Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43
44 /*
45 * Usage:
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_u.d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
58 * - d_count
59 * - d_unhashed()
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_u.d_alias, d_inode
63 *
64 * Ordering:
65 * dentry->d_inode->i_lock
66 * dentry->d_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
69 * s_anon lock
70 *
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 unsigned int hash)
107 {
108 hash += (unsigned long) parent / L1_CACHE_BYTES;
109 return dentry_hashtable + hash_32(hash, d_hash_shift);
110 }
111
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat = {
114 .age_limit = 45,
115 };
116
117 static DEFINE_PER_CPU(long, nr_dentry);
118 static DEFINE_PER_CPU(long, nr_dentry_unused);
119
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121
122 /*
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
126 *
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
130 *
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
133 */
134 static long get_nr_dentry(void)
135 {
136 int i;
137 long sum = 0;
138 for_each_possible_cpu(i)
139 sum += per_cpu(nr_dentry, i);
140 return sum < 0 ? 0 : sum;
141 }
142
143 static long get_nr_dentry_unused(void)
144 {
145 int i;
146 long sum = 0;
147 for_each_possible_cpu(i)
148 sum += per_cpu(nr_dentry_unused, i);
149 return sum < 0 ? 0 : sum;
150 }
151
152 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
153 size_t *lenp, loff_t *ppos)
154 {
155 dentry_stat.nr_dentry = get_nr_dentry();
156 dentry_stat.nr_unused = get_nr_dentry_unused();
157 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
158 }
159 #endif
160
161 /*
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
164 */
165 #ifdef CONFIG_DCACHE_WORD_ACCESS
166
167 #include <asm/word-at-a-time.h>
168 /*
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
173 *
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
176 */
177 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
178 {
179 unsigned long a,b,mask;
180
181 for (;;) {
182 a = *(unsigned long *)cs;
183 b = load_unaligned_zeropad(ct);
184 if (tcount < sizeof(unsigned long))
185 break;
186 if (unlikely(a != b))
187 return 1;
188 cs += sizeof(unsigned long);
189 ct += sizeof(unsigned long);
190 tcount -= sizeof(unsigned long);
191 if (!tcount)
192 return 0;
193 }
194 mask = bytemask_from_count(tcount);
195 return unlikely(!!((a ^ b) & mask));
196 }
197
198 #else
199
200 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
201 {
202 do {
203 if (*cs != *ct)
204 return 1;
205 cs++;
206 ct++;
207 tcount--;
208 } while (tcount);
209 return 0;
210 }
211
212 #endif
213
214 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
215 {
216 const unsigned char *cs;
217 /*
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
220 *
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
228 *
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
232 */
233 cs = ACCESS_ONCE(dentry->d_name.name);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs, ct, tcount);
236 }
237
238 struct external_name {
239 union {
240 atomic_t count;
241 struct rcu_head head;
242 } u;
243 unsigned char name[];
244 };
245
246 static inline struct external_name *external_name(struct dentry *dentry)
247 {
248 return container_of(dentry->d_name.name, struct external_name, name[0]);
249 }
250
251 static void __d_free(struct rcu_head *head)
252 {
253 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
254
255 kmem_cache_free(dentry_cache, dentry);
256 }
257
258 static void __d_free_external(struct rcu_head *head)
259 {
260 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
261 kfree(external_name(dentry));
262 kmem_cache_free(dentry_cache, dentry);
263 }
264
265 static inline int dname_external(const struct dentry *dentry)
266 {
267 return dentry->d_name.name != dentry->d_iname;
268 }
269
270 static void dentry_free(struct dentry *dentry)
271 {
272 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
273 if (unlikely(dname_external(dentry))) {
274 struct external_name *p = external_name(dentry);
275 if (likely(atomic_dec_and_test(&p->u.count))) {
276 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
277 return;
278 }
279 }
280 /* if dentry was never visible to RCU, immediate free is OK */
281 if (!(dentry->d_flags & DCACHE_RCUACCESS))
282 __d_free(&dentry->d_u.d_rcu);
283 else
284 call_rcu(&dentry->d_u.d_rcu, __d_free);
285 }
286
287 /**
288 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
289 * @dentry: the target dentry
290 * After this call, in-progress rcu-walk path lookup will fail. This
291 * should be called after unhashing, and after changing d_inode (if
292 * the dentry has not already been unhashed).
293 */
294 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
295 {
296 assert_spin_locked(&dentry->d_lock);
297 /* Go through a barrier */
298 write_seqcount_barrier(&dentry->d_seq);
299 }
300
301 /*
302 * Release the dentry's inode, using the filesystem
303 * d_iput() operation if defined. Dentry has no refcount
304 * and is unhashed.
305 */
306 static void dentry_iput(struct dentry * dentry)
307 __releases(dentry->d_lock)
308 __releases(dentry->d_inode->i_lock)
309 {
310 struct inode *inode = dentry->d_inode;
311 if (inode) {
312 dentry->d_inode = NULL;
313 hlist_del_init(&dentry->d_u.d_alias);
314 spin_unlock(&dentry->d_lock);
315 spin_unlock(&inode->i_lock);
316 if (!inode->i_nlink)
317 fsnotify_inoderemove(inode);
318 if (dentry->d_op && dentry->d_op->d_iput)
319 dentry->d_op->d_iput(dentry, inode);
320 else
321 iput(inode);
322 } else {
323 spin_unlock(&dentry->d_lock);
324 }
325 }
326
327 /*
328 * Release the dentry's inode, using the filesystem
329 * d_iput() operation if defined. dentry remains in-use.
330 */
331 static void dentry_unlink_inode(struct dentry * dentry)
332 __releases(dentry->d_lock)
333 __releases(dentry->d_inode->i_lock)
334 {
335 struct inode *inode = dentry->d_inode;
336 __d_clear_type(dentry);
337 dentry->d_inode = NULL;
338 hlist_del_init(&dentry->d_u.d_alias);
339 dentry_rcuwalk_barrier(dentry);
340 spin_unlock(&dentry->d_lock);
341 spin_unlock(&inode->i_lock);
342 if (!inode->i_nlink)
343 fsnotify_inoderemove(inode);
344 if (dentry->d_op && dentry->d_op->d_iput)
345 dentry->d_op->d_iput(dentry, inode);
346 else
347 iput(inode);
348 }
349
350 /*
351 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
352 * is in use - which includes both the "real" per-superblock
353 * LRU list _and_ the DCACHE_SHRINK_LIST use.
354 *
355 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
356 * on the shrink list (ie not on the superblock LRU list).
357 *
358 * The per-cpu "nr_dentry_unused" counters are updated with
359 * the DCACHE_LRU_LIST bit.
360 *
361 * These helper functions make sure we always follow the
362 * rules. d_lock must be held by the caller.
363 */
364 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
365 static void d_lru_add(struct dentry *dentry)
366 {
367 D_FLAG_VERIFY(dentry, 0);
368 dentry->d_flags |= DCACHE_LRU_LIST;
369 this_cpu_inc(nr_dentry_unused);
370 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
371 }
372
373 static void d_lru_del(struct dentry *dentry)
374 {
375 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
376 dentry->d_flags &= ~DCACHE_LRU_LIST;
377 this_cpu_dec(nr_dentry_unused);
378 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
379 }
380
381 static void d_shrink_del(struct dentry *dentry)
382 {
383 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
384 list_del_init(&dentry->d_lru);
385 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
386 this_cpu_dec(nr_dentry_unused);
387 }
388
389 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
390 {
391 D_FLAG_VERIFY(dentry, 0);
392 list_add(&dentry->d_lru, list);
393 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
394 this_cpu_inc(nr_dentry_unused);
395 }
396
397 /*
398 * These can only be called under the global LRU lock, ie during the
399 * callback for freeing the LRU list. "isolate" removes it from the
400 * LRU lists entirely, while shrink_move moves it to the indicated
401 * private list.
402 */
403 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
404 {
405 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
406 dentry->d_flags &= ~DCACHE_LRU_LIST;
407 this_cpu_dec(nr_dentry_unused);
408 list_lru_isolate(lru, &dentry->d_lru);
409 }
410
411 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
412 struct list_head *list)
413 {
414 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
415 dentry->d_flags |= DCACHE_SHRINK_LIST;
416 list_lru_isolate_move(lru, &dentry->d_lru, list);
417 }
418
419 /*
420 * dentry_lru_(add|del)_list) must be called with d_lock held.
421 */
422 static void dentry_lru_add(struct dentry *dentry)
423 {
424 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
425 d_lru_add(dentry);
426 }
427
428 /**
429 * d_drop - drop a dentry
430 * @dentry: dentry to drop
431 *
432 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
433 * be found through a VFS lookup any more. Note that this is different from
434 * deleting the dentry - d_delete will try to mark the dentry negative if
435 * possible, giving a successful _negative_ lookup, while d_drop will
436 * just make the cache lookup fail.
437 *
438 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
439 * reason (NFS timeouts or autofs deletes).
440 *
441 * __d_drop requires dentry->d_lock.
442 */
443 void __d_drop(struct dentry *dentry)
444 {
445 if (!d_unhashed(dentry)) {
446 struct hlist_bl_head *b;
447 /*
448 * Hashed dentries are normally on the dentry hashtable,
449 * with the exception of those newly allocated by
450 * d_obtain_alias, which are always IS_ROOT:
451 */
452 if (unlikely(IS_ROOT(dentry)))
453 b = &dentry->d_sb->s_anon;
454 else
455 b = d_hash(dentry->d_parent, dentry->d_name.hash);
456
457 hlist_bl_lock(b);
458 __hlist_bl_del(&dentry->d_hash);
459 dentry->d_hash.pprev = NULL;
460 hlist_bl_unlock(b);
461 dentry_rcuwalk_barrier(dentry);
462 }
463 }
464 EXPORT_SYMBOL(__d_drop);
465
466 void d_drop(struct dentry *dentry)
467 {
468 spin_lock(&dentry->d_lock);
469 __d_drop(dentry);
470 spin_unlock(&dentry->d_lock);
471 }
472 EXPORT_SYMBOL(d_drop);
473
474 static void __dentry_kill(struct dentry *dentry)
475 {
476 struct dentry *parent = NULL;
477 bool can_free = true;
478 if (!IS_ROOT(dentry))
479 parent = dentry->d_parent;
480
481 /*
482 * The dentry is now unrecoverably dead to the world.
483 */
484 lockref_mark_dead(&dentry->d_lockref);
485
486 /*
487 * inform the fs via d_prune that this dentry is about to be
488 * unhashed and destroyed.
489 */
490 if (dentry->d_flags & DCACHE_OP_PRUNE)
491 dentry->d_op->d_prune(dentry);
492
493 if (dentry->d_flags & DCACHE_LRU_LIST) {
494 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
495 d_lru_del(dentry);
496 }
497 /* if it was on the hash then remove it */
498 __d_drop(dentry);
499 __list_del_entry(&dentry->d_child);
500 /*
501 * Inform d_walk() that we are no longer attached to the
502 * dentry tree
503 */
504 dentry->d_flags |= DCACHE_DENTRY_KILLED;
505 if (parent)
506 spin_unlock(&parent->d_lock);
507 dentry_iput(dentry);
508 /*
509 * dentry_iput drops the locks, at which point nobody (except
510 * transient RCU lookups) can reach this dentry.
511 */
512 BUG_ON((int)dentry->d_lockref.count > 0);
513 this_cpu_dec(nr_dentry);
514 if (dentry->d_op && dentry->d_op->d_release)
515 dentry->d_op->d_release(dentry);
516
517 spin_lock(&dentry->d_lock);
518 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
519 dentry->d_flags |= DCACHE_MAY_FREE;
520 can_free = false;
521 }
522 spin_unlock(&dentry->d_lock);
523 if (likely(can_free))
524 dentry_free(dentry);
525 }
526
527 /*
528 * Finish off a dentry we've decided to kill.
529 * dentry->d_lock must be held, returns with it unlocked.
530 * If ref is non-zero, then decrement the refcount too.
531 * Returns dentry requiring refcount drop, or NULL if we're done.
