Merge branch 'devel-stable' of master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include "internal.h"
39
40 /*
41 * Usage:
42 * dcache->d_inode->i_lock protects:
43 * - i_dentry, d_alias, d_inode of aliases
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
46 * s_anon bl list spinlock protects:
47 * - the s_anon list (see __d_drop)
48 * dcache_lru_lock protects:
49 * - the dcache lru lists and counters
50 * d_lock protects:
51 * - d_flags
52 * - d_name
53 * - d_lru
54 * - d_count
55 * - d_unhashed()
56 * - d_parent and d_subdirs
57 * - childrens' d_child and d_parent
58 * - d_alias, d_inode
59 *
60 * Ordering:
61 * dentry->d_inode->i_lock
62 * dentry->d_lock
63 * dcache_lru_lock
64 * dcache_hash_bucket lock
65 * s_anon lock
66 *
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
69 * ...
70 * dentry->d_parent->d_lock
71 * dentry->d_lock
72 *
73 * If no ancestor relationship:
74 * if (dentry1 < dentry2)
75 * dentry1->d_lock
76 * dentry2->d_lock
77 */
78 int sysctl_vfs_cache_pressure __read_mostly = 100;
79 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
80
81 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
83
84 EXPORT_SYMBOL(rename_lock);
85
86 static struct kmem_cache *dentry_cache __read_mostly;
87
88 /*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
96 #define D_HASHBITS d_hash_shift
97 #define D_HASHMASK d_hash_mask
98
99 static unsigned int d_hash_mask __read_mostly;
100 static unsigned int d_hash_shift __read_mostly;
101
102 struct dcache_hash_bucket {
103 struct hlist_bl_head head;
104 };
105 static struct dcache_hash_bucket *dentry_hashtable __read_mostly;
106
107 static inline struct dcache_hash_bucket *d_hash(struct dentry *parent,
108 unsigned long hash)
109 {
110 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
111 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
113 }
114
115 static inline void spin_lock_bucket(struct dcache_hash_bucket *b)
116 {
117 bit_spin_lock(0, (unsigned long *)&b->head.first);
118 }
119
120 static inline void spin_unlock_bucket(struct dcache_hash_bucket *b)
121 {
122 __bit_spin_unlock(0, (unsigned long *)&b->head.first);
123 }
124
125 /* Statistics gathering. */
126 struct dentry_stat_t dentry_stat = {
127 .age_limit = 45,
128 };
129
130 static DEFINE_PER_CPU(unsigned int, nr_dentry);
131
132 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
133 static int get_nr_dentry(void)
134 {
135 int i;
136 int sum = 0;
137 for_each_possible_cpu(i)
138 sum += per_cpu(nr_dentry, i);
139 return sum < 0 ? 0 : sum;
140 }
141
142 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
143 size_t *lenp, loff_t *ppos)
144 {
145 dentry_stat.nr_dentry = get_nr_dentry();
146 return proc_dointvec(table, write, buffer, lenp, ppos);
147 }
148 #endif
149
150 static void __d_free(struct rcu_head *head)
151 {
152 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
153
154 WARN_ON(!list_empty(&dentry->d_alias));
155 if (dname_external(dentry))
156 kfree(dentry->d_name.name);
157 kmem_cache_free(dentry_cache, dentry);
158 }
159
160 /*
161 * no locks, please.
162 */
163 static void d_free(struct dentry *dentry)
164 {
165 BUG_ON(dentry->d_count);
166 this_cpu_dec(nr_dentry);
167 if (dentry->d_op && dentry->d_op->d_release)
168 dentry->d_op->d_release(dentry);
169
170 /* if dentry was never inserted into hash, immediate free is OK */
171 if (hlist_bl_unhashed(&dentry->d_hash))
172 __d_free(&dentry->d_u.d_rcu);
173 else
174 call_rcu(&dentry->d_u.d_rcu, __d_free);
175 }
176
177 /**
178 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
179 * @dentry: the target dentry
180 * After this call, in-progress rcu-walk path lookup will fail. This
181 * should be called after unhashing, and after changing d_inode (if
182 * the dentry has not already been unhashed).
183 */
184 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
185 {
186 assert_spin_locked(&dentry->d_lock);
187 /* Go through a barrier */
188 write_seqcount_barrier(&dentry->d_seq);
189 }
190
191 /*
192 * Release the dentry's inode, using the filesystem
193 * d_iput() operation if defined. Dentry has no refcount
194 * and is unhashed.
195 */
196 static void dentry_iput(struct dentry * dentry)
197 __releases(dentry->d_lock)
198 __releases(dentry->d_inode->i_lock)
199 {
200 struct inode *inode = dentry->d_inode;
201 if (inode) {
202 dentry->d_inode = NULL;
203 list_del_init(&dentry->d_alias);
204 spin_unlock(&dentry->d_lock);
205 spin_unlock(&inode->i_lock);
206 if (!inode->i_nlink)
207 fsnotify_inoderemove(inode);
208 if (dentry->d_op && dentry->d_op->d_iput)
209 dentry->d_op->d_iput(dentry, inode);
210 else
211 iput(inode);
212 } else {
213 spin_unlock(&dentry->d_lock);
214 }
215 }
216
217 /*
218 * Release the dentry's inode, using the filesystem
219 * d_iput() operation if defined. dentry remains in-use.
220 */
221 static void dentry_unlink_inode(struct dentry * dentry)
222 __releases(dentry->d_lock)
223 __releases(dentry->d_inode->i_lock)
224 {
225 struct inode *inode = dentry->d_inode;
226 dentry->d_inode = NULL;
227 list_del_init(&dentry->d_alias);
228 dentry_rcuwalk_barrier(dentry);
229 spin_unlock(&dentry->d_lock);
230 spin_unlock(&inode->i_lock);
231 if (!inode->i_nlink)
232 fsnotify_inoderemove(inode);
233 if (dentry->d_op && dentry->d_op->d_iput)
234 dentry->d_op->d_iput(dentry, inode);
235 else
236 iput(inode);
237 }
238
239 /*
240 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
241 */
242 static void dentry_lru_add(struct dentry *dentry)
243 {
244 if (list_empty(&dentry->d_lru)) {
245 spin_lock(&dcache_lru_lock);
246 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
247 dentry->d_sb->s_nr_dentry_unused++;
248 dentry_stat.nr_unused++;
249 spin_unlock(&dcache_lru_lock);
250 }
251 }
252
253 static void __dentry_lru_del(struct dentry *dentry)
254 {
255 list_del_init(&dentry->d_lru);
256 dentry->d_sb->s_nr_dentry_unused--;
257 dentry_stat.nr_unused--;
258 }
259
260 static void dentry_lru_del(struct dentry *dentry)
261 {
262 if (!list_empty(&dentry->d_lru)) {
263 spin_lock(&dcache_lru_lock);
264 __dentry_lru_del(dentry);
265 spin_unlock(&dcache_lru_lock);
266 }
267 }
268
269 static void dentry_lru_move_tail(struct dentry *dentry)
270 {
271 spin_lock(&dcache_lru_lock);
272 if (list_empty(&dentry->d_lru)) {
273 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
274 dentry->d_sb->s_nr_dentry_unused++;
275 dentry_stat.nr_unused++;
276 } else {
277 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
278 }
279 spin_unlock(&dcache_lru_lock);
280 }
281
282 /**
283 * d_kill - kill dentry and return parent
284 * @dentry: dentry to kill
285 * @parent: parent dentry
286 *
287 * The dentry must already be unhashed and removed from the LRU.
288 *
289 * If this is the root of the dentry tree, return NULL.
290 *
291 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
292 * d_kill.
293 */
294 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
295 __releases(dentry->d_lock)
296 __releases(parent->d_lock)
297 __releases(dentry->d_inode->i_lock)
298 {
299 list_del(&dentry->d_u.d_child);
300 /*
301 * Inform try_to_ascend() that we are no longer attached to the
302 * dentry tree
303 */
304 dentry->d_flags |= DCACHE_DISCONNECTED;
305 if (parent)
306 spin_unlock(&parent->d_lock);
307 dentry_iput(dentry);
308 /*
309 * dentry_iput drops the locks, at which point nobody (except
310 * transient RCU lookups) can reach this dentry.
311 */
312 d_free(dentry);
313 return parent;
314 }
315
316 /**
317 * d_drop - drop a dentry
318 * @dentry: dentry to drop
319 *
320 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
321 * be found through a VFS lookup any more. Note that this is different from
322 * deleting the dentry - d_delete will try to mark the dentry negative if
323 * possible, giving a successful _negative_ lookup, while d_drop will
324 * just make the cache lookup fail.
325 *
326 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
327 * reason (NFS timeouts or autofs deletes).
328 *
329 * __d_drop requires dentry->d_lock.
330 */
331 void __d_drop(struct dentry *dentry)
332 {
333 if (!(dentry->d_flags & DCACHE_UNHASHED)) {
334 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) {
335 bit_spin_lock(0,
336 (unsigned long *)&dentry->d_sb->s_anon.first);
337 dentry->d_flags |= DCACHE_UNHASHED;
338 hlist_bl_del_init(&dentry->d_hash);
339 __bit_spin_unlock(0,
340 (unsigned long *)&dentry->d_sb->s_anon.first);
341 } else {
342 struct dcache_hash_bucket *b;
343 b = d_hash(dentry->d_parent, dentry->d_name.hash);
344 spin_lock_bucket(b);
345 /*
346 * We may not actually need to put DCACHE_UNHASHED
347 * manipulations under the hash lock, but follow
348 * the principle of least surprise.
349 */
350 dentry->d_flags |= DCACHE_UNHASHED;
351 hlist_bl_del_rcu(&dentry->d_hash);
352 spin_unlock_bucket(b);
353 dentry_rcuwalk_barrier(dentry);
354 }
355 }
356 }
357 EXPORT_SYMBOL(__d_drop);
358
359 void d_drop(struct dentry *dentry)
360 {
361 spin_lock(&dentry->d_lock);
362 __d_drop(dentry);
363 spin_unlock(&dentry->d_lock);
364 }
365 EXPORT_SYMBOL(d_drop);
366
367 /*
368 * Finish off a dentry we've decided to kill.
369 * dentry->d_lock must be held, returns with it unlocked.
370 * If ref is non-zero, then decrement the refcount too.
371 * Returns dentry requiring refcount drop, or NULL if we're done.
372 */
373 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
374 __releases(dentry->d_lock)
375 {
376 struct inode *inode;
377 struct dentry *parent;
378
379 inode = dentry->d_inode;
380 if (inode && !spin_trylock(&inode->i_lock)) {
381 relock:
382 spin_unlock(&dentry->d_lock);
383 cpu_relax();
384 return dentry; /* try again with same dentry */
385 }
386 if (IS_ROOT(dentry))
387 parent = NULL;
388 else
389 parent = dentry->d_parent;
390 if (parent && !spin_trylock(&parent->d_lock)) {
391 if (inode)
392 spin_unlock(&inode->i_lock);
393 goto relock;
394 }
395
396 if (ref)
397 dentry->d_count--;
398 /* if dentry was on the d_lru list delete it from there */
399 dentry_lru_del(dentry);
400 /* if it was on the hash then remove it */
401 __d_drop(dentry);
402 return d_kill(dentry, parent);
403 }
404
405 /*
406 * This is dput
407 *
408 * This is complicated by the fact that we do not want to put
409 * dentries that are no longer on any hash chain on the unused
410 * list: we'd much rather just get rid of them immediately.
411 *
412 * However, that implies that we have to traverse the dentry
413 * tree upwards to the parents which might _also_ now be
414 * scheduled for deletion (it may have been only waiting for
415 * its last child to go away).
416 *
417 * This tail recursion is done by hand as we don't want to depend
418 * on the compiler to always get this right (gcc generally doesn't).
419 * Real recursion would eat up our stack space.
