Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42
43 /*
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_alias, d_inode
62 *
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
69 *
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
109 {
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
113 }
114
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118 };
119
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
124 {
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130 }
131
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134 {
135 dentry_stat.nr_dentry = get_nr_dentry();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139
140 /*
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
143 */
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
145
146 #include <asm/word-at-a-time.h>
147 /*
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
152 *
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
155 */
156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
157 {
158 unsigned long a,b,mask;
159
160 for (;;) {
161 a = *(unsigned long *)cs;
162 b = load_unaligned_zeropad(ct);
163 if (tcount < sizeof(unsigned long))
164 break;
165 if (unlikely(a != b))
166 return 1;
167 cs += sizeof(unsigned long);
168 ct += sizeof(unsigned long);
169 tcount -= sizeof(unsigned long);
170 if (!tcount)
171 return 0;
172 }
173 mask = ~(~0ul << tcount*8);
174 return unlikely(!!((a ^ b) & mask));
175 }
176
177 #else
178
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 do {
182 if (*cs != *ct)
183 return 1;
184 cs++;
185 ct++;
186 tcount--;
187 } while (tcount);
188 return 0;
189 }
190
191 #endif
192
193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194 {
195 const unsigned char *cs;
196 /*
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
199 *
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
207 *
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
211 */
212 cs = ACCESS_ONCE(dentry->d_name.name);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs, ct, tcount);
215 }
216
217 static void __d_free(struct rcu_head *head)
218 {
219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220
221 WARN_ON(!list_empty(&dentry->d_alias));
222 if (dname_external(dentry))
223 kfree(dentry->d_name.name);
224 kmem_cache_free(dentry_cache, dentry);
225 }
226
227 /*
228 * no locks, please.
229 */
230 static void d_free(struct dentry *dentry)
231 {
232 BUG_ON(dentry->d_count);
233 this_cpu_dec(nr_dentry);
234 if (dentry->d_op && dentry->d_op->d_release)
235 dentry->d_op->d_release(dentry);
236
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry->d_flags & DCACHE_RCUACCESS))
239 __d_free(&dentry->d_u.d_rcu);
240 else
241 call_rcu(&dentry->d_u.d_rcu, __d_free);
242 }
243
244 /**
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246 * @dentry: the target dentry
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
250 */
251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252 {
253 assert_spin_locked(&dentry->d_lock);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry->d_seq);
256 }
257
258 /*
259 * Release the dentry's inode, using the filesystem
260 * d_iput() operation if defined. Dentry has no refcount
261 * and is unhashed.
262 */
263 static void dentry_iput(struct dentry * dentry)
264 __releases(dentry->d_lock)
265 __releases(dentry->d_inode->i_lock)
266 {
267 struct inode *inode = dentry->d_inode;
268 if (inode) {
269 dentry->d_inode = NULL;
270 list_del_init(&dentry->d_alias);
271 spin_unlock(&dentry->d_lock);
272 spin_unlock(&inode->i_lock);
273 if (!inode->i_nlink)
274 fsnotify_inoderemove(inode);
275 if (dentry->d_op && dentry->d_op->d_iput)
276 dentry->d_op->d_iput(dentry, inode);
277 else
278 iput(inode);
279 } else {
280 spin_unlock(&dentry->d_lock);
281 }
282 }
283
284 /*
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
287 */
288 static void dentry_unlink_inode(struct dentry * dentry)
289 __releases(dentry->d_lock)
290 __releases(dentry->d_inode->i_lock)
291 {
292 struct inode *inode = dentry->d_inode;
293 dentry->d_inode = NULL;
294 list_del_init(&dentry->d_alias);
295 dentry_rcuwalk_barrier(dentry);
296 spin_unlock(&dentry->d_lock);
297 spin_unlock(&inode->i_lock);
298 if (!inode->i_nlink)
299 fsnotify_inoderemove(inode);
300 if (dentry->d_op && dentry->d_op->d_iput)
301 dentry->d_op->d_iput(dentry, inode);
302 else
303 iput(inode);
304 }
305
306 /*
307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
308 */
309 static void dentry_lru_add(struct dentry *dentry)
310 {
311 if (list_empty(&dentry->d_lru)) {
312 spin_lock(&dcache_lru_lock);
313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 dentry->d_sb->s_nr_dentry_unused++;
315 dentry_stat.nr_unused++;
316 spin_unlock(&dcache_lru_lock);
317 }
318 }
319
320 static void __dentry_lru_del(struct dentry *dentry)
321 {
322 list_del_init(&dentry->d_lru);
323 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
324 dentry->d_sb->s_nr_dentry_unused--;
325 dentry_stat.nr_unused--;
326 }
327
328 /*
329 * Remove a dentry with references from the LRU.
330 */
331 static void dentry_lru_del(struct dentry *dentry)
332 {
333 if (!list_empty(&dentry->d_lru)) {
334 spin_lock(&dcache_lru_lock);
335 __dentry_lru_del(dentry);
336 spin_unlock(&dcache_lru_lock);
337 }
338 }
339
340 /*
341 * Remove a dentry that is unreferenced and about to be pruned
342 * (unhashed and destroyed) from the LRU, and inform the file system.
343 * This wrapper should be called _prior_ to unhashing a victim dentry.
344 */
345 static void dentry_lru_prune(struct dentry *dentry)
346 {
347 if (!list_empty(&dentry->d_lru)) {
348 if (dentry->d_flags & DCACHE_OP_PRUNE)
349 dentry->d_op->d_prune(dentry);
350
351 spin_lock(&dcache_lru_lock);
352 __dentry_lru_del(dentry);
353 spin_unlock(&dcache_lru_lock);
354 }
355 }
356
357 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
358 {
359 spin_lock(&dcache_lru_lock);
360 if (list_empty(&dentry->d_lru)) {
361 list_add_tail(&dentry->d_lru, list);
362 dentry->d_sb->s_nr_dentry_unused++;
363 dentry_stat.nr_unused++;
364 } else {
365 list_move_tail(&dentry->d_lru, list);
366 }
367 spin_unlock(&dcache_lru_lock);
368 }
369
370 /**
371 * d_kill - kill dentry and return parent
372 * @dentry: dentry to kill
373 * @parent: parent dentry
374 *
375 * The dentry must already be unhashed and removed from the LRU.
376 *
377 * If this is the root of the dentry tree, return NULL.
378 *
379 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
380 * d_kill.
381 */
382 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
383 __releases(dentry->d_lock)
384 __releases(parent->d_lock)
385 __releases(dentry->d_inode->i_lock)
386 {
387 list_del(&dentry->d_u.d_child);
388 /*
389 * Inform try_to_ascend() that we are no longer attached to the
390 * dentry tree
391 */
392 dentry->d_flags |= DCACHE_DISCONNECTED;
393 if (parent)
394 spin_unlock(&parent->d_lock);
395 dentry_iput(dentry);
396 /*
397 * dentry_iput drops the locks, at which point nobody (except
398 * transient RCU lookups) can reach this dentry.
399 */
400 d_free(dentry);
401 return parent;
402 }
403
404 /*
405 * Unhash a dentry without inserting an RCU walk barrier or checking that
406 * dentry->d_lock is locked. The caller must take care of that, if
407 * appropriate.
408 */
409 static void __d_shrink(struct dentry *dentry)
410 {
411 if (!d_unhashed(dentry)) {
412 struct hlist_bl_head *b;
413 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
414 b = &dentry->d_sb->s_anon;
415 else
416 b = d_hash(dentry->d_parent, dentry->d_name.hash);
417
418 hlist_bl_lock(b);
419 __hlist_bl_del(&dentry->d_hash);
420 dentry->d_hash.pprev = NULL;
421 hlist_bl_unlock(b);
422 }
423 }
424
425 /**
426 * d_drop - drop a dentry
427 * @dentry: dentry to drop
428 *
429 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430 * be found through a VFS lookup any more. Note that this is different from
431 * deleting the dentry - d_delete will try to mark the dentry negative if
432 * possible, giving a successful _negative_ lookup, while d_drop will
433 * just make the cache lookup fail.
434 *
435 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436 * reason (NFS timeouts or autofs deletes).
437 *
438 * __d_drop requires dentry->d_lock.
439 */
440 void __d_drop(struct dentry *dentry)
441 {
442 if (!d_unhashed(dentry)) {
443 __d_shrink(dentry);
444 dentry_rcuwalk_barrier(dentry);
445 }
446 }
447 EXPORT_SYMBOL(__d_drop);
448
449 void d_drop(struct dentry *dentry)
450 {
451 spin_lock(&dentry->d_lock);
452 __d_drop(dentry);
453 spin_unlock(&dentry->d_lock);
454 }
455 EXPORT_SYMBOL(d_drop);
456
457 /*
458 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
459 * @dentry: dentry to drop
460 *
461 * This is called when we do a lookup on a placeholder dentry that needed to be
462 * looked up. The dentry should have been hashed in order for it to be found by
463 * the lookup code, but now needs to be unhashed while we do the actual lookup
464 * and clear the DCACHE_NEED_LOOKUP flag.
465 */
466 void d_clear_need_lookup(struct dentry *dentry)
467 {
468 spin_lock(&dentry->d_lock);
469 __d_drop(dentry);
470 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
471 spin_unlock(&dentry->d_lock);
472 }
473 EXPORT_SYMBOL(d_clear_need_lookup);
474
475 /*
476 * Finish off a dentry we've decided to kill.
477 * dentry->d_lock must be held, returns with it unlocked.
478 * If ref is non-zero, then decrement the refcount too.
479 * Returns dentry requiring refcount drop, or NULL if we're done.
480 */
481 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
482 __releases(dentry->d_lock)
483 {
484 struct inode *inode;
485 struct dentry *parent;
486
487 inode = dentry->d_inode;
488 if (inode && !spin_trylock(&inode->i_lock)) {
489 relock:
490 spin_unlock(&dentry->d_lock);
491 cpu_relax();
492 return dentry; /* try again with same dentry */
493 }
494 if (IS_ROOT(dentry))
495 parent = NULL;
496 else
497 parent = dentry->d_parent;
498 if (parent && !spin_trylock(&parent->d_lock)) {
499 if (inode)
500 spin_unlock(&inode->i_lock);
501 goto relock;
502 }
503
504 if (ref)
505 dentry->d_count--;
506 /*
507 * if dentry was on the d_lru list delete it from there.
508 * inform the fs via d_prune that this dentry is about to be
509 * unhashed and destroyed.
510 */
511 dentry_lru_prune(dentry);
512 /* if it was on the hash then remove it */
513 __d_drop(dentry);
514 return d_kill(dentry, parent);
515 }
516
517 /*
518 * This is dput
519 *
520 * This is complicated by the fact that we do not want to put
521 * dentries that are no longer on any hash chain on the unused
522 * list: we'd much rather just get rid of them immediately.
523 *
524 * However, that implies that we have to traverse the dentry
525 * tree upwards to the parents which might _also_ now be
526 * scheduled for deletion (it may have been only waiting for
527 * its last child to go away).
528 *
529 * This tail recursion is done by hand as we don't want to depend
530 * on the compiler to always get this right (gcc generally doesn't).
531 * Real recursion would eat up our stack space.
532 */
533
534 /*
535 * dput - release a dentry
536 * @dentry: dentry to release
537 *
538 * Release a dentry. This will drop the usage count and if appropriate
539 * call the dentry unlink method as well as removing it from the queues and
540 * releasing its resources. If the parent dentries were scheduled for release
541 * they too may now get deleted.