532 */
533 static struct dentry *dentry_kill(struct dentry *dentry)
534 __releases(dentry->d_lock)
535 {
536 struct inode *inode = dentry->d_inode;
537 struct dentry *parent = NULL;
538
539 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
540 goto failed;
541
542 if (!IS_ROOT(dentry)) {
543 parent = dentry->d_parent;
544 if (unlikely(!spin_trylock(&parent->d_lock))) {
545 if (inode)
546 spin_unlock(&inode->i_lock);
547 goto failed;
548 }
549 }
550
551 __dentry_kill(dentry);
552 return parent;
553
554 failed:
555 spin_unlock(&dentry->d_lock);
556 cpu_relax();
557 return dentry; /* try again with same dentry */
558 }
559
560 static inline struct dentry *lock_parent(struct dentry *dentry)
561 {
562 struct dentry *parent = dentry->d_parent;
563 if (IS_ROOT(dentry))
564 return NULL;
565 if (unlikely((int)dentry->d_lockref.count < 0))
566 return NULL;
567 if (likely(spin_trylock(&parent->d_lock)))
568 return parent;
569 rcu_read_lock();
570 spin_unlock(&dentry->d_lock);
571 again:
572 parent = ACCESS_ONCE(dentry->d_parent);
573 spin_lock(&parent->d_lock);
574 /*
575 * We can't blindly lock dentry until we are sure
576 * that we won't violate the locking order.
577 * Any changes of dentry->d_parent must have
578 * been done with parent->d_lock held, so
579 * spin_lock() above is enough of a barrier
580 * for checking if it's still our child.
581 */
582 if (unlikely(parent != dentry->d_parent)) {
583 spin_unlock(&parent->d_lock);
584 goto again;
585 }
586 rcu_read_unlock();
587 if (parent != dentry)
588 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
589 else
590 parent = NULL;
591 return parent;
592 }
593
594 /*
595 * This is dput
596 *
597 * This is complicated by the fact that we do not want to put
598 * dentries that are no longer on any hash chain on the unused
599 * list: we'd much rather just get rid of them immediately.
600 *
601 * However, that implies that we have to traverse the dentry
602 * tree upwards to the parents which might _also_ now be
603 * scheduled for deletion (it may have been only waiting for
604 * its last child to go away).
605 *
606 * This tail recursion is done by hand as we don't want to depend
607 * on the compiler to always get this right (gcc generally doesn't).
608 * Real recursion would eat up our stack space.
609 */
610
611 /*
612 * dput - release a dentry
613 * @dentry: dentry to release
614 *
615 * Release a dentry. This will drop the usage count and if appropriate
616 * call the dentry unlink method as well as removing it from the queues and
617 * releasing its resources. If the parent dentries were scheduled for release
618 * they too may now get deleted.
619 */
620 void dput(struct dentry *dentry)
621 {
622 if (unlikely(!dentry))
623 return;
624
625 repeat:
626 if (lockref_put_or_lock(&dentry->d_lockref))
627 return;
628
629 /* Unreachable? Get rid of it */
630 if (unlikely(d_unhashed(dentry)))
631 goto kill_it;
632
633 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
634 if (dentry->d_op->d_delete(dentry))
635 goto kill_it;
636 }
637
638 if (!(dentry->d_flags & DCACHE_REFERENCED))
639 dentry->d_flags |= DCACHE_REFERENCED;
640 dentry_lru_add(dentry);
641
642 dentry->d_lockref.count--;
643 spin_unlock(&dentry->d_lock);
644 return;
645
646 kill_it:
647 dentry = dentry_kill(dentry);
648 if (dentry)
649 goto repeat;
650 }
651 EXPORT_SYMBOL(dput);
652
653
654 /* This must be called with d_lock held */
655 static inline void __dget_dlock(struct dentry *dentry)
656 {
657 dentry->d_lockref.count++;
658 }
659
660 static inline void __dget(struct dentry *dentry)
661 {
662 lockref_get(&dentry->d_lockref);
663 }
664
665 struct dentry *dget_parent(struct dentry *dentry)
666 {
667 int gotref;
668 struct dentry *ret;
669
670 /*
671 * Do optimistic parent lookup without any
672 * locking.
673 */
674 rcu_read_lock();
675 ret = ACCESS_ONCE(dentry->d_parent);
676 gotref = lockref_get_not_zero(&ret->d_lockref);
677 rcu_read_unlock();
678 if (likely(gotref)) {
679 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
680 return ret;
681 dput(ret);
682 }
683
684 repeat:
685 /*
686 * Don't need rcu_dereference because we re-check it was correct under
687 * the lock.
688 */
689 rcu_read_lock();
690 ret = dentry->d_parent;
691 spin_lock(&ret->d_lock);
692 if (unlikely(ret != dentry->d_parent)) {
693 spin_unlock(&ret->d_lock);
694 rcu_read_unlock();
695 goto repeat;
696 }
697 rcu_read_unlock();
698 BUG_ON(!ret->d_lockref.count);
699 ret->d_lockref.count++;
700 spin_unlock(&ret->d_lock);
701 return ret;
702 }
703 EXPORT_SYMBOL(dget_parent);
704
705 /**
706 * d_find_alias - grab a hashed alias of inode
707 * @inode: inode in question
708 *
709 * If inode has a hashed alias, or is a directory and has any alias,
710 * acquire the reference to alias and return it. Otherwise return NULL.
711 * Notice that if inode is a directory there can be only one alias and
712 * it can be unhashed only if it has no children, or if it is the root
713 * of a filesystem, or if the directory was renamed and d_revalidate
714 * was the first vfs operation to notice.
715 *
716 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
717 * any other hashed alias over that one.
718 */
719 static struct dentry *__d_find_alias(struct inode *inode)
720 {
721 struct dentry *alias, *discon_alias;
722
723 again:
724 discon_alias = NULL;
725 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
726 spin_lock(&alias->d_lock);
727 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
728 if (IS_ROOT(alias) &&
729 (alias->d_flags & DCACHE_DISCONNECTED)) {
730 discon_alias = alias;
731 } else {
732 __dget_dlock(alias);
733 spin_unlock(&alias->d_lock);
734 return alias;
735 }
736 }
737 spin_unlock(&alias->d_lock);
738 }
739 if (discon_alias) {
740 alias = discon_alias;
741 spin_lock(&alias->d_lock);
742 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
743 __dget_dlock(alias);
744 spin_unlock(&alias->d_lock);
745 return alias;
746 }
747 spin_unlock(&alias->d_lock);
748 goto again;
749 }
750 return NULL;
751 }
752
753 struct dentry *d_find_alias(struct inode *inode)
754 {
755 struct dentry *de = NULL;
756
757 if (!hlist_empty(&inode->i_dentry)) {
758 spin_lock(&inode->i_lock);
759 de = __d_find_alias(inode);
760 spin_unlock(&inode->i_lock);
761 }
762 return de;
763 }
764 EXPORT_SYMBOL(d_find_alias);
765
766 /*
767 * Try to kill dentries associated with this inode.
768 * WARNING: you must own a reference to inode.
769 */
770 void d_prune_aliases(struct inode *inode)
771 {
772 struct dentry *dentry;
773 restart:
774 spin_lock(&inode->i_lock);
775 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
776 spin_lock(&dentry->d_lock);
777 if (!dentry->d_lockref.count) {
778 struct dentry *parent = lock_parent(dentry);
779 if (likely(!dentry->d_lockref.count)) {
780 __dentry_kill(dentry);
781 dput(parent);
782 goto restart;
783 }
784 if (parent)
785 spin_unlock(&parent->d_lock);
786 }
787 spin_unlock(&dentry->d_lock);
788 }
789 spin_unlock(&inode->i_lock);
790 }
791 EXPORT_SYMBOL(d_prune_aliases);
792
793 static void shrink_dentry_list(struct list_head *list)
794 {
795 struct dentry *dentry, *parent;
796
797 while (!list_empty(list)) {
798 struct inode *inode;
799 dentry = list_entry(list->prev, struct dentry, d_lru);
800 spin_lock(&dentry->d_lock);
801 parent = lock_parent(dentry);
802
803 /*
804 * The dispose list is isolated and dentries are not accounted
805 * to the LRU here, so we can simply remove it from the list
806 * here regardless of whether it is referenced or not.
807 */
808 d_shrink_del(dentry);
809
810 /*
811 * We found an inuse dentry which was not removed from
812 * the LRU because of laziness during lookup. Do not free it.
813 */
814 if ((int)dentry->d_lockref.count > 0) {
815 spin_unlock(&dentry->d_lock);
816 if (parent)
817 spin_unlock(&parent->d_lock);
818 continue;
819 }
820
821
822 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
823 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
824 spin_unlock(&dentry->d_lock);
825 if (parent)
826 spin_unlock(&parent->d_lock);
827 if (can_free)
828 dentry_free(dentry);
829 continue;
830 }
831
832 inode = dentry->d_inode;
833 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
834 d_shrink_add(dentry, list);
835 spin_unlock(&dentry->d_lock);
836 if (parent)
837 spin_unlock(&parent->d_lock);
838 continue;
839 }
840
841 __dentry_kill(dentry);
842
843 /*
844 * We need to prune ancestors too. This is necessary to prevent
845 * quadratic behavior of shrink_dcache_parent(), but is also
846 * expected to be beneficial in reducing dentry cache
847 * fragmentation.
848 */
849 dentry = parent;
850 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
851 parent = lock_parent(dentry);
852 if (dentry->d_lockref.count != 1) {
853 dentry->d_lockref.count--;
854 spin_unlock(&dentry->d_lock);
855 if (parent)
856 spin_unlock(&parent->d_lock);
857 break;
858 }
859 inode = dentry->d_inode; /* can't be NULL */
860 if (unlikely(!spin_trylock(&inode->i_lock))) {
861 spin_unlock(&dentry->d_lock);
862 if (parent)
863 spin_unlock(&parent->d_lock);
864 cpu_relax();
865 continue;
866 }
867 __dentry_kill(dentry);
868 dentry = parent;
869 }
870 }
871 }
872
873 static enum lru_status dentry_lru_isolate(struct list_head *item,
874 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
875 {
876 struct list_head *freeable = arg;
877 struct dentry *dentry = container_of(item, struct dentry, d_lru);
878
879
880 /*
881 * we are inverting the lru lock/dentry->d_lock here,
882 * so use a trylock. If we fail to get the lock, just skip
883 * it
884 */
885 if (!spin_trylock(&dentry->d_lock))
886 return LRU_SKIP;
887
888 /*
889 * Referenced dentries are still in use. If they have active
890 * counts, just remove them from the LRU. Otherwise give them
891 * another pass through the LRU.
892 */
893 if (dentry->d_lockref.count) {
894 d_lru_isolate(lru, dentry);
895 spin_unlock(&dentry->d_lock);
896 return LRU_REMOVED;
897 }
898
899 if (dentry->d_flags & DCACHE_REFERENCED) {
900 dentry->d_flags &= ~DCACHE_REFERENCED;
901 spin_unlock(&dentry->d_lock);
902
903 /*
904 * The list move itself will be made by the common LRU code. At
905 * this point, we've dropped the dentry->d_lock but keep the
906 * lru lock. This is safe to do, since every list movement is
907 * protected by the lru lock even if both locks are held.
908 *
909 * This is guaranteed by the fact that all LRU management
910 * functions are intermediated by the LRU API calls like
911 * list_lru_add and list_lru_del. List movement in this file
912 * only ever occur through this functions or through callbacks
913 * like this one, that are called from the LRU API.
914 *
915 * The only exceptions to this are functions like
916 * shrink_dentry_list, and code that first checks for the
917 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
918 * operating only with stack provided lists after they are
919 * properly isolated from the main list. It is thus, always a
920 * local access.
921 */
922 return LRU_ROTATE;
923 }
924
925 d_lru_shrink_move(lru, dentry, freeable);
926 spin_unlock(&dentry->d_lock);
927
928 return LRU_REMOVED;
929 }
930
931 /**
932 * prune_dcache_sb - shrink the dcache
933 * @sb: superblock
934 * @sc: shrink control, passed to list_lru_shrink_walk()
935 *
936 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
937 * is done when we need more memory and called from the superblock shrinker
938 * function.
939 *
940 * This function may fail to free any resources if all the dentries are in
941 * use.