420 */
421
422 /*
423 * dput - release a dentry
424 * @dentry: dentry to release
425 *
426 * Release a dentry. This will drop the usage count and if appropriate
427 * call the dentry unlink method as well as removing it from the queues and
428 * releasing its resources. If the parent dentries were scheduled for release
429 * they too may now get deleted.
430 */
431 void dput(struct dentry *dentry)
432 {
433 if (!dentry)
434 return;
435
436 repeat:
437 if (dentry->d_count == 1)
438 might_sleep();
439 spin_lock(&dentry->d_lock);
440 BUG_ON(!dentry->d_count);
441 if (dentry->d_count > 1) {
442 dentry->d_count--;
443 spin_unlock(&dentry->d_lock);
444 return;
445 }
446
447 if (dentry->d_flags & DCACHE_OP_DELETE) {
448 if (dentry->d_op->d_delete(dentry))
449 goto kill_it;
450 }
451
452 /* Unreachable? Get rid of it */
453 if (d_unhashed(dentry))
454 goto kill_it;
455
456 /* Otherwise leave it cached and ensure it's on the LRU */
457 dentry->d_flags |= DCACHE_REFERENCED;
458 dentry_lru_add(dentry);
459
460 dentry->d_count--;
461 spin_unlock(&dentry->d_lock);
462 return;
463
464 kill_it:
465 dentry = dentry_kill(dentry, 1);
466 if (dentry)
467 goto repeat;
468 }
469 EXPORT_SYMBOL(dput);
470
471 /**
472 * d_invalidate - invalidate a dentry
473 * @dentry: dentry to invalidate
474 *
475 * Try to invalidate the dentry if it turns out to be
476 * possible. If there are other dentries that can be
477 * reached through this one we can't delete it and we
478 * return -EBUSY. On success we return 0.
479 *
480 * no dcache lock.
481 */
482
483 int d_invalidate(struct dentry * dentry)
484 {
485 /*
486 * If it's already been dropped, return OK.
487 */
488 spin_lock(&dentry->d_lock);
489 if (d_unhashed(dentry)) {
490 spin_unlock(&dentry->d_lock);
491 return 0;
492 }
493 /*
494 * Check whether to do a partial shrink_dcache
495 * to get rid of unused child entries.
496 */
497 if (!list_empty(&dentry->d_subdirs)) {
498 spin_unlock(&dentry->d_lock);
499 shrink_dcache_parent(dentry);
500 spin_lock(&dentry->d_lock);
501 }
502
503 /*
504 * Somebody else still using it?
505 *
506 * If it's a directory, we can't drop it
507 * for fear of somebody re-populating it
508 * with children (even though dropping it
509 * would make it unreachable from the root,
510 * we might still populate it if it was a
511 * working directory or similar).
512 */
513 if (dentry->d_count > 1) {
514 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
515 spin_unlock(&dentry->d_lock);
516 return -EBUSY;
517 }
518 }
519
520 __d_drop(dentry);
521 spin_unlock(&dentry->d_lock);
522 return 0;
523 }
524 EXPORT_SYMBOL(d_invalidate);
525
526 /* This must be called with d_lock held */
527 static inline void __dget_dlock(struct dentry *dentry)
528 {
529 dentry->d_count++;
530 }
531
532 static inline void __dget(struct dentry *dentry)
533 {
534 spin_lock(&dentry->d_lock);
535 __dget_dlock(dentry);
536 spin_unlock(&dentry->d_lock);
537 }
538
539 struct dentry *dget_parent(struct dentry *dentry)
540 {
541 struct dentry *ret;
542
543 repeat:
544 /*
545 * Don't need rcu_dereference because we re-check it was correct under
546 * the lock.
547 */
548 rcu_read_lock();
549 ret = dentry->d_parent;
550 if (!ret) {
551 rcu_read_unlock();
552 goto out;
553 }
554 spin_lock(&ret->d_lock);
555 if (unlikely(ret != dentry->d_parent)) {
556 spin_unlock(&ret->d_lock);
557 rcu_read_unlock();
558 goto repeat;
559 }
560 rcu_read_unlock();
561 BUG_ON(!ret->d_count);
562 ret->d_count++;
563 spin_unlock(&ret->d_lock);
564 out:
565 return ret;
566 }
567 EXPORT_SYMBOL(dget_parent);
568
569 /**
570 * d_find_alias - grab a hashed alias of inode
571 * @inode: inode in question
572 * @want_discon: flag, used by d_splice_alias, to request
573 * that only a DISCONNECTED alias be returned.
574 *
575 * If inode has a hashed alias, or is a directory and has any alias,
576 * acquire the reference to alias and return it. Otherwise return NULL.
577 * Notice that if inode is a directory there can be only one alias and
578 * it can be unhashed only if it has no children, or if it is the root
579 * of a filesystem.
580 *
581 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
582 * any other hashed alias over that one unless @want_discon is set,
583 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
584 */
585 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
586 {
587 struct dentry *alias, *discon_alias;
588
589 again:
590 discon_alias = NULL;
591 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
592 spin_lock(&alias->d_lock);
593 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
594 if (IS_ROOT(alias) &&
595 (alias->d_flags & DCACHE_DISCONNECTED)) {
596 discon_alias = alias;
597 } else if (!want_discon) {
598 __dget_dlock(alias);
599 spin_unlock(&alias->d_lock);
600 return alias;
601 }
602 }
603 spin_unlock(&alias->d_lock);
604 }
605 if (discon_alias) {
606 alias = discon_alias;
607 spin_lock(&alias->d_lock);
608 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
609 if (IS_ROOT(alias) &&
610 (alias->d_flags & DCACHE_DISCONNECTED)) {
611 __dget_dlock(alias);
612 spin_unlock(&alias->d_lock);
613 return alias;
614 }
615 }
616 spin_unlock(&alias->d_lock);
617 goto again;
618 }
619 return NULL;
620 }
621
622 struct dentry *d_find_alias(struct inode *inode)
623 {
624 struct dentry *de = NULL;
625
626 if (!list_empty(&inode->i_dentry)) {
627 spin_lock(&inode->i_lock);
628 de = __d_find_alias(inode, 0);
629 spin_unlock(&inode->i_lock);
630 }
631 return de;
632 }
633 EXPORT_SYMBOL(d_find_alias);
634
635 /*
636 * Try to kill dentries associated with this inode.
637 * WARNING: you must own a reference to inode.
638 */
639 void d_prune_aliases(struct inode *inode)
640 {
641 struct dentry *dentry;
642 restart:
643 spin_lock(&inode->i_lock);
644 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
645 spin_lock(&dentry->d_lock);
646 if (!dentry->d_count) {
647 __dget_dlock(dentry);
648 __d_drop(dentry);
649 spin_unlock(&dentry->d_lock);
650 spin_unlock(&inode->i_lock);
651 dput(dentry);
652 goto restart;
653 }
654 spin_unlock(&dentry->d_lock);
655 }
656 spin_unlock(&inode->i_lock);
657 }
658 EXPORT_SYMBOL(d_prune_aliases);
659
660 /*
661 * Try to throw away a dentry - free the inode, dput the parent.
662 * Requires dentry->d_lock is held, and dentry->d_count == 0.
663 * Releases dentry->d_lock.
664 *
665 * This may fail if locks cannot be acquired no problem, just try again.
666 */
667 static void try_prune_one_dentry(struct dentry *dentry)
668 __releases(dentry->d_lock)
669 {
670 struct dentry *parent;
671
672 parent = dentry_kill(dentry, 0);
673 /*
674 * If dentry_kill returns NULL, we have nothing more to do.
675 * if it returns the same dentry, trylocks failed. In either
676 * case, just loop again.
677 *
678 * Otherwise, we need to prune ancestors too. This is necessary
679 * to prevent quadratic behavior of shrink_dcache_parent(), but
680 * is also expected to be beneficial in reducing dentry cache
681 * fragmentation.
682 */
683 if (!parent)
684 return;
685 if (parent == dentry)
686 return;
687
688 /* Prune ancestors. */
689 dentry = parent;
690 while (dentry) {
691 spin_lock(&dentry->d_lock);
692 if (dentry->d_count > 1) {
693 dentry->d_count--;
694 spin_unlock(&dentry->d_lock);
695 return;
696 }
697 dentry = dentry_kill(dentry, 1);
698 }
699 }
700
701 static void shrink_dentry_list(struct list_head *list)
702 {
703 struct dentry *dentry;
704
705 rcu_read_lock();
706 for (;;) {
707 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
708 if (&dentry->d_lru == list)
709 break; /* empty */
710 spin_lock(&dentry->d_lock);
711 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
712 spin_unlock(&dentry->d_lock);
713 continue;
714 }
715
716 /*
717 * We found an inuse dentry which was not removed from
718 * the LRU because of laziness during lookup. Do not free
719 * it - just keep it off the LRU list.
720 */
721 if (dentry->d_count) {
722 dentry_lru_del(dentry);
723 spin_unlock(&dentry->d_lock);
724 continue;
725 }
726
727 rcu_read_unlock();
728
729 try_prune_one_dentry(dentry);
730
731 rcu_read_lock();
732 }
733 rcu_read_unlock();
734 }
735
736 /**
737 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
738 * @sb: superblock to shrink dentry LRU.
739 * @count: number of entries to prune
740 * @flags: flags to control the dentry processing
741 *
742 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
743 */
744 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
745 {
746 /* called from prune_dcache() and shrink_dcache_parent() */
747 struct dentry *dentry;
748 LIST_HEAD(referenced);
749 LIST_HEAD(tmp);
750 int cnt = *count;
751
752 relock:
753 spin_lock(&dcache_lru_lock);
754 while (!list_empty(&sb->s_dentry_lru)) {
755 dentry = list_entry(sb->s_dentry_lru.prev,
756 struct dentry, d_lru);
757 BUG_ON(dentry->d_sb != sb);
758
759 if (!spin_trylock(&dentry->d_lock)) {
760 spin_unlock(&dcache_lru_lock);
761 cpu_relax();
762 goto relock;
763 }
764
765 /*
766 * If we are honouring the DCACHE_REFERENCED flag and the
767 * dentry has this flag set, don't free it. Clear the flag
768 * and put it back on the LRU.
769 */
770 if (flags & DCACHE_REFERENCED &&
771 dentry->d_flags & DCACHE_REFERENCED) {
772 dentry->d_flags &= ~DCACHE_REFERENCED;
773 list_move(&dentry->d_lru, &referenced);
774 spin_unlock(&dentry->d_lock);
775 } else {
776 list_move_tail(&dentry->d_lru, &tmp);
777 spin_unlock(&dentry->d_lock);
778 if (!--cnt)
779 break;
780 }
781 cond_resched_lock(&dcache_lru_lock);
782 }
783 if (!list_empty(&referenced))
784 list_splice(&referenced, &sb->s_dentry_lru);
785 spin_unlock(&dcache_lru_lock);
786
787 shrink_dentry_list(&tmp);
788
789 *count = cnt;
790 }
791
792 /**
793 * prune_dcache - shrink the dcache
794 * @count: number of entries to try to free
795 *
796 * Shrink the dcache. This is done when we need more memory, or simply when we
797 * need to unmount something (at which point we need to unuse all dentries).
798 *
799 * This function may fail to free any resources if all the dentries are in use.
800 */
801 static void prune_dcache(int count)
802 {
803 struct super_block *sb, *p = NULL;
804 int w_count;
805 int unused = dentry_stat.nr_unused;
806 int prune_ratio;
807 int pruned;
808
809 if (unused == 0 || count == 0)
810 return;
811 if (count >= unused)
812 prune_ratio = 1;
813 else
814 prune_ratio = unused / count;
815 spin_lock(&sb_lock);
816 list_for_each_entry(sb, &super_blocks, s_list) {
817 if (list_empty(&sb->s_instances))
818 continue;
819 if (sb->s_nr_dentry_unused == 0)
820 continue;
821 sb->s_count++;
822 /* Now, we reclaim unused dentrins with fairness.
823 * We reclaim them same percentage from each superblock.
