Merge tag 'sound-3.9' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42
43 /*
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_alias, d_inode
62 *
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
69 *
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
109 {
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
113 }
114
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118 };
119
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
124 {
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130 }
131
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134 {
135 dentry_stat.nr_dentry = get_nr_dentry();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139
140 /*
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
143 */
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
145
146 #include <asm/word-at-a-time.h>
147 /*
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
152 *
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
155 */
156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
157 {
158 unsigned long a,b,mask;
159
160 for (;;) {
161 a = *(unsigned long *)cs;
162 b = load_unaligned_zeropad(ct);
163 if (tcount < sizeof(unsigned long))
164 break;
165 if (unlikely(a != b))
166 return 1;
167 cs += sizeof(unsigned long);
168 ct += sizeof(unsigned long);
169 tcount -= sizeof(unsigned long);
170 if (!tcount)
171 return 0;
172 }
173 mask = ~(~0ul << tcount*8);
174 return unlikely(!!((a ^ b) & mask));
175 }
176
177 #else
178
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 do {
182 if (*cs != *ct)
183 return 1;
184 cs++;
185 ct++;
186 tcount--;
187 } while (tcount);
188 return 0;
189 }
190
191 #endif
192
193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194 {
195 const unsigned char *cs;
196 /*
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
199 *
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
207 *
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
211 */
212 cs = ACCESS_ONCE(dentry->d_name.name);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs, ct, tcount);
215 }
216
217 static void __d_free(struct rcu_head *head)
218 {
219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220
221 WARN_ON(!hlist_unhashed(&dentry->d_alias));
222 if (dname_external(dentry))
223 kfree(dentry->d_name.name);
224 kmem_cache_free(dentry_cache, dentry);
225 }
226
227 /*
228 * no locks, please.
229 */
230 static void d_free(struct dentry *dentry)
231 {
232 BUG_ON(dentry->d_count);
233 this_cpu_dec(nr_dentry);
234 if (dentry->d_op && dentry->d_op->d_release)
235 dentry->d_op->d_release(dentry);
236
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry->d_flags & DCACHE_RCUACCESS))
239 __d_free(&dentry->d_u.d_rcu);
240 else
241 call_rcu(&dentry->d_u.d_rcu, __d_free);
242 }
243
244 /**
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246 * @dentry: the target dentry
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
250 */
251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252 {
253 assert_spin_locked(&dentry->d_lock);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry->d_seq);
256 }
257
258 /*
259 * Release the dentry's inode, using the filesystem
260 * d_iput() operation if defined. Dentry has no refcount
261 * and is unhashed.
262 */
263 static void dentry_iput(struct dentry * dentry)
264 __releases(dentry->d_lock)
265 __releases(dentry->d_inode->i_lock)
266 {
267 struct inode *inode = dentry->d_inode;
268 if (inode) {
269 dentry->d_inode = NULL;
270 hlist_del_init(&dentry->d_alias);
271 spin_unlock(&dentry->d_lock);
272 spin_unlock(&inode->i_lock);
273 if (!inode->i_nlink)
274 fsnotify_inoderemove(inode);
275 if (dentry->d_op && dentry->d_op->d_iput)
276 dentry->d_op->d_iput(dentry, inode);
277 else
278 iput(inode);
279 } else {
280 spin_unlock(&dentry->d_lock);
281 }
282 }
283
284 /*
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
287 */
288 static void dentry_unlink_inode(struct dentry * dentry)
289 __releases(dentry->d_lock)
290 __releases(dentry->d_inode->i_lock)
291 {
292 struct inode *inode = dentry->d_inode;
293 dentry->d_inode = NULL;
294 hlist_del_init(&dentry->d_alias);
295 dentry_rcuwalk_barrier(dentry);
296 spin_unlock(&dentry->d_lock);
297 spin_unlock(&inode->i_lock);
298 if (!inode->i_nlink)
299 fsnotify_inoderemove(inode);
300 if (dentry->d_op && dentry->d_op->d_iput)
301 dentry->d_op->d_iput(dentry, inode);
302 else
303 iput(inode);
304 }
305
306 /*
307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
308 */
309 static void dentry_lru_add(struct dentry *dentry)
310 {
311 if (list_empty(&dentry->d_lru)) {
312 spin_lock(&dcache_lru_lock);
313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 dentry->d_sb->s_nr_dentry_unused++;
315 dentry_stat.nr_unused++;
316 spin_unlock(&dcache_lru_lock);
317 }
318 }
319
320 static void __dentry_lru_del(struct dentry *dentry)
321 {
322 list_del_init(&dentry->d_lru);
323 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
324 dentry->d_sb->s_nr_dentry_unused--;
325 dentry_stat.nr_unused--;
326 }
327
328 /*
329 * Remove a dentry with references from the LRU.
330 */
331 static void dentry_lru_del(struct dentry *dentry)
332 {
333 if (!list_empty(&dentry->d_lru)) {
334 spin_lock(&dcache_lru_lock);
335 __dentry_lru_del(dentry);
336 spin_unlock(&dcache_lru_lock);
337 }
338 }
339
340 /*
341 * Remove a dentry that is unreferenced and about to be pruned
342 * (unhashed and destroyed) from the LRU, and inform the file system.
343 * This wrapper should be called _prior_ to unhashing a victim dentry.
344 */
345 static void dentry_lru_prune(struct dentry *dentry)
346 {
347 if (!list_empty(&dentry->d_lru)) {
348 if (dentry->d_flags & DCACHE_OP_PRUNE)
349 dentry->d_op->d_prune(dentry);
350
351 spin_lock(&dcache_lru_lock);
352 __dentry_lru_del(dentry);
353 spin_unlock(&dcache_lru_lock);
354 }
355 }
356
357 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
358 {
359 spin_lock(&dcache_lru_lock);
360 if (list_empty(&dentry->d_lru)) {
361 list_add_tail(&dentry->d_lru, list);
362 dentry->d_sb->s_nr_dentry_unused++;
363 dentry_stat.nr_unused++;
364 } else {
365 list_move_tail(&dentry->d_lru, list);
366 }
367 spin_unlock(&dcache_lru_lock);
368 }
369
370 /**
371 * d_kill - kill dentry and return parent
372 * @dentry: dentry to kill
373 * @parent: parent dentry
374 *
375 * The dentry must already be unhashed and removed from the LRU.
376 *
377 * If this is the root of the dentry tree, return NULL.
378 *
379 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
380 * d_kill.
381 */
382 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
383 __releases(dentry->d_lock)
384 __releases(parent->d_lock)
385 __releases(dentry->d_inode->i_lock)
386 {
387 list_del(&dentry->d_u.d_child);
388 /*
389 * Inform try_to_ascend() that we are no longer attached to the
390 * dentry tree
391 */
392 dentry->d_flags |= DCACHE_DENTRY_KILLED;
393 if (parent)
394 spin_unlock(&parent->d_lock);
395 dentry_iput(dentry);
396 /*
397 * dentry_iput drops the locks, at which point nobody (except
398 * transient RCU lookups) can reach this dentry.
399 */
400 d_free(dentry);
401 return parent;
402 }
403
404 /*
405 * Unhash a dentry without inserting an RCU walk barrier or checking that
406 * dentry->d_lock is locked. The caller must take care of that, if
407 * appropriate.
408 */
409 static void __d_shrink(struct dentry *dentry)
410 {
411 if (!d_unhashed(dentry)) {
412 struct hlist_bl_head *b;
413 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
414 b = &dentry->d_sb->s_anon;
415 else
416 b = d_hash(dentry->d_parent, dentry->d_name.hash);
417
418 hlist_bl_lock(b);
419 __hlist_bl_del(&dentry->d_hash);
420 dentry->d_hash.pprev = NULL;
421 hlist_bl_unlock(b);
422 }
423 }
424
425 /**
426 * d_drop - drop a dentry
427 * @dentry: dentry to drop
428 *
429 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430 * be found through a VFS lookup any more. Note that this is different from
431 * deleting the dentry - d_delete will try to mark the dentry negative if
432 * possible, giving a successful _negative_ lookup, while d_drop will
433 * just make the cache lookup fail.
434 *
435 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436 * reason (NFS timeouts or autofs deletes).
437 *
438 * __d_drop requires dentry->d_lock.
439 */
440 void __d_drop(struct dentry *dentry)
441 {
442 if (!d_unhashed(dentry)) {
443 __d_shrink(dentry);
444 dentry_rcuwalk_barrier(dentry);
445 }
446 }
447 EXPORT_SYMBOL(__d_drop);
448
449 void d_drop(struct dentry *dentry)
450 {
451 spin_lock(&dentry->d_lock);
452 __d_drop(dentry);
453 spin_unlock(&dentry->d_lock);
454 }
455 EXPORT_SYMBOL(d_drop);
456
457 /*
458 * Finish off a dentry we've decided to kill.
459 * dentry->d_lock must be held, returns with it unlocked.
460 * If ref is non-zero, then decrement the refcount too.
461 * Returns dentry requiring refcount drop, or NULL if we're done.
462 */
463 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
464 __releases(dentry->d_lock)
465 {
466 struct inode *inode;
467 struct dentry *parent;
468
469 inode = dentry->d_inode;
470 if (inode && !spin_trylock(&inode->i_lock)) {
471 relock:
472 spin_unlock(&dentry->d_lock);
473 cpu_relax();
474 return dentry; /* try again with same dentry */
475 }
476 if (IS_ROOT(dentry))
477 parent = NULL;
478 else
479 parent = dentry->d_parent;
480 if (parent && !spin_trylock(&parent->d_lock)) {
481 if (inode)
482 spin_unlock(&inode->i_lock);
483 goto relock;
484 }
485
486 if (ref)
487 dentry->d_count--;
488 /*
489 * if dentry was on the d_lru list delete it from there.
490 * inform the fs via d_prune that this dentry is about to be
491 * unhashed and destroyed.
492 */
493 dentry_lru_prune(dentry);
494 /* if it was on the hash then remove it */
495 __d_drop(dentry);
496 return d_kill(dentry, parent);
497 }
498
499 /*
500 * This is dput
501 *
502 * This is complicated by the fact that we do not want to put
503 * dentries that are no longer on any hash chain on the unused
504 * list: we'd much rather just get rid of them immediately.
505 *
506 * However, that implies that we have to traverse the dentry
507 * tree upwards to the parents which might _also_ now be
508 * scheduled for deletion (it may have been only waiting for
509 * its last child to go away).
510 *
511 * This tail recursion is done by hand as we don't want to depend
512 * on the compiler to always get this right (gcc generally doesn't).
513 * Real recursion would eat up our stack space.
514 */
515
516 /*
517 * dput - release a dentry
518 * @dentry: dentry to release
519 *
520 * Release a dentry. This will drop the usage count and if appropriate
521 * call the dentry unlink method as well as removing it from the queues and
522 * releasing its resources. If the parent dentries were scheduled for release
523 * they too may now get deleted.
