Merge branch 'for_2.6.38/pm-fixes' of ssh://master.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include "internal.h"
39
40 /*
41 * Usage:
42 * dcache->d_inode->i_lock protects:
43 * - i_dentry, d_alias, d_inode of aliases
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
46 * s_anon bl list spinlock protects:
47 * - the s_anon list (see __d_drop)
48 * dcache_lru_lock protects:
49 * - the dcache lru lists and counters
50 * d_lock protects:
51 * - d_flags
52 * - d_name
53 * - d_lru
54 * - d_count
55 * - d_unhashed()
56 * - d_parent and d_subdirs
57 * - childrens' d_child and d_parent
58 * - d_alias, d_inode
59 *
60 * Ordering:
61 * dentry->d_inode->i_lock
62 * dentry->d_lock
63 * dcache_lru_lock
64 * dcache_hash_bucket lock
65 * s_anon lock
66 *
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
69 * ...
70 * dentry->d_parent->d_lock
71 * dentry->d_lock
72 *
73 * If no ancestor relationship:
74 * if (dentry1 < dentry2)
75 * dentry1->d_lock
76 * dentry2->d_lock
77 */
78 int sysctl_vfs_cache_pressure __read_mostly = 100;
79 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
80
81 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
83
84 EXPORT_SYMBOL(rename_lock);
85
86 static struct kmem_cache *dentry_cache __read_mostly;
87
88 /*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
96 #define D_HASHBITS d_hash_shift
97 #define D_HASHMASK d_hash_mask
98
99 static unsigned int d_hash_mask __read_mostly;
100 static unsigned int d_hash_shift __read_mostly;
101
102 struct dcache_hash_bucket {
103 struct hlist_bl_head head;
104 };
105 static struct dcache_hash_bucket *dentry_hashtable __read_mostly;
106
107 static inline struct dcache_hash_bucket *d_hash(struct dentry *parent,
108 unsigned long hash)
109 {
110 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
111 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
113 }
114
115 static inline void spin_lock_bucket(struct dcache_hash_bucket *b)
116 {
117 bit_spin_lock(0, (unsigned long *)&b->head.first);
118 }
119
120 static inline void spin_unlock_bucket(struct dcache_hash_bucket *b)
121 {
122 __bit_spin_unlock(0, (unsigned long *)&b->head.first);
123 }
124
125 /* Statistics gathering. */
126 struct dentry_stat_t dentry_stat = {
127 .age_limit = 45,
128 };
129
130 static DEFINE_PER_CPU(unsigned int, nr_dentry);
131
132 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
133 static int get_nr_dentry(void)
134 {
135 int i;
136 int sum = 0;
137 for_each_possible_cpu(i)
138 sum += per_cpu(nr_dentry, i);
139 return sum < 0 ? 0 : sum;
140 }
141
142 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
143 size_t *lenp, loff_t *ppos)
144 {
145 dentry_stat.nr_dentry = get_nr_dentry();
146 return proc_dointvec(table, write, buffer, lenp, ppos);
147 }
148 #endif
149
150 static void __d_free(struct rcu_head *head)
151 {
152 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
153
154 WARN_ON(!list_empty(&dentry->d_alias));
155 if (dname_external(dentry))
156 kfree(dentry->d_name.name);
157 kmem_cache_free(dentry_cache, dentry);
158 }
159
160 /*
161 * no locks, please.
162 */
163 static void d_free(struct dentry *dentry)
164 {
165 BUG_ON(dentry->d_count);
166 this_cpu_dec(nr_dentry);
167 if (dentry->d_op && dentry->d_op->d_release)
168 dentry->d_op->d_release(dentry);
169
170 /* if dentry was never inserted into hash, immediate free is OK */
171 if (hlist_bl_unhashed(&dentry->d_hash))
172 __d_free(&dentry->d_u.d_rcu);
173 else
174 call_rcu(&dentry->d_u.d_rcu, __d_free);
175 }
176
177 /**
178 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
179 * @dentry: the target dentry
180 * After this call, in-progress rcu-walk path lookup will fail. This
181 * should be called after unhashing, and after changing d_inode (if
182 * the dentry has not already been unhashed).
183 */
184 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
185 {
186 assert_spin_locked(&dentry->d_lock);
187 /* Go through a barrier */
188 write_seqcount_barrier(&dentry->d_seq);
189 }
190
191 /*
192 * Release the dentry's inode, using the filesystem
193 * d_iput() operation if defined. Dentry has no refcount
194 * and is unhashed.
195 */
196 static void dentry_iput(struct dentry * dentry)
197 __releases(dentry->d_lock)
198 __releases(dentry->d_inode->i_lock)
199 {
200 struct inode *inode = dentry->d_inode;
201 if (inode) {
202 dentry->d_inode = NULL;
203 list_del_init(&dentry->d_alias);
204 spin_unlock(&dentry->d_lock);
205 spin_unlock(&inode->i_lock);
206 if (!inode->i_nlink)
207 fsnotify_inoderemove(inode);
208 if (dentry->d_op && dentry->d_op->d_iput)
209 dentry->d_op->d_iput(dentry, inode);
210 else
211 iput(inode);
212 } else {
213 spin_unlock(&dentry->d_lock);
214 }
215 }
216
217 /*
218 * Release the dentry's inode, using the filesystem
219 * d_iput() operation if defined. dentry remains in-use.
220 */
221 static void dentry_unlink_inode(struct dentry * dentry)
222 __releases(dentry->d_lock)
223 __releases(dentry->d_inode->i_lock)
224 {
225 struct inode *inode = dentry->d_inode;
226 dentry->d_inode = NULL;
227 list_del_init(&dentry->d_alias);
228 dentry_rcuwalk_barrier(dentry);
229 spin_unlock(&dentry->d_lock);
230 spin_unlock(&inode->i_lock);
231 if (!inode->i_nlink)
232 fsnotify_inoderemove(inode);
233 if (dentry->d_op && dentry->d_op->d_iput)
234 dentry->d_op->d_iput(dentry, inode);
235 else
236 iput(inode);
237 }
238
239 /*
240 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
241 */
242 static void dentry_lru_add(struct dentry *dentry)
243 {
244 if (list_empty(&dentry->d_lru)) {
245 spin_lock(&dcache_lru_lock);
246 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
247 dentry->d_sb->s_nr_dentry_unused++;
248 dentry_stat.nr_unused++;
249 spin_unlock(&dcache_lru_lock);
250 }
251 }
252
253 static void __dentry_lru_del(struct dentry *dentry)
254 {
255 list_del_init(&dentry->d_lru);
256 dentry->d_sb->s_nr_dentry_unused--;
257 dentry_stat.nr_unused--;
258 }
259
260 static void dentry_lru_del(struct dentry *dentry)
261 {
262 if (!list_empty(&dentry->d_lru)) {
263 spin_lock(&dcache_lru_lock);
264 __dentry_lru_del(dentry);
265 spin_unlock(&dcache_lru_lock);
266 }
267 }
268
269 static void dentry_lru_move_tail(struct dentry *dentry)
270 {
271 spin_lock(&dcache_lru_lock);
272 if (list_empty(&dentry->d_lru)) {
273 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
274 dentry->d_sb->s_nr_dentry_unused++;
275 dentry_stat.nr_unused++;
276 } else {
277 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
278 }
279 spin_unlock(&dcache_lru_lock);
280 }
281
282 /**
283 * d_kill - kill dentry and return parent
284 * @dentry: dentry to kill
285 * @parent: parent dentry
286 *
287 * The dentry must already be unhashed and removed from the LRU.
288 *
289 * If this is the root of the dentry tree, return NULL.
290 *
291 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
292 * d_kill.
293 */
294 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
295 __releases(dentry->d_lock)
296 __releases(parent->d_lock)
297 __releases(dentry->d_inode->i_lock)
298 {
299 dentry->d_parent = NULL;
300 list_del(&dentry->d_u.d_child);
301 if (parent)
302 spin_unlock(&parent->d_lock);
303 dentry_iput(dentry);
304 /*
305 * dentry_iput drops the locks, at which point nobody (except
306 * transient RCU lookups) can reach this dentry.
307 */
308 d_free(dentry);
309 return parent;
310 }
311
312 /**
313 * d_drop - drop a dentry
314 * @dentry: dentry to drop
315 *
316 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
317 * be found through a VFS lookup any more. Note that this is different from
318 * deleting the dentry - d_delete will try to mark the dentry negative if
319 * possible, giving a successful _negative_ lookup, while d_drop will
320 * just make the cache lookup fail.
321 *
322 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
323 * reason (NFS timeouts or autofs deletes).
324 *
325 * __d_drop requires dentry->d_lock.
326 */
327 void __d_drop(struct dentry *dentry)
328 {
329 if (!(dentry->d_flags & DCACHE_UNHASHED)) {
330 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) {
331 bit_spin_lock(0,
332 (unsigned long *)&dentry->d_sb->s_anon.first);
333 dentry->d_flags |= DCACHE_UNHASHED;
334 hlist_bl_del_init(&dentry->d_hash);
335 __bit_spin_unlock(0,
336 (unsigned long *)&dentry->d_sb->s_anon.first);
337 } else {
338 struct dcache_hash_bucket *b;
339 b = d_hash(dentry->d_parent, dentry->d_name.hash);
340 spin_lock_bucket(b);
341 /*
342 * We may not actually need to put DCACHE_UNHASHED
343 * manipulations under the hash lock, but follow
344 * the principle of least surprise.
345 */
346 dentry->d_flags |= DCACHE_UNHASHED;
347 hlist_bl_del_rcu(&dentry->d_hash);
348 spin_unlock_bucket(b);
349 dentry_rcuwalk_barrier(dentry);
350 }
351 }
352 }
353 EXPORT_SYMBOL(__d_drop);
354
355 void d_drop(struct dentry *dentry)
356 {
357 spin_lock(&dentry->d_lock);
358 __d_drop(dentry);
359 spin_unlock(&dentry->d_lock);
360 }
361 EXPORT_SYMBOL(d_drop);
362
363 /*
364 * Finish off a dentry we've decided to kill.
365 * dentry->d_lock must be held, returns with it unlocked.
366 * If ref is non-zero, then decrement the refcount too.
367 * Returns dentry requiring refcount drop, or NULL if we're done.
368 */
369 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
370 __releases(dentry->d_lock)
371 {
372 struct inode *inode;
373 struct dentry *parent;
374
375 inode = dentry->d_inode;
376 if (inode && !spin_trylock(&inode->i_lock)) {
377 relock:
378 spin_unlock(&dentry->d_lock);
379 cpu_relax();
380 return dentry; /* try again with same dentry */
381 }
382 if (IS_ROOT(dentry))
383 parent = NULL;
384 else
385 parent = dentry->d_parent;
386 if (parent && !spin_trylock(&parent->d_lock)) {
387 if (inode)
388 spin_unlock(&inode->i_lock);
389 goto relock;
390 }
391
392 if (ref)
393 dentry->d_count--;
394 /* if dentry was on the d_lru list delete it from there */
395 dentry_lru_del(dentry);
396 /* if it was on the hash then remove it */
397 __d_drop(dentry);
398 return d_kill(dentry, parent);
399 }
400
401 /*
402 * This is dput
403 *
404 * This is complicated by the fact that we do not want to put
405 * dentries that are no longer on any hash chain on the unused
406 * list: we'd much rather just get rid of them immediately.
407 *
408 * However, that implies that we have to traverse the dentry
409 * tree upwards to the parents which might _also_ now be
410 * scheduled for deletion (it may have been only waiting for
411 * its last child to go away).
412 *
413 * This tail recursion is done by hand as we don't want to depend
414 * on the compiler to always get this right (gcc generally doesn't).
415 * Real recursion would eat up our stack space.
416 */
417
418 /*
419 * dput - release a dentry
420 * @dentry: dentry to release
421 *
422 * Release a dentry. This will drop the usage count and if appropriate
423 * call the dentry unlink method as well as removing it from the queues and
424 * releasing its resources. If the parent dentries were scheduled for release
425 * they too may now get deleted.
