f792e9f20eca112eefebdd672c87fdf1001df6c3
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42
43 /*
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_alias, d_inode
62 *
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
69 *
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
109 {
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
113 }
114
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118 };
119
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
124 {
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130 }
131
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134 {
135 dentry_stat.nr_dentry = get_nr_dentry();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139
140 /*
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
143 */
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
145
146 #include <asm/word-at-a-time.h>
147 /*
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
152 *
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
155 */
156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
157 {
158 unsigned long a,b,mask;
159
160 for (;;) {
161 a = *(unsigned long *)cs;
162 b = load_unaligned_zeropad(ct);
163 if (tcount < sizeof(unsigned long))
164 break;
165 if (unlikely(a != b))
166 return 1;
167 cs += sizeof(unsigned long);
168 ct += sizeof(unsigned long);
169 tcount -= sizeof(unsigned long);
170 if (!tcount)
171 return 0;
172 }
173 mask = ~(~0ul << tcount*8);
174 return unlikely(!!((a ^ b) & mask));
175 }
176
177 #else
178
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 do {
182 if (*cs != *ct)
183 return 1;
184 cs++;
185 ct++;
186 tcount--;
187 } while (tcount);
188 return 0;
189 }
190
191 #endif
192
193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194 {
195 const unsigned char *cs;
196 /*
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
199 *
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
207 *
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
211 */
212 cs = ACCESS_ONCE(dentry->d_name.name);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs, ct, tcount);
215 }
216
217 static void __d_free(struct rcu_head *head)
218 {
219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220
221 WARN_ON(!hlist_unhashed(&dentry->d_alias));
222 if (dname_external(dentry))
223 kfree(dentry->d_name.name);
224 kmem_cache_free(dentry_cache, dentry);
225 }
226
227 /*
228 * no locks, please.
229 */
230 static void d_free(struct dentry *dentry)
231 {
232 BUG_ON(dentry->d_lockref.count);
233 this_cpu_dec(nr_dentry);
234 if (dentry->d_op && dentry->d_op->d_release)
235 dentry->d_op->d_release(dentry);
236
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry->d_flags & DCACHE_RCUACCESS))
239 __d_free(&dentry->d_u.d_rcu);
240 else
241 call_rcu(&dentry->d_u.d_rcu, __d_free);
242 }
243
244 /**
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246 * @dentry: the target dentry
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
250 */
251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252 {
253 assert_spin_locked(&dentry->d_lock);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry->d_seq);
256 }
257
258 /*
259 * Release the dentry's inode, using the filesystem
260 * d_iput() operation if defined. Dentry has no refcount
261 * and is unhashed.
262 */
263 static void dentry_iput(struct dentry * dentry)
264 __releases(dentry->d_lock)
265 __releases(dentry->d_inode->i_lock)
266 {
267 struct inode *inode = dentry->d_inode;
268 if (inode) {
269 dentry->d_inode = NULL;
270 hlist_del_init(&dentry->d_alias);
271 spin_unlock(&dentry->d_lock);
272 spin_unlock(&inode->i_lock);
273 if (!inode->i_nlink)
274 fsnotify_inoderemove(inode);
275 if (dentry->d_op && dentry->d_op->d_iput)
276 dentry->d_op->d_iput(dentry, inode);
277 else
278 iput(inode);
279 } else {
280 spin_unlock(&dentry->d_lock);
281 }
282 }
283
284 /*
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
287 */
288 static void dentry_unlink_inode(struct dentry * dentry)
289 __releases(dentry->d_lock)
290 __releases(dentry->d_inode->i_lock)
291 {
292 struct inode *inode = dentry->d_inode;
293 dentry->d_inode = NULL;
294 hlist_del_init(&dentry->d_alias);
295 dentry_rcuwalk_barrier(dentry);
296 spin_unlock(&dentry->d_lock);
297 spin_unlock(&inode->i_lock);
298 if (!inode->i_nlink)
299 fsnotify_inoderemove(inode);
300 if (dentry->d_op && dentry->d_op->d_iput)
301 dentry->d_op->d_iput(dentry, inode);
302 else
303 iput(inode);
304 }
305
306 /*
307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
308 */
309 static void dentry_lru_add(struct dentry *dentry)
310 {
311 if (list_empty(&dentry->d_lru)) {
312 spin_lock(&dcache_lru_lock);
313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 dentry->d_sb->s_nr_dentry_unused++;
315 dentry_stat.nr_unused++;
316 spin_unlock(&dcache_lru_lock);
317 }
318 }
319
320 static void __dentry_lru_del(struct dentry *dentry)
321 {
322 list_del_init(&dentry->d_lru);
323 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
324 dentry->d_sb->s_nr_dentry_unused--;
325 dentry_stat.nr_unused--;
326 }
327
328 /*
329 * Remove a dentry with references from the LRU.
330 */
331 static void dentry_lru_del(struct dentry *dentry)
332 {
333 if (!list_empty(&dentry->d_lru)) {
334 spin_lock(&dcache_lru_lock);
335 __dentry_lru_del(dentry);
336 spin_unlock(&dcache_lru_lock);
337 }
338 }
339
340 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
341 {
342 spin_lock(&dcache_lru_lock);
343 if (list_empty(&dentry->d_lru)) {
344 list_add_tail(&dentry->d_lru, list);
345 dentry->d_sb->s_nr_dentry_unused++;
346 dentry_stat.nr_unused++;
347 } else {
348 list_move_tail(&dentry->d_lru, list);
349 }
350 spin_unlock(&dcache_lru_lock);
351 }
352
353 /**
354 * d_kill - kill dentry and return parent
355 * @dentry: dentry to kill
356 * @parent: parent dentry
357 *
358 * The dentry must already be unhashed and removed from the LRU.
359 *
360 * If this is the root of the dentry tree, return NULL.
361 *
362 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
363 * d_kill.
364 */
365 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
366 __releases(dentry->d_lock)
367 __releases(parent->d_lock)
368 __releases(dentry->d_inode->i_lock)
369 {
370 list_del(&dentry->d_u.d_child);
371 /*
372 * Inform try_to_ascend() that we are no longer attached to the
373 * dentry tree
374 */
375 dentry->d_flags |= DCACHE_DENTRY_KILLED;
376 if (parent)
377 spin_unlock(&parent->d_lock);
378 dentry_iput(dentry);
379 /*
380 * dentry_iput drops the locks, at which point nobody (except
381 * transient RCU lookups) can reach this dentry.
382 */
383 d_free(dentry);
384 return parent;
385 }
386
387 /*
388 * Unhash a dentry without inserting an RCU walk barrier or checking that
389 * dentry->d_lock is locked. The caller must take care of that, if
390 * appropriate.
391 */
392 static void __d_shrink(struct dentry *dentry)
393 {
394 if (!d_unhashed(dentry)) {
395 struct hlist_bl_head *b;
396 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
397 b = &dentry->d_sb->s_anon;
398 else
399 b = d_hash(dentry->d_parent, dentry->d_name.hash);
400
401 hlist_bl_lock(b);
402 __hlist_bl_del(&dentry->d_hash);
403 dentry->d_hash.pprev = NULL;
404 hlist_bl_unlock(b);
405 }
406 }
407
408 /**
409 * d_drop - drop a dentry
410 * @dentry: dentry to drop
411 *
412 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
413 * be found through a VFS lookup any more. Note that this is different from
414 * deleting the dentry - d_delete will try to mark the dentry negative if
415 * possible, giving a successful _negative_ lookup, while d_drop will
416 * just make the cache lookup fail.
417 *
418 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
419 * reason (NFS timeouts or autofs deletes).
420 *
421 * __d_drop requires dentry->d_lock.
422 */
423 void __d_drop(struct dentry *dentry)
424 {
425 if (!d_unhashed(dentry)) {
426 __d_shrink(dentry);
427 dentry_rcuwalk_barrier(dentry);
428 }
429 }
430 EXPORT_SYMBOL(__d_drop);
431
432 void d_drop(struct dentry *dentry)
433 {
434 spin_lock(&dentry->d_lock);
435 __d_drop(dentry);
436 spin_unlock(&dentry->d_lock);
437 }
438 EXPORT_SYMBOL(d_drop);
439
440 /*
441 * Finish off a dentry we've decided to kill.
442 * dentry->d_lock must be held, returns with it unlocked.
443 * If ref is non-zero, then decrement the refcount too.
444 * Returns dentry requiring refcount drop, or NULL if we're done.
445 */
446 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
447 __releases(dentry->d_lock)
448 {
449 struct inode *inode;
450 struct dentry *parent;
451
452 inode = dentry->d_inode;
453 if (inode && !spin_trylock(&inode->i_lock)) {
454 relock:
455 spin_unlock(&dentry->d_lock);
456 cpu_relax();
457 return dentry; /* try again with same dentry */
458 }
459 if (IS_ROOT(dentry))
460 parent = NULL;
461 else
462 parent = dentry->d_parent;
463 if (parent && !spin_trylock(&parent->d_lock)) {
464 if (inode)
465 spin_unlock(&inode->i_lock);
466 goto relock;
467 }
468
469 if (ref)
470 dentry->d_lockref.count--;
471 /*
472 * inform the fs via d_prune that this dentry is about to be
473 * unhashed and destroyed.
474 */
475 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
476 dentry->d_op->d_prune(dentry);
477
478 dentry_lru_del(dentry);
479 /* if it was on the hash then remove it */
480 __d_drop(dentry);
481 return d_kill(dentry, parent);
482 }
483
484 /*
485 * This is dput
486 *
487 * This is complicated by the fact that we do not want to put
488 * dentries that are no longer on any hash chain on the unused
489 * list: we'd much rather just get rid of them immediately.
490 *
491 * However, that implies that we have to traverse the dentry
492 * tree upwards to the parents which might _also_ now be
493 * scheduled for deletion (it may have been only waiting for
494 * its last child to go away).
495 *
496 * This tail recursion is done by hand as we don't want to depend
497 * on the compiler to always get this right (gcc generally doesn't).
498 * Real recursion would eat up our stack space.
499 */
500
501 /*
502 * dput - release a dentry
503 * @dentry: dentry to release
504 *
505 * Release a dentry. This will drop the usage count and if appropriate
506 * call the dentry unlink method as well as removing it from the queues and
507 * releasing its resources. If the parent dentries were scheduled for release
508 * they too may now get deleted.
509 */
510 void dput(struct dentry *dentry)
511 {
512 if (!dentry)
513 return;
514
515 repeat:
516 if (dentry->d_lockref.count == 1)
517 might_sleep();
518 if (lockref_put_or_lock(&dentry->d_lockref))
519 return;
520
521 if (dentry->d_flags & DCACHE_OP_DELETE) {
522 if (dentry->d_op->d_delete(dentry))
523 goto kill_it;
524 }
525
526 /* Unreachable? Get rid of it */
527 if (d_unhashed(dentry))
528 goto kill_it;
529
530 dentry->d_flags |= DCACHE_REFERENCED;
531 dentry_lru_add(dentry);
532
533 dentry->d_lockref.count--;
534 spin_unlock(&dentry->d_lock);
535 return;
536
537 kill_it:
538 dentry = dentry_kill(dentry, 1);
539 if (dentry)
540 goto repeat;
541 }
542 EXPORT_SYMBOL(dput);
543
544 /**
545 * d_invalidate - invalidate a dentry
546 * @dentry: dentry to invalidate
547 *
548 * Try to invalidate the dentry if it turns out to be
549 * possible. If there are other dentries that can be
550 * reached through this one we can't delete it and we
551 * return -EBUSY. On success we return 0.