942 */
943 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
944 {
945 LIST_HEAD(dispose);
946 long freed;
947
948 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
949 dentry_lru_isolate, &dispose);
950 shrink_dentry_list(&dispose);
951 return freed;
952 }
953
954 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
955 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
956 {
957 struct list_head *freeable = arg;
958 struct dentry *dentry = container_of(item, struct dentry, d_lru);
959
960 /*
961 * we are inverting the lru lock/dentry->d_lock here,
962 * so use a trylock. If we fail to get the lock, just skip
963 * it
964 */
965 if (!spin_trylock(&dentry->d_lock))
966 return LRU_SKIP;
967
968 d_lru_shrink_move(lru, dentry, freeable);
969 spin_unlock(&dentry->d_lock);
970
971 return LRU_REMOVED;
972 }
973
974
975 /**
976 * shrink_dcache_sb - shrink dcache for a superblock
977 * @sb: superblock
978 *
979 * Shrink the dcache for the specified super block. This is used to free
980 * the dcache before unmounting a file system.
981 */
982 void shrink_dcache_sb(struct super_block *sb)
983 {
984 long freed;
985
986 do {
987 LIST_HEAD(dispose);
988
989 freed = list_lru_walk(&sb->s_dentry_lru,
990 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
991
992 this_cpu_sub(nr_dentry_unused, freed);
993 shrink_dentry_list(&dispose);
994 } while (freed > 0);
995 }
996 EXPORT_SYMBOL(shrink_dcache_sb);
997
998 /**
999 * enum d_walk_ret - action to talke during tree walk
1000 * @D_WALK_CONTINUE: contrinue walk
1001 * @D_WALK_QUIT: quit walk
1002 * @D_WALK_NORETRY: quit when retry is needed
1003 * @D_WALK_SKIP: skip this dentry and its children
1004 */
1005 enum d_walk_ret {
1006 D_WALK_CONTINUE,
1007 D_WALK_QUIT,
1008 D_WALK_NORETRY,
1009 D_WALK_SKIP,
1010 };
1011
1012 /**
1013 * d_walk - walk the dentry tree
1014 * @parent: start of walk
1015 * @data: data passed to @enter() and @finish()
1016 * @enter: callback when first entering the dentry
1017 * @finish: callback when successfully finished the walk
1018 *
1019 * The @enter() and @finish() callbacks are called with d_lock held.
1020 */
1021 static void d_walk(struct dentry *parent, void *data,
1022 enum d_walk_ret (*enter)(void *, struct dentry *),
1023 void (*finish)(void *))
1024 {
1025 struct dentry *this_parent;
1026 struct list_head *next;
1027 unsigned seq = 0;
1028 enum d_walk_ret ret;
1029 bool retry = true;
1030
1031 again:
1032 read_seqbegin_or_lock(&rename_lock, &seq);
1033 this_parent = parent;
1034 spin_lock(&this_parent->d_lock);
1035
1036 ret = enter(data, this_parent);
1037 switch (ret) {
1038 case D_WALK_CONTINUE:
1039 break;
1040 case D_WALK_QUIT:
1041 case D_WALK_SKIP:
1042 goto out_unlock;
1043 case D_WALK_NORETRY:
1044 retry = false;
1045 break;
1046 }
1047 repeat:
1048 next = this_parent->d_subdirs.next;
1049 resume:
1050 while (next != &this_parent->d_subdirs) {
1051 struct list_head *tmp = next;
1052 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1053 next = tmp->next;
1054
1055 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1056
1057 ret = enter(data, dentry);
1058 switch (ret) {
1059 case D_WALK_CONTINUE:
1060 break;
1061 case D_WALK_QUIT:
1062 spin_unlock(&dentry->d_lock);
1063 goto out_unlock;
1064 case D_WALK_NORETRY:
1065 retry = false;
1066 break;
1067 case D_WALK_SKIP:
1068 spin_unlock(&dentry->d_lock);
1069 continue;
1070 }
1071
1072 if (!list_empty(&dentry->d_subdirs)) {
1073 spin_unlock(&this_parent->d_lock);
1074 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1075 this_parent = dentry;
1076 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1077 goto repeat;
1078 }
1079 spin_unlock(&dentry->d_lock);
1080 }
1081 /*
1082 * All done at this level ... ascend and resume the search.
1083 */
1084 rcu_read_lock();
1085 ascend:
1086 if (this_parent != parent) {
1087 struct dentry *child = this_parent;
1088 this_parent = child->d_parent;
1089
1090 spin_unlock(&child->d_lock);
1091 spin_lock(&this_parent->d_lock);
1092
1093 /* might go back up the wrong parent if we have had a rename. */
1094 if (need_seqretry(&rename_lock, seq))
1095 goto rename_retry;
1096 next = child->d_child.next;
1097 while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)) {
1098 if (next == &this_parent->d_subdirs)
1099 goto ascend;
1100 child = list_entry(next, struct dentry, d_child);
1101 next = next->next;
1102 }
1103 rcu_read_unlock();
1104 goto resume;
1105 }
1106 if (need_seqretry(&rename_lock, seq))
1107 goto rename_retry;
1108 rcu_read_unlock();
1109 if (finish)
1110 finish(data);
1111
1112 out_unlock:
1113 spin_unlock(&this_parent->d_lock);
1114 done_seqretry(&rename_lock, seq);
1115 return;
1116
1117 rename_retry:
1118 spin_unlock(&this_parent->d_lock);
1119 rcu_read_unlock();
1120 BUG_ON(seq & 1);
1121 if (!retry)
1122 return;
1123 seq = 1;
1124 goto again;
1125 }
1126
1127 /*
1128 * Search for at least 1 mount point in the dentry's subdirs.
1129 * We descend to the next level whenever the d_subdirs
1130 * list is non-empty and continue searching.
1131 */
1132
1133 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1134 {
1135 int *ret = data;
1136 if (d_mountpoint(dentry)) {
1137 *ret = 1;
1138 return D_WALK_QUIT;
1139 }
1140 return D_WALK_CONTINUE;
1141 }
1142
1143 /**
1144 * have_submounts - check for mounts over a dentry
1145 * @parent: dentry to check.
1146 *
1147 * Return true if the parent or its subdirectories contain
1148 * a mount point
1149 */
1150 int have_submounts(struct dentry *parent)
1151 {
1152 int ret = 0;
1153
1154 d_walk(parent, &ret, check_mount, NULL);
1155
1156 return ret;
1157 }
1158 EXPORT_SYMBOL(have_submounts);
1159
1160 /*
1161 * Called by mount code to set a mountpoint and check if the mountpoint is
1162 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1163 * subtree can become unreachable).
1164 *
1165 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1166 * this reason take rename_lock and d_lock on dentry and ancestors.
1167 */
1168 int d_set_mounted(struct dentry *dentry)
1169 {
1170 struct dentry *p;
1171 int ret = -ENOENT;
1172 write_seqlock(&rename_lock);
1173 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1174 /* Need exclusion wrt. d_invalidate() */
1175 spin_lock(&p->d_lock);
1176 if (unlikely(d_unhashed(p))) {
1177 spin_unlock(&p->d_lock);
1178 goto out;
1179 }
1180 spin_unlock(&p->d_lock);
1181 }
1182 spin_lock(&dentry->d_lock);
1183 if (!d_unlinked(dentry)) {
1184 dentry->d_flags |= DCACHE_MOUNTED;
1185 ret = 0;
1186 }
1187 spin_unlock(&dentry->d_lock);
1188 out:
1189 write_sequnlock(&rename_lock);
1190 return ret;
1191 }
1192
1193 /*
1194 * Search the dentry child list of the specified parent,
1195 * and move any unused dentries to the end of the unused
1196 * list for prune_dcache(). We descend to the next level
1197 * whenever the d_subdirs list is non-empty and continue
1198 * searching.
1199 *
1200 * It returns zero iff there are no unused children,
1201 * otherwise it returns the number of children moved to
1202 * the end of the unused list. This may not be the total
1203 * number of unused children, because select_parent can
1204 * drop the lock and return early due to latency
1205 * constraints.
1206 */
1207
1208 struct select_data {
1209 struct dentry *start;
1210 struct list_head dispose;
1211 int found;
1212 };
1213
1214 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1215 {
1216 struct select_data *data = _data;
1217 enum d_walk_ret ret = D_WALK_CONTINUE;
1218
1219 if (data->start == dentry)
1220 goto out;
1221
1222 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1223 data->found++;
1224 } else {
1225 if (dentry->d_flags & DCACHE_LRU_LIST)
1226 d_lru_del(dentry);
1227 if (!dentry->d_lockref.count) {
1228 d_shrink_add(dentry, &data->dispose);
1229 data->found++;
1230 }
1231 }
1232 /*
1233 * We can return to the caller if we have found some (this
1234 * ensures forward progress). We'll be coming back to find
1235 * the rest.
1236 */
1237 if (!list_empty(&data->dispose))
1238 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1239 out:
1240 return ret;
1241 }
1242
1243 /**
1244 * shrink_dcache_parent - prune dcache
1245 * @parent: parent of entries to prune
1246 *
1247 * Prune the dcache to remove unused children of the parent dentry.
1248 */
1249 void shrink_dcache_parent(struct dentry *parent)
1250 {
1251 for (;;) {
1252 struct select_data data;
1253
1254 INIT_LIST_HEAD(&data.dispose);
1255 data.start = parent;
1256 data.found = 0;
1257
1258 d_walk(parent, &data, select_collect, NULL);
1259 if (!data.found)
1260 break;
1261
1262 shrink_dentry_list(&data.dispose);
1263 cond_resched();
1264 }
1265 }
1266 EXPORT_SYMBOL(shrink_dcache_parent);
1267
1268 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1269 {
1270 /* it has busy descendents; complain about those instead */
1271 if (!list_empty(&dentry->d_subdirs))
1272 return D_WALK_CONTINUE;
1273
1274 /* root with refcount 1 is fine */
1275 if (dentry == _data && dentry->d_lockref.count == 1)
1276 return D_WALK_CONTINUE;
1277
1278 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1279 " still in use (%d) [unmount of %s %s]\n",
1280 dentry,
1281 dentry->d_inode ?
1282 dentry->d_inode->i_ino : 0UL,
1283 dentry,
1284 dentry->d_lockref.count,
1285 dentry->d_sb->s_type->name,
1286 dentry->d_sb->s_id);
1287 WARN_ON(1);
1288 return D_WALK_CONTINUE;
1289 }
1290
1291 static void do_one_tree(struct dentry *dentry)
1292 {
1293 shrink_dcache_parent(dentry);
1294 d_walk(dentry, dentry, umount_check, NULL);
1295 d_drop(dentry);
1296 dput(dentry);
1297 }
1298
1299 /*
1300 * destroy the dentries attached to a superblock on unmounting
1301 */
1302 void shrink_dcache_for_umount(struct super_block *sb)
1303 {
1304 struct dentry *dentry;
1305
1306 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1307
1308 dentry = sb->s_root;
1309 sb->s_root = NULL;
1310 do_one_tree(dentry);
1311
1312 while (!hlist_bl_empty(&sb->s_anon)) {
1313 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1314 do_one_tree(dentry);
1315 }
1316 }
1317
1318 struct detach_data {
1319 struct select_data select;
1320 struct dentry *mountpoint;
1321 };
1322 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1323 {
1324 struct detach_data *data = _data;
1325
1326 if (d_mountpoint(dentry)) {
1327 __dget_dlock(dentry);
1328 data->mountpoint = dentry;
1329 return D_WALK_QUIT;
1330 }
1331
1332 return select_collect(&data->select, dentry);
1333 }
1334
1335 static void check_and_drop(void *_data)
1336 {
1337 struct detach_data *data = _data;
1338
1339 if (!data->mountpoint && !data->select.found)
1340 __d_drop(data->select.start);
1341 }
1342
1343 /**
1344 * d_invalidate - detach submounts, prune dcache, and drop
1345 * @dentry: dentry to invalidate (aka detach, prune and drop)
1346 *
1347 * no dcache lock.
1348 *
1349 * The final d_drop is done as an atomic operation relative to
1350 * rename_lock ensuring there are no races with d_set_mounted. This
1351 * ensures there are no unhashed dentries on the path to a mountpoint.
1352 */
1353 void d_invalidate(struct dentry *dentry)
1354 {
1355 /*
1356 * If it's already been dropped, return OK.