824 * We calculate number of dentries to scan on this sb
825 * as follows, but the implementation is arranged to avoid
826 * overflows:
827 * number of dentries to scan on this sb =
828 * count * (number of dentries on this sb /
829 * number of dentries in the machine)
830 */
831 spin_unlock(&sb_lock);
832 if (prune_ratio != 1)
833 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
834 else
835 w_count = sb->s_nr_dentry_unused;
836 pruned = w_count;
837 /*
838 * We need to be sure this filesystem isn't being unmounted,
839 * otherwise we could race with generic_shutdown_super(), and
840 * end up holding a reference to an inode while the filesystem
841 * is unmounted. So we try to get s_umount, and make sure
842 * s_root isn't NULL.
843 */
844 if (down_read_trylock(&sb->s_umount)) {
845 if ((sb->s_root != NULL) &&
846 (!list_empty(&sb->s_dentry_lru))) {
847 __shrink_dcache_sb(sb, &w_count,
848 DCACHE_REFERENCED);
849 pruned -= w_count;
850 }
851 up_read(&sb->s_umount);
852 }
853 spin_lock(&sb_lock);
854 if (p)
855 __put_super(p);
856 count -= pruned;
857 p = sb;
858 /* more work left to do? */
859 if (count <= 0)
860 break;
861 }
862 if (p)
863 __put_super(p);
864 spin_unlock(&sb_lock);
865 }
866
867 /**
868 * shrink_dcache_sb - shrink dcache for a superblock
869 * @sb: superblock
870 *
871 * Shrink the dcache for the specified super block. This is used to free
872 * the dcache before unmounting a file system.
873 */
874 void shrink_dcache_sb(struct super_block *sb)
875 {
876 LIST_HEAD(tmp);
877
878 spin_lock(&dcache_lru_lock);
879 while (!list_empty(&sb->s_dentry_lru)) {
880 list_splice_init(&sb->s_dentry_lru, &tmp);
881 spin_unlock(&dcache_lru_lock);
882 shrink_dentry_list(&tmp);
883 spin_lock(&dcache_lru_lock);
884 }
885 spin_unlock(&dcache_lru_lock);
886 }
887 EXPORT_SYMBOL(shrink_dcache_sb);
888
889 /*
890 * destroy a single subtree of dentries for unmount
891 * - see the comments on shrink_dcache_for_umount() for a description of the
892 * locking
893 */
894 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
895 {
896 struct dentry *parent;
897 unsigned detached = 0;
898
899 BUG_ON(!IS_ROOT(dentry));
900
901 /* detach this root from the system */
902 spin_lock(&dentry->d_lock);
903 dentry_lru_del(dentry);
904 __d_drop(dentry);
905 spin_unlock(&dentry->d_lock);
906
907 for (;;) {
908 /* descend to the first leaf in the current subtree */
909 while (!list_empty(&dentry->d_subdirs)) {
910 struct dentry *loop;
911
912 /* this is a branch with children - detach all of them
913 * from the system in one go */
914 spin_lock(&dentry->d_lock);
915 list_for_each_entry(loop, &dentry->d_subdirs,
916 d_u.d_child) {
917 spin_lock_nested(&loop->d_lock,
918 DENTRY_D_LOCK_NESTED);
919 dentry_lru_del(loop);
920 __d_drop(loop);
921 spin_unlock(&loop->d_lock);
922 }
923 spin_unlock(&dentry->d_lock);
924
925 /* move to the first child */
926 dentry = list_entry(dentry->d_subdirs.next,
927 struct dentry, d_u.d_child);
928 }
929
930 /* consume the dentries from this leaf up through its parents
931 * until we find one with children or run out altogether */
932 do {
933 struct inode *inode;
934
935 if (dentry->d_count != 0) {
936 printk(KERN_ERR
937 "BUG: Dentry %p{i=%lx,n=%s}"
938 " still in use (%d)"
939 " [unmount of %s %s]\n",
940 dentry,
941 dentry->d_inode ?
942 dentry->d_inode->i_ino : 0UL,
943 dentry->d_name.name,
944 dentry->d_count,
945 dentry->d_sb->s_type->name,
946 dentry->d_sb->s_id);
947 BUG();
948 }
949
950 if (IS_ROOT(dentry)) {
951 parent = NULL;
952 list_del(&dentry->d_u.d_child);
953 } else {
954 parent = dentry->d_parent;
955 spin_lock(&parent->d_lock);
956 parent->d_count--;
957 list_del(&dentry->d_u.d_child);
958 spin_unlock(&parent->d_lock);
959 }
960
961 detached++;
962
963 inode = dentry->d_inode;
964 if (inode) {
965 dentry->d_inode = NULL;
966 list_del_init(&dentry->d_alias);
967 if (dentry->d_op && dentry->d_op->d_iput)
968 dentry->d_op->d_iput(dentry, inode);
969 else
970 iput(inode);
971 }
972
973 d_free(dentry);
974
975 /* finished when we fall off the top of the tree,
976 * otherwise we ascend to the parent and move to the
977 * next sibling if there is one */
978 if (!parent)
979 return;
980 dentry = parent;
981 } while (list_empty(&dentry->d_subdirs));
982
983 dentry = list_entry(dentry->d_subdirs.next,
984 struct dentry, d_u.d_child);
985 }
986 }
987
988 /*
989 * destroy the dentries attached to a superblock on unmounting
990 * - we don't need to use dentry->d_lock because:
991 * - the superblock is detached from all mountings and open files, so the
992 * dentry trees will not be rearranged by the VFS
993 * - s_umount is write-locked, so the memory pressure shrinker will ignore
994 * any dentries belonging to this superblock that it comes across
995 * - the filesystem itself is no longer permitted to rearrange the dentries
996 * in this superblock
997 */
998 void shrink_dcache_for_umount(struct super_block *sb)
999 {
1000 struct dentry *dentry;
1001
1002 if (down_read_trylock(&sb->s_umount))
1003 BUG();
1004
1005 dentry = sb->s_root;
1006 sb->s_root = NULL;
1007 spin_lock(&dentry->d_lock);
1008 dentry->d_count--;
1009 spin_unlock(&dentry->d_lock);
1010 shrink_dcache_for_umount_subtree(dentry);
1011
1012 while (!hlist_bl_empty(&sb->s_anon)) {
1013 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1014 shrink_dcache_for_umount_subtree(dentry);
1015 }
1016 }
1017
1018 /*
1019 * This tries to ascend one level of parenthood, but
1020 * we can race with renaming, so we need to re-check
1021 * the parenthood after dropping the lock and check
1022 * that the sequence number still matches.
1023 */
1024 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1025 {
1026 struct dentry *new = old->d_parent;
1027
1028 rcu_read_lock();
1029 spin_unlock(&old->d_lock);
1030 spin_lock(&new->d_lock);
1031
1032 /*
1033 * might go back up the wrong parent if we have had a rename
1034 * or deletion
1035 */
1036 if (new != old->d_parent ||
1037 (old->d_flags & DCACHE_DISCONNECTED) ||
1038 (!locked && read_seqretry(&rename_lock, seq))) {
1039 spin_unlock(&new->d_lock);
1040 new = NULL;
1041 }
1042 rcu_read_unlock();
1043 return new;
1044 }
1045
1046
1047 /*
1048 * Search for at least 1 mount point in the dentry's subdirs.
1049 * We descend to the next level whenever the d_subdirs
1050 * list is non-empty and continue searching.
1051 */
1052
1053 /**
1054 * have_submounts - check for mounts over a dentry
1055 * @parent: dentry to check.
1056 *
1057 * Return true if the parent or its subdirectories contain
1058 * a mount point
1059 */
1060 int have_submounts(struct dentry *parent)
1061 {
1062 struct dentry *this_parent;
1063 struct list_head *next;
1064 unsigned seq;
1065 int locked = 0;
1066
1067 seq = read_seqbegin(&rename_lock);
1068 again:
1069 this_parent = parent;
1070
1071 if (d_mountpoint(parent))
1072 goto positive;
1073 spin_lock(&this_parent->d_lock);
1074 repeat:
1075 next = this_parent->d_subdirs.next;
1076 resume:
1077 while (next != &this_parent->d_subdirs) {
1078 struct list_head *tmp = next;
1079 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1080 next = tmp->next;
1081
1082 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1083 /* Have we found a mount point ? */
1084 if (d_mountpoint(dentry)) {
1085 spin_unlock(&dentry->d_lock);
1086 spin_unlock(&this_parent->d_lock);
1087 goto positive;
1088 }
1089 if (!list_empty(&dentry->d_subdirs)) {
1090 spin_unlock(&this_parent->d_lock);
1091 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1092 this_parent = dentry;
1093 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1094 goto repeat;
1095 }
1096 spin_unlock(&dentry->d_lock);
1097 }
1098 /*
1099 * All done at this level ... ascend and resume the search.
1100 */
1101 if (this_parent != parent) {
1102 struct dentry *child = this_parent;
1103 this_parent = try_to_ascend(this_parent, locked, seq);
1104 if (!this_parent)
1105 goto rename_retry;
1106 next = child->d_u.d_child.next;
1107 goto resume;
1108 }
1109 spin_unlock(&this_parent->d_lock);
1110 if (!locked && read_seqretry(&rename_lock, seq))
1111 goto rename_retry;
1112 if (locked)
1113 write_sequnlock(&rename_lock);
1114 return 0; /* No mount points found in tree */
1115 positive:
1116 if (!locked && read_seqretry(&rename_lock, seq))
1117 goto rename_retry;
1118 if (locked)
1119 write_sequnlock(&rename_lock);
1120 return 1;
1121
1122 rename_retry:
1123 locked = 1;
1124 write_seqlock(&rename_lock);
1125 goto again;
1126 }
1127 EXPORT_SYMBOL(have_submounts);
1128
1129 /*
1130 * Search the dentry child list for the specified parent,
1131 * and move any unused dentries to the end of the unused
1132 * list for prune_dcache(). We descend to the next level
1133 * whenever the d_subdirs list is non-empty and continue
1134 * searching.
1135 *
1136 * It returns zero iff there are no unused children,
1137 * otherwise it returns the number of children moved to
1138 * the end of the unused list. This may not be the total
1139 * number of unused children, because select_parent can
1140 * drop the lock and return early due to latency
1141 * constraints.
1142 */
1143 static int select_parent(struct dentry * parent)
1144 {
1145 struct dentry *this_parent;
1146 struct list_head *next;
1147 unsigned seq;
1148 int found = 0;
1149 int locked = 0;
1150
1151 seq = read_seqbegin(&rename_lock);
1152 again:
1153 this_parent = parent;
1154 spin_lock(&this_parent->d_lock);
1155 repeat:
1156 next = this_parent->d_subdirs.next;
1157 resume:
1158 while (next != &this_parent->d_subdirs) {
1159 struct list_head *tmp = next;
1160 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1161 next = tmp->next;
1162
1163 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1164
1165 /*
1166 * move only zero ref count dentries to the end
1167 * of the unused list for prune_dcache
1168 */
1169 if (!dentry->d_count) {
1170 dentry_lru_move_tail(dentry);
1171 found++;
1172 } else {
1173 dentry_lru_del(dentry);
1174 }
1175
1176 /*
1177 * We can return to the caller if we have found some (this
1178 * ensures forward progress). We'll be coming back to find
1179 * the rest.
1180 */
1181 if (found && need_resched()) {
1182 spin_unlock(&dentry->d_lock);
1183 goto out;
1184 }
1185
1186 /*
1187 * Descend a level if the d_subdirs list is non-empty.
1188 */
1189 if (!list_empty(&dentry->d_subdirs)) {
1190 spin_unlock(&this_parent->d_lock);
1191 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1192 this_parent = dentry;
1193 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1194 goto repeat;
1195 }
1196
1197 spin_unlock(&dentry->d_lock);
1198 }
1199 /*
1200 * All done at this level ... ascend and resume the search.