552 *
553 * no dcache lock.
554 */
555
556 int d_invalidate(struct dentry * dentry)
557 {
558 /*
559 * If it's already been dropped, return OK.
560 */
561 spin_lock(&dentry->d_lock);
562 if (d_unhashed(dentry)) {
563 spin_unlock(&dentry->d_lock);
564 return 0;
565 }
566 /*
567 * Check whether to do a partial shrink_dcache
568 * to get rid of unused child entries.
569 */
570 if (!list_empty(&dentry->d_subdirs)) {
571 spin_unlock(&dentry->d_lock);
572 shrink_dcache_parent(dentry);
573 spin_lock(&dentry->d_lock);
574 }
575
576 /*
577 * Somebody else still using it?
578 *
579 * If it's a directory, we can't drop it
580 * for fear of somebody re-populating it
581 * with children (even though dropping it
582 * would make it unreachable from the root,
583 * we might still populate it if it was a
584 * working directory or similar).
585 * We also need to leave mountpoints alone,
586 * directory or not.
587 */
588 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
589 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
590 spin_unlock(&dentry->d_lock);
591 return -EBUSY;
592 }
593 }
594
595 __d_drop(dentry);
596 spin_unlock(&dentry->d_lock);
597 return 0;
598 }
599 EXPORT_SYMBOL(d_invalidate);
600
601 /* This must be called with d_lock held */
602 static inline void __dget_dlock(struct dentry *dentry)
603 {
604 dentry->d_lockref.count++;
605 }
606
607 static inline void __dget(struct dentry *dentry)
608 {
609 lockref_get(&dentry->d_lockref);
610 }
611
612 struct dentry *dget_parent(struct dentry *dentry)
613 {
614 int gotref;
615 struct dentry *ret;
616
617 /*
618 * Do optimistic parent lookup without any
619 * locking.
620 */
621 rcu_read_lock();
622 ret = ACCESS_ONCE(dentry->d_parent);
623 gotref = lockref_get_not_zero(&ret->d_lockref);
624 rcu_read_unlock();
625 if (likely(gotref)) {
626 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
627 return ret;
628 dput(ret);
629 }
630
631 repeat:
632 /*
633 * Don't need rcu_dereference because we re-check it was correct under
634 * the lock.
635 */
636 rcu_read_lock();
637 ret = dentry->d_parent;
638 spin_lock(&ret->d_lock);
639 if (unlikely(ret != dentry->d_parent)) {
640 spin_unlock(&ret->d_lock);
641 rcu_read_unlock();
642 goto repeat;
643 }
644 rcu_read_unlock();
645 BUG_ON(!ret->d_lockref.count);
646 ret->d_lockref.count++;
647 spin_unlock(&ret->d_lock);
648 return ret;
649 }
650 EXPORT_SYMBOL(dget_parent);
651
652 /**
653 * d_find_alias - grab a hashed alias of inode
654 * @inode: inode in question
655 * @want_discon: flag, used by d_splice_alias, to request
656 * that only a DISCONNECTED alias be returned.
657 *
658 * If inode has a hashed alias, or is a directory and has any alias,
659 * acquire the reference to alias and return it. Otherwise return NULL.
660 * Notice that if inode is a directory there can be only one alias and
661 * it can be unhashed only if it has no children, or if it is the root
662 * of a filesystem.
663 *
664 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
665 * any other hashed alias over that one unless @want_discon is set,
666 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
667 */
668 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
669 {
670 struct dentry *alias, *discon_alias;
671
672 again:
673 discon_alias = NULL;
674 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
675 spin_lock(&alias->d_lock);
676 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
677 if (IS_ROOT(alias) &&
678 (alias->d_flags & DCACHE_DISCONNECTED)) {
679 discon_alias = alias;
680 } else if (!want_discon) {
681 __dget_dlock(alias);
682 spin_unlock(&alias->d_lock);
683 return alias;
684 }
685 }
686 spin_unlock(&alias->d_lock);
687 }
688 if (discon_alias) {
689 alias = discon_alias;
690 spin_lock(&alias->d_lock);
691 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
692 if (IS_ROOT(alias) &&
693 (alias->d_flags & DCACHE_DISCONNECTED)) {
694 __dget_dlock(alias);
695 spin_unlock(&alias->d_lock);
696 return alias;
697 }
698 }
699 spin_unlock(&alias->d_lock);
700 goto again;
701 }
702 return NULL;
703 }
704
705 struct dentry *d_find_alias(struct inode *inode)
706 {
707 struct dentry *de = NULL;
708
709 if (!hlist_empty(&inode->i_dentry)) {
710 spin_lock(&inode->i_lock);
711 de = __d_find_alias(inode, 0);
712 spin_unlock(&inode->i_lock);
713 }
714 return de;
715 }
716 EXPORT_SYMBOL(d_find_alias);
717
718 /*
719 * Try to kill dentries associated with this inode.
720 * WARNING: you must own a reference to inode.
721 */
722 void d_prune_aliases(struct inode *inode)
723 {
724 struct dentry *dentry;
725 restart:
726 spin_lock(&inode->i_lock);
727 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
728 spin_lock(&dentry->d_lock);
729 if (!dentry->d_lockref.count) {
730 /*
731 * inform the fs via d_prune that this dentry
732 * is about to be unhashed and destroyed.
733 */
734 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
735 !d_unhashed(dentry))
736 dentry->d_op->d_prune(dentry);
737
738 __dget_dlock(dentry);
739 __d_drop(dentry);
740 spin_unlock(&dentry->d_lock);
741 spin_unlock(&inode->i_lock);
742 dput(dentry);
743 goto restart;
744 }
745 spin_unlock(&dentry->d_lock);
746 }
747 spin_unlock(&inode->i_lock);
748 }
749 EXPORT_SYMBOL(d_prune_aliases);
750
751 /*
752 * Try to throw away a dentry - free the inode, dput the parent.
753 * Requires dentry->d_lock is held, and dentry->d_count == 0.
754 * Releases dentry->d_lock.
755 *
756 * This may fail if locks cannot be acquired no problem, just try again.
757 */
758 static void try_prune_one_dentry(struct dentry *dentry)
759 __releases(dentry->d_lock)
760 {
761 struct dentry *parent;
762
763 parent = dentry_kill(dentry, 0);
764 /*
765 * If dentry_kill returns NULL, we have nothing more to do.
766 * if it returns the same dentry, trylocks failed. In either
767 * case, just loop again.
768 *
769 * Otherwise, we need to prune ancestors too. This is necessary
770 * to prevent quadratic behavior of shrink_dcache_parent(), but
771 * is also expected to be beneficial in reducing dentry cache
772 * fragmentation.
773 */
774 if (!parent)
775 return;
776 if (parent == dentry)
777 return;
778
779 /* Prune ancestors. */
780 dentry = parent;
781 while (dentry) {
782 if (lockref_put_or_lock(&dentry->d_lockref))
783 return;
784 dentry = dentry_kill(dentry, 1);
785 }
786 }
787
788 static void shrink_dentry_list(struct list_head *list)
789 {
790 struct dentry *dentry;
791
792 rcu_read_lock();
793 for (;;) {
794 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
795 if (&dentry->d_lru == list)
796 break; /* empty */
797 spin_lock(&dentry->d_lock);
798 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
799 spin_unlock(&dentry->d_lock);
800 continue;
801 }
802
803 /*
804 * We found an inuse dentry which was not removed from
805 * the LRU because of laziness during lookup. Do not free
806 * it - just keep it off the LRU list.
807 */
808 if (dentry->d_lockref.count) {
809 dentry_lru_del(dentry);
810 spin_unlock(&dentry->d_lock);
811 continue;
812 }
813
814 rcu_read_unlock();
815
816 try_prune_one_dentry(dentry);
817
818 rcu_read_lock();
819 }
820 rcu_read_unlock();
821 }
822
823 /**
824 * prune_dcache_sb - shrink the dcache
825 * @sb: superblock
826 * @count: number of entries to try to free
827 *
828 * Attempt to shrink the superblock dcache LRU by @count entries. This is
829 * done when we need more memory an called from the superblock shrinker
830 * function.
831 *
832 * This function may fail to free any resources if all the dentries are in
833 * use.
834 */
835 void prune_dcache_sb(struct super_block *sb, int count)
836 {
837 struct dentry *dentry;
838 LIST_HEAD(referenced);
839 LIST_HEAD(tmp);
840
841 relock:
842 spin_lock(&dcache_lru_lock);
843 while (!list_empty(&sb->s_dentry_lru)) {
844 dentry = list_entry(sb->s_dentry_lru.prev,
845 struct dentry, d_lru);
846 BUG_ON(dentry->d_sb != sb);
847
848 if (!spin_trylock(&dentry->d_lock)) {
849 spin_unlock(&dcache_lru_lock);
850 cpu_relax();
851 goto relock;
852 }
853
854 if (dentry->d_flags & DCACHE_REFERENCED) {
855 dentry->d_flags &= ~DCACHE_REFERENCED;
856 list_move(&dentry->d_lru, &referenced);
857 spin_unlock(&dentry->d_lock);
858 } else {
859 list_move_tail(&dentry->d_lru, &tmp);
860 dentry->d_flags |= DCACHE_SHRINK_LIST;
861 spin_unlock(&dentry->d_lock);
862 if (!--count)
863 break;
864 }
865 cond_resched_lock(&dcache_lru_lock);
866 }
867 if (!list_empty(&referenced))
868 list_splice(&referenced, &sb->s_dentry_lru);
869 spin_unlock(&dcache_lru_lock);
870
871 shrink_dentry_list(&tmp);
872 }
873
874 /**
875 * shrink_dcache_sb - shrink dcache for a superblock
876 * @sb: superblock
877 *
878 * Shrink the dcache for the specified super block. This is used to free
879 * the dcache before unmounting a file system.
880 */
881 void shrink_dcache_sb(struct super_block *sb)
882 {
883 LIST_HEAD(tmp);
884
885 spin_lock(&dcache_lru_lock);
886 while (!list_empty(&sb->s_dentry_lru)) {
887 list_splice_init(&sb->s_dentry_lru, &tmp);
888 spin_unlock(&dcache_lru_lock);
889 shrink_dentry_list(&tmp);
890 spin_lock(&dcache_lru_lock);
891 }
892 spin_unlock(&dcache_lru_lock);
893 }
894 EXPORT_SYMBOL(shrink_dcache_sb);
895
896 /*
897 * destroy a single subtree of dentries for unmount
898 * - see the comments on shrink_dcache_for_umount() for a description of the
899 * locking
900 */
901 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
902 {
903 struct dentry *parent;
904
905 BUG_ON(!IS_ROOT(dentry));
906
907 for (;;) {
908 /* descend to the first leaf in the current subtree */
909 while (!list_empty(&dentry->d_subdirs))
910 dentry = list_entry(dentry->d_subdirs.next,
911 struct dentry, d_u.d_child);
912
913 /* consume the dentries from this leaf up through its parents
914 * until we find one with children or run out altogether */
915 do {
916 struct inode *inode;
917
918 /*
919 * inform the fs that this dentry is about to be
920 * unhashed and destroyed.
921 */
922 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
923 !d_unhashed(dentry))
924 dentry->d_op->d_prune(dentry);
925
926 dentry_lru_del(dentry);
927 __d_shrink(dentry);
928
929 if (dentry->d_lockref.count != 0) {
930 printk(KERN_ERR
931 "BUG: Dentry %p{i=%lx,n=%s}"
932 " still in use (%d)"
933 " [unmount of %s %s]\n",
934 dentry,
935 dentry->d_inode ?
