = dentry;
2767
2768 d_rehash(actual);
2769 found:
2770 spin_unlock(&inode->i_lock);
2771 out_nolock:
2772 if (actual == dentry) {
2773 security_d_instantiate(dentry, inode);
2774 return NULL;
2775 }
2776
2777 iput(inode);
2778 return actual;
2779 }
2780 EXPORT_SYMBOL_GPL(d_materialise_unique);
2781
2782 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2783 {
2784 *buflen -= namelen;
2785 if (*buflen < 0)
2786 return -ENAMETOOLONG;
2787 *buffer -= namelen;
2788 memcpy(*buffer, str, namelen);
2789 return 0;
2790 }
2791
2792 /**
2793 * prepend_name - prepend a pathname in front of current buffer pointer
2794 * @buffer: buffer pointer
2795 * @buflen: allocated length of the buffer
2796 * @name: name string and length qstr structure
2797 *
2798 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2799 * make sure that either the old or the new name pointer and length are
2800 * fetched. However, there may be mismatch between length and pointer.
2801 * The length cannot be trusted, we need to copy it byte-by-byte until
2802 * the length is reached or a null byte is found. It also prepends "/" at
2803 * the beginning of the name. The sequence number check at the caller will
2804 * retry it again when a d_move() does happen. So any garbage in the buffer
2805 * due to mismatched pointer and length will be discarded.
2806 *
2807 * Data dependency barrier is needed to make sure that we see that terminating
2808 * NUL. Alpha strikes again, film at 11...
2809 */
2810 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2811 {
2812 const char *dname = ACCESS_ONCE(name->name);
2813 u32 dlen = ACCESS_ONCE(name->len);
2814 char *p;
2815
2816 smp_read_barrier_depends();
2817
2818 *buflen -= dlen + 1;
2819 if (*buflen < 0)
2820 return -ENAMETOOLONG;
2821 p = *buffer -= dlen + 1;
2822 *p++ = '/';
2823 while (dlen--) {
2824 char c = *dname++;
2825 if (!c)
2826 break;
2827 *p++ = c;
2828 }
2829 return 0;
2830 }
2831
2832 /**
2833 * prepend_path - Prepend path string to a buffer
2834 * @path: the dentry/vfsmount to report
2835 * @root: root vfsmnt/dentry
2836 * @buffer: pointer to the end of the buffer
2837 * @buflen: pointer to buffer length
2838 *
2839 * The function will first try to write out the pathname without taking any
2840 * lock other than the RCU read lock to make sure that dentries won't go away.
2841 * It only checks the sequence number of the global rename_lock as any change
2842 * in the dentry's d_seq will be preceded by changes in the rename_lock
2843 * sequence number. If the sequence number had been changed, it will restart
2844 * the whole pathname back-tracing sequence again by taking the rename_lock.
2845 * In this case, there is no need to take the RCU read lock as the recursive
2846 * parent pointer references will keep the dentry chain alive as long as no
2847 * rename operation is performed.