1201 */
1202 if (this_parent != parent) {
1203 struct dentry *child = this_parent;
1204 this_parent = try_to_ascend(this_parent, locked, seq);
1205 if (!this_parent)
1206 goto rename_retry;
1207 next = child->d_u.d_child.next;
1208 goto resume;
1209 }
1210 out:
1211 spin_unlock(&this_parent->d_lock);
1212 if (!locked && read_seqretry(&rename_lock, seq))
1213 goto rename_retry;
1214 if (locked)
1215 write_sequnlock(&rename_lock);
1216 return found;
1217
1218 rename_retry:
1219 if (found)
1220 return found;
1221 locked = 1;
1222 write_seqlock(&rename_lock);
1223 goto again;
1224 }
1225
1226 /**
1227 * shrink_dcache_parent - prune dcache
1228 * @parent: parent of entries to prune
1229 *
1230 * Prune the dcache to remove unused children of the parent dentry.
1231 */
1232
1233 void shrink_dcache_parent(struct dentry * parent)
1234 {
1235 struct super_block *sb = parent->d_sb;
1236 int found;
1237
1238 while ((found = select_parent(parent)) != 0)
1239 __shrink_dcache_sb(sb, &found, 0);
1240 }
1241 EXPORT_SYMBOL(shrink_dcache_parent);
1242
1243 /*
1244 * Scan `nr' dentries and return the number which remain.
1245 *
1246 * We need to avoid reentering the filesystem if the caller is performing a
1247 * GFP_NOFS allocation attempt. One example deadlock is:
1248 *
1249 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1250 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1251 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1252 *
1253 * In this case we return -1 to tell the caller that we baled.
1254 */
1255 static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1256 {
1257 if (nr) {
1258 if (!(gfp_mask & __GFP_FS))
1259 return -1;
1260 prune_dcache(nr);
1261 }
1262
1263 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1264 }
1265
1266 static struct shrinker dcache_shrinker = {
1267 .shrink = shrink_dcache_memory,
1268 .seeks = DEFAULT_SEEKS,
1269 };
1270
1271 /**
1272 * d_alloc - allocate a dcache entry
1273 * @parent: parent of entry to allocate
1274 * @name: qstr of the name
1275 *
1276 * Allocates a dentry. It returns %NULL if there is insufficient memory
1277 * available. On a success the dentry is returned. The name passed in is
1278 * copied and the copy passed in may be reused after this call.
1279 */
1280
1281 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1282 {
1283 struct dentry *dentry;
1284 char *dname;
1285
1286 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1287 if (!dentry)
1288 return NULL;
1289
1290 if (name->len > DNAME_INLINE_LEN-1) {
1291 dname = kmalloc(name->len + 1, GFP_KERNEL);
1292 if (!dname) {
1293 kmem_cache_free(dentry_cache, dentry);
1294 return NULL;
1295 }
1296 } else {
1297 dname = dentry->d_iname;
1298 }
1299 dentry->d_name.name = dname;
1300
1301 dentry->d_name.len = name->len;
1302 dentry->d_name.hash = name->hash;
1303 memcpy(dname, name->name, name->len);
1304 dname[name->len] = 0;
1305
1306 dentry->d_count = 1;
1307 dentry->d_flags = DCACHE_UNHASHED;
1308 spin_lock_init(&dentry->d_lock);
1309 seqcount_init(&dentry->d_seq);
1310 dentry->d_inode = NULL;
1311 dentry->d_parent = NULL;
1312 dentry->d_sb = NULL;
1313 dentry->d_op = NULL;
1314 dentry->d_fsdata = NULL;
1315 INIT_HLIST_BL_NODE(&dentry->d_hash);
1316 INIT_LIST_HEAD(&dentry->d_lru);
1317 INIT_LIST_HEAD(&dentry->d_subdirs);
1318 INIT_LIST_HEAD(&dentry->d_alias);
1319 INIT_LIST_HEAD(&dentry->d_u.d_child);
1320
1321 if (parent) {
1322 spin_lock(&parent->d_lock);
1323 /*
1324 * don't need child lock because it is not subject
1325 * to concurrency here
1326 */
1327 __dget_dlock(parent);
1328 dentry->d_parent = parent;
1329 dentry->d_sb = parent->d_sb;
1330 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1331 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1332 spin_unlock(&parent->d_lock);
1333 }
1334
1335 this_cpu_inc(nr_dentry);
1336
1337 return dentry;
1338 }
1339 EXPORT_SYMBOL(d_alloc);
1340
1341 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1342 {
1343 struct dentry *dentry = d_alloc(NULL, name);
1344 if (dentry) {
1345 dentry->d_sb = sb;
1346 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1347 dentry->d_parent = dentry;
1348 dentry->d_flags |= DCACHE_DISCONNECTED;
1349 }
1350 return dentry;
1351 }
1352 EXPORT_SYMBOL(d_alloc_pseudo);
1353
1354 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1355 {
1356 struct qstr q;
1357
1358 q.name = name;
1359 q.len = strlen(name);
1360 q.hash = full_name_hash(q.name, q.len);
1361 return d_alloc(parent, &q);
1362 }
1363 EXPORT_SYMBOL(d_alloc_name);
1364
1365 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1366 {
1367 WARN_ON_ONCE(dentry->d_op);
1368 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1369 DCACHE_OP_COMPARE |
1370 DCACHE_OP_REVALIDATE |
1371 DCACHE_OP_DELETE ));
1372 dentry->d_op = op;
1373 if (!op)
1374 return;
1375 if (op->d_hash)
1376 dentry->d_flags |= DCACHE_OP_HASH;
1377 if (op->d_compare)
1378 dentry->d_flags |= DCACHE_OP_COMPARE;
1379 if (op->d_revalidate)
1380 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1381 if (op->d_delete)
1382 dentry->d_flags |= DCACHE_OP_DELETE;
1383
1384 }
1385 EXPORT_SYMBOL(d_set_d_op);
1386
1387 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1388 {
1389 spin_lock(&dentry->d_lock);
1390 if (inode) {
1391 if (unlikely(IS_AUTOMOUNT(inode)))
1392 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1393 list_add(&dentry->d_alias, &inode->i_dentry);
1394 }
1395 dentry->d_inode = inode;
1396 dentry_rcuwalk_barrier(dentry);
1397 spin_unlock(&dentry->d_lock);
1398 fsnotify_d_instantiate(dentry, inode);
1399 }
1400
1401 /**
1402 * d_instantiate - fill in inode information for a dentry
1403 * @entry: dentry to complete
1404 * @inode: inode to attach to this dentry
1405 *
1406 * Fill in inode information in the entry.
1407 *
1408 * This turns negative dentries into productive full members
1409 * of society.
1410 *
1411 * NOTE! This assumes that the inode count has been incremented
1412 * (or otherwise set) by the caller to indicate that it is now
1413 * in use by the dcache.
1414 */
1415
1416 void d_instantiate(struct dentry *entry, struct inode * inode)
1417 {
1418 BUG_ON(!list_empty(&entry->d_alias));
1419 if (inode)
1420 spin_lock(&inode->i_lock);
1421 __d_instantiate(entry, inode);
1422 if (inode)
1423 spin_unlock(&inode->i_lock);
1424 security_d_instantiate(entry, inode);
1425 }
1426 EXPORT_SYMBOL(d_instantiate);
1427
1428 /**
1429 * d_instantiate_unique - instantiate a non-aliased dentry
1430 * @entry: dentry to instantiate
1431 * @inode: inode to attach to this dentry
1432 *
1433 * Fill in inode information in the entry. On success, it returns NULL.
1434 * If an unhashed alias of "entry" already exists, then we return the
1435 * aliased dentry instead and drop one reference to inode.
1436 *
1437 * Note that in order to avoid conflicts with rename() etc, the caller
1438 * had better be holding the parent directory semaphore.
1439 *
1440 * This also assumes that the inode count has been incremented
1441 * (or otherwise set) by the caller to indicate that it is now
1442 * in use by the dcache.
1443 */
1444 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1445 struct inode *inode)
1446 {
1447 struct dentry *alias;
1448 int len = entry->d_name.len;
1449 const char *name = entry->d_name.name;
1450 unsigned int hash = entry->d_name.hash;
1451
1452 if (!inode) {
1453 __d_instantiate(entry, NULL);
1454 return NULL;
1455 }
1456
1457 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1458 struct qstr *qstr = &alias->d_name;
1459
1460 /*
1461 * Don't need alias->d_lock here, because aliases with
1462 * d_parent == entry->d_parent are not subject to name or
1463 * parent changes, because the parent inode i_mutex is held.
1464 */
1465 if (qstr->hash != hash)
1466 continue;
1467 if (alias->d_parent != entry->d_parent)
1468 continue;
1469 if (dentry_cmp(qstr->name, qstr->len, name, len))
1470 continue;
1471 __dget(alias);
1472 return alias;
1473 }
1474
1475 __d_instantiate(entry, inode);
1476 return NULL;
1477 }
1478
1479 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1480 {
1481 struct dentry *result;
1482
1483 BUG_ON(!list_empty(&entry->d_alias));
1484
1485 if (inode)
1486 spin_lock(&inode->i_lock);
1487 result = __d_instantiate_unique(entry, inode);
1488 if (inode)
1489 spin_unlock(&inode->i_lock);
1490
1491 if (!result) {
1492 security_d_instantiate(entry, inode);
1493 return NULL;
1494 }
1495
1496 BUG_ON(!d_unhashed(result));
1497 iput(inode);
1498 return result;
1499 }
1500
1501 EXPORT_SYMBOL(d_instantiate_unique);
1502
1503 /**
1504 * d_alloc_root - allocate root dentry
1505 * @root_inode: inode to allocate the root for
1506 *
1507 * Allocate a root ("/") dentry for the inode given. The inode is
1508 * instantiated and returned. %NULL is returned if there is insufficient
1509 * memory or the inode passed is %NULL.
1510 */
1511
1512 struct dentry * d_alloc_root(struct inode * root_inode)
1513 {
1514 struct dentry *res = NULL;
1515
1516 if (root_inode) {
1517 static const struct qstr name = { .name = "/", .len = 1 };
1518
1519 res = d_alloc(NULL, &name);
1520 if (res) {
1521 res->d_sb = root_inode->i_sb;
1522 d_set_d_op(res, res->d_sb->s_d_op);
1523 res->d_parent = res;
1524 d_instantiate(res, root_inode);
1525 }
1526 }
1527 return res;
1528 }
1529 EXPORT_SYMBOL(d_alloc_root);
1530
1531 static struct dentry * __d_find_any_alias(struct inode *inode)
1532 {
1533 struct dentry *alias;
1534
1535 if (list_empty(&inode->i_dentry))
1536 return NULL;
1537 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1538 __dget(alias);
1539 return alias;
1540 }
1541
1542 static struct dentry * d_find_any_alias(struct inode *inode)
1543 {
1544 struct dentry *de;
1545
1546 spin_lock(&inode->i_lock);
1547 de = __d_find_any_alias(inode);
1548 spin_unlock(&inode->i_lock);
1549 return de;
1550 }
1551
1552
1553 /**
1554 * d_obtain_alias - find or allocate a dentry for a given inode
1555 * @inode: inode to allocate the dentry for
1556 *
1557 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1558 * similar open by handle operations. The returned dentry may be anonymous,
1559 * or may have a full name (if the inode was already in the cache).
1560 *
1561 * When called on a directory inode, we must ensure that the inode only ever
1562 * has one dentry. If a dentry is found, that is returned instead of
1563 * allocating a new one.
1564 *
1565 * On successful return, the reference to the inode has been transferred
1566 * to the dentry. In case of an error the reference on the inode is released.
