VFS: Remove dentry->d_lock locking from shrink_dcache_for_umount_subtree()
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include "internal.h"
40
41 /*
42 * Usage:
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
51 * d_lock protects:
52 * - d_flags
53 * - d_name
54 * - d_lru
55 * - d_count
56 * - d_unhashed()
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
59 * - d_alias, d_inode
60 *
61 * Ordering:
62 * dentry->d_inode->i_lock
63 * dentry->d_lock
64 * dcache_lru_lock
65 * dcache_hash_bucket lock
66 * s_anon lock
67 *
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
70 * ...
71 * dentry->d_parent->d_lock
72 * dentry->d_lock
73 *
74 * If no ancestor relationship:
75 * if (dentry1 < dentry2)
76 * dentry1->d_lock
77 * dentry2->d_lock
78 */
79 int sysctl_vfs_cache_pressure __read_mostly = 100;
80 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
81
82 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
84
85 EXPORT_SYMBOL(rename_lock);
86
87 static struct kmem_cache *dentry_cache __read_mostly;
88
89 /*
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
93 *
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
96 */
97 #define D_HASHBITS d_hash_shift
98 #define D_HASHMASK d_hash_mask
99
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104
105 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
106 unsigned long hash)
107 {
108 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
109 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
110 return dentry_hashtable + (hash & D_HASHMASK);
111 }
112
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116 };
117
118 static DEFINE_PER_CPU(unsigned int, nr_dentry);
119
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 static int get_nr_dentry(void)
122 {
123 int i;
124 int sum = 0;
125 for_each_possible_cpu(i)
126 sum += per_cpu(nr_dentry, i);
127 return sum < 0 ? 0 : sum;
128 }
129
130 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
131 size_t *lenp, loff_t *ppos)
132 {
133 dentry_stat.nr_dentry = get_nr_dentry();
134 return proc_dointvec(table, write, buffer, lenp, ppos);
135 }
136 #endif
137
138 static void __d_free(struct rcu_head *head)
139 {
140 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
141
142 WARN_ON(!list_empty(&dentry->d_alias));
143 if (dname_external(dentry))
144 kfree(dentry->d_name.name);
145 kmem_cache_free(dentry_cache, dentry);
146 }
147
148 /*
149 * no locks, please.
150 */
151 static void d_free(struct dentry *dentry)
152 {
153 BUG_ON(dentry->d_count);
154 this_cpu_dec(nr_dentry);
155 if (dentry->d_op && dentry->d_op->d_release)
156 dentry->d_op->d_release(dentry);
157
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry->d_flags & DCACHE_RCUACCESS))
160 __d_free(&dentry->d_u.d_rcu);
161 else
162 call_rcu(&dentry->d_u.d_rcu, __d_free);
163 }
164
165 /**
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
167 * @dentry: the target dentry
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
171 */
172 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
173 {
174 assert_spin_locked(&dentry->d_lock);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry->d_seq);
177 }
178
179 /*
180 * Release the dentry's inode, using the filesystem
181 * d_iput() operation if defined. Dentry has no refcount
182 * and is unhashed.
183 */
184 static void dentry_iput(struct dentry * dentry)
185 __releases(dentry->d_lock)
186 __releases(dentry->d_inode->i_lock)
187 {
188 struct inode *inode = dentry->d_inode;
189 if (inode) {
190 dentry->d_inode = NULL;
191 list_del_init(&dentry->d_alias);
192 spin_unlock(&dentry->d_lock);
193 spin_unlock(&inode->i_lock);
194 if (!inode->i_nlink)
195 fsnotify_inoderemove(inode);
196 if (dentry->d_op && dentry->d_op->d_iput)
197 dentry->d_op->d_iput(dentry, inode);
198 else
199 iput(inode);
200 } else {
201 spin_unlock(&dentry->d_lock);
202 }
203 }
204
205 /*
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
208 */
209 static void dentry_unlink_inode(struct dentry * dentry)
210 __releases(dentry->d_lock)
211 __releases(dentry->d_inode->i_lock)
212 {
213 struct inode *inode = dentry->d_inode;
214 dentry->d_inode = NULL;
215 list_del_init(&dentry->d_alias);
216 dentry_rcuwalk_barrier(dentry);
217 spin_unlock(&dentry->d_lock);
218 spin_unlock(&inode->i_lock);
219 if (!inode->i_nlink)
220 fsnotify_inoderemove(inode);
221 if (dentry->d_op && dentry->d_op->d_iput)
222 dentry->d_op->d_iput(dentry, inode);
223 else
224 iput(inode);
225 }
226
227 /*
228 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
229 */
230 static void dentry_lru_add(struct dentry *dentry)
231 {
232 if (list_empty(&dentry->d_lru)) {
233 spin_lock(&dcache_lru_lock);
234 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
235 dentry->d_sb->s_nr_dentry_unused++;
236 dentry_stat.nr_unused++;
237 spin_unlock(&dcache_lru_lock);
238 }
239 }
240
241 static void __dentry_lru_del(struct dentry *dentry)
242 {
243 list_del_init(&dentry->d_lru);
244 dentry->d_sb->s_nr_dentry_unused--;
245 dentry_stat.nr_unused--;
246 }
247
248 static void dentry_lru_del(struct dentry *dentry)
249 {
250 if (!list_empty(&dentry->d_lru)) {
251 spin_lock(&dcache_lru_lock);
252 __dentry_lru_del(dentry);
253 spin_unlock(&dcache_lru_lock);
254 }
255 }
256
257 static void dentry_lru_move_tail(struct dentry *dentry)
258 {
259 spin_lock(&dcache_lru_lock);
260 if (list_empty(&dentry->d_lru)) {
261 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
262 dentry->d_sb->s_nr_dentry_unused++;
263 dentry_stat.nr_unused++;
264 } else {
265 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
266 }
267 spin_unlock(&dcache_lru_lock);
268 }
269
270 /**
271 * d_kill - kill dentry and return parent
272 * @dentry: dentry to kill
273 * @parent: parent dentry
274 *
275 * The dentry must already be unhashed and removed from the LRU.