936 dentry->d_inode->i_ino : 0UL,
937 dentry->d_name.name,
938 dentry->d_lockref.count,
939 dentry->d_sb->s_type->name,
940 dentry->d_sb->s_id);
941 BUG();
942 }
943
944 if (IS_ROOT(dentry)) {
945 parent = NULL;
946 list_del(&dentry->d_u.d_child);
947 } else {
948 parent = dentry->d_parent;
949 parent->d_lockref.count--;
950 list_del(&dentry->d_u.d_child);
951 }
952
953 inode = dentry->d_inode;
954 if (inode) {
955 dentry->d_inode = NULL;
956 hlist_del_init(&dentry->d_alias);
957 if (dentry->d_op && dentry->d_op->d_iput)
958 dentry->d_op->d_iput(dentry, inode);
959 else
960 iput(inode);
961 }
962
963 d_free(dentry);
964
965 /* finished when we fall off the top of the tree,
966 * otherwise we ascend to the parent and move to the
967 * next sibling if there is one */
968 if (!parent)
969 return;
970 dentry = parent;
971 } while (list_empty(&dentry->d_subdirs));
972
973 dentry = list_entry(dentry->d_subdirs.next,
974 struct dentry, d_u.d_child);
975 }
976 }
977
978 /*
979 * destroy the dentries attached to a superblock on unmounting
980 * - we don't need to use dentry->d_lock because:
981 * - the superblock is detached from all mountings and open files, so the
982 * dentry trees will not be rearranged by the VFS
983 * - s_umount is write-locked, so the memory pressure shrinker will ignore
984 * any dentries belonging to this superblock that it comes across
985 * - the filesystem itself is no longer permitted to rearrange the dentries
986 * in this superblock
987 */
988 void shrink_dcache_for_umount(struct super_block *sb)
989 {
990 struct dentry *dentry;
991
992 if (down_read_trylock(&sb->s_umount))
993 BUG();
994
995 dentry = sb->s_root;
996 sb->s_root = NULL;
997 dentry->d_lockref.count--;
998 shrink_dcache_for_umount_subtree(dentry);
999
1000 while (!hlist_bl_empty(&sb->s_anon)) {
1001 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1002 shrink_dcache_for_umount_subtree(dentry);
1003 }
1004 }
1005
1006 /*
1007 * This tries to ascend one level of parenthood, but
1008 * we can race with renaming, so we need to re-check
1009 * the parenthood after dropping the lock and check
1010 * that the sequence number still matches.
1011 */
1012 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1013 {
1014 struct dentry *new = old->d_parent;
1015
1016 rcu_read_lock();
1017 spin_unlock(&old->d_lock);
1018 spin_lock(&new->d_lock);
1019
1020 /*
1021 * might go back up the wrong parent if we have had a rename
1022 * or deletion
1023 */
1024 if (new != old->d_parent ||
1025 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1026 (!locked && read_seqretry(&rename_lock, seq))) {
1027 spin_unlock(&new->d_lock);
1028 new = NULL;
1029 }
1030 rcu_read_unlock();
1031 return new;
1032 }
1033
1034
1035 /*
1036 * Search for at least 1 mount point in the dentry's subdirs.
1037 * We descend to the next level whenever the d_subdirs
1038 * list is non-empty and continue searching.
1039 */
1040
1041 /**
1042 * have_submounts - check for mounts over a dentry
1043 * @parent: dentry to check.
1044 *
1045 * Return true if the parent or its subdirectories contain
1046 * a mount point
1047 */
1048 int have_submounts(struct dentry *parent)
1049 {
1050 struct dentry *this_parent;
1051 struct list_head *next;
1052 unsigned seq;
1053 int locked = 0;
1054
1055 seq = read_seqbegin(&rename_lock);
1056 again:
1057 this_parent = parent;
1058
1059 if (d_mountpoint(parent))
1060 goto positive;
1061 spin_lock(&this_parent->d_lock);
1062 repeat:
1063 next = this_parent->d_subdirs.next;
1064 resume:
1065 while (next != &this_parent->d_subdirs) {
1066 struct list_head *tmp = next;
1067 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1068 next = tmp->next;
1069
1070 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1071 /* Have we found a mount point ? */
1072 if (d_mountpoint(dentry)) {
1073 spin_unlock(&dentry->d_lock);
1074 spin_unlock(&this_parent->d_lock);
1075 goto positive;
1076 }
1077 if (!list_empty(&dentry->d_subdirs)) {
1078 spin_unlock(&this_parent->d_lock);
1079 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1080 this_parent = dentry;
1081 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1082 goto repeat;
1083 }
1084 spin_unlock(&dentry->d_lock);
1085 }
1086 /*
1087 * All done at this level ... ascend and resume the search.
1088 */
1089 if (this_parent != parent) {
1090 struct dentry *child = this_parent;
1091 this_parent = try_to_ascend(this_parent, locked, seq);
1092 if (!this_parent)
1093 goto rename_retry;
1094 next = child->d_u.d_child.next;
1095 goto resume;
1096 }
1097 spin_unlock(&this_parent->d_lock);
1098 if (!locked && read_seqretry(&rename_lock, seq))
1099 goto rename_retry;
1100 if (locked)
1101 write_sequnlock(&rename_lock);
1102 return 0; /* No mount points found in tree */
1103 positive:
1104 if (!locked && read_seqretry(&rename_lock, seq))
1105 goto rename_retry;
1106 if (locked)
1107 write_sequnlock(&rename_lock);
1108 return 1;
1109
1110 rename_retry:
1111 if (locked)
1112 goto again;
1113 locked = 1;
1114 write_seqlock(&rename_lock);
1115 goto again;
1116 }
1117 EXPORT_SYMBOL(have_submounts);
1118
1119 /*
1120 * Search the dentry child list of the specified parent,
1121 * and move any unused dentries to the end of the unused
1122 * list for prune_dcache(). We descend to the next level
1123 * whenever the d_subdirs list is non-empty and continue
1124 * searching.
1125 *
1126 * It returns zero iff there are no unused children,
1127 * otherwise it returns the number of children moved to
1128 * the end of the unused list. This may not be the total
1129 * number of unused children, because select_parent can
1130 * drop the lock and return early due to latency
1131 * constraints.
1132 */
1133 static int select_parent(struct dentry *parent, struct list_head *dispose)
1134 {
1135 struct dentry *this_parent;
1136 struct list_head *next;
1137 unsigned seq;
1138 int found = 0;
1139 int locked = 0;
1140
1141 seq = read_seqbegin(&rename_lock);
1142 again:
1143 this_parent = parent;
1144 spin_lock(&this_parent->d_lock);
1145 repeat:
1146 next = this_parent->d_subdirs.next;
1147 resume:
1148 while (next != &this_parent->d_subdirs) {
1149 struct list_head *tmp = next;
1150 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1151 next = tmp->next;
1152
1153 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1154
1155 /*
1156 * move only zero ref count dentries to the dispose list.
1157 *
1158 * Those which are presently on the shrink list, being processed
1159 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1160 * loop in shrink_dcache_parent() might not make any progress
1161 * and loop forever.
1162 */
1163 if (dentry->d_lockref.count) {
1164 dentry_lru_del(dentry);
1165 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1166 dentry_lru_move_list(dentry, dispose);
1167 dentry->d_flags |= DCACHE_SHRINK_LIST;
1168 found++;
1169 }
1170 /*
1171 * We can return to the caller if we have found some (this
1172 * ensures forward progress). We'll be coming back to find
1173 * the rest.
1174 */
1175 if (found && need_resched()) {
1176 spin_unlock(&dentry->d_lock);
1177 goto out;
1178 }
1179
1180 /*
1181 * Descend a level if the d_subdirs list is non-empty.
1182 */
1183 if (!list_empty(&dentry->d_subdirs)) {
1184 spin_unlock(&this_parent->d_lock);
1185 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1186 this_parent = dentry;
1187 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1188 goto repeat;
1189 }
1190
1191 spin_unlock(&dentry->d_lock);
1192 }
1193 /*
1194 * All done at this level ... ascend and resume the search.
1195 */
1196 if (this_parent != parent) {
1197 struct dentry *child = this_parent;
1198 this_parent = try_to_ascend(this_parent, locked, seq);
1199 if (!this_parent)
1200 goto rename_retry;
1201 next = child->d_u.d_child.next;
1202 goto resume;
1203 }
1204 out:
1205 spin_unlock(&this_parent->d_lock);
1206 if (!locked && read_seqretry(&rename_lock, seq))
1207 goto rename_retry;
1208 if (locked)
1209 write_sequnlock(&rename_lock);
1210 return found;
1211
1212 rename_retry:
1213 if (found)
1214 return found;
1215 if (locked)
1216 goto again;
1217 locked = 1;
1218 write_seqlock(&rename_lock);
1219 goto again;
1220 }
1221
1222 /**
1223 * shrink_dcache_parent - prune dcache
1224 * @parent: parent of entries to prune
1225 *
1226 * Prune the dcache to remove unused children of the parent dentry.
1227 */
1228 void shrink_dcache_parent(struct dentry * parent)
1229 {
1230 LIST_HEAD(dispose);
1231 int found;
1232
1233 while ((found = select_parent(parent, &dispose)) != 0) {
1234 shrink_dentry_list(&dispose);
1235 cond_resched();
1236 }
1237 }
1238 EXPORT_SYMBOL(shrink_dcache_parent);
1239
1240 /**
1241 * __d_alloc - allocate a dcache entry
1242 * @sb: filesystem it will belong to
1243 * @name: qstr of the name
1244 *
1245 * Allocates a dentry. It returns %NULL if there is insufficient memory
1246 * available. On a success the dentry is returned. The name passed in is
1247 * copied and the copy passed in may be reused after this call.
1248 */
1249
1250 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1251 {
1252 struct dentry *dentry;
1253 char *dname;
1254
1255 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1256 if (!dentry)
1257 return NULL;
1258
1259 /*
1260 * We guarantee that the inline name is always NUL-terminated.
1261 * This way the memcpy() done by the name switching in rename
1262 * will still always have a NUL at the end, even if we might
1263 * be overwriting an internal NUL character
1264 */
1265 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1266 if (name->len > DNAME_INLINE_LEN-1) {
1267 dname = kmalloc(name->len + 1, GFP_KERNEL);
1268 if (!dname) {
1269 kmem_cache_free(dentry_cache, dentry);
1270 return NULL;
1271 }
1272 } else {
1273 dname = dentry->d_iname;
1274 }
1275
1276 dentry->d_name.len = name->len;
1277 dentry->d_name.hash = name->hash;
1278 memcpy(dname, name->name, name->len);
1279 dname[name->len] = 0;
1280
1281 /* Make sure we always see the terminating NUL character */
1282 smp_wmb();
1283 dentry->d_name.name = dname;
1284
1285 dentry->d_lockref.count = 1;
1286 dentry->d_flags = 0;
1287 spin_lock_init(&dentry->d_lock);
1288 seqcount_init(&dentry->d_seq);
1289 dentry->d_inode = NULL;
1290 dentry->d_parent = dentry;
1291 dentry->d_sb = sb;
1292 dentry->d_op = NULL;
1293 dentry->d_fsdata = NULL;
1294 INIT_HLIST_BL_NODE(&dentry->d_hash);
1295 INIT_LIST_HEAD(&dentry->d_lru);
1296 INIT_LIST_HEAD(&dentry->d_subdirs);
1297 INIT_HLIST_NODE(&dentry->d_alias);
1298 INIT_LIST_HEAD(&dentry->d_u.d_child);
1299 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1300
1301 this_cpu_inc(nr_dentry);
1302
1303 return dentry;
1304 }
1305
1306 /**
1307 * d_alloc - allocate a dcache entry
1308 * @parent: parent of entry to allocate
1309 * @name: qstr of the name
1310 *
1311 * Allocates a dentry. It returns %NULL if there is insufficient memory
1312 * available. On a success the dentry is returned. The name passed in is
1313 * copied and the copy passed in may be reused after this call.