524 */
525 void dput(struct dentry *dentry)
526 {
527 if (!dentry)
528 return;
529
530 repeat:
531 if (dentry->d_count == 1)
532 might_sleep();
533 spin_lock(&dentry->d_lock);
534 BUG_ON(!dentry->d_count);
535 if (dentry->d_count > 1) {
536 dentry->d_count--;
537 spin_unlock(&dentry->d_lock);
538 return;
539 }
540
541 if (dentry->d_flags & DCACHE_OP_DELETE) {
542 if (dentry->d_op->d_delete(dentry))
543 goto kill_it;
544 }
545
546 /* Unreachable? Get rid of it */
547 if (d_unhashed(dentry))
548 goto kill_it;
549
550 dentry->d_flags |= DCACHE_REFERENCED;
551 dentry_lru_add(dentry);
552
553 dentry->d_count--;
554 spin_unlock(&dentry->d_lock);
555 return;
556
557 kill_it:
558 dentry = dentry_kill(dentry, 1);
559 if (dentry)
560 goto repeat;
561 }
562 EXPORT_SYMBOL(dput);
563
564 /**
565 * d_invalidate - invalidate a dentry
566 * @dentry: dentry to invalidate
567 *
568 * Try to invalidate the dentry if it turns out to be
569 * possible. If there are other dentries that can be
570 * reached through this one we can't delete it and we
571 * return -EBUSY. On success we return 0.
572 *
573 * no dcache lock.
574 */
575
576 int d_invalidate(struct dentry * dentry)
577 {
578 /*
579 * If it's already been dropped, return OK.
580 */
581 spin_lock(&dentry->d_lock);
582 if (d_unhashed(dentry)) {
583 spin_unlock(&dentry->d_lock);
584 return 0;
585 }
586 /*
587 * Check whether to do a partial shrink_dcache
588 * to get rid of unused child entries.
589 */
590 if (!list_empty(&dentry->d_subdirs)) {
591 spin_unlock(&dentry->d_lock);
592 shrink_dcache_parent(dentry);
593 spin_lock(&dentry->d_lock);
594 }
595
596 /*
597 * Somebody else still using it?
598 *
599 * If it's a directory, we can't drop it
600 * for fear of somebody re-populating it
601 * with children (even though dropping it
602 * would make it unreachable from the root,
603 * we might still populate it if it was a
604 * working directory or similar).
605 * We also need to leave mountpoints alone,
606 * directory or not.
607 */
608 if (dentry->d_count > 1 && dentry->d_inode) {
609 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
610 spin_unlock(&dentry->d_lock);
611 return -EBUSY;
612 }
613 }
614
615 __d_drop(dentry);
616 spin_unlock(&dentry->d_lock);
617 return 0;
618 }
619 EXPORT_SYMBOL(d_invalidate);
620
621 /* This must be called with d_lock held */
622 static inline void __dget_dlock(struct dentry *dentry)
623 {
624 dentry->d_count++;
625 }
626
627 static inline void __dget(struct dentry *dentry)
628 {
629 spin_lock(&dentry->d_lock);
630 __dget_dlock(dentry);
631 spin_unlock(&dentry->d_lock);
632 }
633
634 struct dentry *dget_parent(struct dentry *dentry)
635 {
636 struct dentry *ret;
637
638 repeat:
639 /*
640 * Don't need rcu_dereference because we re-check it was correct under
641 * the lock.
642 */
643 rcu_read_lock();
644 ret = dentry->d_parent;
645 spin_lock(&ret->d_lock);
646 if (unlikely(ret != dentry->d_parent)) {
647 spin_unlock(&ret->d_lock);
648 rcu_read_unlock();
649 goto repeat;
650 }
651 rcu_read_unlock();
652 BUG_ON(!ret->d_count);
653 ret->d_count++;
654 spin_unlock(&ret->d_lock);
655 return ret;
656 }
657 EXPORT_SYMBOL(dget_parent);
658
659 /**
660 * d_find_alias - grab a hashed alias of inode
661 * @inode: inode in question
662 * @want_discon: flag, used by d_splice_alias, to request
663 * that only a DISCONNECTED alias be returned.
664 *
665 * If inode has a hashed alias, or is a directory and has any alias,
666 * acquire the reference to alias and return it. Otherwise return NULL.
667 * Notice that if inode is a directory there can be only one alias and
668 * it can be unhashed only if it has no children, or if it is the root
669 * of a filesystem.
670 *
671 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
672 * any other hashed alias over that one unless @want_discon is set,
673 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
674 */
675 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
676 {
677 struct dentry *alias, *discon_alias;
678 struct hlist_node *p;
679
680 again:
681 discon_alias = NULL;
682 hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
683 spin_lock(&alias->d_lock);
684 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
685 if (IS_ROOT(alias) &&
686 (alias->d_flags & DCACHE_DISCONNECTED)) {
687 discon_alias = alias;
688 } else if (!want_discon) {
689 __dget_dlock(alias);
690 spin_unlock(&alias->d_lock);
691 return alias;
692 }
693 }
694 spin_unlock(&alias->d_lock);
695 }
696 if (discon_alias) {
697 alias = discon_alias;
698 spin_lock(&alias->d_lock);
699 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
700 if (IS_ROOT(alias) &&
701 (alias->d_flags & DCACHE_DISCONNECTED)) {
702 __dget_dlock(alias);
703 spin_unlock(&alias->d_lock);
704 return alias;
705 }
706 }
707 spin_unlock(&alias->d_lock);
708 goto again;
709 }
710 return NULL;
711 }
712
713 struct dentry *d_find_alias(struct inode *inode)
714 {
715 struct dentry *de = NULL;
716
717 if (!hlist_empty(&inode->i_dentry)) {
718 spin_lock(&inode->i_lock);
719 de = __d_find_alias(inode, 0);
720 spin_unlock(&inode->i_lock);
721 }
722 return de;
723 }
724 EXPORT_SYMBOL(d_find_alias);
725
726 /*
727 * Try to kill dentries associated with this inode.
728 * WARNING: you must own a reference to inode.
729 */
730 void d_prune_aliases(struct inode *inode)
731 {
732 struct dentry *dentry;
733 struct hlist_node *p;
734 restart:
735 spin_lock(&inode->i_lock);
736 hlist_for_each_entry(dentry, p, &inode->i_dentry, d_alias) {
737 spin_lock(&dentry->d_lock);
738 if (!dentry->d_count) {
739 __dget_dlock(dentry);
740 __d_drop(dentry);
741 spin_unlock(&dentry->d_lock);
742 spin_unlock(&inode->i_lock);
743 dput(dentry);
744 goto restart;
745 }
746 spin_unlock(&dentry->d_lock);
747 }
748 spin_unlock(&inode->i_lock);
749 }
750 EXPORT_SYMBOL(d_prune_aliases);
751
752 /*
753 * Try to throw away a dentry - free the inode, dput the parent.
754 * Requires dentry->d_lock is held, and dentry->d_count == 0.
755 * Releases dentry->d_lock.
756 *
757 * This may fail if locks cannot be acquired no problem, just try again.
758 */
759 static void try_prune_one_dentry(struct dentry *dentry)
760 __releases(dentry->d_lock)
761 {
762 struct dentry *parent;
763
764 parent = dentry_kill(dentry, 0);
765 /*
766 * If dentry_kill returns NULL, we have nothing more to do.
767 * if it returns the same dentry, trylocks failed. In either
768 * case, just loop again.
769 *
770 * Otherwise, we need to prune ancestors too. This is necessary
771 * to prevent quadratic behavior of shrink_dcache_parent(), but
772 * is also expected to be beneficial in reducing dentry cache
773 * fragmentation.
774 */
775 if (!parent)
776 return;
777 if (parent == dentry)
778 return;
779
780 /* Prune ancestors. */
781 dentry = parent;
782 while (dentry) {
783 spin_lock(&dentry->d_lock);
784 if (dentry->d_count > 1) {
785 dentry->d_count--;
786 spin_unlock(&dentry->d_lock);
787 return;
788 }
789 dentry = dentry_kill(dentry, 1);
790 }
791 }
792
793 static void shrink_dentry_list(struct list_head *list)
794 {
795 struct dentry *dentry;
796
797 rcu_read_lock();
798 for (;;) {
799 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
800 if (&dentry->d_lru == list)
801 break; /* empty */
802 spin_lock(&dentry->d_lock);
803 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
804 spin_unlock(&dentry->d_lock);
805 continue;
806 }
807
808 /*
809 * We found an inuse dentry which was not removed from
810 * the LRU because of laziness during lookup. Do not free
811 * it - just keep it off the LRU list.
812 */
813 if (dentry->d_count) {
814 dentry_lru_del(dentry);
815 spin_unlock(&dentry->d_lock);
816 continue;
817 }
818
819 rcu_read_unlock();
820
821 try_prune_one_dentry(dentry);
822
823 rcu_read_lock();
824 }
825 rcu_read_unlock();
826 }
827
828 /**
829 * prune_dcache_sb - shrink the dcache
830 * @sb: superblock
831 * @count: number of entries to try to free
832 *
833 * Attempt to shrink the superblock dcache LRU by @count entries. This is
834 * done when we need more memory an called from the superblock shrinker
835 * function.
836 *
837 * This function may fail to free any resources if all the dentries are in
838 * use.
839 */
840 void prune_dcache_sb(struct super_block *sb, int count)
841 {
842 struct dentry *dentry;
843 LIST_HEAD(referenced);
844 LIST_HEAD(tmp);
845
846 relock:
847 spin_lock(&dcache_lru_lock);
848 while (!list_empty(&sb->s_dentry_lru)) {
849 dentry = list_entry(sb->s_dentry_lru.prev,
850 struct dentry, d_lru);
851 BUG_ON(dentry->d_sb != sb);
852
853 if (!spin_trylock(&dentry->d_lock)) {
854 spin_unlock(&dcache_lru_lock);
855 cpu_relax();
856 goto relock;
857 }
858
859 if (dentry->d_flags & DCACHE_REFERENCED) {
860 dentry->d_flags &= ~DCACHE_REFERENCED;
861 list_move(&dentry->d_lru, &referenced);
862 spin_unlock(&dentry->d_lock);
863 } else {
864 list_move_tail(&dentry->d_lru, &tmp);
865 dentry->d_flags |= DCACHE_SHRINK_LIST;
866 spin_unlock(&dentry->d_lock);
867 if (!--count)
868 break;
869 }
870 cond_resched_lock(&dcache_lru_lock);
871 }
872 if (!list_empty(&referenced))
873 list_splice(&referenced, &sb->s_dentry_lru);
874 spin_unlock(&dcache_lru_lock);
875
876 shrink_dentry_list(&tmp);
877 }
878
879 /**
880 * shrink_dcache_sb - shrink dcache for a superblock
881 * @sb: superblock
882 *
883 * Shrink the dcache for the specified super block. This is used to free
884 * the dcache before unmounting a file system.
885 */
886 void shrink_dcache_sb(struct super_block *sb)
887 {
888 LIST_HEAD(tmp);
889
890 spin_lock(&dcache_lru_lock);
891 while (!list_empty(&sb->s_dentry_lru)) {
892 list_splice_init(&sb->s_dentry_lru, &tmp);
893 spin_unlock(&dcache_lru_lock);
894 shrink_dentry_list(&tmp);
895 spin_lock(&dcache_lru_lock);
896 }
897 spin_unlock(&dcache_lru_lock);
898 }
899 EXPORT_SYMBOL(shrink_dcache_sb);
900
901 /*
902 * destroy a single subtree of dentries for unmount
903 * - see the comments on shrink_dcache_for_umount() for a description of the
904 * locking
905 */
906 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
907 {
908 struct dentry *parent;
909
910 BUG_ON(!IS_ROOT(dentry));
911
912 for (;;) {
913 /* descend to the first leaf in the current subtree */
914 while (!list_empty(&dentry->d_subdirs))
915 dentry = list_entry(dentry->d_subdirs.next,
916 struct dentry, d_u.d_child);
917
918 /* consume the dentries from this leaf up through its parents
919 * until we find one with children or run out altogether */
920 do {
921 struct inode *inode;
922
923 /*
924 * remove the dentry from the lru, and inform
925 * the fs that this dentry is about to be
926 * unhashed and destroyed.