542 */
543 void dput(struct dentry *dentry)
544 {
545 if (!dentry)
546 return;
547
548 repeat:
549 if (dentry->d_count == 1)
550 might_sleep();
551 spin_lock(&dentry->d_lock);
552 BUG_ON(!dentry->d_count);
553 if (dentry->d_count > 1) {
554 dentry->d_count--;
555 spin_unlock(&dentry->d_lock);
556 return;
557 }
558
559 if (dentry->d_flags & DCACHE_OP_DELETE) {
560 if (dentry->d_op->d_delete(dentry))
561 goto kill_it;
562 }
563
564 /* Unreachable? Get rid of it */
565 if (d_unhashed(dentry))
566 goto kill_it;
567
568 /*
569 * If this dentry needs lookup, don't set the referenced flag so that it
570 * is more likely to be cleaned up by the dcache shrinker in case of
571 * memory pressure.
572 */
573 if (!d_need_lookup(dentry))
574 dentry->d_flags |= DCACHE_REFERENCED;
575 dentry_lru_add(dentry);
576
577 dentry->d_count--;
578 spin_unlock(&dentry->d_lock);
579 return;
580
581 kill_it:
582 dentry = dentry_kill(dentry, 1);
583 if (dentry)
584 goto repeat;
585 }
586 EXPORT_SYMBOL(dput);
587
588 /**
589 * d_invalidate - invalidate a dentry
590 * @dentry: dentry to invalidate
591 *
592 * Try to invalidate the dentry if it turns out to be
593 * possible. If there are other dentries that can be
594 * reached through this one we can't delete it and we
595 * return -EBUSY. On success we return 0.
596 *
597 * no dcache lock.
598 */
599
600 int d_invalidate(struct dentry * dentry)
601 {
602 /*
603 * If it's already been dropped, return OK.
604 */
605 spin_lock(&dentry->d_lock);
606 if (d_unhashed(dentry)) {
607 spin_unlock(&dentry->d_lock);
608 return 0;
609 }
610 /*
611 * Check whether to do a partial shrink_dcache
612 * to get rid of unused child entries.
613 */
614 if (!list_empty(&dentry->d_subdirs)) {
615 spin_unlock(&dentry->d_lock);
616 shrink_dcache_parent(dentry);
617 spin_lock(&dentry->d_lock);
618 }
619
620 /*
621 * Somebody else still using it?
622 *
623 * If it's a directory, we can't drop it
624 * for fear of somebody re-populating it
625 * with children (even though dropping it
626 * would make it unreachable from the root,
627 * we might still populate it if it was a
628 * working directory or similar).
629 * We also need to leave mountpoints alone,
630 * directory or not.
631 */
632 if (dentry->d_count > 1 && dentry->d_inode) {
633 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
634 spin_unlock(&dentry->d_lock);
635 return -EBUSY;
636 }
637 }
638
639 __d_drop(dentry);
640 spin_unlock(&dentry->d_lock);
641 return 0;
642 }
643 EXPORT_SYMBOL(d_invalidate);
644
645 /* This must be called with d_lock held */
646 static inline void __dget_dlock(struct dentry *dentry)
647 {
648 dentry->d_count++;
649 }
650
651 static inline void __dget(struct dentry *dentry)
652 {
653 spin_lock(&dentry->d_lock);
654 __dget_dlock(dentry);
655 spin_unlock(&dentry->d_lock);
656 }
657
658 struct dentry *dget_parent(struct dentry *dentry)
659 {
660 struct dentry *ret;
661
662 repeat:
663 /*
664 * Don't need rcu_dereference because we re-check it was correct under
665 * the lock.
666 */
667 rcu_read_lock();
668 ret = dentry->d_parent;
669 spin_lock(&ret->d_lock);
670 if (unlikely(ret != dentry->d_parent)) {
671 spin_unlock(&ret->d_lock);
672 rcu_read_unlock();
673 goto repeat;
674 }
675 rcu_read_unlock();
676 BUG_ON(!ret->d_count);
677 ret->d_count++;
678 spin_unlock(&ret->d_lock);
679 return ret;
680 }
681 EXPORT_SYMBOL(dget_parent);
682
683 /**
684 * d_find_alias - grab a hashed alias of inode
685 * @inode: inode in question
686 *
687 * If inode has a hashed alias, or is a directory and has any alias,
688 * acquire the reference to alias and return it. Otherwise return NULL.
689 * Notice that if inode is a directory there can be only one alias and
690 * it can be unhashed only if it has no children, or if it is the root
691 * of a filesystem.
692 *
693 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
694 * any other hashed alias over that.
695 */
696 static struct dentry *__d_find_alias(struct inode *inode)
697 {
698 struct dentry *alias, *discon_alias;
699
700 again:
701 discon_alias = NULL;
702 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
703 spin_lock(&alias->d_lock);
704 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
705 if (IS_ROOT(alias) &&
706 (alias->d_flags & DCACHE_DISCONNECTED)) {
707 discon_alias = alias;
708 } else {
709 __dget_dlock(alias);
710 spin_unlock(&alias->d_lock);
711 return alias;
712 }
713 }
714 spin_unlock(&alias->d_lock);
715 }
716 if (discon_alias) {
717 alias = discon_alias;
718 spin_lock(&alias->d_lock);
719 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
720 if (IS_ROOT(alias) &&
721 (alias->d_flags & DCACHE_DISCONNECTED)) {
722 __dget_dlock(alias);
723 spin_unlock(&alias->d_lock);
724 return alias;
725 }
726 }
727 spin_unlock(&alias->d_lock);
728 goto again;
729 }
730 return NULL;
731 }
732
733 struct dentry *d_find_alias(struct inode *inode)
734 {
735 struct dentry *de = NULL;
736
737 if (!list_empty(&inode->i_dentry)) {
738 spin_lock(&inode->i_lock);
739 de = __d_find_alias(inode);
740 spin_unlock(&inode->i_lock);
741 }
742 return de;
743 }
744 EXPORT_SYMBOL(d_find_alias);
745
746 /*
747 * Try to kill dentries associated with this inode.
748 * WARNING: you must own a reference to inode.
749 */
750 void d_prune_aliases(struct inode *inode)
751 {
752 struct dentry *dentry;
753 restart:
754 spin_lock(&inode->i_lock);
755 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
756 spin_lock(&dentry->d_lock);
757 if (!dentry->d_count) {
758 __dget_dlock(dentry);
759 __d_drop(dentry);
760 spin_unlock(&dentry->d_lock);
761 spin_unlock(&inode->i_lock);
762 dput(dentry);
763 goto restart;
764 }
765 spin_unlock(&dentry->d_lock);
766 }
767 spin_unlock(&inode->i_lock);
768 }
769 EXPORT_SYMBOL(d_prune_aliases);
770
771 /*
772 * Try to throw away a dentry - free the inode, dput the parent.
773 * Requires dentry->d_lock is held, and dentry->d_count == 0.
774 * Releases dentry->d_lock.
775 *
776 * This may fail if locks cannot be acquired no problem, just try again.
777 */
778 static void try_prune_one_dentry(struct dentry *dentry)
779 __releases(dentry->d_lock)
780 {
781 struct dentry *parent;
782
783 parent = dentry_kill(dentry, 0);
784 /*
785 * If dentry_kill returns NULL, we have nothing more to do.
786 * if it returns the same dentry, trylocks failed. In either
787 * case, just loop again.
788 *
789 * Otherwise, we need to prune ancestors too. This is necessary
790 * to prevent quadratic behavior of shrink_dcache_parent(), but
791 * is also expected to be beneficial in reducing dentry cache
792 * fragmentation.
793 */
794 if (!parent)
795 return;
796 if (parent == dentry)
797 return;
798
799 /* Prune ancestors. */
800 dentry = parent;
801 while (dentry) {
802 spin_lock(&dentry->d_lock);
803 if (dentry->d_count > 1) {
804 dentry->d_count--;
805 spin_unlock(&dentry->d_lock);
806 return;
807 }
808 dentry = dentry_kill(dentry, 1);
809 }
810 }
811
812 static void shrink_dentry_list(struct list_head *list)
813 {
814 struct dentry *dentry;
815
816 rcu_read_lock();
817 for (;;) {
818 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
819 if (&dentry->d_lru == list)
820 break; /* empty */
821 spin_lock(&dentry->d_lock);
822 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
823 spin_unlock(&dentry->d_lock);
824 continue;
825 }
826
827 /*
828 * We found an inuse dentry which was not removed from
829 * the LRU because of laziness during lookup. Do not free
830 * it - just keep it off the LRU list.
831 */
832 if (dentry->d_count) {
833 dentry_lru_del(dentry);
834 spin_unlock(&dentry->d_lock);
835 continue;
836 }
837
838 rcu_read_unlock();
839
840 try_prune_one_dentry(dentry);
841
842 rcu_read_lock();
843 }
844 rcu_read_unlock();
845 }
846
847 /**
848 * prune_dcache_sb - shrink the dcache
849 * @sb: superblock
850 * @count: number of entries to try to free
851 *
852 * Attempt to shrink the superblock dcache LRU by @count entries. This is
853 * done when we need more memory an called from the superblock shrinker
854 * function.
855 *
856 * This function may fail to free any resources if all the dentries are in
857 * use.
858 */
859 void prune_dcache_sb(struct super_block *sb, int count)
860 {
861 struct dentry *dentry;
862 LIST_HEAD(referenced);
863 LIST_HEAD(tmp);
864
865 relock:
866 spin_lock(&dcache_lru_lock);
867 while (!list_empty(&sb->s_dentry_lru)) {
868 dentry = list_entry(sb->s_dentry_lru.prev,
869 struct dentry, d_lru);
870 BUG_ON(dentry->d_sb != sb);
871
872 if (!spin_trylock(&dentry->d_lock)) {
873 spin_unlock(&dcache_lru_lock);
874 cpu_relax();
875 goto relock;
876 }
877
878 if (dentry->d_flags & DCACHE_REFERENCED) {
879 dentry->d_flags &= ~DCACHE_REFERENCED;
880 list_move(&dentry->d_lru, &referenced);
881 spin_unlock(&dentry->d_lock);
882 } else {
883 list_move_tail(&dentry->d_lru, &tmp);
884 dentry->d_flags |= DCACHE_SHRINK_LIST;
885 spin_unlock(&dentry->d_lock);
886 if (!--count)
887 break;
888 }
889 cond_resched_lock(&dcache_lru_lock);
890 }
891 if (!list_empty(&referenced))
892 list_splice(&referenced, &sb->s_dentry_lru);
893 spin_unlock(&dcache_lru_lock);
894
895 shrink_dentry_list(&tmp);
896 }
897
898 /**
899 * shrink_dcache_sb - shrink dcache for a superblock
900 * @sb: superblock
901 *
902 * Shrink the dcache for the specified super block. This is used to free
903 * the dcache before unmounting a file system.
904 */
905 void shrink_dcache_sb(struct super_block *sb)
906 {
907 LIST_HEAD(tmp);
908
909 spin_lock(&dcache_lru_lock);
910 while (!list_empty(&sb->s_dentry_lru)) {
911 list_splice_init(&sb->s_dentry_lru, &tmp);
912 spin_unlock(&dcache_lru_lock);
913 shrink_dentry_list(&tmp);
914 spin_lock(&dcache_lru_lock);
915 }
916 spin_unlock(&dcache_lru_lock);
917 }
918 EXPORT_SYMBOL(shrink_dcache_sb);
919
920 /*
921 * destroy a single subtree of dentries for unmount
922 * - see the comments on shrink_dcache_for_umount() for a description of the
923 * locking
924 */
925 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
926 {
927 struct dentry *parent;
928
929 BUG_ON(!IS_ROOT(dentry));
930
931 for (;;) {
932 /* descend to the first leaf in the current subtree */
933 while (!list_empty(&dentry->d_subdirs))
934 dentry = list_entry(dentry->d_subdirs.next,
935 struct dentry, d_u.d_child);
936
937 /* consume the dentries from this leaf up through its parents
938 * until we find one with children or run out altogether */
939 do {
940 struct inode *inode;
941
942 /*
943 * remove the dentry from the lru, and inform
944 * the fs that this dentry is about to be
945 * unhashed and destroyed.
