dcache.c: get rid of pointless macros
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43
44 /*
45 * Usage:
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
58 * - d_count
59 * - d_unhashed()
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_alias, d_inode
63 *
64 * Ordering:
65 * dentry->d_inode->i_lock
66 * dentry->d_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
69 * s_anon lock
70 *
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 unsigned int hash)
107 {
108 hash += (unsigned long) parent / L1_CACHE_BYTES;
109 hash = hash + (hash >> d_hash_shift);
110 return dentry_hashtable + (hash & d_hash_mask);
111 }
112
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116 };
117
118 static DEFINE_PER_CPU(long, nr_dentry);
119 static DEFINE_PER_CPU(long, nr_dentry_unused);
120
121 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
122
123 /*
124 * Here we resort to our own counters instead of using generic per-cpu counters
125 * for consistency with what the vfs inode code does. We are expected to harvest
126 * better code and performance by having our own specialized counters.
127 *
128 * Please note that the loop is done over all possible CPUs, not over all online
129 * CPUs. The reason for this is that we don't want to play games with CPUs going
130 * on and off. If one of them goes off, we will just keep their counters.
131 *
132 * glommer: See cffbc8a for details, and if you ever intend to change this,
133 * please update all vfs counters to match.
134 */
135 static long get_nr_dentry(void)
136 {
137 int i;
138 long sum = 0;
139 for_each_possible_cpu(i)
140 sum += per_cpu(nr_dentry, i);
141 return sum < 0 ? 0 : sum;
142 }
143
144 static long get_nr_dentry_unused(void)
145 {
146 int i;
147 long sum = 0;
148 for_each_possible_cpu(i)
149 sum += per_cpu(nr_dentry_unused, i);
150 return sum < 0 ? 0 : sum;
151 }
152
153 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
154 size_t *lenp, loff_t *ppos)
155 {
156 dentry_stat.nr_dentry = get_nr_dentry();
157 dentry_stat.nr_unused = get_nr_dentry_unused();
158 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
159 }
160 #endif
161
162 /*
163 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164 * The strings are both count bytes long, and count is non-zero.
165 */
166 #ifdef CONFIG_DCACHE_WORD_ACCESS
167
168 #include <asm/word-at-a-time.h>
169 /*
170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171 * aligned allocation for this particular component. We don't
172 * strictly need the load_unaligned_zeropad() safety, but it
173 * doesn't hurt either.
174 *
175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176 * need the careful unaligned handling.
177 */
178 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
179 {
180 unsigned long a,b,mask;
181
182 for (;;) {
183 a = *(unsigned long *)cs;
184 b = load_unaligned_zeropad(ct);
185 if (tcount < sizeof(unsigned long))
186 break;
187 if (unlikely(a != b))
188 return 1;
189 cs += sizeof(unsigned long);
190 ct += sizeof(unsigned long);
191 tcount -= sizeof(unsigned long);
192 if (!tcount)
193 return 0;
194 }
195 mask = ~(~0ul << tcount*8);
196 return unlikely(!!((a ^ b) & mask));
197 }
198
199 #else
200
201 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
202 {
203 do {
204 if (*cs != *ct)
205 return 1;
206 cs++;
207 ct++;
208 tcount--;
209 } while (tcount);
210 return 0;
211 }
212
213 #endif
214
215 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
216 {
217 const unsigned char *cs;
218 /*
219 * Be careful about RCU walk racing with rename:
220 * use ACCESS_ONCE to fetch the name pointer.
221 *
222 * NOTE! Even if a rename will mean that the length
223 * was not loaded atomically, we don't care. The
224 * RCU walk will check the sequence count eventually,
225 * and catch it. And we won't overrun the buffer,
226 * because we're reading the name pointer atomically,
227 * and a dentry name is guaranteed to be properly
228 * terminated with a NUL byte.
229 *
230 * End result: even if 'len' is wrong, we'll exit
231 * early because the data cannot match (there can
232 * be no NUL in the ct/tcount data)
233 */
234 cs = ACCESS_ONCE(dentry->d_name.name);
235 smp_read_barrier_depends();
236 return dentry_string_cmp(cs, ct, tcount);
237 }
238
239 static void __d_free(struct rcu_head *head)
240 {
241 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
242
243 WARN_ON(!hlist_unhashed(&dentry->d_alias));
244 if (dname_external(dentry))
245 kfree(dentry->d_name.name);
246 kmem_cache_free(dentry_cache, dentry);
247 }
248
249 /*
250 * no locks, please.
251 */
252 static void d_free(struct dentry *dentry)
253 {
254 BUG_ON((int)dentry->d_lockref.count > 0);
255 this_cpu_dec(nr_dentry);
256 if (dentry->d_op && dentry->d_op->d_release)
257 dentry->d_op->d_release(dentry);
258
259 /* if dentry was never visible to RCU, immediate free is OK */
260 if (!(dentry->d_flags & DCACHE_RCUACCESS))
261 __d_free(&dentry->d_u.d_rcu);
262 else
263 call_rcu(&dentry->d_u.d_rcu, __d_free);
264 }
265
266 /**
267 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
268 * @dentry: the target dentry
269 * After this call, in-progress rcu-walk path lookup will fail. This
270 * should be called after unhashing, and after changing d_inode (if
271 * the dentry has not already been unhashed).
272 */
273 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
274 {
275 assert_spin_locked(&dentry->d_lock);
276 /* Go through a barrier */
277 write_seqcount_barrier(&dentry->d_seq);
278 }
279
280 /*
281 * Release the dentry's inode, using the filesystem
282 * d_iput() operation if defined. Dentry has no refcount
283 * and is unhashed.
284 */
285 static void dentry_iput(struct dentry * dentry)
286 __releases(dentry->d_lock)
287 __releases(dentry->d_inode->i_lock)
288 {
289 struct inode *inode = dentry->d_inode;
290 if (inode) {
291 dentry->d_inode = NULL;
292 hlist_del_init(&dentry->d_alias);
293 spin_unlock(&dentry->d_lock);
294 spin_unlock(&inode->i_lock);
295 if (!inode->i_nlink)
296 fsnotify_inoderemove(inode);
297 if (dentry->d_op && dentry->d_op->d_iput)
298 dentry->d_op->d_iput(dentry, inode);
299 else
300 iput(inode);
301 } else {
302 spin_unlock(&dentry->d_lock);
303 }
304 }
305
306 /*
307 * Release the dentry's inode, using the filesystem
308 * d_iput() operation if defined. dentry remains in-use.
309 */
310 static void dentry_unlink_inode(struct dentry * dentry)
311 __releases(dentry->d_lock)
312 __releases(dentry->d_inode->i_lock)
313 {
314 struct inode *inode = dentry->d_inode;
315 __d_clear_type(dentry);
316 dentry->d_inode = NULL;
317 hlist_del_init(&dentry->d_alias);
318 dentry_rcuwalk_barrier(dentry);
319 spin_unlock(&dentry->d_lock);
320 spin_unlock(&inode->i_lock);
321 if (!inode->i_nlink)
322 fsnotify_inoderemove(inode);
323 if (dentry->d_op && dentry->d_op->d_iput)
324 dentry->d_op->d_iput(dentry, inode);
325 else
326 iput(inode);
327 }
328
329 /*
330 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
331 * is in use - which includes both the "real" per-superblock
332 * LRU list _and_ the DCACHE_SHRINK_LIST use.
333 *
334 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
335 * on the shrink list (ie not on the superblock LRU list).
336 *
337 * The per-cpu "nr_dentry_unused" counters are updated with
338 * the DCACHE_LRU_LIST bit.
339 *
340 * These helper functions make sure we always follow the
341 * rules. d_lock must be held by the caller.
342 */
343 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
344 static void d_lru_add(struct dentry *dentry)
345 {
346 D_FLAG_VERIFY(dentry, 0);
347 dentry->d_flags |= DCACHE_LRU_LIST;
348 this_cpu_inc(nr_dentry_unused);
349 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
350 }
351
352 static void d_lru_del(struct dentry *dentry)
353 {
354 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
355 dentry->d_flags &= ~DCACHE_LRU_LIST;
356 this_cpu_dec(nr_dentry_unused);
357 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
358 }
359
360 static void d_shrink_del(struct dentry *dentry)
361 {
362 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
363 list_del_init(&dentry->d_lru);
364 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
365 this_cpu_dec(nr_dentry_unused);
366 }
367
368 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
369 {
370 D_FLAG_VERIFY(dentry, 0);
371 list_add(&dentry->d_lru, list);
372 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
373 this_cpu_inc(nr_dentry_unused);
374 }
375
376 /*
377 * These can only be called under the global LRU lock, ie during the
378 * callback for freeing the LRU list. "isolate" removes it from the
379 * LRU lists entirely, while shrink_move moves it to the indicated
380 * private list.
381 */
382 static void d_lru_isolate(struct dentry *dentry)
383 {
384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 dentry->d_flags &= ~DCACHE_LRU_LIST;
386 this_cpu_dec(nr_dentry_unused);
387 list_del_init(&dentry->d_lru);
388 }
389
390 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
391 {
392 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
393 dentry->d_flags |= DCACHE_SHRINK_LIST;
394 list_move_tail(&dentry->d_lru, list);
395 }
396
397 /*
398 * dentry_lru_(add|del)_list) must be called with d_lock held.
399 */
400 static void dentry_lru_add(struct dentry *dentry)
401 {
402 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
403 d_lru_add(dentry);
404 }
405
406 /*
407 * Remove a dentry with references from the LRU.
408 *
409 * If we are on the shrink list, then we can get to try_prune_one_dentry() and
410 * lose our last reference through the parent walk. In this case, we need to
411 * remove ourselves from the shrink list, not the LRU.
412 */
413 static void dentry_lru_del(struct dentry *dentry)
414 {
415 if (dentry->d_flags & DCACHE_LRU_LIST) {
416 if (dentry->d_flags & DCACHE_SHRINK_LIST)
417 return d_shrink_del(dentry);
418 d_lru_del(dentry);
419 }
420 }
421
422 /**
423 * d_kill - kill dentry and return parent
424 * @dentry: dentry to kill
425 * @parent: parent dentry
426 *
427 * The dentry must already be unhashed and removed from the LRU.
428 *
429 * If this is the root of the dentry tree, return NULL.
430 *
431 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
432 * d_kill.
433 */
434 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
435 __releases(dentry->d_lock)
436 __releases(parent->d_lock)
437 __releases(dentry->d_inode->i_lock)
438 {
439 list_del(&dentry->d_u.d_child);
440 /*
441 * Inform try_to_ascend() that we are no longer attached to the
442 * dentry tree
443 */
444 dentry->d_flags |= DCACHE_DENTRY_KILLED;
445 if (parent)
446 spin_unlock(&parent->d_lock);
447 dentry_iput(dentry);
448 /*
449 * dentry_iput drops the locks, at which point nobody (except
450 * transient RCU lookups) can reach this dentry.
451 */
452 d_free(dentry);
453 return parent;
454 }
455
456 /**
457 * d_drop - drop a dentry
458 * @dentry: dentry to drop
459 *
460 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
461 * be found through a VFS lookup any more. Note that this is different from
462 * deleting the dentry - d_delete will try to mark the dentry negative if
463 * possible, giving a successful _negative_ lookup, while d_drop will
464 * just make the cache lookup fail.
465 *
466 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
467 * reason (NFS timeouts or autofs deletes).
468 *
469 * __d_drop requires dentry->d_lock.
470 */
471 void __d_drop(struct dentry *dentry)
472 {
473 if (!d_unhashed(dentry)) {
474 struct hlist_bl_head *b;
475 /*
476 * Hashed dentries are normally on the dentry hashtable,
477 * with the exception of those newly allocated by
478 * d_obtain_alias, which are always IS_ROOT:
479 */
480 if (unlikely(IS_ROOT(dentry)))
481 b = &dentry->d_sb->s_anon;
482 else
483 b = d_hash(dentry->d_parent, dentry->d_name.hash);
484
485 hlist_bl_lock(b);
486 __hlist_bl_del(&dentry->d_hash);
487 dentry->d_hash.pprev = NULL;
488 hlist_bl_unlock(b);
489 dentry_rcuwalk_barrier(dentry);
490 }
491 }
492 EXPORT_SYMBOL(__d_drop);
493
494 void d_drop(struct dentry *dentry)
495 {
496 spin_lock(&dentry->d_lock);
497 __d_drop(dentry);
498 spin_unlock(&dentry->d_lock);
499 }
500 EXPORT_SYMBOL(d_drop);
501
502 /*
503 * Finish off a dentry we've decided to kill.
504 * dentry->d_lock must be held, returns with it unlocked.
505 * If ref is non-zero, then decrement the refcount too.
506 * Returns dentry requiring refcount drop, or NULL if we're done.