276 *
277 * If this is the root of the dentry tree, return NULL.
278 *
279 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
280 * d_kill.
281 */
282 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
283 __releases(dentry->d_lock)
284 __releases(parent->d_lock)
285 __releases(dentry->d_inode->i_lock)
286 {
287 list_del(&dentry->d_u.d_child);
288 /*
289 * Inform try_to_ascend() that we are no longer attached to the
290 * dentry tree
291 */
292 dentry->d_flags |= DCACHE_DISCONNECTED;
293 if (parent)
294 spin_unlock(&parent->d_lock);
295 dentry_iput(dentry);
296 /*
297 * dentry_iput drops the locks, at which point nobody (except
298 * transient RCU lookups) can reach this dentry.
299 */
300 d_free(dentry);
301 return parent;
302 }
303
304 /*
305 * Unhash a dentry without inserting an RCU walk barrier or checking that
306 * dentry->d_lock is locked. The caller must take care of that, if
307 * appropriate.
308 */
309 static void __d_shrink(struct dentry *dentry)
310 {
311 if (!d_unhashed(dentry)) {
312 struct hlist_bl_head *b;
313 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
314 b = &dentry->d_sb->s_anon;
315 else
316 b = d_hash(dentry->d_parent, dentry->d_name.hash);
317
318 hlist_bl_lock(b);
319 __hlist_bl_del(&dentry->d_hash);
320 dentry->d_hash.pprev = NULL;
321 hlist_bl_unlock(b);
322 }
323 }
324
325 /**
326 * d_drop - drop a dentry
327 * @dentry: dentry to drop
328 *
329 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
330 * be found through a VFS lookup any more. Note that this is different from
331 * deleting the dentry - d_delete will try to mark the dentry negative if
332 * possible, giving a successful _negative_ lookup, while d_drop will
333 * just make the cache lookup fail.
334 *
335 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
336 * reason (NFS timeouts or autofs deletes).
337 *
338 * __d_drop requires dentry->d_lock.
339 */
340 void __d_drop(struct dentry *dentry)
341 {
342 if (!d_unhashed(dentry)) {
343 __d_shrink(dentry);
344 dentry_rcuwalk_barrier(dentry);
345 }
346 }
347 EXPORT_SYMBOL(__d_drop);
348
349 void d_drop(struct dentry *dentry)
350 {
351 spin_lock(&dentry->d_lock);
352 __d_drop(dentry);
353 spin_unlock(&dentry->d_lock);
354 }
355 EXPORT_SYMBOL(d_drop);
356
357 /*
358 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
359 * @dentry: dentry to drop
360 *
361 * This is called when we do a lookup on a placeholder dentry that needed to be
362 * looked up. The dentry should have been hashed in order for it to be found by
363 * the lookup code, but now needs to be unhashed while we do the actual lookup
364 * and clear the DCACHE_NEED_LOOKUP flag.
365 */
366 void d_clear_need_lookup(struct dentry *dentry)
367 {
368 spin_lock(&dentry->d_lock);
369 __d_drop(dentry);
370 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
371 spin_unlock(&dentry->d_lock);
372 }
373 EXPORT_SYMBOL(d_clear_need_lookup);
374
375 /*
376 * Finish off a dentry we've decided to kill.
377 * dentry->d_lock must be held, returns with it unlocked.
378 * If ref is non-zero, then decrement the refcount too.
379 * Returns dentry requiring refcount drop, or NULL if we're done.
380 */
381 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
382 __releases(dentry->d_lock)
383 {
384 struct inode *inode;
385 struct dentry *parent;
386
387 inode = dentry->d_inode;
388 if (inode && !spin_trylock(&inode->i_lock)) {
389 relock:
390 spin_unlock(&dentry->d_lock);
391 cpu_relax();
392 return dentry; /* try again with same dentry */
393 }
394 if (IS_ROOT(dentry))
395 parent = NULL;
396 else
397 parent = dentry->d_parent;
398 if (parent && !spin_trylock(&parent->d_lock)) {
399 if (inode)
400 spin_unlock(&inode->i_lock);
401 goto relock;
402 }
403
404 if (ref)
405 dentry->d_count--;
406 /* if dentry was on the d_lru list delete it from there */
407 dentry_lru_del(dentry);
408 /* if it was on the hash then remove it */
409 __d_drop(dentry);
410 return d_kill(dentry, parent);
411 }
412
413 /*
414 * This is dput
415 *
416 * This is complicated by the fact that we do not want to put
417 * dentries that are no longer on any hash chain on the unused
418 * list: we'd much rather just get rid of them immediately.
419 *
420 * However, that implies that we have to traverse the dentry
421 * tree upwards to the parents which might _also_ now be
422 * scheduled for deletion (it may have been only waiting for
423 * its last child to go away).
424 *
425 * This tail recursion is done by hand as we don't want to depend
426 * on the compiler to always get this right (gcc generally doesn't).
427 * Real recursion would eat up our stack space.
428 */
429
430 /*
431 * dput - release a dentry
432 * @dentry: dentry to release
433 *
434 * Release a dentry. This will drop the usage count and if appropriate
435 * call the dentry unlink method as well as removing it from the queues and
436 * releasing its resources. If the parent dentries were scheduled for release
437 * they too may now get deleted.
438 */
439 void dput(struct dentry *dentry)
440 {
441 if (!dentry)
442 return;
443
444 repeat:
445 if (dentry->d_count == 1)
446 might_sleep();
447 spin_lock(&dentry->d_lock);
448 BUG_ON(!dentry->d_count);
449 if (dentry->d_count > 1) {
450 dentry->d_count--;
451 spin_unlock(&dentry->d_lock);
452 return;
453 }
454
455 if (dentry->d_flags & DCACHE_OP_DELETE) {
456 if (dentry->d_op->d_delete(dentry))
457 goto kill_it;
458 }
459
460 /* Unreachable? Get rid of it */
461 if (d_unhashed(dentry))
462 goto kill_it;
463
464 /*
465 * If this dentry needs lookup, don't set the referenced flag so that it
466 * is more likely to be cleaned up by the dcache shrinker in case of
467 * memory pressure.
