Merge branch 'origin' into misc
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include "internal.h"
37
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40
41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
43
44 EXPORT_SYMBOL(dcache_lock);
45
46 static struct kmem_cache *dentry_cache __read_mostly;
47
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49
50 /*
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
54 *
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
57 */
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
60
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
67 .age_limit = 45,
68 };
69
70 static void __d_free(struct dentry *dentry)
71 {
72 WARN_ON(!list_empty(&dentry->d_alias));
73 if (dname_external(dentry))
74 kfree(dentry->d_name.name);
75 kmem_cache_free(dentry_cache, dentry);
76 }
77
78 static void d_callback(struct rcu_head *head)
79 {
80 struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
81 __d_free(dentry);
82 }
83
84 /*
85 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
86 * inside dcache_lock.
87 */
88 static void d_free(struct dentry *dentry)
89 {
90 if (dentry->d_op && dentry->d_op->d_release)
91 dentry->d_op->d_release(dentry);
92 /* if dentry was never inserted into hash, immediate free is OK */
93 if (hlist_unhashed(&dentry->d_hash))
94 __d_free(dentry);
95 else
96 call_rcu(&dentry->d_u.d_rcu, d_callback);
97 }
98
99 /*
100 * Release the dentry's inode, using the filesystem
101 * d_iput() operation if defined.
102 */
103 static void dentry_iput(struct dentry * dentry)
104 __releases(dentry->d_lock)
105 __releases(dcache_lock)
106 {
107 struct inode *inode = dentry->d_inode;
108 if (inode) {
109 dentry->d_inode = NULL;
110 list_del_init(&dentry->d_alias);
111 spin_unlock(&dentry->d_lock);
112 spin_unlock(&dcache_lock);
113 if (!inode->i_nlink)
114 fsnotify_inoderemove(inode);
115 if (dentry->d_op && dentry->d_op->d_iput)
116 dentry->d_op->d_iput(dentry, inode);
117 else
118 iput(inode);
119 } else {
120 spin_unlock(&dentry->d_lock);
121 spin_unlock(&dcache_lock);
122 }
123 }
124
125 /*
126 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
127 */
128 static void dentry_lru_add(struct dentry *dentry)
129 {
130 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
131 dentry->d_sb->s_nr_dentry_unused++;
132 dentry_stat.nr_unused++;
133 }
134
135 static void dentry_lru_add_tail(struct dentry *dentry)
136 {
137 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
138 dentry->d_sb->s_nr_dentry_unused++;
139 dentry_stat.nr_unused++;
140 }
141
142 static void dentry_lru_del(struct dentry *dentry)
143 {
144 if (!list_empty(&dentry->d_lru)) {
145 list_del(&dentry->d_lru);
146 dentry->d_sb->s_nr_dentry_unused--;
147 dentry_stat.nr_unused--;
148 }
149 }
150
151 static void dentry_lru_del_init(struct dentry *dentry)
152 {
153 if (likely(!list_empty(&dentry->d_lru))) {
154 list_del_init(&dentry->d_lru);
155 dentry->d_sb->s_nr_dentry_unused--;
156 dentry_stat.nr_unused--;
157 }
158 }
159
160 /**
161 * d_kill - kill dentry and return parent
162 * @dentry: dentry to kill
163 *
164 * The dentry must already be unhashed and removed from the LRU.
165 *
166 * If this is the root of the dentry tree, return NULL.
167 */
168 static struct dentry *d_kill(struct dentry *dentry)
169 __releases(dentry->d_lock)
170 __releases(dcache_lock)
171 {
172 struct dentry *parent;
173
174 list_del(&dentry->d_u.d_child);
175 dentry_stat.nr_dentry--; /* For d_free, below */
176 /*drops the locks, at that point nobody can reach this dentry */
177 dentry_iput(dentry);
178 if (IS_ROOT(dentry))
179 parent = NULL;
180 else
181 parent = dentry->d_parent;
182 d_free(dentry);
183 return parent;
184 }
185
186 /*
187 * This is dput
188 *
189 * This is complicated by the fact that we do not want to put
190 * dentries that are no longer on any hash chain on the unused
191 * list: we'd much rather just get rid of them immediately.
192 *
193 * However, that implies that we have to traverse the dentry
194 * tree upwards to the parents which might _also_ now be
195 * scheduled for deletion (it may have been only waiting for
196 * its last child to go away).
197 *
198 * This tail recursion is done by hand as we don't want to depend
199 * on the compiler to always get this right (gcc generally doesn't).
200 * Real recursion would eat up our stack space.
201 */
202
203 /*
204 * dput - release a dentry
205 * @dentry: dentry to release
206 *
207 * Release a dentry. This will drop the usage count and if appropriate
208 * call the dentry unlink method as well as removing it from the queues and
209 * releasing its resources. If the parent dentries were scheduled for release
210 * they too may now get deleted.
211 *
212 * no dcache lock, please.
213 */
214
215 void dput(struct dentry *dentry)
216 {
217 if (!dentry)
218 return;
219
220 repeat:
221 if (atomic_read(&dentry->d_count) == 1)
222 might_sleep();
223 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
224 return;
225
226 spin_lock(&dentry->d_lock);
227 if (atomic_read(&dentry->d_count)) {
228 spin_unlock(&dentry->d_lock);
229 spin_unlock(&dcache_lock);
230 return;
231 }
232
233 /*
234 * AV: ->d_delete() is _NOT_ allowed to block now.
235 */
236 if (dentry->d_op && dentry->d_op->d_delete) {
237 if (dentry->d_op->d_delete(dentry))
238 goto unhash_it;
239 }
240 /* Unreachable? Get rid of it */
241 if (d_unhashed(dentry))
242 goto kill_it;
243 if (list_empty(&dentry->d_lru)) {
244 dentry->d_flags |= DCACHE_REFERENCED;
245 dentry_lru_add(dentry);
246 }
247 spin_unlock(&dentry->d_lock);
248 spin_unlock(&dcache_lock);
249 return;
250
251 unhash_it:
252 __d_drop(dentry);
253 kill_it:
254 /* if dentry was on the d_lru list delete it from there */
255 dentry_lru_del(dentry);
256 dentry = d_kill(dentry);
257 if (dentry)
258 goto repeat;
259 }
260 EXPORT_SYMBOL(dput);
261
262 /**
263 * d_invalidate - invalidate a dentry
264 * @dentry: dentry to invalidate
265 *
266 * Try to invalidate the dentry if it turns out to be
267 * possible. If there are other dentries that can be
268 * reached through this one we can't delete it and we
269 * return -EBUSY. On success we return 0.
270 *
271 * no dcache lock.
272 */
273
274 int d_invalidate(struct dentry * dentry)
275 {
276 /*
277 * If it's already been dropped, return OK.
278 */
279 spin_lock(&dcache_lock);
280 if (d_unhashed(dentry)) {
281 spin_unlock(&dcache_lock);
282 return 0;
283 }
284 /*
285 * Check whether to do a partial shrink_dcache
286 * to get rid of unused child entries.
287 */
288 if (!list_empty(&dentry->d_subdirs)) {
289 spin_unlock(&dcache_lock);
290 shrink_dcache_parent(dentry);
291 spin_lock(&dcache_lock);
292 }
293
294 /*
295 * Somebody else still using it?
296 *
297 * If it's a directory, we can't drop it
298 * for fear of somebody re-populating it
299 * with children (even though dropping it
300 * would make it unreachable from the root,
301 * we might still populate it if it was a
302 * working directory or similar).
303 */
304 spin_lock(&dentry->d_lock);
305 if (atomic_read(&dentry->d_count) > 1) {
306 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
307 spin_unlock(&dentry->d_lock);
308 spin_unlock(&dcache_lock);
309 return -EBUSY;
310 }
311 }
312
313 __d_drop(dentry);
314 spin_unlock(&dentry->d_lock);
315 spin_unlock(&dcache_lock);
316 return 0;
317 }
318 EXPORT_SYMBOL(d_invalidate);
319
320 /* This should be called _only_ with dcache_lock held */
321
322 static inline struct dentry * __dget_locked(struct dentry *dentry)
323 {
324 atomic_inc(&dentry->d_count);
325 dentry_lru_del_init(dentry);
326 return dentry;
327 }
328
329 struct dentry * dget_locked(struct dentry *dentry)
330 {
331 return __dget_locked(dentry);
332 }
333 EXPORT_SYMBOL(dget_locked);
334
335 /**
336 * d_find_alias - grab a hashed alias of inode
337 * @inode: inode in question
338 * @want_discon: flag, used by d_splice_alias, to request
339 * that only a DISCONNECTED alias be returned.
340 *
341 * If inode has a hashed alias, or is a directory and has any alias,
342 * acquire the reference to alias and return it. Otherwise return NULL.
343 * Notice that if inode is a directory there can be only one alias and
344 * it can be unhashed only if it has no children, or if it is the root
345 * of a filesystem.