507 */
508 static struct dentry *
509 dentry_kill(struct dentry *dentry, int unlock_on_failure)
510 __releases(dentry->d_lock)
511 {
512 struct inode *inode;
513 struct dentry *parent;
514
515 inode = dentry->d_inode;
516 if (inode && !spin_trylock(&inode->i_lock)) {
517 relock:
518 if (unlock_on_failure) {
519 spin_unlock(&dentry->d_lock);
520 cpu_relax();
521 }
522 return dentry; /* try again with same dentry */
523 }
524 if (IS_ROOT(dentry))
525 parent = NULL;
526 else
527 parent = dentry->d_parent;
528 if (parent && !spin_trylock(&parent->d_lock)) {
529 if (inode)
530 spin_unlock(&inode->i_lock);
531 goto relock;
532 }
533
534 /*
535 * The dentry is now unrecoverably dead to the world.
536 */
537 lockref_mark_dead(&dentry->d_lockref);
538
539 /*
540 * inform the fs via d_prune that this dentry is about to be
541 * unhashed and destroyed.
542 */
543 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
544 dentry->d_op->d_prune(dentry);
545
546 dentry_lru_del(dentry);
547 /* if it was on the hash then remove it */
548 __d_drop(dentry);
549 return d_kill(dentry, parent);
550 }
551
552 /*
553 * This is dput
554 *
555 * This is complicated by the fact that we do not want to put
556 * dentries that are no longer on any hash chain on the unused
557 * list: we'd much rather just get rid of them immediately.
558 *
559 * However, that implies that we have to traverse the dentry
560 * tree upwards to the parents which might _also_ now be
561 * scheduled for deletion (it may have been only waiting for
562 * its last child to go away).
563 *
564 * This tail recursion is done by hand as we don't want to depend
565 * on the compiler to always get this right (gcc generally doesn't).
566 * Real recursion would eat up our stack space.
567 */
568
569 /*
570 * dput - release a dentry
571 * @dentry: dentry to release
572 *
573 * Release a dentry. This will drop the usage count and if appropriate
574 * call the dentry unlink method as well as removing it from the queues and
575 * releasing its resources. If the parent dentries were scheduled for release
576 * they too may now get deleted.
577 */
578 void dput(struct dentry *dentry)
579 {
580 if (unlikely(!dentry))
581 return;
582
583 repeat:
584 if (lockref_put_or_lock(&dentry->d_lockref))
585 return;
586
587 /* Unreachable? Get rid of it */
588 if (unlikely(d_unhashed(dentry)))
589 goto kill_it;
590
591 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
592 if (dentry->d_op->d_delete(dentry))
593 goto kill_it;
594 }
595
596 if (!(dentry->d_flags & DCACHE_REFERENCED))
597 dentry->d_flags |= DCACHE_REFERENCED;
598 dentry_lru_add(dentry);
599
600 dentry->d_lockref.count--;
601 spin_unlock(&dentry->d_lock);
602 return;
603
604 kill_it:
605 dentry = dentry_kill(dentry, 1);
606 if (dentry)
607 goto repeat;
608 }
609 EXPORT_SYMBOL(dput);
610
611 /**
612 * d_invalidate - invalidate a dentry
613 * @dentry: dentry to invalidate
614 *
615 * Try to invalidate the dentry if it turns out to be
616 * possible. If there are other dentries that can be
617 * reached through this one we can't delete it and we
618 * return -EBUSY. On success we return 0.
619 *
620 * no dcache lock.
621 */
622
623 int d_invalidate(struct dentry * dentry)
624 {
625 /*
626 * If it's already been dropped, return OK.
627 */
628 spin_lock(&dentry->d_lock);
629 if (d_unhashed(dentry)) {
630 spin_unlock(&dentry->d_lock);
631 return 0;
632 }
633 /*
634 * Check whether to do a partial shrink_dcache
635 * to get rid of unused child entries.
636 */
637 if (!list_empty(&dentry->d_subdirs)) {
638 spin_unlock(&dentry->d_lock);
639 shrink_dcache_parent(dentry);
640 spin_lock(&dentry->d_lock);
641 }
642
643 /*
644 * Somebody else still using it?
645 *
646 * If it's a directory, we can't drop it
647 * for fear of somebody re-populating it
648 * with children (even though dropping it
649 * would make it unreachable from the root,
650 * we might still populate it if it was a
651 * working directory or similar).
652 * We also need to leave mountpoints alone,
653 * directory or not.
654 */
655 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
656 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
657 spin_unlock(&dentry->d_lock);
658 return -EBUSY;
659 }
660 }
661
662 __d_drop(dentry);
663 spin_unlock(&dentry->d_lock);
664 return 0;
665 }
666 EXPORT_SYMBOL(d_invalidate);
667
668 /* This must be called with d_lock held */
669 static inline void __dget_dlock(struct dentry *dentry)
670 {
671 dentry->d_lockref.count++;
672 }
673
674 static inline void __dget(struct dentry *dentry)
675 {
676 lockref_get(&dentry->d_lockref);
677 }
678
679 struct dentry *dget_parent(struct dentry *dentry)
680 {
681 int gotref;
682 struct dentry *ret;
683
684 /*
685 * Do optimistic parent lookup without any
686 * locking.
687 */
688 rcu_read_lock();
689 ret = ACCESS_ONCE(dentry->d_parent);
690 gotref = lockref_get_not_zero(&ret->d_lockref);
691 rcu_read_unlock();
692 if (likely(gotref)) {
693 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
694 return ret;
695 dput(ret);
696 }
697
698 repeat:
699 /*
700 * Don't need rcu_dereference because we re-check it was correct under
701 * the lock.
702 */
703 rcu_read_lock();
704 ret = dentry->d_parent;
705 spin_lock(&ret->d_lock);
706 if (unlikely(ret != dentry->d_parent)) {
707 spin_unlock(&ret->d_lock);
708 rcu_read_unlock();
709 goto repeat;
710 }
711 rcu_read_unlock();
712 BUG_ON(!ret->d_lockref.count);
713 ret->d_lockref.count++;
714 spin_unlock(&ret->d_lock);
715 return ret;
716 }
717 EXPORT_SYMBOL(dget_parent);
718
719 /**
720 * d_find_alias - grab a hashed alias of inode
721 * @inode: inode in question
722 * @want_discon: flag, used by d_splice_alias, to request
723 * that only a DISCONNECTED alias be returned.
724 *
725 * If inode has a hashed alias, or is a directory and has any alias,
726 * acquire the reference to alias and return it. Otherwise return NULL.
727 * Notice that if inode is a directory there can be only one alias and
728 * it can be unhashed only if it has no children, or if it is the root
729 * of a filesystem.
730 *
731 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
732 * any other hashed alias over that one unless @want_discon is set,
733 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
734 */
735 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
736 {
737 struct dentry *alias, *discon_alias;
738
739 again:
740 discon_alias = NULL;
741 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
742 spin_lock(&alias->d_lock);
743 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
744 if (IS_ROOT(alias) &&
745 (alias->d_flags & DCACHE_DISCONNECTED)) {
746 discon_alias = alias;
747 } else if (!want_discon) {
748 __dget_dlock(alias);
749 spin_unlock(&alias->d_lock);
750 return alias;
751 }
752 }
753 spin_unlock(&alias->d_lock);
754 }
755 if (discon_alias) {
756 alias = discon_alias;
757 spin_lock(&alias->d_lock);
758 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
759 if (IS_ROOT(alias) &&
760 (alias->d_flags & DCACHE_DISCONNECTED)) {
761 __dget_dlock(alias);
762 spin_unlock(&alias->d_lock);
763 return alias;
764 }
765 }
766 spin_unlock(&alias->d_lock);
767 goto again;
768 }
769 return NULL;
770 }
771
772 struct dentry *d_find_alias(struct inode *inode)
773 {
774 struct dentry *de = NULL;
775
776 if (!hlist_empty(&inode->i_dentry)) {
777 spin_lock(&inode->i_lock);
778 de = __d_find_alias(inode, 0);
779 spin_unlock(&inode->i_lock);
780 }
781 return de;
782 }
783 EXPORT_SYMBOL(d_find_alias);
784
785 /*
786 * Try to kill dentries associated with this inode.
787 * WARNING: you must own a reference to inode.
788 */
789 void d_prune_aliases(struct inode *inode)
790 {
791 struct dentry *dentry;
792 restart:
793 spin_lock(&inode->i_lock);
794 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
795 spin_lock(&dentry->d_lock);
796 if (!dentry->d_lockref.count) {
797 /*
798 * inform the fs via d_prune that this dentry
799 * is about to be unhashed and destroyed.
800 */
801 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
802 !d_unhashed(dentry))
803 dentry->d_op->d_prune(dentry);
804
805 __dget_dlock(dentry);
806 __d_drop(dentry);
807 spin_unlock(&dentry->d_lock);
808 spin_unlock(&inode->i_lock);
809 dput(dentry);
810 goto restart;
811 }
812 spin_unlock(&dentry->d_lock);
813 }
814 spin_unlock(&inode->i_lock);
815 }
816 EXPORT_SYMBOL(d_prune_aliases);
817
818 /*
819 * Try to throw away a dentry - free the inode, dput the parent.
820 * Requires dentry->d_lock is held, and dentry->d_count == 0.
821 * Releases dentry->d_lock.
822 *
823 * This may fail if locks cannot be acquired no problem, just try again.
824 */
825 static struct dentry * try_prune_one_dentry(struct dentry *dentry)
826 __releases(dentry->d_lock)
827 {
828 struct dentry *parent;
829
830 parent = dentry_kill(dentry, 0);
831 /*
832 * If dentry_kill returns NULL, we have nothing more to do.
833 * if it returns the same dentry, trylocks failed. In either
834 * case, just loop again.
835 *
836 * Otherwise, we need to prune ancestors too. This is necessary
837 * to prevent quadratic behavior of shrink_dcache_parent(), but
838 * is also expected to be beneficial in reducing dentry cache
839 * fragmentation.
840 */
841 if (!parent)
842 return NULL;
843 if (parent == dentry)
844 return dentry;
845
846 /* Prune ancestors. */
847 dentry = parent;
848 while (dentry) {
849 if (lockref_put_or_lock(&dentry->d_lockref))
850 return NULL;
851 dentry = dentry_kill(dentry, 1);
852 }
853 return NULL;
854 }
855
856 static void shrink_dentry_list(struct list_head *list)
857 {
858 struct dentry *dentry;
859
860 rcu_read_lock();
861 for (;;) {
862 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
863 if (&dentry->d_lru == list)
864 break; /* empty */
865
866 /*
867 * Get the dentry lock, and re-verify that the dentry is
868 * this on the shrinking list. If it is, we know that
869 * DCACHE_SHRINK_LIST and DCACHE_LRU_LIST are set.
870 */
871 spin_lock(&dentry->d_lock);
872 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
873 spin_unlock(&dentry->d_lock);
874 continue;
875 }
876
877 /*
878 * The dispose list is isolated and dentries are not accounted
879 * to the LRU here, so we can simply remove it from the list
880 * here regardless of whether it is referenced or not.
881 */
882 d_shrink_del(dentry);
883
884 /*
885 * We found an inuse dentry which was not removed from
886 * the LRU because of laziness during lookup. Do not free it.
887 */
888 if (dentry->d_lockref.count) {
889 spin_unlock(&dentry->d_lock);
890 continue;
891 }
892 rcu_read_unlock();
893
894 /*
895 * If 'try_to_prune()' returns a dentry, it will
896 * be the same one we passed in, and d_lock will
897 * have been held the whole time, so it will not
898 * have been added to any other lists. We failed
899 * to get the inode lock.
900 *
901 * We just add it back to the shrink list.
902 */
903 dentry = try_prune_one_dentry(dentry);
904
905 rcu_read_lock();
906 if (dentry) {
907 d_shrink_add(dentry, list);
908 spin_unlock(&dentry->d_lock);
909 }
910 }
911 rcu_read_unlock();
912 }
913
914 static enum lru_status
915 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
916 {
917 struct list_head *freeable = arg;
918 struct dentry *dentry = container_of(item, struct dentry, d_lru);
919
920
921 /*
922 * we are inverting the lru lock/dentry->d_lock here,
923 * so use a trylock. If we fail to get the lock, just skip
924 * it
925 */
926 if (!spin_trylock(&dentry->d_lock))
927 return LRU_SKIP;
928
929 /*
930 * Referenced dentries are still in use. If they have active
931 * counts, just remove them from the LRU. Otherwise give them
932 * another pass through the LRU.
933 */
934 if (dentry->d_lockref.count) {
935 d_lru_isolate(dentry);
936 spin_unlock(&dentry->d_lock);
937 return LRU_REMOVED;
938 }
939
940 if (dentry->d_flags & DCACHE_REFERENCED) {
941 dentry->d_flags &= ~DCACHE_REFERENCED;
942 spin_unlock(&dentry->d_lock);
943
944 /*
945 * The list move itself will be made by the common LRU code. At
946 * this point, we've dropped the dentry->d_lock but keep the
947 * lru lock. This is safe to do, since every list movement is
948 * protected by the lru lock even if both locks are held.