1567 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1568 * be passed in and will be the error will be propagate to the return value,
1569 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1570 */
1571 struct dentry *d_obtain_alias(struct inode *inode)
1572 {
1573 static const struct qstr anonstring = { .name = "" };
1574 struct dentry *tmp;
1575 struct dentry *res;
1576
1577 if (!inode)
1578 return ERR_PTR(-ESTALE);
1579 if (IS_ERR(inode))
1580 return ERR_CAST(inode);
1581
1582 res = d_find_any_alias(inode);
1583 if (res)
1584 goto out_iput;
1585
1586 tmp = d_alloc(NULL, &anonstring);
1587 if (!tmp) {
1588 res = ERR_PTR(-ENOMEM);
1589 goto out_iput;
1590 }
1591 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1592
1593
1594 spin_lock(&inode->i_lock);
1595 res = __d_find_any_alias(inode);
1596 if (res) {
1597 spin_unlock(&inode->i_lock);
1598 dput(tmp);
1599 goto out_iput;
1600 }
1601
1602 /* attach a disconnected dentry */
1603 spin_lock(&tmp->d_lock);
1604 tmp->d_sb = inode->i_sb;
1605 d_set_d_op(tmp, tmp->d_sb->s_d_op);
1606 tmp->d_inode = inode;
1607 tmp->d_flags |= DCACHE_DISCONNECTED;
1608 list_add(&tmp->d_alias, &inode->i_dentry);
1609 bit_spin_lock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
1610 tmp->d_flags &= ~DCACHE_UNHASHED;
1611 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1612 __bit_spin_unlock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
1613 spin_unlock(&tmp->d_lock);
1614 spin_unlock(&inode->i_lock);
1615
1616 return tmp;
1617
1618 out_iput:
1619 iput(inode);
1620 return res;
1621 }
1622 EXPORT_SYMBOL(d_obtain_alias);
1623
1624 /**
1625 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1626 * @inode: the inode which may have a disconnected dentry
1627 * @dentry: a negative dentry which we want to point to the inode.
1628 *
1629 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1630 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1631 * and return it, else simply d_add the inode to the dentry and return NULL.
1632 *
1633 * This is needed in the lookup routine of any filesystem that is exportable
1634 * (via knfsd) so that we can build dcache paths to directories effectively.
1635 *
1636 * If a dentry was found and moved, then it is returned. Otherwise NULL
1637 * is returned. This matches the expected return value of ->lookup.
1638 *
1639 */
1640 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1641 {
1642 struct dentry *new = NULL;
1643
1644 if (inode && S_ISDIR(inode->i_mode)) {
1645 spin_lock(&inode->i_lock);
1646 new = __d_find_alias(inode, 1);
1647 if (new) {
1648 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1649 spin_unlock(&inode->i_lock);
1650 security_d_instantiate(new, inode);
1651 d_move(new, dentry);
1652 iput(inode);
1653 } else {
1654 /* already taking inode->i_lock, so d_add() by hand */
1655 __d_instantiate(dentry, inode);
1656 spin_unlock(&inode->i_lock);
1657 security_d_instantiate(dentry, inode);
1658 d_rehash(dentry);
1659 }
1660 } else
1661 d_add(dentry, inode);
1662 return new;
1663 }
1664 EXPORT_SYMBOL(d_splice_alias);
1665
1666 /**
1667 * d_add_ci - lookup or allocate new dentry with case-exact name
1668 * @inode: the inode case-insensitive lookup has found
1669 * @dentry: the negative dentry that was passed to the parent's lookup func
1670 * @name: the case-exact name to be associated with the returned dentry
1671 *
1672 * This is to avoid filling the dcache with case-insensitive names to the
1673 * same inode, only the actual correct case is stored in the dcache for
1674 * case-insensitive filesystems.
1675 *
1676 * For a case-insensitive lookup match and if the the case-exact dentry
1677 * already exists in in the dcache, use it and return it.
1678 *
1679 * If no entry exists with the exact case name, allocate new dentry with
1680 * the exact case, and return the spliced entry.
1681 */
1682 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1683 struct qstr *name)
1684 {
1685 int error;
1686 struct dentry *found;
1687 struct dentry *new;
1688
1689 /*
1690 * First check if a dentry matching the name already exists,
1691 * if not go ahead and create it now.
1692 */
1693 found = d_hash_and_lookup(dentry->d_parent, name);
1694 if (!found) {
1695 new = d_alloc(dentry->d_parent, name);
1696 if (!new) {
1697 error = -ENOMEM;
1698 goto err_out;
1699 }
1700
1701 found = d_splice_alias(inode, new);
1702 if (found) {
1703 dput(new);
1704 return found;
1705 }
1706 return new;
1707 }
1708
1709 /*
1710 * If a matching dentry exists, and it's not negative use it.
1711 *
1712 * Decrement the reference count to balance the iget() done
1713 * earlier on.
1714 */
1715 if (found->d_inode) {
1716 if (unlikely(found->d_inode != inode)) {
1717 /* This can't happen because bad inodes are unhashed. */
1718 BUG_ON(!is_bad_inode(inode));
1719 BUG_ON(!is_bad_inode(found->d_inode));
1720 }
1721 iput(inode);
1722 return found;
1723 }
1724
1725 /*
1726 * Negative dentry: instantiate it unless the inode is a directory and
1727 * already has a dentry.
1728 */
1729 spin_lock(&inode->i_lock);
1730 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1731 __d_instantiate(found, inode);
1732 spin_unlock(&inode->i_lock);
1733 security_d_instantiate(found, inode);
1734 return found;
1735 }
1736
1737 /*
1738 * In case a directory already has a (disconnected) entry grab a
1739 * reference to it, move it in place and use it.
1740 */
1741 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1742 __dget(new);
1743 spin_unlock(&inode->i_lock);
1744 security_d_instantiate(found, inode);
1745 d_move(new, found);
1746 iput(inode);
1747 dput(found);
1748 return new;
1749
1750 err_out:
1751 iput(inode);
1752 return ERR_PTR(error);
1753 }
1754 EXPORT_SYMBOL(d_add_ci);
1755
1756 /**
1757 * __d_lookup_rcu - search for a dentry (racy, store-free)
1758 * @parent: parent dentry
1759 * @name: qstr of name we wish to find
1760 * @seq: returns d_seq value at the point where the dentry was found
1761 * @inode: returns dentry->d_inode when the inode was found valid.
1762 * Returns: dentry, or NULL
1763 *
1764 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1765 * resolution (store-free path walking) design described in
1766 * Documentation/filesystems/path-lookup.txt.
1767 *
1768 * This is not to be used outside core vfs.
1769 *
1770 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1771 * held, and rcu_read_lock held. The returned dentry must not be stored into
1772 * without taking d_lock and checking d_seq sequence count against @seq
1773 * returned here.
1774 *
1775 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1776 * function.
1777 *
1778 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1779 * the returned dentry, so long as its parent's seqlock is checked after the
1780 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1781 * is formed, giving integrity down the path walk.
1782 */
1783 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1784 unsigned *seq, struct inode **inode)
1785 {
1786 unsigned int len = name->len;
1787 unsigned int hash = name->hash;
1788 const unsigned char *str = name->name;
1789 struct dcache_hash_bucket *b = d_hash(parent, hash);
1790 struct hlist_bl_node *node;
1791 struct dentry *dentry;
1792
1793 /*
1794 * Note: There is significant duplication with __d_lookup_rcu which is
1795 * required to prevent single threaded performance regressions
1796 * especially on architectures where smp_rmb (in seqcounts) are costly.
1797 * Keep the two functions in sync.
1798 */
1799
1800 /*
1801 * The hash list is protected using RCU.
1802 *
1803 * Carefully use d_seq when comparing a candidate dentry, to avoid
1804 * races with d_move().
1805 *
1806 * It is possible that concurrent renames can mess up our list
1807 * walk here and result in missing our dentry, resulting in the
1808 * false-negative result. d_lookup() protects against concurrent
1809 * renames using rename_lock seqlock.
1810 *
1811 * See Documentation/vfs/dcache-locking.txt for more details.
1812 */
1813 hlist_bl_for_each_entry_rcu(dentry, node, &b->head, d_hash) {
1814 struct inode *i;
1815 const char *tname;
1816 int tlen;
1817
1818 if (dentry->d_name.hash != hash)
1819 continue;
1820
1821 seqretry:
1822 *seq = read_seqcount_begin(&dentry->d_seq);
1823 if (dentry->d_parent != parent)
1824 continue;
1825 if (d_unhashed(dentry))
1826 continue;
1827 tlen = dentry->d_name.len;
1828 tname = dentry->d_name.name;
1829 i = dentry->d_inode;
1830 prefetch(tname);
1831 if (i)
1832 prefetch(i);
1833 /*
1834 * This seqcount check is required to ensure name and
1835 * len are loaded atomically, so as not to walk off the
1836 * edge of memory when walking. If we could load this
1837 * atomically some other way, we could drop this check.
1838 */
1839 if (read_seqcount_retry(&dentry->d_seq, *seq))
1840 goto seqretry;
1841 if (parent->d_flags & DCACHE_OP_COMPARE) {
1842 if (parent->d_op->d_compare(parent, *inode,
1843 dentry, i,
1844 tlen, tname, name))
1845 continue;
1846 } else {
1847 if (dentry_cmp(tname, tlen, str, len))
1848 continue;
1849 }
1850 /*
1851 * No extra seqcount check is required after the name
1852 * compare. The caller must perform a seqcount check in
1853 * order to do anything useful with the returned dentry
1854 * anyway.
1855 */
1856 *inode = i;
1857 return dentry;
1858 }
1859 return NULL;
1860 }
1861
1862 /**
1863 * d_lookup - search for a dentry
1864 * @parent: parent dentry
1865 * @name: qstr of name we wish to find
1866 * Returns: dentry, or NULL
1867 *
1868 * d_lookup searches the children of the parent dentry for the name in
1869 * question. If the dentry is found its reference count is incremented and the
1870 * dentry is returned. The caller must use dput to free the entry when it has
1871 * finished using it. %NULL is returned if the dentry does not exist.
1872 */
1873 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1874 {
1875 struct dentry *dentry;
1876 unsigned seq;
1877
1878 do {
1879 seq = read_seqbegin(&rename_lock);
1880 dentry = __d_lookup(parent, name);
1881 if (dentry)
1882 break;
1883 } while (read_seqretry(&rename_lock, seq));
1884 return dentry;
1885 }
1886 EXPORT_SYMBOL(d_lookup);
1887
1888 /**
1889 * __d_lookup - search for a dentry (racy)
1890 * @parent: parent dentry
1891 * @name: qstr of name we wish to find
1892 * Returns: dentry, or NULL
1893 *
1894 * __d_lookup is like d_lookup, however it may (rarely) return a
1895 * false-negative result due to unrelated rename activity.
1896 *
1897 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1898 * however it must be used carefully, eg. with a following d_lookup in
1899 * the case of failure.
1900 *
1901 * __d_lookup callers must be commented.
1902 */
1903 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1904 {
1905 unsigned int len = name->len;
1906 unsigned int hash = name->hash;
1907 const unsigned char *str = name->name;
1908 struct dcache_hash_bucket *b = d_hash(parent, hash);
1909 struct hlist_bl_node *node;
1910 struct dentry *found = NULL;
1911 struct dentry *dentry;
1912
1913 /*
1914 * Note: There is significant duplication with __d_lookup_rcu which is
1915 * required to prevent single threaded performance regressions
1916 * especially on architectures where smp_rmb (in seqcounts) are costly.
1917 * Keep the two functions in sync.
1918 */
1919
1920 /*
1921 * The hash list is protected using RCU.
1922 *
1923 * Take d_lock when comparing a candidate dentry, to avoid races
1924 * with d_move().
1925 *
1926 * It is possible that concurrent renames can mess up our list
1927 * walk here and result in missing our dentry, resulting in the
1928 * false-negative result. d_lookup() protects against concurrent
1929 * renames using rename_lock seqlock.
1930 *
1931 * See Documentation/vfs/dcache-locking.txt for more details.
1932 */
1933 rcu_read_lock();
1934
1935 hlist_bl_for_each_entry_rcu(dentry, node, &b->head, d_hash) {
1936 const char *tname;
1937 int tlen;
1938
1939 if (dentry->d_name.hash != hash)
1940 continue;
1941
1942 spin_lock(&dentry->d_lock);
1943 if (dentry->d_parent != parent)
1944 goto next;
1945 if (d_unhashed(dentry))
1946 goto next;
1947
1948 /*
1949 * It is safe to compare names since d_move() cannot
1950 * change the qstr (protected by d_lock).