927 */
928 dentry_lru_prune(dentry);
929 __d_shrink(dentry);
930
931 if (dentry->d_count != 0) {
932 printk(KERN_ERR
933 "BUG: Dentry %p{i=%lx,n=%s}"
934 " still in use (%d)"
935 " [unmount of %s %s]\n",
936 dentry,
937 dentry->d_inode ?
938 dentry->d_inode->i_ino : 0UL,
939 dentry->d_name.name,
940 dentry->d_count,
941 dentry->d_sb->s_type->name,
942 dentry->d_sb->s_id);
943 BUG();
944 }
945
946 if (IS_ROOT(dentry)) {
947 parent = NULL;
948 list_del(&dentry->d_u.d_child);
949 } else {
950 parent = dentry->d_parent;
951 parent->d_count--;
952 list_del(&dentry->d_u.d_child);
953 }
954
955 inode = dentry->d_inode;
956 if (inode) {
957 dentry->d_inode = NULL;
958 hlist_del_init(&dentry->d_alias);
959 if (dentry->d_op && dentry->d_op->d_iput)
960 dentry->d_op->d_iput(dentry, inode);
961 else
962 iput(inode);
963 }
964
965 d_free(dentry);
966
967 /* finished when we fall off the top of the tree,
968 * otherwise we ascend to the parent and move to the
969 * next sibling if there is one */
970 if (!parent)
971 return;
972 dentry = parent;
973 } while (list_empty(&dentry->d_subdirs));
974
975 dentry = list_entry(dentry->d_subdirs.next,
976 struct dentry, d_u.d_child);
977 }
978 }
979
980 /*
981 * destroy the dentries attached to a superblock on unmounting
982 * - we don't need to use dentry->d_lock because:
983 * - the superblock is detached from all mountings and open files, so the
984 * dentry trees will not be rearranged by the VFS
985 * - s_umount is write-locked, so the memory pressure shrinker will ignore
986 * any dentries belonging to this superblock that it comes across
987 * - the filesystem itself is no longer permitted to rearrange the dentries
988 * in this superblock
989 */
990 void shrink_dcache_for_umount(struct super_block *sb)
991 {
992 struct dentry *dentry;
993
994 if (down_read_trylock(&sb->s_umount))
995 BUG();
996
997 dentry = sb->s_root;
998 sb->s_root = NULL;
999 dentry->d_count--;
1000 shrink_dcache_for_umount_subtree(dentry);
1001
1002 while (!hlist_bl_empty(&sb->s_anon)) {
1003 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1004 shrink_dcache_for_umount_subtree(dentry);
1005 }
1006 }
1007
1008 /*
1009 * This tries to ascend one level of parenthood, but
1010 * we can race with renaming, so we need to re-check
1011 * the parenthood after dropping the lock and check
1012 * that the sequence number still matches.
1013 */
1014 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1015 {
1016 struct dentry *new = old->d_parent;
1017
1018 rcu_read_lock();
1019 spin_unlock(&old->d_lock);
1020 spin_lock(&new->d_lock);
1021
1022 /*
1023 * might go back up the wrong parent if we have had a rename
1024 * or deletion
1025 */
1026 if (new != old->d_parent ||
1027 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1028 (!locked && read_seqretry(&rename_lock, seq))) {
1029 spin_unlock(&new->d_lock);
1030 new = NULL;
1031 }
1032 rcu_read_unlock();
1033 return new;
1034 }
1035
1036
1037 /*
1038 * Search for at least 1 mount point in the dentry's subdirs.
1039 * We descend to the next level whenever the d_subdirs
1040 * list is non-empty and continue searching.
1041 */
1042
1043 /**
1044 * have_submounts - check for mounts over a dentry
1045 * @parent: dentry to check.
1046 *
1047 * Return true if the parent or its subdirectories contain
1048 * a mount point
1049 */
1050 int have_submounts(struct dentry *parent)
1051 {
1052 struct dentry *this_parent;
1053 struct list_head *next;
1054 unsigned seq;
1055 int locked = 0;
1056
1057 seq = read_seqbegin(&rename_lock);
1058 again:
1059 this_parent = parent;
1060
1061 if (d_mountpoint(parent))
1062 goto positive;
1063 spin_lock(&this_parent->d_lock);
1064 repeat:
1065 next = this_parent->d_subdirs.next;
1066 resume:
1067 while (next != &this_parent->d_subdirs) {
1068 struct list_head *tmp = next;
1069 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1070 next = tmp->next;
1071
1072 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1073 /* Have we found a mount point ? */
1074 if (d_mountpoint(dentry)) {
1075 spin_unlock(&dentry->d_lock);
1076 spin_unlock(&this_parent->d_lock);
1077 goto positive;
1078 }
1079 if (!list_empty(&dentry->d_subdirs)) {
1080 spin_unlock(&this_parent->d_lock);
1081 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1082 this_parent = dentry;
1083 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1084 goto repeat;
1085 }
1086 spin_unlock(&dentry->d_lock);
1087 }
1088 /*
1089 * All done at this level ... ascend and resume the search.
1090 */
1091 if (this_parent != parent) {
1092 struct dentry *child = this_parent;
1093 this_parent = try_to_ascend(this_parent, locked, seq);
1094 if (!this_parent)
1095 goto rename_retry;
1096 next = child->d_u.d_child.next;
1097 goto resume;
1098 }
1099 spin_unlock(&this_parent->d_lock);
1100 if (!locked && read_seqretry(&rename_lock, seq))
1101 goto rename_retry;
1102 if (locked)
1103 write_sequnlock(&rename_lock);
1104 return 0; /* No mount points found in tree */
1105 positive:
1106 if (!locked && read_seqretry(&rename_lock, seq))
1107 goto rename_retry;
1108 if (locked)
1109 write_sequnlock(&rename_lock);
1110 return 1;
1111
1112 rename_retry:
1113 if (locked)
1114 goto again;
1115 locked = 1;
1116 write_seqlock(&rename_lock);
1117 goto again;
1118 }
1119 EXPORT_SYMBOL(have_submounts);
1120
1121 /*
1122 * Search the dentry child list of the specified parent,
1123 * and move any unused dentries to the end of the unused
1124 * list for prune_dcache(). We descend to the next level
1125 * whenever the d_subdirs list is non-empty and continue
1126 * searching.
1127 *
1128 * It returns zero iff there are no unused children,
1129 * otherwise it returns the number of children moved to
1130 * the end of the unused list. This may not be the total
1131 * number of unused children, because select_parent can
1132 * drop the lock and return early due to latency
1133 * constraints.
1134 */
1135 static int select_parent(struct dentry *parent, struct list_head *dispose)
1136 {
1137 struct dentry *this_parent;
1138 struct list_head *next;
1139 unsigned seq;
1140 int found = 0;
1141 int locked = 0;
1142
1143 seq = read_seqbegin(&rename_lock);
1144 again:
1145 this_parent = parent;
1146 spin_lock(&this_parent->d_lock);
1147 repeat:
1148 next = this_parent->d_subdirs.next;
1149 resume:
1150 while (next != &this_parent->d_subdirs) {
1151 struct list_head *tmp = next;
1152 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1153 next = tmp->next;
1154
1155 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1156
1157 /*
1158 * move only zero ref count dentries to the dispose list.
1159 *
1160 * Those which are presently on the shrink list, being processed
1161 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1162 * loop in shrink_dcache_parent() might not make any progress
1163 * and loop forever.
1164 */
1165 if (dentry->d_count) {
1166 dentry_lru_del(dentry);
1167 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1168 dentry_lru_move_list(dentry, dispose);
1169 dentry->d_flags |= DCACHE_SHRINK_LIST;
1170 found++;
1171 }
1172 /*
1173 * We can return to the caller if we have found some (this
1174 * ensures forward progress). We'll be coming back to find
1175 * the rest.
1176 */
1177 if (found && need_resched()) {
1178 spin_unlock(&dentry->d_lock);
1179 goto out;
1180 }
1181
1182 /*
1183 * Descend a level if the d_subdirs list is non-empty.
1184 */
1185 if (!list_empty(&dentry->d_subdirs)) {
1186 spin_unlock(&this_parent->d_lock);
1187 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1188 this_parent = dentry;
1189 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1190 goto repeat;
1191 }
1192
1193 spin_unlock(&dentry->d_lock);
1194 }
1195 /*
1196 * All done at this level ... ascend and resume the search.
1197 */
1198 if (this_parent != parent) {
1199 struct dentry *child = this_parent;
1200 this_parent = try_to_ascend(this_parent, locked, seq);
1201 if (!this_parent)
1202 goto rename_retry;
1203 next = child->d_u.d_child.next;
1204 goto resume;
1205 }
1206 out:
1207 spin_unlock(&this_parent->d_lock);
1208 if (!locked && read_seqretry(&rename_lock, seq))
1209 goto rename_retry;
1210 if (locked)
1211 write_sequnlock(&rename_lock);
1212 return found;
1213
1214 rename_retry:
1215 if (found)
1216 return found;
1217 if (locked)
1218 goto again;
1219 locked = 1;
1220 write_seqlock(&rename_lock);
1221 goto again;
1222 }
1223
1224 /**
1225 * shrink_dcache_parent - prune dcache
1226 * @parent: parent of entries to prune
1227 *
1228 * Prune the dcache to remove unused children of the parent dentry.
1229 */
1230 void shrink_dcache_parent(struct dentry * parent)
1231 {
1232 LIST_HEAD(dispose);
1233 int found;
1234
1235 while ((found = select_parent(parent, &dispose)) != 0)
1236 shrink_dentry_list(&dispose);
1237 }
1238 EXPORT_SYMBOL(shrink_dcache_parent);
1239
1240 /**
1241 * __d_alloc - allocate a dcache entry
1242 * @sb: filesystem it will belong to
1243 * @name: qstr of the name
1244 *
1245 * Allocates a dentry. It returns %NULL if there is insufficient memory
1246 * available. On a success the dentry is returned. The name passed in is
1247 * copied and the copy passed in may be reused after this call.
1248 */
1249
1250 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1251 {
1252 struct dentry *dentry;
1253 char *dname;
1254
1255 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1256 if (!dentry)
1257 return NULL;
1258
1259 /*
1260 * We guarantee that the inline name is always NUL-terminated.
1261 * This way the memcpy() done by the name switching in rename
1262 * will still always have a NUL at the end, even if we might
1263 * be overwriting an internal NUL character
1264 */
1265 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1266 if (name->len > DNAME_INLINE_LEN-1) {
1267 dname = kmalloc(name->len + 1, GFP_KERNEL);
1268 if (!dname) {
1269 kmem_cache_free(dentry_cache, dentry);
1270 return NULL;
1271 }
1272 } else {
1273 dname = dentry->d_iname;
1274 }
1275
1276 dentry->d_name.len = name->len;
1277 dentry->d_name.hash = name->hash;
1278 memcpy(dname, name->name, name->len);
1279 dname[name->len] = 0;
1280
1281 /* Make sure we always see the terminating NUL character */
1282 smp_wmb();
1283 dentry->d_name.name = dname;
1284
1285 dentry->d_count = 1;
1286 dentry->d_flags = 0;
1287 spin_lock_init(&dentry->d_lock);
1288 seqcount_init(&dentry->d_seq);
1289 dentry->d_inode = NULL;
1290 dentry->d_parent = dentry;
1291 dentry->d_sb = sb;
1292 dentry->d_op = NULL;
1293 dentry->d_fsdata = NULL;
1294 INIT_HLIST_BL_NODE(&dentry->d_hash);
1295 INIT_LIST_HEAD(&dentry->d_lru);
1296 INIT_LIST_HEAD(&dentry->d_subdirs);
1297 INIT_HLIST_NODE(&dentry->d_alias);
1298 INIT_LIST_HEAD(&dentry->d_u.d_child);
1299 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1300
1301 this_cpu_inc(nr_dentry);
1302
1303 return dentry;
1304 }
1305
1306 /**
1307 * d_alloc - allocate a dcache entry
1308 * @parent: parent of entry to allocate
1309 * @name: qstr of the name
1310 *
1311 * Allocates a dentry. It returns %NULL if there is insufficient memory
1312 * available. On a success the dentry is returned. The name passed in is
1313 * copied and the copy passed in may be reused after this call.