949 *
950 * This is guaranteed by the fact that all LRU management
951 * functions are intermediated by the LRU API calls like
952 * list_lru_add and list_lru_del. List movement in this file
953 * only ever occur through this functions or through callbacks
954 * like this one, that are called from the LRU API.
955 *
956 * The only exceptions to this are functions like
957 * shrink_dentry_list, and code that first checks for the
958 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
959 * operating only with stack provided lists after they are
960 * properly isolated from the main list. It is thus, always a
961 * local access.
962 */
963 return LRU_ROTATE;
964 }
965
966 d_lru_shrink_move(dentry, freeable);
967 spin_unlock(&dentry->d_lock);
968
969 return LRU_REMOVED;
970 }
971
972 /**
973 * prune_dcache_sb - shrink the dcache
974 * @sb: superblock
975 * @nr_to_scan : number of entries to try to free
976 * @nid: which node to scan for freeable entities
977 *
978 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
979 * done when we need more memory an called from the superblock shrinker
980 * function.
981 *
982 * This function may fail to free any resources if all the dentries are in
983 * use.
984 */
985 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
986 int nid)
987 {
988 LIST_HEAD(dispose);
989 long freed;
990
991 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
992 &dispose, &nr_to_scan);
993 shrink_dentry_list(&dispose);
994 return freed;
995 }
996
997 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
998 spinlock_t *lru_lock, void *arg)
999 {
1000 struct list_head *freeable = arg;
1001 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1002
1003 /*
1004 * we are inverting the lru lock/dentry->d_lock here,
1005 * so use a trylock. If we fail to get the lock, just skip
1006 * it
1007 */
1008 if (!spin_trylock(&dentry->d_lock))
1009 return LRU_SKIP;
1010
1011 d_lru_shrink_move(dentry, freeable);
1012 spin_unlock(&dentry->d_lock);
1013
1014 return LRU_REMOVED;
1015 }
1016
1017
1018 /**
1019 * shrink_dcache_sb - shrink dcache for a superblock
1020 * @sb: superblock
1021 *
1022 * Shrink the dcache for the specified super block. This is used to free
1023 * the dcache before unmounting a file system.
1024 */
1025 void shrink_dcache_sb(struct super_block *sb)
1026 {
1027 long freed;
1028
1029 do {
1030 LIST_HEAD(dispose);
1031
1032 freed = list_lru_walk(&sb->s_dentry_lru,
1033 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1034
1035 this_cpu_sub(nr_dentry_unused, freed);
1036 shrink_dentry_list(&dispose);
1037 } while (freed > 0);
1038 }
1039 EXPORT_SYMBOL(shrink_dcache_sb);
1040
1041 /*
1042 * This tries to ascend one level of parenthood, but
1043 * we can race with renaming, so we need to re-check
1044 * the parenthood after dropping the lock and check
1045 * that the sequence number still matches.
1046 */
1047 static struct dentry *try_to_ascend(struct dentry *old, unsigned seq)
1048 {
1049 struct dentry *new = old->d_parent;
1050
1051 rcu_read_lock();
1052 spin_unlock(&old->d_lock);
1053 spin_lock(&new->d_lock);
1054
1055 /*
1056 * might go back up the wrong parent if we have had a rename
1057 * or deletion
1058 */
1059 if (new != old->d_parent ||
1060 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1061 need_seqretry(&rename_lock, seq)) {
1062 spin_unlock(&new->d_lock);
1063 new = NULL;
1064 }
1065 rcu_read_unlock();
1066 return new;
1067 }
1068
1069 /**
1070 * enum d_walk_ret - action to talke during tree walk
1071 * @D_WALK_CONTINUE: contrinue walk
1072 * @D_WALK_QUIT: quit walk
1073 * @D_WALK_NORETRY: quit when retry is needed
1074 * @D_WALK_SKIP: skip this dentry and its children
1075 */
1076 enum d_walk_ret {
1077 D_WALK_CONTINUE,
1078 D_WALK_QUIT,
1079 D_WALK_NORETRY,
1080 D_WALK_SKIP,
1081 };
1082
1083 /**
1084 * d_walk - walk the dentry tree
1085 * @parent: start of walk
1086 * @data: data passed to @enter() and @finish()
1087 * @enter: callback when first entering the dentry
1088 * @finish: callback when successfully finished the walk
1089 *
1090 * The @enter() and @finish() callbacks are called with d_lock held.
1091 */
1092 static void d_walk(struct dentry *parent, void *data,
1093 enum d_walk_ret (*enter)(void *, struct dentry *),
1094 void (*finish)(void *))
1095 {
1096 struct dentry *this_parent;
1097 struct list_head *next;
1098 unsigned seq = 0;
1099 enum d_walk_ret ret;
1100 bool retry = true;
1101
1102 again:
1103 read_seqbegin_or_lock(&rename_lock, &seq);
1104 this_parent = parent;
1105 spin_lock(&this_parent->d_lock);
1106
1107 ret = enter(data, this_parent);
1108 switch (ret) {
1109 case D_WALK_CONTINUE:
1110 break;
1111 case D_WALK_QUIT:
1112 case D_WALK_SKIP:
1113 goto out_unlock;
1114 case D_WALK_NORETRY:
1115 retry = false;
1116 break;
1117 }
1118 repeat:
1119 next = this_parent->d_subdirs.next;
1120 resume:
1121 while (next != &this_parent->d_subdirs) {
1122 struct list_head *tmp = next;
1123 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1124 next = tmp->next;
1125
1126 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1127
1128 ret = enter(data, dentry);
1129 switch (ret) {
1130 case D_WALK_CONTINUE:
1131 break;
1132 case D_WALK_QUIT:
1133 spin_unlock(&dentry->d_lock);
1134 goto out_unlock;
1135 case D_WALK_NORETRY:
1136 retry = false;
1137 break;
1138 case D_WALK_SKIP:
1139 spin_unlock(&dentry->d_lock);
1140 continue;
1141 }
1142
1143 if (!list_empty(&dentry->d_subdirs)) {
1144 spin_unlock(&this_parent->d_lock);
1145 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1146 this_parent = dentry;
1147 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1148 goto repeat;
1149 }
1150 spin_unlock(&dentry->d_lock);
1151 }
1152 /*
1153 * All done at this level ... ascend and resume the search.
1154 */
1155 if (this_parent != parent) {
1156 struct dentry *child = this_parent;
1157 this_parent = try_to_ascend(this_parent, seq);
1158 if (!this_parent)
1159 goto rename_retry;
1160 next = child->d_u.d_child.next;
1161 goto resume;
1162 }
1163 if (need_seqretry(&rename_lock, seq)) {
1164 spin_unlock(&this_parent->d_lock);
1165 goto rename_retry;
1166 }
1167 if (finish)
1168 finish(data);
1169
1170 out_unlock:
1171 spin_unlock(&this_parent->d_lock);
1172 done_seqretry(&rename_lock, seq);
1173 return;
1174
1175 rename_retry:
1176 if (!retry)
1177 return;
1178 seq = 1;
1179 goto again;
1180 }
1181
1182 /*
1183 * Search for at least 1 mount point in the dentry's subdirs.
1184 * We descend to the next level whenever the d_subdirs
1185 * list is non-empty and continue searching.
1186 */
1187
1188 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1189 {
1190 int *ret = data;
1191 if (d_mountpoint(dentry)) {
1192 *ret = 1;
1193 return D_WALK_QUIT;
1194 }
1195 return D_WALK_CONTINUE;
1196 }
1197
1198 /**
1199 * have_submounts - check for mounts over a dentry
1200 * @parent: dentry to check.
1201 *
1202 * Return true if the parent or its subdirectories contain
1203 * a mount point
1204 */
1205 int have_submounts(struct dentry *parent)
1206 {
1207 int ret = 0;
1208
1209 d_walk(parent, &ret, check_mount, NULL);
1210
1211 return ret;
1212 }
1213 EXPORT_SYMBOL(have_submounts);
1214
1215 /*
1216 * Called by mount code to set a mountpoint and check if the mountpoint is
1217 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1218 * subtree can become unreachable).
1219 *
1220 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1221 * this reason take rename_lock and d_lock on dentry and ancestors.
1222 */
1223 int d_set_mounted(struct dentry *dentry)
1224 {
1225 struct dentry *p;
1226 int ret = -ENOENT;
1227 write_seqlock(&rename_lock);
1228 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1229 /* Need exclusion wrt. check_submounts_and_drop() */
1230 spin_lock(&p->d_lock);
1231 if (unlikely(d_unhashed(p))) {
1232 spin_unlock(&p->d_lock);
1233 goto out;
1234 }
1235 spin_unlock(&p->d_lock);
1236 }
1237 spin_lock(&dentry->d_lock);
1238 if (!d_unlinked(dentry)) {
1239 dentry->d_flags |= DCACHE_MOUNTED;
1240 ret = 0;
1241 }
1242 spin_unlock(&dentry->d_lock);
1243 out:
1244 write_sequnlock(&rename_lock);
1245 return ret;
1246 }
1247
1248 /*
1249 * Search the dentry child list of the specified parent,
1250 * and move any unused dentries to the end of the unused
1251 * list for prune_dcache(). We descend to the next level
1252 * whenever the d_subdirs list is non-empty and continue
1253 * searching.
1254 *
1255 * It returns zero iff there are no unused children,
1256 * otherwise it returns the number of children moved to
1257 * the end of the unused list. This may not be the total
1258 * number of unused children, because select_parent can
1259 * drop the lock and return early due to latency
1260 * constraints.
1261 */
1262
1263 struct select_data {
1264 struct dentry *start;
1265 struct list_head dispose;
1266 int found;
1267 };
1268
1269 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1270 {
1271 struct select_data *data = _data;
1272 enum d_walk_ret ret = D_WALK_CONTINUE;
1273
1274 if (data->start == dentry)
1275 goto out;
1276
1277 /*
1278 * move only zero ref count dentries to the dispose list.
1279 *
1280 * Those which are presently on the shrink list, being processed
1281 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1282 * loop in shrink_dcache_parent() might not make any progress
1283 * and loop forever.
1284 */
1285 if (dentry->d_lockref.count) {
1286 dentry_lru_del(dentry);
1287 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1288 /*
1289 * We can't use d_lru_shrink_move() because we
1290 * need to get the global LRU lock and do the
1291 * LRU accounting.
1292 */
1293 d_lru_del(dentry);
1294 d_shrink_add(dentry, &data->dispose);
1295 data->found++;
1296 ret = D_WALK_NORETRY;
1297 }
1298 /*
1299 * We can return to the caller if we have found some (this
1300 * ensures forward progress). We'll be coming back to find
1301 * the rest.
1302 */
1303 if (data->found && need_resched())
1304 ret = D_WALK_QUIT;
1305 out:
1306 return ret;
1307 }
1308
1309 /**
1310 * shrink_dcache_parent - prune dcache
1311 * @parent: parent of entries to prune
1312 *
1313 * Prune the dcache to remove unused children of the parent dentry.
1314 */
1315 void shrink_dcache_parent(struct dentry *parent)
1316 {
1317 for (;;) {
1318 struct select_data data;
1319
1320 INIT_LIST_HEAD(&data.dispose);
1321 data.start = parent;
1322 data.found = 0;
1323
1324 d_walk(parent, &data, select_collect, NULL);
1325 if (!data.found)
1326 break;
1327
1328 shrink_dentry_list(&data.dispose);
1329 cond_resched();
1330 }
1331 }
1332 EXPORT_SYMBOL(shrink_dcache_parent);
1333
1334 static enum d_walk_ret umount_collect(void *_data, struct dentry *dentry)
1335 {
1336 struct select_data *data = _data;
1337 enum d_walk_ret ret = D_WALK_CONTINUE;
1338
1339 if (dentry->d_lockref.count) {
1340 dentry_lru_del(dentry);
1341 if (likely(!list_empty(&dentry->d_subdirs)))
1342 goto out;
1343 if (dentry == data->start && dentry->d_lockref.count == 1)
1344 goto out;
1345 printk(KERN_ERR
1346 "BUG: Dentry %p{i=%lx,n=%s}"
1347 " still in use (%d)"
1348 " [unmount of %s %s]\n",
1349 dentry,
1350 dentry->d_inode ?
1351 dentry->d_inode->i_ino : 0UL,
1352 dentry->d_name.name,
1353 dentry->d_lockref.count,
1354 dentry->d_sb->s_type->name,
1355 dentry->d_sb->s_id);
1356 BUG();
1357 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1358 /*
1359 * We can't use d_lru_shrink_move() because we
1360 * need to get the global LRU lock and do the
1361 * LRU accounting.