1314 */
1315 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1316 {
1317 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1318 if (!dentry)
1319 return NULL;
1320
1321 spin_lock(&parent->d_lock);
1322 /*
1323 * don't need child lock because it is not subject
1324 * to concurrency here
1325 */
1326 __dget_dlock(parent);
1327 dentry->d_parent = parent;
1328 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1329 spin_unlock(&parent->d_lock);
1330
1331 return dentry;
1332 }
1333 EXPORT_SYMBOL(d_alloc);
1334
1335 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1336 {
1337 struct dentry *dentry = __d_alloc(sb, name);
1338 if (dentry)
1339 dentry->d_flags |= DCACHE_DISCONNECTED;
1340 return dentry;
1341 }
1342 EXPORT_SYMBOL(d_alloc_pseudo);
1343
1344 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1345 {
1346 struct qstr q;
1347
1348 q.name = name;
1349 q.len = strlen(name);
1350 q.hash = full_name_hash(q.name, q.len);
1351 return d_alloc(parent, &q);
1352 }
1353 EXPORT_SYMBOL(d_alloc_name);
1354
1355 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1356 {
1357 WARN_ON_ONCE(dentry->d_op);
1358 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1359 DCACHE_OP_COMPARE |
1360 DCACHE_OP_REVALIDATE |
1361 DCACHE_OP_WEAK_REVALIDATE |
1362 DCACHE_OP_DELETE ));
1363 dentry->d_op = op;
1364 if (!op)
1365 return;
1366 if (op->d_hash)
1367 dentry->d_flags |= DCACHE_OP_HASH;
1368 if (op->d_compare)
1369 dentry->d_flags |= DCACHE_OP_COMPARE;
1370 if (op->d_revalidate)
1371 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1372 if (op->d_weak_revalidate)
1373 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1374 if (op->d_delete)
1375 dentry->d_flags |= DCACHE_OP_DELETE;
1376 if (op->d_prune)
1377 dentry->d_flags |= DCACHE_OP_PRUNE;
1378
1379 }
1380 EXPORT_SYMBOL(d_set_d_op);
1381
1382 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1383 {
1384 spin_lock(&dentry->d_lock);
1385 if (inode) {
1386 if (unlikely(IS_AUTOMOUNT(inode)))
1387 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1388 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1389 }
1390 dentry->d_inode = inode;
1391 dentry_rcuwalk_barrier(dentry);
1392 spin_unlock(&dentry->d_lock);
1393 fsnotify_d_instantiate(dentry, inode);
1394 }
1395
1396 /**
1397 * d_instantiate - fill in inode information for a dentry
1398 * @entry: dentry to complete
1399 * @inode: inode to attach to this dentry
1400 *
1401 * Fill in inode information in the entry.
1402 *
1403 * This turns negative dentries into productive full members
1404 * of society.
1405 *
1406 * NOTE! This assumes that the inode count has been incremented
1407 * (or otherwise set) by the caller to indicate that it is now
1408 * in use by the dcache.
1409 */
1410
1411 void d_instantiate(struct dentry *entry, struct inode * inode)
1412 {
1413 BUG_ON(!hlist_unhashed(&entry->d_alias));
1414 if (inode)
1415 spin_lock(&inode->i_lock);
1416 __d_instantiate(entry, inode);
1417 if (inode)
1418 spin_unlock(&inode->i_lock);
1419 security_d_instantiate(entry, inode);
1420 }
1421 EXPORT_SYMBOL(d_instantiate);
1422
1423 /**
1424 * d_instantiate_unique - instantiate a non-aliased dentry
1425 * @entry: dentry to instantiate
1426 * @inode: inode to attach to this dentry
1427 *
1428 * Fill in inode information in the entry. On success, it returns NULL.
1429 * If an unhashed alias of "entry" already exists, then we return the
1430 * aliased dentry instead and drop one reference to inode.
1431 *
1432 * Note that in order to avoid conflicts with rename() etc, the caller
1433 * had better be holding the parent directory semaphore.
1434 *
1435 * This also assumes that the inode count has been incremented
1436 * (or otherwise set) by the caller to indicate that it is now
1437 * in use by the dcache.
1438 */
1439 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1440 struct inode *inode)
1441 {
1442 struct dentry *alias;
1443 int len = entry->d_name.len;
1444 const char *name = entry->d_name.name;
1445 unsigned int hash = entry->d_name.hash;
1446
1447 if (!inode) {
1448 __d_instantiate(entry, NULL);
1449 return NULL;
1450 }
1451
1452 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1453 /*
1454 * Don't need alias->d_lock here, because aliases with
1455 * d_parent == entry->d_parent are not subject to name or
1456 * parent changes, because the parent inode i_mutex is held.
1457 */
1458 if (alias->d_name.hash != hash)
1459 continue;
1460 if (alias->d_parent != entry->d_parent)
1461 continue;
1462 if (alias->d_name.len != len)
1463 continue;
1464 if (dentry_cmp(alias, name, len))
1465 continue;
1466 __dget(alias);
1467 return alias;
1468 }
1469
1470 __d_instantiate(entry, inode);
1471 return NULL;
1472 }
1473
1474 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1475 {
1476 struct dentry *result;
1477
1478 BUG_ON(!hlist_unhashed(&entry->d_alias));
1479
1480 if (inode)
1481 spin_lock(&inode->i_lock);
1482 result = __d_instantiate_unique(entry, inode);
1483 if (inode)
1484 spin_unlock(&inode->i_lock);
1485
1486 if (!result) {
1487 security_d_instantiate(entry, inode);
1488 return NULL;
1489 }
1490
1491 BUG_ON(!d_unhashed(result));
1492 iput(inode);
1493 return result;
1494 }
1495
1496 EXPORT_SYMBOL(d_instantiate_unique);
1497
1498 struct dentry *d_make_root(struct inode *root_inode)
1499 {
1500 struct dentry *res = NULL;
1501
1502 if (root_inode) {
1503 static const struct qstr name = QSTR_INIT("/", 1);
1504
1505 res = __d_alloc(root_inode->i_sb, &name);
1506 if (res)
1507 d_instantiate(res, root_inode);
1508 else
1509 iput(root_inode);
1510 }
1511 return res;
1512 }
1513 EXPORT_SYMBOL(d_make_root);
1514
1515 static struct dentry * __d_find_any_alias(struct inode *inode)
1516 {
1517 struct dentry *alias;
1518
1519 if (hlist_empty(&inode->i_dentry))
1520 return NULL;
1521 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1522 __dget(alias);
1523 return alias;
1524 }
1525
1526 /**
1527 * d_find_any_alias - find any alias for a given inode
1528 * @inode: inode to find an alias for
1529 *
1530 * If any aliases exist for the given inode, take and return a
1531 * reference for one of them. If no aliases exist, return %NULL.
1532 */
1533 struct dentry *d_find_any_alias(struct inode *inode)
1534 {
1535 struct dentry *de;
1536
1537 spin_lock(&inode->i_lock);
1538 de = __d_find_any_alias(inode);
1539 spin_unlock(&inode->i_lock);
1540 return de;
1541 }
1542 EXPORT_SYMBOL(d_find_any_alias);
1543
1544 /**
1545 * d_obtain_alias - find or allocate a dentry for a given inode
1546 * @inode: inode to allocate the dentry for
1547 *
1548 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1549 * similar open by handle operations. The returned dentry may be anonymous,
1550 * or may have a full name (if the inode was already in the cache).
1551 *
1552 * When called on a directory inode, we must ensure that the inode only ever
1553 * has one dentry. If a dentry is found, that is returned instead of
1554 * allocating a new one.
1555 *
1556 * On successful return, the reference to the inode has been transferred
1557 * to the dentry. In case of an error the reference on the inode is released.
1558 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1559 * be passed in and will be the error will be propagate to the return value,
1560 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1561 */
1562 struct dentry *d_obtain_alias(struct inode *inode)
1563 {
1564 static const struct qstr anonstring = QSTR_INIT("/", 1);
1565 struct dentry *tmp;
1566 struct dentry *res;
1567
1568 if (!inode)
1569 return ERR_PTR(-ESTALE);
1570 if (IS_ERR(inode))
1571 return ERR_CAST(inode);
1572
1573 res = d_find_any_alias(inode);
1574 if (res)
1575 goto out_iput;
1576
1577 tmp = __d_alloc(inode->i_sb, &anonstring);
1578 if (!tmp) {
1579 res = ERR_PTR(-ENOMEM);
1580 goto out_iput;
1581 }
1582
1583 spin_lock(&inode->i_lock);
1584 res = __d_find_any_alias(inode);
1585 if (res) {
1586 spin_unlock(&inode->i_lock);
1587 dput(tmp);
1588 goto out_iput;
1589 }
1590
1591 /* attach a disconnected dentry */
1592 spin_lock(&tmp->d_lock);
1593 tmp->d_inode = inode;
1594 tmp->d_flags |= DCACHE_DISCONNECTED;
1595 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1596 hlist_bl_lock(&tmp->d_sb->s_anon);
1597 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1598 hlist_bl_unlock(&tmp->d_sb->s_anon);
1599 spin_unlock(&tmp->d_lock);
1600 spin_unlock(&inode->i_lock);
1601 security_d_instantiate(tmp, inode);
1602
1603 return tmp;
1604
1605 out_iput:
1606 if (res && !IS_ERR(res))
1607 security_d_instantiate(res, inode);
1608 iput(inode);
1609 return res;
1610 }
1611 EXPORT_SYMBOL(d_obtain_alias);
1612
1613 /**
1614 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1615 * @inode: the inode which may have a disconnected dentry
1616 * @dentry: a negative dentry which we want to point to the inode.
1617 *
1618 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1619 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1620 * and return it, else simply d_add the inode to the dentry and return NULL.
1621 *
1622 * This is needed in the lookup routine of any filesystem that is exportable
1623 * (via knfsd) so that we can build dcache paths to directories effectively.
1624 *
1625 * If a dentry was found and moved, then it is returned. Otherwise NULL
1626 * is returned. This matches the expected return value of ->lookup.
1627 *
1628 * Cluster filesystems may call this function with a negative, hashed dentry.
1629 * In that case, we know that the inode will be a regular file, and also this
1630 * will only occur during atomic_open. So we need to check for the dentry
1631 * being already hashed only in the final case.