2848 */
2849 static int prepend_path(const struct path *path,
2850 const struct path *root,
2851 char **buffer, int *buflen)
2852 {
2853 struct dentry *dentry;
2854 struct vfsmount *vfsmnt;
2855 struct mount *mnt;
2856 int error = 0;
2857 unsigned seq, m_seq = 0;
2858 char *bptr;
2859 int blen;
2860
2861 rcu_read_lock();
2862 restart_mnt:
2863 read_seqbegin_or_lock(&mount_lock, &m_seq);
2864 seq = 0;
2865 rcu_read_lock();
2866 restart:
2867 bptr = *buffer;
2868 blen = *buflen;
2869 error = 0;
2870 dentry = path->dentry;
2871 vfsmnt = path->mnt;
2872 mnt = real_mount(vfsmnt);
2873 read_seqbegin_or_lock(&rename_lock, &seq);
2874 while (dentry != root->dentry || vfsmnt != root->mnt) {
2875 struct dentry * parent;
2876
2877 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2878 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2879 /* Global root? */
2880 if (mnt != parent) {
2881 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2882 mnt = parent;
2883 vfsmnt = &mnt->mnt;
2884 continue;
2885 }
2886 /*
2887 * Filesystems needing to implement special "root names"
2888 * should do so with ->d_dname()
2889 */
2890 if (IS_ROOT(dentry) &&
2891 (dentry->d_name.len != 1 ||
2892 dentry->d_name.name[0] != '/')) {
2893 WARN(1, "Root dentry has weird name <%.*s>\n",
2894 (int) dentry->d_name.len,
2895 dentry->d_name.name);
2896 }
2897 if (!error)
2898 error = is_mounted(vfsmnt) ? 1 : 2;
2899 break;
2900 }
2901 parent = dentry->d_parent;
2902 prefetch(parent);
2903 error = prepend_name(&bptr, &blen, &dentry->d_name);
2904 if (error)
2905 break;
2906
2907 dentry = parent;
2908 }
2909 if (!(seq & 1))
2910 rcu_read_unlock();
2911 if (need_seqretry(&rename_lock, seq)) {
2912 seq = 1;
2913 goto restart;
2914 }
2915 done_seqretry(&rename_lock, seq);
2916
2917 if (!(m_seq & 1))
2918 rcu_read_unlock();
2919 if (need_seqretry(&mount_lock, m_seq)) {
2920 m_seq = 1;
2921 goto restart_mnt;
2922 }
2923 done_seqretry(&mount_lock, m_seq);
2924
2925 if (error >= 0 && bptr == *buffer) {
2926 if (--blen < 0)
2927 error = -ENAMETOOLONG;
2928 else
2929 *--bptr = '/';
2930 }
2931 *buffer = bptr;
2932 *buflen = blen;
2933 return error;
2934 }
2935
2936 /**
2937 * __d_path - return the path of a dentry
2938 * @path: the dentry/vfsmount to report
2939 * @root: root vfsmnt/dentry
2940 * @buf: buffer to return value in
2941 * @buflen: buffer length
2942 *
2943 * Convert a dentry into an ASCII path name.
2944 *
2945 * Returns a pointer into the buffer or an error code if the
2946 * path was too long.
2947 *
2948 * "buflen" should be positive.
2949 *
2950 * If the path is not reachable from the supplied root, return %NULL.
2951 */
2952 char *__d_path(const struct path *path,
2953 const struct path *root,
2954 char *buf, int buflen)
2955 {
2956 char *res = buf + buflen;
2957 int error;
2958
2959 prepend(&res, &buflen, "\0", 1);
2960 error = prepend_path(path, root, &res, &buflen);
2961
2962 if (error < 0)
2963 return ERR_PTR(error);
2964 if (error > 0)
2965 return NULL;
2966 return res;
2967 }
2968
2969 char *d_absolute_path(const struct path *path,
2970 char *buf, int buflen)
2971 {
2972 struct path root = {};
2973 char *res = buf + buflen;
2974 int error;
2975
2976 prepend(&res, &buflen, "\0", 1);
2977 error = prepend_path(path, &root, &res, &buflen);
2978
2979 if (error > 1)
2980 error = -EINVAL;
2981 if (error < 0)
2982 return ERR_PTR(error);
2983 return res;
2984 }
2985
2986 /*
2987 * same as __d_path but appends "(deleted)" for unlinked files.
2988 */
2989 static int path_with_deleted(const struct path *path,
2990 const struct path *root,
2991 char **buf, int *buflen)
2992 {
2993 prepend(buf, buflen, "\0", 1);
2994 if (d_unlinked(path->dentry)) {
2995 int error = prepend(buf, buflen, " (deleted)", 10);
2996 if (error)
2997 return error;
2998 }
2999
3000 return prepend_path(path, root, buf, buflen);
3001 }
3002
3003 static int prepend_unreachable(char **buffer, int *buflen)
3004 {
3005 return prepend(buffer, buflen, "(unreachable)", 13);
3006 }
3007
3008 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3009 {
3010 unsigned seq;
3011
3012 do {
3013 seq = read_seqcount_begin(&fs->seq);
3014 *root = fs->root;
3015 } while (read_seqcount_retry(&fs->seq, seq));
3016 }
3017
3018 /**
3019 * d_path - return the path of a dentry
3020 * @path: path to report
3021 * @buf: buffer to return value in
3022 * @buflen: buffer length
3023 *
3024 * Convert a dentry into an ASCII path name. If the entry has been deleted
3025 * the string " (deleted)" is appended. Note that this is ambiguous.