946 */
947 dentry_lru_prune(dentry);
948 __d_shrink(dentry);
949
950 if (dentry->d_count != 0) {
951 printk(KERN_ERR
952 "BUG: Dentry %p{i=%lx,n=%s}"
953 " still in use (%d)"
954 " [unmount of %s %s]\n",
955 dentry,
956 dentry->d_inode ?
957 dentry->d_inode->i_ino : 0UL,
958 dentry->d_name.name,
959 dentry->d_count,
960 dentry->d_sb->s_type->name,
961 dentry->d_sb->s_id);
962 BUG();
963 }
964
965 if (IS_ROOT(dentry)) {
966 parent = NULL;
967 list_del(&dentry->d_u.d_child);
968 } else {
969 parent = dentry->d_parent;
970 parent->d_count--;
971 list_del(&dentry->d_u.d_child);
972 }
973
974 inode = dentry->d_inode;
975 if (inode) {
976 dentry->d_inode = NULL;
977 list_del_init(&dentry->d_alias);
978 if (dentry->d_op && dentry->d_op->d_iput)
979 dentry->d_op->d_iput(dentry, inode);
980 else
981 iput(inode);
982 }
983
984 d_free(dentry);
985
986 /* finished when we fall off the top of the tree,
987 * otherwise we ascend to the parent and move to the
988 * next sibling if there is one */
989 if (!parent)
990 return;
991 dentry = parent;
992 } while (list_empty(&dentry->d_subdirs));
993
994 dentry = list_entry(dentry->d_subdirs.next,
995 struct dentry, d_u.d_child);
996 }
997 }
998
999 /*
1000 * destroy the dentries attached to a superblock on unmounting
1001 * - we don't need to use dentry->d_lock because:
1002 * - the superblock is detached from all mountings and open files, so the
1003 * dentry trees will not be rearranged by the VFS
1004 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1005 * any dentries belonging to this superblock that it comes across
1006 * - the filesystem itself is no longer permitted to rearrange the dentries
1007 * in this superblock
1008 */
1009 void shrink_dcache_for_umount(struct super_block *sb)
1010 {
1011 struct dentry *dentry;
1012
1013 if (down_read_trylock(&sb->s_umount))
1014 BUG();
1015
1016 dentry = sb->s_root;
1017 sb->s_root = NULL;
1018 dentry->d_count--;
1019 shrink_dcache_for_umount_subtree(dentry);
1020
1021 while (!hlist_bl_empty(&sb->s_anon)) {
1022 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1023 shrink_dcache_for_umount_subtree(dentry);
1024 }
1025 }
1026
1027 /*
1028 * This tries to ascend one level of parenthood, but
1029 * we can race with renaming, so we need to re-check
1030 * the parenthood after dropping the lock and check
1031 * that the sequence number still matches.
1032 */
1033 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1034 {
1035 struct dentry *new = old->d_parent;
1036
1037 rcu_read_lock();
1038 spin_unlock(&old->d_lock);
1039 spin_lock(&new->d_lock);
1040
1041 /*
1042 * might go back up the wrong parent if we have had a rename
1043 * or deletion
1044 */
1045 if (new != old->d_parent ||
1046 (old->d_flags & DCACHE_DISCONNECTED) ||
1047 (!locked && read_seqretry(&rename_lock, seq))) {
1048 spin_unlock(&new->d_lock);
1049 new = NULL;
1050 }
1051 rcu_read_unlock();
1052 return new;
1053 }
1054
1055
1056 /*
1057 * Search for at least 1 mount point in the dentry's subdirs.
1058 * We descend to the next level whenever the d_subdirs
1059 * list is non-empty and continue searching.
1060 */
1061
1062 /**
1063 * have_submounts - check for mounts over a dentry
1064 * @parent: dentry to check.
1065 *
1066 * Return true if the parent or its subdirectories contain
1067 * a mount point
1068 */
1069 int have_submounts(struct dentry *parent)
1070 {
1071 struct dentry *this_parent;
1072 struct list_head *next;
1073 unsigned seq;
1074 int locked = 0;
1075
1076 seq = read_seqbegin(&rename_lock);
1077 again:
1078 this_parent = parent;
1079
1080 if (d_mountpoint(parent))
1081 goto positive;
1082 spin_lock(&this_parent->d_lock);
1083 repeat:
1084 next = this_parent->d_subdirs.next;
1085 resume:
1086 while (next != &this_parent->d_subdirs) {
1087 struct list_head *tmp = next;
1088 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1089 next = tmp->next;
1090
1091 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1092 /* Have we found a mount point ? */
1093 if (d_mountpoint(dentry)) {
1094 spin_unlock(&dentry->d_lock);
1095 spin_unlock(&this_parent->d_lock);
1096 goto positive;
1097 }
1098 if (!list_empty(&dentry->d_subdirs)) {
1099 spin_unlock(&this_parent->d_lock);
1100 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1101 this_parent = dentry;
1102 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1103 goto repeat;
1104 }
1105 spin_unlock(&dentry->d_lock);
1106 }
1107 /*
1108 * All done at this level ... ascend and resume the search.
1109 */
1110 if (this_parent != parent) {
1111 struct dentry *child = this_parent;
1112 this_parent = try_to_ascend(this_parent, locked, seq);
1113 if (!this_parent)
1114 goto rename_retry;
1115 next = child->d_u.d_child.next;
1116 goto resume;
1117 }
1118 spin_unlock(&this_parent->d_lock);
1119 if (!locked && read_seqretry(&rename_lock, seq))
1120 goto rename_retry;
1121 if (locked)
1122 write_sequnlock(&rename_lock);
1123 return 0; /* No mount points found in tree */
1124 positive:
1125 if (!locked && read_seqretry(&rename_lock, seq))
1126 goto rename_retry;
1127 if (locked)
1128 write_sequnlock(&rename_lock);
1129 return 1;
1130
1131 rename_retry:
1132 locked = 1;
1133 write_seqlock(&rename_lock);
1134 goto again;
1135 }
1136 EXPORT_SYMBOL(have_submounts);
1137
1138 /*
1139 * Search the dentry child list for the specified parent,
1140 * and move any unused dentries to the end of the unused
1141 * list for prune_dcache(). We descend to the next level
1142 * whenever the d_subdirs list is non-empty and continue
1143 * searching.
1144 *
1145 * It returns zero iff there are no unused children,
1146 * otherwise it returns the number of children moved to
1147 * the end of the unused list. This may not be the total
1148 * number of unused children, because select_parent can
1149 * drop the lock and return early due to latency
1150 * constraints.
1151 */
1152 static int select_parent(struct dentry *parent, struct list_head *dispose)
1153 {
1154 struct dentry *this_parent;
1155 struct list_head *next;
1156 unsigned seq;
1157 int found = 0;
1158 int locked = 0;
1159
1160 seq = read_seqbegin(&rename_lock);
1161 again:
1162 this_parent = parent;
1163 spin_lock(&this_parent->d_lock);
1164 repeat:
1165 next = this_parent->d_subdirs.next;
1166 resume:
1167 while (next != &this_parent->d_subdirs) {
1168 struct list_head *tmp = next;
1169 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1170 next = tmp->next;
1171
1172 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1173
1174 /*
1175 * move only zero ref count dentries to the dispose list.
1176 *
1177 * Those which are presently on the shrink list, being processed
1178 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1179 * loop in shrink_dcache_parent() might not make any progress
1180 * and loop forever.
1181 */
1182 if (dentry->d_count) {
1183 dentry_lru_del(dentry);
1184 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1185 dentry_lru_move_list(dentry, dispose);
1186 dentry->d_flags |= DCACHE_SHRINK_LIST;
1187 found++;
1188 }
1189 /*
1190 * We can return to the caller if we have found some (this
1191 * ensures forward progress). We'll be coming back to find
1192 * the rest.
1193 */
1194 if (found && need_resched()) {
1195 spin_unlock(&dentry->d_lock);
1196 goto out;
1197 }
1198
1199 /*
1200 * Descend a level if the d_subdirs list is non-empty.
1201 */
1202 if (!list_empty(&dentry->d_subdirs)) {
1203 spin_unlock(&this_parent->d_lock);
1204 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1205 this_parent = dentry;
1206 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1207 goto repeat;
1208 }
1209
1210 spin_unlock(&dentry->d_lock);
1211 }
1212 /*
1213 * All done at this level ... ascend and resume the search.
1214 */
1215 if (this_parent != parent) {
1216 struct dentry *child = this_parent;
1217 this_parent = try_to_ascend(this_parent, locked, seq);
1218 if (!this_parent)
1219 goto rename_retry;
1220 next = child->d_u.d_child.next;
1221 goto resume;
1222 }
1223 out:
1224 spin_unlock(&this_parent->d_lock);
1225 if (!locked && read_seqretry(&rename_lock, seq))
1226 goto rename_retry;
1227 if (locked)
1228 write_sequnlock(&rename_lock);
1229 return found;
1230
1231 rename_retry:
1232 if (found)
1233 return found;
1234 locked = 1;
1235 write_seqlock(&rename_lock);
1236 goto again;
1237 }
1238
1239 /**
1240 * shrink_dcache_parent - prune dcache
1241 * @parent: parent of entries to prune
1242 *
1243 * Prune the dcache to remove unused children of the parent dentry.
1244 */
1245 void shrink_dcache_parent(struct dentry * parent)
1246 {
1247 LIST_HEAD(dispose);
1248 int found;
1249
1250 while ((found = select_parent(parent, &dispose)) != 0)
1251 shrink_dentry_list(&dispose);
1252 }
1253 EXPORT_SYMBOL(shrink_dcache_parent);
1254
1255 /**
1256 * __d_alloc - allocate a dcache entry
1257 * @sb: filesystem it will belong to
1258 * @name: qstr of the name
1259 *
1260 * Allocates a dentry. It returns %NULL if there is insufficient memory
1261 * available. On a success the dentry is returned. The name passed in is
1262 * copied and the copy passed in may be reused after this call.
1263 */
1264
1265 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1266 {
1267 struct dentry *dentry;
1268 char *dname;
1269
1270 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1271 if (!dentry)
1272 return NULL;
1273
1274 /*
1275 * We guarantee that the inline name is always NUL-terminated.
1276 * This way the memcpy() done by the name switching in rename
1277 * will still always have a NUL at the end, even if we might
1278 * be overwriting an internal NUL character
1279 */
1280 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1281 if (name->len > DNAME_INLINE_LEN-1) {
1282 dname = kmalloc(name->len + 1, GFP_KERNEL);
1283 if (!dname) {
1284 kmem_cache_free(dentry_cache, dentry);
1285 return NULL;
1286 }
1287 } else {
1288 dname = dentry->d_iname;
1289 }
1290
1291 dentry->d_name.len = name->len;
1292 dentry->d_name.hash = name->hash;
1293 memcpy(dname, name->name, name->len);
1294 dname[name->len] = 0;
1295
1296 /* Make sure we always see the terminating NUL character */
1297 smp_wmb();
1298 dentry->d_name.name = dname;
1299
1300 dentry->d_count = 1;
1301 dentry->d_flags = 0;
1302 spin_lock_init(&dentry->d_lock);
1303 seqcount_init(&dentry->d_seq);
1304 dentry->d_inode = NULL;
1305 dentry->d_parent = dentry;
1306 dentry->d_sb = sb;
1307 dentry->d_op = NULL;
1308 dentry->d_fsdata = NULL;
1309 INIT_HLIST_BL_NODE(&dentry->d_hash);
1310 INIT_LIST_HEAD(&dentry->d_lru);
1311 INIT_LIST_HEAD(&dentry->d_subdirs);
1312 INIT_LIST_HEAD(&dentry->d_alias);
1313 INIT_LIST_HEAD(&dentry->d_u.d_child);
1314 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1315
1316 this_cpu_inc(nr_dentry);
1317
1318 return dentry;
1319 }
1320
1321 /**
1322 * d_alloc - allocate a dcache entry
1323 * @parent: parent of entry to allocate
1324 * @name: qstr of the name
1325 *
1326 * Allocates a dentry. It returns %NULL if there is insufficient memory
1327 * available. On a success the dentry is returned. The name passed in is
1328 * copied and the copy passed in may be reused after this call.