426 */
427 void dput(struct dentry *dentry)
428 {
429 if (!dentry)
430 return;
431
432 repeat:
433 if (dentry->d_count == 1)
434 might_sleep();
435 spin_lock(&dentry->d_lock);
436 BUG_ON(!dentry->d_count);
437 if (dentry->d_count > 1) {
438 dentry->d_count--;
439 spin_unlock(&dentry->d_lock);
440 return;
441 }
442
443 if (dentry->d_flags & DCACHE_OP_DELETE) {
444 if (dentry->d_op->d_delete(dentry))
445 goto kill_it;
446 }
447
448 /* Unreachable? Get rid of it */
449 if (d_unhashed(dentry))
450 goto kill_it;
451
452 /* Otherwise leave it cached and ensure it's on the LRU */
453 dentry->d_flags |= DCACHE_REFERENCED;
454 dentry_lru_add(dentry);
455
456 dentry->d_count--;
457 spin_unlock(&dentry->d_lock);
458 return;
459
460 kill_it:
461 dentry = dentry_kill(dentry, 1);
462 if (dentry)
463 goto repeat;
464 }
465 EXPORT_SYMBOL(dput);
466
467 /**
468 * d_invalidate - invalidate a dentry
469 * @dentry: dentry to invalidate
470 *
471 * Try to invalidate the dentry if it turns out to be
472 * possible. If there are other dentries that can be
473 * reached through this one we can't delete it and we
474 * return -EBUSY. On success we return 0.
475 *
476 * no dcache lock.
477 */
478
479 int d_invalidate(struct dentry * dentry)
480 {
481 /*
482 * If it's already been dropped, return OK.
483 */
484 spin_lock(&dentry->d_lock);
485 if (d_unhashed(dentry)) {
486 spin_unlock(&dentry->d_lock);
487 return 0;
488 }
489 /*
490 * Check whether to do a partial shrink_dcache
491 * to get rid of unused child entries.
492 */
493 if (!list_empty(&dentry->d_subdirs)) {
494 spin_unlock(&dentry->d_lock);
495 shrink_dcache_parent(dentry);
496 spin_lock(&dentry->d_lock);
497 }
498
499 /*
500 * Somebody else still using it?
501 *
502 * If it's a directory, we can't drop it
503 * for fear of somebody re-populating it
504 * with children (even though dropping it
505 * would make it unreachable from the root,
506 * we might still populate it if it was a
507 * working directory or similar).
508 */
509 if (dentry->d_count > 1) {
510 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
511 spin_unlock(&dentry->d_lock);
512 return -EBUSY;
513 }
514 }
515
516 __d_drop(dentry);
517 spin_unlock(&dentry->d_lock);
518 return 0;
519 }
520 EXPORT_SYMBOL(d_invalidate);
521
522 /* This must be called with d_lock held */
523 static inline void __dget_dlock(struct dentry *dentry)
524 {
525 dentry->d_count++;
526 }
527
528 static inline void __dget(struct dentry *dentry)
529 {
530 spin_lock(&dentry->d_lock);
531 __dget_dlock(dentry);
532 spin_unlock(&dentry->d_lock);
533 }
534
535 struct dentry *dget_parent(struct dentry *dentry)
536 {
537 struct dentry *ret;
538
539 repeat:
540 /*
541 * Don't need rcu_dereference because we re-check it was correct under
542 * the lock.
543 */
544 rcu_read_lock();
545 ret = dentry->d_parent;
546 if (!ret) {
547 rcu_read_unlock();
548 goto out;
549 }
550 spin_lock(&ret->d_lock);
551 if (unlikely(ret != dentry->d_parent)) {
552 spin_unlock(&ret->d_lock);
553 rcu_read_unlock();
554 goto repeat;
555 }
556 rcu_read_unlock();
557 BUG_ON(!ret->d_count);
558 ret->d_count++;
559 spin_unlock(&ret->d_lock);
560 out:
561 return ret;
562 }
563 EXPORT_SYMBOL(dget_parent);
564
565 /**
566 * d_find_alias - grab a hashed alias of inode
567 * @inode: inode in question
568 * @want_discon: flag, used by d_splice_alias, to request
569 * that only a DISCONNECTED alias be returned.
570 *
571 * If inode has a hashed alias, or is a directory and has any alias,
572 * acquire the reference to alias and return it. Otherwise return NULL.
573 * Notice that if inode is a directory there can be only one alias and
574 * it can be unhashed only if it has no children, or if it is the root
575 * of a filesystem.
576 *
577 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
578 * any other hashed alias over that one unless @want_discon is set,
579 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
580 */
581 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
582 {
583 struct dentry *alias, *discon_alias;
584
585 again:
586 discon_alias = NULL;
587 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
588 spin_lock(&alias->d_lock);
589 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
590 if (IS_ROOT(alias) &&
591 (alias->d_flags & DCACHE_DISCONNECTED)) {
592 discon_alias = alias;
593 } else if (!want_discon) {
594 __dget_dlock(alias);
595 spin_unlock(&alias->d_lock);
596 return alias;
597 }
598 }
599 spin_unlock(&alias->d_lock);
600 }
601 if (discon_alias) {
602 alias = discon_alias;
603 spin_lock(&alias->d_lock);
604 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
605 if (IS_ROOT(alias) &&
606 (alias->d_flags & DCACHE_DISCONNECTED)) {
607 __dget_dlock(alias);
608 spin_unlock(&alias->d_lock);
609 return alias;
610 }
611 }
612 spin_unlock(&alias->d_lock);
613 goto again;
614 }
615 return NULL;
616 }
617
618 struct dentry *d_find_alias(struct inode *inode)
619 {
620 struct dentry *de = NULL;
621
622 if (!list_empty(&inode->i_dentry)) {
623 spin_lock(&inode->i_lock);
624 de = __d_find_alias(inode, 0);
625 spin_unlock(&inode->i_lock);
626 }
627 return de;
628 }
629 EXPORT_SYMBOL(d_find_alias);
630
631 /*
632 * Try to kill dentries associated with this inode.
633 * WARNING: you must own a reference to inode.
634 */
635 void d_prune_aliases(struct inode *inode)
636 {
637 struct dentry *dentry;
638 restart:
639 spin_lock(&inode->i_lock);
640 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
641 spin_lock(&dentry->d_lock);
642 if (!dentry->d_count) {
643 __dget_dlock(dentry);
644 __d_drop(dentry);
645 spin_unlock(&dentry->d_lock);
646 spin_unlock(&inode->i_lock);
647 dput(dentry);
648 goto restart;
649 }
650 spin_unlock(&dentry->d_lock);
651 }
652 spin_unlock(&inode->i_lock);
653 }
654 EXPORT_SYMBOL(d_prune_aliases);
655
656 /*
657 * Try to throw away a dentry - free the inode, dput the parent.
658 * Requires dentry->d_lock is held, and dentry->d_count == 0.
659 * Releases dentry->d_lock.
660 *
661 * This may fail if locks cannot be acquired no problem, just try again.
662 */
663 static void try_prune_one_dentry(struct dentry *dentry)
664 __releases(dentry->d_lock)
665 {
666 struct dentry *parent;
667
668 parent = dentry_kill(dentry, 0);
669 /*
670 * If dentry_kill returns NULL, we have nothing more to do.
671 * if it returns the same dentry, trylocks failed. In either
672 * case, just loop again.
673 *
674 * Otherwise, we need to prune ancestors too. This is necessary
675 * to prevent quadratic behavior of shrink_dcache_parent(), but
676 * is also expected to be beneficial in reducing dentry cache
677 * fragmentation.
678 */
679 if (!parent)
680 return;
681 if (parent == dentry)
682 return;
683
684 /* Prune ancestors. */
685 dentry = parent;
686 while (dentry) {
687 spin_lock(&dentry->d_lock);
688 if (dentry->d_count > 1) {
689 dentry->d_count--;
690 spin_unlock(&dentry->d_lock);
691 return;
692 }
693 dentry = dentry_kill(dentry, 1);
694 }
695 }
696
697 static void shrink_dentry_list(struct list_head *list)
698 {
699 struct dentry *dentry;
700
701 rcu_read_lock();
702 for (;;) {
703 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
704 if (&dentry->d_lru == list)
705 break; /* empty */
706 spin_lock(&dentry->d_lock);
707 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
708 spin_unlock(&dentry->d_lock);
709 continue;
710 }
711
712 /*
713 * We found an inuse dentry which was not removed from
714 * the LRU because of laziness during lookup. Do not free
715 * it - just keep it off the LRU list.
716 */
717 if (dentry->d_count) {
718 dentry_lru_del(dentry);
719 spin_unlock(&dentry->d_lock);
720 continue;
721 }
722
723 rcu_read_unlock();
724
725 try_prune_one_dentry(dentry);
726
727 rcu_read_lock();
728 }
729 rcu_read_unlock();
730 }
731
732 /**
733 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
734 * @sb: superblock to shrink dentry LRU.
735 * @count: number of entries to prune
736 * @flags: flags to control the dentry processing
737 *
738 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
739 */
740 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
741 {
742 /* called from prune_dcache() and shrink_dcache_parent() */
743 struct dentry *dentry;
744 LIST_HEAD(referenced);
745 LIST_HEAD(tmp);
746 int cnt = *count;
747
748 relock:
749 spin_lock(&dcache_lru_lock);
750 while (!list_empty(&sb->s_dentry_lru)) {
751 dentry = list_entry(sb->s_dentry_lru.prev,
752 struct dentry, d_lru);
753 BUG_ON(dentry->d_sb != sb);
754
755 if (!spin_trylock(&dentry->d_lock)) {
756 spin_unlock(&dcache_lru_lock);
757 cpu_relax();
758 goto relock;
759 }
760
761 /*
762 * If we are honouring the DCACHE_REFERENCED flag and the
763 * dentry has this flag set, don't free it. Clear the flag
764 * and put it back on the LRU.
765 */
766 if (flags & DCACHE_REFERENCED &&
767 dentry->d_flags & DCACHE_REFERENCED) {
768 dentry->d_flags &= ~DCACHE_REFERENCED;
769 list_move(&dentry->d_lru, &referenced);
770 spin_unlock(&dentry->d_lock);
771 } else {
772 list_move_tail(&dentry->d_lru, &tmp);
773 spin_unlock(&dentry->d_lock);
774 if (!--cnt)
775 break;
776 }
777 cond_resched_lock(&dcache_lru_lock);
778 }
779 if (!list_empty(&referenced))
780 list_splice(&referenced, &sb->s_dentry_lru);
781 spin_unlock(&dcache_lru_lock);
782
783 shrink_dentry_list(&tmp);
784
785 *count = cnt;
786 }
787
788 /**
789 * prune_dcache - shrink the dcache
790 * @count: number of entries to try to free
791 *
792 * Shrink the dcache. This is done when we need more memory, or simply when we
793 * need to unmount something (at which point we need to unuse all dentries).
794 *
795 * This function may fail to free any resources if all the dentries are in use.
796 */
797 static void prune_dcache(int count)
798 {
799 struct super_block *sb, *p = NULL;
800 int w_count;
801 int unused = dentry_stat.nr_unused;
802 int prune_ratio;
803 int pruned;
804
805 if (unused == 0 || count == 0)
806 return;
807 if (count >= unused)
808 prune_ratio = 1;
809 else
810 prune_ratio = unused / count;
811 spin_lock(&sb_lock);
812 list_for_each_entry(sb, &super_blocks, s_list) {
813 if (list_empty(&sb->s_instances))
814 continue;
815 if (sb->s_nr_dentry_unused == 0)
816 continue;
817 sb->s_count++;
818 /* Now, we reclaim unused dentrins with fairness.
819 * We reclaim them same percentage from each superblock.