1314 */
1315 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1316 {
1317 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1318 if (!dentry)
1319 return NULL;
1320
1321 spin_lock(&parent->d_lock);
1322 /*
1323 * don't need child lock because it is not subject
1324 * to concurrency here
1325 */
1326 __dget_dlock(parent);
1327 dentry->d_parent = parent;
1328 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1329 spin_unlock(&parent->d_lock);
1330
1331 return dentry;
1332 }
1333 EXPORT_SYMBOL(d_alloc);
1334
1335 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1336 {
1337 struct dentry *dentry = __d_alloc(sb, name);
1338 if (dentry)
1339 dentry->d_flags |= DCACHE_DISCONNECTED;
1340 return dentry;
1341 }
1342 EXPORT_SYMBOL(d_alloc_pseudo);
1343
1344 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1345 {
1346 struct qstr q;
1347
1348 q.name = name;
1349 q.len = strlen(name);
1350 q.hash = full_name_hash(q.name, q.len);
1351 return d_alloc(parent, &q);
1352 }
1353 EXPORT_SYMBOL(d_alloc_name);
1354
1355 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1356 {
1357 WARN_ON_ONCE(dentry->d_op);
1358 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1359 DCACHE_OP_COMPARE |
1360 DCACHE_OP_REVALIDATE |
1361 DCACHE_OP_WEAK_REVALIDATE |
1362 DCACHE_OP_DELETE ));
1363 dentry->d_op = op;
1364 if (!op)
1365 return;
1366 if (op->d_hash)
1367 dentry->d_flags |= DCACHE_OP_HASH;
1368 if (op->d_compare)
1369 dentry->d_flags |= DCACHE_OP_COMPARE;
1370 if (op->d_revalidate)
1371 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1372 if (op->d_weak_revalidate)
1373 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1374 if (op->d_delete)
1375 dentry->d_flags |= DCACHE_OP_DELETE;
1376 if (op->d_prune)
1377 dentry->d_flags |= DCACHE_OP_PRUNE;
1378
1379 }
1380 EXPORT_SYMBOL(d_set_d_op);
1381
1382 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1383 {
1384 spin_lock(&dentry->d_lock);
1385 if (inode) {
1386 if (unlikely(IS_AUTOMOUNT(inode)))
1387 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1388 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1389 }
1390 dentry->d_inode = inode;
1391 dentry_rcuwalk_barrier(dentry);
1392 spin_unlock(&dentry->d_lock);
1393 fsnotify_d_instantiate(dentry, inode);
1394 }
1395
1396 /**
1397 * d_instantiate - fill in inode information for a dentry
1398 * @entry: dentry to complete
1399 * @inode: inode to attach to this dentry
1400 *
1401 * Fill in inode information in the entry.
1402 *
1403 * This turns negative dentries into productive full members
1404 * of society.
1405 *
1406 * NOTE! This assumes that the inode count has been incremented
1407 * (or otherwise set) by the caller to indicate that it is now
1408 * in use by the dcache.
1409 */
1410
1411 void d_instantiate(struct dentry *entry, struct inode * inode)
1412 {
1413 BUG_ON(!hlist_unhashed(&entry->d_alias));
1414 if (inode)
1415 spin_lock(&inode->i_lock);
1416 __d_instantiate(entry, inode);
1417 if (inode)
1418 spin_unlock(&inode->i_lock);
1419 security_d_instantiate(entry, inode);
1420 }
1421 EXPORT_SYMBOL(d_instantiate);
1422
1423 /**
1424 * d_instantiate_unique - instantiate a non-aliased dentry
1425 * @entry: dentry to instantiate
1426 * @inode: inode to attach to this dentry
1427 *
1428 * Fill in inode information in the entry. On success, it returns NULL.
1429 * If an unhashed alias of "entry" already exists, then we return the
1430 * aliased dentry instead and drop one reference to inode.
1431 *
1432 * Note that in order to avoid conflicts with rename() etc, the caller
1433 * had better be holding the parent directory semaphore.
1434 *
1435 * This also assumes that the inode count has been incremented
1436 * (or otherwise set) by the caller to indicate that it is now
1437 * in use by the dcache.
1438 */
1439 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1440 struct inode *inode)
1441 {
1442 struct dentry *alias;
1443 int len = entry->d_name.len;
1444 const char *name = entry->d_name.name;
1445 unsigned int hash = entry->d_name.hash;
1446 struct hlist_node *p;
1447
1448 if (!inode) {
1449 __d_instantiate(entry, NULL);
1450 return NULL;
1451 }
1452
1453 hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
1454 /*
1455 * Don't need alias->d_lock here, because aliases with
1456 * d_parent == entry->d_parent are not subject to name or
1457 * parent changes, because the parent inode i_mutex is held.
1458 */
1459 if (alias->d_name.hash != hash)
1460 continue;
1461 if (alias->d_parent != entry->d_parent)
1462 continue;
1463 if (alias->d_name.len != len)
1464 continue;
1465 if (dentry_cmp(alias, name, len))
1466 continue;
1467 __dget(alias);
1468 return alias;
1469 }
1470
1471 __d_instantiate(entry, inode);
1472 return NULL;
1473 }
1474
1475 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1476 {
1477 struct dentry *result;
1478
1479 BUG_ON(!hlist_unhashed(&entry->d_alias));
1480
1481 if (inode)
1482 spin_lock(&inode->i_lock);
1483 result = __d_instantiate_unique(entry, inode);
1484 if (inode)
1485 spin_unlock(&inode->i_lock);
1486
1487 if (!result) {
1488 security_d_instantiate(entry, inode);
1489 return NULL;
1490 }
1491
1492 BUG_ON(!d_unhashed(result));
1493 iput(inode);
1494 return result;
1495 }
1496
1497 EXPORT_SYMBOL(d_instantiate_unique);
1498
1499 struct dentry *d_make_root(struct inode *root_inode)
1500 {
1501 struct dentry *res = NULL;
1502
1503 if (root_inode) {
1504 static const struct qstr name = QSTR_INIT("/", 1);
1505
1506 res = __d_alloc(root_inode->i_sb, &name);
1507 if (res)
1508 d_instantiate(res, root_inode);
1509 else
1510 iput(root_inode);
1511 }
1512 return res;
1513 }
1514 EXPORT_SYMBOL(d_make_root);
1515
1516 static struct dentry * __d_find_any_alias(struct inode *inode)
1517 {
1518 struct dentry *alias;
1519
1520 if (hlist_empty(&inode->i_dentry))
1521 return NULL;
1522 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1523 __dget(alias);
1524 return alias;
1525 }
1526
1527 /**
1528 * d_find_any_alias - find any alias for a given inode
1529 * @inode: inode to find an alias for
1530 *
1531 * If any aliases exist for the given inode, take and return a
1532 * reference for one of them. If no aliases exist, return %NULL.
1533 */
1534 struct dentry *d_find_any_alias(struct inode *inode)
1535 {
1536 struct dentry *de;
1537
1538 spin_lock(&inode->i_lock);
1539 de = __d_find_any_alias(inode);
1540 spin_unlock(&inode->i_lock);
1541 return de;
1542 }
1543 EXPORT_SYMBOL(d_find_any_alias);
1544
1545 /**
1546 * d_obtain_alias - find or allocate a dentry for a given inode
1547 * @inode: inode to allocate the dentry for
1548 *
1549 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1550 * similar open by handle operations. The returned dentry may be anonymous,
1551 * or may have a full name (if the inode was already in the cache).
1552 *
1553 * When called on a directory inode, we must ensure that the inode only ever
1554 * has one dentry. If a dentry is found, that is returned instead of
1555 * allocating a new one.
1556 *
1557 * On successful return, the reference to the inode has been transferred
1558 * to the dentry. In case of an error the reference on the inode is released.
1559 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1560 * be passed in and will be the error will be propagate to the return value,
1561 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1562 */
1563 struct dentry *d_obtain_alias(struct inode *inode)
1564 {
1565 static const struct qstr anonstring = QSTR_INIT("/", 1);
1566 struct dentry *tmp;
1567 struct dentry *res;
1568
1569 if (!inode)
1570 return ERR_PTR(-ESTALE);
1571 if (IS_ERR(inode))
1572 return ERR_CAST(inode);
1573
1574 res = d_find_any_alias(inode);
1575 if (res)
1576 goto out_iput;
1577
1578 tmp = __d_alloc(inode->i_sb, &anonstring);
1579 if (!tmp) {
1580 res = ERR_PTR(-ENOMEM);
1581 goto out_iput;
1582 }
1583
1584 spin_lock(&inode->i_lock);
1585 res = __d_find_any_alias(inode);
1586 if (res) {
1587 spin_unlock(&inode->i_lock);
1588 dput(tmp);
1589 goto out_iput;
1590 }
1591
1592 /* attach a disconnected dentry */
1593 spin_lock(&tmp->d_lock);
1594 tmp->d_inode = inode;
1595 tmp->d_flags |= DCACHE_DISCONNECTED;
1596 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1597 hlist_bl_lock(&tmp->d_sb->s_anon);
1598 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1599 hlist_bl_unlock(&tmp->d_sb->s_anon);
1600 spin_unlock(&tmp->d_lock);
1601 spin_unlock(&inode->i_lock);
1602 security_d_instantiate(tmp, inode);
1603
1604 return tmp;
1605
1606 out_iput:
1607 if (res && !IS_ERR(res))
1608 security_d_instantiate(res, inode);
1609 iput(inode);
1610 return res;
1611 }
1612 EXPORT_SYMBOL(d_obtain_alias);
1613
1614 /**
1615 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1616 * @inode: the inode which may have a disconnected dentry
1617 * @dentry: a negative dentry which we want to point to the inode.
1618 *
1619 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1620 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1621 * and return it, else simply d_add the inode to the dentry and return NULL.
1622 *
1623 * This is needed in the lookup routine of any filesystem that is exportable
1624 * (via knfsd) so that we can build dcache paths to directories effectively.
1625 *
1626 * If a dentry was found and moved, then it is returned. Otherwise NULL
1627 * is returned. This matches the expected return value of ->lookup.