468 */
469 if (!d_need_lookup(dentry))
470 dentry->d_flags |= DCACHE_REFERENCED;
471 dentry_lru_add(dentry);
472
473 dentry->d_count--;
474 spin_unlock(&dentry->d_lock);
475 return;
476
477 kill_it:
478 dentry = dentry_kill(dentry, 1);
479 if (dentry)
480 goto repeat;
481 }
482 EXPORT_SYMBOL(dput);
483
484 /**
485 * d_invalidate - invalidate a dentry
486 * @dentry: dentry to invalidate
487 *
488 * Try to invalidate the dentry if it turns out to be
489 * possible. If there are other dentries that can be
490 * reached through this one we can't delete it and we
491 * return -EBUSY. On success we return 0.
492 *
493 * no dcache lock.
494 */
495
496 int d_invalidate(struct dentry * dentry)
497 {
498 /*
499 * If it's already been dropped, return OK.
500 */
501 spin_lock(&dentry->d_lock);
502 if (d_unhashed(dentry)) {
503 spin_unlock(&dentry->d_lock);
504 return 0;
505 }
506 /*
507 * Check whether to do a partial shrink_dcache
508 * to get rid of unused child entries.
509 */
510 if (!list_empty(&dentry->d_subdirs)) {
511 spin_unlock(&dentry->d_lock);
512 shrink_dcache_parent(dentry);
513 spin_lock(&dentry->d_lock);
514 }
515
516 /*
517 * Somebody else still using it?
518 *
519 * If it's a directory, we can't drop it
520 * for fear of somebody re-populating it
521 * with children (even though dropping it
522 * would make it unreachable from the root,
523 * we might still populate it if it was a
524 * working directory or similar).
525 */
526 if (dentry->d_count > 1) {
527 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
528 spin_unlock(&dentry->d_lock);
529 return -EBUSY;
530 }
531 }
532
533 __d_drop(dentry);
534 spin_unlock(&dentry->d_lock);
535 return 0;
536 }
537 EXPORT_SYMBOL(d_invalidate);
538
539 /* This must be called with d_lock held */
540 static inline void __dget_dlock(struct dentry *dentry)
541 {
542 dentry->d_count++;
543 }
544
545 static inline void __dget(struct dentry *dentry)
546 {
547 spin_lock(&dentry->d_lock);
548 __dget_dlock(dentry);
549 spin_unlock(&dentry->d_lock);
550 }
551
552 struct dentry *dget_parent(struct dentry *dentry)
553 {
554 struct dentry *ret;
555
556 repeat:
557 /*
558 * Don't need rcu_dereference because we re-check it was correct under
559 * the lock.
560 */
561 rcu_read_lock();
562 ret = dentry->d_parent;
563 spin_lock(&ret->d_lock);
564 if (unlikely(ret != dentry->d_parent)) {
565 spin_unlock(&ret->d_lock);
566 rcu_read_unlock();
567 goto repeat;
568 }
569 rcu_read_unlock();
570 BUG_ON(!ret->d_count);
571 ret->d_count++;
572 spin_unlock(&ret->d_lock);
573 return ret;
574 }
575 EXPORT_SYMBOL(dget_parent);
576
577 /**
578 * d_find_alias - grab a hashed alias of inode
579 * @inode: inode in question
580 * @want_discon: flag, used by d_splice_alias, to request
581 * that only a DISCONNECTED alias be returned.
582 *
583 * If inode has a hashed alias, or is a directory and has any alias,
584 * acquire the reference to alias and return it. Otherwise return NULL.
585 * Notice that if inode is a directory there can be only one alias and
586 * it can be unhashed only if it has no children, or if it is the root
587 * of a filesystem.
588 *
589 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
590 * any other hashed alias over that one unless @want_discon is set,
591 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
592 */
593 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
594 {
595 struct dentry *alias, *discon_alias;
596
597 again:
598 discon_alias = NULL;
599 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
600 spin_lock(&alias->d_lock);
601 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
602 if (IS_ROOT(alias) &&
603 (alias->d_flags & DCACHE_DISCONNECTED)) {
604 discon_alias = alias;
605 } else if (!want_discon) {
606 __dget_dlock(alias);
607 spin_unlock(&alias->d_lock);
608 return alias;
609 }
610 }
611 spin_unlock(&alias->d_lock);
612 }
613 if (discon_alias) {
614 alias = discon_alias;
615 spin_lock(&alias->d_lock);
616 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
617 if (IS_ROOT(alias) &&
618 (alias->d_flags & DCACHE_DISCONNECTED)) {
619 __dget_dlock(alias);
620 spin_unlock(&alias->d_lock);
621 return alias;
622 }
623 }
624 spin_unlock(&alias->d_lock);
625 goto again;
626 }
627 return NULL;
628 }
629
630 struct dentry *d_find_alias(struct inode *inode)
631 {
632 struct dentry *de = NULL;
633
634 if (!list_empty(&inode->i_dentry)) {
635 spin_lock(&inode->i_lock);
636 de = __d_find_alias(inode, 0);
637 spin_unlock(&inode->i_lock);
638 }
639 return de;
640 }
641 EXPORT_SYMBOL(d_find_alias);
642
643 /*
644 * Try to kill dentries associated with this inode.
645 * WARNING: you must own a reference to inode.
646 */
647 void d_prune_aliases(struct inode *inode)
648 {
649 struct dentry *dentry;
650 restart:
651 spin_lock(&inode->i_lock);
652 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
653 spin_lock(&dentry->d_lock);
654 if (!dentry->d_count) {
655 __dget_dlock(dentry);
656 __d_drop(dentry);
657 spin_unlock(&dentry->d_lock);
658 spin_unlock(&inode->i_lock);
659 dput(dentry);
660 goto restart;
661 }
662 spin_unlock(&dentry->d_lock);
663 }
664 spin_unlock(&inode->i_lock);
665 }
666 EXPORT_SYMBOL(d_prune_aliases);
667
668 /*
669 * Try to throw away a dentry - free the inode, dput the parent.
670 * Requires dentry->d_lock is held, and dentry->d_count == 0.
671 * Releases dentry->d_lock.