820 * We calculate number of dentries to scan on this sb
821 * as follows, but the implementation is arranged to avoid
822 * overflows:
823 * number of dentries to scan on this sb =
824 * count * (number of dentries on this sb /
825 * number of dentries in the machine)
826 */
827 spin_unlock(&sb_lock);
828 if (prune_ratio != 1)
829 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
830 else
831 w_count = sb->s_nr_dentry_unused;
832 pruned = w_count;
833 /*
834 * We need to be sure this filesystem isn't being unmounted,
835 * otherwise we could race with generic_shutdown_super(), and
836 * end up holding a reference to an inode while the filesystem
837 * is unmounted. So we try to get s_umount, and make sure
838 * s_root isn't NULL.
839 */
840 if (down_read_trylock(&sb->s_umount)) {
841 if ((sb->s_root != NULL) &&
842 (!list_empty(&sb->s_dentry_lru))) {
843 __shrink_dcache_sb(sb, &w_count,
844 DCACHE_REFERENCED);
845 pruned -= w_count;
846 }
847 up_read(&sb->s_umount);
848 }
849 spin_lock(&sb_lock);
850 if (p)
851 __put_super(p);
852 count -= pruned;
853 p = sb;
854 /* more work left to do? */
855 if (count <= 0)
856 break;
857 }
858 if (p)
859 __put_super(p);
860 spin_unlock(&sb_lock);
861 }
862
863 /**
864 * shrink_dcache_sb - shrink dcache for a superblock
865 * @sb: superblock
866 *
867 * Shrink the dcache for the specified super block. This is used to free
868 * the dcache before unmounting a file system.
869 */
870 void shrink_dcache_sb(struct super_block *sb)
871 {
872 LIST_HEAD(tmp);
873
874 spin_lock(&dcache_lru_lock);
875 while (!list_empty(&sb->s_dentry_lru)) {
876 list_splice_init(&sb->s_dentry_lru, &tmp);
877 spin_unlock(&dcache_lru_lock);
878 shrink_dentry_list(&tmp);
879 spin_lock(&dcache_lru_lock);
880 }
881 spin_unlock(&dcache_lru_lock);
882 }
883 EXPORT_SYMBOL(shrink_dcache_sb);
884
885 /*
886 * destroy a single subtree of dentries for unmount
887 * - see the comments on shrink_dcache_for_umount() for a description of the
888 * locking
889 */
890 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
891 {
892 struct dentry *parent;
893 unsigned detached = 0;
894
895 BUG_ON(!IS_ROOT(dentry));
896
897 /* detach this root from the system */
898 spin_lock(&dentry->d_lock);
899 dentry_lru_del(dentry);
900 __d_drop(dentry);
901 spin_unlock(&dentry->d_lock);
902
903 for (;;) {
904 /* descend to the first leaf in the current subtree */
905 while (!list_empty(&dentry->d_subdirs)) {
906 struct dentry *loop;
907
908 /* this is a branch with children - detach all of them
909 * from the system in one go */
910 spin_lock(&dentry->d_lock);
911 list_for_each_entry(loop, &dentry->d_subdirs,
912 d_u.d_child) {
913 spin_lock_nested(&loop->d_lock,
914 DENTRY_D_LOCK_NESTED);
915 dentry_lru_del(loop);
916 __d_drop(loop);
917 spin_unlock(&loop->d_lock);
918 }
919 spin_unlock(&dentry->d_lock);
920
921 /* move to the first child */
922 dentry = list_entry(dentry->d_subdirs.next,
923 struct dentry, d_u.d_child);
924 }
925
926 /* consume the dentries from this leaf up through its parents
927 * until we find one with children or run out altogether */
928 do {
929 struct inode *inode;
930
931 if (dentry->d_count != 0) {
932 printk(KERN_ERR
933 "BUG: Dentry %p{i=%lx,n=%s}"
934 " still in use (%d)"
935 " [unmount of %s %s]\n",
936 dentry,
937 dentry->d_inode ?
938 dentry->d_inode->i_ino : 0UL,
939 dentry->d_name.name,
940 dentry->d_count,
941 dentry->d_sb->s_type->name,
942 dentry->d_sb->s_id);
943 BUG();
944 }
945
946 if (IS_ROOT(dentry)) {
947 parent = NULL;
948 list_del(&dentry->d_u.d_child);
949 } else {
950 parent = dentry->d_parent;
951 spin_lock(&parent->d_lock);
952 parent->d_count--;
953 list_del(&dentry->d_u.d_child);
954 spin_unlock(&parent->d_lock);
955 }
956
957 detached++;
958
959 inode = dentry->d_inode;
960 if (inode) {
961 dentry->d_inode = NULL;
962 list_del_init(&dentry->d_alias);
963 if (dentry->d_op && dentry->d_op->d_iput)
964 dentry->d_op->d_iput(dentry, inode);
965 else
966 iput(inode);
967 }
968
969 d_free(dentry);
970
971 /* finished when we fall off the top of the tree,
972 * otherwise we ascend to the parent and move to the
973 * next sibling if there is one */
974 if (!parent)
975 return;
976 dentry = parent;
977 } while (list_empty(&dentry->d_subdirs));
978
979 dentry = list_entry(dentry->d_subdirs.next,
980 struct dentry, d_u.d_child);
981 }
982 }
983
984 /*
985 * destroy the dentries attached to a superblock on unmounting
986 * - we don't need to use dentry->d_lock because:
987 * - the superblock is detached from all mountings and open files, so the
988 * dentry trees will not be rearranged by the VFS
989 * - s_umount is write-locked, so the memory pressure shrinker will ignore
990 * any dentries belonging to this superblock that it comes across
991 * - the filesystem itself is no longer permitted to rearrange the dentries
992 * in this superblock
993 */
994 void shrink_dcache_for_umount(struct super_block *sb)
995 {
996 struct dentry *dentry;
997
998 if (down_read_trylock(&sb->s_umount))
999 BUG();
1000
1001 dentry = sb->s_root;
1002 sb->s_root = NULL;
1003 spin_lock(&dentry->d_lock);
1004 dentry->d_count--;
1005 spin_unlock(&dentry->d_lock);
1006 shrink_dcache_for_umount_subtree(dentry);
1007
1008 while (!hlist_bl_empty(&sb->s_anon)) {
1009 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1010 shrink_dcache_for_umount_subtree(dentry);
1011 }
1012 }
1013
1014 /*
1015 * Search for at least 1 mount point in the dentry's subdirs.
1016 * We descend to the next level whenever the d_subdirs
1017 * list is non-empty and continue searching.
1018 */
1019
1020 /**
1021 * have_submounts - check for mounts over a dentry
1022 * @parent: dentry to check.
1023 *
1024 * Return true if the parent or its subdirectories contain
1025 * a mount point
1026 */
1027 int have_submounts(struct dentry *parent)
1028 {
1029 struct dentry *this_parent;
1030 struct list_head *next;
1031 unsigned seq;
1032 int locked = 0;
1033
1034 seq = read_seqbegin(&rename_lock);
1035 again:
1036 this_parent = parent;
1037
1038 if (d_mountpoint(parent))
1039 goto positive;
1040 spin_lock(&this_parent->d_lock);
1041 repeat:
1042 next = this_parent->d_subdirs.next;
1043 resume:
1044 while (next != &this_parent->d_subdirs) {
1045 struct list_head *tmp = next;
1046 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1047 next = tmp->next;
1048
1049 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1050 /* Have we found a mount point ? */
1051 if (d_mountpoint(dentry)) {
1052 spin_unlock(&dentry->d_lock);
1053 spin_unlock(&this_parent->d_lock);
1054 goto positive;
1055 }
1056 if (!list_empty(&dentry->d_subdirs)) {
1057 spin_unlock(&this_parent->d_lock);
1058 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1059 this_parent = dentry;
1060 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1061 goto repeat;
1062 }
1063 spin_unlock(&dentry->d_lock);
1064 }
1065 /*
1066 * All done at this level ... ascend and resume the search.
1067 */
1068 if (this_parent != parent) {
1069 struct dentry *tmp;
1070 struct dentry *child;
1071
1072 tmp = this_parent->d_parent;
1073 rcu_read_lock();
1074 spin_unlock(&this_parent->d_lock);
1075 child = this_parent;
1076 this_parent = tmp;
1077 spin_lock(&this_parent->d_lock);
1078 /* might go back up the wrong parent if we have had a rename
1079 * or deletion */
1080 if (this_parent != child->d_parent ||
1081 (!locked && read_seqretry(&rename_lock, seq))) {
1082 spin_unlock(&this_parent->d_lock);
1083 rcu_read_unlock();
1084 goto rename_retry;
1085 }
1086 rcu_read_unlock();
1087 next = child->d_u.d_child.next;
1088 goto resume;
1089 }
1090 spin_unlock(&this_parent->d_lock);
1091 if (!locked && read_seqretry(&rename_lock, seq))
1092 goto rename_retry;
1093 if (locked)
1094 write_sequnlock(&rename_lock);
1095 return 0; /* No mount points found in tree */
1096 positive:
1097 if (!locked && read_seqretry(&rename_lock, seq))
1098 goto rename_retry;
1099 if (locked)
1100 write_sequnlock(&rename_lock);
1101 return 1;
1102
1103 rename_retry:
1104 locked = 1;
1105 write_seqlock(&rename_lock);
1106 goto again;
1107 }
1108 EXPORT_SYMBOL(have_submounts);
1109
1110 /*
1111 * Search the dentry child list for the specified parent,
1112 * and move any unused dentries to the end of the unused
1113 * list for prune_dcache(). We descend to the next level
1114 * whenever the d_subdirs list is non-empty and continue
1115 * searching.
1116 *
1117 * It returns zero iff there are no unused children,
1118 * otherwise it returns the number of children moved to
1119 * the end of the unused list. This may not be the total
1120 * number of unused children, because select_parent can
1121 * drop the lock and return early due to latency
1122 * constraints.
1123 */
1124 static int select_parent(struct dentry * parent)
1125 {
1126 struct dentry *this_parent;
1127 struct list_head *next;
1128 unsigned seq;
1129 int found = 0;
1130 int locked = 0;
1131
1132 seq = read_seqbegin(&rename_lock);
1133 again:
1134 this_parent = parent;
1135 spin_lock(&this_parent->d_lock);
1136 repeat:
1137 next = this_parent->d_subdirs.next;
1138 resume:
1139 while (next != &this_parent->d_subdirs) {
1140 struct list_head *tmp = next;
1141 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1142 next = tmp->next;
1143
1144 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1145
1146 /*
1147 * move only zero ref count dentries to the end
1148 * of the unused list for prune_dcache
1149 */
1150 if (!dentry->d_count) {
1151 dentry_lru_move_tail(dentry);
1152 found++;
1153 } else {
1154 dentry_lru_del(dentry);
1155 }
1156
1157 /*
1158 * We can return to the caller if we have found some (this
1159 * ensures forward progress). We'll be coming back to find
1160 * the rest.
1161 */
1162 if (found && need_resched()) {
1163 spin_unlock(&dentry->d_lock);
1164 goto out;
1165 }
1166
1167 /*
1168 * Descend a level if the d_subdirs list is non-empty.
1169 */
1170 if (!list_empty(&dentry->d_subdirs)) {
1171 spin_unlock(&this_parent->d_lock);
1172 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1173 this_parent = dentry;
1174 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1175 goto repeat;
1176 }
1177
1178 spin_unlock(&dentry->d_lock);
1179 }
1180 /*
1181 * All done at this level ... ascend and resume the search.