1628 *
1629 */
1630 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1631 {
1632 struct dentry *new = NULL;
1633
1634 if (IS_ERR(inode))
1635 return ERR_CAST(inode);
1636
1637 if (inode && S_ISDIR(inode->i_mode)) {
1638 spin_lock(&inode->i_lock);
1639 new = __d_find_alias(inode, 1);
1640 if (new) {
1641 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1642 spin_unlock(&inode->i_lock);
1643 security_d_instantiate(new, inode);
1644 d_move(new, dentry);
1645 iput(inode);
1646 } else {
1647 /* already taking inode->i_lock, so d_add() by hand */
1648 __d_instantiate(dentry, inode);
1649 spin_unlock(&inode->i_lock);
1650 security_d_instantiate(dentry, inode);
1651 d_rehash(dentry);
1652 }
1653 } else
1654 d_add(dentry, inode);
1655 return new;
1656 }
1657 EXPORT_SYMBOL(d_splice_alias);
1658
1659 /**
1660 * d_add_ci - lookup or allocate new dentry with case-exact name
1661 * @inode: the inode case-insensitive lookup has found
1662 * @dentry: the negative dentry that was passed to the parent's lookup func
1663 * @name: the case-exact name to be associated with the returned dentry
1664 *
1665 * This is to avoid filling the dcache with case-insensitive names to the
1666 * same inode, only the actual correct case is stored in the dcache for
1667 * case-insensitive filesystems.
1668 *
1669 * For a case-insensitive lookup match and if the the case-exact dentry
1670 * already exists in in the dcache, use it and return it.
1671 *
1672 * If no entry exists with the exact case name, allocate new dentry with
1673 * the exact case, and return the spliced entry.
1674 */
1675 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1676 struct qstr *name)
1677 {
1678 struct dentry *found;
1679 struct dentry *new;
1680
1681 /*
1682 * First check if a dentry matching the name already exists,
1683 * if not go ahead and create it now.
1684 */
1685 found = d_hash_and_lookup(dentry->d_parent, name);
1686 if (unlikely(IS_ERR(found)))
1687 goto err_out;
1688 if (!found) {
1689 new = d_alloc(dentry->d_parent, name);
1690 if (!new) {
1691 found = ERR_PTR(-ENOMEM);
1692 goto err_out;
1693 }
1694
1695 found = d_splice_alias(inode, new);
1696 if (found) {
1697 dput(new);
1698 return found;
1699 }
1700 return new;
1701 }
1702
1703 /*
1704 * If a matching dentry exists, and it's not negative use it.
1705 *
1706 * Decrement the reference count to balance the iget() done
1707 * earlier on.
1708 */
1709 if (found->d_inode) {
1710 if (unlikely(found->d_inode != inode)) {
1711 /* This can't happen because bad inodes are unhashed. */
1712 BUG_ON(!is_bad_inode(inode));
1713 BUG_ON(!is_bad_inode(found->d_inode));
1714 }
1715 iput(inode);
1716 return found;
1717 }
1718
1719 /*
1720 * Negative dentry: instantiate it unless the inode is a directory and
1721 * already has a dentry.
1722 */
1723 new = d_splice_alias(inode, found);
1724 if (new) {
1725 dput(found);
1726 found = new;
1727 }
1728 return found;
1729
1730 err_out:
1731 iput(inode);
1732 return found;
1733 }
1734 EXPORT_SYMBOL(d_add_ci);
1735
1736 /*
1737 * Do the slow-case of the dentry name compare.
1738 *
1739 * Unlike the dentry_cmp() function, we need to atomically
1740 * load the name, length and inode information, so that the
1741 * filesystem can rely on them, and can use the 'name' and
1742 * 'len' information without worrying about walking off the
1743 * end of memory etc.
1744 *
1745 * Thus the read_seqcount_retry() and the "duplicate" info
1746 * in arguments (the low-level filesystem should not look
1747 * at the dentry inode or name contents directly, since
1748 * rename can change them while we're in RCU mode).
1749 */
1750 enum slow_d_compare {
1751 D_COMP_OK,
1752 D_COMP_NOMATCH,
1753 D_COMP_SEQRETRY,
1754 };
1755
1756 static noinline enum slow_d_compare slow_dentry_cmp(
1757 const struct dentry *parent,
1758 struct inode *inode,
1759 struct dentry *dentry,
1760 unsigned int seq,
1761 const struct qstr *name)
1762 {
1763 int tlen = dentry->d_name.len;
1764 const char *tname = dentry->d_name.name;
1765 struct inode *i = dentry->d_inode;
1766
1767 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1768 cpu_relax();
1769 return D_COMP_SEQRETRY;
1770 }
1771 if (parent->d_op->d_compare(parent, inode,
1772 dentry, i,
1773 tlen, tname, name))
1774 return D_COMP_NOMATCH;
1775 return D_COMP_OK;
1776 }
1777
1778 /**
1779 * __d_lookup_rcu - search for a dentry (racy, store-free)
1780 * @parent: parent dentry
1781 * @name: qstr of name we wish to find
1782 * @seqp: returns d_seq value at the point where the dentry was found
1783 * @inode: returns dentry->d_inode when the inode was found valid.
1784 * Returns: dentry, or NULL
1785 *
1786 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1787 * resolution (store-free path walking) design described in
1788 * Documentation/filesystems/path-lookup.txt.
1789 *
1790 * This is not to be used outside core vfs.
1791 *
1792 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1793 * held, and rcu_read_lock held. The returned dentry must not be stored into
1794 * without taking d_lock and checking d_seq sequence count against @seq
1795 * returned here.
1796 *
1797 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1798 * function.
1799 *
1800 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1801 * the returned dentry, so long as its parent's seqlock is checked after the
1802 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1803 * is formed, giving integrity down the path walk.
1804 *
1805 * NOTE! The caller *has* to check the resulting dentry against the sequence
1806 * number we've returned before using any of the resulting dentry state!
1807 */
1808 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1809 const struct qstr *name,
1810 unsigned *seqp, struct inode *inode)
1811 {
1812 u64 hashlen = name->hash_len;
1813 const unsigned char *str = name->name;
1814 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1815 struct hlist_bl_node *node;
1816 struct dentry *dentry;
1817
1818 /*
1819 * Note: There is significant duplication with __d_lookup_rcu which is
1820 * required to prevent single threaded performance regressions
1821 * especially on architectures where smp_rmb (in seqcounts) are costly.
1822 * Keep the two functions in sync.
1823 */
1824
1825 /*
1826 * The hash list is protected using RCU.
1827 *
1828 * Carefully use d_seq when comparing a candidate dentry, to avoid
1829 * races with d_move().
1830 *
1831 * It is possible that concurrent renames can mess up our list
1832 * walk here and result in missing our dentry, resulting in the
1833 * false-negative result. d_lookup() protects against concurrent
1834 * renames using rename_lock seqlock.
1835 *
1836 * See Documentation/filesystems/path-lookup.txt for more details.
1837 */
1838 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1839 unsigned seq;
1840
1841 seqretry:
1842 /*
1843 * The dentry sequence count protects us from concurrent
1844 * renames, and thus protects inode, parent and name fields.
1845 *
1846 * The caller must perform a seqcount check in order
1847 * to do anything useful with the returned dentry,
1848 * including using the 'd_inode' pointer.
1849 *
1850 * NOTE! We do a "raw" seqcount_begin here. That means that
1851 * we don't wait for the sequence count to stabilize if it
1852 * is in the middle of a sequence change. If we do the slow
1853 * dentry compare, we will do seqretries until it is stable,
1854 * and if we end up with a successful lookup, we actually
1855 * want to exit RCU lookup anyway.
1856 */
1857 seq = raw_seqcount_begin(&dentry->d_seq);
1858 if (dentry->d_parent != parent)
1859 continue;
1860 if (d_unhashed(dentry))
1861 continue;
1862 *seqp = seq;
1863
1864 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1865 if (dentry->d_name.hash != hashlen_hash(hashlen))
1866 continue;
1867 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1868 case D_COMP_OK:
1869 return dentry;
1870 case D_COMP_NOMATCH:
1871 continue;
1872 default:
1873 goto seqretry;
1874 }
1875 }
1876
1877 if (dentry->d_name.hash_len != hashlen)
1878 continue;
1879 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1880 return dentry;
1881 }
1882 return NULL;
1883 }
1884
1885 /**
1886 * d_lookup - search for a dentry
1887 * @parent: parent dentry
1888 * @name: qstr of name we wish to find
1889 * Returns: dentry, or NULL
1890 *
1891 * d_lookup searches the children of the parent dentry for the name in
1892 * question. If the dentry is found its reference count is incremented and the
1893 * dentry is returned. The caller must use dput to free the entry when it has
1894 * finished using it. %NULL is returned if the dentry does not exist.
1895 */
1896 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1897 {
1898 struct dentry *dentry;
1899 unsigned seq;
1900
1901 do {
1902 seq = read_seqbegin(&rename_lock);
1903 dentry = __d_lookup(parent, name);
1904 if (dentry)
1905 break;
1906 } while (read_seqretry(&rename_lock, seq));
1907 return dentry;
1908 }
1909 EXPORT_SYMBOL(d_lookup);
1910
1911 /**
1912 * __d_lookup - search for a dentry (racy)
1913 * @parent: parent dentry
1914 * @name: qstr of name we wish to find
1915 * Returns: dentry, or NULL
1916 *
1917 * __d_lookup is like d_lookup, however it may (rarely) return a
1918 * false-negative result due to unrelated rename activity.
1919 *
1920 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1921 * however it must be used carefully, eg. with a following d_lookup in
1922 * the case of failure.
1923 *
1924 * __d_lookup callers must be commented.
1925 */
1926 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1927 {
1928 unsigned int len = name->len;
1929 unsigned int hash = name->hash;
1930 const unsigned char *str = name->name;
1931 struct hlist_bl_head *b = d_hash(parent, hash);
1932 struct hlist_bl_node *node;
1933 struct dentry *found = NULL;
1934 struct dentry *dentry;
1935
1936 /*
1937 * Note: There is significant duplication with __d_lookup_rcu which is
1938 * required to prevent single threaded performance regressions
1939 * especially on architectures where smp_rmb (in seqcounts) are costly.
1940 * Keep the two functions in sync.
1941 */
1942
1943 /*
1944 * The hash list is protected using RCU.
1945 *
1946 * Take d_lock when comparing a candidate dentry, to avoid races
1947 * with d_move().
1948 *
1949 * It is possible that concurrent renames can mess up our list
1950 * walk here and result in missing our dentry, resulting in the
1951 * false-negative result. d_lookup() protects against concurrent
1952 * renames using rename_lock seqlock.
1953 *
1954 * See Documentation/filesystems/path-lookup.txt for more details.
1955 */
1956 rcu_read_lock();
1957
1958 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1959
1960 if (dentry->d_name.hash != hash)
1961 continue;
1962
1963 spin_lock(&dentry->d_lock);
1964 if (dentry->d_parent != parent)
1965 goto next;
1966 if (d_unhashed(dentry))
1967 goto next;
1968
1969 /*
1970 * It is safe to compare names since d_move() cannot
1971 * change the qstr (protected by d_lock).
1972 */
1973 if (parent->d_flags & DCACHE_OP_COMPARE) {
1974 int tlen = dentry->d_name.len;
1975 const char *tname = dentry->d_name.name;
1976 if (parent->d_op->d_compare(parent, parent->d_inode,
1977 dentry, dentry->d_inode,
1978 tlen, tname, name))
1979 goto next;
1980 } else {
1981 if (dentry->d_name.len != len)
1982 goto next;
1983 if (dentry_cmp(dentry, str, len))
1984 goto next;
1985 }
1986
1987 dentry->d_count++;
1988 found = dentry;
1989 spin_unlock(&dentry->d_lock);
1990 break;
1991 next:
1992 spin_unlock(&dentry->d_lock);
1993 }
1994 rcu_read_unlock();
1995
1996 return found;
1997 }
1998
1999 /**
2000 * d_hash_and_lookup - hash the qstr then search for a dentry
2001 * @dir: Directory to search in
2002 * @name: qstr of name we wish to find
2003 *
2004 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2005 */
2006 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2007 {
2008 /*
2009 * Check for a fs-specific hash function. Note that we must
2010 * calculate the standard hash first, as the d_op->d_hash()
2011 * routine may choose to leave the hash value unchanged.