1329 */
1330 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1331 {
1332 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1333 if (!dentry)
1334 return NULL;
1335
1336 spin_lock(&parent->d_lock);
1337 /*
1338 * don't need child lock because it is not subject
1339 * to concurrency here
1340 */
1341 __dget_dlock(parent);
1342 dentry->d_parent = parent;
1343 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1344 spin_unlock(&parent->d_lock);
1345
1346 return dentry;
1347 }
1348 EXPORT_SYMBOL(d_alloc);
1349
1350 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1351 {
1352 struct dentry *dentry = __d_alloc(sb, name);
1353 if (dentry)
1354 dentry->d_flags |= DCACHE_DISCONNECTED;
1355 return dentry;
1356 }
1357 EXPORT_SYMBOL(d_alloc_pseudo);
1358
1359 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1360 {
1361 struct qstr q;
1362
1363 q.name = name;
1364 q.len = strlen(name);
1365 q.hash = full_name_hash(q.name, q.len);
1366 return d_alloc(parent, &q);
1367 }
1368 EXPORT_SYMBOL(d_alloc_name);
1369
1370 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1371 {
1372 WARN_ON_ONCE(dentry->d_op);
1373 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1374 DCACHE_OP_COMPARE |
1375 DCACHE_OP_REVALIDATE |
1376 DCACHE_OP_DELETE ));
1377 dentry->d_op = op;
1378 if (!op)
1379 return;
1380 if (op->d_hash)
1381 dentry->d_flags |= DCACHE_OP_HASH;
1382 if (op->d_compare)
1383 dentry->d_flags |= DCACHE_OP_COMPARE;
1384 if (op->d_revalidate)
1385 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1386 if (op->d_delete)
1387 dentry->d_flags |= DCACHE_OP_DELETE;
1388 if (op->d_prune)
1389 dentry->d_flags |= DCACHE_OP_PRUNE;
1390
1391 }
1392 EXPORT_SYMBOL(d_set_d_op);
1393
1394 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1395 {
1396 spin_lock(&dentry->d_lock);
1397 if (inode) {
1398 if (unlikely(IS_AUTOMOUNT(inode)))
1399 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1400 list_add(&dentry->d_alias, &inode->i_dentry);
1401 }
1402 dentry->d_inode = inode;
1403 dentry_rcuwalk_barrier(dentry);
1404 spin_unlock(&dentry->d_lock);
1405 fsnotify_d_instantiate(dentry, inode);
1406 }
1407
1408 /**
1409 * d_instantiate - fill in inode information for a dentry
1410 * @entry: dentry to complete
1411 * @inode: inode to attach to this dentry
1412 *
1413 * Fill in inode information in the entry.
1414 *
1415 * This turns negative dentries into productive full members
1416 * of society.
1417 *
1418 * NOTE! This assumes that the inode count has been incremented
1419 * (or otherwise set) by the caller to indicate that it is now
1420 * in use by the dcache.
1421 */
1422
1423 void d_instantiate(struct dentry *entry, struct inode * inode)
1424 {
1425 BUG_ON(!list_empty(&entry->d_alias));
1426 if (inode)
1427 spin_lock(&inode->i_lock);
1428 __d_instantiate(entry, inode);
1429 if (inode)
1430 spin_unlock(&inode->i_lock);
1431 security_d_instantiate(entry, inode);
1432 }
1433 EXPORT_SYMBOL(d_instantiate);
1434
1435 /**
1436 * d_instantiate_unique - instantiate a non-aliased dentry
1437 * @entry: dentry to instantiate
1438 * @inode: inode to attach to this dentry
1439 *
1440 * Fill in inode information in the entry. On success, it returns NULL.
1441 * If an unhashed alias of "entry" already exists, then we return the
1442 * aliased dentry instead and drop one reference to inode.
1443 *
1444 * Note that in order to avoid conflicts with rename() etc, the caller
1445 * had better be holding the parent directory semaphore.
1446 *
1447 * This also assumes that the inode count has been incremented
1448 * (or otherwise set) by the caller to indicate that it is now
1449 * in use by the dcache.
1450 */
1451 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1452 struct inode *inode)
1453 {
1454 struct dentry *alias;
1455 int len = entry->d_name.len;
1456 const char *name = entry->d_name.name;
1457 unsigned int hash = entry->d_name.hash;
1458
1459 if (!inode) {
1460 __d_instantiate(entry, NULL);
1461 return NULL;
1462 }
1463
1464 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1465 /*
1466 * Don't need alias->d_lock here, because aliases with
1467 * d_parent == entry->d_parent are not subject to name or
1468 * parent changes, because the parent inode i_mutex is held.
1469 */
1470 if (alias->d_name.hash != hash)
1471 continue;
1472 if (alias->d_parent != entry->d_parent)
1473 continue;
1474 if (alias->d_name.len != len)
1475 continue;
1476 if (dentry_cmp(alias, name, len))
1477 continue;
1478 __dget(alias);
1479 return alias;
1480 }
1481
1482 __d_instantiate(entry, inode);
1483 return NULL;
1484 }
1485
1486 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1487 {
1488 struct dentry *result;
1489
1490 BUG_ON(!list_empty(&entry->d_alias));
1491
1492 if (inode)
1493 spin_lock(&inode->i_lock);
1494 result = __d_instantiate_unique(entry, inode);
1495 if (inode)
1496 spin_unlock(&inode->i_lock);
1497
1498 if (!result) {
1499 security_d_instantiate(entry, inode);
1500 return NULL;
1501 }
1502
1503 BUG_ON(!d_unhashed(result));
1504 iput(inode);
1505 return result;
1506 }
1507
1508 EXPORT_SYMBOL(d_instantiate_unique);
1509
1510 struct dentry *d_make_root(struct inode *root_inode)
1511 {
1512 struct dentry *res = NULL;
1513
1514 if (root_inode) {
1515 static const struct qstr name = QSTR_INIT("/", 1);
1516
1517 res = __d_alloc(root_inode->i_sb, &name);
1518 if (res)
1519 d_instantiate(res, root_inode);
1520 else
1521 iput(root_inode);
1522 }
1523 return res;
1524 }
1525 EXPORT_SYMBOL(d_make_root);
1526
1527 static struct dentry * __d_find_any_alias(struct inode *inode)
1528 {
1529 struct dentry *alias;
1530
1531 if (list_empty(&inode->i_dentry))
1532 return NULL;
1533 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1534 __dget(alias);
1535 return alias;
1536 }
1537
1538 /**
1539 * d_find_any_alias - find any alias for a given inode
1540 * @inode: inode to find an alias for
1541 *
1542 * If any aliases exist for the given inode, take and return a
1543 * reference for one of them. If no aliases exist, return %NULL.
1544 */
1545 struct dentry *d_find_any_alias(struct inode *inode)
1546 {
1547 struct dentry *de;
1548
1549 spin_lock(&inode->i_lock);
1550 de = __d_find_any_alias(inode);
1551 spin_unlock(&inode->i_lock);
1552 return de;
1553 }
1554 EXPORT_SYMBOL(d_find_any_alias);
1555
1556 /**
1557 * d_obtain_alias - find or allocate a dentry for a given inode
1558 * @inode: inode to allocate the dentry for
1559 *
1560 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1561 * similar open by handle operations. The returned dentry may be anonymous,
1562 * or may have a full name (if the inode was already in the cache).
1563 *
1564 * When called on a directory inode, we must ensure that the inode only ever
1565 * has one dentry. If a dentry is found, that is returned instead of
1566 * allocating a new one.
1567 *
1568 * On successful return, the reference to the inode has been transferred
1569 * to the dentry. In case of an error the reference on the inode is released.
1570 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1571 * be passed in and will be the error will be propagate to the return value,
1572 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1573 */
1574 struct dentry *d_obtain_alias(struct inode *inode)
1575 {
1576 static const struct qstr anonstring = { .name = "" };
1577 struct dentry *tmp;
1578 struct dentry *res;
1579
1580 if (!inode)
1581 return ERR_PTR(-ESTALE);
1582 if (IS_ERR(inode))
1583 return ERR_CAST(inode);
1584
1585 res = d_find_any_alias(inode);
1586 if (res)
1587 goto out_iput;
1588
1589 tmp = __d_alloc(inode->i_sb, &anonstring);
1590 if (!tmp) {
1591 res = ERR_PTR(-ENOMEM);
1592 goto out_iput;
1593 }
1594
1595 spin_lock(&inode->i_lock);
1596 res = __d_find_any_alias(inode);
1597 if (res) {
1598 spin_unlock(&inode->i_lock);
1599 dput(tmp);
1600 goto out_iput;
1601 }
1602
1603 /* attach a disconnected dentry */
1604 spin_lock(&tmp->d_lock);
1605 tmp->d_inode = inode;
1606 tmp->d_flags |= DCACHE_DISCONNECTED;
1607 list_add(&tmp->d_alias, &inode->i_dentry);
1608 hlist_bl_lock(&tmp->d_sb->s_anon);
1609 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1610 hlist_bl_unlock(&tmp->d_sb->s_anon);
1611 spin_unlock(&tmp->d_lock);
1612 spin_unlock(&inode->i_lock);
1613 security_d_instantiate(tmp, inode);
1614
1615 return tmp;
1616
1617 out_iput:
1618 if (res && !IS_ERR(res))
1619 security_d_instantiate(res, inode);
1620 iput(inode);
1621 return res;
1622 }
1623 EXPORT_SYMBOL(d_obtain_alias);
1624
1625 /**
1626 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1627 * @inode: the inode which may have a disconnected dentry
1628 * @dentry: a negative dentry which we want to point to the inode.
1629 *
1630 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1631 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1632 * and return it, else simply d_add the inode to the dentry and return NULL.
1633 *
1634 * This is needed in the lookup routine of any filesystem that is exportable
1635 * (via knfsd) so that we can build dcache paths to directories effectively.
1636 *
1637 * If a dentry was found and moved, then it is returned. Otherwise NULL
1638 * is returned. This matches the expected return value of ->lookup.
1639 *
1640 */
1641 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1642 {
1643 struct dentry *new = NULL;
1644
1645 if (IS_ERR(inode))
1646 return ERR_CAST(inode);
1647
1648 if (inode && S_ISDIR(inode->i_mode)) {
1649 spin_lock(&inode->i_lock);
1650 new = __d_find_any_alias(inode);
1651 if (new) {
1652 spin_unlock(&inode->i_lock);
1653 security_d_instantiate(new, inode);
1654 d_move(new, dentry);
1655 iput(inode);
1656 } else {
1657 /* already taking inode->i_lock, so d_add() by hand */
1658 __d_instantiate(dentry, inode);
1659 spin_unlock(&inode->i_lock);
1660 security_d_instantiate(dentry, inode);
1661 d_rehash(dentry);
1662 }
1663 } else
1664 d_add(dentry, inode);
1665 return new;
1666 }
1667 EXPORT_SYMBOL(d_splice_alias);
1668
1669 /**
1670 * d_add_ci - lookup or allocate new dentry with case-exact name
1671 * @inode: the inode case-insensitive lookup has found
1672 * @dentry: the negative dentry that was passed to the parent's lookup func
1673 * @name: the case-exact name to be associated with the returned dentry
1674 *
1675 * This is to avoid filling the dcache with case-insensitive names to the
1676 * same inode, only the actual correct case is stored in the dcache for
1677 * case-insensitive filesystems.