1182 */
1183 if (this_parent != parent) {
1184 struct dentry *tmp;
1185 struct dentry *child;
1186
1187 tmp = this_parent->d_parent;
1188 rcu_read_lock();
1189 spin_unlock(&this_parent->d_lock);
1190 child = this_parent;
1191 this_parent = tmp;
1192 spin_lock(&this_parent->d_lock);
1193 /* might go back up the wrong parent if we have had a rename
1194 * or deletion */
1195 if (this_parent != child->d_parent ||
1196 (!locked && read_seqretry(&rename_lock, seq))) {
1197 spin_unlock(&this_parent->d_lock);
1198 rcu_read_unlock();
1199 goto rename_retry;
1200 }
1201 rcu_read_unlock();
1202 next = child->d_u.d_child.next;
1203 goto resume;
1204 }
1205 out:
1206 spin_unlock(&this_parent->d_lock);
1207 if (!locked && read_seqretry(&rename_lock, seq))
1208 goto rename_retry;
1209 if (locked)
1210 write_sequnlock(&rename_lock);
1211 return found;
1212
1213 rename_retry:
1214 if (found)
1215 return found;
1216 locked = 1;
1217 write_seqlock(&rename_lock);
1218 goto again;
1219 }
1220
1221 /**
1222 * shrink_dcache_parent - prune dcache
1223 * @parent: parent of entries to prune
1224 *
1225 * Prune the dcache to remove unused children of the parent dentry.
1226 */
1227
1228 void shrink_dcache_parent(struct dentry * parent)
1229 {
1230 struct super_block *sb = parent->d_sb;
1231 int found;
1232
1233 while ((found = select_parent(parent)) != 0)
1234 __shrink_dcache_sb(sb, &found, 0);
1235 }
1236 EXPORT_SYMBOL(shrink_dcache_parent);
1237
1238 /*
1239 * Scan `nr' dentries and return the number which remain.
1240 *
1241 * We need to avoid reentering the filesystem if the caller is performing a
1242 * GFP_NOFS allocation attempt. One example deadlock is:
1243 *
1244 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1245 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1246 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1247 *
1248 * In this case we return -1 to tell the caller that we baled.
1249 */
1250 static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1251 {
1252 if (nr) {
1253 if (!(gfp_mask & __GFP_FS))
1254 return -1;
1255 prune_dcache(nr);
1256 }
1257
1258 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1259 }
1260
1261 static struct shrinker dcache_shrinker = {
1262 .shrink = shrink_dcache_memory,
1263 .seeks = DEFAULT_SEEKS,
1264 };
1265
1266 /**
1267 * d_alloc - allocate a dcache entry
1268 * @parent: parent of entry to allocate
1269 * @name: qstr of the name
1270 *
1271 * Allocates a dentry. It returns %NULL if there is insufficient memory
1272 * available. On a success the dentry is returned. The name passed in is
1273 * copied and the copy passed in may be reused after this call.
1274 */
1275
1276 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1277 {
1278 struct dentry *dentry;
1279 char *dname;
1280
1281 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1282 if (!dentry)
1283 return NULL;
1284
1285 if (name->len > DNAME_INLINE_LEN-1) {
1286 dname = kmalloc(name->len + 1, GFP_KERNEL);
1287 if (!dname) {
1288 kmem_cache_free(dentry_cache, dentry);
1289 return NULL;
1290 }
1291 } else {
1292 dname = dentry->d_iname;
1293 }
1294 dentry->d_name.name = dname;
1295
1296 dentry->d_name.len = name->len;
1297 dentry->d_name.hash = name->hash;
1298 memcpy(dname, name->name, name->len);
1299 dname[name->len] = 0;
1300
1301 dentry->d_count = 1;
1302 dentry->d_flags = DCACHE_UNHASHED;
1303 spin_lock_init(&dentry->d_lock);
1304 seqcount_init(&dentry->d_seq);
1305 dentry->d_inode = NULL;
1306 dentry->d_parent = NULL;
1307 dentry->d_sb = NULL;
1308 dentry->d_op = NULL;
1309 dentry->d_fsdata = NULL;
1310 INIT_HLIST_BL_NODE(&dentry->d_hash);
1311 INIT_LIST_HEAD(&dentry->d_lru);
1312 INIT_LIST_HEAD(&dentry->d_subdirs);
1313 INIT_LIST_HEAD(&dentry->d_alias);
1314 INIT_LIST_HEAD(&dentry->d_u.d_child);
1315
1316 if (parent) {
1317 spin_lock(&parent->d_lock);
1318 /*
1319 * don't need child lock because it is not subject
1320 * to concurrency here
1321 */
1322 __dget_dlock(parent);
1323 dentry->d_parent = parent;
1324 dentry->d_sb = parent->d_sb;
1325 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1326 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1327 spin_unlock(&parent->d_lock);
1328 }
1329
1330 this_cpu_inc(nr_dentry);
1331
1332 return dentry;
1333 }
1334 EXPORT_SYMBOL(d_alloc);
1335
1336 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1337 {
1338 struct dentry *dentry = d_alloc(NULL, name);
1339 if (dentry) {
1340 dentry->d_sb = sb;
1341 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1342 dentry->d_parent = dentry;
1343 dentry->d_flags |= DCACHE_DISCONNECTED;
1344 }
1345 return dentry;
1346 }
1347 EXPORT_SYMBOL(d_alloc_pseudo);
1348
1349 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1350 {
1351 struct qstr q;
1352
1353 q.name = name;
1354 q.len = strlen(name);
1355 q.hash = full_name_hash(q.name, q.len);
1356 return d_alloc(parent, &q);
1357 }
1358 EXPORT_SYMBOL(d_alloc_name);
1359
1360 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1361 {
1362 WARN_ON_ONCE(dentry->d_op);
1363 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1364 DCACHE_OP_COMPARE |
1365 DCACHE_OP_REVALIDATE |
1366 DCACHE_OP_DELETE ));
1367 dentry->d_op = op;
1368 if (!op)
1369 return;
1370 if (op->d_hash)
1371 dentry->d_flags |= DCACHE_OP_HASH;
1372 if (op->d_compare)
1373 dentry->d_flags |= DCACHE_OP_COMPARE;
1374 if (op->d_revalidate)
1375 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1376 if (op->d_delete)
1377 dentry->d_flags |= DCACHE_OP_DELETE;
1378
1379 }
1380 EXPORT_SYMBOL(d_set_d_op);
1381
1382 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1383 {
1384 spin_lock(&dentry->d_lock);
1385 if (inode) {
1386 if (unlikely(IS_AUTOMOUNT(inode)))
1387 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1388 list_add(&dentry->d_alias, &inode->i_dentry);
1389 }
1390 dentry->d_inode = inode;
1391 dentry_rcuwalk_barrier(dentry);
1392 spin_unlock(&dentry->d_lock);
1393 fsnotify_d_instantiate(dentry, inode);
1394 }
1395
1396 /**
1397 * d_instantiate - fill in inode information for a dentry
1398 * @entry: dentry to complete
1399 * @inode: inode to attach to this dentry
1400 *
1401 * Fill in inode information in the entry.
1402 *
1403 * This turns negative dentries into productive full members
1404 * of society.
1405 *
1406 * NOTE! This assumes that the inode count has been incremented
1407 * (or otherwise set) by the caller to indicate that it is now
1408 * in use by the dcache.
1409 */
1410
1411 void d_instantiate(struct dentry *entry, struct inode * inode)
1412 {
1413 BUG_ON(!list_empty(&entry->d_alias));
1414 if (inode)
1415 spin_lock(&inode->i_lock);
1416 __d_instantiate(entry, inode);
1417 if (inode)
1418 spin_unlock(&inode->i_lock);
1419 security_d_instantiate(entry, inode);
1420 }
1421 EXPORT_SYMBOL(d_instantiate);
1422
1423 /**
1424 * d_instantiate_unique - instantiate a non-aliased dentry
1425 * @entry: dentry to instantiate
1426 * @inode: inode to attach to this dentry
1427 *
1428 * Fill in inode information in the entry. On success, it returns NULL.
1429 * If an unhashed alias of "entry" already exists, then we return the
1430 * aliased dentry instead and drop one reference to inode.
1431 *
1432 * Note that in order to avoid conflicts with rename() etc, the caller
1433 * had better be holding the parent directory semaphore.
1434 *
1435 * This also assumes that the inode count has been incremented
1436 * (or otherwise set) by the caller to indicate that it is now
1437 * in use by the dcache.
1438 */
1439 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1440 struct inode *inode)
1441 {
1442 struct dentry *alias;
1443 int len = entry->d_name.len;
1444 const char *name = entry->d_name.name;
1445 unsigned int hash = entry->d_name.hash;
1446
1447 if (!inode) {
1448 __d_instantiate(entry, NULL);
1449 return NULL;
1450 }
1451
1452 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1453 struct qstr *qstr = &alias->d_name;
1454
1455 /*
1456 * Don't need alias->d_lock here, because aliases with
1457 * d_parent == entry->d_parent are not subject to name or
1458 * parent changes, because the parent inode i_mutex is held.
1459 */
1460 if (qstr->hash != hash)
1461 continue;
1462 if (alias->d_parent != entry->d_parent)
1463 continue;
1464 if (dentry_cmp(qstr->name, qstr->len, name, len))
1465 continue;
1466 __dget(alias);
1467 return alias;
1468 }
1469
1470 __d_instantiate(entry, inode);
1471 return NULL;
1472 }
1473
1474 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1475 {
1476 struct dentry *result;
1477
1478 BUG_ON(!list_empty(&entry->d_alias));
1479
1480 if (inode)
1481 spin_lock(&inode->i_lock);
1482 result = __d_instantiate_unique(entry, inode);
1483 if (inode)
1484 spin_unlock(&inode->i_lock);
1485
1486 if (!result) {
1487 security_d_instantiate(entry, inode);
1488 return NULL;
1489 }
1490
1491 BUG_ON(!d_unhashed(result));
1492 iput(inode);
1493 return result;
1494 }
1495
1496 EXPORT_SYMBOL(d_instantiate_unique);
1497
1498 /**
1499 * d_alloc_root - allocate root dentry
1500 * @root_inode: inode to allocate the root for
1501 *
1502 * Allocate a root ("/") dentry for the inode given. The inode is
1503 * instantiated and returned. %NULL is returned if there is insufficient
1504 * memory or the inode passed is %NULL.
1505 */
1506
1507 struct dentry * d_alloc_root(struct inode * root_inode)
1508 {
1509 struct dentry *res = NULL;
1510
1511 if (root_inode) {
1512 static const struct qstr name = { .name = "/", .len = 1 };
1513
1514 res = d_alloc(NULL, &name);
1515 if (res) {
1516 res->d_sb = root_inode->i_sb;
1517 d_set_d_op(res, res->d_sb->s_d_op);
1518 res->d_parent = res;
1519 d_instantiate(res, root_inode);
1520 }
1521 }
1522 return res;
1523 }
1524 EXPORT_SYMBOL(d_alloc_root);
1525
1526 /**
1527 * d_obtain_alias - find or allocate a dentry for a given inode
1528 * @inode: inode to allocate the dentry for
1529 *
1530 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1531 * similar open by handle operations. The returned dentry may be anonymous,
1532 * or may have a full name (if the inode was already in the cache).
1533 *
1534 * When called on a directory inode, we must ensure that the inode only ever
1535 * has one dentry. If a dentry is found, that is returned instead of
1536 * allocating a new one.
1537 *
1538 * On successful return, the reference to the inode has been transferred
1539 * to the dentry. In case of an error the reference on the inode is released.