3026 *
3027 * Returns a pointer into the buffer or an error code if the path was
3028 * too long. Note: Callers should use the returned pointer, not the passed
3029 * in buffer, to use the name! The implementation often starts at an offset
3030 * into the buffer, and may leave 0 bytes at the start.
3031 *
3032 * "buflen" should be positive.
3033 */
3034 char *d_path(const struct path *path, char *buf, int buflen)
3035 {
3036 char *res = buf + buflen;
3037 struct path root;
3038 int error;
3039
3040 /*
3041 * We have various synthetic filesystems that never get mounted. On
3042 * these filesystems dentries are never used for lookup purposes, and
3043 * thus don't need to be hashed. They also don't need a name until a
3044 * user wants to identify the object in /proc/pid/fd/. The little hack
3045 * below allows us to generate a name for these objects on demand:
3046 *
3047 * Some pseudo inodes are mountable. When they are mounted
3048 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3049 * and instead have d_path return the mounted path.
3050 */
3051 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3052 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3053 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3054
3055 rcu_read_lock();
3056 get_fs_root_rcu(current->fs, &root);
3057 error = path_with_deleted(path, &root, &res, &buflen);
3058 rcu_read_unlock();
3059
3060 if (error < 0)
3061 res = ERR_PTR(error);
3062 return res;
3063 }
3064 EXPORT_SYMBOL(d_path);
3065
3066 /*
3067 * Helper function for dentry_operations.d_dname() members
3068 */
3069 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3070 const char *fmt, ...)
3071 {
3072 va_list args;
3073 char temp[64];
3074 int sz;
3075
3076 va_start(args, fmt);
3077 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3078 va_end(args);
3079
3080 if (sz > sizeof(temp) || sz > buflen)
3081 return ERR_PTR(-ENAMETOOLONG);
3082
3083 buffer += buflen - sz;
3084 return memcpy(buffer, temp, sz);
3085 }
3086
3087 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3088 {
3089 char *end = buffer + buflen;
3090 /* these dentries are never renamed, so d_lock is not needed */
3091 if (prepend(&end, &buflen, " (deleted)", 11) ||
3092 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3093 prepend(&end, &buflen, "/", 1))
3094 end = ERR_PTR(-ENAMETOOLONG);
3095 return end;
3096 }
3097 EXPORT_SYMBOL(simple_dname);
3098
3099 /*
3100 * Write full pathname from the root of the filesystem into the buffer.