1678 *
1679 * For a case-insensitive lookup match and if the the case-exact dentry
1680 * already exists in in the dcache, use it and return it.
1681 *
1682 * If no entry exists with the exact case name, allocate new dentry with
1683 * the exact case, and return the spliced entry.
1684 */
1685 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1686 struct qstr *name)
1687 {
1688 int error;
1689 struct dentry *found;
1690 struct dentry *new;
1691
1692 /*
1693 * First check if a dentry matching the name already exists,
1694 * if not go ahead and create it now.
1695 */
1696 found = d_hash_and_lookup(dentry->d_parent, name);
1697 if (!found) {
1698 new = d_alloc(dentry->d_parent, name);
1699 if (!new) {
1700 error = -ENOMEM;
1701 goto err_out;
1702 }
1703
1704 found = d_splice_alias(inode, new);
1705 if (found) {
1706 dput(new);
1707 return found;
1708 }
1709 return new;
1710 }
1711
1712 /*
1713 * If a matching dentry exists, and it's not negative use it.
1714 *
1715 * Decrement the reference count to balance the iget() done
1716 * earlier on.
1717 */
1718 if (found->d_inode) {
1719 if (unlikely(found->d_inode != inode)) {
1720 /* This can't happen because bad inodes are unhashed. */
1721 BUG_ON(!is_bad_inode(inode));
1722 BUG_ON(!is_bad_inode(found->d_inode));
1723 }
1724 iput(inode);
1725 return found;
1726 }
1727
1728 /*
1729 * We are going to instantiate this dentry, unhash it and clear the
1730 * lookup flag so we can do that.
1731 */
1732 if (unlikely(d_need_lookup(found)))
1733 d_clear_need_lookup(found);
1734
1735 /*
1736 * Negative dentry: instantiate it unless the inode is a directory and
1737 * already has a dentry.
1738 */
1739 new = d_splice_alias(inode, found);
1740 if (new) {
1741 dput(found);
1742 found = new;
1743 }
1744 return found;
1745
1746 err_out:
1747 iput(inode);
1748 return ERR_PTR(error);
1749 }
1750 EXPORT_SYMBOL(d_add_ci);
1751
1752 /*
1753 * Do the slow-case of the dentry name compare.
1754 *
1755 * Unlike the dentry_cmp() function, we need to atomically
1756 * load the name, length and inode information, so that the
1757 * filesystem can rely on them, and can use the 'name' and
1758 * 'len' information without worrying about walking off the
1759 * end of memory etc.
1760 *
1761 * Thus the read_seqcount_retry() and the "duplicate" info
1762 * in arguments (the low-level filesystem should not look
1763 * at the dentry inode or name contents directly, since
1764 * rename can change them while we're in RCU mode).
1765 */
1766 enum slow_d_compare {
1767 D_COMP_OK,
1768 D_COMP_NOMATCH,
1769 D_COMP_SEQRETRY,
1770 };
1771
1772 static noinline enum slow_d_compare slow_dentry_cmp(
1773 const struct dentry *parent,
1774 struct inode *inode,
1775 struct dentry *dentry,
1776 unsigned int seq,
1777 const struct qstr *name)
1778 {
1779 int tlen = dentry->d_name.len;
1780 const char *tname = dentry->d_name.name;
1781 struct inode *i = dentry->d_inode;
1782
1783 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1784 cpu_relax();
1785 return D_COMP_SEQRETRY;
1786 }
1787 if (parent->d_op->d_compare(parent, inode,
1788 dentry, i,
1789 tlen, tname, name))
1790 return D_COMP_NOMATCH;
1791 return D_COMP_OK;
1792 }
1793
1794 /**
1795 * __d_lookup_rcu - search for a dentry (racy, store-free)
1796 * @parent: parent dentry
1797 * @name: qstr of name we wish to find
1798 * @seqp: returns d_seq value at the point where the dentry was found
1799 * @inode: returns dentry->d_inode when the inode was found valid.
1800 * Returns: dentry, or NULL
1801 *
1802 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1803 * resolution (store-free path walking) design described in
1804 * Documentation/filesystems/path-lookup.txt.
1805 *
1806 * This is not to be used outside core vfs.
1807 *
1808 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1809 * held, and rcu_read_lock held. The returned dentry must not be stored into
1810 * without taking d_lock and checking d_seq sequence count against @seq
1811 * returned here.
1812 *
1813 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1814 * function.
1815 *
1816 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1817 * the returned dentry, so long as its parent's seqlock is checked after the
1818 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1819 * is formed, giving integrity down the path walk.
1820 *
1821 * NOTE! The caller *has* to check the resulting dentry against the sequence
1822 * number we've returned before using any of the resulting dentry state!
1823 */
1824 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1825 const struct qstr *name,
1826 unsigned *seqp, struct inode *inode)
1827 {
1828 u64 hashlen = name->hash_len;
1829 const unsigned char *str = name->name;
1830 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1831 struct hlist_bl_node *node;
1832 struct dentry *dentry;
1833
1834 /*
1835 * Note: There is significant duplication with __d_lookup_rcu which is
1836 * required to prevent single threaded performance regressions
1837 * especially on architectures where smp_rmb (in seqcounts) are costly.
1838 * Keep the two functions in sync.
1839 */
1840
1841 /*
1842 * The hash list is protected using RCU.
1843 *
1844 * Carefully use d_seq when comparing a candidate dentry, to avoid
1845 * races with d_move().
1846 *
1847 * It is possible that concurrent renames can mess up our list
1848 * walk here and result in missing our dentry, resulting in the
1849 * false-negative result. d_lookup() protects against concurrent
1850 * renames using rename_lock seqlock.
1851 *
1852 * See Documentation/filesystems/path-lookup.txt for more details.
1853 */
1854 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1855 unsigned seq;
1856
1857 seqretry:
1858 /*
1859 * The dentry sequence count protects us from concurrent
1860 * renames, and thus protects inode, parent and name fields.
1861 *
1862 * The caller must perform a seqcount check in order
1863 * to do anything useful with the returned dentry,
1864 * including using the 'd_inode' pointer.
1865 *
1866 * NOTE! We do a "raw" seqcount_begin here. That means that
1867 * we don't wait for the sequence count to stabilize if it
1868 * is in the middle of a sequence change. If we do the slow
1869 * dentry compare, we will do seqretries until it is stable,
1870 * and if we end up with a successful lookup, we actually
1871 * want to exit RCU lookup anyway.
1872 */
1873 seq = raw_seqcount_begin(&dentry->d_seq);
1874 if (dentry->d_parent != parent)
1875 continue;
1876 if (d_unhashed(dentry))
1877 continue;
1878 *seqp = seq;
1879
1880 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1881 if (dentry->d_name.hash != hashlen_hash(hashlen))
1882 continue;
1883 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1884 case D_COMP_OK:
1885 return dentry;
1886 case D_COMP_NOMATCH:
1887 continue;
1888 default:
1889 goto seqretry;
1890 }
1891 }
1892
1893 if (dentry->d_name.hash_len != hashlen)
1894 continue;
1895 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1896 return dentry;
1897 }
1898 return NULL;
1899 }
1900
1901 /**
1902 * d_lookup - search for a dentry
1903 * @parent: parent dentry
1904 * @name: qstr of name we wish to find
1905 * Returns: dentry, or NULL
1906 *
1907 * d_lookup searches the children of the parent dentry for the name in
1908 * question. If the dentry is found its reference count is incremented and the
1909 * dentry is returned. The caller must use dput to free the entry when it has
1910 * finished using it. %NULL is returned if the dentry does not exist.
1911 */
1912 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1913 {
1914 struct dentry *dentry;
1915 unsigned seq;
1916
1917 do {
1918 seq = read_seqbegin(&rename_lock);
1919 dentry = __d_lookup(parent, name);
1920 if (dentry)
1921 break;
1922 } while (read_seqretry(&rename_lock, seq));
1923 return dentry;
1924 }
1925 EXPORT_SYMBOL(d_lookup);
1926
1927 /**
1928 * __d_lookup - search for a dentry (racy)
1929 * @parent: parent dentry
1930 * @name: qstr of name we wish to find
1931 * Returns: dentry, or NULL
1932 *
1933 * __d_lookup is like d_lookup, however it may (rarely) return a
1934 * false-negative result due to unrelated rename activity.
1935 *
1936 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1937 * however it must be used carefully, eg. with a following d_lookup in
1938 * the case of failure.
1939 *
1940 * __d_lookup callers must be commented.
1941 */
1942 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1943 {
1944 unsigned int len = name->len;
1945 unsigned int hash = name->hash;
1946 const unsigned char *str = name->name;
1947 struct hlist_bl_head *b = d_hash(parent, hash);
1948 struct hlist_bl_node *node;
1949 struct dentry *found = NULL;
1950 struct dentry *dentry;
1951
1952 /*
1953 * Note: There is significant duplication with __d_lookup_rcu which is
1954 * required to prevent single threaded performance regressions
1955 * especially on architectures where smp_rmb (in seqcounts) are costly.
1956 * Keep the two functions in sync.
1957 */
1958
1959 /*
1960 * The hash list is protected using RCU.
1961 *
1962 * Take d_lock when comparing a candidate dentry, to avoid races
1963 * with d_move().
1964 *
1965 * It is possible that concurrent renames can mess up our list
1966 * walk here and result in missing our dentry, resulting in the
1967 * false-negative result. d_lookup() protects against concurrent
1968 * renames using rename_lock seqlock.
1969 *
1970 * See Documentation/filesystems/path-lookup.txt for more details.
1971 */
1972 rcu_read_lock();
1973
1974 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1975
1976 if (dentry->d_name.hash != hash)
1977 continue;
1978
1979 spin_lock(&dentry->d_lock);
1980 if (dentry->d_parent != parent)
1981 goto next;
1982 if (d_unhashed(dentry))
1983 goto next;
1984
1985 /*
1986 * It is safe to compare names since d_move() cannot
1987 * change the qstr (protected by d_lock).
1988 */
1989 if (parent->d_flags & DCACHE_OP_COMPARE) {
1990 int tlen = dentry->d_name.len;
1991 const char *tname = dentry->d_name.name;
1992 if (parent->d_op->d_compare(parent, parent->d_inode,
1993 dentry, dentry->d_inode,
1994 tlen, tname, name))
1995 goto next;
1996 } else {
1997 if (dentry->d_name.len != len)
1998 goto next;
1999 if (dentry_cmp(dentry, str, len))
2000 goto next;
2001 }
2002
2003 dentry->d_count++;
2004 found = dentry;
2005 spin_unlock(&dentry->d_lock);
2006 break;
2007 next:
2008 spin_unlock(&dentry->d_lock);
2009 }
2010 rcu_read_unlock();
2011
2012 return found;
2013 }
2014
2015 /**
2016 * d_hash_and_lookup - hash the qstr then search for a dentry
2017 * @dir: Directory to search in
2018 * @name: qstr of name we wish to find
2019 *
2020 * On hash failure or on lookup failure NULL is returned.