1632 */
1633 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1634 {
1635 struct dentry *new = NULL;
1636
1637 if (IS_ERR(inode))
1638 return ERR_CAST(inode);
1639
1640 if (inode && S_ISDIR(inode->i_mode)) {
1641 spin_lock(&inode->i_lock);
1642 new = __d_find_alias(inode, 1);
1643 if (new) {
1644 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1645 spin_unlock(&inode->i_lock);
1646 security_d_instantiate(new, inode);
1647 d_move(new, dentry);
1648 iput(inode);
1649 } else {
1650 /* already taking inode->i_lock, so d_add() by hand */
1651 __d_instantiate(dentry, inode);
1652 spin_unlock(&inode->i_lock);
1653 security_d_instantiate(dentry, inode);
1654 d_rehash(dentry);
1655 }
1656 } else {
1657 d_instantiate(dentry, inode);
1658 if (d_unhashed(dentry))
1659 d_rehash(dentry);
1660 }
1661 return new;
1662 }
1663 EXPORT_SYMBOL(d_splice_alias);
1664
1665 /**
1666 * d_add_ci - lookup or allocate new dentry with case-exact name
1667 * @inode: the inode case-insensitive lookup has found
1668 * @dentry: the negative dentry that was passed to the parent's lookup func
1669 * @name: the case-exact name to be associated with the returned dentry
1670 *
1671 * This is to avoid filling the dcache with case-insensitive names to the
1672 * same inode, only the actual correct case is stored in the dcache for
1673 * case-insensitive filesystems.
1674 *
1675 * For a case-insensitive lookup match and if the the case-exact dentry
1676 * already exists in in the dcache, use it and return it.
1677 *
1678 * If no entry exists with the exact case name, allocate new dentry with
1679 * the exact case, and return the spliced entry.
1680 */
1681 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1682 struct qstr *name)
1683 {
1684 struct dentry *found;
1685 struct dentry *new;
1686
1687 /*
1688 * First check if a dentry matching the name already exists,
1689 * if not go ahead and create it now.
1690 */
1691 found = d_hash_and_lookup(dentry->d_parent, name);
1692 if (unlikely(IS_ERR(found)))
1693 goto err_out;
1694 if (!found) {
1695 new = d_alloc(dentry->d_parent, name);
1696 if (!new) {
1697 found = ERR_PTR(-ENOMEM);
1698 goto err_out;
1699 }
1700
1701 found = d_splice_alias(inode, new);
1702 if (found) {
1703 dput(new);
1704 return found;
1705 }
1706 return new;
1707 }
1708
1709 /*
1710 * If a matching dentry exists, and it's not negative use it.
1711 *
1712 * Decrement the reference count to balance the iget() done
1713 * earlier on.
1714 */
1715 if (found->d_inode) {
1716 if (unlikely(found->d_inode != inode)) {
1717 /* This can't happen because bad inodes are unhashed. */
1718 BUG_ON(!is_bad_inode(inode));
1719 BUG_ON(!is_bad_inode(found->d_inode));
1720 }
1721 iput(inode);
1722 return found;
1723 }
1724
1725 /*
1726 * Negative dentry: instantiate it unless the inode is a directory and
1727 * already has a dentry.
1728 */
1729 new = d_splice_alias(inode, found);
1730 if (new) {
1731 dput(found);
1732 found = new;
1733 }
1734 return found;
1735
1736 err_out:
1737 iput(inode);
1738 return found;
1739 }
1740 EXPORT_SYMBOL(d_add_ci);
1741
1742 /*
1743 * Do the slow-case of the dentry name compare.
1744 *
1745 * Unlike the dentry_cmp() function, we need to atomically
1746 * load the name and length information, so that the
1747 * filesystem can rely on them, and can use the 'name' and
1748 * 'len' information without worrying about walking off the
1749 * end of memory etc.
1750 *
1751 * Thus the read_seqcount_retry() and the "duplicate" info
1752 * in arguments (the low-level filesystem should not look
1753 * at the dentry inode or name contents directly, since
1754 * rename can change them while we're in RCU mode).
1755 */
1756 enum slow_d_compare {
1757 D_COMP_OK,
1758 D_COMP_NOMATCH,
1759 D_COMP_SEQRETRY,
1760 };
1761
1762 static noinline enum slow_d_compare slow_dentry_cmp(
1763 const struct dentry *parent,
1764 struct dentry *dentry,
1765 unsigned int seq,
1766 const struct qstr *name)
1767 {
1768 int tlen = dentry->d_name.len;
1769 const char *tname = dentry->d_name.name;
1770
1771 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1772 cpu_relax();
1773 return D_COMP_SEQRETRY;
1774 }
1775 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1776 return D_COMP_NOMATCH;
1777 return D_COMP_OK;
1778 }
1779
1780 /**
1781 * __d_lookup_rcu - search for a dentry (racy, store-free)
1782 * @parent: parent dentry
1783 * @name: qstr of name we wish to find
1784 * @seqp: returns d_seq value at the point where the dentry was found
1785 * Returns: dentry, or NULL
1786 *
1787 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1788 * resolution (store-free path walking) design described in
1789 * Documentation/filesystems/path-lookup.txt.
1790 *
1791 * This is not to be used outside core vfs.
1792 *
1793 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1794 * held, and rcu_read_lock held. The returned dentry must not be stored into
1795 * without taking d_lock and checking d_seq sequence count against @seq
1796 * returned here.
1797 *
1798 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
1799 * function.
1800 *
1801 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1802 * the returned dentry, so long as its parent's seqlock is checked after the
1803 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1804 * is formed, giving integrity down the path walk.
1805 *
1806 * NOTE! The caller *has* to check the resulting dentry against the sequence
1807 * number we've returned before using any of the resulting dentry state!
1808 */
1809 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1810 const struct qstr *name,
1811 unsigned *seqp)
1812 {
1813 u64 hashlen = name->hash_len;
1814 const unsigned char *str = name->name;
1815 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1816 struct hlist_bl_node *node;
1817 struct dentry *dentry;
1818
1819 /*
1820 * Note: There is significant duplication with __d_lookup_rcu which is
1821 * required to prevent single threaded performance regressions
1822 * especially on architectures where smp_rmb (in seqcounts) are costly.
1823 * Keep the two functions in sync.
1824 */
1825
1826 /*
1827 * The hash list is protected using RCU.
1828 *
1829 * Carefully use d_seq when comparing a candidate dentry, to avoid
1830 * races with d_move().
1831 *
1832 * It is possible that concurrent renames can mess up our list
1833 * walk here and result in missing our dentry, resulting in the
1834 * false-negative result. d_lookup() protects against concurrent
1835 * renames using rename_lock seqlock.
1836 *
1837 * See Documentation/filesystems/path-lookup.txt for more details.
1838 */
1839 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1840 unsigned seq;
1841
1842 seqretry:
1843 /*
1844 * The dentry sequence count protects us from concurrent
1845 * renames, and thus protects parent and name fields.
1846 *
1847 * The caller must perform a seqcount check in order
1848 * to do anything useful with the returned dentry.
1849 *
1850 * NOTE! We do a "raw" seqcount_begin here. That means that
1851 * we don't wait for the sequence count to stabilize if it
1852 * is in the middle of a sequence change. If we do the slow
1853 * dentry compare, we will do seqretries until it is stable,
1854 * and if we end up with a successful lookup, we actually
1855 * want to exit RCU lookup anyway.
1856 */
1857 seq = raw_seqcount_begin(&dentry->d_seq);
1858 if (dentry->d_parent != parent)
1859 continue;
1860 if (d_unhashed(dentry))
1861 continue;
1862
1863 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1864 if (dentry->d_name.hash != hashlen_hash(hashlen))
1865 continue;
1866 *seqp = seq;
1867 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
1868 case D_COMP_OK:
1869 return dentry;
1870 case D_COMP_NOMATCH:
1871 continue;
1872 default:
1873 goto seqretry;
1874 }
1875 }
1876
1877 if (dentry->d_name.hash_len != hashlen)
1878 continue;
1879 *seqp = seq;
1880 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1881 return dentry;
1882 }
1883 return NULL;
1884 }
1885
1886 /**
1887 * d_lookup - search for a dentry
1888 * @parent: parent dentry
1889 * @name: qstr of name we wish to find
1890 * Returns: dentry, or NULL
1891 *
1892 * d_lookup searches the children of the parent dentry for the name in
1893 * question. If the dentry is found its reference count is incremented and the
1894 * dentry is returned. The caller must use dput to free the entry when it has
1895 * finished using it. %NULL is returned if the dentry does not exist.
1896 */
1897 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1898 {
1899 struct dentry *dentry;
1900 unsigned seq;
1901
1902 do {
1903 seq = read_seqbegin(&rename_lock);
1904 dentry = __d_lookup(parent, name);
1905 if (dentry)
1906 break;
1907 } while (read_seqretry(&rename_lock, seq));
1908 return dentry;
1909 }
1910 EXPORT_SYMBOL(d_lookup);
1911
1912 /**
1913 * __d_lookup - search for a dentry (racy)
1914 * @parent: parent dentry
1915 * @name: qstr of name we wish to find
1916 * Returns: dentry, or NULL
1917 *
1918 * __d_lookup is like d_lookup, however it may (rarely) return a
1919 * false-negative result due to unrelated rename activity.
1920 *
1921 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1922 * however it must be used carefully, eg. with a following d_lookup in
1923 * the case of failure.
1924 *
1925 * __d_lookup callers must be commented.
1926 */
1927 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1928 {
1929 unsigned int len = name->len;
1930 unsigned int hash = name->hash;
1931 const unsigned char *str = name->name;
1932 struct hlist_bl_head *b = d_hash(parent, hash);
1933 struct hlist_bl_node *node;
1934 struct dentry *found = NULL;
1935 struct dentry *dentry;
1936
1937 /*
1938 * Note: There is significant duplication with __d_lookup_rcu which is
1939 * required to prevent single threaded performance regressions
1940 * especially on architectures where smp_rmb (in seqcounts) are costly.
1941 * Keep the two functions in sync.
1942 */
1943
1944 /*
1945 * The hash list is protected using RCU.
1946 *
1947 * Take d_lock when comparing a candidate dentry, to avoid races
1948 * with d_move().
1949 *
1950 * It is possible that concurrent renames can mess up our list
1951 * walk here and result in missing our dentry, resulting in the
1952 * false-negative result. d_lookup() protects against concurrent
1953 * renames using rename_lock seqlock.
1954 *
1955 * See Documentation/filesystems/path-lookup.txt for more details.
1956 */
1957 rcu_read_lock();
1958
1959 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1960
1961 if (dentry->d_name.hash != hash)
1962 continue;
1963
1964 spin_lock(&dentry->d_lock);
1965 if (dentry->d_parent != parent)
1966 goto next;
1967 if (d_unhashed(dentry))
1968 goto next;
1969
1970 /*
1971 * It is safe to compare names since d_move() cannot
1972 * change the qstr (protected by d_lock).
1973 */
1974 if (parent->d_flags & DCACHE_OP_COMPARE) {
1975 int tlen = dentry->d_name.len;
1976 const char *tname = dentry->d_name.name;
1977 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1978 goto next;
1979 } else {
1980 if (dentry->d_name.len != len)
1981 goto next;
1982 if (dentry_cmp(dentry, str, len))
1983 goto next;
1984 }
1985
1986 dentry->d_lockref.count++;
1987 found = dentry;
1988 spin_unlock(&dentry->d_lock);
1989 break;
1990 next:
1991 spin_unlock(&dentry->d_lock);
1992 }
1993 rcu_read_unlock();
1994
1995 return found;
1996 }
1997
1998 /**
1999 * d_hash_and_lookup - hash the qstr then search for a dentry
2000 * @dir: Directory to search in
2001 * @name: qstr of name we wish to find
2002 *
2003 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2004 */
2005 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2006 {
2007 /*
2008 * Check for a fs-specific hash function. Note that we must
2009 * calculate the standard hash first, as the d_op->d_hash()
2010 * routine may choose to leave the hash value unchanged.