672 *
673 * This may fail if locks cannot be acquired no problem, just try again.
674 */
675 static void try_prune_one_dentry(struct dentry *dentry)
676 __releases(dentry->d_lock)
677 {
678 struct dentry *parent;
679
680 parent = dentry_kill(dentry, 0);
681 /*
682 * If dentry_kill returns NULL, we have nothing more to do.
683 * if it returns the same dentry, trylocks failed. In either
684 * case, just loop again.
685 *
686 * Otherwise, we need to prune ancestors too. This is necessary
687 * to prevent quadratic behavior of shrink_dcache_parent(), but
688 * is also expected to be beneficial in reducing dentry cache
689 * fragmentation.
690 */
691 if (!parent)
692 return;
693 if (parent == dentry)
694 return;
695
696 /* Prune ancestors. */
697 dentry = parent;
698 while (dentry) {
699 spin_lock(&dentry->d_lock);
700 if (dentry->d_count > 1) {
701 dentry->d_count--;
702 spin_unlock(&dentry->d_lock);
703 return;
704 }
705 dentry = dentry_kill(dentry, 1);
706 }
707 }
708
709 static void shrink_dentry_list(struct list_head *list)
710 {
711 struct dentry *dentry;
712
713 rcu_read_lock();
714 for (;;) {
715 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
716 if (&dentry->d_lru == list)
717 break; /* empty */
718 spin_lock(&dentry->d_lock);
719 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
720 spin_unlock(&dentry->d_lock);
721 continue;
722 }
723
724 /*
725 * We found an inuse dentry which was not removed from
726 * the LRU because of laziness during lookup. Do not free
727 * it - just keep it off the LRU list.
728 */
729 if (dentry->d_count) {
730 dentry_lru_del(dentry);
731 spin_unlock(&dentry->d_lock);
732 continue;
733 }
734
735 rcu_read_unlock();
736
737 try_prune_one_dentry(dentry);
738
739 rcu_read_lock();
740 }
741 rcu_read_unlock();
742 }
743
744 /**
745 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
746 * @sb: superblock to shrink dentry LRU.
747 * @count: number of entries to prune
748 * @flags: flags to control the dentry processing
749 *
750 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
751 */
752 static void __shrink_dcache_sb(struct super_block *sb, int count, int flags)
753 {
754 struct dentry *dentry;
755 LIST_HEAD(referenced);
756 LIST_HEAD(tmp);
757
758 relock:
759 spin_lock(&dcache_lru_lock);
760 while (!list_empty(&sb->s_dentry_lru)) {
761 dentry = list_entry(sb->s_dentry_lru.prev,
762 struct dentry, d_lru);
763 BUG_ON(dentry->d_sb != sb);
764
765 if (!spin_trylock(&dentry->d_lock)) {
766 spin_unlock(&dcache_lru_lock);
767 cpu_relax();
768 goto relock;
769 }
770
771 /*
772 * If we are honouring the DCACHE_REFERENCED flag and the
773 * dentry has this flag set, don't free it. Clear the flag
774 * and put it back on the LRU.
775 */
776 if (flags & DCACHE_REFERENCED &&
777 dentry->d_flags & DCACHE_REFERENCED) {
778 dentry->d_flags &= ~DCACHE_REFERENCED;
779 list_move(&dentry->d_lru, &referenced);
780 spin_unlock(&dentry->d_lock);
781 } else {
782 list_move_tail(&dentry->d_lru, &tmp);
783 spin_unlock(&dentry->d_lock);
784 if (!--count)
785 break;
786 }
787 cond_resched_lock(&dcache_lru_lock);
788 }
789 if (!list_empty(&referenced))
790 list_splice(&referenced, &sb->s_dentry_lru);
791 spin_unlock(&dcache_lru_lock);
792
793 shrink_dentry_list(&tmp);
794 }
795
796 /**
797 * prune_dcache_sb - shrink the dcache
798 * @nr_to_scan: number of entries to try to free
799 *
800 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
801 * done when we need more memory an called from the superblock shrinker
802 * function.
803 *
804 * This function may fail to free any resources if all the dentries are in
805 * use.
806 */
807 void prune_dcache_sb(struct super_block *sb, int nr_to_scan)
808 {
809 __shrink_dcache_sb(sb, nr_to_scan, DCACHE_REFERENCED);
810 }
811
812 /**
813 * shrink_dcache_sb - shrink dcache for a superblock
814 * @sb: superblock
815 *
816 * Shrink the dcache for the specified super block. This is used to free
817 * the dcache before unmounting a file system.
818 */
819 void shrink_dcache_sb(struct super_block *sb)
820 {
821 LIST_HEAD(tmp);
822
823 spin_lock(&dcache_lru_lock);
824 while (!list_empty(&sb->s_dentry_lru)) {
825 list_splice_init(&sb->s_dentry_lru, &tmp);
826 spin_unlock(&dcache_lru_lock);
827 shrink_dentry_list(&tmp);
828 spin_lock(&dcache_lru_lock);
829 }
830 spin_unlock(&dcache_lru_lock);
831 }
832 EXPORT_SYMBOL(shrink_dcache_sb);
833
834 /*
835 * destroy a single subtree of dentries for unmount
836 * - see the comments on shrink_dcache_for_umount() for a description of the
837 * locking
838 */
839 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
840 {
841 struct dentry *parent;
842
843 BUG_ON(!IS_ROOT(dentry));
844
845 /* detach this root from the system */
846 dentry_lru_del(dentry);
847 __d_shrink(dentry);
848
849 for (;;) {
850 /* descend to the first leaf in the current subtree */
851 while (!list_empty(&dentry->d_subdirs)) {
852 struct dentry *loop;
853
854 /* this is a branch with children - detach all of them
855 * from the system in one go */
856 list_for_each_entry(loop, &dentry->d_subdirs,
857 d_u.d_child) {
858 dentry_lru_del(loop);
859 __d_shrink(loop);
860 }
861
862 /* move to the first child */
863 dentry = list_entry(dentry->d_subdirs.next,
864 struct dentry, d_u.d_child);
865 }
866
867 /* consume the dentries from this leaf up through its parents
868 * until we find one with children or run out altogether */
869 do {
870 struct inode *inode;
871
872 if (dentry->d_count != 0) {
873 printk(KERN_ERR
874 "BUG: Dentry %p{i=%lx,n=%s}"
875 " still in use (%d)"
876 " [unmount of %s %s]\n",
877 dentry,
878 dentry->d_inode ?