346 *
347 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
348 * any other hashed alias over that one unless @want_discon is set,
349 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
350 */
351
352 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
353 {
354 struct list_head *head, *next, *tmp;
355 struct dentry *alias, *discon_alias=NULL;
356
357 head = &inode->i_dentry;
358 next = inode->i_dentry.next;
359 while (next != head) {
360 tmp = next;
361 next = tmp->next;
362 prefetch(next);
363 alias = list_entry(tmp, struct dentry, d_alias);
364 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
365 if (IS_ROOT(alias) &&
366 (alias->d_flags & DCACHE_DISCONNECTED))
367 discon_alias = alias;
368 else if (!want_discon) {
369 __dget_locked(alias);
370 return alias;
371 }
372 }
373 }
374 if (discon_alias)
375 __dget_locked(discon_alias);
376 return discon_alias;
377 }
378
379 struct dentry * d_find_alias(struct inode *inode)
380 {
381 struct dentry *de = NULL;
382
383 if (!list_empty(&inode->i_dentry)) {
384 spin_lock(&dcache_lock);
385 de = __d_find_alias(inode, 0);
386 spin_unlock(&dcache_lock);
387 }
388 return de;
389 }
390 EXPORT_SYMBOL(d_find_alias);
391
392 /*
393 * Try to kill dentries associated with this inode.
394 * WARNING: you must own a reference to inode.
395 */
396 void d_prune_aliases(struct inode *inode)
397 {
398 struct dentry *dentry;
399 restart:
400 spin_lock(&dcache_lock);
401 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
402 spin_lock(&dentry->d_lock);
403 if (!atomic_read(&dentry->d_count)) {
404 __dget_locked(dentry);
405 __d_drop(dentry);
406 spin_unlock(&dentry->d_lock);
407 spin_unlock(&dcache_lock);
408 dput(dentry);
409 goto restart;
410 }
411 spin_unlock(&dentry->d_lock);
412 }
413 spin_unlock(&dcache_lock);
414 }
415 EXPORT_SYMBOL(d_prune_aliases);
416
417 /*
418 * Throw away a dentry - free the inode, dput the parent. This requires that
419 * the LRU list has already been removed.
420 *
421 * Try to prune ancestors as well. This is necessary to prevent
422 * quadratic behavior of shrink_dcache_parent(), but is also expected
423 * to be beneficial in reducing dentry cache fragmentation.
424 */
425 static void prune_one_dentry(struct dentry * dentry)
426 __releases(dentry->d_lock)
427 __releases(dcache_lock)
428 __acquires(dcache_lock)
429 {
430 __d_drop(dentry);
431 dentry = d_kill(dentry);
432
433 /*
434 * Prune ancestors. Locking is simpler than in dput(),
435 * because dcache_lock needs to be taken anyway.
436 */
437 spin_lock(&dcache_lock);
438 while (dentry) {
439 if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
440 return;
441
442 if (dentry->d_op && dentry->d_op->d_delete)
443 dentry->d_op->d_delete(dentry);
444 dentry_lru_del_init(dentry);
445 __d_drop(dentry);
446 dentry = d_kill(dentry);
447 spin_lock(&dcache_lock);
448 }
449 }
450
451 /*
452 * Shrink the dentry LRU on a given superblock.
453 * @sb : superblock to shrink dentry LRU.
454 * @count: If count is NULL, we prune all dentries on superblock.
455 * @flags: If flags is non-zero, we need to do special processing based on
456 * which flags are set. This means we don't need to maintain multiple
457 * similar copies of this loop.
458 */
459 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
460 {
461 LIST_HEAD(referenced);
462 LIST_HEAD(tmp);
463 struct dentry *dentry;
464 int cnt = 0;
465
466 BUG_ON(!sb);
467 BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
468 spin_lock(&dcache_lock);
469 if (count != NULL)
470 /* called from prune_dcache() and shrink_dcache_parent() */
471 cnt = *count;
472 restart:
473 if (count == NULL)
474 list_splice_init(&sb->s_dentry_lru, &tmp);
475 else {
476 while (!list_empty(&sb->s_dentry_lru)) {
477 dentry = list_entry(sb->s_dentry_lru.prev,
478 struct dentry, d_lru);
479 BUG_ON(dentry->d_sb != sb);
480
481 spin_lock(&dentry->d_lock);
482 /*
483 * If we are honouring the DCACHE_REFERENCED flag and
484 * the dentry has this flag set, don't free it. Clear
485 * the flag and put it back on the LRU.
486 */
487 if ((flags & DCACHE_REFERENCED)
488 && (dentry->d_flags & DCACHE_REFERENCED)) {
489 dentry->d_flags &= ~DCACHE_REFERENCED;
490 list_move(&dentry->d_lru, &referenced);
491 spin_unlock(&dentry->d_lock);
492 } else {
493 list_move_tail(&dentry->d_lru, &tmp);
494 spin_unlock(&dentry->d_lock);
495 cnt--;
496 if (!cnt)
497 break;
498 }
499 cond_resched_lock(&dcache_lock);
500 }
501 }
502 while (!list_empty(&tmp)) {
503 dentry = list_entry(tmp.prev, struct dentry, d_lru);
504 dentry_lru_del_init(dentry);
505 spin_lock(&dentry->d_lock);
506 /*
507 * We found an inuse dentry which was not removed from
508 * the LRU because of laziness during lookup. Do not free
509 * it - just keep it off the LRU list.
510 */
511 if (atomic_read(&dentry->d_count)) {
512 spin_unlock(&dentry->d_lock);
513 continue;
514 }
515 prune_one_dentry(dentry);
516 /* dentry->d_lock was dropped in prune_one_dentry() */
517 cond_resched_lock(&dcache_lock);
518 }
519 if (count == NULL && !list_empty(&sb->s_dentry_lru))
520 goto restart;
521 if (count != NULL)
522 *count = cnt;
523 if (!list_empty(&referenced))
524 list_splice(&referenced, &sb->s_dentry_lru);
525 spin_unlock(&dcache_lock);
526 }
527
528 /**
529 * prune_dcache - shrink the dcache
530 * @count: number of entries to try to free
531 *
532 * Shrink the dcache. This is done when we need more memory, or simply when we
533 * need to unmount something (at which point we need to unuse all dentries).
534 *
535 * This function may fail to free any resources if all the dentries are in use.
536 */
537 static void prune_dcache(int count)
538 {
539 struct super_block *sb, *n;
540 int w_count;
541 int unused = dentry_stat.nr_unused;
542 int prune_ratio;
543 int pruned;
544
545 if (unused == 0 || count == 0)
546 return;
547 spin_lock(&dcache_lock);
548 if (count >= unused)
549 prune_ratio = 1;
550 else
551 prune_ratio = unused / count;
552 spin_lock(&sb_lock);
553 list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
554 if (list_empty(&sb->s_instances))
555 continue;
556 if (sb->s_nr_dentry_unused == 0)
557 continue;
558 sb->s_count++;
559 /* Now, we reclaim unused dentrins with fairness.
560 * We reclaim them same percentage from each superblock.
561 * We calculate number of dentries to scan on this sb
562 * as follows, but the implementation is arranged to avoid
563 * overflows:
564 * number of dentries to scan on this sb =
565 * count * (number of dentries on this sb /
566 * number of dentries in the machine)
567 */
568 spin_unlock(&sb_lock);
569 if (prune_ratio != 1)
570 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
571 else
572 w_count = sb->s_nr_dentry_unused;
573 pruned = w_count;
574 /*
575 * We need to be sure this filesystem isn't being unmounted,
576 * otherwise we could race with generic_shutdown_super(), and
577 * end up holding a reference to an inode while the filesystem
578 * is unmounted. So we try to get s_umount, and make sure
579 * s_root isn't NULL.