2011 */
2012 name->hash = full_name_hash(name->name, name->len);
2013 if (dir->d_flags & DCACHE_OP_HASH) {
2014 int err = dir->d_op->d_hash(dir, name);
2015 if (unlikely(err < 0))
2016 return ERR_PTR(err);
2017 }
2018 return d_lookup(dir, name);
2019 }
2020 EXPORT_SYMBOL(d_hash_and_lookup);
2021
2022 /**
2023 * d_validate - verify dentry provided from insecure source (deprecated)
2024 * @dentry: The dentry alleged to be valid child of @dparent
2025 * @dparent: The parent dentry (known to be valid)
2026 *
2027 * An insecure source has sent us a dentry, here we verify it and dget() it.
2028 * This is used by ncpfs in its readdir implementation.
2029 * Zero is returned in the dentry is invalid.
2030 *
2031 * This function is slow for big directories, and deprecated, do not use it.
2032 */
2033 int d_validate(struct dentry *dentry, struct dentry *dparent)
2034 {
2035 struct dentry *child;
2036
2037 spin_lock(&dparent->d_lock);
2038 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2039 if (dentry == child) {
2040 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2041 __dget_dlock(dentry);
2042 spin_unlock(&dentry->d_lock);
2043 spin_unlock(&dparent->d_lock);
2044 return 1;
2045 }
2046 }
2047 spin_unlock(&dparent->d_lock);
2048
2049 return 0;
2050 }
2051 EXPORT_SYMBOL(d_validate);
2052
2053 /*
2054 * When a file is deleted, we have two options:
2055 * - turn this dentry into a negative dentry
2056 * - unhash this dentry and free it.
2057 *
2058 * Usually, we want to just turn this into
2059 * a negative dentry, but if anybody else is
2060 * currently using the dentry or the inode
2061 * we can't do that and we fall back on removing
2062 * it from the hash queues and waiting for
2063 * it to be deleted later when it has no users
2064 */
2065
2066 /**
2067 * d_delete - delete a dentry
2068 * @dentry: The dentry to delete
2069 *
2070 * Turn the dentry into a negative dentry if possible, otherwise
2071 * remove it from the hash queues so it can be deleted later
2072 */
2073
2074 void d_delete(struct dentry * dentry)
2075 {
2076 struct inode *inode;
2077 int isdir = 0;
2078 /*
2079 * Are we the only user?
2080 */
2081 again:
2082 spin_lock(&dentry->d_lock);
2083 inode = dentry->d_inode;
2084 isdir = S_ISDIR(inode->i_mode);
2085 if (dentry->d_lockref.count == 1) {
2086 if (!spin_trylock(&inode->i_lock)) {
2087 spin_unlock(&dentry->d_lock);
2088 cpu_relax();
2089 goto again;
2090 }
2091 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2092 dentry_unlink_inode(dentry);
2093 fsnotify_nameremove(dentry, isdir);
2094 return;
2095 }
2096
2097 if (!d_unhashed(dentry))
2098 __d_drop(dentry);
2099
2100 spin_unlock(&dentry->d_lock);
2101
2102 fsnotify_nameremove(dentry, isdir);
2103 }
2104 EXPORT_SYMBOL(d_delete);
2105
2106 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2107 {
2108 BUG_ON(!d_unhashed(entry));
2109 hlist_bl_lock(b);
2110 entry->d_flags |= DCACHE_RCUACCESS;
2111 hlist_bl_add_head_rcu(&entry->d_hash, b);
2112 hlist_bl_unlock(b);
2113 }
2114
2115 static void _d_rehash(struct dentry * entry)
2116 {
2117 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2118 }
2119
2120 /**
2121 * d_rehash - add an entry back to the hash
2122 * @entry: dentry to add to the hash
2123 *
2124 * Adds a dentry to the hash according to its name.
2125 */
2126
2127 void d_rehash(struct dentry * entry)
2128 {
2129 spin_lock(&entry->d_lock);
2130 _d_rehash(entry);
2131 spin_unlock(&entry->d_lock);
2132 }
2133 EXPORT_SYMBOL(d_rehash);
2134
2135 /**
2136 * dentry_update_name_case - update case insensitive dentry with a new name
2137 * @dentry: dentry to be updated
2138 * @name: new name
2139 *
2140 * Update a case insensitive dentry with new case of name.
2141 *
2142 * dentry must have been returned by d_lookup with name @name. Old and new
2143 * name lengths must match (ie. no d_compare which allows mismatched name
2144 * lengths).
2145 *
2146 * Parent inode i_mutex must be held over d_lookup and into this call (to
2147 * keep renames and concurrent inserts, and readdir(2) away).
2148 */
2149 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2150 {
2151 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2152 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2153
2154 spin_lock(&dentry->d_lock);
2155 write_seqcount_begin(&dentry->d_seq);
2156 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2157 write_seqcount_end(&dentry->d_seq);
2158 spin_unlock(&dentry->d_lock);
2159 }
2160 EXPORT_SYMBOL(dentry_update_name_case);
2161
2162 static void switch_names(struct dentry *dentry, struct dentry *target)
2163 {
2164 if (dname_external(target)) {
2165 if (dname_external(dentry)) {
2166 /*
2167 * Both external: swap the pointers
2168 */
2169 swap(target->d_name.name, dentry->d_name.name);
2170 } else {
2171 /*
2172 * dentry:internal, target:external. Steal target's
2173 * storage and make target internal.
2174 */
2175 memcpy(target->d_iname, dentry->d_name.name,
2176 dentry->d_name.len + 1);
2177 dentry->d_name.name = target->d_name.name;
2178 target->d_name.name = target->d_iname;
2179 }
2180 } else {
2181 if (dname_external(dentry)) {
2182 /*
2183 * dentry:external, target:internal. Give dentry's
2184 * storage to target and make dentry internal
2185 */
2186 memcpy(dentry->d_iname, target->d_name.name,
2187 target->d_name.len + 1);
2188 target->d_name.name = dentry->d_name.name;
2189 dentry->d_name.name = dentry->d_iname;
2190 } else {
2191 /*
2192 * Both are internal. Just copy target to dentry
2193 */
2194 memcpy(dentry->d_iname, target->d_name.name,
2195 target->d_name.len + 1);
2196 dentry->d_name.len = target->d_name.len;
2197 return;
2198 }
2199 }
2200 swap(dentry->d_name.len, target->d_name.len);
2201 }
2202
2203 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2204 {
2205 /*
2206 * XXXX: do we really need to take target->d_lock?
2207 */
2208 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2209 spin_lock(&target->d_parent->d_lock);
2210 else {
2211 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2212 spin_lock(&dentry->d_parent->d_lock);
2213 spin_lock_nested(&target->d_parent->d_lock,
2214 DENTRY_D_LOCK_NESTED);
2215 } else {
2216 spin_lock(&target->d_parent->d_lock);
2217 spin_lock_nested(&dentry->d_parent->d_lock,
2218 DENTRY_D_LOCK_NESTED);
2219 }
2220 }
2221 if (target < dentry) {
2222 spin_lock_nested(&target->d_lock, 2);
2223 spin_lock_nested(&dentry->d_lock, 3);
2224 } else {
2225 spin_lock_nested(&dentry->d_lock, 2);
2226 spin_lock_nested(&target->d_lock, 3);
2227 }
2228 }
2229
2230 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2231 struct dentry *target)
2232 {
2233 if (target->d_parent != dentry->d_parent)
2234 spin_unlock(&dentry->d_parent->d_lock);
2235 if (target->d_parent != target)
2236 spin_unlock(&target->d_parent->d_lock);
2237 }
2238
2239 /*
2240 * When switching names, the actual string doesn't strictly have to
2241 * be preserved in the target - because we're dropping the target
2242 * anyway. As such, we can just do a simple memcpy() to copy over
2243 * the new name before we switch.
2244 *
2245 * Note that we have to be a lot more careful about getting the hash
2246 * switched - we have to switch the hash value properly even if it
2247 * then no longer matches the actual (corrupted) string of the target.
2248 * The hash value has to match the hash queue that the dentry is on..
2249 */
2250 /*
2251 * __d_move - move a dentry
2252 * @dentry: entry to move
2253 * @target: new dentry
2254 *
2255 * Update the dcache to reflect the move of a file name. Negative
2256 * dcache entries should not be moved in this way. Caller must hold
2257 * rename_lock, the i_mutex of the source and target directories,
2258 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2259 */
2260 static void __d_move(struct dentry * dentry, struct dentry * target)
2261 {
2262 if (!dentry->d_inode)
2263 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2264
2265 BUG_ON(d_ancestor(dentry, target));
2266 BUG_ON(d_ancestor(target, dentry));
2267
2268 dentry_lock_for_move(dentry, target);
2269
2270 write_seqcount_begin(&dentry->d_seq);
2271 write_seqcount_begin(&target->d_seq);
2272
2273 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2274
2275 /*
2276 * Move the dentry to the target hash queue. Don't bother checking
2277 * for the same hash queue because of how unlikely it is.
2278 */
2279 __d_drop(dentry);
2280 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2281
2282 /* Unhash the target: dput() will then get rid of it */
2283 __d_drop(target);
2284
2285 list_del(&dentry->d_u.d_child);
2286 list_del(&target->d_u.d_child);
2287
2288 /* Switch the names.. */
2289 switch_names(dentry, target);
2290 swap(dentry->d_name.hash, target->d_name.hash);
2291
2292 /* ... and switch the parents */
2293 if (IS_ROOT(dentry)) {
2294 dentry->d_parent = target->d_parent;
2295 target->d_parent = target;
2296 INIT_LIST_HEAD(&target->d_u.d_child);
2297 } else {
2298 swap(dentry->d_parent, target->d_parent);
2299
2300 /* And add them back to the (new) parent lists */
2301 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2302 }
2303
2304 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2305
2306 write_seqcount_end(&target->d_seq);
2307 write_seqcount_end(&dentry->d_seq);
2308
2309 dentry_unlock_parents_for_move(dentry, target);
2310 spin_unlock(&target->d_lock);
2311 fsnotify_d_move(dentry);
2312 spin_unlock(&dentry->d_lock);
2313 }
2314
2315 /*
2316 * d_move - move a dentry
2317 * @dentry: entry to move
2318 * @target: new dentry
2319 *
2320 * Update the dcache to reflect the move of a file name. Negative
2321 * dcache entries should not be moved in this way. See the locking
2322 * requirements for __d_move.
2323 */
2324 void d_move(struct dentry *dentry, struct dentry *target)
2325 {
2326 write_seqlock(&rename_lock);
2327 __d_move(dentry, target);
2328 write_sequnlock(&rename_lock);
2329 }
2330 EXPORT_SYMBOL(d_move);
2331
2332 /**
2333 * d_ancestor - search for an ancestor
2334 * @p1: ancestor dentry
2335 * @p2: child dentry
2336 *
2337 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2338 * an ancestor of p2, else NULL.
2339 */
2340 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2341 {
2342 struct dentry *p;
2343
2344 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2345 if (p->d_parent == p1)
2346 return p;
2347 }
2348 return NULL;
2349 }
2350
2351 /*
2352 * This helper attempts to cope with remotely renamed directories
2353 *
2354 * It assumes that the caller is already holding
2355 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2356 *
2357 * Note: If ever the locking in lock_rename() changes, then please
2358 * remember to update this too...