879 dentry->d_inode->i_ino : 0UL,
880 dentry->d_name.name,
881 dentry->d_count,
882 dentry->d_sb->s_type->name,
883 dentry->d_sb->s_id);
884 BUG();
885 }
886
887 if (IS_ROOT(dentry)) {
888 parent = NULL;
889 list_del(&dentry->d_u.d_child);
890 } else {
891 parent = dentry->d_parent;
892 parent->d_count--;
893 list_del(&dentry->d_u.d_child);
894 }
895
896 inode = dentry->d_inode;
897 if (inode) {
898 dentry->d_inode = NULL;
899 list_del_init(&dentry->d_alias);
900 if (dentry->d_op && dentry->d_op->d_iput)
901 dentry->d_op->d_iput(dentry, inode);
902 else
903 iput(inode);
904 }
905
906 d_free(dentry);
907
908 /* finished when we fall off the top of the tree,
909 * otherwise we ascend to the parent and move to the
910 * next sibling if there is one */
911 if (!parent)
912 return;
913 dentry = parent;
914 } while (list_empty(&dentry->d_subdirs));
915
916 dentry = list_entry(dentry->d_subdirs.next,
917 struct dentry, d_u.d_child);
918 }
919 }
920
921 /*
922 * destroy the dentries attached to a superblock on unmounting
923 * - we don't need to use dentry->d_lock because:
924 * - the superblock is detached from all mountings and open files, so the
925 * dentry trees will not be rearranged by the VFS
926 * - s_umount is write-locked, so the memory pressure shrinker will ignore
927 * any dentries belonging to this superblock that it comes across
928 * - the filesystem itself is no longer permitted to rearrange the dentries
929 * in this superblock
930 */
931 void shrink_dcache_for_umount(struct super_block *sb)
932 {
933 struct dentry *dentry;
934
935 if (down_read_trylock(&sb->s_umount))
936 BUG();
937
938 dentry = sb->s_root;
939 sb->s_root = NULL;
940 dentry->d_count--;
941 shrink_dcache_for_umount_subtree(dentry);
942
943 while (!hlist_bl_empty(&sb->s_anon)) {
944 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
945 shrink_dcache_for_umount_subtree(dentry);
946 }
947 }
948
949 /*
950 * This tries to ascend one level of parenthood, but
951 * we can race with renaming, so we need to re-check
952 * the parenthood after dropping the lock and check
953 * that the sequence number still matches.
954 */
955 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
956 {
957 struct dentry *new = old->d_parent;
958
959 rcu_read_lock();
960 spin_unlock(&old->d_lock);
961 spin_lock(&new->d_lock);
962
963 /*
964 * might go back up the wrong parent if we have had a rename
965 * or deletion
966 */
967 if (new != old->d_parent ||
968 (old->d_flags & DCACHE_DISCONNECTED) ||
969 (!locked && read_seqretry(&rename_lock, seq))) {
970 spin_unlock(&new->d_lock);
971 new = NULL;
972 }
973 rcu_read_unlock();
974 return new;
975 }
976
977
978 /*
979 * Search for at least 1 mount point in the dentry's subdirs.
980 * We descend to the next level whenever the d_subdirs
981 * list is non-empty and continue searching.
982 */
983
984 /**
985 * have_submounts - check for mounts over a dentry
986 * @parent: dentry to check.
987 *
988 * Return true if the parent or its subdirectories contain
989 * a mount point
990 */
991 int have_submounts(struct dentry *parent)
992 {
993 struct dentry *this_parent;
994 struct list_head *next;
995 unsigned seq;
996 int locked = 0;
997
998 seq = read_seqbegin(&rename_lock);
999 again:
1000 this_parent = parent;
1001
1002 if (d_mountpoint(parent))
1003 goto positive;
1004 spin_lock(&this_parent->d_lock);
1005 repeat:
1006 next = this_parent->d_subdirs.next;
1007 resume:
1008 while (next != &this_parent->d_subdirs) {
1009 struct list_head *tmp = next;
1010 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1011 next = tmp->next;
1012
1013 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1014 /* Have we found a mount point ? */
1015 if (d_mountpoint(dentry)) {
1016 spin_unlock(&dentry->d_lock);
1017 spin_unlock(&this_parent->d_lock);
1018 goto positive;
1019 }
1020 if (!list_empty(&dentry->d_subdirs)) {
1021 spin_unlock(&this_parent->d_lock);
1022 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1023 this_parent = dentry;
1024 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1025 goto repeat;
1026 }
1027 spin_unlock(&dentry->d_lock);
1028 }
1029 /*
1030 * All done at this level ... ascend and resume the search.
1031 */
1032 if (this_parent != parent) {
1033 struct dentry *child = this_parent;
1034 this_parent = try_to_ascend(this_parent, locked, seq);
1035 if (!this_parent)
1036 goto rename_retry;
1037 next = child->d_u.d_child.next;
1038 goto resume;
1039 }
1040 spin_unlock(&this_parent->d_lock);
1041 if (!locked && read_seqretry(&rename_lock, seq))
1042 goto rename_retry;
1043 if (locked)
1044 write_sequnlock(&rename_lock);
1045 return 0; /* No mount points found in tree */
1046 positive:
1047 if (!locked && read_seqretry(&rename_lock, seq))
1048 goto rename_retry;
1049 if (locked)
1050 write_sequnlock(&rename_lock);
1051 return 1;
1052
1053 rename_retry:
1054 locked = 1;
1055 write_seqlock(&rename_lock);
1056 goto again;
1057 }
1058 EXPORT_SYMBOL(have_submounts);
1059
1060 /*
1061 * Search the dentry child list for the specified parent,
1062 * and move any unused dentries to the end of the unused
1063 * list for prune_dcache(). We descend to the next level
1064 * whenever the d_subdirs list is non-empty and continue
1065 * searching.