1951 */
1952 tlen = dentry->d_name.len;
1953 tname = dentry->d_name.name;
1954 if (parent->d_flags & DCACHE_OP_COMPARE) {
1955 if (parent->d_op->d_compare(parent, parent->d_inode,
1956 dentry, dentry->d_inode,
1957 tlen, tname, name))
1958 goto next;
1959 } else {
1960 if (dentry_cmp(tname, tlen, str, len))
1961 goto next;
1962 }
1963
1964 dentry->d_count++;
1965 found = dentry;
1966 spin_unlock(&dentry->d_lock);
1967 break;
1968 next:
1969 spin_unlock(&dentry->d_lock);
1970 }
1971 rcu_read_unlock();
1972
1973 return found;
1974 }
1975
1976 /**
1977 * d_hash_and_lookup - hash the qstr then search for a dentry
1978 * @dir: Directory to search in
1979 * @name: qstr of name we wish to find
1980 *
1981 * On hash failure or on lookup failure NULL is returned.
1982 */
1983 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1984 {
1985 struct dentry *dentry = NULL;
1986
1987 /*
1988 * Check for a fs-specific hash function. Note that we must
1989 * calculate the standard hash first, as the d_op->d_hash()
1990 * routine may choose to leave the hash value unchanged.
1991 */
1992 name->hash = full_name_hash(name->name, name->len);
1993 if (dir->d_flags & DCACHE_OP_HASH) {
1994 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1995 goto out;
1996 }
1997 dentry = d_lookup(dir, name);
1998 out:
1999 return dentry;
2000 }
2001
2002 /**
2003 * d_validate - verify dentry provided from insecure source (deprecated)
2004 * @dentry: The dentry alleged to be valid child of @dparent
2005 * @dparent: The parent dentry (known to be valid)
2006 *
2007 * An insecure source has sent us a dentry, here we verify it and dget() it.
2008 * This is used by ncpfs in its readdir implementation.
2009 * Zero is returned in the dentry is invalid.
2010 *
2011 * This function is slow for big directories, and deprecated, do not use it.
2012 */
2013 int d_validate(struct dentry *dentry, struct dentry *dparent)
2014 {
2015 struct dentry *child;
2016
2017 spin_lock(&dparent->d_lock);
2018 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2019 if (dentry == child) {
2020 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2021 __dget_dlock(dentry);
2022 spin_unlock(&dentry->d_lock);
2023 spin_unlock(&dparent->d_lock);
2024 return 1;
2025 }
2026 }
2027 spin_unlock(&dparent->d_lock);
2028
2029 return 0;
2030 }
2031 EXPORT_SYMBOL(d_validate);
2032
2033 /*
2034 * When a file is deleted, we have two options:
2035 * - turn this dentry into a negative dentry
2036 * - unhash this dentry and free it.
2037 *
2038 * Usually, we want to just turn this into
2039 * a negative dentry, but if anybody else is
2040 * currently using the dentry or the inode
2041 * we can't do that and we fall back on removing
2042 * it from the hash queues and waiting for
2043 * it to be deleted later when it has no users
2044 */
2045
2046 /**
2047 * d_delete - delete a dentry
2048 * @dentry: The dentry to delete
2049 *
2050 * Turn the dentry into a negative dentry if possible, otherwise
2051 * remove it from the hash queues so it can be deleted later
2052 */
2053
2054 void d_delete(struct dentry * dentry)
2055 {
2056 struct inode *inode;
2057 int isdir = 0;
2058 /*
2059 * Are we the only user?
2060 */
2061 again:
2062 spin_lock(&dentry->d_lock);
2063 inode = dentry->d_inode;
2064 isdir = S_ISDIR(inode->i_mode);
2065 if (dentry->d_count == 1) {
2066 if (inode && !spin_trylock(&inode->i_lock)) {
2067 spin_unlock(&dentry->d_lock);
2068 cpu_relax();
2069 goto again;
2070 }
2071 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2072 dentry_unlink_inode(dentry);
2073 fsnotify_nameremove(dentry, isdir);
2074 return;
2075 }
2076
2077 if (!d_unhashed(dentry))
2078 __d_drop(dentry);
2079
2080 spin_unlock(&dentry->d_lock);
2081
2082 fsnotify_nameremove(dentry, isdir);
2083 }
2084 EXPORT_SYMBOL(d_delete);
2085
2086 static void __d_rehash(struct dentry * entry, struct dcache_hash_bucket *b)
2087 {
2088 BUG_ON(!d_unhashed(entry));
2089 spin_lock_bucket(b);
2090 entry->d_flags &= ~DCACHE_UNHASHED;
2091 hlist_bl_add_head_rcu(&entry->d_hash, &b->head);
2092 spin_unlock_bucket(b);
2093 }
2094
2095 static void _d_rehash(struct dentry * entry)
2096 {
2097 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2098 }
2099
2100 /**
2101 * d_rehash - add an entry back to the hash
2102 * @entry: dentry to add to the hash
2103 *
2104 * Adds a dentry to the hash according to its name.
2105 */
2106
2107 void d_rehash(struct dentry * entry)
2108 {
2109 spin_lock(&entry->d_lock);
2110 _d_rehash(entry);
2111 spin_unlock(&entry->d_lock);
2112 }
2113 EXPORT_SYMBOL(d_rehash);
2114
2115 /**
2116 * dentry_update_name_case - update case insensitive dentry with a new name
2117 * @dentry: dentry to be updated
2118 * @name: new name
2119 *
2120 * Update a case insensitive dentry with new case of name.
2121 *
2122 * dentry must have been returned by d_lookup with name @name. Old and new
2123 * name lengths must match (ie. no d_compare which allows mismatched name
2124 * lengths).
2125 *
2126 * Parent inode i_mutex must be held over d_lookup and into this call (to
2127 * keep renames and concurrent inserts, and readdir(2) away).
2128 */
2129 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2130 {
2131 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
2132 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2133
2134 spin_lock(&dentry->d_lock);
2135 write_seqcount_begin(&dentry->d_seq);
2136 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2137 write_seqcount_end(&dentry->d_seq);
2138 spin_unlock(&dentry->d_lock);
2139 }
2140 EXPORT_SYMBOL(dentry_update_name_case);
2141
2142 static void switch_names(struct dentry *dentry, struct dentry *target)
2143 {
2144 if (dname_external(target)) {
2145 if (dname_external(dentry)) {
2146 /*
2147 * Both external: swap the pointers
2148 */
2149 swap(target->d_name.name, dentry->d_name.name);
2150 } else {
2151 /*
2152 * dentry:internal, target:external. Steal target's
2153 * storage and make target internal.
2154 */
2155 memcpy(target->d_iname, dentry->d_name.name,
2156 dentry->d_name.len + 1);
2157 dentry->d_name.name = target->d_name.name;
2158 target->d_name.name = target->d_iname;
2159 }
2160 } else {
2161 if (dname_external(dentry)) {
2162 /*
2163 * dentry:external, target:internal. Give dentry's
2164 * storage to target and make dentry internal
2165 */
2166 memcpy(dentry->d_iname, target->d_name.name,
2167 target->d_name.len + 1);
2168 target->d_name.name = dentry->d_name.name;
2169 dentry->d_name.name = dentry->d_iname;
2170 } else {
2171 /*
2172 * Both are internal. Just copy target to dentry
2173 */
2174 memcpy(dentry->d_iname, target->d_name.name,
2175 target->d_name.len + 1);
2176 dentry->d_name.len = target->d_name.len;
2177 return;
2178 }
2179 }
2180 swap(dentry->d_name.len, target->d_name.len);
2181 }
2182
2183 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2184 {
2185 /*
2186 * XXXX: do we really need to take target->d_lock?
2187 */
2188 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2189 spin_lock(&target->d_parent->d_lock);
2190 else {
2191 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2192 spin_lock(&dentry->d_parent->d_lock);
2193 spin_lock_nested(&target->d_parent->d_lock,
2194 DENTRY_D_LOCK_NESTED);
2195 } else {
2196 spin_lock(&target->d_parent->d_lock);
2197 spin_lock_nested(&dentry->d_parent->d_lock,
2198 DENTRY_D_LOCK_NESTED);
2199 }
2200 }
2201 if (target < dentry) {
2202 spin_lock_nested(&target->d_lock, 2);
2203 spin_lock_nested(&dentry->d_lock, 3);
2204 } else {
2205 spin_lock_nested(&dentry->d_lock, 2);
2206 spin_lock_nested(&target->d_lock, 3);
2207 }
2208 }
2209
2210 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2211 struct dentry *target)
2212 {
2213 if (target->d_parent != dentry->d_parent)
2214 spin_unlock(&dentry->d_parent->d_lock);
2215 if (target->d_parent != target)
2216 spin_unlock(&target->d_parent->d_lock);
2217 }
2218
2219 /*
2220 * When switching names, the actual string doesn't strictly have to
2221 * be preserved in the target - because we're dropping the target
2222 * anyway. As such, we can just do a simple memcpy() to copy over
2223 * the new name before we switch.
2224 *
2225 * Note that we have to be a lot more careful about getting the hash
2226 * switched - we have to switch the hash value properly even if it
2227 * then no longer matches the actual (corrupted) string of the target.
2228 * The hash value has to match the hash queue that the dentry is on..
2229 */
2230 /*
2231 * d_move - move a dentry
2232 * @dentry: entry to move
2233 * @target: new dentry
2234 *
2235 * Update the dcache to reflect the move of a file name. Negative
2236 * dcache entries should not be moved in this way.
2237 */
2238 void d_move(struct dentry * dentry, struct dentry * target)
2239 {
2240 if (!dentry->d_inode)
2241 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2242
2243 BUG_ON(d_ancestor(dentry, target));
2244 BUG_ON(d_ancestor(target, dentry));
2245
2246 write_seqlock(&rename_lock);
2247
2248 dentry_lock_for_move(dentry, target);
2249
2250 write_seqcount_begin(&dentry->d_seq);
2251 write_seqcount_begin(&target->d_seq);
2252
2253 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2254
2255 /*
2256 * Move the dentry to the target hash queue. Don't bother checking
2257 * for the same hash queue because of how unlikely it is.
2258 */
2259 __d_drop(dentry);
2260 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2261
2262 /* Unhash the target: dput() will then get rid of it */
2263 __d_drop(target);
2264
2265 list_del(&dentry->d_u.d_child);
2266 list_del(&target->d_u.d_child);
2267
2268 /* Switch the names.. */
2269 switch_names(dentry, target);
2270 swap(dentry->d_name.hash, target->d_name.hash);
2271
2272 /* ... and switch the parents */
2273 if (IS_ROOT(dentry)) {
2274 dentry->d_parent = target->d_parent;
2275 target->d_parent = target;
2276 INIT_LIST_HEAD(&target->d_u.d_child);
2277 } else {
2278 swap(dentry->d_parent, target->d_parent);
2279
2280 /* And add them back to the (new) parent lists */
2281 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2282 }
2283
2284 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2285
2286 write_seqcount_end(&target->d_seq);
2287 write_seqcount_end(&dentry->d_seq);
2288
2289 dentry_unlock_parents_for_move(dentry, target);
2290 spin_unlock(&target->d_lock);
2291 fsnotify_d_move(dentry);
2292 spin_unlock(&dentry->d_lock);
2293 write_sequnlock(&rename_lock);
2294 }
2295 EXPORT_SYMBOL(d_move);
2296
2297 /**
2298 * d_ancestor - search for an ancestor
2299 * @p1: ancestor dentry
2300 * @p2: child dentry
2301 *
2302 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2303 * an ancestor of p2, else NULL.