1362 */
1363 if (dentry->d_flags & DCACHE_LRU_LIST)
1364 d_lru_del(dentry);
1365 d_shrink_add(dentry, &data->dispose);
1366 data->found++;
1367 ret = D_WALK_NORETRY;
1368 }
1369 out:
1370 if (data->found && need_resched())
1371 ret = D_WALK_QUIT;
1372 return ret;
1373 }
1374
1375 /*
1376 * destroy the dentries attached to a superblock on unmounting
1377 */
1378 void shrink_dcache_for_umount(struct super_block *sb)
1379 {
1380 struct dentry *dentry;
1381
1382 if (down_read_trylock(&sb->s_umount))
1383 BUG();
1384
1385 dentry = sb->s_root;
1386 sb->s_root = NULL;
1387 for (;;) {
1388 struct select_data data;
1389
1390 INIT_LIST_HEAD(&data.dispose);
1391 data.start = dentry;
1392 data.found = 0;
1393
1394 d_walk(dentry, &data, umount_collect, NULL);
1395 if (!data.found)
1396 break;
1397
1398 shrink_dentry_list(&data.dispose);
1399 cond_resched();
1400 }
1401 d_drop(dentry);
1402 dput(dentry);
1403
1404 while (!hlist_bl_empty(&sb->s_anon)) {
1405 struct select_data data;
1406 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1407
1408 INIT_LIST_HEAD(&data.dispose);
1409 data.start = NULL;
1410 data.found = 0;
1411
1412 d_walk(dentry, &data, umount_collect, NULL);
1413 if (data.found)
1414 shrink_dentry_list(&data.dispose);
1415 cond_resched();
1416 }
1417 }
1418
1419 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1420 {
1421 struct select_data *data = _data;
1422
1423 if (d_mountpoint(dentry)) {
1424 data->found = -EBUSY;
1425 return D_WALK_QUIT;
1426 }
1427
1428 return select_collect(_data, dentry);
1429 }
1430
1431 static void check_and_drop(void *_data)
1432 {
1433 struct select_data *data = _data;
1434
1435 if (d_mountpoint(data->start))
1436 data->found = -EBUSY;
1437 if (!data->found)
1438 __d_drop(data->start);
1439 }
1440
1441 /**
1442 * check_submounts_and_drop - prune dcache, check for submounts and drop
1443 *
1444 * All done as a single atomic operation relative to has_unlinked_ancestor().
1445 * Returns 0 if successfully unhashed @parent. If there were submounts then
1446 * return -EBUSY.
1447 *
1448 * @dentry: dentry to prune and drop
1449 */
1450 int check_submounts_and_drop(struct dentry *dentry)
1451 {
1452 int ret = 0;
1453
1454 /* Negative dentries can be dropped without further checks */
1455 if (!dentry->d_inode) {
1456 d_drop(dentry);
1457 goto out;
1458 }
1459
1460 for (;;) {
1461 struct select_data data;
1462
1463 INIT_LIST_HEAD(&data.dispose);
1464 data.start = dentry;
1465 data.found = 0;
1466
1467 d_walk(dentry, &data, check_and_collect, check_and_drop);
1468 ret = data.found;
1469
1470 if (!list_empty(&data.dispose))
1471 shrink_dentry_list(&data.dispose);
1472
1473 if (ret <= 0)
1474 break;
1475
1476 cond_resched();
1477 }
1478
1479 out:
1480 return ret;
1481 }
1482 EXPORT_SYMBOL(check_submounts_and_drop);
1483
1484 /**
1485 * __d_alloc - allocate a dcache entry
1486 * @sb: filesystem it will belong to
1487 * @name: qstr of the name
1488 *
1489 * Allocates a dentry. It returns %NULL if there is insufficient memory
1490 * available. On a success the dentry is returned. The name passed in is
1491 * copied and the copy passed in may be reused after this call.
1492 */
1493
1494 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1495 {
1496 struct dentry *dentry;
1497 char *dname;
1498
1499 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1500 if (!dentry)
1501 return NULL;
1502
1503 /*
1504 * We guarantee that the inline name is always NUL-terminated.
1505 * This way the memcpy() done by the name switching in rename
1506 * will still always have a NUL at the end, even if we might
1507 * be overwriting an internal NUL character
1508 */
1509 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1510 if (name->len > DNAME_INLINE_LEN-1) {
1511 dname = kmalloc(name->len + 1, GFP_KERNEL);
1512 if (!dname) {
1513 kmem_cache_free(dentry_cache, dentry);
1514 return NULL;
1515 }
1516 } else {
1517 dname = dentry->d_iname;
1518 }
1519
1520 dentry->d_name.len = name->len;
1521 dentry->d_name.hash = name->hash;
1522 memcpy(dname, name->name, name->len);
1523 dname[name->len] = 0;
1524
1525 /* Make sure we always see the terminating NUL character */
1526 smp_wmb();
1527 dentry->d_name.name = dname;
1528
1529 dentry->d_lockref.count = 1;
1530 dentry->d_flags = 0;
1531 spin_lock_init(&dentry->d_lock);
1532 seqcount_init(&dentry->d_seq);
1533 dentry->d_inode = NULL;
1534 dentry->d_parent = dentry;
1535 dentry->d_sb = sb;
1536 dentry->d_op = NULL;
1537 dentry->d_fsdata = NULL;
1538 INIT_HLIST_BL_NODE(&dentry->d_hash);
1539 INIT_LIST_HEAD(&dentry->d_lru);
1540 INIT_LIST_HEAD(&dentry->d_subdirs);
1541 INIT_HLIST_NODE(&dentry->d_alias);
1542 INIT_LIST_HEAD(&dentry->d_u.d_child);
1543 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1544
1545 this_cpu_inc(nr_dentry);
1546
1547 return dentry;
1548 }
1549
1550 /**
1551 * d_alloc - allocate a dcache entry
1552 * @parent: parent of entry to allocate
1553 * @name: qstr of the name
1554 *
1555 * Allocates a dentry. It returns %NULL if there is insufficient memory
1556 * available. On a success the dentry is returned. The name passed in is
1557 * copied and the copy passed in may be reused after this call.
1558 */
1559 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1560 {
1561 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1562 if (!dentry)
1563 return NULL;
1564
1565 spin_lock(&parent->d_lock);
1566 /*
1567 * don't need child lock because it is not subject
1568 * to concurrency here
1569 */
1570 __dget_dlock(parent);
1571 dentry->d_parent = parent;
1572 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1573 spin_unlock(&parent->d_lock);
1574
1575 return dentry;
1576 }
1577 EXPORT_SYMBOL(d_alloc);
1578
1579 /**
1580 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1581 * @sb: the superblock
1582 * @name: qstr of the name
1583 *
1584 * For a filesystem that just pins its dentries in memory and never
1585 * performs lookups at all, return an unhashed IS_ROOT dentry.
1586 */
1587 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1588 {
1589 return __d_alloc(sb, name);
1590 }
1591 EXPORT_SYMBOL(d_alloc_pseudo);
1592
1593 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1594 {
1595 struct qstr q;
1596
1597 q.name = name;
1598 q.len = strlen(name);
1599 q.hash = full_name_hash(q.name, q.len);
1600 return d_alloc(parent, &q);
1601 }
1602 EXPORT_SYMBOL(d_alloc_name);
1603
1604 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1605 {
1606 WARN_ON_ONCE(dentry->d_op);
1607 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1608 DCACHE_OP_COMPARE |
1609 DCACHE_OP_REVALIDATE |
1610 DCACHE_OP_WEAK_REVALIDATE |
1611 DCACHE_OP_DELETE ));
1612 dentry->d_op = op;
1613 if (!op)
1614 return;
1615 if (op->d_hash)
1616 dentry->d_flags |= DCACHE_OP_HASH;
1617 if (op->d_compare)
1618 dentry->d_flags |= DCACHE_OP_COMPARE;
1619 if (op->d_revalidate)
1620 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1621 if (op->d_weak_revalidate)
1622 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1623 if (op->d_delete)
1624 dentry->d_flags |= DCACHE_OP_DELETE;
1625 if (op->d_prune)
1626 dentry->d_flags |= DCACHE_OP_PRUNE;
1627
1628 }
1629 EXPORT_SYMBOL(d_set_d_op);
1630
1631 static unsigned d_flags_for_inode(struct inode *inode)
1632 {
1633 unsigned add_flags = DCACHE_FILE_TYPE;
1634
1635 if (!inode)
1636 return DCACHE_MISS_TYPE;
1637
1638 if (S_ISDIR(inode->i_mode)) {
1639 add_flags = DCACHE_DIRECTORY_TYPE;
1640 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1641 if (unlikely(!inode->i_op->lookup))
1642 add_flags = DCACHE_AUTODIR_TYPE;
1643 else
1644 inode->i_opflags |= IOP_LOOKUP;
1645 }
1646 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1647 if (unlikely(inode->i_op->follow_link))
1648 add_flags = DCACHE_SYMLINK_TYPE;
1649 else
1650 inode->i_opflags |= IOP_NOFOLLOW;
1651 }
1652
1653 if (unlikely(IS_AUTOMOUNT(inode)))
1654 add_flags |= DCACHE_NEED_AUTOMOUNT;
1655 return add_flags;
1656 }
1657
1658 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1659 {
1660 unsigned add_flags = d_flags_for_inode(inode);
1661
1662 spin_lock(&dentry->d_lock);
1663 dentry->d_flags &= ~DCACHE_ENTRY_TYPE;
1664 dentry->d_flags |= add_flags;
1665 if (inode)
1666 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1667 dentry->d_inode = inode;
1668 dentry_rcuwalk_barrier(dentry);
1669 spin_unlock(&dentry->d_lock);
1670 fsnotify_d_instantiate(dentry, inode);
1671 }
1672
1673 /**
1674 * d_instantiate - fill in inode information for a dentry
1675 * @entry: dentry to complete
1676 * @inode: inode to attach to this dentry
1677 *
1678 * Fill in inode information in the entry.
1679 *
1680 * This turns negative dentries into productive full members
1681 * of society.
1682 *
1683 * NOTE! This assumes that the inode count has been incremented
1684 * (or otherwise set) by the caller to indicate that it is now
1685 * in use by the dcache.
1686 */
1687
1688 void d_instantiate(struct dentry *entry, struct inode * inode)
1689 {
1690 BUG_ON(!hlist_unhashed(&entry->d_alias));
1691 if (inode)
1692 spin_lock(&inode->i_lock);
1693 __d_instantiate(entry, inode);
1694 if (inode)
1695 spin_unlock(&inode->i_lock);
1696 security_d_instantiate(entry, inode);
1697 }
1698 EXPORT_SYMBOL(d_instantiate);
1699
1700 /**
1701 * d_instantiate_unique - instantiate a non-aliased dentry
1702 * @entry: dentry to instantiate
1703 * @inode: inode to attach to this dentry
1704 *
1705 * Fill in inode information in the entry. On success, it returns NULL.
1706 * If an unhashed alias of "entry" already exists, then we return the
1707 * aliased dentry instead and drop one reference to inode.
1708 *
1709 * Note that in order to avoid conflicts with rename() etc, the caller
1710 * had better be holding the parent directory semaphore.
1711 *
1712 * This also assumes that the inode count has been incremented
1713 * (or otherwise set) by the caller to indicate that it is now
1714 * in use by the dcache.
1715 */
1716 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1717 struct inode *inode)
1718 {
1719 struct dentry *alias;
1720 int len = entry->d_name.len;
1721 const char *name = entry->d_name.name;
1722 unsigned int hash = entry->d_name.hash;
1723
1724 if (!inode) {
1725 __d_instantiate(entry, NULL);
1726 return NULL;
1727 }
1728
1729 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1730 /*
1731 * Don't need alias->d_lock here, because aliases with
1732 * d_parent == entry->d_parent are not subject to name or
1733 * parent changes, because the parent inode i_mutex is held.
1734 */
1735 if (alias->d_name.hash != hash)
1736 continue;
1737 if (alias->d_parent != entry->d_parent)
1738 continue;
1739 if (alias->d_name.len != len)
1740 continue;
1741 if (dentry_cmp(alias, name, len))
1742 continue;
1743 __dget(alias);
1744 return alias;
1745 }
1746
1747 __d_instantiate(entry, inode);
1748 return NULL;
1749 }
1750
1751 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1752 {
1753 struct dentry *result;
1754
1755 BUG_ON(!hlist_unhashed(&entry->d_alias));
1756
1757 if (inode)
1758 spin_lock(&inode->i_lock);
1759 result = __d_instantiate_unique(entry, inode);
1760 if (inode)
1761 spin_unlock(&inode->i_lock);
1762
1763 if (!result) {
1764 security_d_instantiate(entry, inode);
1765 return NULL;
1766 }
1767
1768 BUG_ON(!d_unhashed(result));
1769 iput(inode);
1770 return result;
1771 }
1772
1773 EXPORT_SYMBOL(d_instantiate_unique);
1774
1775 /**
1776 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1777 * @entry: dentry to complete
1778 * @inode: inode to attach to this dentry
1779 *
1780 * Fill in inode information in the entry. If a directory alias is found, then
1781 * return an error (and drop inode). Together with d_materialise_unique() this
1782 * guarantees that a directory inode may never have more than one alias.