2021 */
2022 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2023 {
2024 struct dentry *dentry = NULL;
2025
2026 /*
2027 * Check for a fs-specific hash function. Note that we must
2028 * calculate the standard hash first, as the d_op->d_hash()
2029 * routine may choose to leave the hash value unchanged.
2030 */
2031 name->hash = full_name_hash(name->name, name->len);
2032 if (dir->d_flags & DCACHE_OP_HASH) {
2033 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
2034 goto out;
2035 }
2036 dentry = d_lookup(dir, name);
2037 out:
2038 return dentry;
2039 }
2040
2041 /**
2042 * d_validate - verify dentry provided from insecure source (deprecated)
2043 * @dentry: The dentry alleged to be valid child of @dparent
2044 * @dparent: The parent dentry (known to be valid)
2045 *
2046 * An insecure source has sent us a dentry, here we verify it and dget() it.
2047 * This is used by ncpfs in its readdir implementation.
2048 * Zero is returned in the dentry is invalid.
2049 *
2050 * This function is slow for big directories, and deprecated, do not use it.
2051 */
2052 int d_validate(struct dentry *dentry, struct dentry *dparent)
2053 {
2054 struct dentry *child;
2055
2056 spin_lock(&dparent->d_lock);
2057 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2058 if (dentry == child) {
2059 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2060 __dget_dlock(dentry);
2061 spin_unlock(&dentry->d_lock);
2062 spin_unlock(&dparent->d_lock);
2063 return 1;
2064 }
2065 }
2066 spin_unlock(&dparent->d_lock);
2067
2068 return 0;
2069 }
2070 EXPORT_SYMBOL(d_validate);
2071
2072 /*
2073 * When a file is deleted, we have two options:
2074 * - turn this dentry into a negative dentry
2075 * - unhash this dentry and free it.
2076 *
2077 * Usually, we want to just turn this into
2078 * a negative dentry, but if anybody else is
2079 * currently using the dentry or the inode
2080 * we can't do that and we fall back on removing
2081 * it from the hash queues and waiting for
2082 * it to be deleted later when it has no users
2083 */
2084
2085 /**
2086 * d_delete - delete a dentry
2087 * @dentry: The dentry to delete
2088 *
2089 * Turn the dentry into a negative dentry if possible, otherwise
2090 * remove it from the hash queues so it can be deleted later
2091 */
2092
2093 void d_delete(struct dentry * dentry)
2094 {
2095 struct inode *inode;
2096 int isdir = 0;
2097 /*
2098 * Are we the only user?
2099 */
2100 again:
2101 spin_lock(&dentry->d_lock);
2102 inode = dentry->d_inode;
2103 isdir = S_ISDIR(inode->i_mode);
2104 if (dentry->d_count == 1) {
2105 if (inode && !spin_trylock(&inode->i_lock)) {
2106 spin_unlock(&dentry->d_lock);
2107 cpu_relax();
2108 goto again;
2109 }
2110 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2111 dentry_unlink_inode(dentry);
2112 fsnotify_nameremove(dentry, isdir);
2113 return;
2114 }
2115
2116 if (!d_unhashed(dentry))
2117 __d_drop(dentry);
2118
2119 spin_unlock(&dentry->d_lock);
2120
2121 fsnotify_nameremove(dentry, isdir);
2122 }
2123 EXPORT_SYMBOL(d_delete);
2124
2125 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2126 {
2127 BUG_ON(!d_unhashed(entry));
2128 hlist_bl_lock(b);
2129 entry->d_flags |= DCACHE_RCUACCESS;
2130 hlist_bl_add_head_rcu(&entry->d_hash, b);
2131 hlist_bl_unlock(b);
2132 }
2133
2134 static void _d_rehash(struct dentry * entry)
2135 {
2136 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2137 }
2138
2139 /**
2140 * d_rehash - add an entry back to the hash
2141 * @entry: dentry to add to the hash
2142 *
2143 * Adds a dentry to the hash according to its name.
2144 */
2145
2146 void d_rehash(struct dentry * entry)
2147 {
2148 spin_lock(&entry->d_lock);
2149 _d_rehash(entry);
2150 spin_unlock(&entry->d_lock);
2151 }
2152 EXPORT_SYMBOL(d_rehash);
2153
2154 /**
2155 * dentry_update_name_case - update case insensitive dentry with a new name
2156 * @dentry: dentry to be updated
2157 * @name: new name
2158 *
2159 * Update a case insensitive dentry with new case of name.
2160 *
2161 * dentry must have been returned by d_lookup with name @name. Old and new
2162 * name lengths must match (ie. no d_compare which allows mismatched name
2163 * lengths).
2164 *
2165 * Parent inode i_mutex must be held over d_lookup and into this call (to
2166 * keep renames and concurrent inserts, and readdir(2) away).
2167 */
2168 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2169 {
2170 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2171 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2172
2173 spin_lock(&dentry->d_lock);
2174 write_seqcount_begin(&dentry->d_seq);
2175 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2176 write_seqcount_end(&dentry->d_seq);
2177 spin_unlock(&dentry->d_lock);
2178 }
2179 EXPORT_SYMBOL(dentry_update_name_case);
2180
2181 static void switch_names(struct dentry *dentry, struct dentry *target)
2182 {
2183 if (dname_external(target)) {
2184 if (dname_external(dentry)) {
2185 /*
2186 * Both external: swap the pointers
2187 */
2188 swap(target->d_name.name, dentry->d_name.name);
2189 } else {
2190 /*
2191 * dentry:internal, target:external. Steal target's
2192 * storage and make target internal.
2193 */
2194 memcpy(target->d_iname, dentry->d_name.name,
2195 dentry->d_name.len + 1);
2196 dentry->d_name.name = target->d_name.name;
2197 target->d_name.name = target->d_iname;
2198 }
2199 } else {
2200 if (dname_external(dentry)) {
2201 /*
2202 * dentry:external, target:internal. Give dentry's
2203 * storage to target and make dentry internal
2204 */
2205 memcpy(dentry->d_iname, target->d_name.name,
2206 target->d_name.len + 1);
2207 target->d_name.name = dentry->d_name.name;
2208 dentry->d_name.name = dentry->d_iname;
2209 } else {
2210 /*
2211 * Both are internal. Just copy target to dentry
2212 */
2213 memcpy(dentry->d_iname, target->d_name.name,
2214 target->d_name.len + 1);
2215 dentry->d_name.len = target->d_name.len;
2216 return;
2217 }
2218 }
2219 swap(dentry->d_name.len, target->d_name.len);
2220 }
2221
2222 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2223 {
2224 /*
2225 * XXXX: do we really need to take target->d_lock?
2226 */
2227 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2228 spin_lock(&target->d_parent->d_lock);
2229 else {
2230 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2231 spin_lock(&dentry->d_parent->d_lock);
2232 spin_lock_nested(&target->d_parent->d_lock,
2233 DENTRY_D_LOCK_NESTED);
2234 } else {
2235 spin_lock(&target->d_parent->d_lock);
2236 spin_lock_nested(&dentry->d_parent->d_lock,
2237 DENTRY_D_LOCK_NESTED);
2238 }
2239 }
2240 if (target < dentry) {
2241 spin_lock_nested(&target->d_lock, 2);
2242 spin_lock_nested(&dentry->d_lock, 3);
2243 } else {
2244 spin_lock_nested(&dentry->d_lock, 2);
2245 spin_lock_nested(&target->d_lock, 3);
2246 }
2247 }
2248
2249 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2250 struct dentry *target)
2251 {
2252 if (target->d_parent != dentry->d_parent)
2253 spin_unlock(&dentry->d_parent->d_lock);
2254 if (target->d_parent != target)
2255 spin_unlock(&target->d_parent->d_lock);
2256 }
2257
2258 /*
2259 * When switching names, the actual string doesn't strictly have to
2260 * be preserved in the target - because we're dropping the target
2261 * anyway. As such, we can just do a simple memcpy() to copy over
2262 * the new name before we switch.
2263 *
2264 * Note that we have to be a lot more careful about getting the hash
2265 * switched - we have to switch the hash value properly even if it
2266 * then no longer matches the actual (corrupted) string of the target.
2267 * The hash value has to match the hash queue that the dentry is on..
2268 */
2269 /*
2270 * __d_move - move a dentry
2271 * @dentry: entry to move
2272 * @target: new dentry
2273 *
2274 * Update the dcache to reflect the move of a file name. Negative
2275 * dcache entries should not be moved in this way. Caller must hold
2276 * rename_lock, the i_mutex of the source and target directories,
2277 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2278 */
2279 static void __d_move(struct dentry * dentry, struct dentry * target)
2280 {
2281 if (!dentry->d_inode)
2282 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2283
2284 BUG_ON(d_ancestor(dentry, target));
2285 BUG_ON(d_ancestor(target, dentry));
2286
2287 dentry_lock_for_move(dentry, target);
2288
2289 write_seqcount_begin(&dentry->d_seq);
2290 write_seqcount_begin(&target->d_seq);
2291
2292 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2293
2294 /*
2295 * Move the dentry to the target hash queue. Don't bother checking
2296 * for the same hash queue because of how unlikely it is.
2297 */
2298 __d_drop(dentry);
2299 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2300
2301 /* Unhash the target: dput() will then get rid of it */
2302 __d_drop(target);
2303
2304 list_del(&dentry->d_u.d_child);
2305 list_del(&target->d_u.d_child);
2306
2307 /* Switch the names.. */
2308 switch_names(dentry, target);
2309 swap(dentry->d_name.hash, target->d_name.hash);
2310
2311 /* ... and switch the parents */
2312 if (IS_ROOT(dentry)) {
2313 dentry->d_parent = target->d_parent;
2314 target->d_parent = target;
2315 INIT_LIST_HEAD(&target->d_u.d_child);
2316 } else {
2317 swap(dentry->d_parent, target->d_parent);
2318
2319 /* And add them back to the (new) parent lists */
2320 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2321 }
2322
2323 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2324
2325 write_seqcount_end(&target->d_seq);
2326 write_seqcount_end(&dentry->d_seq);
2327
2328 dentry_unlock_parents_for_move(dentry, target);
2329 spin_unlock(&target->d_lock);
2330 fsnotify_d_move(dentry);
2331 spin_unlock(&dentry->d_lock);
2332 }
2333
2334 /*
2335 * d_move - move a dentry
2336 * @dentry: entry to move
2337 * @target: new dentry
2338 *
2339 * Update the dcache to reflect the move of a file name. Negative
2340 * dcache entries should not be moved in this way. See the locking
2341 * requirements for __d_move.
2342 */
2343 void d_move(struct dentry *dentry, struct dentry *target)
2344 {
2345 write_seqlock(&rename_lock);
2346 __d_move(dentry, target);
2347 write_sequnlock(&rename_lock);
2348 }
2349 EXPORT_SYMBOL(d_move);
2350
2351 /**
2352 * d_ancestor - search for an ancestor
2353 * @p1: ancestor dentry
2354 * @p2: child dentry
2355 *
2356 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2357 * an ancestor of p2, else NULL.
2358 */
2359 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2360 {
2361 struct dentry *p;
2362
2363 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2364 if (p->d_parent == p1)
2365 return p;
2366 }
2367 return NULL;
2368 }
2369
2370 /*
2371 * This helper attempts to cope with remotely renamed directories
2372 *
2373 * It assumes that the caller is already holding
2374 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2375 *
2376 * Note: If ever the locking in lock_rename() changes, then please
2377 * remember to update this too...