1540 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1541 * be passed in and will be the error will be propagate to the return value,
1542 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1543 */
1544 struct dentry *d_obtain_alias(struct inode *inode)
1545 {
1546 static const struct qstr anonstring = { .name = "" };
1547 struct dentry *tmp;
1548 struct dentry *res;
1549
1550 if (!inode)
1551 return ERR_PTR(-ESTALE);
1552 if (IS_ERR(inode))
1553 return ERR_CAST(inode);
1554
1555 res = d_find_alias(inode);
1556 if (res)
1557 goto out_iput;
1558
1559 tmp = d_alloc(NULL, &anonstring);
1560 if (!tmp) {
1561 res = ERR_PTR(-ENOMEM);
1562 goto out_iput;
1563 }
1564 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1565
1566
1567 spin_lock(&inode->i_lock);
1568 res = __d_find_alias(inode, 0);
1569 if (res) {
1570 spin_unlock(&inode->i_lock);
1571 dput(tmp);
1572 goto out_iput;
1573 }
1574
1575 /* attach a disconnected dentry */
1576 spin_lock(&tmp->d_lock);
1577 tmp->d_sb = inode->i_sb;
1578 d_set_d_op(tmp, tmp->d_sb->s_d_op);
1579 tmp->d_inode = inode;
1580 tmp->d_flags |= DCACHE_DISCONNECTED;
1581 list_add(&tmp->d_alias, &inode->i_dentry);
1582 bit_spin_lock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
1583 tmp->d_flags &= ~DCACHE_UNHASHED;
1584 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1585 __bit_spin_unlock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
1586 spin_unlock(&tmp->d_lock);
1587 spin_unlock(&inode->i_lock);
1588
1589 return tmp;
1590
1591 out_iput:
1592 iput(inode);
1593 return res;
1594 }
1595 EXPORT_SYMBOL(d_obtain_alias);
1596
1597 /**
1598 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1599 * @inode: the inode which may have a disconnected dentry
1600 * @dentry: a negative dentry which we want to point to the inode.
1601 *
1602 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1603 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1604 * and return it, else simply d_add the inode to the dentry and return NULL.
1605 *
1606 * This is needed in the lookup routine of any filesystem that is exportable
1607 * (via knfsd) so that we can build dcache paths to directories effectively.
1608 *
1609 * If a dentry was found and moved, then it is returned. Otherwise NULL
1610 * is returned. This matches the expected return value of ->lookup.
1611 *
1612 */
1613 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1614 {
1615 struct dentry *new = NULL;
1616
1617 if (inode && S_ISDIR(inode->i_mode)) {
1618 spin_lock(&inode->i_lock);
1619 new = __d_find_alias(inode, 1);
1620 if (new) {
1621 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1622 spin_unlock(&inode->i_lock);
1623 security_d_instantiate(new, inode);
1624 d_move(new, dentry);
1625 iput(inode);
1626 } else {
1627 /* already taking inode->i_lock, so d_add() by hand */
1628 __d_instantiate(dentry, inode);
1629 spin_unlock(&inode->i_lock);
1630 security_d_instantiate(dentry, inode);
1631 d_rehash(dentry);
1632 }
1633 } else
1634 d_add(dentry, inode);
1635 return new;
1636 }
1637 EXPORT_SYMBOL(d_splice_alias);
1638
1639 /**
1640 * d_add_ci - lookup or allocate new dentry with case-exact name
1641 * @inode: the inode case-insensitive lookup has found
1642 * @dentry: the negative dentry that was passed to the parent's lookup func
1643 * @name: the case-exact name to be associated with the returned dentry
1644 *
1645 * This is to avoid filling the dcache with case-insensitive names to the
1646 * same inode, only the actual correct case is stored in the dcache for
1647 * case-insensitive filesystems.
1648 *
1649 * For a case-insensitive lookup match and if the the case-exact dentry
1650 * already exists in in the dcache, use it and return it.
1651 *
1652 * If no entry exists with the exact case name, allocate new dentry with
1653 * the exact case, and return the spliced entry.
1654 */
1655 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1656 struct qstr *name)
1657 {
1658 int error;
1659 struct dentry *found;
1660 struct dentry *new;
1661
1662 /*
1663 * First check if a dentry matching the name already exists,
1664 * if not go ahead and create it now.
1665 */
1666 found = d_hash_and_lookup(dentry->d_parent, name);
1667 if (!found) {
1668 new = d_alloc(dentry->d_parent, name);
1669 if (!new) {
1670 error = -ENOMEM;
1671 goto err_out;
1672 }
1673
1674 found = d_splice_alias(inode, new);
1675 if (found) {
1676 dput(new);
1677 return found;
1678 }
1679 return new;
1680 }
1681
1682 /*
1683 * If a matching dentry exists, and it's not negative use it.
1684 *
1685 * Decrement the reference count to balance the iget() done
1686 * earlier on.
1687 */
1688 if (found->d_inode) {
1689 if (unlikely(found->d_inode != inode)) {
1690 /* This can't happen because bad inodes are unhashed. */
1691 BUG_ON(!is_bad_inode(inode));
1692 BUG_ON(!is_bad_inode(found->d_inode));
1693 }
1694 iput(inode);
1695 return found;
1696 }
1697
1698 /*
1699 * Negative dentry: instantiate it unless the inode is a directory and
1700 * already has a dentry.
1701 */
1702 spin_lock(&inode->i_lock);
1703 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1704 __d_instantiate(found, inode);
1705 spin_unlock(&inode->i_lock);
1706 security_d_instantiate(found, inode);
1707 return found;
1708 }
1709
1710 /*
1711 * In case a directory already has a (disconnected) entry grab a
1712 * reference to it, move it in place and use it.
1713 */
1714 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1715 __dget(new);
1716 spin_unlock(&inode->i_lock);
1717 security_d_instantiate(found, inode);
1718 d_move(new, found);
1719 iput(inode);
1720 dput(found);
1721 return new;
1722
1723 err_out:
1724 iput(inode);
1725 return ERR_PTR(error);
1726 }
1727 EXPORT_SYMBOL(d_add_ci);
1728
1729 /**
1730 * __d_lookup_rcu - search for a dentry (racy, store-free)
1731 * @parent: parent dentry
1732 * @name: qstr of name we wish to find
1733 * @seq: returns d_seq value at the point where the dentry was found
1734 * @inode: returns dentry->d_inode when the inode was found valid.
1735 * Returns: dentry, or NULL
1736 *
1737 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1738 * resolution (store-free path walking) design described in
1739 * Documentation/filesystems/path-lookup.txt.
1740 *
1741 * This is not to be used outside core vfs.
1742 *
1743 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1744 * held, and rcu_read_lock held. The returned dentry must not be stored into
1745 * without taking d_lock and checking d_seq sequence count against @seq
1746 * returned here.
1747 *
1748 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1749 * function.
1750 *
1751 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1752 * the returned dentry, so long as its parent's seqlock is checked after the
1753 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1754 * is formed, giving integrity down the path walk.
1755 */
1756 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1757 unsigned *seq, struct inode **inode)
1758 {
1759 unsigned int len = name->len;
1760 unsigned int hash = name->hash;
1761 const unsigned char *str = name->name;
1762 struct dcache_hash_bucket *b = d_hash(parent, hash);
1763 struct hlist_bl_node *node;
1764 struct dentry *dentry;
1765
1766 /*
1767 * Note: There is significant duplication with __d_lookup_rcu which is
1768 * required to prevent single threaded performance regressions
1769 * especially on architectures where smp_rmb (in seqcounts) are costly.
1770 * Keep the two functions in sync.
1771 */
1772
1773 /*
1774 * The hash list is protected using RCU.
1775 *
1776 * Carefully use d_seq when comparing a candidate dentry, to avoid
1777 * races with d_move().
1778 *
1779 * It is possible that concurrent renames can mess up our list
1780 * walk here and result in missing our dentry, resulting in the
1781 * false-negative result. d_lookup() protects against concurrent
1782 * renames using rename_lock seqlock.
1783 *
1784 * See Documentation/vfs/dcache-locking.txt for more details.
1785 */
1786 hlist_bl_for_each_entry_rcu(dentry, node, &b->head, d_hash) {
1787 struct inode *i;
1788 const char *tname;
1789 int tlen;
1790
1791 if (dentry->d_name.hash != hash)
1792 continue;
1793
1794 seqretry:
1795 *seq = read_seqcount_begin(&dentry->d_seq);
1796 if (dentry->d_parent != parent)
1797 continue;
1798 if (d_unhashed(dentry))
1799 continue;
1800 tlen = dentry->d_name.len;
1801 tname = dentry->d_name.name;
1802 i = dentry->d_inode;
1803 prefetch(tname);
1804 if (i)
1805 prefetch(i);
1806 /*
1807 * This seqcount check is required to ensure name and
1808 * len are loaded atomically, so as not to walk off the
1809 * edge of memory when walking. If we could load this
1810 * atomically some other way, we could drop this check.
1811 */
1812 if (read_seqcount_retry(&dentry->d_seq, *seq))
1813 goto seqretry;
1814 if (parent->d_flags & DCACHE_OP_COMPARE) {
1815 if (parent->d_op->d_compare(parent, *inode,
1816 dentry, i,
1817 tlen, tname, name))
1818 continue;
1819 } else {
1820 if (dentry_cmp(tname, tlen, str, len))
1821 continue;
1822 }
1823 /*
1824 * No extra seqcount check is required after the name
1825 * compare. The caller must perform a seqcount check in
1826 * order to do anything useful with the returned dentry
1827 * anyway.
1828 */
1829 *inode = i;
1830 return dentry;
1831 }
1832 return NULL;
1833 }
1834
1835 /**
1836 * d_lookup - search for a dentry
1837 * @parent: parent dentry
1838 * @name: qstr of name we wish to find
1839 * Returns: dentry, or NULL
1840 *
1841 * d_lookup searches the children of the parent dentry for the name in
1842 * question. If the dentry is found its reference count is incremented and the
1843 * dentry is returned. The caller must use dput to free the entry when it has
1844 * finished using it. %NULL is returned if the dentry does not exist.
1845 */
1846 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1847 {
1848 struct dentry *dentry;
1849 unsigned seq;
1850
1851 do {
1852 seq = read_seqbegin(&rename_lock);
1853 dentry = __d_lookup(parent, name);
1854 if (dentry)
1855 break;
1856 } while (read_seqretry(&rename_lock, seq));
1857 return dentry;
1858 }
1859 EXPORT_SYMBOL(d_lookup);
1860
1861 /**
1862 * __d_lookup - search for a dentry (racy)
1863 * @parent: parent dentry
1864 * @name: qstr of name we wish to find
1865 * Returns: dentry, or NULL
1866 *
1867 * __d_lookup is like d_lookup, however it may (rarely) return a
1868 * false-negative result due to unrelated rename activity.
1869 *
1870 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1871 * however it must be used carefully, eg. with a following d_lookup in
1872 * the case of failure.
1873 *
1874 * __d_lookup callers must be commented.
1875 */
1876 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1877 {
1878 unsigned int len = name->len;
1879 unsigned int hash = name->hash;
1880 const unsigned char *str = name->name;
1881 struct dcache_hash_bucket *b = d_hash(parent, hash);
1882 struct hlist_bl_node *node;
1883 struct dentry *found = NULL;
1884 struct dentry *dentry;
1885
1886 /*
1887 * Note: There is significant duplication with __d_lookup_rcu which is
1888 * required to prevent single threaded performance regressions
1889 * especially on architectures where smp_rmb (in seqcounts) are costly.
1890 * Keep the two functions in sync.
1891 */
1892
1893 /*
1894 * The hash list is protected using RCU.
1895 *
1896 * Take d_lock when comparing a candidate dentry, to avoid races
1897 * with d_move().
1898 *
1899 * It is possible that concurrent renames can mess up our list
1900 * walk here and result in missing our dentry, resulting in the
1901 * false-negative result. d_lookup() protects against concurrent
1902 * renames using rename_lock seqlock.
1903 *
1904 * See Documentation/vfs/dcache-locking.txt for more details.
1905 */
1906 rcu_read_lock();
1907
1908 hlist_bl_for_each_entry_rcu(dentry, node, &b->head, d_hash) {
1909 const char *tname;
1910 int tlen;
1911
1912 if (dentry->d_name.hash != hash)
1913 continue;
1914
1915 spin_lock(&dentry->d_lock);
1916 if (dentry->d_parent != parent)
1917 goto next;
1918 if (d_unhashed(dentry))
1919 goto next;
1920
1921 /*
1922 * It is safe to compare names since d_move() cannot
1923 * change the qstr (protected by d_lock).