580 */
581 if (down_read_trylock(&sb->s_umount)) {
582 if ((sb->s_root != NULL) &&
583 (!list_empty(&sb->s_dentry_lru))) {
584 spin_unlock(&dcache_lock);
585 __shrink_dcache_sb(sb, &w_count,
586 DCACHE_REFERENCED);
587 pruned -= w_count;
588 spin_lock(&dcache_lock);
589 }
590 up_read(&sb->s_umount);
591 }
592 spin_lock(&sb_lock);
593 /* lock was dropped, must reset next */
594 list_safe_reset_next(sb, n, s_list);
595 count -= pruned;
596 __put_super(sb);
597 /* more work left to do? */
598 if (count <= 0)
599 break;
600 }
601 spin_unlock(&sb_lock);
602 spin_unlock(&dcache_lock);
603 }
604
605 /**
606 * shrink_dcache_sb - shrink dcache for a superblock
607 * @sb: superblock
608 *
609 * Shrink the dcache for the specified super block. This
610 * is used to free the dcache before unmounting a file
611 * system
612 */
613 void shrink_dcache_sb(struct super_block * sb)
614 {
615 __shrink_dcache_sb(sb, NULL, 0);
616 }
617 EXPORT_SYMBOL(shrink_dcache_sb);
618
619 /*
620 * destroy a single subtree of dentries for unmount
621 * - see the comments on shrink_dcache_for_umount() for a description of the
622 * locking
623 */
624 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
625 {
626 struct dentry *parent;
627 unsigned detached = 0;
628
629 BUG_ON(!IS_ROOT(dentry));
630
631 /* detach this root from the system */
632 spin_lock(&dcache_lock);
633 dentry_lru_del_init(dentry);
634 __d_drop(dentry);
635 spin_unlock(&dcache_lock);
636
637 for (;;) {
638 /* descend to the first leaf in the current subtree */
639 while (!list_empty(&dentry->d_subdirs)) {
640 struct dentry *loop;
641
642 /* this is a branch with children - detach all of them
643 * from the system in one go */
644 spin_lock(&dcache_lock);
645 list_for_each_entry(loop, &dentry->d_subdirs,
646 d_u.d_child) {
647 dentry_lru_del_init(loop);
648 __d_drop(loop);
649 cond_resched_lock(&dcache_lock);
650 }
651 spin_unlock(&dcache_lock);
652
653 /* move to the first child */
654 dentry = list_entry(dentry->d_subdirs.next,
655 struct dentry, d_u.d_child);
656 }
657
658 /* consume the dentries from this leaf up through its parents
659 * until we find one with children or run out altogether */
660 do {
661 struct inode *inode;
662
663 if (atomic_read(&dentry->d_count) != 0) {
664 printk(KERN_ERR
665 "BUG: Dentry %p{i=%lx,n=%s}"
666 " still in use (%d)"
667 " [unmount of %s %s]\n",
668 dentry,
669 dentry->d_inode ?
670 dentry->d_inode->i_ino : 0UL,
671 dentry->d_name.name,
672 atomic_read(&dentry->d_count),
673 dentry->d_sb->s_type->name,
674 dentry->d_sb->s_id);
675 BUG();
676 }
677
678 if (IS_ROOT(dentry))
679 parent = NULL;
680 else {
681 parent = dentry->d_parent;
682 atomic_dec(&parent->d_count);
683 }
684
685 list_del(&dentry->d_u.d_child);
686 detached++;
687
688 inode = dentry->d_inode;
689 if (inode) {
690 dentry->d_inode = NULL;
691 list_del_init(&dentry->d_alias);
692 if (dentry->d_op && dentry->d_op->d_iput)
693 dentry->d_op->d_iput(dentry, inode);
694 else
695 iput(inode);
696 }
697
698 d_free(dentry);
699
700 /* finished when we fall off the top of the tree,
701 * otherwise we ascend to the parent and move to the
702 * next sibling if there is one */
703 if (!parent)
704 goto out;
705
706 dentry = parent;
707
708 } while (list_empty(&dentry->d_subdirs));
709
710 dentry = list_entry(dentry->d_subdirs.next,
711 struct dentry, d_u.d_child);
712 }
713 out:
714 /* several dentries were freed, need to correct nr_dentry */
715 spin_lock(&dcache_lock);
716 dentry_stat.nr_dentry -= detached;
717 spin_unlock(&dcache_lock);
718 }
719
720 /*
721 * destroy the dentries attached to a superblock on unmounting
722 * - we don't need to use dentry->d_lock, and only need dcache_lock when
723 * removing the dentry from the system lists and hashes because:
724 * - the superblock is detached from all mountings and open files, so the
725 * dentry trees will not be rearranged by the VFS
726 * - s_umount is write-locked, so the memory pressure shrinker will ignore
727 * any dentries belonging to this superblock that it comes across
728 * - the filesystem itself is no longer permitted to rearrange the dentries
729 * in this superblock
730 */
731 void shrink_dcache_for_umount(struct super_block *sb)
732 {
733 struct dentry *dentry;
734
735 if (down_read_trylock(&sb->s_umount))
736 BUG();
737
738 dentry = sb->s_root;
739 sb->s_root = NULL;
740 atomic_dec(&dentry->d_count);
741 shrink_dcache_for_umount_subtree(dentry);
742
743 while (!hlist_empty(&sb->s_anon)) {
744 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
745 shrink_dcache_for_umount_subtree(dentry);
746 }
747 }
748
749 /*
750 * Search for at least 1 mount point in the dentry's subdirs.
751 * We descend to the next level whenever the d_subdirs
752 * list is non-empty and continue searching.
753 */
754
755 /**
756 * have_submounts - check for mounts over a dentry
757 * @parent: dentry to check.
758 *
759 * Return true if the parent or its subdirectories contain
760 * a mount point
761 */
762
763 int have_submounts(struct dentry *parent)
764 {
765 struct dentry *this_parent = parent;
766 struct list_head *next;
767
768 spin_lock(&dcache_lock);
769 if (d_mountpoint(parent))
770 goto positive;
771 repeat:
772 next = this_parent->d_subdirs.next;
773 resume:
774 while (next != &this_parent->d_subdirs) {
775 struct list_head *tmp = next;
776 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
777 next = tmp->next;
778 /* Have we found a mount point ? */
779 if (d_mountpoint(dentry))
780 goto positive;
781 if (!list_empty(&dentry->d_subdirs)) {
782 this_parent = dentry;
783 goto repeat;
784 }
785 }
786 /*
787 * All done at this level ... ascend and resume the search.
788 */
789 if (this_parent != parent) {
790 next = this_parent->d_u.d_child.next;
791 this_parent = this_parent->d_parent;
792 goto resume;
793 }
794 spin_unlock(&dcache_lock);
795 return 0; /* No mount points found in tree */
796 positive:
797 spin_unlock(&dcache_lock);
798 return 1;
799 }
800 EXPORT_SYMBOL(have_submounts);
801
802 /*
803 * Search the dentry child list for the specified parent,
804 * and move any unused dentries to the end of the unused
805 * list for prune_dcache(). We descend to the next level
806 * whenever the d_subdirs list is non-empty and continue
807 * searching.
808 *
809 * It returns zero iff there are no unused children,
810 * otherwise it returns the number of children moved to
811 * the end of the unused list. This may not be the total
812 * number of unused children, because select_parent can
813 * drop the lock and return early due to latency
814 * constraints.
815 */
816 static int select_parent(struct dentry * parent)
817 {
818 struct dentry *this_parent = parent;
819 struct list_head *next;
820 int found = 0;
821
822 spin_lock(&dcache_lock);
823 repeat:
824 next = this_parent->d_subdirs.next;
825 resume:
826 while (next != &this_parent->d_subdirs) {
827 struct list_head *tmp = next;
828 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
829 next = tmp->next;
830
831 dentry_lru_del_init(dentry);
832 /*
833 * move only zero ref count dentries to the end
834 * of the unused list for prune_dcache
835 */
836 if (!atomic_read(&dentry->d_count)) {
837 dentry_lru_add_tail(dentry);
838 found++;
839 }
840
841 /*
842 * We can return to the caller if we have found some (this
843 * ensures forward progress). We'll be coming back to find
844 * the rest.
845 */
846 if (found && need_resched())
847 goto out;
848
849 /*
850 * Descend a level if the d_subdirs list is non-empty.
851 */
852 if (!list_empty(&dentry->d_subdirs)) {
853 this_parent = dentry;
854 goto repeat;
855 }
856 }
857 /*
858 * All done at this level ... ascend and resume the search.
859 */
860 if (this_parent != parent) {
861 next = this_parent->d_u.d_child.next;
862 this_parent = this_parent->d_parent;
863 goto resume;
864 }
865 out:
866 spin_unlock(&dcache_lock);
867 return found;
868 }
869
870 /**
871 * shrink_dcache_parent - prune dcache
872 * @parent: parent of entries to prune
873 *
874 * Prune the dcache to remove unused children of the parent dentry.
875 */
876
877 void shrink_dcache_parent(struct dentry * parent)
878 {
879 struct super_block *sb = parent->d_sb;
880 int found;
881
882 while ((found = select_parent(parent)) != 0)
883 __shrink_dcache_sb(sb, &found, 0);
884 }
885 EXPORT_SYMBOL(shrink_dcache_parent);
886
887 /*
888 * Scan `nr' dentries and return the number which remain.
889 *
890 * We need to avoid reentering the filesystem if the caller is performing a
891 * GFP_NOFS allocation attempt. One example deadlock is:
892 *
893 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
894 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
895 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
896 *
897 * In this case we return -1 to tell the caller that we baled.
898 */
899 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
900 {
901 if (nr) {
902 if (!(gfp_mask & __GFP_FS))
903 return -1;
904 prune_dcache(nr);
905 }
906 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
907 }
908
909 static struct shrinker dcache_shrinker = {
910 .shrink = shrink_dcache_memory,
911 .seeks = DEFAULT_SEEKS,
912 };
913
914 /**
915 * d_alloc - allocate a dcache entry
916 * @parent: parent of entry to allocate
917 * @name: qstr of the name
918 *
919 * Allocates a dentry. It returns %NULL if there is insufficient memory
920 * available. On a success the dentry is returned. The name passed in is
921 * copied and the copy passed in may be reused after this call.