2304 */
2305 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2306 {
2307 struct dentry *p;
2308
2309 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2310 if (p->d_parent == p1)
2311 return p;
2312 }
2313 return NULL;
2314 }
2315
2316 /*
2317 * This helper attempts to cope with remotely renamed directories
2318 *
2319 * It assumes that the caller is already holding
2320 * dentry->d_parent->d_inode->i_mutex and the inode->i_lock
2321 *
2322 * Note: If ever the locking in lock_rename() changes, then please
2323 * remember to update this too...
2324 */
2325 static struct dentry *__d_unalias(struct inode *inode,
2326 struct dentry *dentry, struct dentry *alias)
2327 {
2328 struct mutex *m1 = NULL, *m2 = NULL;
2329 struct dentry *ret;
2330
2331 /* If alias and dentry share a parent, then no extra locks required */
2332 if (alias->d_parent == dentry->d_parent)
2333 goto out_unalias;
2334
2335 /* Check for loops */
2336 ret = ERR_PTR(-ELOOP);
2337 if (d_ancestor(alias, dentry))
2338 goto out_err;
2339
2340 /* See lock_rename() */
2341 ret = ERR_PTR(-EBUSY);
2342 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2343 goto out_err;
2344 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2345 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2346 goto out_err;
2347 m2 = &alias->d_parent->d_inode->i_mutex;
2348 out_unalias:
2349 d_move(alias, dentry);
2350 ret = alias;
2351 out_err:
2352 spin_unlock(&inode->i_lock);
2353 if (m2)
2354 mutex_unlock(m2);
2355 if (m1)
2356 mutex_unlock(m1);
2357 return ret;
2358 }
2359
2360 /*
2361 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2362 * named dentry in place of the dentry to be replaced.
2363 * returns with anon->d_lock held!
2364 */
2365 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2366 {
2367 struct dentry *dparent, *aparent;
2368
2369 dentry_lock_for_move(anon, dentry);
2370
2371 write_seqcount_begin(&dentry->d_seq);
2372 write_seqcount_begin(&anon->d_seq);
2373
2374 dparent = dentry->d_parent;
2375 aparent = anon->d_parent;
2376
2377 switch_names(dentry, anon);
2378 swap(dentry->d_name.hash, anon->d_name.hash);
2379
2380 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2381 list_del(&dentry->d_u.d_child);
2382 if (!IS_ROOT(dentry))
2383 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2384 else
2385 INIT_LIST_HEAD(&dentry->d_u.d_child);
2386
2387 anon->d_parent = (dparent == dentry) ? anon : dparent;
2388 list_del(&anon->d_u.d_child);
2389 if (!IS_ROOT(anon))
2390 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2391 else
2392 INIT_LIST_HEAD(&anon->d_u.d_child);
2393
2394 write_seqcount_end(&dentry->d_seq);
2395 write_seqcount_end(&anon->d_seq);
2396
2397 dentry_unlock_parents_for_move(anon, dentry);
2398 spin_unlock(&dentry->d_lock);
2399
2400 /* anon->d_lock still locked, returns locked */
2401 anon->d_flags &= ~DCACHE_DISCONNECTED;
2402 }
2403
2404 /**
2405 * d_materialise_unique - introduce an inode into the tree
2406 * @dentry: candidate dentry
2407 * @inode: inode to bind to the dentry, to which aliases may be attached
2408 *
2409 * Introduces an dentry into the tree, substituting an extant disconnected
2410 * root directory alias in its place if there is one
2411 */
2412 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2413 {
2414 struct dentry *actual;
2415
2416 BUG_ON(!d_unhashed(dentry));
2417
2418 if (!inode) {
2419 actual = dentry;
2420 __d_instantiate(dentry, NULL);
2421 d_rehash(actual);
2422 goto out_nolock;
2423 }
2424
2425 spin_lock(&inode->i_lock);
2426
2427 if (S_ISDIR(inode->i_mode)) {
2428 struct dentry *alias;
2429
2430 /* Does an aliased dentry already exist? */
2431 alias = __d_find_alias(inode, 0);
2432 if (alias) {
2433 actual = alias;
2434 /* Is this an anonymous mountpoint that we could splice
2435 * into our tree? */
2436 if (IS_ROOT(alias)) {
2437 __d_materialise_dentry(dentry, alias);
2438 __d_drop(alias);
2439 goto found;
2440 }
2441 /* Nope, but we must(!) avoid directory aliasing */
2442 actual = __d_unalias(inode, dentry, alias);
2443 if (IS_ERR(actual))
2444 dput(alias);
2445 goto out_nolock;
2446 }
2447 }
2448
2449 /* Add a unique reference */
2450 actual = __d_instantiate_unique(dentry, inode);
2451 if (!actual)
2452 actual = dentry;
2453 else
2454 BUG_ON(!d_unhashed(actual));
2455
2456 spin_lock(&actual->d_lock);
2457 found:
2458 _d_rehash(actual);
2459 spin_unlock(&actual->d_lock);
2460 spin_unlock(&inode->i_lock);
2461 out_nolock:
2462 if (actual == dentry) {
2463 security_d_instantiate(dentry, inode);
2464 return NULL;
2465 }
2466
2467 iput(inode);
2468 return actual;
2469 }
2470 EXPORT_SYMBOL_GPL(d_materialise_unique);
2471
2472 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2473 {
2474 *buflen -= namelen;
2475 if (*buflen < 0)
2476 return -ENAMETOOLONG;
2477 *buffer -= namelen;
2478 memcpy(*buffer, str, namelen);
2479 return 0;
2480 }
2481
2482 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2483 {
2484 return prepend(buffer, buflen, name->name, name->len);
2485 }
2486
2487 /**
2488 * prepend_path - Prepend path string to a buffer
2489 * @path: the dentry/vfsmount to report
2490 * @root: root vfsmnt/dentry (may be modified by this function)
2491 * @buffer: pointer to the end of the buffer
2492 * @buflen: pointer to buffer length
2493 *
2494 * Caller holds the rename_lock.
2495 *
2496 * If path is not reachable from the supplied root, then the value of
2497 * root is changed (without modifying refcounts).
2498 */
2499 static int prepend_path(const struct path *path, struct path *root,
2500 char **buffer, int *buflen)
2501 {
2502 struct dentry *dentry = path->dentry;
2503 struct vfsmount *vfsmnt = path->mnt;
2504 bool slash = false;
2505 int error = 0;
2506
2507 br_read_lock(vfsmount_lock);
2508 while (dentry != root->dentry || vfsmnt != root->mnt) {
2509 struct dentry * parent;
2510
2511 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2512 /* Global root? */
2513 if (vfsmnt->mnt_parent == vfsmnt) {
2514 goto global_root;
2515 }
2516 dentry = vfsmnt->mnt_mountpoint;
2517 vfsmnt = vfsmnt->mnt_parent;
2518 continue;
2519 }
2520 parent = dentry->d_parent;
2521 prefetch(parent);
2522 spin_lock(&dentry->d_lock);
2523 error = prepend_name(buffer, buflen, &dentry->d_name);
2524 spin_unlock(&dentry->d_lock);
2525 if (!error)
2526 error = prepend(buffer, buflen, "/", 1);
2527 if (error)
2528 break;
2529
2530 slash = true;
2531 dentry = parent;
2532 }
2533
2534 out:
2535 if (!error && !slash)
2536 error = prepend(buffer, buflen, "/", 1);
2537
2538 br_read_unlock(vfsmount_lock);
2539 return error;
2540
2541 global_root:
2542 /*
2543 * Filesystems needing to implement special "root names"
2544 * should do so with ->d_dname()
2545 */
2546 if (IS_ROOT(dentry) &&
2547 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2548 WARN(1, "Root dentry has weird name <%.*s>\n",
2549 (int) dentry->d_name.len, dentry->d_name.name);
2550 }
2551 root->mnt = vfsmnt;
2552 root->dentry = dentry;
2553 goto out;
2554 }
2555
2556 /**
2557 * __d_path - return the path of a dentry
2558 * @path: the dentry/vfsmount to report
2559 * @root: root vfsmnt/dentry (may be modified by this function)
2560 * @buf: buffer to return value in
2561 * @buflen: buffer length
2562 *
2563 * Convert a dentry into an ASCII path name.
2564 *
2565 * Returns a pointer into the buffer or an error code if the
2566 * path was too long.
2567 *
2568 * "buflen" should be positive.
2569 *
2570 * If path is not reachable from the supplied root, then the value of
2571 * root is changed (without modifying refcounts).
2572 */
2573 char *__d_path(const struct path *path, struct path *root,
2574 char *buf, int buflen)
2575 {
2576 char *res = buf + buflen;
2577 int error;
2578
2579 prepend(&res, &buflen, "\0", 1);
2580 write_seqlock(&rename_lock);
2581 error = prepend_path(path, root, &res, &buflen);
2582 write_sequnlock(&rename_lock);
2583
2584 if (error)
2585 return ERR_PTR(error);
2586 return res;
2587 }
2588
2589 /*
2590 * same as __d_path but appends "(deleted)" for unlinked files.
2591 */
2592 static int path_with_deleted(const struct path *path, struct path *root,
2593 char **buf, int *buflen)
2594 {
2595 prepend(buf, buflen, "\0", 1);
2596 if (d_unlinked(path->dentry)) {
2597 int error = prepend(buf, buflen, " (deleted)", 10);
2598 if (error)
2599 return error;
2600 }
2601
2602 return prepend_path(path, root, buf, buflen);
2603 }
2604
2605 static int prepend_unreachable(char **buffer, int *buflen)
2606 {
2607 return prepend(buffer, buflen, "(unreachable)", 13);
2608 }
2609
2610 /**
2611 * d_path - return the path of a dentry
2612 * @path: path to report
2613 * @buf: buffer to return value in
2614 * @buflen: buffer length
2615 *
2616 * Convert a dentry into an ASCII path name. If the entry has been deleted
2617 * the string " (deleted)" is appended. Note that this is ambiguous.
2618 *
2619 * Returns a pointer into the buffer or an error code if the path was
2620 * too long. Note: Callers should use the returned pointer, not the passed
2621 * in buffer, to use the name! The implementation often starts at an offset
2622 * into the buffer, and may leave 0 bytes at the start.
2623 *
2624 * "buflen" should be positive.
2625 */
2626 char *d_path(const struct path *path, char *buf, int buflen)
2627 {
2628 char *res = buf + buflen;
2629 struct path root;
2630 struct path tmp;
2631 int error;
2632
2633 /*
2634 * We have various synthetic filesystems that never get mounted. On
2635 * these filesystems dentries are never used for lookup purposes, and
2636 * thus don't need to be hashed. They also don't need a name until a
2637 * user wants to identify the object in /proc/pid/fd/. The little hack
2638 * below allows us to generate a name for these objects on demand:
2639 */
2640 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2641 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2642
2643 get_fs_root(current->fs, &root);
2644 write_seqlock(&rename_lock);
2645 tmp = root;
2646 error = path_with_deleted(path, &tmp, &res, &buflen);
2647 if (error)
2648 res = ERR_PTR(error);
2649 write_sequnlock(&rename_lock);
2650 path_put(&root);
2651 return res;
2652 }
2653 EXPORT_SYMBOL(d_path);
2654
2655 /**
2656 * d_path_with_unreachable - return the path of a dentry
2657 * @path: path to report
2658 * @buf: buffer to return value in
2659 * @buflen: buffer length
2660 *
2661 * The difference from d_path() is that this prepends "(unreachable)"
2662 * to paths which are unreachable from the current process' root.
2663 */
2664 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2665 {
2666 char *res = buf + buflen;
2667 struct path root;
2668 struct path tmp;
2669 int error;
2670
2671 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2672 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2673
2674 get_fs_root(current->fs, &root);
2675 write_seqlock(&rename_lock);
2676 tmp = root;
2677 error = path_with_deleted(path, &tmp, &res, &buflen);
2678 if (!error && !path_equal(&tmp, &root))
2679 error = prepend_unreachable(&res, &buflen);
2680 write_sequnlock(&rename_lock);
2681 path_put(&root);
2682 if (error)
2683 res = ERR_PTR(error);
2684
2685 return res;
2686 }
2687
2688 /*
2689 * Helper function for dentry_operations.d_dname() members
2690 */
2691 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2692 const char *fmt, ...)