2359 */
2360 static struct dentry *__d_unalias(struct inode *inode,
2361 struct dentry *dentry, struct dentry *alias)
2362 {
2363 struct mutex *m1 = NULL, *m2 = NULL;
2364 struct dentry *ret = ERR_PTR(-EBUSY);
2365
2366 /* If alias and dentry share a parent, then no extra locks required */
2367 if (alias->d_parent == dentry->d_parent)
2368 goto out_unalias;
2369
2370 /* See lock_rename() */
2371 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2372 goto out_err;
2373 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2374 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2375 goto out_err;
2376 m2 = &alias->d_parent->d_inode->i_mutex;
2377 out_unalias:
2378 if (likely(!d_mountpoint(alias))) {
2379 __d_move(alias, dentry);
2380 ret = alias;
2381 }
2382 out_err:
2383 spin_unlock(&inode->i_lock);
2384 if (m2)
2385 mutex_unlock(m2);
2386 if (m1)
2387 mutex_unlock(m1);
2388 return ret;
2389 }
2390
2391 /*
2392 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2393 * named dentry in place of the dentry to be replaced.
2394 * returns with anon->d_lock held!
2395 */
2396 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2397 {
2398 struct dentry *dparent;
2399
2400 dentry_lock_for_move(anon, dentry);
2401
2402 write_seqcount_begin(&dentry->d_seq);
2403 write_seqcount_begin(&anon->d_seq);
2404
2405 dparent = dentry->d_parent;
2406
2407 switch_names(dentry, anon);
2408 swap(dentry->d_name.hash, anon->d_name.hash);
2409
2410 dentry->d_parent = dentry;
2411 list_del_init(&dentry->d_u.d_child);
2412 anon->d_parent = dparent;
2413 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2414
2415 write_seqcount_end(&dentry->d_seq);
2416 write_seqcount_end(&anon->d_seq);
2417
2418 dentry_unlock_parents_for_move(anon, dentry);
2419 spin_unlock(&dentry->d_lock);
2420
2421 /* anon->d_lock still locked, returns locked */
2422 anon->d_flags &= ~DCACHE_DISCONNECTED;
2423 }
2424
2425 /**
2426 * d_materialise_unique - introduce an inode into the tree
2427 * @dentry: candidate dentry
2428 * @inode: inode to bind to the dentry, to which aliases may be attached
2429 *
2430 * Introduces an dentry into the tree, substituting an extant disconnected
2431 * root directory alias in its place if there is one. Caller must hold the
2432 * i_mutex of the parent directory.
2433 */
2434 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2435 {
2436 struct dentry *actual;
2437
2438 BUG_ON(!d_unhashed(dentry));
2439
2440 if (!inode) {
2441 actual = dentry;
2442 __d_instantiate(dentry, NULL);
2443 d_rehash(actual);
2444 goto out_nolock;
2445 }
2446
2447 spin_lock(&inode->i_lock);
2448
2449 if (S_ISDIR(inode->i_mode)) {
2450 struct dentry *alias;
2451
2452 /* Does an aliased dentry already exist? */
2453 alias = __d_find_alias(inode, 0);
2454 if (alias) {
2455 actual = alias;
2456 write_seqlock(&rename_lock);
2457
2458 if (d_ancestor(alias, dentry)) {
2459 /* Check for loops */
2460 actual = ERR_PTR(-ELOOP);
2461 spin_unlock(&inode->i_lock);
2462 } else if (IS_ROOT(alias)) {
2463 /* Is this an anonymous mountpoint that we
2464 * could splice into our tree? */
2465 __d_materialise_dentry(dentry, alias);
2466 write_sequnlock(&rename_lock);
2467 __d_drop(alias);
2468 goto found;
2469 } else {
2470 /* Nope, but we must(!) avoid directory
2471 * aliasing. This drops inode->i_lock */
2472 actual = __d_unalias(inode, dentry, alias);
2473 }
2474 write_sequnlock(&rename_lock);
2475 if (IS_ERR(actual)) {
2476 if (PTR_ERR(actual) == -ELOOP)
2477 pr_warn_ratelimited(
2478 "VFS: Lookup of '%s' in %s %s"
2479 " would have caused loop\n",
2480 dentry->d_name.name,
2481 inode->i_sb->s_type->name,
2482 inode->i_sb->s_id);
2483 dput(alias);
2484 }
2485 goto out_nolock;
2486 }
2487 }
2488
2489 /* Add a unique reference */
2490 actual = __d_instantiate_unique(dentry, inode);
2491 if (!actual)
2492 actual = dentry;
2493 else
2494 BUG_ON(!d_unhashed(actual));
2495
2496 spin_lock(&actual->d_lock);
2497 found:
2498 _d_rehash(actual);
2499 spin_unlock(&actual->d_lock);
2500 spin_unlock(&inode->i_lock);
2501 out_nolock:
2502 if (actual == dentry) {
2503 security_d_instantiate(dentry, inode);
2504 return NULL;
2505 }
2506
2507 iput(inode);
2508 return actual;
2509 }
2510 EXPORT_SYMBOL_GPL(d_materialise_unique);
2511
2512 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2513 {
2514 *buflen -= namelen;
2515 if (*buflen < 0)
2516 return -ENAMETOOLONG;
2517 *buffer -= namelen;
2518 memcpy(*buffer, str, namelen);
2519 return 0;
2520 }
2521
2522 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2523 {
2524 return prepend(buffer, buflen, name->name, name->len);
2525 }
2526
2527 /**
2528 * prepend_path - Prepend path string to a buffer
2529 * @path: the dentry/vfsmount to report
2530 * @root: root vfsmnt/dentry
2531 * @buffer: pointer to the end of the buffer
2532 * @buflen: pointer to buffer length
2533 *
2534 * Caller holds the rename_lock.
2535 */
2536 static int prepend_path(const struct path *path,
2537 const struct path *root,
2538 char **buffer, int *buflen)
2539 {
2540 struct dentry *dentry = path->dentry;
2541 struct vfsmount *vfsmnt = path->mnt;
2542 struct mount *mnt = real_mount(vfsmnt);
2543 bool slash = false;
2544 int error = 0;
2545
2546 while (dentry != root->dentry || vfsmnt != root->mnt) {
2547 struct dentry * parent;
2548
2549 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2550 /* Global root? */
2551 if (!mnt_has_parent(mnt))
2552 goto global_root;
2553 dentry = mnt->mnt_mountpoint;
2554 mnt = mnt->mnt_parent;
2555 vfsmnt = &mnt->mnt;
2556 continue;
2557 }
2558 parent = dentry->d_parent;
2559 prefetch(parent);
2560 spin_lock(&dentry->d_lock);
2561 error = prepend_name(buffer, buflen, &dentry->d_name);
2562 spin_unlock(&dentry->d_lock);
2563 if (!error)
2564 error = prepend(buffer, buflen, "/", 1);
2565 if (error)
2566 break;
2567
2568 slash = true;
2569 dentry = parent;
2570 }
2571
2572 if (!error && !slash)
2573 error = prepend(buffer, buflen, "/", 1);
2574
2575 return error;
2576
2577 global_root:
2578 /*
2579 * Filesystems needing to implement special "root names"
2580 * should do so with ->d_dname()
2581 */
2582 if (IS_ROOT(dentry) &&
2583 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2584 WARN(1, "Root dentry has weird name <%.*s>\n",
2585 (int) dentry->d_name.len, dentry->d_name.name);
2586 }
2587 if (!slash)
2588 error = prepend(buffer, buflen, "/", 1);
2589 if (!error)
2590 error = is_mounted(vfsmnt) ? 1 : 2;
2591 return error;
2592 }
2593
2594 /**
2595 * __d_path - return the path of a dentry
2596 * @path: the dentry/vfsmount to report
2597 * @root: root vfsmnt/dentry
2598 * @buf: buffer to return value in
2599 * @buflen: buffer length
2600 *
2601 * Convert a dentry into an ASCII path name.
2602 *
2603 * Returns a pointer into the buffer or an error code if the
2604 * path was too long.
2605 *
2606 * "buflen" should be positive.
2607 *
2608 * If the path is not reachable from the supplied root, return %NULL.
2609 */
2610 char *__d_path(const struct path *path,
2611 const struct path *root,
2612 char *buf, int buflen)
2613 {
2614 char *res = buf + buflen;
2615 int error;
2616
2617 prepend(&res, &buflen, "\0", 1);
2618 br_read_lock(&vfsmount_lock);
2619 write_seqlock(&rename_lock);
2620 error = prepend_path(path, root, &res, &buflen);
2621 write_sequnlock(&rename_lock);
2622 br_read_unlock(&vfsmount_lock);
2623
2624 if (error < 0)
2625 return ERR_PTR(error);
2626 if (error > 0)
2627 return NULL;
2628 return res;
2629 }
2630
2631 char *d_absolute_path(const struct path *path,
2632 char *buf, int buflen)
2633 {
2634 struct path root = {};
2635 char *res = buf + buflen;
2636 int error;
2637
2638 prepend(&res, &buflen, "\0", 1);
2639 br_read_lock(&vfsmount_lock);
2640 write_seqlock(&rename_lock);
2641 error = prepend_path(path, &root, &res, &buflen);
2642 write_sequnlock(&rename_lock);
2643 br_read_unlock(&vfsmount_lock);
2644
2645 if (error > 1)
2646 error = -EINVAL;
2647 if (error < 0)
2648 return ERR_PTR(error);
2649 return res;
2650 }
2651
2652 /*
2653 * same as __d_path but appends "(deleted)" for unlinked files.
2654 */
2655 static int path_with_deleted(const struct path *path,
2656 const struct path *root,
2657 char **buf, int *buflen)
2658 {
2659 prepend(buf, buflen, "\0", 1);
2660 if (d_unlinked(path->dentry)) {
2661 int error = prepend(buf, buflen, " (deleted)", 10);
2662 if (error)
2663 return error;
2664 }
2665
2666 return prepend_path(path, root, buf, buflen);
2667 }
2668
2669 static int prepend_unreachable(char **buffer, int *buflen)
2670 {
2671 return prepend(buffer, buflen, "(unreachable)", 13);
2672 }
2673
2674 /**
2675 * d_path - return the path of a dentry
2676 * @path: path to report
2677 * @buf: buffer to return value in
2678 * @buflen: buffer length
2679 *
2680 * Convert a dentry into an ASCII path name. If the entry has been deleted
2681 * the string " (deleted)" is appended. Note that this is ambiguous.
2682 *
2683 * Returns a pointer into the buffer or an error code if the path was
2684 * too long. Note: Callers should use the returned pointer, not the passed
2685 * in buffer, to use the name! The implementation often starts at an offset
2686 * into the buffer, and may leave 0 bytes at the start.
2687 *
2688 * "buflen" should be positive.
2689 */
2690 char *d_path(const struct path *path, char *buf, int buflen)
2691 {
2692 char *res = buf + buflen;
2693 struct path root;
2694 int error;
2695
2696 /*
2697 * We have various synthetic filesystems that never get mounted. On
2698 * these filesystems dentries are never used for lookup purposes, and
2699 * thus don't need to be hashed. They also don't need a name until a
2700 * user wants to identify the object in /proc/pid/fd/. The little hack
2701 * below allows us to generate a name for these objects on demand:
2702 */
2703 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2704 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2705
2706 get_fs_root(current->fs, &root);
2707 br_read_lock(&vfsmount_lock);
2708 write_seqlock(&rename_lock);
2709 error = path_with_deleted(path, &root, &res, &buflen);
2710 write_sequnlock(&rename_lock);
2711 br_read_unlock(&vfsmount_lock);
2712 if (error < 0)
2713 res = ERR_PTR(error);
2714 path_put(&root);
2715 return res;
2716 }
2717 EXPORT_SYMBOL(d_path);
2718
2719 /*
2720 * Helper function for dentry_operations.d_dname() members
2721 */
2722 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2723 const char *fmt, ...)