2012 */
2013 name->hash = full_name_hash(name->name, name->len);
2014 if (dir->d_flags & DCACHE_OP_HASH) {
2015 int err = dir->d_op->d_hash(dir, dir->d_inode, name);
2016 if (unlikely(err < 0))
2017 return ERR_PTR(err);
2018 }
2019 return d_lookup(dir, name);
2020 }
2021 EXPORT_SYMBOL(d_hash_and_lookup);
2022
2023 /**
2024 * d_validate - verify dentry provided from insecure source (deprecated)
2025 * @dentry: The dentry alleged to be valid child of @dparent
2026 * @dparent: The parent dentry (known to be valid)
2027 *
2028 * An insecure source has sent us a dentry, here we verify it and dget() it.
2029 * This is used by ncpfs in its readdir implementation.
2030 * Zero is returned in the dentry is invalid.
2031 *
2032 * This function is slow for big directories, and deprecated, do not use it.
2033 */
2034 int d_validate(struct dentry *dentry, struct dentry *dparent)
2035 {
2036 struct dentry *child;
2037
2038 spin_lock(&dparent->d_lock);
2039 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2040 if (dentry == child) {
2041 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2042 __dget_dlock(dentry);
2043 spin_unlock(&dentry->d_lock);
2044 spin_unlock(&dparent->d_lock);
2045 return 1;
2046 }
2047 }
2048 spin_unlock(&dparent->d_lock);
2049
2050 return 0;
2051 }
2052 EXPORT_SYMBOL(d_validate);
2053
2054 /*
2055 * When a file is deleted, we have two options:
2056 * - turn this dentry into a negative dentry
2057 * - unhash this dentry and free it.
2058 *
2059 * Usually, we want to just turn this into
2060 * a negative dentry, but if anybody else is
2061 * currently using the dentry or the inode
2062 * we can't do that and we fall back on removing
2063 * it from the hash queues and waiting for
2064 * it to be deleted later when it has no users
2065 */
2066
2067 /**
2068 * d_delete - delete a dentry
2069 * @dentry: The dentry to delete
2070 *
2071 * Turn the dentry into a negative dentry if possible, otherwise
2072 * remove it from the hash queues so it can be deleted later
2073 */
2074
2075 void d_delete(struct dentry * dentry)
2076 {
2077 struct inode *inode;
2078 int isdir = 0;
2079 /*
2080 * Are we the only user?
2081 */
2082 again:
2083 spin_lock(&dentry->d_lock);
2084 inode = dentry->d_inode;
2085 isdir = S_ISDIR(inode->i_mode);
2086 if (dentry->d_count == 1) {
2087 if (!spin_trylock(&inode->i_lock)) {
2088 spin_unlock(&dentry->d_lock);
2089 cpu_relax();
2090 goto again;
2091 }
2092 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2093 dentry_unlink_inode(dentry);
2094 fsnotify_nameremove(dentry, isdir);
2095 return;
2096 }
2097
2098 if (!d_unhashed(dentry))
2099 __d_drop(dentry);
2100
2101 spin_unlock(&dentry->d_lock);
2102
2103 fsnotify_nameremove(dentry, isdir);
2104 }
2105 EXPORT_SYMBOL(d_delete);
2106
2107 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2108 {
2109 BUG_ON(!d_unhashed(entry));
2110 hlist_bl_lock(b);
2111 entry->d_flags |= DCACHE_RCUACCESS;
2112 hlist_bl_add_head_rcu(&entry->d_hash, b);
2113 hlist_bl_unlock(b);
2114 }
2115
2116 static void _d_rehash(struct dentry * entry)
2117 {
2118 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2119 }
2120
2121 /**
2122 * d_rehash - add an entry back to the hash
2123 * @entry: dentry to add to the hash
2124 *
2125 * Adds a dentry to the hash according to its name.
2126 */
2127
2128 void d_rehash(struct dentry * entry)
2129 {
2130 spin_lock(&entry->d_lock);
2131 _d_rehash(entry);
2132 spin_unlock(&entry->d_lock);
2133 }
2134 EXPORT_SYMBOL(d_rehash);
2135
2136 /**
2137 * dentry_update_name_case - update case insensitive dentry with a new name
2138 * @dentry: dentry to be updated
2139 * @name: new name
2140 *
2141 * Update a case insensitive dentry with new case of name.
2142 *
2143 * dentry must have been returned by d_lookup with name @name. Old and new
2144 * name lengths must match (ie. no d_compare which allows mismatched name
2145 * lengths).
2146 *
2147 * Parent inode i_mutex must be held over d_lookup and into this call (to
2148 * keep renames and concurrent inserts, and readdir(2) away).
2149 */
2150 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2151 {
2152 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2153 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2154
2155 spin_lock(&dentry->d_lock);
2156 write_seqcount_begin(&dentry->d_seq);
2157 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2158 write_seqcount_end(&dentry->d_seq);
2159 spin_unlock(&dentry->d_lock);
2160 }
2161 EXPORT_SYMBOL(dentry_update_name_case);
2162
2163 static void switch_names(struct dentry *dentry, struct dentry *target)
2164 {
2165 if (dname_external(target)) {
2166 if (dname_external(dentry)) {
2167 /*
2168 * Both external: swap the pointers
2169 */
2170 swap(target->d_name.name, dentry->d_name.name);
2171 } else {
2172 /*
2173 * dentry:internal, target:external. Steal target's
2174 * storage and make target internal.
2175 */
2176 memcpy(target->d_iname, dentry->d_name.name,
2177 dentry->d_name.len + 1);
2178 dentry->d_name.name = target->d_name.name;
2179 target->d_name.name = target->d_iname;
2180 }
2181 } else {
2182 if (dname_external(dentry)) {
2183 /*
2184 * dentry:external, target:internal. Give dentry's
2185 * storage to target and make dentry internal
2186 */
2187 memcpy(dentry->d_iname, target->d_name.name,
2188 target->d_name.len + 1);
2189 target->d_name.name = dentry->d_name.name;
2190 dentry->d_name.name = dentry->d_iname;
2191 } else {
2192 /*
2193 * Both are internal. Just copy target to dentry
2194 */
2195 memcpy(dentry->d_iname, target->d_name.name,
2196 target->d_name.len + 1);
2197 dentry->d_name.len = target->d_name.len;
2198 return;
2199 }
2200 }
2201 swap(dentry->d_name.len, target->d_name.len);
2202 }
2203
2204 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2205 {
2206 /*
2207 * XXXX: do we really need to take target->d_lock?
2208 */
2209 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2210 spin_lock(&target->d_parent->d_lock);
2211 else {
2212 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2213 spin_lock(&dentry->d_parent->d_lock);
2214 spin_lock_nested(&target->d_parent->d_lock,
2215 DENTRY_D_LOCK_NESTED);
2216 } else {
2217 spin_lock(&target->d_parent->d_lock);
2218 spin_lock_nested(&dentry->d_parent->d_lock,
2219 DENTRY_D_LOCK_NESTED);
2220 }
2221 }
2222 if (target < dentry) {
2223 spin_lock_nested(&target->d_lock, 2);
2224 spin_lock_nested(&dentry->d_lock, 3);
2225 } else {
2226 spin_lock_nested(&dentry->d_lock, 2);
2227 spin_lock_nested(&target->d_lock, 3);
2228 }
2229 }
2230
2231 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2232 struct dentry *target)
2233 {
2234 if (target->d_parent != dentry->d_parent)
2235 spin_unlock(&dentry->d_parent->d_lock);
2236 if (target->d_parent != target)
2237 spin_unlock(&target->d_parent->d_lock);
2238 }
2239
2240 /*
2241 * When switching names, the actual string doesn't strictly have to
2242 * be preserved in the target - because we're dropping the target
2243 * anyway. As such, we can just do a simple memcpy() to copy over
2244 * the new name before we switch.
2245 *
2246 * Note that we have to be a lot more careful about getting the hash
2247 * switched - we have to switch the hash value properly even if it
2248 * then no longer matches the actual (corrupted) string of the target.
2249 * The hash value has to match the hash queue that the dentry is on..
2250 */
2251 /*
2252 * __d_move - move a dentry
2253 * @dentry: entry to move
2254 * @target: new dentry
2255 *
2256 * Update the dcache to reflect the move of a file name. Negative
2257 * dcache entries should not be moved in this way. Caller must hold
2258 * rename_lock, the i_mutex of the source and target directories,
2259 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2260 */
2261 static void __d_move(struct dentry * dentry, struct dentry * target)
2262 {
2263 if (!dentry->d_inode)
2264 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2265
2266 BUG_ON(d_ancestor(dentry, target));
2267 BUG_ON(d_ancestor(target, dentry));
2268
2269 dentry_lock_for_move(dentry, target);
2270
2271 write_seqcount_begin(&dentry->d_seq);
2272 write_seqcount_begin(&target->d_seq);
2273
2274 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2275
2276 /*
2277 * Move the dentry to the target hash queue. Don't bother checking
2278 * for the same hash queue because of how unlikely it is.
2279 */
2280 __d_drop(dentry);
2281 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2282
2283 /* Unhash the target: dput() will then get rid of it */
2284 __d_drop(target);
2285
2286 list_del(&dentry->d_u.d_child);
2287 list_del(&target->d_u.d_child);
2288
2289 /* Switch the names.. */
2290 switch_names(dentry, target);
2291 swap(dentry->d_name.hash, target->d_name.hash);
2292
2293 /* ... and switch the parents */
2294 if (IS_ROOT(dentry)) {
2295 dentry->d_parent = target->d_parent;
2296 target->d_parent = target;
2297 INIT_LIST_HEAD(&target->d_u.d_child);
2298 } else {
2299 swap(dentry->d_parent, target->d_parent);
2300
2301 /* And add them back to the (new) parent lists */
2302 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2303 }
2304
2305 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2306
2307 write_seqcount_end(&target->d_seq);
2308 write_seqcount_end(&dentry->d_seq);
2309
2310 dentry_unlock_parents_for_move(dentry, target);
2311 spin_unlock(&target->d_lock);
2312 fsnotify_d_move(dentry);
2313 spin_unlock(&dentry->d_lock);
2314 }
2315
2316 /*
2317 * d_move - move a dentry
2318 * @dentry: entry to move
2319 * @target: new dentry
2320 *
2321 * Update the dcache to reflect the move of a file name. Negative
2322 * dcache entries should not be moved in this way. See the locking
2323 * requirements for __d_move.
2324 */
2325 void d_move(struct dentry *dentry, struct dentry *target)
2326 {
2327 write_seqlock(&rename_lock);
2328 __d_move(dentry, target);
2329 write_sequnlock(&rename_lock);
2330 }
2331 EXPORT_SYMBOL(d_move);
2332
2333 /**
2334 * d_ancestor - search for an ancestor
2335 * @p1: ancestor dentry
2336 * @p2: child dentry
2337 *
2338 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2339 * an ancestor of p2, else NULL.