1066 *
1067 * It returns zero iff there are no unused children,
1068 * otherwise it returns the number of children moved to
1069 * the end of the unused list. This may not be the total
1070 * number of unused children, because select_parent can
1071 * drop the lock and return early due to latency
1072 * constraints.
1073 */
1074 static int select_parent(struct dentry * parent)
1075 {
1076 struct dentry *this_parent;
1077 struct list_head *next;
1078 unsigned seq;
1079 int found = 0;
1080 int locked = 0;
1081
1082 seq = read_seqbegin(&rename_lock);
1083 again:
1084 this_parent = parent;
1085 spin_lock(&this_parent->d_lock);
1086 repeat:
1087 next = this_parent->d_subdirs.next;
1088 resume:
1089 while (next != &this_parent->d_subdirs) {
1090 struct list_head *tmp = next;
1091 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1092 next = tmp->next;
1093
1094 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1095
1096 /*
1097 * move only zero ref count dentries to the end
1098 * of the unused list for prune_dcache
1099 */
1100 if (!dentry->d_count) {
1101 dentry_lru_move_tail(dentry);
1102 found++;
1103 } else {
1104 dentry_lru_del(dentry);
1105 }
1106
1107 /*
1108 * We can return to the caller if we have found some (this
1109 * ensures forward progress). We'll be coming back to find
1110 * the rest.
1111 */
1112 if (found && need_resched()) {
1113 spin_unlock(&dentry->d_lock);
1114 goto out;
1115 }
1116
1117 /*
1118 * Descend a level if the d_subdirs list is non-empty.
1119 */
1120 if (!list_empty(&dentry->d_subdirs)) {
1121 spin_unlock(&this_parent->d_lock);
1122 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1123 this_parent = dentry;
1124 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1125 goto repeat;
1126 }
1127
1128 spin_unlock(&dentry->d_lock);
1129 }
1130 /*
1131 * All done at this level ... ascend and resume the search.
1132 */
1133 if (this_parent != parent) {
1134 struct dentry *child = this_parent;
1135 this_parent = try_to_ascend(this_parent, locked, seq);
1136 if (!this_parent)
1137 goto rename_retry;
1138 next = child->d_u.d_child.next;
1139 goto resume;
1140 }
1141 out:
1142 spin_unlock(&this_parent->d_lock);
1143 if (!locked && read_seqretry(&rename_lock, seq))
1144 goto rename_retry;
1145 if (locked)
1146 write_sequnlock(&rename_lock);
1147 return found;
1148
1149 rename_retry:
1150 if (found)
1151 return found;
1152 locked = 1;
1153 write_seqlock(&rename_lock);
1154 goto again;
1155 }
1156
1157 /**
1158 * shrink_dcache_parent - prune dcache
1159 * @parent: parent of entries to prune
1160 *
1161 * Prune the dcache to remove unused children of the parent dentry.
1162 */
1163
1164 void shrink_dcache_parent(struct dentry * parent)
1165 {
1166 struct super_block *sb = parent->d_sb;
1167 int found;
1168
1169 while ((found = select_parent(parent)) != 0)
1170 __shrink_dcache_sb(sb, found, 0);
1171 }
1172 EXPORT_SYMBOL(shrink_dcache_parent);
1173
1174 /**
1175 * __d_alloc - allocate a dcache entry
1176 * @sb: filesystem it will belong to
1177 * @name: qstr of the name
1178 *
1179 * Allocates a dentry. It returns %NULL if there is insufficient memory
1180 * available. On a success the dentry is returned. The name passed in is
1181 * copied and the copy passed in may be reused after this call.
1182 */
1183
1184 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1185 {
1186 struct dentry *dentry;
1187 char *dname;
1188
1189 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1190 if (!dentry)
1191 return NULL;
1192
1193 if (name->len > DNAME_INLINE_LEN-1) {
1194 dname = kmalloc(name->len + 1, GFP_KERNEL);
1195 if (!dname) {
1196 kmem_cache_free(dentry_cache, dentry);
1197 return NULL;
1198 }
1199 } else {
1200 dname = dentry->d_iname;
1201 }
1202 dentry->d_name.name = dname;
1203
1204 dentry->d_name.len = name->len;
1205 dentry->d_name.hash = name->hash;
1206 memcpy(dname, name->name, name->len);
1207 dname[name->len] = 0;
1208
1209 dentry->d_count = 1;
1210 dentry->d_flags = 0;
1211 spin_lock_init(&dentry->d_lock);
1212 seqcount_init(&dentry->d_seq);
1213 dentry->d_inode = NULL;
1214 dentry->d_parent = dentry;
1215 dentry->d_sb = sb;
1216 dentry->d_op = NULL;
1217 dentry->d_fsdata = NULL;
1218 INIT_HLIST_BL_NODE(&dentry->d_hash);
1219 INIT_LIST_HEAD(&dentry->d_lru);
1220 INIT_LIST_HEAD(&dentry->d_subdirs);
1221 INIT_LIST_HEAD(&dentry->d_alias);
1222 INIT_LIST_HEAD(&dentry->d_u.d_child);
1223 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1224
1225 this_cpu_inc(nr_dentry);
1226
1227 return dentry;
1228 }
1229
1230 /**
1231 * d_alloc - allocate a dcache entry
1232 * @parent: parent of entry to allocate
1233 * @name: qstr of the name
1234 *
1235 * Allocates a dentry. It returns %NULL if there is insufficient memory
1236 * available. On a success the dentry is returned. The name passed in is
1237 * copied and the copy passed in may be reused after this call.