2724 {
2725 va_list args;
2726 char temp[64];
2727 int sz;
2728
2729 va_start(args, fmt);
2730 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2731 va_end(args);
2732
2733 if (sz > sizeof(temp) || sz > buflen)
2734 return ERR_PTR(-ENAMETOOLONG);
2735
2736 buffer += buflen - sz;
2737 return memcpy(buffer, temp, sz);
2738 }
2739
2740 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
2741 {
2742 char *end = buffer + buflen;
2743 /* these dentries are never renamed, so d_lock is not needed */
2744 if (prepend(&end, &buflen, " (deleted)", 11) ||
2745 prepend_name(&end, &buflen, &dentry->d_name) ||
2746 prepend(&end, &buflen, "/", 1))
2747 end = ERR_PTR(-ENAMETOOLONG);
2748 return end;
2749 }
2750
2751 /*
2752 * Write full pathname from the root of the filesystem into the buffer.
2753 */
2754 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2755 {
2756 char *end = buf + buflen;
2757 char *retval;
2758
2759 prepend(&end, &buflen, "\0", 1);
2760 if (buflen < 1)
2761 goto Elong;
2762 /* Get '/' right */
2763 retval = end-1;
2764 *retval = '/';
2765
2766 while (!IS_ROOT(dentry)) {
2767 struct dentry *parent = dentry->d_parent;
2768 int error;
2769
2770 prefetch(parent);
2771 spin_lock(&dentry->d_lock);
2772 error = prepend_name(&end, &buflen, &dentry->d_name);
2773 spin_unlock(&dentry->d_lock);
2774 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2775 goto Elong;
2776
2777 retval = end;
2778 dentry = parent;
2779 }
2780 return retval;
2781 Elong:
2782 return ERR_PTR(-ENAMETOOLONG);
2783 }
2784
2785 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2786 {
2787 char *retval;
2788
2789 write_seqlock(&rename_lock);
2790 retval = __dentry_path(dentry, buf, buflen);
2791 write_sequnlock(&rename_lock);
2792
2793 return retval;
2794 }
2795 EXPORT_SYMBOL(dentry_path_raw);
2796
2797 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2798 {
2799 char *p = NULL;
2800 char *retval;
2801
2802 write_seqlock(&rename_lock);
2803 if (d_unlinked(dentry)) {
2804 p = buf + buflen;
2805 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2806 goto Elong;
2807 buflen++;
2808 }
2809 retval = __dentry_path(dentry, buf, buflen);
2810 write_sequnlock(&rename_lock);
2811 if (!IS_ERR(retval) && p)
2812 *p = '/'; /* restore '/' overriden with '\0' */
2813 return retval;
2814 Elong:
2815 return ERR_PTR(-ENAMETOOLONG);
2816 }
2817
2818 /*
2819 * NOTE! The user-level library version returns a
2820 * character pointer. The kernel system call just
2821 * returns the length of the buffer filled (which
2822 * includes the ending '\0' character), or a negative
2823 * error value. So libc would do something like
2824 *
2825 * char *getcwd(char * buf, size_t size)
2826 * {
2827 * int retval;
2828 *
2829 * retval = sys_getcwd(buf, size);
2830 * if (retval >= 0)
2831 * return buf;
2832 * errno = -retval;
2833 * return NULL;
2834 * }
2835 */
2836 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2837 {
2838 int error;
2839 struct path pwd, root;
2840 char *page = (char *) __get_free_page(GFP_USER);
2841
2842 if (!page)
2843 return -ENOMEM;
2844
2845 get_fs_root_and_pwd(current->fs, &root, &pwd);
2846
2847 error = -ENOENT;
2848 br_read_lock(&vfsmount_lock);
2849 write_seqlock(&rename_lock);
2850 if (!d_unlinked(pwd.dentry)) {
2851 unsigned long len;
2852 char *cwd = page + PAGE_SIZE;
2853 int buflen = PAGE_SIZE;
2854
2855 prepend(&cwd, &buflen, "\0", 1);
2856 error = prepend_path(&pwd, &root, &cwd, &buflen);
2857 write_sequnlock(&rename_lock);
2858 br_read_unlock(&vfsmount_lock);
2859
2860 if (error < 0)
2861 goto out;
2862
2863 /* Unreachable from current root */
2864 if (error > 0) {
2865 error = prepend_unreachable(&cwd, &buflen);
2866 if (error)
2867 goto out;
2868 }
2869
2870 error = -ERANGE;
2871 len = PAGE_SIZE + page - cwd;
2872 if (len <= size) {
2873 error = len;
2874 if (copy_to_user(buf, cwd, len))
2875 error = -EFAULT;
2876 }
2877 } else {
2878 write_sequnlock(&rename_lock);
2879 br_read_unlock(&vfsmount_lock);
2880 }
2881
2882 out:
2883 path_put(&pwd);
2884 path_put(&root);
2885 free_page((unsigned long) page);
2886 return error;
2887 }
2888
2889 /*
2890 * Test whether new_dentry is a subdirectory of old_dentry.
2891 *
2892 * Trivially implemented using the dcache structure
2893 */
2894
2895 /**
2896 * is_subdir - is new dentry a subdirectory of old_dentry
2897 * @new_dentry: new dentry
2898 * @old_dentry: old dentry
2899 *
2900 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2901 * Returns 0 otherwise.
2902 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2903 */
2904
2905 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2906 {
2907 int result;
2908 unsigned seq;
2909
2910 if (new_dentry == old_dentry)
2911 return 1;
2912
2913 do {
2914 /* for restarting inner loop in case of seq retry */
2915 seq = read_seqbegin(&rename_lock);
2916 /*
2917 * Need rcu_readlock to protect against the d_parent trashing
2918 * due to d_move
2919 */
2920 rcu_read_lock();
2921 if (d_ancestor(old_dentry, new_dentry))
2922 result = 1;
2923 else
2924 result = 0;
2925 rcu_read_unlock();
2926 } while (read_seqretry(&rename_lock, seq));
2927
2928 return result;
2929 }
2930
2931 void d_genocide(struct dentry *root)
2932 {
2933 struct dentry *this_parent;
2934 struct list_head *next;
2935 unsigned seq;
2936 int locked = 0;
2937
2938 seq = read_seqbegin(&rename_lock);
2939 again:
2940 this_parent = root;
2941 spin_lock(&this_parent->d_lock);
2942 repeat:
2943 next = this_parent->d_subdirs.next;
2944 resume:
2945 while (next != &this_parent->d_subdirs) {
2946 struct list_head *tmp = next;
2947 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2948 next = tmp->next;
2949
2950 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2951 if (d_unhashed(dentry) || !dentry->d_inode) {
2952 spin_unlock(&dentry->d_lock);
2953 continue;
2954 }
2955 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2956 dentry->d_flags |= DCACHE_GENOCIDE;
2957 dentry->d_lockref.count--;
2958 }
2959 if (!list_empty(&dentry->d_subdirs)) {
2960 spin_unlock(&this_parent->d_lock);
2961 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2962 this_parent = dentry;
2963 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2964 goto repeat;
2965 }
2966 spin_unlock(&dentry->d_lock);
2967 }
2968 if (this_parent != root) {
2969 struct dentry *child = this_parent;
2970 this_parent = try_to_ascend(this_parent, locked, seq);
2971 if (!this_parent)
2972 goto rename_retry;
2973 next = child->d_u.d_child.next;
2974 goto resume;
2975 }
2976 spin_unlock(&this_parent->d_lock);
2977 if (!locked && read_seqretry(&rename_lock, seq))
2978 goto rename_retry;
2979 if (locked)
2980 write_sequnlock(&rename_lock);
2981 return;
2982
2983 rename_retry:
2984 if (locked)
2985 goto again;
2986 locked = 1;
2987 write_seqlock(&rename_lock);
2988 goto again;
2989 }
2990
2991 void d_tmpfile(struct dentry *dentry, struct inode *inode)
2992 {
2993 inode_dec_link_count(inode);
2994 BUG_ON(dentry->d_name.name != dentry->d_iname ||
2995 !hlist_unhashed(&dentry->d_alias) ||
2996 !d_unlinked(dentry));
2997 spin_lock(&dentry->d_parent->d_lock);
2998 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2999 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3000 (unsigned long long)inode->i_ino);
3001 spin_unlock(&dentry->d_lock);
3002 spin_unlock(&dentry->d_parent->d_lock);
3003 d_instantiate(dentry, inode);
3004 }
3005 EXPORT_SYMBOL(d_tmpfile);
3006
3007 static __initdata unsigned long dhash_entries;
3008 static int __init set_dhash_entries(char *str)
3009 {
3010 if (!str)
3011 return 0;
3012 dhash_entries = simple_strtoul(str, &str, 0);
3013 return 1;
3014 }
3015 __setup("dhash_entries=", set_dhash_entries);
3016
3017 static void __init dcache_init_early(void)
3018 {
3019 unsigned int loop;
3020
3021 /* If hashes are distributed across NUMA nodes, defer
3022 * hash allocation until vmalloc space is available.
3023 */
3024 if (hashdist)
3025 return;
3026
3027 dentry_hashtable =
3028 alloc_large_system_hash("Dentry cache",
3029 sizeof(struct hlist_bl_head),
3030 dhash_entries,
3031 13,
3032 HASH_EARLY,
3033 &d_hash_shift,
3034 &d_hash_mask,
3035 0,
3036 0);
3037
3038 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3039 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3040 }
3041
3042 static void __init dcache_init(void)
3043 {
3044 unsigned int loop;
3045
3046 /*
3047 * A constructor could be added for stable state like the lists,
3048 * but it is probably not worth it because of the cache nature
3049 * of the dcache.
3050 */
3051 dentry_cache = KMEM_CACHE(dentry,
3052 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3053
3054 /* Hash may have been set up in dcache_init_early */
3055 if (!hashdist)
3056 return;
3057
3058 dentry_hashtable =
3059 alloc_large_system_hash("Dentry cache",
3060 sizeof(struct hlist_bl_head),
3061 dhash_entries,
3062 13,
3063 0,
3064 &d_hash_shift,
3065 &d_hash_mask,
3066 0,
3067 0);
3068
3069 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3070 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3071 }
3072
3073 /* SLAB cache for __getname() consumers */
3074 struct kmem_cache *names_cachep __read_mostly;
3075 EXPORT_SYMBOL(names_cachep);
3076
3077 EXPORT_SYMBOL(d_genocide);
3078
3079 void __init vfs_caches_init_early(void)
3080 {
3081 dcache_init_early();
3082 inode_init_early();
3083 }
3084
3085 void __init vfs_caches_init(unsigned long mempages)
3086 {
3087 unsigned long reserve;
3088
3089 /* Base hash sizes on available memory, with a reserve equal to
3090 150% of current kernel size */
3091
3092 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3093 mempages -= reserve;
3094
3095 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3096 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3097
3098 dcache_init();
3099 inode_init();
3100 files_init(mempages);
3101 mnt_init();
3102 bdev_cache_init();
3103 chrdev_init();
3104 }
This page took 0.100121 seconds and 4 git commands to generate.