1783 */
1784 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1785 {
1786 BUG_ON(!hlist_unhashed(&entry->d_alias));
1787
1788 spin_lock(&inode->i_lock);
1789 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1790 spin_unlock(&inode->i_lock);
1791 iput(inode);
1792 return -EBUSY;
1793 }
1794 __d_instantiate(entry, inode);
1795 spin_unlock(&inode->i_lock);
1796 security_d_instantiate(entry, inode);
1797
1798 return 0;
1799 }
1800 EXPORT_SYMBOL(d_instantiate_no_diralias);
1801
1802 struct dentry *d_make_root(struct inode *root_inode)
1803 {
1804 struct dentry *res = NULL;
1805
1806 if (root_inode) {
1807 static const struct qstr name = QSTR_INIT("/", 1);
1808
1809 res = __d_alloc(root_inode->i_sb, &name);
1810 if (res)
1811 d_instantiate(res, root_inode);
1812 else
1813 iput(root_inode);
1814 }
1815 return res;
1816 }
1817 EXPORT_SYMBOL(d_make_root);
1818
1819 static struct dentry * __d_find_any_alias(struct inode *inode)
1820 {
1821 struct dentry *alias;
1822
1823 if (hlist_empty(&inode->i_dentry))
1824 return NULL;
1825 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1826 __dget(alias);
1827 return alias;
1828 }
1829
1830 /**
1831 * d_find_any_alias - find any alias for a given inode
1832 * @inode: inode to find an alias for
1833 *
1834 * If any aliases exist for the given inode, take and return a
1835 * reference for one of them. If no aliases exist, return %NULL.
1836 */
1837 struct dentry *d_find_any_alias(struct inode *inode)
1838 {
1839 struct dentry *de;
1840
1841 spin_lock(&inode->i_lock);
1842 de = __d_find_any_alias(inode);
1843 spin_unlock(&inode->i_lock);
1844 return de;
1845 }
1846 EXPORT_SYMBOL(d_find_any_alias);
1847
1848 /**
1849 * d_obtain_alias - find or allocate a dentry for a given inode
1850 * @inode: inode to allocate the dentry for
1851 *
1852 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1853 * similar open by handle operations. The returned dentry may be anonymous,
1854 * or may have a full name (if the inode was already in the cache).
1855 *
1856 * When called on a directory inode, we must ensure that the inode only ever
1857 * has one dentry. If a dentry is found, that is returned instead of
1858 * allocating a new one.
1859 *
1860 * On successful return, the reference to the inode has been transferred
1861 * to the dentry. In case of an error the reference on the inode is released.
1862 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1863 * be passed in and will be the error will be propagate to the return value,
1864 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1865 */
1866 struct dentry *d_obtain_alias(struct inode *inode)
1867 {
1868 static const struct qstr anonstring = QSTR_INIT("/", 1);
1869 struct dentry *tmp;
1870 struct dentry *res;
1871 unsigned add_flags;
1872
1873 if (!inode)
1874 return ERR_PTR(-ESTALE);
1875 if (IS_ERR(inode))
1876 return ERR_CAST(inode);
1877
1878 res = d_find_any_alias(inode);
1879 if (res)
1880 goto out_iput;
1881
1882 tmp = __d_alloc(inode->i_sb, &anonstring);
1883 if (!tmp) {
1884 res = ERR_PTR(-ENOMEM);
1885 goto out_iput;
1886 }
1887
1888 spin_lock(&inode->i_lock);
1889 res = __d_find_any_alias(inode);
1890 if (res) {
1891 spin_unlock(&inode->i_lock);
1892 dput(tmp);
1893 goto out_iput;
1894 }
1895
1896 /* attach a disconnected dentry */
1897 add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED;
1898
1899 spin_lock(&tmp->d_lock);
1900 tmp->d_inode = inode;
1901 tmp->d_flags |= add_flags;
1902 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1903 hlist_bl_lock(&tmp->d_sb->s_anon);
1904 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1905 hlist_bl_unlock(&tmp->d_sb->s_anon);
1906 spin_unlock(&tmp->d_lock);
1907 spin_unlock(&inode->i_lock);
1908 security_d_instantiate(tmp, inode);
1909
1910 return tmp;
1911
1912 out_iput:
1913 if (res && !IS_ERR(res))
1914 security_d_instantiate(res, inode);
1915 iput(inode);
1916 return res;
1917 }
1918 EXPORT_SYMBOL(d_obtain_alias);
1919
1920 /**
1921 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1922 * @inode: the inode which may have a disconnected dentry
1923 * @dentry: a negative dentry which we want to point to the inode.
1924 *
1925 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1926 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1927 * and return it, else simply d_add the inode to the dentry and return NULL.
1928 *
1929 * This is needed in the lookup routine of any filesystem that is exportable
1930 * (via knfsd) so that we can build dcache paths to directories effectively.
1931 *
1932 * If a dentry was found and moved, then it is returned. Otherwise NULL
1933 * is returned. This matches the expected return value of ->lookup.
1934 *
1935 * Cluster filesystems may call this function with a negative, hashed dentry.
1936 * In that case, we know that the inode will be a regular file, and also this
1937 * will only occur during atomic_open. So we need to check for the dentry
1938 * being already hashed only in the final case.
1939 */
1940 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1941 {
1942 struct dentry *new = NULL;
1943
1944 if (IS_ERR(inode))
1945 return ERR_CAST(inode);
1946
1947 if (inode && S_ISDIR(inode->i_mode)) {
1948 spin_lock(&inode->i_lock);
1949 new = __d_find_alias(inode, 1);
1950 if (new) {
1951 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1952 spin_unlock(&inode->i_lock);
1953 security_d_instantiate(new, inode);
1954 d_move(new, dentry);
1955 iput(inode);
1956 } else {
1957 /* already taking inode->i_lock, so d_add() by hand */
1958 __d_instantiate(dentry, inode);
1959 spin_unlock(&inode->i_lock);
1960 security_d_instantiate(dentry, inode);
1961 d_rehash(dentry);
1962 }
1963 } else {
1964 d_instantiate(dentry, inode);
1965 if (d_unhashed(dentry))
1966 d_rehash(dentry);
1967 }
1968 return new;
1969 }
1970 EXPORT_SYMBOL(d_splice_alias);
1971
1972 /**
1973 * d_add_ci - lookup or allocate new dentry with case-exact name
1974 * @inode: the inode case-insensitive lookup has found
1975 * @dentry: the negative dentry that was passed to the parent's lookup func
1976 * @name: the case-exact name to be associated with the returned dentry
1977 *
1978 * This is to avoid filling the dcache with case-insensitive names to the
1979 * same inode, only the actual correct case is stored in the dcache for
1980 * case-insensitive filesystems.
1981 *
1982 * For a case-insensitive lookup match and if the the case-exact dentry
1983 * already exists in in the dcache, use it and return it.
1984 *
1985 * If no entry exists with the exact case name, allocate new dentry with
1986 * the exact case, and return the spliced entry.
1987 */
1988 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1989 struct qstr *name)
1990 {
1991 struct dentry *found;
1992 struct dentry *new;
1993
1994 /*
1995 * First check if a dentry matching the name already exists,
1996 * if not go ahead and create it now.
1997 */
1998 found = d_hash_and_lookup(dentry->d_parent, name);
1999 if (unlikely(IS_ERR(found)))
2000 goto err_out;
2001 if (!found) {
2002 new = d_alloc(dentry->d_parent, name);
2003 if (!new) {
2004 found = ERR_PTR(-ENOMEM);
2005 goto err_out;
2006 }
2007
2008 found = d_splice_alias(inode, new);
2009 if (found) {
2010 dput(new);
2011 return found;
2012 }
2013 return new;
2014 }
2015
2016 /*
2017 * If a matching dentry exists, and it's not negative use it.
2018 *
2019 * Decrement the reference count to balance the iget() done
2020 * earlier on.
2021 */
2022 if (found->d_inode) {
2023 if (unlikely(found->d_inode != inode)) {
2024 /* This can't happen because bad inodes are unhashed. */
2025 BUG_ON(!is_bad_inode(inode));
2026 BUG_ON(!is_bad_inode(found->d_inode));
2027 }
2028 iput(inode);
2029 return found;
2030 }
2031
2032 /*
2033 * Negative dentry: instantiate it unless the inode is a directory and
2034 * already has a dentry.
2035 */
2036 new = d_splice_alias(inode, found);
2037 if (new) {
2038 dput(found);
2039 found = new;
2040 }
2041 return found;
2042
2043 err_out:
2044 iput(inode);
2045 return found;
2046 }
2047 EXPORT_SYMBOL(d_add_ci);
2048
2049 /*
2050 * Do the slow-case of the dentry name compare.
2051 *
2052 * Unlike the dentry_cmp() function, we need to atomically
2053 * load the name and length information, so that the
2054 * filesystem can rely on them, and can use the 'name' and
2055 * 'len' information without worrying about walking off the
2056 * end of memory etc.
2057 *
2058 * Thus the read_seqcount_retry() and the "duplicate" info
2059 * in arguments (the low-level filesystem should not look
2060 * at the dentry inode or name contents directly, since
2061 * rename can change them while we're in RCU mode).
2062 */
2063 enum slow_d_compare {
2064 D_COMP_OK,
2065 D_COMP_NOMATCH,
2066 D_COMP_SEQRETRY,
2067 };
2068
2069 static noinline enum slow_d_compare slow_dentry_cmp(
2070 const struct dentry *parent,
2071 struct dentry *dentry,
2072 unsigned int seq,
2073 const struct qstr *name)
2074 {
2075 int tlen = dentry->d_name.len;
2076 const char *tname = dentry->d_name.name;
2077
2078 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2079 cpu_relax();
2080 return D_COMP_SEQRETRY;
2081 }
2082 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2083 return D_COMP_NOMATCH;
2084 return D_COMP_OK;
2085 }
2086
2087 /**
2088 * __d_lookup_rcu - search for a dentry (racy, store-free)
2089 * @parent: parent dentry
2090 * @name: qstr of name we wish to find
2091 * @seqp: returns d_seq value at the point where the dentry was found
2092 * Returns: dentry, or NULL
2093 *
2094 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2095 * resolution (store-free path walking) design described in
2096 * Documentation/filesystems/path-lookup.txt.
2097 *
2098 * This is not to be used outside core vfs.
2099 *
2100 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2101 * held, and rcu_read_lock held. The returned dentry must not be stored into
2102 * without taking d_lock and checking d_seq sequence count against @seq
2103 * returned here.
2104 *
2105 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2106 * function.
2107 *
2108 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2109 * the returned dentry, so long as its parent's seqlock is checked after the
2110 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2111 * is formed, giving integrity down the path walk.
2112 *
2113 * NOTE! The caller *has* to check the resulting dentry against the sequence
2114 * number we've returned before using any of the resulting dentry state!
2115 */
2116 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2117 const struct qstr *name,
2118 unsigned *seqp)
2119 {
2120 u64 hashlen = name->hash_len;
2121 const unsigned char *str = name->name;
2122 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2123 struct hlist_bl_node *node;
2124 struct dentry *dentry;
2125
2126 /*
2127 * Note: There is significant duplication with __d_lookup_rcu which is
2128 * required to prevent single threaded performance regressions
2129 * especially on architectures where smp_rmb (in seqcounts) are costly.
2130 * Keep the two functions in sync.
2131 */
2132
2133 /*
2134 * The hash list is protected using RCU.
2135 *
2136 * Carefully use d_seq when comparing a candidate dentry, to avoid
2137 * races with d_move().
2138 *
2139 * It is possible that concurrent renames can mess up our list
2140 * walk here and result in missing our dentry, resulting in the
2141 * false-negative result. d_lookup() protects against concurrent
2142 * renames using rename_lock seqlock.
2143 *
2144 * See Documentation/filesystems/path-lookup.txt for more details.
2145 */
2146 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2147 unsigned seq;
2148
2149 seqretry:
2150 /*
2151 * The dentry sequence count protects us from concurrent
2152 * renames, and thus protects parent and name fields.
2153 *
2154 * The caller must perform a seqcount check in order
2155 * to do anything useful with the returned dentry.
2156 *
2157 * NOTE! We do a "raw" seqcount_begin here. That means that
2158 * we don't wait for the sequence count to stabilize if it
2159 * is in the middle of a sequence change. If we do the slow
2160 * dentry compare, we will do seqretries until it is stable,
2161 * and if we end up with a successful lookup, we actually
2162 * want to exit RCU lookup anyway.
2163 */
2164 seq = raw_seqcount_begin(&dentry->d_seq);
2165 if (dentry->d_parent != parent)
2166 continue;
2167 if (d_unhashed(dentry))
2168 continue;
2169
2170 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2171 if (dentry->d_name.hash != hashlen_hash(hashlen))
2172 continue;
2173 *seqp = seq;
2174 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2175 case D_COMP_OK:
2176 return dentry;
2177 case D_COMP_NOMATCH:
2178 continue;
2179 default:
2180 goto seqretry;
2181 }
2182 }
2183
2184 if (dentry->d_name.hash_len != hashlen)
2185 continue;
2186 *seqp = seq;
2187 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2188 return dentry;
2189 }
2190 return NULL;
2191 }
2192
2193 /**
2194 * d_lookup - search for a dentry
2195 * @parent: parent dentry
2196 * @name: qstr of name we wish to find
2197 * Returns: dentry, or NULL
2198 *
2199 * d_lookup searches the children of the parent dentry for the name in
2200 * question. If the dentry is found its reference count is incremented and the
2201 * dentry is returned. The caller must use dput to free the entry when it has
2202 * finished using it. %NULL is returned if the dentry does not exist.