922 */
923
924 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
925 {
926 struct dentry *dentry;
927 char *dname;
928
929 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
930 if (!dentry)
931 return NULL;
932
933 if (name->len > DNAME_INLINE_LEN-1) {
934 dname = kmalloc(name->len + 1, GFP_KERNEL);
935 if (!dname) {
936 kmem_cache_free(dentry_cache, dentry);
937 return NULL;
938 }
939 } else {
940 dname = dentry->d_iname;
941 }
942 dentry->d_name.name = dname;
943
944 dentry->d_name.len = name->len;
945 dentry->d_name.hash = name->hash;
946 memcpy(dname, name->name, name->len);
947 dname[name->len] = 0;
948
949 atomic_set(&dentry->d_count, 1);
950 dentry->d_flags = DCACHE_UNHASHED;
951 spin_lock_init(&dentry->d_lock);
952 dentry->d_inode = NULL;
953 dentry->d_parent = NULL;
954 dentry->d_sb = NULL;
955 dentry->d_op = NULL;
956 dentry->d_fsdata = NULL;
957 dentry->d_mounted = 0;
958 INIT_HLIST_NODE(&dentry->d_hash);
959 INIT_LIST_HEAD(&dentry->d_lru);
960 INIT_LIST_HEAD(&dentry->d_subdirs);
961 INIT_LIST_HEAD(&dentry->d_alias);
962
963 if (parent) {
964 dentry->d_parent = dget(parent);
965 dentry->d_sb = parent->d_sb;
966 } else {
967 INIT_LIST_HEAD(&dentry->d_u.d_child);
968 }
969
970 spin_lock(&dcache_lock);
971 if (parent)
972 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
973 dentry_stat.nr_dentry++;
974 spin_unlock(&dcache_lock);
975
976 return dentry;
977 }
978 EXPORT_SYMBOL(d_alloc);
979
980 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
981 {
982 struct qstr q;
983
984 q.name = name;
985 q.len = strlen(name);
986 q.hash = full_name_hash(q.name, q.len);
987 return d_alloc(parent, &q);
988 }
989 EXPORT_SYMBOL(d_alloc_name);
990
991 /* the caller must hold dcache_lock */
992 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
993 {
994 if (inode)
995 list_add(&dentry->d_alias, &inode->i_dentry);
996 dentry->d_inode = inode;
997 fsnotify_d_instantiate(dentry, inode);
998 }
999
1000 /**
1001 * d_instantiate - fill in inode information for a dentry
1002 * @entry: dentry to complete
1003 * @inode: inode to attach to this dentry
1004 *
1005 * Fill in inode information in the entry.
1006 *
1007 * This turns negative dentries into productive full members
1008 * of society.
1009 *
1010 * NOTE! This assumes that the inode count has been incremented
1011 * (or otherwise set) by the caller to indicate that it is now
1012 * in use by the dcache.
1013 */
1014
1015 void d_instantiate(struct dentry *entry, struct inode * inode)
1016 {
1017 BUG_ON(!list_empty(&entry->d_alias));
1018 spin_lock(&dcache_lock);
1019 __d_instantiate(entry, inode);
1020 spin_unlock(&dcache_lock);
1021 security_d_instantiate(entry, inode);
1022 }
1023 EXPORT_SYMBOL(d_instantiate);
1024
1025 /**
1026 * d_instantiate_unique - instantiate a non-aliased dentry
1027 * @entry: dentry to instantiate
1028 * @inode: inode to attach to this dentry
1029 *
1030 * Fill in inode information in the entry. On success, it returns NULL.
1031 * If an unhashed alias of "entry" already exists, then we return the
1032 * aliased dentry instead and drop one reference to inode.
1033 *
1034 * Note that in order to avoid conflicts with rename() etc, the caller
1035 * had better be holding the parent directory semaphore.
1036 *
1037 * This also assumes that the inode count has been incremented
1038 * (or otherwise set) by the caller to indicate that it is now
1039 * in use by the dcache.
1040 */
1041 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1042 struct inode *inode)
1043 {
1044 struct dentry *alias;
1045 int len = entry->d_name.len;
1046 const char *name = entry->d_name.name;
1047 unsigned int hash = entry->d_name.hash;
1048
1049 if (!inode) {
1050 __d_instantiate(entry, NULL);
1051 return NULL;
1052 }
1053
1054 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1055 struct qstr *qstr = &alias->d_name;
1056
1057 if (qstr->hash != hash)
1058 continue;
1059 if (alias->d_parent != entry->d_parent)
1060 continue;
1061 if (qstr->len != len)
1062 continue;
1063 if (memcmp(qstr->name, name, len))
1064 continue;
1065 dget_locked(alias);
1066 return alias;
1067 }
1068
1069 __d_instantiate(entry, inode);
1070 return NULL;
1071 }
1072
1073 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1074 {
1075 struct dentry *result;
1076
1077 BUG_ON(!list_empty(&entry->d_alias));
1078
1079 spin_lock(&dcache_lock);
1080 result = __d_instantiate_unique(entry, inode);
1081 spin_unlock(&dcache_lock);
1082
1083 if (!result) {
1084 security_d_instantiate(entry, inode);
1085 return NULL;
1086 }
1087
1088 BUG_ON(!d_unhashed(result));
1089 iput(inode);
1090 return result;
1091 }
1092
1093 EXPORT_SYMBOL(d_instantiate_unique);
1094
1095 /**
1096 * d_alloc_root - allocate root dentry
1097 * @root_inode: inode to allocate the root for
1098 *
1099 * Allocate a root ("/") dentry for the inode given. The inode is
1100 * instantiated and returned. %NULL is returned if there is insufficient
1101 * memory or the inode passed is %NULL.
1102 */
1103
1104 struct dentry * d_alloc_root(struct inode * root_inode)
1105 {
1106 struct dentry *res = NULL;
1107
1108 if (root_inode) {
1109 static const struct qstr name = { .name = "/", .len = 1 };
1110
1111 res = d_alloc(NULL, &name);
1112 if (res) {
1113 res->d_sb = root_inode->i_sb;
1114 res->d_parent = res;
1115 d_instantiate(res, root_inode);
1116 }
1117 }
1118 return res;
1119 }
1120 EXPORT_SYMBOL(d_alloc_root);
1121
1122 static inline struct hlist_head *d_hash(struct dentry *parent,
1123 unsigned long hash)
1124 {
1125 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1126 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1127 return dentry_hashtable + (hash & D_HASHMASK);
1128 }
1129
1130 /**
1131 * d_obtain_alias - find or allocate a dentry for a given inode
1132 * @inode: inode to allocate the dentry for
1133 *
1134 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1135 * similar open by handle operations. The returned dentry may be anonymous,
1136 * or may have a full name (if the inode was already in the cache).
1137 *
1138 * When called on a directory inode, we must ensure that the inode only ever
1139 * has one dentry. If a dentry is found, that is returned instead of
1140 * allocating a new one.
1141 *
1142 * On successful return, the reference to the inode has been transferred
1143 * to the dentry. In case of an error the reference on the inode is released.
1144 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1145 * be passed in and will be the error will be propagate to the return value,
1146 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1147 */
1148 struct dentry *d_obtain_alias(struct inode *inode)
1149 {
1150 static const struct qstr anonstring = { .name = "" };
1151 struct dentry *tmp;
1152 struct dentry *res;
1153
1154 if (!inode)
1155 return ERR_PTR(-ESTALE);
1156 if (IS_ERR(inode))
1157 return ERR_CAST(inode);
1158
1159 res = d_find_alias(inode);
1160 if (res)
1161 goto out_iput;
1162
1163 tmp = d_alloc(NULL, &anonstring);
1164 if (!tmp) {
1165 res = ERR_PTR(-ENOMEM);
1166 goto out_iput;
1167 }
1168 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1169
1170 spin_lock(&dcache_lock);
1171 res = __d_find_alias(inode, 0);
1172 if (res) {
1173 spin_unlock(&dcache_lock);
1174 dput(tmp);
1175 goto out_iput;
1176 }
1177
1178 /* attach a disconnected dentry */
1179 spin_lock(&tmp->d_lock);
1180 tmp->d_sb = inode->i_sb;
1181 tmp->d_inode = inode;
1182 tmp->d_flags |= DCACHE_DISCONNECTED;
1183 tmp->d_flags &= ~DCACHE_UNHASHED;
1184 list_add(&tmp->d_alias, &inode->i_dentry);
1185 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
1186 spin_unlock(&tmp->d_lock);
1187
1188 spin_unlock(&dcache_lock);
1189 return tmp;
1190
1191 out_iput:
1192 iput(inode);
1193 return res;
1194 }
1195 EXPORT_SYMBOL(d_obtain_alias);
1196
1197 /**
1198 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1199 * @inode: the inode which may have a disconnected dentry
1200 * @dentry: a negative dentry which we want to point to the inode.
1201 *
1202 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1203 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1204 * and return it, else simply d_add the inode to the dentry and return NULL.
1205 *
1206 * This is needed in the lookup routine of any filesystem that is exportable
1207 * (via knfsd) so that we can build dcache paths to directories effectively.