1357 */
1358 spin_lock(&dentry->d_lock);
1359 if (d_unhashed(dentry)) {
1360 spin_unlock(&dentry->d_lock);
1361 return;
1362 }
1363 spin_unlock(&dentry->d_lock);
1364
1365 /* Negative dentries can be dropped without further checks */
1366 if (!dentry->d_inode) {
1367 d_drop(dentry);
1368 return;
1369 }
1370
1371 for (;;) {
1372 struct detach_data data;
1373
1374 data.mountpoint = NULL;
1375 INIT_LIST_HEAD(&data.select.dispose);
1376 data.select.start = dentry;
1377 data.select.found = 0;
1378
1379 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1380
1381 if (data.select.found)
1382 shrink_dentry_list(&data.select.dispose);
1383
1384 if (data.mountpoint) {
1385 detach_mounts(data.mountpoint);
1386 dput(data.mountpoint);
1387 }
1388
1389 if (!data.mountpoint && !data.select.found)
1390 break;
1391
1392 cond_resched();
1393 }
1394 }
1395 EXPORT_SYMBOL(d_invalidate);
1396
1397 /**
1398 * __d_alloc - allocate a dcache entry
1399 * @sb: filesystem it will belong to
1400 * @name: qstr of the name
1401 *
1402 * Allocates a dentry. It returns %NULL if there is insufficient memory
1403 * available. On a success the dentry is returned. The name passed in is
1404 * copied and the copy passed in may be reused after this call.
1405 */
1406
1407 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1408 {
1409 struct dentry *dentry;
1410 char *dname;
1411
1412 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1413 if (!dentry)
1414 return NULL;
1415
1416 /*
1417 * We guarantee that the inline name is always NUL-terminated.
1418 * This way the memcpy() done by the name switching in rename
1419 * will still always have a NUL at the end, even if we might
1420 * be overwriting an internal NUL character
1421 */
1422 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1423 if (name->len > DNAME_INLINE_LEN-1) {
1424 size_t size = offsetof(struct external_name, name[1]);
1425 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1426 if (!p) {
1427 kmem_cache_free(dentry_cache, dentry);
1428 return NULL;
1429 }
1430 atomic_set(&p->u.count, 1);
1431 dname = p->name;
1432 } else {
1433 dname = dentry->d_iname;
1434 }
1435
1436 dentry->d_name.len = name->len;
1437 dentry->d_name.hash = name->hash;
1438 memcpy(dname, name->name, name->len);
1439 dname[name->len] = 0;
1440
1441 /* Make sure we always see the terminating NUL character */
1442 smp_wmb();
1443 dentry->d_name.name = dname;
1444
1445 dentry->d_lockref.count = 1;
1446 dentry->d_flags = 0;
1447 spin_lock_init(&dentry->d_lock);
1448 seqcount_init(&dentry->d_seq);
1449 dentry->d_inode = NULL;
1450 dentry->d_parent = dentry;
1451 dentry->d_sb = sb;
1452 dentry->d_op = NULL;
1453 dentry->d_fsdata = NULL;
1454 INIT_HLIST_BL_NODE(&dentry->d_hash);
1455 INIT_LIST_HEAD(&dentry->d_lru);
1456 INIT_LIST_HEAD(&dentry->d_subdirs);
1457 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1458 INIT_LIST_HEAD(&dentry->d_child);
1459 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1460
1461 this_cpu_inc(nr_dentry);
1462
1463 return dentry;
1464 }
1465
1466 /**
1467 * d_alloc - allocate a dcache entry
1468 * @parent: parent of entry to allocate
1469 * @name: qstr of the name
1470 *
1471 * Allocates a dentry. It returns %NULL if there is insufficient memory
1472 * available. On a success the dentry is returned. The name passed in is
1473 * copied and the copy passed in may be reused after this call.
1474 */
1475 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1476 {
1477 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1478 if (!dentry)
1479 return NULL;
1480
1481 spin_lock(&parent->d_lock);
1482 /*
1483 * don't need child lock because it is not subject
1484 * to concurrency here
1485 */
1486 __dget_dlock(parent);
1487 dentry->d_parent = parent;
1488 list_add(&dentry->d_child, &parent->d_subdirs);
1489 spin_unlock(&parent->d_lock);
1490
1491 return dentry;
1492 }
1493 EXPORT_SYMBOL(d_alloc);
1494
1495 /**
1496 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1497 * @sb: the superblock
1498 * @name: qstr of the name
1499 *
1500 * For a filesystem that just pins its dentries in memory and never
1501 * performs lookups at all, return an unhashed IS_ROOT dentry.
1502 */
1503 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1504 {
1505 return __d_alloc(sb, name);
1506 }
1507 EXPORT_SYMBOL(d_alloc_pseudo);
1508
1509 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1510 {
1511 struct qstr q;
1512
1513 q.name = name;
1514 q.len = strlen(name);
1515 q.hash = full_name_hash(q.name, q.len);
1516 return d_alloc(parent, &q);
1517 }
1518 EXPORT_SYMBOL(d_alloc_name);
1519
1520 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1521 {
1522 WARN_ON_ONCE(dentry->d_op);
1523 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1524 DCACHE_OP_COMPARE |
1525 DCACHE_OP_REVALIDATE |
1526 DCACHE_OP_WEAK_REVALIDATE |
1527 DCACHE_OP_DELETE ));
1528 dentry->d_op = op;
1529 if (!op)
1530 return;
1531 if (op->d_hash)
1532 dentry->d_flags |= DCACHE_OP_HASH;
1533 if (op->d_compare)
1534 dentry->d_flags |= DCACHE_OP_COMPARE;
1535 if (op->d_revalidate)
1536 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1537 if (op->d_weak_revalidate)
1538 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1539 if (op->d_delete)
1540 dentry->d_flags |= DCACHE_OP_DELETE;
1541 if (op->d_prune)
1542 dentry->d_flags |= DCACHE_OP_PRUNE;
1543
1544 }
1545 EXPORT_SYMBOL(d_set_d_op);
1546
1547 static unsigned d_flags_for_inode(struct inode *inode)
1548 {
1549 unsigned add_flags = DCACHE_FILE_TYPE;
1550
1551 if (!inode)
1552 return DCACHE_MISS_TYPE;
1553
1554 if (S_ISDIR(inode->i_mode)) {
1555 add_flags = DCACHE_DIRECTORY_TYPE;
1556 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1557 if (unlikely(!inode->i_op->lookup))
1558 add_flags = DCACHE_AUTODIR_TYPE;
1559 else
1560 inode->i_opflags |= IOP_LOOKUP;
1561 }
1562 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1563 if (unlikely(inode->i_op->follow_link))
1564 add_flags = DCACHE_SYMLINK_TYPE;
1565 else
1566 inode->i_opflags |= IOP_NOFOLLOW;
1567 }
1568
1569 if (unlikely(IS_AUTOMOUNT(inode)))
1570 add_flags |= DCACHE_NEED_AUTOMOUNT;
1571 return add_flags;
1572 }
1573
1574 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1575 {
1576 unsigned add_flags = d_flags_for_inode(inode);
1577
1578 spin_lock(&dentry->d_lock);
1579 __d_set_type(dentry, add_flags);
1580 if (inode)
1581 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1582 dentry->d_inode = inode;
1583 dentry_rcuwalk_barrier(dentry);
1584 spin_unlock(&dentry->d_lock);
1585 fsnotify_d_instantiate(dentry, inode);
1586 }
1587
1588 /**
1589 * d_instantiate - fill in inode information for a dentry
1590 * @entry: dentry to complete
1591 * @inode: inode to attach to this dentry
1592 *
1593 * Fill in inode information in the entry.
1594 *
1595 * This turns negative dentries into productive full members
1596 * of society.
1597 *
1598 * NOTE! This assumes that the inode count has been incremented
1599 * (or otherwise set) by the caller to indicate that it is now
1600 * in use by the dcache.
1601 */
1602
1603 void d_instantiate(struct dentry *entry, struct inode * inode)
1604 {
1605 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1606 if (inode)
1607 spin_lock(&inode->i_lock);
1608 __d_instantiate(entry, inode);
1609 if (inode)
1610 spin_unlock(&inode->i_lock);
1611 security_d_instantiate(entry, inode);
1612 }
1613 EXPORT_SYMBOL(d_instantiate);
1614
1615 /**
1616 * d_instantiate_unique - instantiate a non-aliased dentry
1617 * @entry: dentry to instantiate
1618 * @inode: inode to attach to this dentry
1619 *
1620 * Fill in inode information in the entry. On success, it returns NULL.
1621 * If an unhashed alias of "entry" already exists, then we return the
1622 * aliased dentry instead and drop one reference to inode.
1623 *
1624 * Note that in order to avoid conflicts with rename() etc, the caller
1625 * had better be holding the parent directory semaphore.
1626 *
1627 * This also assumes that the inode count has been incremented
1628 * (or otherwise set) by the caller to indicate that it is now
1629 * in use by the dcache.
1630 */
1631 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1632 struct inode *inode)
1633 {
1634 struct dentry *alias;
1635 int len = entry->d_name.len;
1636 const char *name = entry->d_name.name;
1637 unsigned int hash = entry->d_name.hash;
1638
1639 if (!inode) {
1640 __d_instantiate(entry, NULL);
1641 return NULL;
1642 }
1643
1644 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1645 /*
1646 * Don't need alias->d_lock here, because aliases with
1647 * d_parent == entry->d_parent are not subject to name or
1648 * parent changes, because the parent inode i_mutex is held.
1649 */
1650 if (alias->d_name.hash != hash)
1651 continue;
1652 if (alias->d_parent != entry->d_parent)
1653 continue;
1654 if (alias->d_name.len != len)
1655 continue;
1656 if (dentry_cmp(alias, name, len))
1657 continue;
1658 __dget(alias);
1659 return alias;
1660 }
1661
1662 __d_instantiate(entry, inode);
1663 return NULL;
1664 }
1665
1666 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1667 {
1668 struct dentry *result;
1669
1670 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1671
1672 if (inode)
1673 spin_lock(&inode->i_lock);
1674 result = __d_instantiate_unique(entry, inode);
1675 if (inode)
1676 spin_unlock(&inode->i_lock);
1677
1678 if (!result) {
1679 security_d_instantiate(entry, inode);
1680 return NULL;
1681 }
1682
1683 BUG_ON(!d_unhashed(result));
1684 iput(inode);
1685 return result;
1686 }
1687
1688 EXPORT_SYMBOL(d_instantiate_unique);
1689
1690 /**
1691 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1692 * @entry: dentry to complete
1693 * @inode: inode to attach to this dentry
1694 *
1695 * Fill in inode information in the entry. If a directory alias is found, then
1696 * return an error (and drop inode). Together with d_materialise_unique() this
1697 * guarantees that a directory inode may never have more than one alias.
1698 */
1699 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1700 {
1701 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1702
1703 spin_lock(&inode->i_lock);
1704 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1705 spin_unlock(&inode->i_lock);
1706 iput(inode);
1707 return -EBUSY;
1708 }
1709 __d_instantiate(entry, inode);
1710 spin_unlock(&inode->i_lock);
1711 security_d_instantiate(entry, inode);
1712
1713 return 0;
1714 }
1715 EXPORT_SYMBOL(d_instantiate_no_diralias);
1716
1717 struct dentry *d_make_root(struct inode *root_inode)
1718 {
1719 struct dentry *res = NULL;
1720
1721 if (root_inode) {
1722 static const struct qstr name = QSTR_INIT("/", 1);
1723
1724 res = __d_alloc(root_inode->i_sb, &name);
1725 if (res)
1726 d_instantiate(res, root_inode);
1727 else
1728 iput(root_inode);
1729 }
1730 return res;
1731 }
1732 EXPORT_SYMBOL(d_make_root);
1733
1734 static struct dentry * __d_find_any_alias(struct inode *inode)
1735 {
1736 struct dentry *alias;
1737
1738 if (hlist_empty(&inode->i_dentry))
1739 return NULL;
1740 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1741 __dget(alias);
1742 return alias;
1743 }
1744
1745 /**
1746 * d_find_any_alias - find any alias for a given inode
1747 * @inode: inode to find an alias for
1748 *
1749 * If any aliases exist for the given inode, take and return a
1750 * reference for one of them. If no aliases exist, return %NULL.