3101 */
3102 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3103 {
3104 struct dentry *dentry;
3105 char *end, *retval;
3106 int len, seq = 0;
3107 int error = 0;
3108
3109 if (buflen < 2)
3110 goto Elong;
3111
3112 rcu_read_lock();
3113 restart:
3114 dentry = d;
3115 end = buf + buflen;
3116 len = buflen;
3117 prepend(&end, &len, "\0", 1);
3118 /* Get '/' right */
3119 retval = end-1;
3120 *retval = '/';
3121 read_seqbegin_or_lock(&rename_lock, &seq);
3122 while (!IS_ROOT(dentry)) {
3123 struct dentry *parent = dentry->d_parent;
3124
3125 prefetch(parent);
3126 error = prepend_name(&end, &len, &dentry->d_name);
3127 if (error)
3128 break;
3129
3130 retval = end;
3131 dentry = parent;
3132 }
3133 if (!(seq & 1))
3134 rcu_read_unlock();
3135 if (need_seqretry(&rename_lock, seq)) {
3136 seq = 1;
3137 goto restart;
3138 }
3139 done_seqretry(&rename_lock, seq);
3140 if (error)
3141 goto Elong;
3142 return retval;
3143 Elong:
3144 return ERR_PTR(-ENAMETOOLONG);
3145 }
3146
3147 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3148 {
3149 return __dentry_path(dentry, buf, buflen);
3150 }
3151 EXPORT_SYMBOL(dentry_path_raw);
3152
3153 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3154 {
3155 char *p = NULL;
3156 char *retval;
3157
3158 if (d_unlinked(dentry)) {
3159 p = buf + buflen;
3160 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3161 goto Elong;
3162 buflen++;
3163 }
3164 retval = __dentry_path(dentry, buf, buflen);
3165 if (!IS_ERR(retval) && p)
3166 *p = '/'; /* restore '/' overriden with '\0' */
3167 return retval;
3168 Elong:
3169 return ERR_PTR(-ENAMETOOLONG);
3170 }
3171
3172 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3173 struct path *pwd)
3174 {
3175 unsigned seq;
3176
3177 do {
3178 seq = read_seqcount_begin(&fs->seq);
3179 *root = fs->root;
3180 *pwd = fs->pwd;
3181 } while (read_seqcount_retry(&fs->seq, seq));
3182 }
3183
3184 /*
3185 * NOTE! The user-level library version returns a
3186 * character pointer. The kernel system call just
3187 * returns the length of the buffer filled (which
3188 * includes the ending '\0' character), or a negative
3189 * error value. So libc would do something like
3190 *
3191 * char *getcwd(char * buf, size_t size)
3192 * {
3193 * int retval;
3194 *
3195 * retval = sys_getcwd(buf, size);
3196 * if (retval >= 0)
3197 * return buf;
3198 * errno = -retval;
3199 * return NULL;
3200 * }
3201 */
3202 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3203 {
3204 int error;
3205 struct path pwd, root;
3206 char *page = __getname();
3207
3208 if (!page)
3209 return -ENOMEM;
3210
3211 rcu_read_lock();
3212 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3213
3214 error = -ENOENT;
3215 if (!d_unlinked(pwd.dentry)) {
3216 unsigned long len;
3217 char *cwd = page + PATH_MAX;
3218 int buflen = PATH_MAX;
3219
3220 prepend(&cwd, &buflen, "\0", 1);
3221 error = prepend_path(&pwd, &root, &cwd, &buflen);
3222 rcu_read_unlock();
3223
3224 if (error < 0)
3225 goto out;
3226
3227 /* Unreachable from current root */
3228 if (error > 0) {
3229 error = prepend_unreachable(&cwd, &buflen);
3230 if (error)
3231 goto out;
3232 }
3233
3234 error = -ERANGE;
3235 len = PATH_MAX + page - cwd;
3236 if (len <= size) {
3237 error = len;
3238 if (copy_to_user(buf, cwd, len))
3239 error = -EFAULT;
3240 }
3241 } else {
3242 rcu_read_unlock();
3243 }
3244
3245 out:
3246 __putname(page);
3247 return error;
3248 }
3249
3250 /*
3251 * Test whether new_dentry is a subdirectory of old_dentry.
3252 *
3253 * Trivially implemented using the dcache structure
3254 */
3255
3256 /**
3257 * is_subdir - is new dentry a subdirectory of old_dentry
3258 * @new_dentry: new dentry
3259 * @old_dentry: old dentry
3260 *
3261 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3262 * Returns 0 otherwise.