1208 *
1209 * If a dentry was found and moved, then it is returned. Otherwise NULL
1210 * is returned. This matches the expected return value of ->lookup.
1211 *
1212 */
1213 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1214 {
1215 struct dentry *new = NULL;
1216
1217 if (inode && S_ISDIR(inode->i_mode)) {
1218 spin_lock(&dcache_lock);
1219 new = __d_find_alias(inode, 1);
1220 if (new) {
1221 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1222 spin_unlock(&dcache_lock);
1223 security_d_instantiate(new, inode);
1224 d_move(new, dentry);
1225 iput(inode);
1226 } else {
1227 /* already taking dcache_lock, so d_add() by hand */
1228 __d_instantiate(dentry, inode);
1229 spin_unlock(&dcache_lock);
1230 security_d_instantiate(dentry, inode);
1231 d_rehash(dentry);
1232 }
1233 } else
1234 d_add(dentry, inode);
1235 return new;
1236 }
1237 EXPORT_SYMBOL(d_splice_alias);
1238
1239 /**
1240 * d_add_ci - lookup or allocate new dentry with case-exact name
1241 * @inode: the inode case-insensitive lookup has found
1242 * @dentry: the negative dentry that was passed to the parent's lookup func
1243 * @name: the case-exact name to be associated with the returned dentry
1244 *
1245 * This is to avoid filling the dcache with case-insensitive names to the
1246 * same inode, only the actual correct case is stored in the dcache for
1247 * case-insensitive filesystems.
1248 *
1249 * For a case-insensitive lookup match and if the the case-exact dentry
1250 * already exists in in the dcache, use it and return it.
1251 *
1252 * If no entry exists with the exact case name, allocate new dentry with
1253 * the exact case, and return the spliced entry.
1254 */
1255 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1256 struct qstr *name)
1257 {
1258 int error;
1259 struct dentry *found;
1260 struct dentry *new;
1261
1262 /*
1263 * First check if a dentry matching the name already exists,
1264 * if not go ahead and create it now.
1265 */
1266 found = d_hash_and_lookup(dentry->d_parent, name);
1267 if (!found) {
1268 new = d_alloc(dentry->d_parent, name);
1269 if (!new) {
1270 error = -ENOMEM;
1271 goto err_out;
1272 }
1273
1274 found = d_splice_alias(inode, new);
1275 if (found) {
1276 dput(new);
1277 return found;
1278 }
1279 return new;
1280 }
1281
1282 /*
1283 * If a matching dentry exists, and it's not negative use it.
1284 *
1285 * Decrement the reference count to balance the iget() done
1286 * earlier on.
1287 */
1288 if (found->d_inode) {
1289 if (unlikely(found->d_inode != inode)) {
1290 /* This can't happen because bad inodes are unhashed. */
1291 BUG_ON(!is_bad_inode(inode));
1292 BUG_ON(!is_bad_inode(found->d_inode));
1293 }
1294 iput(inode);
1295 return found;
1296 }
1297
1298 /*
1299 * Negative dentry: instantiate it unless the inode is a directory and
1300 * already has a dentry.
1301 */
1302 spin_lock(&dcache_lock);
1303 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1304 __d_instantiate(found, inode);
1305 spin_unlock(&dcache_lock);
1306 security_d_instantiate(found, inode);
1307 return found;
1308 }
1309
1310 /*
1311 * In case a directory already has a (disconnected) entry grab a
1312 * reference to it, move it in place and use it.
1313 */
1314 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1315 dget_locked(new);
1316 spin_unlock(&dcache_lock);
1317 security_d_instantiate(found, inode);
1318 d_move(new, found);
1319 iput(inode);
1320 dput(found);
1321 return new;
1322
1323 err_out:
1324 iput(inode);
1325 return ERR_PTR(error);
1326 }
1327 EXPORT_SYMBOL(d_add_ci);
1328
1329 /**
1330 * d_lookup - search for a dentry
1331 * @parent: parent dentry
1332 * @name: qstr of name we wish to find
1333 *
1334 * Searches the children of the parent dentry for the name in question. If
1335 * the dentry is found its reference count is incremented and the dentry
1336 * is returned. The caller must use dput to free the entry when it has
1337 * finished using it. %NULL is returned on failure.
1338 *
1339 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1340 * Memory barriers are used while updating and doing lockless traversal.
1341 * To avoid races with d_move while rename is happening, d_lock is used.
1342 *
1343 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1344 * and name pointer in one structure pointed by d_qstr.
1345 *
1346 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1347 * lookup is going on.
1348 *
1349 * The dentry unused LRU is not updated even if lookup finds the required dentry
1350 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1351 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1352 * acquisition.
1353 *
1354 * d_lookup() is protected against the concurrent renames in some unrelated
1355 * directory using the seqlockt_t rename_lock.
1356 */
1357
1358 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1359 {
1360 struct dentry * dentry = NULL;
1361 unsigned long seq;
1362
1363 do {
1364 seq = read_seqbegin(&rename_lock);
1365 dentry = __d_lookup(parent, name);
1366 if (dentry)
1367 break;
1368 } while (read_seqretry(&rename_lock, seq));
1369 return dentry;
1370 }
1371 EXPORT_SYMBOL(d_lookup);
1372
1373 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1374 {
1375 unsigned int len = name->len;
1376 unsigned int hash = name->hash;
1377 const unsigned char *str = name->name;
1378 struct hlist_head *head = d_hash(parent,hash);
1379 struct dentry *found = NULL;
1380 struct hlist_node *node;
1381 struct dentry *dentry;
1382
1383 rcu_read_lock();
1384
1385 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1386 struct qstr *qstr;
1387
1388 if (dentry->d_name.hash != hash)
1389 continue;
1390 if (dentry->d_parent != parent)
1391 continue;
1392
1393 spin_lock(&dentry->d_lock);
1394
1395 /*
1396 * Recheck the dentry after taking the lock - d_move may have
1397 * changed things. Don't bother checking the hash because we're
1398 * about to compare the whole name anyway.
1399 */
1400 if (dentry->d_parent != parent)
1401 goto next;
1402
1403 /* non-existing due to RCU? */
1404 if (d_unhashed(dentry))
1405 goto next;
1406
1407 /*
1408 * It is safe to compare names since d_move() cannot
1409 * change the qstr (protected by d_lock).
1410 */
1411 qstr = &dentry->d_name;
1412 if (parent->d_op && parent->d_op->d_compare) {
1413 if (parent->d_op->d_compare(parent, qstr, name))
1414 goto next;
1415 } else {
1416 if (qstr->len != len)
1417 goto next;
1418 if (memcmp(qstr->name, str, len))
1419 goto next;
1420 }
1421
1422 atomic_inc(&dentry->d_count);
1423 found = dentry;
1424 spin_unlock(&dentry->d_lock);
1425 break;
1426 next:
1427 spin_unlock(&dentry->d_lock);
1428 }
1429 rcu_read_unlock();
1430
1431 return found;
1432 }
1433
1434 /**
1435 * d_hash_and_lookup - hash the qstr then search for a dentry
1436 * @dir: Directory to search in
1437 * @name: qstr of name we wish to find
1438 *
1439 * On hash failure or on lookup failure NULL is returned.
1440 */
1441 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1442 {
1443 struct dentry *dentry = NULL;
1444
1445 /*
1446 * Check for a fs-specific hash function. Note that we must
1447 * calculate the standard hash first, as the d_op->d_hash()
1448 * routine may choose to leave the hash value unchanged.
1449 */
1450 name->hash = full_name_hash(name->name, name->len);
1451 if (dir->d_op && dir->d_op->d_hash) {
1452 if (dir->d_op->d_hash(dir, name) < 0)
1453 goto out;
1454 }
1455 dentry = d_lookup(dir, name);
1456 out:
1457 return dentry;
1458 }
1459
1460 /**
1461 * d_validate - verify dentry provided from insecure source
1462 * @dentry: The dentry alleged to be valid child of @dparent
1463 * @dparent: The parent dentry (known to be valid)
1464 *
1465 * An insecure source has sent us a dentry, here we verify it and dget() it.
1466 * This is used by ncpfs in its readdir implementation.
1467 * Zero is returned in the dentry is invalid.
1468 */
1469
1470 int d_validate(struct dentry *dentry, struct dentry *dparent)
1471 {
1472 struct hlist_head *base;
1473 struct hlist_node *lhp;
1474
1475 /* Check whether the ptr might be valid at all.. */
1476 if (!kmem_ptr_validate(dentry_cache, dentry))
1477 goto out;
1478
1479 if (dentry->d_parent != dparent)
1480 goto out;
1481
1482 spin_lock(&dcache_lock);
1483 base = d_hash(dparent, dentry->d_name.hash);
1484 hlist_for_each(lhp,base) {
1485 /* hlist_for_each_entry_rcu() not required for d_hash list
1486 * as it is parsed under dcache_lock
1487 */
1488 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1489 __dget_locked(dentry);
1490 spin_unlock(&dcache_lock);
1491 return 1;
1492 }
1493 }
1494 spin_unlock(&dcache_lock);
1495 out:
1496 return 0;
1497 }
1498 EXPORT_SYMBOL(d_validate);
1499
1500 /*
1501 * When a file is deleted, we have two options:
1502 * - turn this dentry into a negative dentry
1503 * - unhash this dentry and free it.