1924 */
1925 tlen = dentry->d_name.len;
1926 tname = dentry->d_name.name;
1927 if (parent->d_flags & DCACHE_OP_COMPARE) {
1928 if (parent->d_op->d_compare(parent, parent->d_inode,
1929 dentry, dentry->d_inode,
1930 tlen, tname, name))
1931 goto next;
1932 } else {
1933 if (dentry_cmp(tname, tlen, str, len))
1934 goto next;
1935 }
1936
1937 dentry->d_count++;
1938 found = dentry;
1939 spin_unlock(&dentry->d_lock);
1940 break;
1941 next:
1942 spin_unlock(&dentry->d_lock);
1943 }
1944 rcu_read_unlock();
1945
1946 return found;
1947 }
1948
1949 /**
1950 * d_hash_and_lookup - hash the qstr then search for a dentry
1951 * @dir: Directory to search in
1952 * @name: qstr of name we wish to find
1953 *
1954 * On hash failure or on lookup failure NULL is returned.
1955 */
1956 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1957 {
1958 struct dentry *dentry = NULL;
1959
1960 /*
1961 * Check for a fs-specific hash function. Note that we must
1962 * calculate the standard hash first, as the d_op->d_hash()
1963 * routine may choose to leave the hash value unchanged.
1964 */
1965 name->hash = full_name_hash(name->name, name->len);
1966 if (dir->d_flags & DCACHE_OP_HASH) {
1967 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1968 goto out;
1969 }
1970 dentry = d_lookup(dir, name);
1971 out:
1972 return dentry;
1973 }
1974
1975 /**
1976 * d_validate - verify dentry provided from insecure source (deprecated)
1977 * @dentry: The dentry alleged to be valid child of @dparent
1978 * @dparent: The parent dentry (known to be valid)
1979 *
1980 * An insecure source has sent us a dentry, here we verify it and dget() it.
1981 * This is used by ncpfs in its readdir implementation.
1982 * Zero is returned in the dentry is invalid.
1983 *
1984 * This function is slow for big directories, and deprecated, do not use it.
1985 */
1986 int d_validate(struct dentry *dentry, struct dentry *dparent)
1987 {
1988 struct dentry *child;
1989
1990 spin_lock(&dparent->d_lock);
1991 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1992 if (dentry == child) {
1993 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1994 __dget_dlock(dentry);
1995 spin_unlock(&dentry->d_lock);
1996 spin_unlock(&dparent->d_lock);
1997 return 1;
1998 }
1999 }
2000 spin_unlock(&dparent->d_lock);
2001
2002 return 0;
2003 }
2004 EXPORT_SYMBOL(d_validate);
2005
2006 /*
2007 * When a file is deleted, we have two options:
2008 * - turn this dentry into a negative dentry
2009 * - unhash this dentry and free it.
2010 *
2011 * Usually, we want to just turn this into
2012 * a negative dentry, but if anybody else is
2013 * currently using the dentry or the inode
2014 * we can't do that and we fall back on removing
2015 * it from the hash queues and waiting for
2016 * it to be deleted later when it has no users
2017 */
2018
2019 /**
2020 * d_delete - delete a dentry
2021 * @dentry: The dentry to delete
2022 *
2023 * Turn the dentry into a negative dentry if possible, otherwise
2024 * remove it from the hash queues so it can be deleted later
2025 */
2026
2027 void d_delete(struct dentry * dentry)
2028 {
2029 struct inode *inode;
2030 int isdir = 0;
2031 /*
2032 * Are we the only user?
2033 */
2034 again:
2035 spin_lock(&dentry->d_lock);
2036 inode = dentry->d_inode;
2037 isdir = S_ISDIR(inode->i_mode);
2038 if (dentry->d_count == 1) {
2039 if (inode && !spin_trylock(&inode->i_lock)) {
2040 spin_unlock(&dentry->d_lock);
2041 cpu_relax();
2042 goto again;
2043 }
2044 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2045 dentry_unlink_inode(dentry);
2046 fsnotify_nameremove(dentry, isdir);
2047 return;
2048 }
2049
2050 if (!d_unhashed(dentry))
2051 __d_drop(dentry);
2052
2053 spin_unlock(&dentry->d_lock);
2054
2055 fsnotify_nameremove(dentry, isdir);
2056 }
2057 EXPORT_SYMBOL(d_delete);
2058
2059 static void __d_rehash(struct dentry * entry, struct dcache_hash_bucket *b)
2060 {
2061 BUG_ON(!d_unhashed(entry));
2062 spin_lock_bucket(b);
2063 entry->d_flags &= ~DCACHE_UNHASHED;
2064 hlist_bl_add_head_rcu(&entry->d_hash, &b->head);
2065 spin_unlock_bucket(b);
2066 }
2067
2068 static void _d_rehash(struct dentry * entry)
2069 {
2070 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2071 }
2072
2073 /**
2074 * d_rehash - add an entry back to the hash
2075 * @entry: dentry to add to the hash
2076 *
2077 * Adds a dentry to the hash according to its name.
2078 */
2079
2080 void d_rehash(struct dentry * entry)
2081 {
2082 spin_lock(&entry->d_lock);
2083 _d_rehash(entry);
2084 spin_unlock(&entry->d_lock);
2085 }
2086 EXPORT_SYMBOL(d_rehash);
2087
2088 /**
2089 * dentry_update_name_case - update case insensitive dentry with a new name
2090 * @dentry: dentry to be updated
2091 * @name: new name
2092 *
2093 * Update a case insensitive dentry with new case of name.
2094 *
2095 * dentry must have been returned by d_lookup with name @name. Old and new
2096 * name lengths must match (ie. no d_compare which allows mismatched name
2097 * lengths).
2098 *
2099 * Parent inode i_mutex must be held over d_lookup and into this call (to
2100 * keep renames and concurrent inserts, and readdir(2) away).
2101 */
2102 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2103 {
2104 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
2105 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2106
2107 spin_lock(&dentry->d_lock);
2108 write_seqcount_begin(&dentry->d_seq);
2109 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2110 write_seqcount_end(&dentry->d_seq);
2111 spin_unlock(&dentry->d_lock);
2112 }
2113 EXPORT_SYMBOL(dentry_update_name_case);
2114
2115 static void switch_names(struct dentry *dentry, struct dentry *target)
2116 {
2117 if (dname_external(target)) {
2118 if (dname_external(dentry)) {
2119 /*
2120 * Both external: swap the pointers
2121 */
2122 swap(target->d_name.name, dentry->d_name.name);
2123 } else {
2124 /*
2125 * dentry:internal, target:external. Steal target's
2126 * storage and make target internal.
2127 */
2128 memcpy(target->d_iname, dentry->d_name.name,
2129 dentry->d_name.len + 1);
2130 dentry->d_name.name = target->d_name.name;
2131 target->d_name.name = target->d_iname;
2132 }
2133 } else {
2134 if (dname_external(dentry)) {
2135 /*
2136 * dentry:external, target:internal. Give dentry's
2137 * storage to target and make dentry internal
2138 */
2139 memcpy(dentry->d_iname, target->d_name.name,
2140 target->d_name.len + 1);
2141 target->d_name.name = dentry->d_name.name;
2142 dentry->d_name.name = dentry->d_iname;
2143 } else {
2144 /*
2145 * Both are internal. Just copy target to dentry
2146 */
2147 memcpy(dentry->d_iname, target->d_name.name,
2148 target->d_name.len + 1);
2149 dentry->d_name.len = target->d_name.len;
2150 return;
2151 }
2152 }
2153 swap(dentry->d_name.len, target->d_name.len);
2154 }
2155
2156 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2157 {
2158 /*
2159 * XXXX: do we really need to take target->d_lock?
2160 */
2161 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2162 spin_lock(&target->d_parent->d_lock);
2163 else {
2164 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2165 spin_lock(&dentry->d_parent->d_lock);
2166 spin_lock_nested(&target->d_parent->d_lock,
2167 DENTRY_D_LOCK_NESTED);
2168 } else {
2169 spin_lock(&target->d_parent->d_lock);
2170 spin_lock_nested(&dentry->d_parent->d_lock,
2171 DENTRY_D_LOCK_NESTED);
2172 }
2173 }
2174 if (target < dentry) {
2175 spin_lock_nested(&target->d_lock, 2);
2176 spin_lock_nested(&dentry->d_lock, 3);
2177 } else {
2178 spin_lock_nested(&dentry->d_lock, 2);
2179 spin_lock_nested(&target->d_lock, 3);
2180 }
2181 }
2182
2183 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2184 struct dentry *target)
2185 {
2186 if (target->d_parent != dentry->d_parent)
2187 spin_unlock(&dentry->d_parent->d_lock);
2188 if (target->d_parent != target)
2189 spin_unlock(&target->d_parent->d_lock);
2190 }
2191
2192 /*
2193 * When switching names, the actual string doesn't strictly have to
2194 * be preserved in the target - because we're dropping the target
2195 * anyway. As such, we can just do a simple memcpy() to copy over
2196 * the new name before we switch.
2197 *
2198 * Note that we have to be a lot more careful about getting the hash
2199 * switched - we have to switch the hash value properly even if it
2200 * then no longer matches the actual (corrupted) string of the target.
2201 * The hash value has to match the hash queue that the dentry is on..
2202 */
2203 /*
2204 * d_move - move a dentry
2205 * @dentry: entry to move
2206 * @target: new dentry
2207 *
2208 * Update the dcache to reflect the move of a file name. Negative
2209 * dcache entries should not be moved in this way.
2210 */
2211 void d_move(struct dentry * dentry, struct dentry * target)
2212 {
2213 if (!dentry->d_inode)
2214 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2215
2216 BUG_ON(d_ancestor(dentry, target));
2217 BUG_ON(d_ancestor(target, dentry));
2218
2219 write_seqlock(&rename_lock);
2220
2221 dentry_lock_for_move(dentry, target);
2222
2223 write_seqcount_begin(&dentry->d_seq);
2224 write_seqcount_begin(&target->d_seq);
2225
2226 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2227
2228 /*
2229 * Move the dentry to the target hash queue. Don't bother checking
2230 * for the same hash queue because of how unlikely it is.
2231 */
2232 __d_drop(dentry);
2233 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2234
2235 /* Unhash the target: dput() will then get rid of it */
2236 __d_drop(target);
2237
2238 list_del(&dentry->d_u.d_child);
2239 list_del(&target->d_u.d_child);
2240
2241 /* Switch the names.. */
2242 switch_names(dentry, target);
2243 swap(dentry->d_name.hash, target->d_name.hash);
2244
2245 /* ... and switch the parents */
2246 if (IS_ROOT(dentry)) {
2247 dentry->d_parent = target->d_parent;
2248 target->d_parent = target;
2249 INIT_LIST_HEAD(&target->d_u.d_child);
2250 } else {
2251 swap(dentry->d_parent, target->d_parent);
2252
2253 /* And add them back to the (new) parent lists */
2254 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2255 }
2256
2257 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2258
2259 write_seqcount_end(&target->d_seq);
2260 write_seqcount_end(&dentry->d_seq);
2261
2262 dentry_unlock_parents_for_move(dentry, target);
2263 spin_unlock(&target->d_lock);
2264 fsnotify_d_move(dentry);
2265 spin_unlock(&dentry->d_lock);
2266 write_sequnlock(&rename_lock);
2267 }
2268 EXPORT_SYMBOL(d_move);
2269
2270 /**
2271 * d_ancestor - search for an ancestor
2272 * @p1: ancestor dentry
2273 * @p2: child dentry
2274 *
2275 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2276 * an ancestor of p2, else NULL.
2277 */
2278 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2279 {
2280 struct dentry *p;
2281
2282 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2283 if (p->d_parent == p1)
2284 return p;
2285 }
2286 return NULL;
2287 }
2288
2289 /*
2290 * This helper attempts to cope with remotely renamed directories
2291 *
2292 * It assumes that the caller is already holding
2293 * dentry->d_parent->d_inode->i_mutex and the inode->i_lock
2294 *
2295 * Note: If ever the locking in lock_rename() changes, then please
2296 * remember to update this too...