2378 */
2379 static struct dentry *__d_unalias(struct inode *inode,
2380 struct dentry *dentry, struct dentry *alias)
2381 {
2382 struct mutex *m1 = NULL, *m2 = NULL;
2383 struct dentry *ret;
2384
2385 /* If alias and dentry share a parent, then no extra locks required */
2386 if (alias->d_parent == dentry->d_parent)
2387 goto out_unalias;
2388
2389 /* See lock_rename() */
2390 ret = ERR_PTR(-EBUSY);
2391 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2392 goto out_err;
2393 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2394 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2395 goto out_err;
2396 m2 = &alias->d_parent->d_inode->i_mutex;
2397 out_unalias:
2398 __d_move(alias, dentry);
2399 ret = alias;
2400 out_err:
2401 spin_unlock(&inode->i_lock);
2402 if (m2)
2403 mutex_unlock(m2);
2404 if (m1)
2405 mutex_unlock(m1);
2406 return ret;
2407 }
2408
2409 /*
2410 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2411 * named dentry in place of the dentry to be replaced.
2412 * returns with anon->d_lock held!
2413 */
2414 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2415 {
2416 struct dentry *dparent, *aparent;
2417
2418 dentry_lock_for_move(anon, dentry);
2419
2420 write_seqcount_begin(&dentry->d_seq);
2421 write_seqcount_begin(&anon->d_seq);
2422
2423 dparent = dentry->d_parent;
2424 aparent = anon->d_parent;
2425
2426 switch_names(dentry, anon);
2427 swap(dentry->d_name.hash, anon->d_name.hash);
2428
2429 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2430 list_del(&dentry->d_u.d_child);
2431 if (!IS_ROOT(dentry))
2432 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2433 else
2434 INIT_LIST_HEAD(&dentry->d_u.d_child);
2435
2436 anon->d_parent = (dparent == dentry) ? anon : dparent;
2437 list_del(&anon->d_u.d_child);
2438 if (!IS_ROOT(anon))
2439 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2440 else
2441 INIT_LIST_HEAD(&anon->d_u.d_child);
2442
2443 write_seqcount_end(&dentry->d_seq);
2444 write_seqcount_end(&anon->d_seq);
2445
2446 dentry_unlock_parents_for_move(anon, dentry);
2447 spin_unlock(&dentry->d_lock);
2448
2449 /* anon->d_lock still locked, returns locked */
2450 anon->d_flags &= ~DCACHE_DISCONNECTED;
2451 }
2452
2453 /**
2454 * d_materialise_unique - introduce an inode into the tree
2455 * @dentry: candidate dentry
2456 * @inode: inode to bind to the dentry, to which aliases may be attached
2457 *
2458 * Introduces an dentry into the tree, substituting an extant disconnected
2459 * root directory alias in its place if there is one. Caller must hold the
2460 * i_mutex of the parent directory.
2461 */
2462 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2463 {
2464 struct dentry *actual;
2465
2466 BUG_ON(!d_unhashed(dentry));
2467
2468 if (!inode) {
2469 actual = dentry;
2470 __d_instantiate(dentry, NULL);
2471 d_rehash(actual);
2472 goto out_nolock;
2473 }
2474
2475 spin_lock(&inode->i_lock);
2476
2477 if (S_ISDIR(inode->i_mode)) {
2478 struct dentry *alias;
2479
2480 /* Does an aliased dentry already exist? */
2481 alias = __d_find_alias(inode);
2482 if (alias) {
2483 actual = alias;
2484 write_seqlock(&rename_lock);
2485
2486 if (d_ancestor(alias, dentry)) {
2487 /* Check for loops */
2488 actual = ERR_PTR(-ELOOP);
2489 spin_unlock(&inode->i_lock);
2490 } else if (IS_ROOT(alias)) {
2491 /* Is this an anonymous mountpoint that we
2492 * could splice into our tree? */
2493 __d_materialise_dentry(dentry, alias);
2494 write_sequnlock(&rename_lock);
2495 __d_drop(alias);
2496 goto found;
2497 } else {
2498 /* Nope, but we must(!) avoid directory
2499 * aliasing. This drops inode->i_lock */
2500 actual = __d_unalias(inode, dentry, alias);
2501 }
2502 write_sequnlock(&rename_lock);
2503 if (IS_ERR(actual)) {
2504 if (PTR_ERR(actual) == -ELOOP)
2505 pr_warn_ratelimited(
2506 "VFS: Lookup of '%s' in %s %s"
2507 " would have caused loop\n",
2508 dentry->d_name.name,
2509 inode->i_sb->s_type->name,
2510 inode->i_sb->s_id);
2511 dput(alias);
2512 }
2513 goto out_nolock;
2514 }
2515 }
2516
2517 /* Add a unique reference */
2518 actual = __d_instantiate_unique(dentry, inode);
2519 if (!actual)
2520 actual = dentry;
2521 else
2522 BUG_ON(!d_unhashed(actual));
2523
2524 spin_lock(&actual->d_lock);
2525 found:
2526 _d_rehash(actual);
2527 spin_unlock(&actual->d_lock);
2528 spin_unlock(&inode->i_lock);
2529 out_nolock:
2530 if (actual == dentry) {
2531 security_d_instantiate(dentry, inode);
2532 return NULL;
2533 }
2534
2535 iput(inode);
2536 return actual;
2537 }
2538 EXPORT_SYMBOL_GPL(d_materialise_unique);
2539
2540 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2541 {
2542 *buflen -= namelen;
2543 if (*buflen < 0)
2544 return -ENAMETOOLONG;
2545 *buffer -= namelen;
2546 memcpy(*buffer, str, namelen);
2547 return 0;
2548 }
2549
2550 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2551 {
2552 return prepend(buffer, buflen, name->name, name->len);
2553 }
2554
2555 /**
2556 * prepend_path - Prepend path string to a buffer
2557 * @path: the dentry/vfsmount to report
2558 * @root: root vfsmnt/dentry
2559 * @buffer: pointer to the end of the buffer
2560 * @buflen: pointer to buffer length
2561 *
2562 * Caller holds the rename_lock.
2563 */
2564 static int prepend_path(const struct path *path,
2565 const struct path *root,
2566 char **buffer, int *buflen)
2567 {
2568 struct dentry *dentry = path->dentry;
2569 struct vfsmount *vfsmnt = path->mnt;
2570 struct mount *mnt = real_mount(vfsmnt);
2571 bool slash = false;
2572 int error = 0;
2573
2574 br_read_lock(&vfsmount_lock);
2575 while (dentry != root->dentry || vfsmnt != root->mnt) {
2576 struct dentry * parent;
2577
2578 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2579 /* Global root? */
2580 if (!mnt_has_parent(mnt))
2581 goto global_root;
2582 dentry = mnt->mnt_mountpoint;
2583 mnt = mnt->mnt_parent;
2584 vfsmnt = &mnt->mnt;
2585 continue;
2586 }
2587 parent = dentry->d_parent;
2588 prefetch(parent);
2589 spin_lock(&dentry->d_lock);
2590 error = prepend_name(buffer, buflen, &dentry->d_name);
2591 spin_unlock(&dentry->d_lock);
2592 if (!error)
2593 error = prepend(buffer, buflen, "/", 1);
2594 if (error)
2595 break;
2596
2597 slash = true;
2598 dentry = parent;
2599 }
2600
2601 if (!error && !slash)
2602 error = prepend(buffer, buflen, "/", 1);
2603
2604 out:
2605 br_read_unlock(&vfsmount_lock);
2606 return error;
2607
2608 global_root:
2609 /*
2610 * Filesystems needing to implement special "root names"
2611 * should do so with ->d_dname()
2612 */
2613 if (IS_ROOT(dentry) &&
2614 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2615 WARN(1, "Root dentry has weird name <%.*s>\n",
2616 (int) dentry->d_name.len, dentry->d_name.name);
2617 }
2618 if (!slash)
2619 error = prepend(buffer, buflen, "/", 1);
2620 if (!error)
2621 error = real_mount(vfsmnt)->mnt_ns ? 1 : 2;
2622 goto out;
2623 }
2624
2625 /**
2626 * __d_path - return the path of a dentry
2627 * @path: the dentry/vfsmount to report
2628 * @root: root vfsmnt/dentry
2629 * @buf: buffer to return value in
2630 * @buflen: buffer length
2631 *
2632 * Convert a dentry into an ASCII path name.
2633 *
2634 * Returns a pointer into the buffer or an error code if the
2635 * path was too long.
2636 *
2637 * "buflen" should be positive.
2638 *
2639 * If the path is not reachable from the supplied root, return %NULL.
2640 */
2641 char *__d_path(const struct path *path,
2642 const struct path *root,
2643 char *buf, int buflen)
2644 {
2645 char *res = buf + buflen;
2646 int error;
2647
2648 prepend(&res, &buflen, "\0", 1);
2649 write_seqlock(&rename_lock);
2650 error = prepend_path(path, root, &res, &buflen);
2651 write_sequnlock(&rename_lock);
2652
2653 if (error < 0)
2654 return ERR_PTR(error);
2655 if (error > 0)
2656 return NULL;
2657 return res;
2658 }
2659
2660 char *d_absolute_path(const struct path *path,
2661 char *buf, int buflen)
2662 {
2663 struct path root = {};
2664 char *res = buf + buflen;
2665 int error;
2666
2667 prepend(&res, &buflen, "\0", 1);
2668 write_seqlock(&rename_lock);
2669 error = prepend_path(path, &root, &res, &buflen);
2670 write_sequnlock(&rename_lock);
2671
2672 if (error > 1)
2673 error = -EINVAL;
2674 if (error < 0)
2675 return ERR_PTR(error);
2676 return res;
2677 }
2678
2679 /*
2680 * same as __d_path but appends "(deleted)" for unlinked files.
2681 */
2682 static int path_with_deleted(const struct path *path,
2683 const struct path *root,
2684 char **buf, int *buflen)
2685 {
2686 prepend(buf, buflen, "\0", 1);
2687 if (d_unlinked(path->dentry)) {
2688 int error = prepend(buf, buflen, " (deleted)", 10);
2689 if (error)
2690 return error;
2691 }
2692
2693 return prepend_path(path, root, buf, buflen);
2694 }
2695
2696 static int prepend_unreachable(char **buffer, int *buflen)
2697 {
2698 return prepend(buffer, buflen, "(unreachable)", 13);
2699 }
2700
2701 /**
2702 * d_path - return the path of a dentry
2703 * @path: path to report
2704 * @buf: buffer to return value in
2705 * @buflen: buffer length
2706 *
2707 * Convert a dentry into an ASCII path name. If the entry has been deleted
2708 * the string " (deleted)" is appended. Note that this is ambiguous.
2709 *
2710 * Returns a pointer into the buffer or an error code if the path was
2711 * too long. Note: Callers should use the returned pointer, not the passed
2712 * in buffer, to use the name! The implementation often starts at an offset
2713 * into the buffer, and may leave 0 bytes at the start.
2714 *
2715 * "buflen" should be positive.
2716 */
2717 char *d_path(const struct path *path, char *buf, int buflen)
2718 {
2719 char *res = buf + buflen;
2720 struct path root;
2721 int error;
2722
2723 /*
2724 * We have various synthetic filesystems that never get mounted. On
2725 * these filesystems dentries are never used for lookup purposes, and
2726 * thus don't need to be hashed. They also don't need a name until a
2727 * user wants to identify the object in /proc/pid/fd/. The little hack
2728 * below allows us to generate a name for these objects on demand:
2729 */
2730 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2731 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2732
2733 get_fs_root(current->fs, &root);
2734 write_seqlock(&rename_lock);
2735 error = path_with_deleted(path, &root, &res, &buflen);
2736 if (error < 0)
2737 res = ERR_PTR(error);
2738 write_sequnlock(&rename_lock);
2739 path_put(&root);
2740 return res;
2741 }
2742 EXPORT_SYMBOL(d_path);
2743
2744 /**
2745 * d_path_with_unreachable - return the path of a dentry
2746 * @path: path to report
2747 * @buf: buffer to return value in
2748 * @buflen: buffer length
2749 *
2750 * The difference from d_path() is that this prepends "(unreachable)"
2751 * to paths which are unreachable from the current process' root.