1751 */
1752 struct dentry *d_find_any_alias(struct inode *inode)
1753 {
1754 struct dentry *de;
1755
1756 spin_lock(&inode->i_lock);
1757 de = __d_find_any_alias(inode);
1758 spin_unlock(&inode->i_lock);
1759 return de;
1760 }
1761 EXPORT_SYMBOL(d_find_any_alias);
1762
1763 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1764 {
1765 static const struct qstr anonstring = QSTR_INIT("/", 1);
1766 struct dentry *tmp;
1767 struct dentry *res;
1768 unsigned add_flags;
1769
1770 if (!inode)
1771 return ERR_PTR(-ESTALE);
1772 if (IS_ERR(inode))
1773 return ERR_CAST(inode);
1774
1775 res = d_find_any_alias(inode);
1776 if (res)
1777 goto out_iput;
1778
1779 tmp = __d_alloc(inode->i_sb, &anonstring);
1780 if (!tmp) {
1781 res = ERR_PTR(-ENOMEM);
1782 goto out_iput;
1783 }
1784
1785 spin_lock(&inode->i_lock);
1786 res = __d_find_any_alias(inode);
1787 if (res) {
1788 spin_unlock(&inode->i_lock);
1789 dput(tmp);
1790 goto out_iput;
1791 }
1792
1793 /* attach a disconnected dentry */
1794 add_flags = d_flags_for_inode(inode);
1795
1796 if (disconnected)
1797 add_flags |= DCACHE_DISCONNECTED;
1798
1799 spin_lock(&tmp->d_lock);
1800 tmp->d_inode = inode;
1801 tmp->d_flags |= add_flags;
1802 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1803 hlist_bl_lock(&tmp->d_sb->s_anon);
1804 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1805 hlist_bl_unlock(&tmp->d_sb->s_anon);
1806 spin_unlock(&tmp->d_lock);
1807 spin_unlock(&inode->i_lock);
1808 security_d_instantiate(tmp, inode);
1809
1810 return tmp;
1811
1812 out_iput:
1813 if (res && !IS_ERR(res))
1814 security_d_instantiate(res, inode);
1815 iput(inode);
1816 return res;
1817 }
1818
1819 /**
1820 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1821 * @inode: inode to allocate the dentry for
1822 *
1823 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1824 * similar open by handle operations. The returned dentry may be anonymous,
1825 * or may have a full name (if the inode was already in the cache).
1826 *
1827 * When called on a directory inode, we must ensure that the inode only ever
1828 * has one dentry. If a dentry is found, that is returned instead of
1829 * allocating a new one.
1830 *
1831 * On successful return, the reference to the inode has been transferred
1832 * to the dentry. In case of an error the reference on the inode is released.
1833 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1834 * be passed in and the error will be propagated to the return value,
1835 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1836 */
1837 struct dentry *d_obtain_alias(struct inode *inode)
1838 {
1839 return __d_obtain_alias(inode, 1);
1840 }
1841 EXPORT_SYMBOL(d_obtain_alias);
1842
1843 /**
1844 * d_obtain_root - find or allocate a dentry for a given inode
1845 * @inode: inode to allocate the dentry for
1846 *
1847 * Obtain an IS_ROOT dentry for the root of a filesystem.
1848 *
1849 * We must ensure that directory inodes only ever have one dentry. If a
1850 * dentry is found, that is returned instead of allocating a new one.
1851 *
1852 * On successful return, the reference to the inode has been transferred
1853 * to the dentry. In case of an error the reference on the inode is
1854 * released. A %NULL or IS_ERR inode may be passed in and will be the
1855 * error will be propagate to the return value, with a %NULL @inode
1856 * replaced by ERR_PTR(-ESTALE).
1857 */
1858 struct dentry *d_obtain_root(struct inode *inode)
1859 {
1860 return __d_obtain_alias(inode, 0);
1861 }
1862 EXPORT_SYMBOL(d_obtain_root);
1863
1864 /**
1865 * d_add_ci - lookup or allocate new dentry with case-exact name
1866 * @inode: the inode case-insensitive lookup has found
1867 * @dentry: the negative dentry that was passed to the parent's lookup func
1868 * @name: the case-exact name to be associated with the returned dentry
1869 *
1870 * This is to avoid filling the dcache with case-insensitive names to the
1871 * same inode, only the actual correct case is stored in the dcache for
1872 * case-insensitive filesystems.
1873 *
1874 * For a case-insensitive lookup match and if the the case-exact dentry
1875 * already exists in in the dcache, use it and return it.
1876 *
1877 * If no entry exists with the exact case name, allocate new dentry with
1878 * the exact case, and return the spliced entry.
1879 */
1880 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1881 struct qstr *name)
1882 {
1883 struct dentry *found;
1884 struct dentry *new;
1885
1886 /*
1887 * First check if a dentry matching the name already exists,
1888 * if not go ahead and create it now.
1889 */
1890 found = d_hash_and_lookup(dentry->d_parent, name);
1891 if (!found) {
1892 new = d_alloc(dentry->d_parent, name);
1893 if (!new) {
1894 found = ERR_PTR(-ENOMEM);
1895 } else {
1896 found = d_splice_alias(inode, new);
1897 if (found) {
1898 dput(new);
1899 return found;
1900 }
1901 return new;
1902 }
1903 }
1904 iput(inode);
1905 return found;
1906 }
1907 EXPORT_SYMBOL(d_add_ci);
1908
1909 /*
1910 * Do the slow-case of the dentry name compare.
1911 *
1912 * Unlike the dentry_cmp() function, we need to atomically
1913 * load the name and length information, so that the
1914 * filesystem can rely on them, and can use the 'name' and
1915 * 'len' information without worrying about walking off the
1916 * end of memory etc.
1917 *
1918 * Thus the read_seqcount_retry() and the "duplicate" info
1919 * in arguments (the low-level filesystem should not look
1920 * at the dentry inode or name contents directly, since
1921 * rename can change them while we're in RCU mode).
1922 */
1923 enum slow_d_compare {
1924 D_COMP_OK,
1925 D_COMP_NOMATCH,
1926 D_COMP_SEQRETRY,
1927 };
1928
1929 static noinline enum slow_d_compare slow_dentry_cmp(
1930 const struct dentry *parent,
1931 struct dentry *dentry,
1932 unsigned int seq,
1933 const struct qstr *name)
1934 {
1935 int tlen = dentry->d_name.len;
1936 const char *tname = dentry->d_name.name;
1937
1938 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1939 cpu_relax();
1940 return D_COMP_SEQRETRY;
1941 }
1942 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1943 return D_COMP_NOMATCH;
1944 return D_COMP_OK;
1945 }
1946
1947 /**
1948 * __d_lookup_rcu - search for a dentry (racy, store-free)
1949 * @parent: parent dentry
1950 * @name: qstr of name we wish to find
1951 * @seqp: returns d_seq value at the point where the dentry was found
1952 * Returns: dentry, or NULL
1953 *
1954 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1955 * resolution (store-free path walking) design described in
1956 * Documentation/filesystems/path-lookup.txt.
1957 *
1958 * This is not to be used outside core vfs.
1959 *
1960 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1961 * held, and rcu_read_lock held. The returned dentry must not be stored into
1962 * without taking d_lock and checking d_seq sequence count against @seq
1963 * returned here.
1964 *
1965 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
1966 * function.
1967 *
1968 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1969 * the returned dentry, so long as its parent's seqlock is checked after the
1970 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1971 * is formed, giving integrity down the path walk.
1972 *
1973 * NOTE! The caller *has* to check the resulting dentry against the sequence
1974 * number we've returned before using any of the resulting dentry state!
1975 */
1976 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1977 const struct qstr *name,
1978 unsigned *seqp)
1979 {
1980 u64 hashlen = name->hash_len;
1981 const unsigned char *str = name->name;
1982 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1983 struct hlist_bl_node *node;
1984 struct dentry *dentry;
1985
1986 /*
1987 * Note: There is significant duplication with __d_lookup_rcu which is
1988 * required to prevent single threaded performance regressions
1989 * especially on architectures where smp_rmb (in seqcounts) are costly.
1990 * Keep the two functions in sync.
1991 */
1992
1993 /*
1994 * The hash list is protected using RCU.
1995 *
1996 * Carefully use d_seq when comparing a candidate dentry, to avoid
1997 * races with d_move().
1998 *
1999 * It is possible that concurrent renames can mess up our list
2000 * walk here and result in missing our dentry, resulting in the
2001 * false-negative result. d_lookup() protects against concurrent
2002 * renames using rename_lock seqlock.
2003 *
2004 * See Documentation/filesystems/path-lookup.txt for more details.
2005 */
2006 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2007 unsigned seq;
2008
2009 seqretry:
2010 /*
2011 * The dentry sequence count protects us from concurrent
2012 * renames, and thus protects parent and name fields.
2013 *
2014 * The caller must perform a seqcount check in order
2015 * to do anything useful with the returned dentry.
2016 *
2017 * NOTE! We do a "raw" seqcount_begin here. That means that
2018 * we don't wait for the sequence count to stabilize if it
2019 * is in the middle of a sequence change. If we do the slow
2020 * dentry compare, we will do seqretries until it is stable,
2021 * and if we end up with a successful lookup, we actually
2022 * want to exit RCU lookup anyway.
2023 */
2024 seq = raw_seqcount_begin(&dentry->d_seq);
2025 if (dentry->d_parent != parent)
2026 continue;
2027 if (d_unhashed(dentry))
2028 continue;
2029
2030 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2031 if (dentry->d_name.hash != hashlen_hash(hashlen))
2032 continue;
2033 *seqp = seq;
2034 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2035 case D_COMP_OK:
2036 return dentry;
2037 case D_COMP_NOMATCH:
2038 continue;
2039 default:
2040 goto seqretry;
2041 }
2042 }
2043
2044 if (dentry->d_name.hash_len != hashlen)
2045 continue;
2046 *seqp = seq;
2047 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2048 return dentry;
2049 }
2050 return NULL;
2051 }
2052
2053 /**
2054 * d_lookup - search for a dentry
2055 * @parent: parent dentry
2056 * @name: qstr of name we wish to find
2057 * Returns: dentry, or NULL
2058 *
2059 * d_lookup searches the children of the parent dentry for the name in
2060 * question. If the dentry is found its reference count is incremented and the
2061 * dentry is returned. The caller must use dput to free the entry when it has
2062 * finished using it. %NULL is returned if the dentry does not exist.
2063 */
2064 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2065 {
2066 struct dentry *dentry;
2067 unsigned seq;
2068
2069 do {
2070 seq = read_seqbegin(&rename_lock);
2071 dentry = __d_lookup(parent, name);
2072 if (dentry)
2073 break;
2074 } while (read_seqretry(&rename_lock, seq));
2075 return dentry;
2076 }
2077 EXPORT_SYMBOL(d_lookup);
2078
2079 /**
2080 * __d_lookup - search for a dentry (racy)
2081 * @parent: parent dentry
2082 * @name: qstr of name we wish to find
2083 * Returns: dentry, or NULL
2084 *
2085 * __d_lookup is like d_lookup, however it may (rarely) return a
2086 * false-negative result due to unrelated rename activity.
2087 *
2088 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2089 * however it must be used carefully, eg. with a following d_lookup in
2090 * the case of failure.
2091 *
2092 * __d_lookup callers must be commented.
2093 */
2094 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2095 {
2096 unsigned int len = name->len;
2097 unsigned int hash = name->hash;
2098 const unsigned char *str = name->name;
2099 struct hlist_bl_head *b = d_hash(parent, hash);
2100 struct hlist_bl_node *node;
2101 struct dentry *found = NULL;
2102 struct dentry *dentry;
2103
2104 /*
2105 * Note: There is significant duplication with __d_lookup_rcu which is
2106 * required to prevent single threaded performance regressions
2107 * especially on architectures where smp_rmb (in seqcounts) are costly.
2108 * Keep the two functions in sync.
2109 */
2110
2111 /*
2112 * The hash list is protected using RCU.
2113 *
2114 * Take d_lock when comparing a candidate dentry, to avoid races
2115 * with d_move().
2116 *
2117 * It is possible that concurrent renames can mess up our list
2118 * walk here and result in missing our dentry, resulting in the
2119 * false-negative result. d_lookup() protects against concurrent
2120 * renames using rename_lock seqlock.
2121 *
2122 * See Documentation/filesystems/path-lookup.txt for more details.
2123 */
2124 rcu_read_lock();
2125
2126 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2127
2128 if (dentry->d_name.hash != hash)
2129 continue;
2130
2131 spin_lock(&dentry->d_lock);
2132 if (dentry->d_parent != parent)
2133 goto next;
2134 if (d_unhashed(dentry))
2135 goto next;
2136
2137 /*
2138 * It is safe to compare names since d_move() cannot
2139 * change the qstr (protected by d_lock).