2203 */
2204 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2205 {
2206 struct dentry *dentry;
2207 unsigned seq;
2208
2209 do {
2210 seq = read_seqbegin(&rename_lock);
2211 dentry = __d_lookup(parent, name);
2212 if (dentry)
2213 break;
2214 } while (read_seqretry(&rename_lock, seq));
2215 return dentry;
2216 }
2217 EXPORT_SYMBOL(d_lookup);
2218
2219 /**
2220 * __d_lookup - search for a dentry (racy)
2221 * @parent: parent dentry
2222 * @name: qstr of name we wish to find
2223 * Returns: dentry, or NULL
2224 *
2225 * __d_lookup is like d_lookup, however it may (rarely) return a
2226 * false-negative result due to unrelated rename activity.
2227 *
2228 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2229 * however it must be used carefully, eg. with a following d_lookup in
2230 * the case of failure.
2231 *
2232 * __d_lookup callers must be commented.
2233 */
2234 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2235 {
2236 unsigned int len = name->len;
2237 unsigned int hash = name->hash;
2238 const unsigned char *str = name->name;
2239 struct hlist_bl_head *b = d_hash(parent, hash);
2240 struct hlist_bl_node *node;
2241 struct dentry *found = NULL;
2242 struct dentry *dentry;
2243
2244 /*
2245 * Note: There is significant duplication with __d_lookup_rcu which is
2246 * required to prevent single threaded performance regressions
2247 * especially on architectures where smp_rmb (in seqcounts) are costly.
2248 * Keep the two functions in sync.
2249 */
2250
2251 /*
2252 * The hash list is protected using RCU.
2253 *
2254 * Take d_lock when comparing a candidate dentry, to avoid races
2255 * with d_move().
2256 *
2257 * It is possible that concurrent renames can mess up our list
2258 * walk here and result in missing our dentry, resulting in the
2259 * false-negative result. d_lookup() protects against concurrent
2260 * renames using rename_lock seqlock.
2261 *
2262 * See Documentation/filesystems/path-lookup.txt for more details.
2263 */
2264 rcu_read_lock();
2265
2266 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2267
2268 if (dentry->d_name.hash != hash)
2269 continue;
2270
2271 spin_lock(&dentry->d_lock);
2272 if (dentry->d_parent != parent)
2273 goto next;
2274 if (d_unhashed(dentry))
2275 goto next;
2276
2277 /*
2278 * It is safe to compare names since d_move() cannot
2279 * change the qstr (protected by d_lock).
2280 */
2281 if (parent->d_flags & DCACHE_OP_COMPARE) {
2282 int tlen = dentry->d_name.len;
2283 const char *tname = dentry->d_name.name;
2284 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2285 goto next;
2286 } else {
2287 if (dentry->d_name.len != len)
2288 goto next;
2289 if (dentry_cmp(dentry, str, len))
2290 goto next;
2291 }
2292
2293 dentry->d_lockref.count++;
2294 found = dentry;
2295 spin_unlock(&dentry->d_lock);
2296 break;
2297 next:
2298 spin_unlock(&dentry->d_lock);
2299 }
2300 rcu_read_unlock();
2301
2302 return found;
2303 }
2304
2305 /**
2306 * d_hash_and_lookup - hash the qstr then search for a dentry
2307 * @dir: Directory to search in
2308 * @name: qstr of name we wish to find
2309 *
2310 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2311 */
2312 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2313 {
2314 /*
2315 * Check for a fs-specific hash function. Note that we must
2316 * calculate the standard hash first, as the d_op->d_hash()
2317 * routine may choose to leave the hash value unchanged.
2318 */
2319 name->hash = full_name_hash(name->name, name->len);
2320 if (dir->d_flags & DCACHE_OP_HASH) {
2321 int err = dir->d_op->d_hash(dir, name);
2322 if (unlikely(err < 0))
2323 return ERR_PTR(err);
2324 }
2325 return d_lookup(dir, name);
2326 }
2327 EXPORT_SYMBOL(d_hash_and_lookup);
2328
2329 /**
2330 * d_validate - verify dentry provided from insecure source (deprecated)
2331 * @dentry: The dentry alleged to be valid child of @dparent
2332 * @dparent: The parent dentry (known to be valid)
2333 *
2334 * An insecure source has sent us a dentry, here we verify it and dget() it.
2335 * This is used by ncpfs in its readdir implementation.
2336 * Zero is returned in the dentry is invalid.
2337 *
2338 * This function is slow for big directories, and deprecated, do not use it.
2339 */
2340 int d_validate(struct dentry *dentry, struct dentry *dparent)
2341 {
2342 struct dentry *child;
2343
2344 spin_lock(&dparent->d_lock);
2345 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2346 if (dentry == child) {
2347 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2348 __dget_dlock(dentry);
2349 spin_unlock(&dentry->d_lock);
2350 spin_unlock(&dparent->d_lock);
2351 return 1;
2352 }
2353 }
2354 spin_unlock(&dparent->d_lock);
2355
2356 return 0;
2357 }
2358 EXPORT_SYMBOL(d_validate);
2359
2360 /*
2361 * When a file is deleted, we have two options:
2362 * - turn this dentry into a negative dentry
2363 * - unhash this dentry and free it.
2364 *
2365 * Usually, we want to just turn this into
2366 * a negative dentry, but if anybody else is
2367 * currently using the dentry or the inode
2368 * we can't do that and we fall back on removing
2369 * it from the hash queues and waiting for
2370 * it to be deleted later when it has no users
2371 */
2372
2373 /**
2374 * d_delete - delete a dentry
2375 * @dentry: The dentry to delete
2376 *
2377 * Turn the dentry into a negative dentry if possible, otherwise
2378 * remove it from the hash queues so it can be deleted later
2379 */
2380
2381 void d_delete(struct dentry * dentry)
2382 {
2383 struct inode *inode;
2384 int isdir = 0;
2385 /*
2386 * Are we the only user?
2387 */
2388 again:
2389 spin_lock(&dentry->d_lock);
2390 inode = dentry->d_inode;
2391 isdir = S_ISDIR(inode->i_mode);
2392 if (dentry->d_lockref.count == 1) {
2393 if (!spin_trylock(&inode->i_lock)) {
2394 spin_unlock(&dentry->d_lock);
2395 cpu_relax();
2396 goto again;
2397 }
2398 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2399 dentry_unlink_inode(dentry);
2400 fsnotify_nameremove(dentry, isdir);
2401 return;
2402 }
2403
2404 if (!d_unhashed(dentry))
2405 __d_drop(dentry);
2406
2407 spin_unlock(&dentry->d_lock);
2408
2409 fsnotify_nameremove(dentry, isdir);
2410 }
2411 EXPORT_SYMBOL(d_delete);
2412
2413 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2414 {
2415 BUG_ON(!d_unhashed(entry));
2416 hlist_bl_lock(b);
2417 entry->d_flags |= DCACHE_RCUACCESS;
2418 hlist_bl_add_head_rcu(&entry->d_hash, b);
2419 hlist_bl_unlock(b);
2420 }
2421
2422 static void _d_rehash(struct dentry * entry)
2423 {
2424 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2425 }
2426
2427 /**
2428 * d_rehash - add an entry back to the hash
2429 * @entry: dentry to add to the hash
2430 *
2431 * Adds a dentry to the hash according to its name.
2432 */
2433
2434 void d_rehash(struct dentry * entry)
2435 {
2436 spin_lock(&entry->d_lock);
2437 _d_rehash(entry);
2438 spin_unlock(&entry->d_lock);
2439 }
2440 EXPORT_SYMBOL(d_rehash);
2441
2442 /**
2443 * dentry_update_name_case - update case insensitive dentry with a new name
2444 * @dentry: dentry to be updated
2445 * @name: new name
2446 *
2447 * Update a case insensitive dentry with new case of name.
2448 *
2449 * dentry must have been returned by d_lookup with name @name. Old and new
2450 * name lengths must match (ie. no d_compare which allows mismatched name
2451 * lengths).
2452 *
2453 * Parent inode i_mutex must be held over d_lookup and into this call (to
2454 * keep renames and concurrent inserts, and readdir(2) away).
2455 */
2456 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2457 {
2458 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2459 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2460
2461 spin_lock(&dentry->d_lock);
2462 write_seqcount_begin(&dentry->d_seq);
2463 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2464 write_seqcount_end(&dentry->d_seq);
2465 spin_unlock(&dentry->d_lock);
2466 }
2467 EXPORT_SYMBOL(dentry_update_name_case);
2468
2469 static void switch_names(struct dentry *dentry, struct dentry *target)
2470 {
2471 if (dname_external(target)) {
2472 if (dname_external(dentry)) {
2473 /*
2474 * Both external: swap the pointers
2475 */
2476 swap(target->d_name.name, dentry->d_name.name);
2477 } else {
2478 /*
2479 * dentry:internal, target:external. Steal target's
2480 * storage and make target internal.
2481 */
2482 memcpy(target->d_iname, dentry->d_name.name,
2483 dentry->d_name.len + 1);
2484 dentry->d_name.name = target->d_name.name;
2485 target->d_name.name = target->d_iname;
2486 }
2487 } else {
2488 if (dname_external(dentry)) {
2489 /*
2490 * dentry:external, target:internal. Give dentry's
2491 * storage to target and make dentry internal
2492 */
2493 memcpy(dentry->d_iname, target->d_name.name,
2494 target->d_name.len + 1);
2495 target->d_name.name = dentry->d_name.name;
2496 dentry->d_name.name = dentry->d_iname;
2497 } else {
2498 /*
2499 * Both are internal. Just copy target to dentry
2500 */
2501 memcpy(dentry->d_iname, target->d_name.name,
2502 target->d_name.len + 1);
2503 dentry->d_name.len = target->d_name.len;
2504 return;
2505 }
2506 }
2507 swap(dentry->d_name.len, target->d_name.len);
2508 }
2509
2510 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2511 {
2512 /*
2513 * XXXX: do we really need to take target->d_lock?
2514 */
2515 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2516 spin_lock(&target->d_parent->d_lock);
2517 else {
2518 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2519 spin_lock(&dentry->d_parent->d_lock);
2520 spin_lock_nested(&target->d_parent->d_lock,
2521 DENTRY_D_LOCK_NESTED);
2522 } else {
2523 spin_lock(&target->d_parent->d_lock);
2524 spin_lock_nested(&dentry->d_parent->d_lock,
2525 DENTRY_D_LOCK_NESTED);
2526 }
2527 }
2528 if (target < dentry) {
2529 spin_lock_nested(&target->d_lock, 2);
2530 spin_lock_nested(&dentry->d_lock, 3);
2531 } else {
2532 spin_lock_nested(&dentry->d_lock, 2);
2533 spin_lock_nested(&target->d_lock, 3);
2534 }
2535 }
2536
2537 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2538 struct dentry *target)
2539 {
2540 if (target->d_parent != dentry->d_parent)
2541 spin_unlock(&dentry->d_parent->d_lock);
2542 if (target->d_parent != target)
2543 spin_unlock(&target->d_parent->d_lock);
2544 }
2545
2546 /*
2547 * When switching names, the actual string doesn't strictly have to
2548 * be preserved in the target - because we're dropping the target
2549 * anyway. As such, we can just do a simple memcpy() to copy over
2550 * the new name before we switch.
2551 *
2552 * Note that we have to be a lot more careful about getting the hash
2553 * switched - we have to switch the hash value properly even if it
2554 * then no longer matches the actual (corrupted) string of the target.
2555 * The hash value has to match the hash queue that the dentry is on..
2556 */
2557 /*
2558 * __d_move - move a dentry
2559 * @dentry: entry to move
2560 * @target: new dentry
2561 *
2562 * Update the dcache to reflect the move of a file name. Negative
2563 * dcache entries should not be moved in this way. Caller must hold
2564 * rename_lock, the i_mutex of the source and target directories,
2565 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2566 */
2567 static void __d_move(struct dentry * dentry, struct dentry * target)
2568 {
2569 if (!dentry->d_inode)
2570 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2571
2572 BUG_ON(d_ancestor(dentry, target));
2573 BUG_ON(d_ancestor(target, dentry));
2574
2575 dentry_lock_for_move(dentry, target);
2576
2577 write_seqcount_begin(&dentry->d_seq);
2578 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2579
2580 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2581
2582 /*
2583 * Move the dentry to the target hash queue. Don't bother checking
2584 * for the same hash queue because of how unlikely it is.