2340 */
2341 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2342 {
2343 struct dentry *p;
2344
2345 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2346 if (p->d_parent == p1)
2347 return p;
2348 }
2349 return NULL;
2350 }
2351
2352 /*
2353 * This helper attempts to cope with remotely renamed directories
2354 *
2355 * It assumes that the caller is already holding
2356 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2357 *
2358 * Note: If ever the locking in lock_rename() changes, then please
2359 * remember to update this too...
2360 */
2361 static struct dentry *__d_unalias(struct inode *inode,
2362 struct dentry *dentry, struct dentry *alias)
2363 {
2364 struct mutex *m1 = NULL, *m2 = NULL;
2365 struct dentry *ret = ERR_PTR(-EBUSY);
2366
2367 /* If alias and dentry share a parent, then no extra locks required */
2368 if (alias->d_parent == dentry->d_parent)
2369 goto out_unalias;
2370
2371 /* See lock_rename() */
2372 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2373 goto out_err;
2374 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2375 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2376 goto out_err;
2377 m2 = &alias->d_parent->d_inode->i_mutex;
2378 out_unalias:
2379 if (likely(!d_mountpoint(alias))) {
2380 __d_move(alias, dentry);
2381 ret = alias;
2382 }
2383 out_err:
2384 spin_unlock(&inode->i_lock);
2385 if (m2)
2386 mutex_unlock(m2);
2387 if (m1)
2388 mutex_unlock(m1);
2389 return ret;
2390 }
2391
2392 /*
2393 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2394 * named dentry in place of the dentry to be replaced.
2395 * returns with anon->d_lock held!
2396 */
2397 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2398 {
2399 struct dentry *dparent;
2400
2401 dentry_lock_for_move(anon, dentry);
2402
2403 write_seqcount_begin(&dentry->d_seq);
2404 write_seqcount_begin(&anon->d_seq);
2405
2406 dparent = dentry->d_parent;
2407
2408 switch_names(dentry, anon);
2409 swap(dentry->d_name.hash, anon->d_name.hash);
2410
2411 dentry->d_parent = dentry;
2412 list_del_init(&dentry->d_u.d_child);
2413 anon->d_parent = dparent;
2414 list_del(&anon->d_u.d_child);
2415 list_add(&anon->d_u.d_child, &dparent->d_subdirs);
2416
2417 write_seqcount_end(&dentry->d_seq);
2418 write_seqcount_end(&anon->d_seq);
2419
2420 dentry_unlock_parents_for_move(anon, dentry);
2421 spin_unlock(&dentry->d_lock);
2422
2423 /* anon->d_lock still locked, returns locked */
2424 anon->d_flags &= ~DCACHE_DISCONNECTED;
2425 }
2426
2427 /**
2428 * d_materialise_unique - introduce an inode into the tree
2429 * @dentry: candidate dentry
2430 * @inode: inode to bind to the dentry, to which aliases may be attached
2431 *
2432 * Introduces an dentry into the tree, substituting an extant disconnected
2433 * root directory alias in its place if there is one. Caller must hold the
2434 * i_mutex of the parent directory.
2435 */
2436 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2437 {
2438 struct dentry *actual;
2439
2440 BUG_ON(!d_unhashed(dentry));
2441
2442 if (!inode) {
2443 actual = dentry;
2444 __d_instantiate(dentry, NULL);
2445 d_rehash(actual);
2446 goto out_nolock;
2447 }
2448
2449 spin_lock(&inode->i_lock);
2450
2451 if (S_ISDIR(inode->i_mode)) {
2452 struct dentry *alias;
2453
2454 /* Does an aliased dentry already exist? */
2455 alias = __d_find_alias(inode, 0);
2456 if (alias) {
2457 actual = alias;
2458 write_seqlock(&rename_lock);
2459
2460 if (d_ancestor(alias, dentry)) {
2461 /* Check for loops */
2462 actual = ERR_PTR(-ELOOP);
2463 spin_unlock(&inode->i_lock);
2464 } else if (IS_ROOT(alias)) {
2465 /* Is this an anonymous mountpoint that we
2466 * could splice into our tree? */
2467 __d_materialise_dentry(dentry, alias);
2468 write_sequnlock(&rename_lock);
2469 __d_drop(alias);
2470 goto found;
2471 } else {
2472 /* Nope, but we must(!) avoid directory
2473 * aliasing. This drops inode->i_lock */
2474 actual = __d_unalias(inode, dentry, alias);
2475 }
2476 write_sequnlock(&rename_lock);
2477 if (IS_ERR(actual)) {
2478 if (PTR_ERR(actual) == -ELOOP)
2479 pr_warn_ratelimited(
2480 "VFS: Lookup of '%s' in %s %s"
2481 " would have caused loop\n",
2482 dentry->d_name.name,
2483 inode->i_sb->s_type->name,
2484 inode->i_sb->s_id);
2485 dput(alias);
2486 }
2487 goto out_nolock;
2488 }
2489 }
2490
2491 /* Add a unique reference */
2492 actual = __d_instantiate_unique(dentry, inode);
2493 if (!actual)
2494 actual = dentry;
2495 else
2496 BUG_ON(!d_unhashed(actual));
2497
2498 spin_lock(&actual->d_lock);
2499 found:
2500 _d_rehash(actual);
2501 spin_unlock(&actual->d_lock);
2502 spin_unlock(&inode->i_lock);
2503 out_nolock:
2504 if (actual == dentry) {
2505 security_d_instantiate(dentry, inode);
2506 return NULL;
2507 }
2508
2509 iput(inode);
2510 return actual;
2511 }
2512 EXPORT_SYMBOL_GPL(d_materialise_unique);
2513
2514 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2515 {
2516 *buflen -= namelen;
2517 if (*buflen < 0)
2518 return -ENAMETOOLONG;
2519 *buffer -= namelen;
2520 memcpy(*buffer, str, namelen);
2521 return 0;
2522 }
2523
2524 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2525 {
2526 return prepend(buffer, buflen, name->name, name->len);
2527 }
2528
2529 /**
2530 * prepend_path - Prepend path string to a buffer
2531 * @path: the dentry/vfsmount to report
2532 * @root: root vfsmnt/dentry
2533 * @buffer: pointer to the end of the buffer
2534 * @buflen: pointer to buffer length
2535 *
2536 * Caller holds the rename_lock.
2537 */
2538 static int prepend_path(const struct path *path,
2539 const struct path *root,
2540 char **buffer, int *buflen)
2541 {
2542 struct dentry *dentry = path->dentry;
2543 struct vfsmount *vfsmnt = path->mnt;
2544 struct mount *mnt = real_mount(vfsmnt);
2545 bool slash = false;
2546 int error = 0;
2547
2548 br_read_lock(&vfsmount_lock);
2549 while (dentry != root->dentry || vfsmnt != root->mnt) {
2550 struct dentry * parent;
2551
2552 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2553 /* Global root? */
2554 if (!mnt_has_parent(mnt))
2555 goto global_root;
2556 dentry = mnt->mnt_mountpoint;
2557 mnt = mnt->mnt_parent;
2558 vfsmnt = &mnt->mnt;
2559 continue;
2560 }
2561 parent = dentry->d_parent;
2562 prefetch(parent);
2563 spin_lock(&dentry->d_lock);
2564 error = prepend_name(buffer, buflen, &dentry->d_name);
2565 spin_unlock(&dentry->d_lock);
2566 if (!error)
2567 error = prepend(buffer, buflen, "/", 1);
2568 if (error)
2569 break;
2570
2571 slash = true;
2572 dentry = parent;
2573 }
2574
2575 if (!error && !slash)
2576 error = prepend(buffer, buflen, "/", 1);
2577
2578 out:
2579 br_read_unlock(&vfsmount_lock);
2580 return error;
2581
2582 global_root:
2583 /*
2584 * Filesystems needing to implement special "root names"
2585 * should do so with ->d_dname()
2586 */
2587 if (IS_ROOT(dentry) &&
2588 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2589 WARN(1, "Root dentry has weird name <%.*s>\n",
2590 (int) dentry->d_name.len, dentry->d_name.name);
2591 }
2592 if (!slash)
2593 error = prepend(buffer, buflen, "/", 1);
2594 if (!error)
2595 error = is_mounted(vfsmnt) ? 1 : 2;
2596 goto out;
2597 }
2598
2599 /**
2600 * __d_path - return the path of a dentry
2601 * @path: the dentry/vfsmount to report
2602 * @root: root vfsmnt/dentry
2603 * @buf: buffer to return value in
2604 * @buflen: buffer length
2605 *
2606 * Convert a dentry into an ASCII path name.
2607 *
2608 * Returns a pointer into the buffer or an error code if the
2609 * path was too long.
2610 *
2611 * "buflen" should be positive.
2612 *
2613 * If the path is not reachable from the supplied root, return %NULL.
2614 */
2615 char *__d_path(const struct path *path,
2616 const struct path *root,
2617 char *buf, int buflen)
2618 {
2619 char *res = buf + buflen;
2620 int error;
2621
2622 prepend(&res, &buflen, "\0", 1);
2623 write_seqlock(&rename_lock);
2624 error = prepend_path(path, root, &res, &buflen);
2625 write_sequnlock(&rename_lock);
2626
2627 if (error < 0)
2628 return ERR_PTR(error);
2629 if (error > 0)
2630 return NULL;
2631 return res;
2632 }
2633
2634 char *d_absolute_path(const struct path *path,
2635 char *buf, int buflen)
2636 {
2637 struct path root = {};
2638 char *res = buf + buflen;
2639 int error;
2640
2641 prepend(&res, &buflen, "\0", 1);
2642 write_seqlock(&rename_lock);
2643 error = prepend_path(path, &root, &res, &buflen);
2644 write_sequnlock(&rename_lock);
2645
2646 if (error > 1)
2647 error = -EINVAL;
2648 if (error < 0)
2649 return ERR_PTR(error);
2650 return res;
2651 }
2652
2653 /*
2654 * same as __d_path but appends "(deleted)" for unlinked files.
2655 */
2656 static int path_with_deleted(const struct path *path,
2657 const struct path *root,
2658 char **buf, int *buflen)
2659 {
2660 prepend(buf, buflen, "\0", 1);
2661 if (d_unlinked(path->dentry)) {
2662 int error = prepend(buf, buflen, " (deleted)", 10);
2663 if (error)
2664 return error;
2665 }
2666
2667 return prepend_path(path, root, buf, buflen);
2668 }
2669
2670 static int prepend_unreachable(char **buffer, int *buflen)
2671 {
2672 return prepend(buffer, buflen, "(unreachable)", 13);
2673 }
2674
2675 /**
2676 * d_path - return the path of a dentry
2677 * @path: path to report
2678 * @buf: buffer to return value in
2679 * @buflen: buffer length
2680 *
2681 * Convert a dentry into an ASCII path name. If the entry has been deleted
2682 * the string " (deleted)" is appended. Note that this is ambiguous.
2683 *
2684 * Returns a pointer into the buffer or an error code if the path was
2685 * too long. Note: Callers should use the returned pointer, not the passed
2686 * in buffer, to use the name! The implementation often starts at an offset
2687 * into the buffer, and may leave 0 bytes at the start.
2688 *
2689 * "buflen" should be positive.