2140 */
2141 if (parent->d_flags & DCACHE_OP_COMPARE) {
2142 int tlen = dentry->d_name.len;
2143 const char *tname = dentry->d_name.name;
2144 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2145 goto next;
2146 } else {
2147 if (dentry->d_name.len != len)
2148 goto next;
2149 if (dentry_cmp(dentry, str, len))
2150 goto next;
2151 }
2152
2153 dentry->d_lockref.count++;
2154 found = dentry;
2155 spin_unlock(&dentry->d_lock);
2156 break;
2157 next:
2158 spin_unlock(&dentry->d_lock);
2159 }
2160 rcu_read_unlock();
2161
2162 return found;
2163 }
2164
2165 /**
2166 * d_hash_and_lookup - hash the qstr then search for a dentry
2167 * @dir: Directory to search in
2168 * @name: qstr of name we wish to find
2169 *
2170 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2171 */
2172 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2173 {
2174 /*
2175 * Check for a fs-specific hash function. Note that we must
2176 * calculate the standard hash first, as the d_op->d_hash()
2177 * routine may choose to leave the hash value unchanged.
2178 */
2179 name->hash = full_name_hash(name->name, name->len);
2180 if (dir->d_flags & DCACHE_OP_HASH) {
2181 int err = dir->d_op->d_hash(dir, name);
2182 if (unlikely(err < 0))
2183 return ERR_PTR(err);
2184 }
2185 return d_lookup(dir, name);
2186 }
2187 EXPORT_SYMBOL(d_hash_and_lookup);
2188
2189 /**
2190 * d_validate - verify dentry provided from insecure source (deprecated)
2191 * @dentry: The dentry alleged to be valid child of @dparent
2192 * @dparent: The parent dentry (known to be valid)
2193 *
2194 * An insecure source has sent us a dentry, here we verify it and dget() it.
2195 * This is used by ncpfs in its readdir implementation.
2196 * Zero is returned in the dentry is invalid.
2197 *
2198 * This function is slow for big directories, and deprecated, do not use it.
2199 */
2200 int d_validate(struct dentry *dentry, struct dentry *dparent)
2201 {
2202 struct dentry *child;
2203
2204 spin_lock(&dparent->d_lock);
2205 list_for_each_entry(child, &dparent->d_subdirs, d_child) {
2206 if (dentry == child) {
2207 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2208 __dget_dlock(dentry);
2209 spin_unlock(&dentry->d_lock);
2210 spin_unlock(&dparent->d_lock);
2211 return 1;
2212 }
2213 }
2214 spin_unlock(&dparent->d_lock);
2215
2216 return 0;
2217 }
2218 EXPORT_SYMBOL(d_validate);
2219
2220 /*
2221 * When a file is deleted, we have two options:
2222 * - turn this dentry into a negative dentry
2223 * - unhash this dentry and free it.
2224 *
2225 * Usually, we want to just turn this into
2226 * a negative dentry, but if anybody else is
2227 * currently using the dentry or the inode
2228 * we can't do that and we fall back on removing
2229 * it from the hash queues and waiting for
2230 * it to be deleted later when it has no users
2231 */
2232
2233 /**
2234 * d_delete - delete a dentry
2235 * @dentry: The dentry to delete
2236 *
2237 * Turn the dentry into a negative dentry if possible, otherwise
2238 * remove it from the hash queues so it can be deleted later
2239 */
2240
2241 void d_delete(struct dentry * dentry)
2242 {
2243 struct inode *inode;
2244 int isdir = 0;
2245 /*
2246 * Are we the only user?
2247 */
2248 again:
2249 spin_lock(&dentry->d_lock);
2250 inode = dentry->d_inode;
2251 isdir = S_ISDIR(inode->i_mode);
2252 if (dentry->d_lockref.count == 1) {
2253 if (!spin_trylock(&inode->i_lock)) {
2254 spin_unlock(&dentry->d_lock);
2255 cpu_relax();
2256 goto again;
2257 }
2258 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2259 dentry_unlink_inode(dentry);
2260 fsnotify_nameremove(dentry, isdir);
2261 return;
2262 }
2263
2264 if (!d_unhashed(dentry))
2265 __d_drop(dentry);
2266
2267 spin_unlock(&dentry->d_lock);
2268
2269 fsnotify_nameremove(dentry, isdir);
2270 }
2271 EXPORT_SYMBOL(d_delete);
2272
2273 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2274 {
2275 BUG_ON(!d_unhashed(entry));
2276 hlist_bl_lock(b);
2277 entry->d_flags |= DCACHE_RCUACCESS;
2278 hlist_bl_add_head_rcu(&entry->d_hash, b);
2279 hlist_bl_unlock(b);
2280 }
2281
2282 static void _d_rehash(struct dentry * entry)
2283 {
2284 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2285 }
2286
2287 /**
2288 * d_rehash - add an entry back to the hash
2289 * @entry: dentry to add to the hash
2290 *
2291 * Adds a dentry to the hash according to its name.
2292 */
2293
2294 void d_rehash(struct dentry * entry)
2295 {
2296 spin_lock(&entry->d_lock);
2297 _d_rehash(entry);
2298 spin_unlock(&entry->d_lock);
2299 }
2300 EXPORT_SYMBOL(d_rehash);
2301
2302 /**
2303 * dentry_update_name_case - update case insensitive dentry with a new name
2304 * @dentry: dentry to be updated
2305 * @name: new name
2306 *
2307 * Update a case insensitive dentry with new case of name.
2308 *
2309 * dentry must have been returned by d_lookup with name @name. Old and new
2310 * name lengths must match (ie. no d_compare which allows mismatched name
2311 * lengths).
2312 *
2313 * Parent inode i_mutex must be held over d_lookup and into this call (to
2314 * keep renames and concurrent inserts, and readdir(2) away).
2315 */
2316 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2317 {
2318 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2319 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2320
2321 spin_lock(&dentry->d_lock);
2322 write_seqcount_begin(&dentry->d_seq);
2323 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2324 write_seqcount_end(&dentry->d_seq);
2325 spin_unlock(&dentry->d_lock);
2326 }
2327 EXPORT_SYMBOL(dentry_update_name_case);
2328
2329 static void swap_names(struct dentry *dentry, struct dentry *target)
2330 {
2331 if (unlikely(dname_external(target))) {
2332 if (unlikely(dname_external(dentry))) {
2333 /*
2334 * Both external: swap the pointers
2335 */
2336 swap(target->d_name.name, dentry->d_name.name);
2337 } else {
2338 /*
2339 * dentry:internal, target:external. Steal target's
2340 * storage and make target internal.
2341 */
2342 memcpy(target->d_iname, dentry->d_name.name,
2343 dentry->d_name.len + 1);
2344 dentry->d_name.name = target->d_name.name;
2345 target->d_name.name = target->d_iname;
2346 }
2347 } else {
2348 if (unlikely(dname_external(dentry))) {
2349 /*
2350 * dentry:external, target:internal. Give dentry's
2351 * storage to target and make dentry internal
2352 */
2353 memcpy(dentry->d_iname, target->d_name.name,
2354 target->d_name.len + 1);
2355 target->d_name.name = dentry->d_name.name;
2356 dentry->d_name.name = dentry->d_iname;
2357 } else {
2358 /*
2359 * Both are internal.
2360 */
2361 unsigned int i;
2362 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2363 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2364 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2365 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2366 swap(((long *) &dentry->d_iname)[i],
2367 ((long *) &target->d_iname)[i]);
2368 }
2369 }
2370 }
2371 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2372 }
2373
2374 static void copy_name(struct dentry *dentry, struct dentry *target)
2375 {
2376 struct external_name *old_name = NULL;
2377 if (unlikely(dname_external(dentry)))
2378 old_name = external_name(dentry);
2379 if (unlikely(dname_external(target))) {
2380 atomic_inc(&external_name(target)->u.count);
2381 dentry->d_name = target->d_name;
2382 } else {
2383 memcpy(dentry->d_iname, target->d_name.name,
2384 target->d_name.len + 1);
2385 dentry->d_name.name = dentry->d_iname;
2386 dentry->d_name.hash_len = target->d_name.hash_len;
2387 }
2388 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2389 kfree_rcu(old_name, u.head);
2390 }
2391
2392 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2393 {
2394 /*
2395 * XXXX: do we really need to take target->d_lock?
2396 */
2397 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2398 spin_lock(&target->d_parent->d_lock);
2399 else {
2400 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2401 spin_lock(&dentry->d_parent->d_lock);
2402 spin_lock_nested(&target->d_parent->d_lock,
2403 DENTRY_D_LOCK_NESTED);
2404 } else {
2405 spin_lock(&target->d_parent->d_lock);
2406 spin_lock_nested(&dentry->d_parent->d_lock,
2407 DENTRY_D_LOCK_NESTED);
2408 }
2409 }
2410 if (target < dentry) {
2411 spin_lock_nested(&target->d_lock, 2);
2412 spin_lock_nested(&dentry->d_lock, 3);
2413 } else {
2414 spin_lock_nested(&dentry->d_lock, 2);
2415 spin_lock_nested(&target->d_lock, 3);
2416 }
2417 }
2418
2419 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2420 {
2421 if (target->d_parent != dentry->d_parent)
2422 spin_unlock(&dentry->d_parent->d_lock);
2423 if (target->d_parent != target)
2424 spin_unlock(&target->d_parent->d_lock);
2425 spin_unlock(&target->d_lock);
2426 spin_unlock(&dentry->d_lock);
2427 }
2428
2429 /*
2430 * When switching names, the actual string doesn't strictly have to
2431 * be preserved in the target - because we're dropping the target
2432 * anyway. As such, we can just do a simple memcpy() to copy over
2433 * the new name before we switch, unless we are going to rehash
2434 * it. Note that if we *do* unhash the target, we are not allowed
2435 * to rehash it without giving it a new name/hash key - whether
2436 * we swap or overwrite the names here, resulting name won't match
2437 * the reality in filesystem; it's only there for d_path() purposes.
2438 * Note that all of this is happening under rename_lock, so the
2439 * any hash lookup seeing it in the middle of manipulations will
2440 * be discarded anyway. So we do not care what happens to the hash
2441 * key in that case.
2442 */
2443 /*
2444 * __d_move - move a dentry
2445 * @dentry: entry to move
2446 * @target: new dentry
2447 * @exchange: exchange the two dentries
2448 *
2449 * Update the dcache to reflect the move of a file name. Negative
2450 * dcache entries should not be moved in this way. Caller must hold
2451 * rename_lock, the i_mutex of the source and target directories,
2452 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2453 */
2454 static void __d_move(struct dentry *dentry, struct dentry *target,
2455 bool exchange)
2456 {
2457 if (!dentry->d_inode)
2458 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2459
2460 BUG_ON(d_ancestor(dentry, target));
2461 BUG_ON(d_ancestor(target, dentry));
2462
2463 dentry_lock_for_move(dentry, target);
2464
2465 write_seqcount_begin(&dentry->d_seq);
2466 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2467
2468 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2469
2470 /*
2471 * Move the dentry to the target hash queue. Don't bother checking
2472 * for the same hash queue because of how unlikely it is.
2473 */
2474 __d_drop(dentry);
2475 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2476
2477 /*
2478 * Unhash the target (d_delete() is not usable here). If exchanging
2479 * the two dentries, then rehash onto the other's hash queue.
2480 */
2481 __d_drop(target);
2482 if (exchange) {
2483 __d_rehash(target,
2484 d_hash(dentry->d_parent, dentry->d_name.hash));
2485 }
2486
2487 /* Switch the names.. */
2488 if (exchange)
2489 swap_names(dentry, target);
2490 else
2491 copy_name(dentry, target);
2492
2493 /* ... and switch them in the tree */
2494 if (IS_ROOT(dentry)) {
2495 /* splicing a tree */
2496 dentry->d_parent = target->d_parent;
2497 target->d_parent = target;
2498 list_del_init(&target->d_child);
2499 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2500 } else {
2501 /* swapping two dentries */
2502 swap(dentry->d_parent, target->d_parent);
2503 list_move(&target->d_child, &target->d_parent->d_subdirs);
2504 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2505 if (exchange)
2506 fsnotify_d_move(target);
2507 fsnotify_d_move(dentry);
2508 }
2509
2510 write_seqcount_end(&target->d_seq);
2511 write_seqcount_end(&dentry->d_seq);
2512
2513 dentry_unlock_for_move(dentry, target);
2514 }
2515
2516 /*
2517 * d_move - move a dentry
2518 * @dentry: entry to move
2519 * @target: new dentry
2520 *
2521 * Update the dcache to reflect the move of a file name. Negative
2522 * dcache entries should not be moved in this way. See the locking
2523 * requirements for __d_move.