1504 *
1505 * Usually, we want to just turn this into
1506 * a negative dentry, but if anybody else is
1507 * currently using the dentry or the inode
1508 * we can't do that and we fall back on removing
1509 * it from the hash queues and waiting for
1510 * it to be deleted later when it has no users
1511 */
1512
1513 /**
1514 * d_delete - delete a dentry
1515 * @dentry: The dentry to delete
1516 *
1517 * Turn the dentry into a negative dentry if possible, otherwise
1518 * remove it from the hash queues so it can be deleted later
1519 */
1520
1521 void d_delete(struct dentry * dentry)
1522 {
1523 int isdir = 0;
1524 /*
1525 * Are we the only user?
1526 */
1527 spin_lock(&dcache_lock);
1528 spin_lock(&dentry->d_lock);
1529 isdir = S_ISDIR(dentry->d_inode->i_mode);
1530 if (atomic_read(&dentry->d_count) == 1) {
1531 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1532 dentry_iput(dentry);
1533 fsnotify_nameremove(dentry, isdir);
1534 return;
1535 }
1536
1537 if (!d_unhashed(dentry))
1538 __d_drop(dentry);
1539
1540 spin_unlock(&dentry->d_lock);
1541 spin_unlock(&dcache_lock);
1542
1543 fsnotify_nameremove(dentry, isdir);
1544 }
1545 EXPORT_SYMBOL(d_delete);
1546
1547 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1548 {
1549
1550 entry->d_flags &= ~DCACHE_UNHASHED;
1551 hlist_add_head_rcu(&entry->d_hash, list);
1552 }
1553
1554 static void _d_rehash(struct dentry * entry)
1555 {
1556 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1557 }
1558
1559 /**
1560 * d_rehash - add an entry back to the hash
1561 * @entry: dentry to add to the hash
1562 *
1563 * Adds a dentry to the hash according to its name.
1564 */
1565
1566 void d_rehash(struct dentry * entry)
1567 {
1568 spin_lock(&dcache_lock);
1569 spin_lock(&entry->d_lock);
1570 _d_rehash(entry);
1571 spin_unlock(&entry->d_lock);
1572 spin_unlock(&dcache_lock);
1573 }
1574 EXPORT_SYMBOL(d_rehash);
1575
1576 /*
1577 * When switching names, the actual string doesn't strictly have to
1578 * be preserved in the target - because we're dropping the target
1579 * anyway. As such, we can just do a simple memcpy() to copy over
1580 * the new name before we switch.
1581 *
1582 * Note that we have to be a lot more careful about getting the hash
1583 * switched - we have to switch the hash value properly even if it
1584 * then no longer matches the actual (corrupted) string of the target.
1585 * The hash value has to match the hash queue that the dentry is on..
1586 */
1587 static void switch_names(struct dentry *dentry, struct dentry *target)
1588 {
1589 if (dname_external(target)) {
1590 if (dname_external(dentry)) {
1591 /*
1592 * Both external: swap the pointers
1593 */
1594 swap(target->d_name.name, dentry->d_name.name);
1595 } else {
1596 /*
1597 * dentry:internal, target:external. Steal target's
1598 * storage and make target internal.
1599 */
1600 memcpy(target->d_iname, dentry->d_name.name,
1601 dentry->d_name.len + 1);
1602 dentry->d_name.name = target->d_name.name;
1603 target->d_name.name = target->d_iname;
1604 }
1605 } else {
1606 if (dname_external(dentry)) {
1607 /*
1608 * dentry:external, target:internal. Give dentry's
1609 * storage to target and make dentry internal
1610 */
1611 memcpy(dentry->d_iname, target->d_name.name,
1612 target->d_name.len + 1);
1613 target->d_name.name = dentry->d_name.name;
1614 dentry->d_name.name = dentry->d_iname;
1615 } else {
1616 /*
1617 * Both are internal. Just copy target to dentry
1618 */
1619 memcpy(dentry->d_iname, target->d_name.name,
1620 target->d_name.len + 1);
1621 dentry->d_name.len = target->d_name.len;
1622 return;
1623 }
1624 }
1625 swap(dentry->d_name.len, target->d_name.len);
1626 }
1627
1628 /*
1629 * We cannibalize "target" when moving dentry on top of it,
1630 * because it's going to be thrown away anyway. We could be more
1631 * polite about it, though.
1632 *
1633 * This forceful removal will result in ugly /proc output if
1634 * somebody holds a file open that got deleted due to a rename.
1635 * We could be nicer about the deleted file, and let it show
1636 * up under the name it had before it was deleted rather than
1637 * under the original name of the file that was moved on top of it.
1638 */
1639
1640 /*
1641 * d_move_locked - move a dentry
1642 * @dentry: entry to move
1643 * @target: new dentry
1644 *
1645 * Update the dcache to reflect the move of a file name. Negative
1646 * dcache entries should not be moved in this way.
1647 */
1648 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1649 {
1650 struct hlist_head *list;
1651
1652 if (!dentry->d_inode)
1653 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1654
1655 write_seqlock(&rename_lock);
1656 /*
1657 * XXXX: do we really need to take target->d_lock?
1658 */
1659 if (target < dentry) {
1660 spin_lock(&target->d_lock);
1661 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1662 } else {
1663 spin_lock(&dentry->d_lock);
1664 spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1665 }
1666
1667 /* Move the dentry to the target hash queue, if on different bucket */
1668 if (d_unhashed(dentry))
1669 goto already_unhashed;
1670
1671 hlist_del_rcu(&dentry->d_hash);
1672
1673 already_unhashed:
1674 list = d_hash(target->d_parent, target->d_name.hash);
1675 __d_rehash(dentry, list);
1676
1677 /* Unhash the target: dput() will then get rid of it */
1678 __d_drop(target);
1679
1680 list_del(&dentry->d_u.d_child);
1681 list_del(&target->d_u.d_child);
1682
1683 /* Switch the names.. */
1684 switch_names(dentry, target);
1685 swap(dentry->d_name.hash, target->d_name.hash);
1686
1687 /* ... and switch the parents */
1688 if (IS_ROOT(dentry)) {
1689 dentry->d_parent = target->d_parent;
1690 target->d_parent = target;
1691 INIT_LIST_HEAD(&target->d_u.d_child);
1692 } else {
1693 swap(dentry->d_parent, target->d_parent);
1694
1695 /* And add them back to the (new) parent lists */
1696 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1697 }
1698
1699 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1700 spin_unlock(&target->d_lock);
1701 fsnotify_d_move(dentry);
1702 spin_unlock(&dentry->d_lock);
1703 write_sequnlock(&rename_lock);
1704 }
1705
1706 /**
1707 * d_move - move a dentry
1708 * @dentry: entry to move
1709 * @target: new dentry
1710 *
1711 * Update the dcache to reflect the move of a file name. Negative
1712 * dcache entries should not be moved in this way.
1713 */
1714
1715 void d_move(struct dentry * dentry, struct dentry * target)
1716 {
1717 spin_lock(&dcache_lock);
1718 d_move_locked(dentry, target);
1719 spin_unlock(&dcache_lock);
1720 }
1721 EXPORT_SYMBOL(d_move);
1722
1723 /**
1724 * d_ancestor - search for an ancestor
1725 * @p1: ancestor dentry
1726 * @p2: child dentry
1727 *
1728 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1729 * an ancestor of p2, else NULL.
1730 */
1731 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
1732 {
1733 struct dentry *p;
1734
1735 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
1736 if (p->d_parent == p1)
1737 return p;
1738 }
1739 return NULL;
1740 }
1741
1742 /*
1743 * This helper attempts to cope with remotely renamed directories
1744 *
1745 * It assumes that the caller is already holding
1746 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1747 *
1748 * Note: If ever the locking in lock_rename() changes, then please
1749 * remember to update this too...
1750 */
1751 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1752 __releases(dcache_lock)
1753 {
1754 struct mutex *m1 = NULL, *m2 = NULL;
1755 struct dentry *ret;
1756
1757 /* If alias and dentry share a parent, then no extra locks required */
1758 if (alias->d_parent == dentry->d_parent)
1759 goto out_unalias;
1760
1761 /* Check for loops */
1762 ret = ERR_PTR(-ELOOP);
1763 if (d_ancestor(alias, dentry))
1764 goto out_err;
1765
1766 /* See lock_rename() */
1767 ret = ERR_PTR(-EBUSY);
1768 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1769 goto out_err;
1770 m1 = &dentry->d_sb->s_vfs_rename_mutex;
1771 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1772 goto out_err;
1773 m2 = &alias->d_parent->d_inode->i_mutex;
1774 out_unalias:
1775 d_move_locked(alias, dentry);
1776 ret = alias;
1777 out_err:
1778 spin_unlock(&dcache_lock);
1779 if (m2)
1780 mutex_unlock(m2);
1781 if (m1)
1782 mutex_unlock(m1);
1783 return ret;
1784 }
1785
1786 /*
1787 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1788 * named dentry in place of the dentry to be replaced.