3263 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3264 */
3265
3266 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3267 {
3268 int result;
3269 unsigned seq;
3270
3271 if (new_dentry == old_dentry)
3272 return 1;
3273
3274 do {
3275 /* for restarting inner loop in case of seq retry */
3276 seq = read_seqbegin(&rename_lock);
3277 /*
3278 * Need rcu_readlock to protect against the d_parent trashing
3279 * due to d_move
3280 */
3281 rcu_read_lock();
3282 if (d_ancestor(old_dentry, new_dentry))
3283 result = 1;
3284 else
3285 result = 0;
3286 rcu_read_unlock();
3287 } while (read_seqretry(&rename_lock, seq));
3288
3289 return result;
3290 }
3291
3292 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3293 {
3294 struct dentry *root = data;
3295 if (dentry != root) {
3296 if (d_unhashed(dentry) || !dentry->d_inode)
3297 return D_WALK_SKIP;
3298
3299 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3300 dentry->d_flags |= DCACHE_GENOCIDE;
3301 dentry->d_lockref.count--;
3302 }
3303 }
3304 return D_WALK_CONTINUE;
3305 }
3306
3307 void d_genocide(struct dentry *parent)
3308 {
3309 d_walk(parent, parent, d_genocide_kill, NULL);
3310 }
3311
3312 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3313 {
3314 inode_dec_link_count(inode);
3315 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3316 !hlist_unhashed(&dentry->d_alias) ||
3317 !d_unlinked(dentry));
3318 spin_lock(&dentry->d_parent->d_lock);
3319 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3320 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3321 (unsigned long long)inode->i_ino);
3322 spin_unlock(&dentry->d_lock);
3323 spin_unlock(&dentry->d_parent->d_lock);
3324 d_instantiate(dentry, inode);
3325 }
3326 EXPORT_SYMBOL(d_tmpfile);
3327
3328 static __initdata unsigned long dhash_entries;
3329 static int __init set_dhash_entries(char *str)
3330 {
3331 if (!str)
3332 return 0;
3333 dhash_entries = simple_strtoul(str, &str, 0);
3334 return 1;
3335 }
3336 __setup("dhash_entries=", set_dhash_entries);
3337
3338 static void __init dcache_init_early(void)
3339 {
3340 unsigned int loop;
3341
3342 /* If hashes are distributed across NUMA nodes, defer
3343 * hash allocation until vmalloc space is available.
3344 */
3345 if (hashdist)
3346 return;
3347
3348 dentry_hashtable =
3349 alloc_large_system_hash("Dentry cache",
3350 sizeof(struct hlist_bl_head),
3351 dhash_entries,
3352 13,
3353 HASH_EARLY,
3354 &d_hash_shift,
3355 &d_hash_mask,
3356 0,
3357 0);
3358
3359 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3360 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3361 }
3362
3363 static void __init dcache_init(void)
3364 {
3365 unsigned int loop;
3366
3367 /*
3368 * A constructor could be added for stable state like the lists,
3369 * but it is probably not worth it because of the cache nature
3370 * of the dcache.
3371 */
3372 dentry_cache = KMEM_CACHE(dentry,
3373 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3374
3375 /* Hash may have been set up in dcache_init_early */
3376 if (!hashdist)
3377 return;
3378
3379 dentry_hashtable =
3380 alloc_large_system_hash("Dentry cache",
3381 sizeof(struct hlist_bl_head),
3382 dhash_entries,
3383 13,
3384 0,
3385 &d_hash_shift,
3386 &d_hash_mask,
3387 0,
3388 0);
3389
3390 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3391 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3392 }
3393
3394 /* SLAB cache for __getname() consumers */
3395 struct kmem_cache *names_cachep __read_mostly;
3396 EXPORT_SYMBOL(names_cachep);
3397
3398 EXPORT_SYMBOL(d_genocide);
3399
3400 void __init vfs_caches_init_early(void)
3401 {
3402 dcache_init_early();
3403 inode_init_early();
3404 }
3405
3406 void __init vfs_caches_init(unsigned long mempages)
3407 {
3408 unsigned long reserve;
3409
3410 /* Base hash sizes on available memory, with a reserve equal to
3411 150% of current kernel size */
3412
3413 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3414 mempages -= reserve;
3415
3416 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3417 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3418
3419 dcache_init();
3420 inode_init();
3421 files_init(mempages);
3422 mnt_init();
3423 bdev_cache_init();
3424 chrdev_init();
3425 }
This page took 0.137416 seconds and 5 git commands to generate.