2524 */
2525 void d_move(struct dentry *dentry, struct dentry *target)
2526 {
2527 write_seqlock(&rename_lock);
2528 __d_move(dentry, target, false);
2529 write_sequnlock(&rename_lock);
2530 }
2531 EXPORT_SYMBOL(d_move);
2532
2533 /*
2534 * d_exchange - exchange two dentries
2535 * @dentry1: first dentry
2536 * @dentry2: second dentry
2537 */
2538 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2539 {
2540 write_seqlock(&rename_lock);
2541
2542 WARN_ON(!dentry1->d_inode);
2543 WARN_ON(!dentry2->d_inode);
2544 WARN_ON(IS_ROOT(dentry1));
2545 WARN_ON(IS_ROOT(dentry2));
2546
2547 __d_move(dentry1, dentry2, true);
2548
2549 write_sequnlock(&rename_lock);
2550 }
2551
2552 /**
2553 * d_ancestor - search for an ancestor
2554 * @p1: ancestor dentry
2555 * @p2: child dentry
2556 *
2557 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2558 * an ancestor of p2, else NULL.
2559 */
2560 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2561 {
2562 struct dentry *p;
2563
2564 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2565 if (p->d_parent == p1)
2566 return p;
2567 }
2568 return NULL;
2569 }
2570
2571 /*
2572 * This helper attempts to cope with remotely renamed directories
2573 *
2574 * It assumes that the caller is already holding
2575 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2576 *
2577 * Note: If ever the locking in lock_rename() changes, then please
2578 * remember to update this too...
2579 */
2580 static int __d_unalias(struct inode *inode,
2581 struct dentry *dentry, struct dentry *alias)
2582 {
2583 struct mutex *m1 = NULL, *m2 = NULL;
2584 int ret = -EBUSY;
2585
2586 /* If alias and dentry share a parent, then no extra locks required */
2587 if (alias->d_parent == dentry->d_parent)
2588 goto out_unalias;
2589
2590 /* See lock_rename() */
2591 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2592 goto out_err;
2593 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2594 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2595 goto out_err;
2596 m2 = &alias->d_parent->d_inode->i_mutex;
2597 out_unalias:
2598 __d_move(alias, dentry, false);
2599 ret = 0;
2600 out_err:
2601 spin_unlock(&inode->i_lock);
2602 if (m2)
2603 mutex_unlock(m2);
2604 if (m1)
2605 mutex_unlock(m1);
2606 return ret;
2607 }
2608
2609 /**
2610 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2611 * @inode: the inode which may have a disconnected dentry
2612 * @dentry: a negative dentry which we want to point to the inode.
2613 *
2614 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2615 * place of the given dentry and return it, else simply d_add the inode
2616 * to the dentry and return NULL.
2617 *
2618 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2619 * we should error out: directories can't have multiple aliases.
2620 *
2621 * This is needed in the lookup routine of any filesystem that is exportable
2622 * (via knfsd) so that we can build dcache paths to directories effectively.
2623 *
2624 * If a dentry was found and moved, then it is returned. Otherwise NULL
2625 * is returned. This matches the expected return value of ->lookup.
2626 *
2627 * Cluster filesystems may call this function with a negative, hashed dentry.
2628 * In that case, we know that the inode will be a regular file, and also this
2629 * will only occur during atomic_open. So we need to check for the dentry
2630 * being already hashed only in the final case.
2631 */
2632 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2633 {
2634 if (IS_ERR(inode))
2635 return ERR_CAST(inode);
2636
2637 BUG_ON(!d_unhashed(dentry));
2638
2639 if (!inode) {
2640 __d_instantiate(dentry, NULL);
2641 goto out;
2642 }
2643 spin_lock(&inode->i_lock);
2644 if (S_ISDIR(inode->i_mode)) {
2645 struct dentry *new = __d_find_any_alias(inode);
2646 if (unlikely(new)) {
2647 write_seqlock(&rename_lock);
2648 if (unlikely(d_ancestor(new, dentry))) {
2649 write_sequnlock(&rename_lock);
2650 spin_unlock(&inode->i_lock);
2651 dput(new);
2652 new = ERR_PTR(-ELOOP);
2653 pr_warn_ratelimited(
2654 "VFS: Lookup of '%s' in %s %s"
2655 " would have caused loop\n",
2656 dentry->d_name.name,
2657 inode->i_sb->s_type->name,
2658 inode->i_sb->s_id);
2659 } else if (!IS_ROOT(new)) {
2660 int err = __d_unalias(inode, dentry, new);
2661 write_sequnlock(&rename_lock);
2662 if (err) {
2663 dput(new);
2664 new = ERR_PTR(err);
2665 }
2666 } else {
2667 __d_move(new, dentry, false);
2668 write_sequnlock(&rename_lock);
2669 spin_unlock(&inode->i_lock);
2670 security_d_instantiate(new, inode);
2671 }
2672 iput(inode);
2673 return new;
2674 }
2675 }
2676 /* already taking inode->i_lock, so d_add() by hand */
2677 __d_instantiate(dentry, inode);
2678 spin_unlock(&inode->i_lock);
2679 out:
2680 security_d_instantiate(dentry, inode);
2681 d_rehash(dentry);
2682 return NULL;
2683 }
2684 EXPORT_SYMBOL(d_splice_alias);
2685
2686 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2687 {
2688 *buflen -= namelen;
2689 if (*buflen < 0)
2690 return -ENAMETOOLONG;
2691 *buffer -= namelen;
2692 memcpy(*buffer, str, namelen);
2693 return 0;
2694 }
2695
2696 /**
2697 * prepend_name - prepend a pathname in front of current buffer pointer
2698 * @buffer: buffer pointer
2699 * @buflen: allocated length of the buffer
2700 * @name: name string and length qstr structure
2701 *
2702 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2703 * make sure that either the old or the new name pointer and length are
2704 * fetched. However, there may be mismatch between length and pointer.
2705 * The length cannot be trusted, we need to copy it byte-by-byte until
2706 * the length is reached or a null byte is found. It also prepends "/" at
2707 * the beginning of the name. The sequence number check at the caller will
2708 * retry it again when a d_move() does happen. So any garbage in the buffer
2709 * due to mismatched pointer and length will be discarded.
2710 *
2711 * Data dependency barrier is needed to make sure that we see that terminating
2712 * NUL. Alpha strikes again, film at 11...
2713 */
2714 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2715 {
2716 const char *dname = ACCESS_ONCE(name->name);
2717 u32 dlen = ACCESS_ONCE(name->len);
2718 char *p;
2719
2720 smp_read_barrier_depends();
2721
2722 *buflen -= dlen + 1;
2723 if (*buflen < 0)
2724 return -ENAMETOOLONG;
2725 p = *buffer -= dlen + 1;
2726 *p++ = '/';
2727 while (dlen--) {
2728 char c = *dname++;
2729 if (!c)
2730 break;
2731 *p++ = c;
2732 }
2733 return 0;
2734 }
2735
2736 /**
2737 * prepend_path - Prepend path string to a buffer
2738 * @path: the dentry/vfsmount to report
2739 * @root: root vfsmnt/dentry
2740 * @buffer: pointer to the end of the buffer
2741 * @buflen: pointer to buffer length
2742 *
2743 * The function will first try to write out the pathname without taking any
2744 * lock other than the RCU read lock to make sure that dentries won't go away.
2745 * It only checks the sequence number of the global rename_lock as any change
2746 * in the dentry's d_seq will be preceded by changes in the rename_lock
2747 * sequence number. If the sequence number had been changed, it will restart
2748 * the whole pathname back-tracing sequence again by taking the rename_lock.
2749 * In this case, there is no need to take the RCU read lock as the recursive
2750 * parent pointer references will keep the dentry chain alive as long as no
2751 * rename operation is performed.
2752 */
2753 static int prepend_path(const struct path *path,
2754 const struct path *root,
2755 char **buffer, int *buflen)
2756 {
2757 struct dentry *dentry;
2758 struct vfsmount *vfsmnt;
2759 struct mount *mnt;
2760 int error = 0;
2761 unsigned seq, m_seq = 0;
2762 char *bptr;
2763 int blen;
2764
2765 rcu_read_lock();
2766 restart_mnt:
2767 read_seqbegin_or_lock(&mount_lock, &m_seq);
2768 seq = 0;
2769 rcu_read_lock();
2770 restart:
2771 bptr = *buffer;
2772 blen = *buflen;
2773 error = 0;
2774 dentry = path->dentry;
2775 vfsmnt = path->mnt;
2776 mnt = real_mount(vfsmnt);
2777 read_seqbegin_or_lock(&rename_lock, &seq);
2778 while (dentry != root->dentry || vfsmnt != root->mnt) {
2779 struct dentry * parent;
2780
2781 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2782 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2783 /* Global root? */
2784 if (mnt != parent) {
2785 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2786 mnt = parent;
2787 vfsmnt = &mnt->mnt;
2788 continue;
2789 }
2790 /*
2791 * Filesystems needing to implement special "root names"
2792 * should do so with ->d_dname()
2793 */
2794 if (IS_ROOT(dentry) &&
2795 (dentry->d_name.len != 1 ||
2796 dentry->d_name.name[0] != '/')) {
2797 WARN(1, "Root dentry has weird name <%.*s>\n",
2798 (int) dentry->d_name.len,
2799 dentry->d_name.name);
2800 }
2801 if (!error)
2802 error = is_mounted(vfsmnt) ? 1 : 2;
2803 break;
2804 }
2805 parent = dentry->d_parent;
2806 prefetch(parent);
2807 error = prepend_name(&bptr, &blen, &dentry->d_name);
2808 if (error)
2809 break;
2810
2811 dentry = parent;
2812 }
2813 if (!(seq & 1))
2814 rcu_read_unlock();
2815 if (need_seqretry(&rename_lock, seq)) {
2816 seq = 1;
2817 goto restart;
2818 }
2819 done_seqretry(&rename_lock, seq);
2820
2821 if (!(m_seq & 1))
2822 rcu_read_unlock();
2823 if (need_seqretry(&mount_lock, m_seq)) {
2824 m_seq = 1;
2825 goto restart_mnt;
2826 }
2827 done_seqretry(&mount_lock, m_seq);
2828
2829 if (error >= 0 && bptr == *buffer) {
2830 if (--blen < 0)
2831 error = -ENAMETOOLONG;
2832 else
2833 *--bptr = '/';
2834 }
2835 *buffer = bptr;
2836 *buflen = blen;
2837 return error;
2838 }
2839
2840 /**
2841 * __d_path - return the path of a dentry
2842 * @path: the dentry/vfsmount to report
2843 * @root: root vfsmnt/dentry
2844 * @buf: buffer to return value in
2845 * @buflen: buffer length
2846 *
2847 * Convert a dentry into an ASCII path name.
2848 *
2849 * Returns a pointer into the buffer or an error code if the
2850 * path was too long.
2851 *
2852 * "buflen" should be positive.
2853 *
2854 * If the path is not reachable from the supplied root, return %NULL.
2855 */
2856 char *__d_path(const struct path *path,
2857 const struct path *root,
2858 char *buf, int buflen)
2859 {
2860 char *res = buf + buflen;
2861 int error;
2862
2863 prepend(&res, &buflen, "\0", 1);
2864 error = prepend_path(path, root, &res, &buflen);
2865
2866 if (error < 0)
2867 return ERR_PTR(error);
2868 if (error > 0)
2869 return NULL;
2870 return res;
2871 }
2872
2873 char *d_absolute_path(const struct path *path,
2874 char *buf, int buflen)
2875 {
2876 struct path root = {};
2877 char *res = buf + buflen;
2878 int error;
2879
2880 prepend(&res, &buflen, "\0", 1);
2881 error = prepend_path(path, &root, &res, &buflen);
2882
2883 if (error > 1)
2884 error = -EINVAL;
2885 if (error < 0)
2886 return ERR_PTR(error);
2887 return res;
2888 }
2889
2890 /*
2891 * same as __d_path but appends "(deleted)" for unlinked files.