1789 */
1790 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1791 {
1792 struct dentry *dparent, *aparent;
1793
1794 switch_names(dentry, anon);
1795 swap(dentry->d_name.hash, anon->d_name.hash);
1796
1797 dparent = dentry->d_parent;
1798 aparent = anon->d_parent;
1799
1800 dentry->d_parent = (aparent == anon) ? dentry : aparent;
1801 list_del(&dentry->d_u.d_child);
1802 if (!IS_ROOT(dentry))
1803 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1804 else
1805 INIT_LIST_HEAD(&dentry->d_u.d_child);
1806
1807 anon->d_parent = (dparent == dentry) ? anon : dparent;
1808 list_del(&anon->d_u.d_child);
1809 if (!IS_ROOT(anon))
1810 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1811 else
1812 INIT_LIST_HEAD(&anon->d_u.d_child);
1813
1814 anon->d_flags &= ~DCACHE_DISCONNECTED;
1815 }
1816
1817 /**
1818 * d_materialise_unique - introduce an inode into the tree
1819 * @dentry: candidate dentry
1820 * @inode: inode to bind to the dentry, to which aliases may be attached
1821 *
1822 * Introduces an dentry into the tree, substituting an extant disconnected
1823 * root directory alias in its place if there is one
1824 */
1825 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1826 {
1827 struct dentry *actual;
1828
1829 BUG_ON(!d_unhashed(dentry));
1830
1831 spin_lock(&dcache_lock);
1832
1833 if (!inode) {
1834 actual = dentry;
1835 __d_instantiate(dentry, NULL);
1836 goto found_lock;
1837 }
1838
1839 if (S_ISDIR(inode->i_mode)) {
1840 struct dentry *alias;
1841
1842 /* Does an aliased dentry already exist? */
1843 alias = __d_find_alias(inode, 0);
1844 if (alias) {
1845 actual = alias;
1846 /* Is this an anonymous mountpoint that we could splice
1847 * into our tree? */
1848 if (IS_ROOT(alias)) {
1849 spin_lock(&alias->d_lock);
1850 __d_materialise_dentry(dentry, alias);
1851 __d_drop(alias);
1852 goto found;
1853 }
1854 /* Nope, but we must(!) avoid directory aliasing */
1855 actual = __d_unalias(dentry, alias);
1856 if (IS_ERR(actual))
1857 dput(alias);
1858 goto out_nolock;
1859 }
1860 }
1861
1862 /* Add a unique reference */
1863 actual = __d_instantiate_unique(dentry, inode);
1864 if (!actual)
1865 actual = dentry;
1866 else if (unlikely(!d_unhashed(actual)))
1867 goto shouldnt_be_hashed;
1868
1869 found_lock:
1870 spin_lock(&actual->d_lock);
1871 found:
1872 _d_rehash(actual);
1873 spin_unlock(&actual->d_lock);
1874 spin_unlock(&dcache_lock);
1875 out_nolock:
1876 if (actual == dentry) {
1877 security_d_instantiate(dentry, inode);
1878 return NULL;
1879 }
1880
1881 iput(inode);
1882 return actual;
1883
1884 shouldnt_be_hashed:
1885 spin_unlock(&dcache_lock);
1886 BUG();
1887 }
1888 EXPORT_SYMBOL_GPL(d_materialise_unique);
1889
1890 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1891 {
1892 *buflen -= namelen;
1893 if (*buflen < 0)
1894 return -ENAMETOOLONG;
1895 *buffer -= namelen;
1896 memcpy(*buffer, str, namelen);
1897 return 0;
1898 }
1899
1900 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1901 {
1902 return prepend(buffer, buflen, name->name, name->len);
1903 }
1904
1905 /**
1906 * __d_path - return the path of a dentry
1907 * @path: the dentry/vfsmount to report
1908 * @root: root vfsmnt/dentry (may be modified by this function)
1909 * @buffer: buffer to return value in
1910 * @buflen: buffer length
1911 *
1912 * Convert a dentry into an ASCII path name. If the entry has been deleted
1913 * the string " (deleted)" is appended. Note that this is ambiguous.
1914 *
1915 * Returns a pointer into the buffer or an error code if the
1916 * path was too long.
1917 *
1918 * "buflen" should be positive. Caller holds the dcache_lock.
1919 *
1920 * If path is not reachable from the supplied root, then the value of
1921 * root is changed (without modifying refcounts).
1922 */
1923 char *__d_path(const struct path *path, struct path *root,
1924 char *buffer, int buflen)
1925 {
1926 struct dentry *dentry = path->dentry;
1927 struct vfsmount *vfsmnt = path->mnt;
1928 char *end = buffer + buflen;
1929 char *retval;
1930
1931 spin_lock(&vfsmount_lock);
1932 prepend(&end, &buflen, "\0", 1);
1933 if (d_unlinked(dentry) &&
1934 (prepend(&end, &buflen, " (deleted)", 10) != 0))
1935 goto Elong;
1936
1937 if (buflen < 1)
1938 goto Elong;
1939 /* Get '/' right */
1940 retval = end-1;
1941 *retval = '/';
1942
1943 for (;;) {
1944 struct dentry * parent;
1945
1946 if (dentry == root->dentry && vfsmnt == root->mnt)
1947 break;
1948 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1949 /* Global root? */
1950 if (vfsmnt->mnt_parent == vfsmnt) {
1951 goto global_root;
1952 }
1953 dentry = vfsmnt->mnt_mountpoint;
1954 vfsmnt = vfsmnt->mnt_parent;
1955 continue;
1956 }
1957 parent = dentry->d_parent;
1958 prefetch(parent);
1959 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1960 (prepend(&end, &buflen, "/", 1) != 0))
1961 goto Elong;
1962 retval = end;
1963 dentry = parent;
1964 }
1965
1966 out:
1967 spin_unlock(&vfsmount_lock);
1968 return retval;
1969
1970 global_root:
1971 retval += 1; /* hit the slash */
1972 if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1973 goto Elong;
1974 root->mnt = vfsmnt;
1975 root->dentry = dentry;
1976 goto out;
1977
1978 Elong:
1979 retval = ERR_PTR(-ENAMETOOLONG);
1980 goto out;
1981 }
1982
1983 /**
1984 * d_path - return the path of a dentry
1985 * @path: path to report
1986 * @buf: buffer to return value in
1987 * @buflen: buffer length
1988 *
1989 * Convert a dentry into an ASCII path name. If the entry has been deleted
1990 * the string " (deleted)" is appended. Note that this is ambiguous.
1991 *
1992 * Returns a pointer into the buffer or an error code if the path was
1993 * too long. Note: Callers should use the returned pointer, not the passed
1994 * in buffer, to use the name! The implementation often starts at an offset
1995 * into the buffer, and may leave 0 bytes at the start.
1996 *
1997 * "buflen" should be positive.
1998 */
1999 char *d_path(const struct path *path, char *buf, int buflen)
2000 {
2001 char *res;
2002 struct path root;
2003 struct path tmp;
2004
2005 /*
2006 * We have various synthetic filesystems that never get mounted. On
2007 * these filesystems dentries are never used for lookup purposes, and
2008 * thus don't need to be hashed. They also don't need a name until a
2009 * user wants to identify the object in /proc/pid/fd/. The little hack
2010 * below allows us to generate a name for these objects on demand:
2011 */
2012 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2013 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2014
2015 read_lock(&current->fs->lock);
2016 root = current->fs->root;
2017 path_get(&root);
2018 read_unlock(&current->fs->lock);
2019 spin_lock(&dcache_lock);
2020 tmp = root;
2021 res = __d_path(path, &tmp, buf, buflen);
2022 spin_unlock(&dcache_lock);
2023 path_put(&root);
2024 return res;
2025 }
2026 EXPORT_SYMBOL(d_path);
2027
2028 /*
2029 * Helper function for dentry_operations.d_dname() members
2030 */
2031 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2032 const char *fmt, ...)
2033 {
2034 va_list args;
2035 char temp[64];
2036 int sz;
2037
2038 va_start(args, fmt);
2039 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2040 va_end(args);
2041
2042 if (sz > sizeof(temp) || sz > buflen)
2043 return ERR_PTR(-ENAMETOOLONG);
2044
2045 buffer += buflen - sz;
2046 return memcpy(buffer, temp, sz);
2047 }
2048
2049 /*
2050 * Write full pathname from the root of the filesystem into the buffer.