2585 */
2586 __d_drop(dentry);
2587 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2588
2589 /* Unhash the target: dput() will then get rid of it */
2590 __d_drop(target);
2591
2592 list_del(&dentry->d_u.d_child);
2593 list_del(&target->d_u.d_child);
2594
2595 /* Switch the names.. */
2596 switch_names(dentry, target);
2597 swap(dentry->d_name.hash, target->d_name.hash);
2598
2599 /* ... and switch the parents */
2600 if (IS_ROOT(dentry)) {
2601 dentry->d_parent = target->d_parent;
2602 target->d_parent = target;
2603 INIT_LIST_HEAD(&target->d_u.d_child);
2604 } else {
2605 swap(dentry->d_parent, target->d_parent);
2606
2607 /* And add them back to the (new) parent lists */
2608 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2609 }
2610
2611 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2612
2613 write_seqcount_end(&target->d_seq);
2614 write_seqcount_end(&dentry->d_seq);
2615
2616 dentry_unlock_parents_for_move(dentry, target);
2617 spin_unlock(&target->d_lock);
2618 fsnotify_d_move(dentry);
2619 spin_unlock(&dentry->d_lock);
2620 }
2621
2622 /*
2623 * d_move - move a dentry
2624 * @dentry: entry to move
2625 * @target: new dentry
2626 *
2627 * Update the dcache to reflect the move of a file name. Negative
2628 * dcache entries should not be moved in this way. See the locking
2629 * requirements for __d_move.
2630 */
2631 void d_move(struct dentry *dentry, struct dentry *target)
2632 {
2633 write_seqlock(&rename_lock);
2634 __d_move(dentry, target);
2635 write_sequnlock(&rename_lock);
2636 }
2637 EXPORT_SYMBOL(d_move);
2638
2639 /**
2640 * d_ancestor - search for an ancestor
2641 * @p1: ancestor dentry
2642 * @p2: child dentry
2643 *
2644 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2645 * an ancestor of p2, else NULL.
2646 */
2647 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2648 {
2649 struct dentry *p;
2650
2651 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2652 if (p->d_parent == p1)
2653 return p;
2654 }
2655 return NULL;
2656 }
2657
2658 /*
2659 * This helper attempts to cope with remotely renamed directories
2660 *
2661 * It assumes that the caller is already holding
2662 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2663 *
2664 * Note: If ever the locking in lock_rename() changes, then please
2665 * remember to update this too...
2666 */
2667 static struct dentry *__d_unalias(struct inode *inode,
2668 struct dentry *dentry, struct dentry *alias)
2669 {
2670 struct mutex *m1 = NULL, *m2 = NULL;
2671 struct dentry *ret = ERR_PTR(-EBUSY);
2672
2673 /* If alias and dentry share a parent, then no extra locks required */
2674 if (alias->d_parent == dentry->d_parent)
2675 goto out_unalias;
2676
2677 /* See lock_rename() */
2678 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2679 goto out_err;
2680 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2681 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2682 goto out_err;
2683 m2 = &alias->d_parent->d_inode->i_mutex;
2684 out_unalias:
2685 if (likely(!d_mountpoint(alias))) {
2686 __d_move(alias, dentry);
2687 ret = alias;
2688 }
2689 out_err:
2690 spin_unlock(&inode->i_lock);
2691 if (m2)
2692 mutex_unlock(m2);
2693 if (m1)
2694 mutex_unlock(m1);
2695 return ret;
2696 }
2697
2698 /*
2699 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2700 * named dentry in place of the dentry to be replaced.
2701 * returns with anon->d_lock held!
2702 */
2703 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2704 {
2705 struct dentry *dparent;
2706
2707 dentry_lock_for_move(anon, dentry);
2708
2709 write_seqcount_begin(&dentry->d_seq);
2710 write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
2711
2712 dparent = dentry->d_parent;
2713
2714 switch_names(dentry, anon);
2715 swap(dentry->d_name.hash, anon->d_name.hash);
2716
2717 dentry->d_parent = dentry;
2718 list_del_init(&dentry->d_u.d_child);
2719 anon->d_parent = dparent;
2720 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2721
2722 write_seqcount_end(&dentry->d_seq);
2723 write_seqcount_end(&anon->d_seq);
2724
2725 dentry_unlock_parents_for_move(anon, dentry);
2726 spin_unlock(&dentry->d_lock);
2727
2728 /* anon->d_lock still locked, returns locked */
2729 }
2730
2731 /**
2732 * d_materialise_unique - introduce an inode into the tree
2733 * @dentry: candidate dentry
2734 * @inode: inode to bind to the dentry, to which aliases may be attached
2735 *
2736 * Introduces an dentry into the tree, substituting an extant disconnected
2737 * root directory alias in its place if there is one. Caller must hold the
2738 * i_mutex of the parent directory.
2739 */
2740 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2741 {
2742 struct dentry *actual;
2743
2744 BUG_ON(!d_unhashed(dentry));
2745
2746 if (!inode) {
2747 actual = dentry;
2748 __d_instantiate(dentry, NULL);
2749 d_rehash(actual);
2750 goto out_nolock;
2751 }
2752
2753 spin_lock(&inode->i_lock);
2754
2755 if (S_ISDIR(inode->i_mode)) {
2756 struct dentry *alias;
2757
2758 /* Does an aliased dentry already exist? */
2759 alias = __d_find_alias(inode, 0);
2760 if (alias) {
2761 actual = alias;
2762 write_seqlock(&rename_lock);
2763
2764 if (d_ancestor(alias, dentry)) {
2765 /* Check for loops */
2766 actual = ERR_PTR(-ELOOP);
2767 spin_unlock(&inode->i_lock);
2768 } else if (IS_ROOT(alias)) {
2769 /* Is this an anonymous mountpoint that we
2770 * could splice into our tree? */
2771 __d_materialise_dentry(dentry, alias);
2772 write_sequnlock(&rename_lock);
2773 __d_drop(alias);
2774 goto found;
2775 } else {
2776 /* Nope, but we must(!) avoid directory
2777 * aliasing. This drops inode->i_lock */
2778 actual = __d_unalias(inode, dentry, alias);
2779 }
2780 write_sequnlock(&rename_lock);
2781 if (IS_ERR(actual)) {
2782 if (PTR_ERR(actual) == -ELOOP)
2783 pr_warn_ratelimited(
2784 "VFS: Lookup of '%s' in %s %s"
2785 " would have caused loop\n",
2786 dentry->d_name.name,
2787 inode->i_sb->s_type->name,
2788 inode->i_sb->s_id);
2789 dput(alias);
2790 }
2791 goto out_nolock;
2792 }
2793 }
2794
2795 /* Add a unique reference */
2796 actual = __d_instantiate_unique(dentry, inode);
2797 if (!actual)
2798 actual = dentry;
2799 else
2800 BUG_ON(!d_unhashed(actual));
2801
2802 spin_lock(&actual->d_lock);
2803 found:
2804 _d_rehash(actual);
2805 spin_unlock(&actual->d_lock);
2806 spin_unlock(&inode->i_lock);
2807 out_nolock:
2808 if (actual == dentry) {
2809 security_d_instantiate(dentry, inode);
2810 return NULL;
2811 }
2812
2813 iput(inode);
2814 return actual;
2815 }
2816 EXPORT_SYMBOL_GPL(d_materialise_unique);
2817
2818 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2819 {
2820 *buflen -= namelen;
2821 if (*buflen < 0)
2822 return -ENAMETOOLONG;
2823 *buffer -= namelen;
2824 memcpy(*buffer, str, namelen);
2825 return 0;
2826 }
2827
2828 /**
2829 * prepend_name - prepend a pathname in front of current buffer pointer
2830 * @buffer: buffer pointer
2831 * @buflen: allocated length of the buffer
2832 * @name: name string and length qstr structure
2833 *
2834 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2835 * make sure that either the old or the new name pointer and length are
2836 * fetched. However, there may be mismatch between length and pointer.
2837 * The length cannot be trusted, we need to copy it byte-by-byte until
2838 * the length is reached or a null byte is found. It also prepends "/" at
2839 * the beginning of the name. The sequence number check at the caller will
2840 * retry it again when a d_move() does happen. So any garbage in the buffer
2841 * due to mismatched pointer and length will be discarded.
2842 */
2843 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2844 {
2845 const char *dname = ACCESS_ONCE(name->name);
2846 u32 dlen = ACCESS_ONCE(name->len);
2847 char *p;
2848
2849 if (*buflen < dlen + 1)
2850 return -ENAMETOOLONG;
2851 *buflen -= dlen + 1;
2852 p = *buffer -= dlen + 1;
2853 *p++ = '/';
2854 while (dlen--) {
2855 char c = *dname++;
2856 if (!c)
2857 break;
2858 *p++ = c;
2859 }
2860 return 0;
2861 }
2862
2863 /**
2864 * prepend_path - Prepend path string to a buffer
2865 * @path: the dentry/vfsmount to report
2866 * @root: root vfsmnt/dentry
2867 * @buffer: pointer to the end of the buffer
2868 * @buflen: pointer to buffer length
2869 *
2870 * The function will first try to write out the pathname without taking any
2871 * lock other than the RCU read lock to make sure that dentries won't go away.
2872 * It only checks the sequence number of the global rename_lock as any change
2873 * in the dentry's d_seq will be preceded by changes in the rename_lock
2874 * sequence number. If the sequence number had been changed, it will restart
2875 * the whole pathname back-tracing sequence again by taking the rename_lock.
2876 * In this case, there is no need to take the RCU read lock as the recursive
2877 * parent pointer references will keep the dentry chain alive as long as no
2878 * rename operation is performed.
2879 */
2880 static int prepend_path(const struct path *path,
2881 const struct path *root,
2882 char **buffer, int *buflen)
2883 {
2884 struct dentry *dentry;
2885 struct vfsmount *vfsmnt;
2886 struct mount *mnt;
2887 int error = 0;
2888 unsigned seq, m_seq = 0;
2889 char *bptr;
2890 int blen;
2891
2892 rcu_read_lock();
2893 restart_mnt:
2894 read_seqbegin_or_lock(&mount_lock, &m_seq);
2895 seq = 0;
2896 rcu_read_lock();
2897 restart:
2898 bptr = *buffer;
2899 blen = *buflen;
2900 error = 0;
2901 dentry = path->dentry;
2902 vfsmnt = path->mnt;
2903 mnt = real_mount(vfsmnt);
2904 read_seqbegin_or_lock(&rename_lock, &seq);
2905 while (dentry != root->dentry || vfsmnt != root->mnt) {
2906 struct dentry * parent;
2907
2908 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2909 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2910 /* Global root? */
2911 if (mnt != parent) {
2912 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2913 mnt = parent;
2914 vfsmnt = &mnt->mnt;
2915 continue;
2916 }
2917 /*
2918 * Filesystems needing to implement special "root names"
2919 * should do so with ->d_dname()
2920 */
2921 if (IS_ROOT(dentry) &&
2922 (dentry->d_name.len != 1 ||
2923 dentry->d_name.name[0] != '/')) {
2924 WARN(1, "Root dentry has weird name <%.*s>\n",
2925 (int) dentry->d_name.len,
2926 dentry->d_name.name);
2927 }
2928 if (!error)
2929 error = is_mounted(vfsmnt) ? 1 : 2;
2930 break;
2931 }
2932 parent = dentry->d_parent;
2933 prefetch(parent);
2934 error = prepend_name(&bptr, &blen, &dentry->d_name);
2935 if (error)
2936 break;
2937
2938 dentry = parent;
2939 }
2940 if (!(seq & 1))
2941 rcu_read_unlock();
2942 if (need_seqretry(&rename_lock, seq)) {
2943 seq = 1;
2944 goto restart;
2945 }
2946 done_seqretry(&rename_lock, seq);
2947
2948 if (!(m_seq & 1))
2949 rcu_read_unlock();
2950 if (need_seqretry(&mount_lock, m_seq)) {
2951 m_seq = 1;
2952 goto restart_mnt;
2953 }
2954 done_seqretry(&mount_lock, m_seq);
2955
2956 if (error >= 0 && bptr == *buffer) {
2957 if (--blen < 0)
2958 error = -ENAMETOOLONG;
2959 else
2960 *--bptr = '/';
2961 }
2962 *buffer = bptr;
2963 *buflen = blen;
2964 return error;
2965 }
2966
2967 /**
2968 * __d_path - return the path of a dentry
2969 * @path: the dentry/vfsmount to report
2970 * @root: root vfsmnt/dentry
2971 * @buf: buffer to return value in
2972 * @buflen: buffer length
2973 *
2974 * Convert a dentry into an ASCII path name.
2975 *
2976 * Returns a pointer into the buffer or an error code if the
2977 * path was too long.
2978 *
2979 * "buflen" should be positive.
2980 *
2981 * If the path is not reachable from the supplied root, return %NULL.