2892 */
2893 static int path_with_deleted(const struct path *path,
2894 const struct path *root,
2895 char **buf, int *buflen)
2896 {
2897 prepend(buf, buflen, "\0", 1);
2898 if (d_unlinked(path->dentry)) {
2899 int error = prepend(buf, buflen, " (deleted)", 10);
2900 if (error)
2901 return error;
2902 }
2903
2904 return prepend_path(path, root, buf, buflen);
2905 }
2906
2907 static int prepend_unreachable(char **buffer, int *buflen)
2908 {
2909 return prepend(buffer, buflen, "(unreachable)", 13);
2910 }
2911
2912 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
2913 {
2914 unsigned seq;
2915
2916 do {
2917 seq = read_seqcount_begin(&fs->seq);
2918 *root = fs->root;
2919 } while (read_seqcount_retry(&fs->seq, seq));
2920 }
2921
2922 /**
2923 * d_path - return the path of a dentry
2924 * @path: path to report
2925 * @buf: buffer to return value in
2926 * @buflen: buffer length
2927 *
2928 * Convert a dentry into an ASCII path name. If the entry has been deleted
2929 * the string " (deleted)" is appended. Note that this is ambiguous.
2930 *
2931 * Returns a pointer into the buffer or an error code if the path was
2932 * too long. Note: Callers should use the returned pointer, not the passed
2933 * in buffer, to use the name! The implementation often starts at an offset
2934 * into the buffer, and may leave 0 bytes at the start.
2935 *
2936 * "buflen" should be positive.
2937 */
2938 char *d_path(const struct path *path, char *buf, int buflen)
2939 {
2940 char *res = buf + buflen;
2941 struct path root;
2942 int error;
2943
2944 /*
2945 * We have various synthetic filesystems that never get mounted. On
2946 * these filesystems dentries are never used for lookup purposes, and
2947 * thus don't need to be hashed. They also don't need a name until a
2948 * user wants to identify the object in /proc/pid/fd/. The little hack
2949 * below allows us to generate a name for these objects on demand:
2950 *
2951 * Some pseudo inodes are mountable. When they are mounted
2952 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
2953 * and instead have d_path return the mounted path.
2954 */
2955 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
2956 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
2957 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2958
2959 rcu_read_lock();
2960 get_fs_root_rcu(current->fs, &root);
2961 error = path_with_deleted(path, &root, &res, &buflen);
2962 rcu_read_unlock();
2963
2964 if (error < 0)
2965 res = ERR_PTR(error);
2966 return res;
2967 }
2968 EXPORT_SYMBOL(d_path);
2969
2970 /*
2971 * Helper function for dentry_operations.d_dname() members
2972 */
2973 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2974 const char *fmt, ...)
2975 {
2976 va_list args;
2977 char temp[64];
2978 int sz;
2979
2980 va_start(args, fmt);
2981 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2982 va_end(args);
2983
2984 if (sz > sizeof(temp) || sz > buflen)
2985 return ERR_PTR(-ENAMETOOLONG);
2986
2987 buffer += buflen - sz;
2988 return memcpy(buffer, temp, sz);
2989 }
2990
2991 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
2992 {
2993 char *end = buffer + buflen;
2994 /* these dentries are never renamed, so d_lock is not needed */
2995 if (prepend(&end, &buflen, " (deleted)", 11) ||
2996 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
2997 prepend(&end, &buflen, "/", 1))
2998 end = ERR_PTR(-ENAMETOOLONG);
2999 return end;
3000 }
3001 EXPORT_SYMBOL(simple_dname);
3002
3003 /*
3004 * Write full pathname from the root of the filesystem into the buffer.
3005 */
3006 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3007 {
3008 struct dentry *dentry;
3009 char *end, *retval;
3010 int len, seq = 0;
3011 int error = 0;
3012
3013 if (buflen < 2)
3014 goto Elong;
3015
3016 rcu_read_lock();
3017 restart:
3018 dentry = d;
3019 end = buf + buflen;
3020 len = buflen;
3021 prepend(&end, &len, "\0", 1);
3022 /* Get '/' right */
3023 retval = end-1;
3024 *retval = '/';
3025 read_seqbegin_or_lock(&rename_lock, &seq);
3026 while (!IS_ROOT(dentry)) {
3027 struct dentry *parent = dentry->d_parent;
3028
3029 prefetch(parent);
3030 error = prepend_name(&end, &len, &dentry->d_name);
3031 if (error)
3032 break;
3033
3034 retval = end;
3035 dentry = parent;
3036 }
3037 if (!(seq & 1))
3038 rcu_read_unlock();
3039 if (need_seqretry(&rename_lock, seq)) {
3040 seq = 1;
3041 goto restart;
3042 }
3043 done_seqretry(&rename_lock, seq);
3044 if (error)
3045 goto Elong;
3046 return retval;
3047 Elong:
3048 return ERR_PTR(-ENAMETOOLONG);
3049 }
3050
3051 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3052 {
3053 return __dentry_path(dentry, buf, buflen);
3054 }
3055 EXPORT_SYMBOL(dentry_path_raw);
3056
3057 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3058 {
3059 char *p = NULL;
3060 char *retval;
3061
3062 if (d_unlinked(dentry)) {
3063 p = buf + buflen;
3064 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3065 goto Elong;
3066 buflen++;
3067 }
3068 retval = __dentry_path(dentry, buf, buflen);
3069 if (!IS_ERR(retval) && p)
3070 *p = '/'; /* restore '/' overriden with '\0' */
3071 return retval;
3072 Elong:
3073 return ERR_PTR(-ENAMETOOLONG);
3074 }
3075
3076 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3077 struct path *pwd)
3078 {
3079 unsigned seq;
3080
3081 do {
3082 seq = read_seqcount_begin(&fs->seq);
3083 *root = fs->root;
3084 *pwd = fs->pwd;
3085 } while (read_seqcount_retry(&fs->seq, seq));
3086 }
3087
3088 /*
3089 * NOTE! The user-level library version returns a
3090 * character pointer. The kernel system call just
3091 * returns the length of the buffer filled (which
3092 * includes the ending '\0' character), or a negative
3093 * error value. So libc would do something like
3094 *
3095 * char *getcwd(char * buf, size_t size)
3096 * {
3097 * int retval;
3098 *
3099 * retval = sys_getcwd(buf, size);
3100 * if (retval >= 0)
3101 * return buf;
3102 * errno = -retval;
3103 * return NULL;
3104 * }
3105 */
3106 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3107 {
3108 int error;
3109 struct path pwd, root;
3110 char *page = __getname();
3111
3112 if (!page)
3113 return -ENOMEM;
3114
3115 rcu_read_lock();
3116 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3117
3118 error = -ENOENT;
3119 if (!d_unlinked(pwd.dentry)) {
3120 unsigned long len;
3121 char *cwd = page + PATH_MAX;
3122 int buflen = PATH_MAX;
3123
3124 prepend(&cwd, &buflen, "\0", 1);
3125 error = prepend_path(&pwd, &root, &cwd, &buflen);
3126 rcu_read_unlock();
3127
3128 if (error < 0)
3129 goto out;
3130
3131 /* Unreachable from current root */
3132 if (error > 0) {
3133 error = prepend_unreachable(&cwd, &buflen);
3134 if (error)
3135 goto out;
3136 }
3137
3138 error = -ERANGE;
3139 len = PATH_MAX + page - cwd;
3140 if (len <= size) {
3141 error = len;
3142 if (copy_to_user(buf, cwd, len))
3143 error = -EFAULT;
3144 }
3145 } else {
3146 rcu_read_unlock();
3147 }
3148
3149 out:
3150 __putname(page);
3151 return error;
3152 }
3153
3154 /*
3155 * Test whether new_dentry is a subdirectory of old_dentry.
3156 *
3157 * Trivially implemented using the dcache structure
3158 */
3159
3160 /**
3161 * is_subdir - is new dentry a subdirectory of old_dentry
3162 * @new_dentry: new dentry
3163 * @old_dentry: old dentry
3164 *
3165 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3166 * Returns 0 otherwise.
3167 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3168 */
3169
3170 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3171 {
3172 int result;
3173 unsigned seq;
3174
3175 if (new_dentry == old_dentry)
3176 return 1;
3177
3178 do {
3179 /* for restarting inner loop in case of seq retry */
3180 seq = read_seqbegin(&rename_lock);
3181 /*
3182 * Need rcu_readlock to protect against the d_parent trashing
3183 * due to d_move
3184 */
3185 rcu_read_lock();
3186 if (d_ancestor(old_dentry, new_dentry))
3187 result = 1;
3188 else
3189 result = 0;
3190 rcu_read_unlock();
3191 } while (read_seqretry(&rename_lock, seq));
3192
3193 return result;
3194 }
3195
3196 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3197 {
3198 struct dentry *root = data;
3199 if (dentry != root) {
3200 if (d_unhashed(dentry) || !dentry->d_inode)
3201 return D_WALK_SKIP;
3202
3203 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3204 dentry->d_flags |= DCACHE_GENOCIDE;
3205 dentry->d_lockref.count--;
3206 }
3207 }
3208 return D_WALK_CONTINUE;
3209 }
3210
3211 void d_genocide(struct dentry *parent)
3212 {
3213 d_walk(parent, parent, d_genocide_kill, NULL);
3214 }
3215
3216 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3217 {
3218 inode_dec_link_count(inode);
3219 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3220 !hlist_unhashed(&dentry->d_u.d_alias) ||
3221 !d_unlinked(dentry));
3222 spin_lock(&dentry->d_parent->d_lock);
3223 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3224 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3225 (unsigned long long)inode->i_ino);
3226 spin_unlock(&dentry->d_lock);
3227 spin_unlock(&dentry->d_parent->d_lock);
3228 d_instantiate(dentry, inode);
3229 }
3230 EXPORT_SYMBOL(d_tmpfile);
3231
3232 static __initdata unsigned long dhash_entries;
3233 static int __init set_dhash_entries(char *str)
3234 {
3235 if (!str)
3236 return 0;
3237 dhash_entries = simple_strtoul(str, &str, 0);
3238 return 1;
3239 }
3240 __setup("dhash_entries=", set_dhash_entries);
3241
3242 static void __init dcache_init_early(void)
3243 {
3244 unsigned int loop;
3245
3246 /* If hashes are distributed across NUMA nodes, defer
3247 * hash allocation until vmalloc space is available.
3248 */
3249 if (hashdist)
3250 return;
3251
3252 dentry_hashtable =
3253 alloc_large_system_hash("Dentry cache",
3254 sizeof(struct hlist_bl_head),
3255 dhash_entries,
3256 13,
3257 HASH_EARLY,
3258 &d_hash_shift,
3259 &d_hash_mask,
3260 0,
3261 0);
3262
3263 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3264 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3265 }
3266
3267 static void __init dcache_init(void)
3268 {
3269 unsigned int loop;
3270
3271 /*
3272 * A constructor could be added for stable state like the lists,
3273 * but it is probably not worth it because of the cache nature
3274 * of the dcache.
3275 */
3276 dentry_cache = KMEM_CACHE(dentry,
3277 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3278
3279 /* Hash may have been set up in dcache_init_early */
3280 if (!hashdist)
3281 return;
3282
3283 dentry_hashtable =
3284 alloc_large_system_hash("Dentry cache",
3285 sizeof(struct hlist_bl_head),
3286 dhash_entries,
3287 13,
3288 0,
3289 &d_hash_shift,
3290 &d_hash_mask,
3291 0,
3292 0);
3293
3294 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3295 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3296 }
3297
3298 /* SLAB cache for __getname() consumers */
3299 struct kmem_cache *names_cachep __read_mostly;
3300 EXPORT_SYMBOL(names_cachep);
3301
3302 EXPORT_SYMBOL(d_genocide);
3303
3304 void __init vfs_caches_init_early(void)
3305 {
3306 dcache_init_early();
3307 inode_init_early();
3308 }
3309
3310 void __init vfs_caches_init(unsigned long mempages)
3311 {
3312 unsigned long reserve;
3313
3314 /* Base hash sizes on available memory, with a reserve equal to
3315 150% of current kernel size */
3316
3317 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3318 mempages -= reserve;
3319
3320 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3321 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3322
3323 dcache_init();
3324 inode_init();
3325 files_init(mempages);
3326 mnt_init();
3327 bdev_cache_init();
3328 chrdev_init();
3329 }
This page took 0.094341 seconds and 6 git commands to generate.