2752 */
2753 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2754 {
2755 char *res = buf + buflen;
2756 struct path root;
2757 int error;
2758
2759 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2760 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2761
2762 get_fs_root(current->fs, &root);
2763 write_seqlock(&rename_lock);
2764 error = path_with_deleted(path, &root, &res, &buflen);
2765 if (error > 0)
2766 error = prepend_unreachable(&res, &buflen);
2767 write_sequnlock(&rename_lock);
2768 path_put(&root);
2769 if (error)
2770 res = ERR_PTR(error);
2771
2772 return res;
2773 }
2774
2775 /*
2776 * Helper function for dentry_operations.d_dname() members
2777 */
2778 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2779 const char *fmt, ...)
2780 {
2781 va_list args;
2782 char temp[64];
2783 int sz;
2784
2785 va_start(args, fmt);
2786 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2787 va_end(args);
2788
2789 if (sz > sizeof(temp) || sz > buflen)
2790 return ERR_PTR(-ENAMETOOLONG);
2791
2792 buffer += buflen - sz;
2793 return memcpy(buffer, temp, sz);
2794 }
2795
2796 /*
2797 * Write full pathname from the root of the filesystem into the buffer.
2798 */
2799 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2800 {
2801 char *end = buf + buflen;
2802 char *retval;
2803
2804 prepend(&end, &buflen, "\0", 1);
2805 if (buflen < 1)
2806 goto Elong;
2807 /* Get '/' right */
2808 retval = end-1;
2809 *retval = '/';
2810
2811 while (!IS_ROOT(dentry)) {
2812 struct dentry *parent = dentry->d_parent;
2813 int error;
2814
2815 prefetch(parent);
2816 spin_lock(&dentry->d_lock);
2817 error = prepend_name(&end, &buflen, &dentry->d_name);
2818 spin_unlock(&dentry->d_lock);
2819 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2820 goto Elong;
2821
2822 retval = end;
2823 dentry = parent;
2824 }
2825 return retval;
2826 Elong:
2827 return ERR_PTR(-ENAMETOOLONG);
2828 }
2829
2830 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2831 {
2832 char *retval;
2833
2834 write_seqlock(&rename_lock);
2835 retval = __dentry_path(dentry, buf, buflen);
2836 write_sequnlock(&rename_lock);
2837
2838 return retval;
2839 }
2840 EXPORT_SYMBOL(dentry_path_raw);
2841
2842 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2843 {
2844 char *p = NULL;
2845 char *retval;
2846
2847 write_seqlock(&rename_lock);
2848 if (d_unlinked(dentry)) {
2849 p = buf + buflen;
2850 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2851 goto Elong;
2852 buflen++;
2853 }
2854 retval = __dentry_path(dentry, buf, buflen);
2855 write_sequnlock(&rename_lock);
2856 if (!IS_ERR(retval) && p)
2857 *p = '/'; /* restore '/' overriden with '\0' */
2858 return retval;
2859 Elong:
2860 return ERR_PTR(-ENAMETOOLONG);
2861 }
2862
2863 /*
2864 * NOTE! The user-level library version returns a
2865 * character pointer. The kernel system call just
2866 * returns the length of the buffer filled (which
2867 * includes the ending '\0' character), or a negative
2868 * error value. So libc would do something like
2869 *
2870 * char *getcwd(char * buf, size_t size)
2871 * {
2872 * int retval;
2873 *
2874 * retval = sys_getcwd(buf, size);
2875 * if (retval >= 0)
2876 * return buf;
2877 * errno = -retval;
2878 * return NULL;
2879 * }
2880 */
2881 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2882 {
2883 int error;
2884 struct path pwd, root;
2885 char *page = (char *) __get_free_page(GFP_USER);
2886
2887 if (!page)
2888 return -ENOMEM;
2889
2890 get_fs_root_and_pwd(current->fs, &root, &pwd);
2891
2892 error = -ENOENT;
2893 write_seqlock(&rename_lock);
2894 if (!d_unlinked(pwd.dentry)) {
2895 unsigned long len;
2896 char *cwd = page + PAGE_SIZE;
2897 int buflen = PAGE_SIZE;
2898
2899 prepend(&cwd, &buflen, "\0", 1);
2900 error = prepend_path(&pwd, &root, &cwd, &buflen);
2901 write_sequnlock(&rename_lock);
2902
2903 if (error < 0)
2904 goto out;
2905
2906 /* Unreachable from current root */
2907 if (error > 0) {
2908 error = prepend_unreachable(&cwd, &buflen);
2909 if (error)
2910 goto out;
2911 }
2912
2913 error = -ERANGE;
2914 len = PAGE_SIZE + page - cwd;
2915 if (len <= size) {
2916 error = len;
2917 if (copy_to_user(buf, cwd, len))
2918 error = -EFAULT;
2919 }
2920 } else {
2921 write_sequnlock(&rename_lock);
2922 }
2923
2924 out:
2925 path_put(&pwd);
2926 path_put(&root);
2927 free_page((unsigned long) page);
2928 return error;
2929 }
2930
2931 /*
2932 * Test whether new_dentry is a subdirectory of old_dentry.
2933 *
2934 * Trivially implemented using the dcache structure
2935 */
2936
2937 /**
2938 * is_subdir - is new dentry a subdirectory of old_dentry
2939 * @new_dentry: new dentry
2940 * @old_dentry: old dentry
2941 *
2942 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2943 * Returns 0 otherwise.
2944 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2945 */
2946
2947 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2948 {
2949 int result;
2950 unsigned seq;
2951
2952 if (new_dentry == old_dentry)
2953 return 1;
2954
2955 do {
2956 /* for restarting inner loop in case of seq retry */
2957 seq = read_seqbegin(&rename_lock);
2958 /*
2959 * Need rcu_readlock to protect against the d_parent trashing
2960 * due to d_move
2961 */
2962 rcu_read_lock();
2963 if (d_ancestor(old_dentry, new_dentry))
2964 result = 1;
2965 else
2966 result = 0;
2967 rcu_read_unlock();
2968 } while (read_seqretry(&rename_lock, seq));
2969
2970 return result;
2971 }
2972
2973 void d_genocide(struct dentry *root)
2974 {
2975 struct dentry *this_parent;
2976 struct list_head *next;
2977 unsigned seq;
2978 int locked = 0;
2979
2980 seq = read_seqbegin(&rename_lock);
2981 again:
2982 this_parent = root;
2983 spin_lock(&this_parent->d_lock);
2984 repeat:
2985 next = this_parent->d_subdirs.next;
2986 resume:
2987 while (next != &this_parent->d_subdirs) {
2988 struct list_head *tmp = next;
2989 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2990 next = tmp->next;
2991
2992 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2993 if (d_unhashed(dentry) || !dentry->d_inode) {
2994 spin_unlock(&dentry->d_lock);
2995 continue;
2996 }
2997 if (!list_empty(&dentry->d_subdirs)) {
2998 spin_unlock(&this_parent->d_lock);
2999 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
3000 this_parent = dentry;
3001 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
3002 goto repeat;
3003 }
3004 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3005 dentry->d_flags |= DCACHE_GENOCIDE;
3006 dentry->d_count--;
3007 }
3008 spin_unlock(&dentry->d_lock);
3009 }
3010 if (this_parent != root) {
3011 struct dentry *child = this_parent;
3012 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
3013 this_parent->d_flags |= DCACHE_GENOCIDE;
3014 this_parent->d_count--;
3015 }
3016 this_parent = try_to_ascend(this_parent, locked, seq);
3017 if (!this_parent)
3018 goto rename_retry;
3019 next = child->d_u.d_child.next;
3020 goto resume;
3021 }
3022 spin_unlock(&this_parent->d_lock);
3023 if (!locked && read_seqretry(&rename_lock, seq))
3024 goto rename_retry;
3025 if (locked)
3026 write_sequnlock(&rename_lock);
3027 return;
3028
3029 rename_retry:
3030 locked = 1;
3031 write_seqlock(&rename_lock);
3032 goto again;
3033 }
3034
3035 /**
3036 * find_inode_number - check for dentry with name
3037 * @dir: directory to check
3038 * @name: Name to find.
3039 *
3040 * Check whether a dentry already exists for the given name,
3041 * and return the inode number if it has an inode. Otherwise
3042 * 0 is returned.
3043 *
3044 * This routine is used to post-process directory listings for
3045 * filesystems using synthetic inode numbers, and is necessary
3046 * to keep getcwd() working.
3047 */
3048
3049 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3050 {
3051 struct dentry * dentry;
3052 ino_t ino = 0;
3053
3054 dentry = d_hash_and_lookup(dir, name);
3055 if (dentry) {
3056 if (dentry->d_inode)
3057 ino = dentry->d_inode->i_ino;
3058 dput(dentry);
3059 }
3060 return ino;
3061 }
3062 EXPORT_SYMBOL(find_inode_number);
3063
3064 static __initdata unsigned long dhash_entries;
3065 static int __init set_dhash_entries(char *str)
3066 {
3067 if (!str)
3068 return 0;
3069 dhash_entries = simple_strtoul(str, &str, 0);
3070 return 1;
3071 }
3072 __setup("dhash_entries=", set_dhash_entries);
3073
3074 static void __init dcache_init_early(void)
3075 {
3076 unsigned int loop;
3077
3078 /* If hashes are distributed across NUMA nodes, defer
3079 * hash allocation until vmalloc space is available.
3080 */
3081 if (hashdist)
3082 return;
3083
3084 dentry_hashtable =
3085 alloc_large_system_hash("Dentry cache",
3086 sizeof(struct hlist_bl_head),
3087 dhash_entries,
3088 13,
3089 HASH_EARLY,
3090 &d_hash_shift,
3091 &d_hash_mask,
3092 0,
3093 0);
3094
3095 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3096 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3097 }
3098
3099 static void __init dcache_init(void)
3100 {
3101 unsigned int loop;
3102
3103 /*
3104 * A constructor could be added for stable state like the lists,
3105 * but it is probably not worth it because of the cache nature
3106 * of the dcache.
3107 */
3108 dentry_cache = KMEM_CACHE(dentry,
3109 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3110
3111 /* Hash may have been set up in dcache_init_early */
3112 if (!hashdist)
3113 return;
3114
3115 dentry_hashtable =
3116 alloc_large_system_hash("Dentry cache",
3117 sizeof(struct hlist_bl_head),
3118 dhash_entries,
3119 13,
3120 0,
3121 &d_hash_shift,
3122 &d_hash_mask,
3123 0,
3124 0);
3125
3126 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3127 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3128 }
3129
3130 /* SLAB cache for __getname() consumers */
3131 struct kmem_cache *names_cachep __read_mostly;
3132 EXPORT_SYMBOL(names_cachep);
3133
3134 EXPORT_SYMBOL(d_genocide);
3135
3136 void __init vfs_caches_init_early(void)
3137 {
3138 dcache_init_early();
3139 inode_init_early();
3140 }
3141
3142 void __init vfs_caches_init(unsigned long mempages)
3143 {
3144 unsigned long reserve;
3145
3146 /* Base hash sizes on available memory, with a reserve equal to
3147 150% of current kernel size */
3148
3149 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3150 mempages -= reserve;
3151
3152 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3153 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3154
3155 dcache_init();
3156 inode_init();
3157 files_init(mempages);
3158 mnt_init();
3159 bdev_cache_init();
3160 chrdev_init();
3161 }
This page took 0.09665 seconds and 5 git commands to generate.