2297 */
2298 static struct dentry *__d_unalias(struct inode *inode,
2299 struct dentry *dentry, struct dentry *alias)
2300 {
2301 struct mutex *m1 = NULL, *m2 = NULL;
2302 struct dentry *ret;
2303
2304 /* If alias and dentry share a parent, then no extra locks required */
2305 if (alias->d_parent == dentry->d_parent)
2306 goto out_unalias;
2307
2308 /* Check for loops */
2309 ret = ERR_PTR(-ELOOP);
2310 if (d_ancestor(alias, dentry))
2311 goto out_err;
2312
2313 /* See lock_rename() */
2314 ret = ERR_PTR(-EBUSY);
2315 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2316 goto out_err;
2317 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2318 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2319 goto out_err;
2320 m2 = &alias->d_parent->d_inode->i_mutex;
2321 out_unalias:
2322 d_move(alias, dentry);
2323 ret = alias;
2324 out_err:
2325 spin_unlock(&inode->i_lock);
2326 if (m2)
2327 mutex_unlock(m2);
2328 if (m1)
2329 mutex_unlock(m1);
2330 return ret;
2331 }
2332
2333 /*
2334 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2335 * named dentry in place of the dentry to be replaced.
2336 * returns with anon->d_lock held!
2337 */
2338 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2339 {
2340 struct dentry *dparent, *aparent;
2341
2342 dentry_lock_for_move(anon, dentry);
2343
2344 write_seqcount_begin(&dentry->d_seq);
2345 write_seqcount_begin(&anon->d_seq);
2346
2347 dparent = dentry->d_parent;
2348 aparent = anon->d_parent;
2349
2350 switch_names(dentry, anon);
2351 swap(dentry->d_name.hash, anon->d_name.hash);
2352
2353 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2354 list_del(&dentry->d_u.d_child);
2355 if (!IS_ROOT(dentry))
2356 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2357 else
2358 INIT_LIST_HEAD(&dentry->d_u.d_child);
2359
2360 anon->d_parent = (dparent == dentry) ? anon : dparent;
2361 list_del(&anon->d_u.d_child);
2362 if (!IS_ROOT(anon))
2363 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2364 else
2365 INIT_LIST_HEAD(&anon->d_u.d_child);
2366
2367 write_seqcount_end(&dentry->d_seq);
2368 write_seqcount_end(&anon->d_seq);
2369
2370 dentry_unlock_parents_for_move(anon, dentry);
2371 spin_unlock(&dentry->d_lock);
2372
2373 /* anon->d_lock still locked, returns locked */
2374 anon->d_flags &= ~DCACHE_DISCONNECTED;
2375 }
2376
2377 /**
2378 * d_materialise_unique - introduce an inode into the tree
2379 * @dentry: candidate dentry
2380 * @inode: inode to bind to the dentry, to which aliases may be attached
2381 *
2382 * Introduces an dentry into the tree, substituting an extant disconnected
2383 * root directory alias in its place if there is one
2384 */
2385 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2386 {
2387 struct dentry *actual;
2388
2389 BUG_ON(!d_unhashed(dentry));
2390
2391 if (!inode) {
2392 actual = dentry;
2393 __d_instantiate(dentry, NULL);
2394 d_rehash(actual);
2395 goto out_nolock;
2396 }
2397
2398 spin_lock(&inode->i_lock);
2399
2400 if (S_ISDIR(inode->i_mode)) {
2401 struct dentry *alias;
2402
2403 /* Does an aliased dentry already exist? */
2404 alias = __d_find_alias(inode, 0);
2405 if (alias) {
2406 actual = alias;
2407 /* Is this an anonymous mountpoint that we could splice
2408 * into our tree? */
2409 if (IS_ROOT(alias)) {
2410 __d_materialise_dentry(dentry, alias);
2411 __d_drop(alias);
2412 goto found;
2413 }
2414 /* Nope, but we must(!) avoid directory aliasing */
2415 actual = __d_unalias(inode, dentry, alias);
2416 if (IS_ERR(actual))
2417 dput(alias);
2418 goto out_nolock;
2419 }
2420 }
2421
2422 /* Add a unique reference */
2423 actual = __d_instantiate_unique(dentry, inode);
2424 if (!actual)
2425 actual = dentry;
2426 else
2427 BUG_ON(!d_unhashed(actual));
2428
2429 spin_lock(&actual->d_lock);
2430 found:
2431 _d_rehash(actual);
2432 spin_unlock(&actual->d_lock);
2433 spin_unlock(&inode->i_lock);
2434 out_nolock:
2435 if (actual == dentry) {
2436 security_d_instantiate(dentry, inode);
2437 return NULL;
2438 }
2439
2440 iput(inode);
2441 return actual;
2442 }
2443 EXPORT_SYMBOL_GPL(d_materialise_unique);
2444
2445 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2446 {
2447 *buflen -= namelen;
2448 if (*buflen < 0)
2449 return -ENAMETOOLONG;
2450 *buffer -= namelen;
2451 memcpy(*buffer, str, namelen);
2452 return 0;
2453 }
2454
2455 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2456 {
2457 return prepend(buffer, buflen, name->name, name->len);
2458 }
2459
2460 /**
2461 * prepend_path - Prepend path string to a buffer
2462 * @path: the dentry/vfsmount to report
2463 * @root: root vfsmnt/dentry (may be modified by this function)
2464 * @buffer: pointer to the end of the buffer
2465 * @buflen: pointer to buffer length
2466 *
2467 * Caller holds the rename_lock.
2468 *
2469 * If path is not reachable from the supplied root, then the value of
2470 * root is changed (without modifying refcounts).
2471 */
2472 static int prepend_path(const struct path *path, struct path *root,
2473 char **buffer, int *buflen)
2474 {
2475 struct dentry *dentry = path->dentry;
2476 struct vfsmount *vfsmnt = path->mnt;
2477 bool slash = false;
2478 int error = 0;
2479
2480 br_read_lock(vfsmount_lock);
2481 while (dentry != root->dentry || vfsmnt != root->mnt) {
2482 struct dentry * parent;
2483
2484 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2485 /* Global root? */
2486 if (vfsmnt->mnt_parent == vfsmnt) {
2487 goto global_root;
2488 }
2489 dentry = vfsmnt->mnt_mountpoint;
2490 vfsmnt = vfsmnt->mnt_parent;
2491 continue;
2492 }
2493 parent = dentry->d_parent;
2494 prefetch(parent);
2495 spin_lock(&dentry->d_lock);
2496 error = prepend_name(buffer, buflen, &dentry->d_name);
2497 spin_unlock(&dentry->d_lock);
2498 if (!error)
2499 error = prepend(buffer, buflen, "/", 1);
2500 if (error)
2501 break;
2502
2503 slash = true;
2504 dentry = parent;
2505 }
2506
2507 out:
2508 if (!error && !slash)
2509 error = prepend(buffer, buflen, "/", 1);
2510
2511 br_read_unlock(vfsmount_lock);
2512 return error;
2513
2514 global_root:
2515 /*
2516 * Filesystems needing to implement special "root names"
2517 * should do so with ->d_dname()
2518 */
2519 if (IS_ROOT(dentry) &&
2520 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2521 WARN(1, "Root dentry has weird name <%.*s>\n",
2522 (int) dentry->d_name.len, dentry->d_name.name);
2523 }
2524 root->mnt = vfsmnt;
2525 root->dentry = dentry;
2526 goto out;
2527 }
2528
2529 /**
2530 * __d_path - return the path of a dentry
2531 * @path: the dentry/vfsmount to report
2532 * @root: root vfsmnt/dentry (may be modified by this function)
2533 * @buf: buffer to return value in
2534 * @buflen: buffer length
2535 *
2536 * Convert a dentry into an ASCII path name.
2537 *
2538 * Returns a pointer into the buffer or an error code if the
2539 * path was too long.
2540 *
2541 * "buflen" should be positive.
2542 *
2543 * If path is not reachable from the supplied root, then the value of
2544 * root is changed (without modifying refcounts).
2545 */
2546 char *__d_path(const struct path *path, struct path *root,
2547 char *buf, int buflen)
2548 {
2549 char *res = buf + buflen;
2550 int error;
2551
2552 prepend(&res, &buflen, "\0", 1);
2553 write_seqlock(&rename_lock);
2554 error = prepend_path(path, root, &res, &buflen);
2555 write_sequnlock(&rename_lock);
2556
2557 if (error)
2558 return ERR_PTR(error);
2559 return res;
2560 }
2561
2562 /*
2563 * same as __d_path but appends "(deleted)" for unlinked files.
2564 */
2565 static int path_with_deleted(const struct path *path, struct path *root,
2566 char **buf, int *buflen)
2567 {
2568 prepend(buf, buflen, "\0", 1);
2569 if (d_unlinked(path->dentry)) {
2570 int error = prepend(buf, buflen, " (deleted)", 10);
2571 if (error)
2572 return error;
2573 }
2574
2575 return prepend_path(path, root, buf, buflen);
2576 }
2577
2578 static int prepend_unreachable(char **buffer, int *buflen)
2579 {
2580 return prepend(buffer, buflen, "(unreachable)", 13);
2581 }
2582
2583 /**
2584 * d_path - return the path of a dentry
2585 * @path: path to report
2586 * @buf: buffer to return value in
2587 * @buflen: buffer length
2588 *
2589 * Convert a dentry into an ASCII path name. If the entry has been deleted
2590 * the string " (deleted)" is appended. Note that this is ambiguous.
2591 *
2592 * Returns a pointer into the buffer or an error code if the path was
2593 * too long. Note: Callers should use the returned pointer, not the passed
2594 * in buffer, to use the name! The implementation often starts at an offset
2595 * into the buffer, and may leave 0 bytes at the start.
2596 *
2597 * "buflen" should be positive.
2598 */
2599 char *d_path(const struct path *path, char *buf, int buflen)
2600 {
2601 char *res = buf + buflen;
2602 struct path root;
2603 struct path tmp;
2604 int error;
2605
2606 /*
2607 * We have various synthetic filesystems that never get mounted. On
2608 * these filesystems dentries are never used for lookup purposes, and
2609 * thus don't need to be hashed. They also don't need a name until a
2610 * user wants to identify the object in /proc/pid/fd/. The little hack
2611 * below allows us to generate a name for these objects on demand:
2612 */
2613 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2614 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2615
2616 get_fs_root(current->fs, &root);
2617 write_seqlock(&rename_lock);
2618 tmp = root;
2619 error = path_with_deleted(path, &tmp, &res, &buflen);
2620 if (error)
2621 res = ERR_PTR(error);
2622 write_sequnlock(&rename_lock);
2623 path_put(&root);
2624 return res;
2625 }
2626 EXPORT_SYMBOL(d_path);
2627
2628 /**
2629 * d_path_with_unreachable - return the path of a dentry
2630 * @path: path to report
2631 * @buf: buffer to return value in
2632 * @buflen: buffer length
2633 *
2634 * The difference from d_path() is that this prepends "(unreachable)"
2635 * to paths which are unreachable from the current process' root.
2636 */
2637 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2638 {
2639 char *res = buf + buflen;
2640 struct path root;
2641 struct path tmp;
2642 int error;
2643
2644 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2645 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2646
2647 get_fs_root(current->fs, &root);
2648 write_seqlock(&rename_lock);
2649 tmp = root;
2650 error = path_with_deleted(path, &tmp, &res, &buflen);
2651 if (!error && !path_equal(&tmp, &root))
2652 error = prepend_unreachable(&res, &buflen);
2653 write_sequnlock(&rename_lock);
2654 path_put(&root);
2655 if (error)
2656 res = ERR_PTR(error);
2657
2658 return res;
2659 }
2660
2661 /*
2662 * Helper function for dentry_operations.d_dname() members
2663 */
2664 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2665 const char *fmt, ...)
2666 {
2667 va_list args;
2668 char temp[64];
2669 int sz;
2670
2671 va_start(args, fmt);
2672 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2673 va_end(args);
2674
2675 if (sz > sizeof(temp) || sz > buflen)
2676 return ERR_PTR(-ENAMETOOLONG);
2677
2678 buffer += buflen - sz;
2679 return memcpy(buffer, temp, sz);
2680 }
2681
2682 /*
2683 * Write full pathname from the root of the filesystem into the buffer.