2693 {
2694 va_list args;
2695 char temp[64];
2696 int sz;
2697
2698 va_start(args, fmt);
2699 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2700 va_end(args);
2701
2702 if (sz > sizeof(temp) || sz > buflen)
2703 return ERR_PTR(-ENAMETOOLONG);
2704
2705 buffer += buflen - sz;
2706 return memcpy(buffer, temp, sz);
2707 }
2708
2709 /*
2710 * Write full pathname from the root of the filesystem into the buffer.
2711 */
2712 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2713 {
2714 char *end = buf + buflen;
2715 char *retval;
2716
2717 prepend(&end, &buflen, "\0", 1);
2718 if (buflen < 1)
2719 goto Elong;
2720 /* Get '/' right */
2721 retval = end-1;
2722 *retval = '/';
2723
2724 while (!IS_ROOT(dentry)) {
2725 struct dentry *parent = dentry->d_parent;
2726 int error;
2727
2728 prefetch(parent);
2729 spin_lock(&dentry->d_lock);
2730 error = prepend_name(&end, &buflen, &dentry->d_name);
2731 spin_unlock(&dentry->d_lock);
2732 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2733 goto Elong;
2734
2735 retval = end;
2736 dentry = parent;
2737 }
2738 return retval;
2739 Elong:
2740 return ERR_PTR(-ENAMETOOLONG);
2741 }
2742
2743 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2744 {
2745 char *retval;
2746
2747 write_seqlock(&rename_lock);
2748 retval = __dentry_path(dentry, buf, buflen);
2749 write_sequnlock(&rename_lock);
2750
2751 return retval;
2752 }
2753 EXPORT_SYMBOL(dentry_path_raw);
2754
2755 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2756 {
2757 char *p = NULL;
2758 char *retval;
2759
2760 write_seqlock(&rename_lock);
2761 if (d_unlinked(dentry)) {
2762 p = buf + buflen;
2763 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2764 goto Elong;
2765 buflen++;
2766 }
2767 retval = __dentry_path(dentry, buf, buflen);
2768 write_sequnlock(&rename_lock);
2769 if (!IS_ERR(retval) && p)
2770 *p = '/'; /* restore '/' overriden with '\0' */
2771 return retval;
2772 Elong:
2773 return ERR_PTR(-ENAMETOOLONG);
2774 }
2775
2776 /*
2777 * NOTE! The user-level library version returns a
2778 * character pointer. The kernel system call just
2779 * returns the length of the buffer filled (which
2780 * includes the ending '\0' character), or a negative
2781 * error value. So libc would do something like
2782 *
2783 * char *getcwd(char * buf, size_t size)
2784 * {
2785 * int retval;
2786 *
2787 * retval = sys_getcwd(buf, size);
2788 * if (retval >= 0)
2789 * return buf;
2790 * errno = -retval;
2791 * return NULL;
2792 * }
2793 */
2794 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2795 {
2796 int error;
2797 struct path pwd, root;
2798 char *page = (char *) __get_free_page(GFP_USER);
2799
2800 if (!page)
2801 return -ENOMEM;
2802
2803 get_fs_root_and_pwd(current->fs, &root, &pwd);
2804
2805 error = -ENOENT;
2806 write_seqlock(&rename_lock);
2807 if (!d_unlinked(pwd.dentry)) {
2808 unsigned long len;
2809 struct path tmp = root;
2810 char *cwd = page + PAGE_SIZE;
2811 int buflen = PAGE_SIZE;
2812
2813 prepend(&cwd, &buflen, "\0", 1);
2814 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2815 write_sequnlock(&rename_lock);
2816
2817 if (error)
2818 goto out;
2819
2820 /* Unreachable from current root */
2821 if (!path_equal(&tmp, &root)) {
2822 error = prepend_unreachable(&cwd, &buflen);
2823 if (error)
2824 goto out;
2825 }
2826
2827 error = -ERANGE;
2828 len = PAGE_SIZE + page - cwd;
2829 if (len <= size) {
2830 error = len;
2831 if (copy_to_user(buf, cwd, len))
2832 error = -EFAULT;
2833 }
2834 } else {
2835 write_sequnlock(&rename_lock);
2836 }
2837
2838 out:
2839 path_put(&pwd);
2840 path_put(&root);
2841 free_page((unsigned long) page);
2842 return error;
2843 }
2844
2845 /*
2846 * Test whether new_dentry is a subdirectory of old_dentry.
2847 *
2848 * Trivially implemented using the dcache structure
2849 */
2850
2851 /**
2852 * is_subdir - is new dentry a subdirectory of old_dentry
2853 * @new_dentry: new dentry
2854 * @old_dentry: old dentry
2855 *
2856 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2857 * Returns 0 otherwise.
2858 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2859 */
2860
2861 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2862 {
2863 int result;
2864 unsigned seq;
2865
2866 if (new_dentry == old_dentry)
2867 return 1;
2868
2869 do {
2870 /* for restarting inner loop in case of seq retry */
2871 seq = read_seqbegin(&rename_lock);
2872 /*
2873 * Need rcu_readlock to protect against the d_parent trashing
2874 * due to d_move
2875 */
2876 rcu_read_lock();
2877 if (d_ancestor(old_dentry, new_dentry))
2878 result = 1;
2879 else
2880 result = 0;
2881 rcu_read_unlock();
2882 } while (read_seqretry(&rename_lock, seq));
2883
2884 return result;
2885 }
2886
2887 int path_is_under(struct path *path1, struct path *path2)
2888 {
2889 struct vfsmount *mnt = path1->mnt;
2890 struct dentry *dentry = path1->dentry;
2891 int res;
2892
2893 br_read_lock(vfsmount_lock);
2894 if (mnt != path2->mnt) {
2895 for (;;) {
2896 if (mnt->mnt_parent == mnt) {
2897 br_read_unlock(vfsmount_lock);
2898 return 0;
2899 }
2900 if (mnt->mnt_parent == path2->mnt)
2901 break;
2902 mnt = mnt->mnt_parent;
2903 }
2904 dentry = mnt->mnt_mountpoint;
2905 }
2906 res = is_subdir(dentry, path2->dentry);
2907 br_read_unlock(vfsmount_lock);
2908 return res;
2909 }
2910 EXPORT_SYMBOL(path_is_under);
2911
2912 void d_genocide(struct dentry *root)
2913 {
2914 struct dentry *this_parent;
2915 struct list_head *next;
2916 unsigned seq;
2917 int locked = 0;
2918
2919 seq = read_seqbegin(&rename_lock);
2920 again:
2921 this_parent = root;
2922 spin_lock(&this_parent->d_lock);
2923 repeat:
2924 next = this_parent->d_subdirs.next;
2925 resume:
2926 while (next != &this_parent->d_subdirs) {
2927 struct list_head *tmp = next;
2928 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2929 next = tmp->next;
2930
2931 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2932 if (d_unhashed(dentry) || !dentry->d_inode) {
2933 spin_unlock(&dentry->d_lock);
2934 continue;
2935 }
2936 if (!list_empty(&dentry->d_subdirs)) {
2937 spin_unlock(&this_parent->d_lock);
2938 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2939 this_parent = dentry;
2940 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2941 goto repeat;
2942 }
2943 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2944 dentry->d_flags |= DCACHE_GENOCIDE;
2945 dentry->d_count--;
2946 }
2947 spin_unlock(&dentry->d_lock);
2948 }
2949 if (this_parent != root) {
2950 struct dentry *child = this_parent;
2951 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2952 this_parent->d_flags |= DCACHE_GENOCIDE;
2953 this_parent->d_count--;
2954 }
2955 this_parent = try_to_ascend(this_parent, locked, seq);
2956 if (!this_parent)
2957 goto rename_retry;
2958 next = child->d_u.d_child.next;
2959 goto resume;
2960 }
2961 spin_unlock(&this_parent->d_lock);
2962 if (!locked && read_seqretry(&rename_lock, seq))
2963 goto rename_retry;
2964 if (locked)
2965 write_sequnlock(&rename_lock);
2966 return;
2967
2968 rename_retry:
2969 locked = 1;
2970 write_seqlock(&rename_lock);
2971 goto again;
2972 }
2973
2974 /**
2975 * find_inode_number - check for dentry with name
2976 * @dir: directory to check
2977 * @name: Name to find.
2978 *
2979 * Check whether a dentry already exists for the given name,
2980 * and return the inode number if it has an inode. Otherwise
2981 * 0 is returned.
2982 *
2983 * This routine is used to post-process directory listings for
2984 * filesystems using synthetic inode numbers, and is necessary
2985 * to keep getcwd() working.
2986 */
2987
2988 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2989 {
2990 struct dentry * dentry;
2991 ino_t ino = 0;
2992
2993 dentry = d_hash_and_lookup(dir, name);
2994 if (dentry) {
2995 if (dentry->d_inode)
2996 ino = dentry->d_inode->i_ino;
2997 dput(dentry);
2998 }
2999 return ino;
3000 }
3001 EXPORT_SYMBOL(find_inode_number);
3002
3003 static __initdata unsigned long dhash_entries;
3004 static int __init set_dhash_entries(char *str)
3005 {
3006 if (!str)
3007 return 0;
3008 dhash_entries = simple_strtoul(str, &str, 0);
3009 return 1;
3010 }
3011 __setup("dhash_entries=", set_dhash_entries);
3012
3013 static void __init dcache_init_early(void)
3014 {
3015 int loop;
3016
3017 /* If hashes are distributed across NUMA nodes, defer
3018 * hash allocation until vmalloc space is available.
3019 */
3020 if (hashdist)
3021 return;
3022
3023 dentry_hashtable =
3024 alloc_large_system_hash("Dentry cache",
3025 sizeof(struct dcache_hash_bucket),
3026 dhash_entries,
3027 13,
3028 HASH_EARLY,
3029 &d_hash_shift,
3030 &d_hash_mask,
3031 0);
3032
3033 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3034 INIT_HLIST_BL_HEAD(&dentry_hashtable[loop].head);
3035 }
3036
3037 static void __init dcache_init(void)
3038 {
3039 int loop;
3040
3041 /*
3042 * A constructor could be added for stable state like the lists,
3043 * but it is probably not worth it because of the cache nature
3044 * of the dcache.
3045 */
3046 dentry_cache = KMEM_CACHE(dentry,
3047 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3048
3049 register_shrinker(&dcache_shrinker);
3050
3051 /* Hash may have been set up in dcache_init_early */
3052 if (!hashdist)
3053 return;
3054
3055 dentry_hashtable =
3056 alloc_large_system_hash("Dentry cache",
3057 sizeof(struct dcache_hash_bucket),
3058 dhash_entries,
3059 13,
3060 0,
3061 &d_hash_shift,
3062 &d_hash_mask,
3063 0);
3064
3065 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3066 INIT_HLIST_BL_HEAD(&dentry_hashtable[loop].head);
3067 }
3068
3069 /* SLAB cache for __getname() consumers */
3070 struct kmem_cache *names_cachep __read_mostly;
3071 EXPORT_SYMBOL(names_cachep);
3072
3073 EXPORT_SYMBOL(d_genocide);
3074
3075 void __init vfs_caches_init_early(void)
3076 {
3077 dcache_init_early();
3078 inode_init_early();
3079 }
3080
3081 void __init vfs_caches_init(unsigned long mempages)
3082 {
3083 unsigned long reserve;
3084
3085 /* Base hash sizes on available memory, with a reserve equal to
3086 150% of current kernel size */
3087
3088 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3089 mempages -= reserve;
3090
3091 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3092 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3093
3094 dcache_init();
3095 inode_init();
3096 files_init(mempages);
3097 mnt_init();
3098 bdev_cache_init();
3099 chrdev_init();
3100 }
This page took 0.0940299999999999 seconds and 5 git commands to generate.