1238 */
1239 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1240 {
1241 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1242 if (!dentry)
1243 return NULL;
1244
1245 spin_lock(&parent->d_lock);
1246 /*
1247 * don't need child lock because it is not subject
1248 * to concurrency here
1249 */
1250 __dget_dlock(parent);
1251 dentry->d_parent = parent;
1252 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1253 spin_unlock(&parent->d_lock);
1254
1255 return dentry;
1256 }
1257 EXPORT_SYMBOL(d_alloc);
1258
1259 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1260 {
1261 struct dentry *dentry = __d_alloc(sb, name);
1262 if (dentry)
1263 dentry->d_flags |= DCACHE_DISCONNECTED;
1264 return dentry;
1265 }
1266 EXPORT_SYMBOL(d_alloc_pseudo);
1267
1268 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1269 {
1270 struct qstr q;
1271
1272 q.name = name;
1273 q.len = strlen(name);
1274 q.hash = full_name_hash(q.name, q.len);
1275 return d_alloc(parent, &q);
1276 }
1277 EXPORT_SYMBOL(d_alloc_name);
1278
1279 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1280 {
1281 WARN_ON_ONCE(dentry->d_op);
1282 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1283 DCACHE_OP_COMPARE |
1284 DCACHE_OP_REVALIDATE |
1285 DCACHE_OP_DELETE ));
1286 dentry->d_op = op;
1287 if (!op)
1288 return;
1289 if (op->d_hash)
1290 dentry->d_flags |= DCACHE_OP_HASH;
1291 if (op->d_compare)
1292 dentry->d_flags |= DCACHE_OP_COMPARE;
1293 if (op->d_revalidate)
1294 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1295 if (op->d_delete)
1296 dentry->d_flags |= DCACHE_OP_DELETE;
1297
1298 }
1299 EXPORT_SYMBOL(d_set_d_op);
1300
1301 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1302 {
1303 spin_lock(&dentry->d_lock);
1304 if (inode) {
1305 if (unlikely(IS_AUTOMOUNT(inode)))
1306 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1307 list_add(&dentry->d_alias, &inode->i_dentry);
1308 }
1309 dentry->d_inode = inode;
1310 dentry_rcuwalk_barrier(dentry);
1311 spin_unlock(&dentry->d_lock);
1312 fsnotify_d_instantiate(dentry, inode);
1313 }
1314
1315 /**
1316 * d_instantiate - fill in inode information for a dentry
1317 * @entry: dentry to complete
1318 * @inode: inode to attach to this dentry
1319 *
1320 * Fill in inode information in the entry.
1321 *
1322 * This turns negative dentries into productive full members
1323 * of society.
1324 *
1325 * NOTE! This assumes that the inode count has been incremented
1326 * (or otherwise set) by the caller to indicate that it is now
1327 * in use by the dcache.
1328 */
1329
1330 void d_instantiate(struct dentry *entry, struct inode * inode)
1331 {
1332 BUG_ON(!list_empty(&entry->d_alias));
1333 if (inode)
1334 spin_lock(&inode->i_lock);
1335 __d_instantiate(entry, inode);
1336 if (inode)
1337 spin_unlock(&inode->i_lock);
1338 security_d_instantiate(entry, inode);
1339 }
1340 EXPORT_SYMBOL(d_instantiate);
1341
1342 /**
1343 * d_instantiate_unique - instantiate a non-aliased dentry
1344 * @entry: dentry to instantiate
1345 * @inode: inode to attach to this dentry
1346 *
1347 * Fill in inode information in the entry. On success, it returns NULL.
1348 * If an unhashed alias of "entry" already exists, then we return the
1349 * aliased dentry instead and drop one reference to inode.
1350 *
1351 * Note that in order to avoid conflicts with rename() etc, the caller
1352 * had better be holding the parent directory semaphore.
1353 *
1354 * This also assumes that the inode count has been incremented
1355 * (or otherwise set) by the caller to indicate that it is now
1356 * in use by the dcache.
1357 */
1358 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1359 struct inode *inode)
1360 {
1361 struct dentry *alias;
1362 int len = entry->d_name.len;
1363 const char *name = entry->d_name.name;
1364 unsigned int hash = entry->d_name.hash;
1365
1366 if (!inode) {
1367 __d_instantiate(entry, NULL);
1368 return NULL;
1369 }
1370
1371 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1372 struct qstr *qstr = &alias->d_name;
1373
1374 /*
1375 * Don't need alias->d_lock here, because aliases with
1376 * d_parent == entry->d_parent are not subject to name or
1377 * parent changes, because the parent inode i_mutex is held.
1378 */
1379 if (qstr->hash != hash)
1380 continue;
1381 if (alias->d_parent != entry->d_parent)
1382 continue;
1383 if (dentry_cmp(qstr->name, qstr->len, name, len))
1384 continue;
1385 __dget(alias);
1386 return alias;
1387 }
1388
1389 __d_instantiate(entry, inode);
1390 return NULL;
1391 }
1392
1393 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1394 {
1395 struct dentry *result;
1396
1397 BUG_ON(!list_empty(&entry->d_alias));
1398
1399 if (inode)
1400 spin_lock(&inode->i_lock);
1401 result = __d_instantiate_unique(entry, inode);
1402 if (inode)
1403 spin_unlock(&inode->i_lock);
1404
1405 if (!result) {
1406 security_d_instantiate(entry, inode);
1407 return NULL;
1408 }
1409
1410 BUG_ON(!d_unhashed(result));
1411 iput(inode);
1412 return result;
1413 }
1414
1415 EXPORT_SYMBOL(d_instantiate_unique);
1416
1417 /**
1418 * d_alloc_root - allocate root dentry
1419 * @root_inode: inode to allocate the root for
1420 *
1421 * Allocate a root ("/") dentry for the inode given. The inode is
1422 * instantiated and returned. %NULL is returned if there is insufficient
1423 * memory or the inode passed is %NULL.