2684 */
2685 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2686 {
2687 char *end = buf + buflen;
2688 char *retval;
2689
2690 prepend(&end, &buflen, "\0", 1);
2691 if (buflen < 1)
2692 goto Elong;
2693 /* Get '/' right */
2694 retval = end-1;
2695 *retval = '/';
2696
2697 while (!IS_ROOT(dentry)) {
2698 struct dentry *parent = dentry->d_parent;
2699 int error;
2700
2701 prefetch(parent);
2702 spin_lock(&dentry->d_lock);
2703 error = prepend_name(&end, &buflen, &dentry->d_name);
2704 spin_unlock(&dentry->d_lock);
2705 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2706 goto Elong;
2707
2708 retval = end;
2709 dentry = parent;
2710 }
2711 return retval;
2712 Elong:
2713 return ERR_PTR(-ENAMETOOLONG);
2714 }
2715
2716 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2717 {
2718 char *retval;
2719
2720 write_seqlock(&rename_lock);
2721 retval = __dentry_path(dentry, buf, buflen);
2722 write_sequnlock(&rename_lock);
2723
2724 return retval;
2725 }
2726 EXPORT_SYMBOL(dentry_path_raw);
2727
2728 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2729 {
2730 char *p = NULL;
2731 char *retval;
2732
2733 write_seqlock(&rename_lock);
2734 if (d_unlinked(dentry)) {
2735 p = buf + buflen;
2736 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2737 goto Elong;
2738 buflen++;
2739 }
2740 retval = __dentry_path(dentry, buf, buflen);
2741 write_sequnlock(&rename_lock);
2742 if (!IS_ERR(retval) && p)
2743 *p = '/'; /* restore '/' overriden with '\0' */
2744 return retval;
2745 Elong:
2746 return ERR_PTR(-ENAMETOOLONG);
2747 }
2748
2749 /*
2750 * NOTE! The user-level library version returns a
2751 * character pointer. The kernel system call just
2752 * returns the length of the buffer filled (which
2753 * includes the ending '\0' character), or a negative
2754 * error value. So libc would do something like
2755 *
2756 * char *getcwd(char * buf, size_t size)
2757 * {
2758 * int retval;
2759 *
2760 * retval = sys_getcwd(buf, size);
2761 * if (retval >= 0)
2762 * return buf;
2763 * errno = -retval;
2764 * return NULL;
2765 * }
2766 */
2767 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2768 {
2769 int error;
2770 struct path pwd, root;
2771 char *page = (char *) __get_free_page(GFP_USER);
2772
2773 if (!page)
2774 return -ENOMEM;
2775
2776 get_fs_root_and_pwd(current->fs, &root, &pwd);
2777
2778 error = -ENOENT;
2779 write_seqlock(&rename_lock);
2780 if (!d_unlinked(pwd.dentry)) {
2781 unsigned long len;
2782 struct path tmp = root;
2783 char *cwd = page + PAGE_SIZE;
2784 int buflen = PAGE_SIZE;
2785
2786 prepend(&cwd, &buflen, "\0", 1);
2787 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2788 write_sequnlock(&rename_lock);
2789
2790 if (error)
2791 goto out;
2792
2793 /* Unreachable from current root */
2794 if (!path_equal(&tmp, &root)) {
2795 error = prepend_unreachable(&cwd, &buflen);
2796 if (error)
2797 goto out;
2798 }
2799
2800 error = -ERANGE;
2801 len = PAGE_SIZE + page - cwd;
2802 if (len <= size) {
2803 error = len;
2804 if (copy_to_user(buf, cwd, len))
2805 error = -EFAULT;
2806 }
2807 } else {
2808 write_sequnlock(&rename_lock);
2809 }
2810
2811 out:
2812 path_put(&pwd);
2813 path_put(&root);
2814 free_page((unsigned long) page);
2815 return error;
2816 }
2817
2818 /*
2819 * Test whether new_dentry is a subdirectory of old_dentry.
2820 *
2821 * Trivially implemented using the dcache structure
2822 */
2823
2824 /**
2825 * is_subdir - is new dentry a subdirectory of old_dentry
2826 * @new_dentry: new dentry
2827 * @old_dentry: old dentry
2828 *
2829 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2830 * Returns 0 otherwise.
2831 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2832 */
2833
2834 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2835 {
2836 int result;
2837 unsigned seq;
2838
2839 if (new_dentry == old_dentry)
2840 return 1;
2841
2842 do {
2843 /* for restarting inner loop in case of seq retry */
2844 seq = read_seqbegin(&rename_lock);
2845 /*
2846 * Need rcu_readlock to protect against the d_parent trashing
2847 * due to d_move
2848 */
2849 rcu_read_lock();
2850 if (d_ancestor(old_dentry, new_dentry))
2851 result = 1;
2852 else
2853 result = 0;
2854 rcu_read_unlock();
2855 } while (read_seqretry(&rename_lock, seq));
2856
2857 return result;
2858 }
2859
2860 int path_is_under(struct path *path1, struct path *path2)
2861 {
2862 struct vfsmount *mnt = path1->mnt;
2863 struct dentry *dentry = path1->dentry;
2864 int res;
2865
2866 br_read_lock(vfsmount_lock);
2867 if (mnt != path2->mnt) {
2868 for (;;) {
2869 if (mnt->mnt_parent == mnt) {
2870 br_read_unlock(vfsmount_lock);
2871 return 0;
2872 }
2873 if (mnt->mnt_parent == path2->mnt)
2874 break;
2875 mnt = mnt->mnt_parent;
2876 }
2877 dentry = mnt->mnt_mountpoint;
2878 }
2879 res = is_subdir(dentry, path2->dentry);
2880 br_read_unlock(vfsmount_lock);
2881 return res;
2882 }
2883 EXPORT_SYMBOL(path_is_under);
2884
2885 void d_genocide(struct dentry *root)
2886 {
2887 struct dentry *this_parent;
2888 struct list_head *next;
2889 unsigned seq;
2890 int locked = 0;
2891
2892 seq = read_seqbegin(&rename_lock);
2893 again:
2894 this_parent = root;
2895 spin_lock(&this_parent->d_lock);
2896 repeat:
2897 next = this_parent->d_subdirs.next;
2898 resume:
2899 while (next != &this_parent->d_subdirs) {
2900 struct list_head *tmp = next;
2901 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2902 next = tmp->next;
2903
2904 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2905 if (d_unhashed(dentry) || !dentry->d_inode) {
2906 spin_unlock(&dentry->d_lock);
2907 continue;
2908 }
2909 if (!list_empty(&dentry->d_subdirs)) {
2910 spin_unlock(&this_parent->d_lock);
2911 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2912 this_parent = dentry;
2913 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2914 goto repeat;
2915 }
2916 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2917 dentry->d_flags |= DCACHE_GENOCIDE;
2918 dentry->d_count--;
2919 }
2920 spin_unlock(&dentry->d_lock);
2921 }
2922 if (this_parent != root) {
2923 struct dentry *tmp;
2924 struct dentry *child;
2925
2926 tmp = this_parent->d_parent;
2927 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2928 this_parent->d_flags |= DCACHE_GENOCIDE;
2929 this_parent->d_count--;
2930 }
2931 rcu_read_lock();
2932 spin_unlock(&this_parent->d_lock);
2933 child = this_parent;
2934 this_parent = tmp;
2935 spin_lock(&this_parent->d_lock);
2936 /* might go back up the wrong parent if we have had a rename
2937 * or deletion */
2938 if (this_parent != child->d_parent ||
2939 (!locked && read_seqretry(&rename_lock, seq))) {
2940 spin_unlock(&this_parent->d_lock);
2941 rcu_read_unlock();
2942 goto rename_retry;
2943 }
2944 rcu_read_unlock();
2945 next = child->d_u.d_child.next;
2946 goto resume;
2947 }
2948 spin_unlock(&this_parent->d_lock);
2949 if (!locked && read_seqretry(&rename_lock, seq))
2950 goto rename_retry;
2951 if (locked)
2952 write_sequnlock(&rename_lock);
2953 return;
2954
2955 rename_retry:
2956 locked = 1;
2957 write_seqlock(&rename_lock);
2958 goto again;
2959 }
2960
2961 /**
2962 * find_inode_number - check for dentry with name
2963 * @dir: directory to check
2964 * @name: Name to find.
2965 *
2966 * Check whether a dentry already exists for the given name,
2967 * and return the inode number if it has an inode. Otherwise
2968 * 0 is returned.
2969 *
2970 * This routine is used to post-process directory listings for
2971 * filesystems using synthetic inode numbers, and is necessary
2972 * to keep getcwd() working.
2973 */
2974
2975 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2976 {
2977 struct dentry * dentry;
2978 ino_t ino = 0;
2979
2980 dentry = d_hash_and_lookup(dir, name);
2981 if (dentry) {
2982 if (dentry->d_inode)
2983 ino = dentry->d_inode->i_ino;
2984 dput(dentry);
2985 }
2986 return ino;
2987 }
2988 EXPORT_SYMBOL(find_inode_number);
2989
2990 static __initdata unsigned long dhash_entries;
2991 static int __init set_dhash_entries(char *str)
2992 {
2993 if (!str)
2994 return 0;
2995 dhash_entries = simple_strtoul(str, &str, 0);
2996 return 1;
2997 }
2998 __setup("dhash_entries=", set_dhash_entries);
2999
3000 static void __init dcache_init_early(void)
3001 {
3002 int loop;
3003
3004 /* If hashes are distributed across NUMA nodes, defer
3005 * hash allocation until vmalloc space is available.
3006 */
3007 if (hashdist)
3008 return;
3009
3010 dentry_hashtable =
3011 alloc_large_system_hash("Dentry cache",
3012 sizeof(struct dcache_hash_bucket),
3013 dhash_entries,
3014 13,
3015 HASH_EARLY,
3016 &d_hash_shift,
3017 &d_hash_mask,
3018 0);
3019
3020 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3021 INIT_HLIST_BL_HEAD(&dentry_hashtable[loop].head);
3022 }
3023
3024 static void __init dcache_init(void)
3025 {
3026 int loop;
3027
3028 /*
3029 * A constructor could be added for stable state like the lists,
3030 * but it is probably not worth it because of the cache nature
3031 * of the dcache.
3032 */
3033 dentry_cache = KMEM_CACHE(dentry,
3034 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3035
3036 register_shrinker(&dcache_shrinker);
3037
3038 /* Hash may have been set up in dcache_init_early */
3039 if (!hashdist)
3040 return;
3041
3042 dentry_hashtable =
3043 alloc_large_system_hash("Dentry cache",
3044 sizeof(struct dcache_hash_bucket),
3045 dhash_entries,
3046 13,
3047 0,
3048 &d_hash_shift,
3049 &d_hash_mask,
3050 0);
3051
3052 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3053 INIT_HLIST_BL_HEAD(&dentry_hashtable[loop].head);
3054 }
3055
3056 /* SLAB cache for __getname() consumers */
3057 struct kmem_cache *names_cachep __read_mostly;
3058 EXPORT_SYMBOL(names_cachep);
3059
3060 EXPORT_SYMBOL(d_genocide);
3061
3062 void __init vfs_caches_init_early(void)
3063 {
3064 dcache_init_early();
3065 inode_init_early();
3066 }
3067
3068 void __init vfs_caches_init(unsigned long mempages)
3069 {
3070 unsigned long reserve;
3071
3072 /* Base hash sizes on available memory, with a reserve equal to
3073 150% of current kernel size */
3074
3075 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3076 mempages -= reserve;
3077
3078 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3079 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3080
3081 dcache_init();
3082 inode_init();
3083 files_init(mempages);
3084 mnt_init();
3085 bdev_cache_init();
3086 chrdev_init();
3087 }
This page took 0.133563 seconds and 6 git commands to generate.