2051 */
2052 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2053 {
2054 char *end = buf + buflen;
2055 char *retval;
2056
2057 spin_lock(&dcache_lock);
2058 prepend(&end, &buflen, "\0", 1);
2059 if (d_unlinked(dentry) &&
2060 (prepend(&end, &buflen, "//deleted", 9) != 0))
2061 goto Elong;
2062 if (buflen < 1)
2063 goto Elong;
2064 /* Get '/' right */
2065 retval = end-1;
2066 *retval = '/';
2067
2068 while (!IS_ROOT(dentry)) {
2069 struct dentry *parent = dentry->d_parent;
2070
2071 prefetch(parent);
2072 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
2073 (prepend(&end, &buflen, "/", 1) != 0))
2074 goto Elong;
2075
2076 retval = end;
2077 dentry = parent;
2078 }
2079 spin_unlock(&dcache_lock);
2080 return retval;
2081 Elong:
2082 spin_unlock(&dcache_lock);
2083 return ERR_PTR(-ENAMETOOLONG);
2084 }
2085
2086 /*
2087 * NOTE! The user-level library version returns a
2088 * character pointer. The kernel system call just
2089 * returns the length of the buffer filled (which
2090 * includes the ending '\0' character), or a negative
2091 * error value. So libc would do something like
2092 *
2093 * char *getcwd(char * buf, size_t size)
2094 * {
2095 * int retval;
2096 *
2097 * retval = sys_getcwd(buf, size);
2098 * if (retval >= 0)
2099 * return buf;
2100 * errno = -retval;
2101 * return NULL;
2102 * }
2103 */
2104 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2105 {
2106 int error;
2107 struct path pwd, root;
2108 char *page = (char *) __get_free_page(GFP_USER);
2109
2110 if (!page)
2111 return -ENOMEM;
2112
2113 read_lock(&current->fs->lock);
2114 pwd = current->fs->pwd;
2115 path_get(&pwd);
2116 root = current->fs->root;
2117 path_get(&root);
2118 read_unlock(&current->fs->lock);
2119
2120 error = -ENOENT;
2121 spin_lock(&dcache_lock);
2122 if (!d_unlinked(pwd.dentry)) {
2123 unsigned long len;
2124 struct path tmp = root;
2125 char * cwd;
2126
2127 cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
2128 spin_unlock(&dcache_lock);
2129
2130 error = PTR_ERR(cwd);
2131 if (IS_ERR(cwd))
2132 goto out;
2133
2134 error = -ERANGE;
2135 len = PAGE_SIZE + page - cwd;
2136 if (len <= size) {
2137 error = len;
2138 if (copy_to_user(buf, cwd, len))
2139 error = -EFAULT;
2140 }
2141 } else
2142 spin_unlock(&dcache_lock);
2143
2144 out:
2145 path_put(&pwd);
2146 path_put(&root);
2147 free_page((unsigned long) page);
2148 return error;
2149 }
2150
2151 /*
2152 * Test whether new_dentry is a subdirectory of old_dentry.
2153 *
2154 * Trivially implemented using the dcache structure
2155 */
2156
2157 /**
2158 * is_subdir - is new dentry a subdirectory of old_dentry
2159 * @new_dentry: new dentry
2160 * @old_dentry: old dentry
2161 *
2162 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2163 * Returns 0 otherwise.
2164 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2165 */
2166
2167 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2168 {
2169 int result;
2170 unsigned long seq;
2171
2172 if (new_dentry == old_dentry)
2173 return 1;
2174
2175 /*
2176 * Need rcu_readlock to protect against the d_parent trashing
2177 * due to d_move
2178 */
2179 rcu_read_lock();
2180 do {
2181 /* for restarting inner loop in case of seq retry */
2182 seq = read_seqbegin(&rename_lock);
2183 if (d_ancestor(old_dentry, new_dentry))
2184 result = 1;
2185 else
2186 result = 0;
2187 } while (read_seqretry(&rename_lock, seq));
2188 rcu_read_unlock();
2189
2190 return result;
2191 }
2192
2193 int path_is_under(struct path *path1, struct path *path2)
2194 {
2195 struct vfsmount *mnt = path1->mnt;
2196 struct dentry *dentry = path1->dentry;
2197 int res;
2198 spin_lock(&vfsmount_lock);
2199 if (mnt != path2->mnt) {
2200 for (;;) {
2201 if (mnt->mnt_parent == mnt) {
2202 spin_unlock(&vfsmount_lock);
2203 return 0;
2204 }
2205 if (mnt->mnt_parent == path2->mnt)
2206 break;
2207 mnt = mnt->mnt_parent;
2208 }
2209 dentry = mnt->mnt_mountpoint;
2210 }
2211 res = is_subdir(dentry, path2->dentry);
2212 spin_unlock(&vfsmount_lock);
2213 return res;
2214 }
2215 EXPORT_SYMBOL(path_is_under);
2216
2217 void d_genocide(struct dentry *root)
2218 {
2219 struct dentry *this_parent = root;
2220 struct list_head *next;
2221
2222 spin_lock(&dcache_lock);
2223 repeat:
2224 next = this_parent->d_subdirs.next;
2225 resume:
2226 while (next != &this_parent->d_subdirs) {
2227 struct list_head *tmp = next;
2228 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2229 next = tmp->next;
2230 if (d_unhashed(dentry)||!dentry->d_inode)
2231 continue;
2232 if (!list_empty(&dentry->d_subdirs)) {
2233 this_parent = dentry;
2234 goto repeat;
2235 }
2236 atomic_dec(&dentry->d_count);
2237 }
2238 if (this_parent != root) {
2239 next = this_parent->d_u.d_child.next;
2240 atomic_dec(&this_parent->d_count);
2241 this_parent = this_parent->d_parent;
2242 goto resume;
2243 }
2244 spin_unlock(&dcache_lock);
2245 }
2246
2247 /**
2248 * find_inode_number - check for dentry with name
2249 * @dir: directory to check
2250 * @name: Name to find.
2251 *
2252 * Check whether a dentry already exists for the given name,
2253 * and return the inode number if it has an inode. Otherwise
2254 * 0 is returned.
2255 *
2256 * This routine is used to post-process directory listings for
2257 * filesystems using synthetic inode numbers, and is necessary
2258 * to keep getcwd() working.
2259 */
2260
2261 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2262 {
2263 struct dentry * dentry;
2264 ino_t ino = 0;
2265
2266 dentry = d_hash_and_lookup(dir, name);
2267 if (dentry) {
2268 if (dentry->d_inode)
2269 ino = dentry->d_inode->i_ino;
2270 dput(dentry);
2271 }
2272 return ino;
2273 }
2274 EXPORT_SYMBOL(find_inode_number);
2275
2276 static __initdata unsigned long dhash_entries;
2277 static int __init set_dhash_entries(char *str)
2278 {
2279 if (!str)
2280 return 0;
2281 dhash_entries = simple_strtoul(str, &str, 0);
2282 return 1;
2283 }
2284 __setup("dhash_entries=", set_dhash_entries);
2285
2286 static void __init dcache_init_early(void)
2287 {
2288 int loop;
2289
2290 /* If hashes are distributed across NUMA nodes, defer
2291 * hash allocation until vmalloc space is available.
2292 */
2293 if (hashdist)
2294 return;
2295
2296 dentry_hashtable =
2297 alloc_large_system_hash("Dentry cache",
2298 sizeof(struct hlist_head),
2299 dhash_entries,
2300 13,
2301 HASH_EARLY,
2302 &d_hash_shift,
2303 &d_hash_mask,
2304 0);
2305
2306 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2307 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2308 }
2309
2310 static void __init dcache_init(void)
2311 {
2312 int loop;
2313
2314 /*
2315 * A constructor could be added for stable state like the lists,
2316 * but it is probably not worth it because of the cache nature
2317 * of the dcache.
2318 */
2319 dentry_cache = KMEM_CACHE(dentry,
2320 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2321
2322 register_shrinker(&dcache_shrinker);
2323
2324 /* Hash may have been set up in dcache_init_early */
2325 if (!hashdist)
2326 return;
2327
2328 dentry_hashtable =
2329 alloc_large_system_hash("Dentry cache",
2330 sizeof(struct hlist_head),
2331 dhash_entries,
2332 13,
2333 0,
2334 &d_hash_shift,
2335 &d_hash_mask,
2336 0);
2337
2338 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2339 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2340 }
2341
2342 /* SLAB cache for __getname() consumers */
2343 struct kmem_cache *names_cachep __read_mostly;
2344 EXPORT_SYMBOL(names_cachep);
2345
2346 EXPORT_SYMBOL(d_genocide);
2347
2348 void __init vfs_caches_init_early(void)
2349 {
2350 dcache_init_early();
2351 inode_init_early();
2352 }
2353
2354 void __init vfs_caches_init(unsigned long mempages)
2355 {
2356 unsigned long reserve;
2357
2358 /* Base hash sizes on available memory, with a reserve equal to
2359 150% of current kernel size */
2360
2361 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2362 mempages -= reserve;
2363
2364 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2365 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2366
2367 dcache_init();
2368 inode_init();
2369 files_init(mempages);
2370 mnt_init();
2371 bdev_cache_init();
2372 chrdev_init();
2373 }
This page took 0.07937 seconds and 6 git commands to generate.