2982 */
2983 char *__d_path(const struct path *path,
2984 const struct path *root,
2985 char *buf, int buflen)
2986 {
2987 char *res = buf + buflen;
2988 int error;
2989
2990 prepend(&res, &buflen, "\0", 1);
2991 error = prepend_path(path, root, &res, &buflen);
2992
2993 if (error < 0)
2994 return ERR_PTR(error);
2995 if (error > 0)
2996 return NULL;
2997 return res;
2998 }
2999
3000 char *d_absolute_path(const struct path *path,
3001 char *buf, int buflen)
3002 {
3003 struct path root = {};
3004 char *res = buf + buflen;
3005 int error;
3006
3007 prepend(&res, &buflen, "\0", 1);
3008 error = prepend_path(path, &root, &res, &buflen);
3009
3010 if (error > 1)
3011 error = -EINVAL;
3012 if (error < 0)
3013 return ERR_PTR(error);
3014 return res;
3015 }
3016
3017 /*
3018 * same as __d_path but appends "(deleted)" for unlinked files.
3019 */
3020 static int path_with_deleted(const struct path *path,
3021 const struct path *root,
3022 char **buf, int *buflen)
3023 {
3024 prepend(buf, buflen, "\0", 1);
3025 if (d_unlinked(path->dentry)) {
3026 int error = prepend(buf, buflen, " (deleted)", 10);
3027 if (error)
3028 return error;
3029 }
3030
3031 return prepend_path(path, root, buf, buflen);
3032 }
3033
3034 static int prepend_unreachable(char **buffer, int *buflen)
3035 {
3036 return prepend(buffer, buflen, "(unreachable)", 13);
3037 }
3038
3039 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3040 {
3041 unsigned seq;
3042
3043 do {
3044 seq = read_seqcount_begin(&fs->seq);
3045 *root = fs->root;
3046 } while (read_seqcount_retry(&fs->seq, seq));
3047 }
3048
3049 /**
3050 * d_path - return the path of a dentry
3051 * @path: path to report
3052 * @buf: buffer to return value in
3053 * @buflen: buffer length
3054 *
3055 * Convert a dentry into an ASCII path name. If the entry has been deleted
3056 * the string " (deleted)" is appended. Note that this is ambiguous.
3057 *
3058 * Returns a pointer into the buffer or an error code if the path was
3059 * too long. Note: Callers should use the returned pointer, not the passed
3060 * in buffer, to use the name! The implementation often starts at an offset
3061 * into the buffer, and may leave 0 bytes at the start.
3062 *
3063 * "buflen" should be positive.
3064 */
3065 char *d_path(const struct path *path, char *buf, int buflen)
3066 {
3067 char *res = buf + buflen;
3068 struct path root;
3069 int error;
3070
3071 /*
3072 * We have various synthetic filesystems that never get mounted. On
3073 * these filesystems dentries are never used for lookup purposes, and
3074 * thus don't need to be hashed. They also don't need a name until a
3075 * user wants to identify the object in /proc/pid/fd/. The little hack
3076 * below allows us to generate a name for these objects on demand:
3077 */
3078 if (path->dentry->d_op && path->dentry->d_op->d_dname)
3079 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3080
3081 rcu_read_lock();
3082 get_fs_root_rcu(current->fs, &root);
3083 error = path_with_deleted(path, &root, &res, &buflen);
3084 rcu_read_unlock();
3085
3086 if (error < 0)
3087 res = ERR_PTR(error);
3088 return res;
3089 }
3090 EXPORT_SYMBOL(d_path);
3091
3092 /*
3093 * Helper function for dentry_operations.d_dname() members
3094 */
3095 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3096 const char *fmt, ...)
3097 {
3098 va_list args;
3099 char temp[64];
3100 int sz;
3101
3102 va_start(args, fmt);
3103 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3104 va_end(args);
3105
3106 if (sz > sizeof(temp) || sz > buflen)
3107 return ERR_PTR(-ENAMETOOLONG);
3108
3109 buffer += buflen - sz;
3110 return memcpy(buffer, temp, sz);
3111 }
3112
3113 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3114 {
3115 char *end = buffer + buflen;
3116 /* these dentries are never renamed, so d_lock is not needed */
3117 if (prepend(&end, &buflen, " (deleted)", 11) ||
3118 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3119 prepend(&end, &buflen, "/", 1))
3120 end = ERR_PTR(-ENAMETOOLONG);
3121 return end;
3122 }
3123
3124 /*
3125 * Write full pathname from the root of the filesystem into the buffer.
3126 */
3127 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
3128 {
3129 char *end, *retval;
3130 int len, seq = 0;
3131 int error = 0;
3132
3133 rcu_read_lock();
3134 restart:
3135 end = buf + buflen;
3136 len = buflen;
3137 prepend(&end, &len, "\0", 1);
3138 if (buflen < 1)
3139 goto Elong;
3140 /* Get '/' right */
3141 retval = end-1;
3142 *retval = '/';
3143 read_seqbegin_or_lock(&rename_lock, &seq);
3144 while (!IS_ROOT(dentry)) {
3145 struct dentry *parent = dentry->d_parent;
3146 int error;
3147
3148 prefetch(parent);
3149 error = prepend_name(&end, &len, &dentry->d_name);
3150 if (error)
3151 break;
3152
3153 retval = end;
3154 dentry = parent;
3155 }
3156 if (!(seq & 1))
3157 rcu_read_unlock();
3158 if (need_seqretry(&rename_lock, seq)) {
3159 seq = 1;
3160 goto restart;
3161 }
3162 done_seqretry(&rename_lock, seq);
3163 if (error)
3164 goto Elong;
3165 return retval;
3166 Elong:
3167 return ERR_PTR(-ENAMETOOLONG);
3168 }
3169
3170 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3171 {
3172 return __dentry_path(dentry, buf, buflen);
3173 }
3174 EXPORT_SYMBOL(dentry_path_raw);
3175
3176 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3177 {
3178 char *p = NULL;
3179 char *retval;
3180
3181 if (d_unlinked(dentry)) {
3182 p = buf + buflen;
3183 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3184 goto Elong;
3185 buflen++;
3186 }
3187 retval = __dentry_path(dentry, buf, buflen);
3188 if (!IS_ERR(retval) && p)
3189 *p = '/'; /* restore '/' overriden with '\0' */
3190 return retval;
3191 Elong:
3192 return ERR_PTR(-ENAMETOOLONG);
3193 }
3194
3195 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3196 struct path *pwd)
3197 {
3198 unsigned seq;
3199
3200 do {
3201 seq = read_seqcount_begin(&fs->seq);
3202 *root = fs->root;
3203 *pwd = fs->pwd;
3204 } while (read_seqcount_retry(&fs->seq, seq));
3205 }
3206
3207 /*
3208 * NOTE! The user-level library version returns a
3209 * character pointer. The kernel system call just
3210 * returns the length of the buffer filled (which
3211 * includes the ending '\0' character), or a negative
3212 * error value. So libc would do something like
3213 *
3214 * char *getcwd(char * buf, size_t size)
3215 * {
3216 * int retval;
3217 *
3218 * retval = sys_getcwd(buf, size);
3219 * if (retval >= 0)
3220 * return buf;
3221 * errno = -retval;
3222 * return NULL;
3223 * }
3224 */
3225 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3226 {
3227 int error;
3228 struct path pwd, root;
3229 char *page = __getname();
3230
3231 if (!page)
3232 return -ENOMEM;
3233
3234 rcu_read_lock();
3235 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3236
3237 error = -ENOENT;
3238 if (!d_unlinked(pwd.dentry)) {
3239 unsigned long len;
3240 char *cwd = page + PATH_MAX;
3241 int buflen = PATH_MAX;
3242
3243 prepend(&cwd, &buflen, "\0", 1);
3244 error = prepend_path(&pwd, &root, &cwd, &buflen);
3245 rcu_read_unlock();
3246
3247 if (error < 0)
3248 goto out;
3249
3250 /* Unreachable from current root */
3251 if (error > 0) {
3252 error = prepend_unreachable(&cwd, &buflen);
3253 if (error)
3254 goto out;
3255 }
3256
3257 error = -ERANGE;
3258 len = PATH_MAX + page - cwd;
3259 if (len <= size) {
3260 error = len;
3261 if (copy_to_user(buf, cwd, len))
3262 error = -EFAULT;
3263 }
3264 } else {
3265 rcu_read_unlock();
3266 }
3267
3268 out:
3269 __putname(page);
3270 return error;
3271 }
3272
3273 /*
3274 * Test whether new_dentry is a subdirectory of old_dentry.
3275 *
3276 * Trivially implemented using the dcache structure
3277 */
3278
3279 /**
3280 * is_subdir - is new dentry a subdirectory of old_dentry
3281 * @new_dentry: new dentry
3282 * @old_dentry: old dentry
3283 *
3284 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3285 * Returns 0 otherwise.
3286 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3287 */
3288
3289 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3290 {
3291 int result;
3292 unsigned seq;
3293
3294 if (new_dentry == old_dentry)
3295 return 1;
3296
3297 do {
3298 /* for restarting inner loop in case of seq retry */
3299 seq = read_seqbegin(&rename_lock);
3300 /*
3301 * Need rcu_readlock to protect against the d_parent trashing
3302 * due to d_move
3303 */
3304 rcu_read_lock();
3305 if (d_ancestor(old_dentry, new_dentry))
3306 result = 1;
3307 else
3308 result = 0;
3309 rcu_read_unlock();
3310 } while (read_seqretry(&rename_lock, seq));
3311
3312 return result;
3313 }
3314
3315 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3316 {
3317 struct dentry *root = data;
3318 if (dentry != root) {
3319 if (d_unhashed(dentry) || !dentry->d_inode)
3320 return D_WALK_SKIP;
3321
3322 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3323 dentry->d_flags |= DCACHE_GENOCIDE;
3324 dentry->d_lockref.count--;
3325 }
3326 }
3327 return D_WALK_CONTINUE;
3328 }
3329
3330 void d_genocide(struct dentry *parent)
3331 {
3332 d_walk(parent, parent, d_genocide_kill, NULL);
3333 }
3334
3335 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3336 {
3337 inode_dec_link_count(inode);
3338 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3339 !hlist_unhashed(&dentry->d_alias) ||
3340 !d_unlinked(dentry));
3341 spin_lock(&dentry->d_parent->d_lock);
3342 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3343 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3344 (unsigned long long)inode->i_ino);
3345 spin_unlock(&dentry->d_lock);
3346 spin_unlock(&dentry->d_parent->d_lock);
3347 d_instantiate(dentry, inode);
3348 }
3349 EXPORT_SYMBOL(d_tmpfile);
3350
3351 static __initdata unsigned long dhash_entries;
3352 static int __init set_dhash_entries(char *str)
3353 {
3354 if (!str)
3355 return 0;
3356 dhash_entries = simple_strtoul(str, &str, 0);
3357 return 1;
3358 }
3359 __setup("dhash_entries=", set_dhash_entries);
3360
3361 static void __init dcache_init_early(void)
3362 {
3363 unsigned int loop;
3364
3365 /* If hashes are distributed across NUMA nodes, defer
3366 * hash allocation until vmalloc space is available.
3367 */
3368 if (hashdist)
3369 return;
3370
3371 dentry_hashtable =
3372 alloc_large_system_hash("Dentry cache",
3373 sizeof(struct hlist_bl_head),
3374 dhash_entries,
3375 13,
3376 HASH_EARLY,
3377 &d_hash_shift,
3378 &d_hash_mask,
3379 0,
3380 0);
3381
3382 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3383 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3384 }
3385
3386 static void __init dcache_init(void)
3387 {
3388 unsigned int loop;
3389
3390 /*
3391 * A constructor could be added for stable state like the lists,
3392 * but it is probably not worth it because of the cache nature
3393 * of the dcache.
3394 */
3395 dentry_cache = KMEM_CACHE(dentry,
3396 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3397
3398 /* Hash may have been set up in dcache_init_early */
3399 if (!hashdist)
3400 return;
3401
3402 dentry_hashtable =
3403 alloc_large_system_hash("Dentry cache",
3404 sizeof(struct hlist_bl_head),
3405 dhash_entries,
3406 13,
3407 0,
3408 &d_hash_shift,
3409 &d_hash_mask,
3410 0,
3411 0);
3412
3413 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3414 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3415 }
3416
3417 /* SLAB cache for __getname() consumers */
3418 struct kmem_cache *names_cachep __read_mostly;
3419 EXPORT_SYMBOL(names_cachep);
3420
3421 EXPORT_SYMBOL(d_genocide);
3422
3423 void __init vfs_caches_init_early(void)
3424 {
3425 dcache_init_early();
3426 inode_init_early();
3427 }
3428
3429 void __init vfs_caches_init(unsigned long mempages)
3430 {
3431 unsigned long reserve;
3432
3433 /* Base hash sizes on available memory, with a reserve equal to
3434 150% of current kernel size */
3435
3436 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3437 mempages -= reserve;
3438
3439 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3440 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3441
3442 dcache_init();
3443 inode_init();
3444 files_init(mempages);
3445 mnt_init();
3446 bdev_cache_init();
3447 chrdev_init();
3448 }
This page took 0.100889 seconds and 6 git commands to generate.