2690 */
2691 char *d_path(const struct path *path, char *buf, int buflen)
2692 {
2693 char *res = buf + buflen;
2694 struct path root;
2695 int error;
2696
2697 /*
2698 * We have various synthetic filesystems that never get mounted. On
2699 * these filesystems dentries are never used for lookup purposes, and
2700 * thus don't need to be hashed. They also don't need a name until a
2701 * user wants to identify the object in /proc/pid/fd/. The little hack
2702 * below allows us to generate a name for these objects on demand:
2703 */
2704 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2705 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2706
2707 get_fs_root(current->fs, &root);
2708 write_seqlock(&rename_lock);
2709 error = path_with_deleted(path, &root, &res, &buflen);
2710 if (error < 0)
2711 res = ERR_PTR(error);
2712 write_sequnlock(&rename_lock);
2713 path_put(&root);
2714 return res;
2715 }
2716 EXPORT_SYMBOL(d_path);
2717
2718 /*
2719 * Helper function for dentry_operations.d_dname() members
2720 */
2721 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2722 const char *fmt, ...)
2723 {
2724 va_list args;
2725 char temp[64];
2726 int sz;
2727
2728 va_start(args, fmt);
2729 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2730 va_end(args);
2731
2732 if (sz > sizeof(temp) || sz > buflen)
2733 return ERR_PTR(-ENAMETOOLONG);
2734
2735 buffer += buflen - sz;
2736 return memcpy(buffer, temp, sz);
2737 }
2738
2739 /*
2740 * Write full pathname from the root of the filesystem into the buffer.
2741 */
2742 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2743 {
2744 char *end = buf + buflen;
2745 char *retval;
2746
2747 prepend(&end, &buflen, "\0", 1);
2748 if (buflen < 1)
2749 goto Elong;
2750 /* Get '/' right */
2751 retval = end-1;
2752 *retval = '/';
2753
2754 while (!IS_ROOT(dentry)) {
2755 struct dentry *parent = dentry->d_parent;
2756 int error;
2757
2758 prefetch(parent);
2759 spin_lock(&dentry->d_lock);
2760 error = prepend_name(&end, &buflen, &dentry->d_name);
2761 spin_unlock(&dentry->d_lock);
2762 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2763 goto Elong;
2764
2765 retval = end;
2766 dentry = parent;
2767 }
2768 return retval;
2769 Elong:
2770 return ERR_PTR(-ENAMETOOLONG);
2771 }
2772
2773 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2774 {
2775 char *retval;
2776
2777 write_seqlock(&rename_lock);
2778 retval = __dentry_path(dentry, buf, buflen);
2779 write_sequnlock(&rename_lock);
2780
2781 return retval;
2782 }
2783 EXPORT_SYMBOL(dentry_path_raw);
2784
2785 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2786 {
2787 char *p = NULL;
2788 char *retval;
2789
2790 write_seqlock(&rename_lock);
2791 if (d_unlinked(dentry)) {
2792 p = buf + buflen;
2793 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2794 goto Elong;
2795 buflen++;
2796 }
2797 retval = __dentry_path(dentry, buf, buflen);
2798 write_sequnlock(&rename_lock);
2799 if (!IS_ERR(retval) && p)
2800 *p = '/'; /* restore '/' overriden with '\0' */
2801 return retval;
2802 Elong:
2803 return ERR_PTR(-ENAMETOOLONG);
2804 }
2805
2806 /*
2807 * NOTE! The user-level library version returns a
2808 * character pointer. The kernel system call just
2809 * returns the length of the buffer filled (which
2810 * includes the ending '\0' character), or a negative
2811 * error value. So libc would do something like
2812 *
2813 * char *getcwd(char * buf, size_t size)
2814 * {
2815 * int retval;
2816 *
2817 * retval = sys_getcwd(buf, size);
2818 * if (retval >= 0)
2819 * return buf;
2820 * errno = -retval;
2821 * return NULL;
2822 * }
2823 */
2824 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2825 {
2826 int error;
2827 struct path pwd, root;
2828 char *page = (char *) __get_free_page(GFP_USER);
2829
2830 if (!page)
2831 return -ENOMEM;
2832
2833 get_fs_root_and_pwd(current->fs, &root, &pwd);
2834
2835 error = -ENOENT;
2836 write_seqlock(&rename_lock);
2837 if (!d_unlinked(pwd.dentry)) {
2838 unsigned long len;
2839 char *cwd = page + PAGE_SIZE;
2840 int buflen = PAGE_SIZE;
2841
2842 prepend(&cwd, &buflen, "\0", 1);
2843 error = prepend_path(&pwd, &root, &cwd, &buflen);
2844 write_sequnlock(&rename_lock);
2845
2846 if (error < 0)
2847 goto out;
2848
2849 /* Unreachable from current root */
2850 if (error > 0) {
2851 error = prepend_unreachable(&cwd, &buflen);
2852 if (error)
2853 goto out;
2854 }
2855
2856 error = -ERANGE;
2857 len = PAGE_SIZE + page - cwd;
2858 if (len <= size) {
2859 error = len;
2860 if (copy_to_user(buf, cwd, len))
2861 error = -EFAULT;
2862 }
2863 } else {
2864 write_sequnlock(&rename_lock);
2865 }
2866
2867 out:
2868 path_put(&pwd);
2869 path_put(&root);
2870 free_page((unsigned long) page);
2871 return error;
2872 }
2873
2874 /*
2875 * Test whether new_dentry is a subdirectory of old_dentry.
2876 *
2877 * Trivially implemented using the dcache structure
2878 */
2879
2880 /**
2881 * is_subdir - is new dentry a subdirectory of old_dentry
2882 * @new_dentry: new dentry
2883 * @old_dentry: old dentry
2884 *
2885 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2886 * Returns 0 otherwise.
2887 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2888 */
2889
2890 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2891 {
2892 int result;
2893 unsigned seq;
2894
2895 if (new_dentry == old_dentry)
2896 return 1;
2897
2898 do {
2899 /* for restarting inner loop in case of seq retry */
2900 seq = read_seqbegin(&rename_lock);
2901 /*
2902 * Need rcu_readlock to protect against the d_parent trashing
2903 * due to d_move
2904 */
2905 rcu_read_lock();
2906 if (d_ancestor(old_dentry, new_dentry))
2907 result = 1;
2908 else
2909 result = 0;
2910 rcu_read_unlock();
2911 } while (read_seqretry(&rename_lock, seq));
2912
2913 return result;
2914 }
2915
2916 void d_genocide(struct dentry *root)
2917 {
2918 struct dentry *this_parent;
2919 struct list_head *next;
2920 unsigned seq;
2921 int locked = 0;
2922
2923 seq = read_seqbegin(&rename_lock);
2924 again:
2925 this_parent = root;
2926 spin_lock(&this_parent->d_lock);
2927 repeat:
2928 next = this_parent->d_subdirs.next;
2929 resume:
2930 while (next != &this_parent->d_subdirs) {
2931 struct list_head *tmp = next;
2932 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2933 next = tmp->next;
2934
2935 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2936 if (d_unhashed(dentry) || !dentry->d_inode) {
2937 spin_unlock(&dentry->d_lock);
2938 continue;
2939 }
2940 if (!list_empty(&dentry->d_subdirs)) {
2941 spin_unlock(&this_parent->d_lock);
2942 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2943 this_parent = dentry;
2944 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2945 goto repeat;
2946 }
2947 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2948 dentry->d_flags |= DCACHE_GENOCIDE;
2949 dentry->d_count--;
2950 }
2951 spin_unlock(&dentry->d_lock);
2952 }
2953 if (this_parent != root) {
2954 struct dentry *child = this_parent;
2955 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2956 this_parent->d_flags |= DCACHE_GENOCIDE;
2957 this_parent->d_count--;
2958 }
2959 this_parent = try_to_ascend(this_parent, locked, seq);
2960 if (!this_parent)
2961 goto rename_retry;
2962 next = child->d_u.d_child.next;
2963 goto resume;
2964 }
2965 spin_unlock(&this_parent->d_lock);
2966 if (!locked && read_seqretry(&rename_lock, seq))
2967 goto rename_retry;
2968 if (locked)
2969 write_sequnlock(&rename_lock);
2970 return;
2971
2972 rename_retry:
2973 if (locked)
2974 goto again;
2975 locked = 1;
2976 write_seqlock(&rename_lock);
2977 goto again;
2978 }
2979
2980 /**
2981 * find_inode_number - check for dentry with name
2982 * @dir: directory to check
2983 * @name: Name to find.
2984 *
2985 * Check whether a dentry already exists for the given name,
2986 * and return the inode number if it has an inode. Otherwise
2987 * 0 is returned.
2988 *
2989 * This routine is used to post-process directory listings for
2990 * filesystems using synthetic inode numbers, and is necessary
2991 * to keep getcwd() working.
2992 */
2993
2994 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2995 {
2996 struct dentry * dentry;
2997 ino_t ino = 0;
2998
2999 dentry = d_hash_and_lookup(dir, name);
3000 if (!IS_ERR_OR_NULL(dentry)) {
3001 if (dentry->d_inode)
3002 ino = dentry->d_inode->i_ino;
3003 dput(dentry);
3004 }
3005 return ino;
3006 }
3007 EXPORT_SYMBOL(find_inode_number);
3008
3009 static __initdata unsigned long dhash_entries;
3010 static int __init set_dhash_entries(char *str)
3011 {
3012 if (!str)
3013 return 0;
3014 dhash_entries = simple_strtoul(str, &str, 0);
3015 return 1;
3016 }
3017 __setup("dhash_entries=", set_dhash_entries);
3018
3019 static void __init dcache_init_early(void)
3020 {
3021 unsigned int loop;
3022
3023 /* If hashes are distributed across NUMA nodes, defer
3024 * hash allocation until vmalloc space is available.
3025 */
3026 if (hashdist)
3027 return;
3028
3029 dentry_hashtable =
3030 alloc_large_system_hash("Dentry cache",
3031 sizeof(struct hlist_bl_head),
3032 dhash_entries,
3033 13,
3034 HASH_EARLY,
3035 &d_hash_shift,
3036 &d_hash_mask,
3037 0,
3038 0);
3039
3040 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3041 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3042 }
3043
3044 static void __init dcache_init(void)
3045 {
3046 unsigned int loop;
3047
3048 /*
3049 * A constructor could be added for stable state like the lists,
3050 * but it is probably not worth it because of the cache nature
3051 * of the dcache.
3052 */
3053 dentry_cache = KMEM_CACHE(dentry,
3054 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3055
3056 /* Hash may have been set up in dcache_init_early */
3057 if (!hashdist)
3058 return;
3059
3060 dentry_hashtable =
3061 alloc_large_system_hash("Dentry cache",
3062 sizeof(struct hlist_bl_head),
3063 dhash_entries,
3064 13,
3065 0,
3066 &d_hash_shift,
3067 &d_hash_mask,
3068 0,
3069 0);
3070
3071 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3072 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3073 }
3074
3075 /* SLAB cache for __getname() consumers */
3076 struct kmem_cache *names_cachep __read_mostly;
3077 EXPORT_SYMBOL(names_cachep);
3078
3079 EXPORT_SYMBOL(d_genocide);
3080
3081 void __init vfs_caches_init_early(void)
3082 {
3083 dcache_init_early();
3084 inode_init_early();
3085 }
3086
3087 void __init vfs_caches_init(unsigned long mempages)
3088 {
3089 unsigned long reserve;
3090
3091 /* Base hash sizes on available memory, with a reserve equal to
3092 150% of current kernel size */
3093
3094 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3095 mempages -= reserve;
3096
3097 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3098 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3099
3100 dcache_init();
3101 inode_init();
3102 files_init(mempages);
3103 mnt_init();
3104 bdev_cache_init();
3105 chrdev_init();
3106 }
This page took 0.109677 seconds and 6 git commands to generate.