1424 */
1425
1426 struct dentry * d_alloc_root(struct inode * root_inode)
1427 {
1428 struct dentry *res = NULL;
1429
1430 if (root_inode) {
1431 static const struct qstr name = { .name = "/", .len = 1 };
1432
1433 res = __d_alloc(root_inode->i_sb, &name);
1434 if (res)
1435 d_instantiate(res, root_inode);
1436 }
1437 return res;
1438 }
1439 EXPORT_SYMBOL(d_alloc_root);
1440
1441 static struct dentry * __d_find_any_alias(struct inode *inode)
1442 {
1443 struct dentry *alias;
1444
1445 if (list_empty(&inode->i_dentry))
1446 return NULL;
1447 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1448 __dget(alias);
1449 return alias;
1450 }
1451
1452 static struct dentry * d_find_any_alias(struct inode *inode)
1453 {
1454 struct dentry *de;
1455
1456 spin_lock(&inode->i_lock);
1457 de = __d_find_any_alias(inode);
1458 spin_unlock(&inode->i_lock);
1459 return de;
1460 }
1461
1462
1463 /**
1464 * d_obtain_alias - find or allocate a dentry for a given inode
1465 * @inode: inode to allocate the dentry for
1466 *
1467 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1468 * similar open by handle operations. The returned dentry may be anonymous,
1469 * or may have a full name (if the inode was already in the cache).
1470 *
1471 * When called on a directory inode, we must ensure that the inode only ever
1472 * has one dentry. If a dentry is found, that is returned instead of
1473 * allocating a new one.
1474 *
1475 * On successful return, the reference to the inode has been transferred
1476 * to the dentry. In case of an error the reference on the inode is released.
1477 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1478 * be passed in and will be the error will be propagate to the return value,
1479 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1480 */
1481 struct dentry *d_obtain_alias(struct inode *inode)
1482 {
1483 static const struct qstr anonstring = { .name = "" };
1484 struct dentry *tmp;
1485 struct dentry *res;
1486
1487 if (!inode)
1488 return ERR_PTR(-ESTALE);
1489 if (IS_ERR(inode))
1490 return ERR_CAST(inode);
1491
1492 res = d_find_any_alias(inode);
1493 if (res)
1494 goto out_iput;
1495
1496 tmp = __d_alloc(inode->i_sb, &anonstring);
1497 if (!tmp) {
1498 res = ERR_PTR(-ENOMEM);
1499 goto out_iput;
1500 }
1501
1502 spin_lock(&inode->i_lock);
1503 res = __d_find_any_alias(inode);
1504 if (res) {
1505 spin_unlock(&inode->i_lock);
1506 dput(tmp);
1507 goto out_iput;
1508 }
1509
1510 /* attach a disconnected dentry */
1511 spin_lock(&tmp->d_lock);
1512 tmp->d_inode = inode;
1513 tmp->d_flags |= DCACHE_DISCONNECTED;
1514 list_add(&tmp->d_alias, &inode->i_dentry);
1515 hlist_bl_lock(&tmp->d_sb->s_anon);
1516 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1517 hlist_bl_unlock(&tmp->d_sb->s_anon);
1518 spin_unlock(&tmp->d_lock);
1519 spin_unlock(&inode->i_lock);
1520 security_d_instantiate(tmp, inode);
1521
1522 return tmp;
1523
1524 out_iput:
1525 if (res && !IS_ERR(res))
1526 security_d_instantiate(res, inode);
1527 iput(inode);
1528 return res;
1529 }
1530 EXPORT_SYMBOL(d_obtain_alias);
1531
1532 /**
1533 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1534 * @inode: the inode which may have a disconnected dentry
1535 * @dentry: a negative dentry which we want to point to the inode.
1536 *
1537 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1538 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1539 * and return it, else simply d_add the inode to the dentry and return NULL.
1540 *
1541 * This is needed in the lookup routine of any filesystem that is exportable
1542 * (via knfsd) so that we can build dcache paths to directories effectively.
1543 *
1544 * If a dentry was found and moved, then it is returned. Otherwise NULL
1545 * is returned. This matches the expected return value of ->lookup.
1546 *
1547 */
1548 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1549 {
1550 struct dentry *new = NULL;
1551
1552 if (IS_ERR(inode))
1553 return ERR_CAST(inode);
1554
1555 if (inode && S_ISDIR(inode->i_mode)) {
1556 spin_lock(&inode->i_lock);
1557 new = __d_find_alias(inode, 1);
1558 if (new) {
1559 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1560 spin_unlock(&inode->i_lock);
1561 security_d_instantiate(new, inode);
1562 d_move(new, dentry);
1563 iput(inode);
1564 } else {
1565 /* already taking inode->i_lock, so d_add() by hand */
1566 __d_instantiate(dentry, inode);
1567 spin_unlock(&inode->i_lock);
1568 security_d_instantiate(dentry, inode);
1569 d_rehash(dentry);
1570 }
1571 } else
1572 d_add(dentry, inode);
1573 return new;
1574 }
1575 EXPORT_SYMBOL(d_splice_alias);
1576
1577 /**
1578 * d_add_ci - lookup or allocate new dentry with case-exact name
1579 * @inode: the inode case-insensitive lookup has found
1580 * @dentry: the negative dentry that was passed to the parent's lookup func
1581 * @name: the case-exact name to be associated with the returned dentry
1582 *
1583 * This is to avoid filling the dcache with case-insensitive names to the
1584 * same inode, only the actual correct case is stored in the dcache for
1585 * case-insensitive filesystems.
1586 *
1587 * For a case-insensitive lookup match and if the the case-exact dentry
1588 * already exists in in the dcache, use it and return it.
1589 *
1590 * If no entry exists with the exact case name, allocate new dentry with
1591 * the exact case, and return the spliced entry.
1592 */
1593 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1594 struct qstr *name)
1595 {
1596 int error;
1597 struct dentry *found;
1598 struct dentry *new;
1599
1600 /*
1601 * First check if a dentry matching the name already exists,
1602 * if not go ahead and create it now.
1603 */
1604 found = d_hash_and_lookup(dentry->d_parent, name);
1605 if (!found) {
1606 new = d_alloc(dentry->d_parent, name);
1607 if (!new) {
1608 error = -ENOMEM;
1609 goto err_out;
1610 }
1611
1612 found = d_splice_alias(inode, new);
1613 if (found) {
1614 dput(new);
1615 return found;
1616 }
1617 return new;
1618 }
1619
1620 /*
1621 * If a matching dentry exists, and it's not negative use it.
1622 *
1623 * Decrement the reference count to balance the iget() done
1624 * earlier on.
1625 */
1626 if (found->d_inode) {
1627 if (unlikely(found->d_inode != inode)) {
1628 /* This can't happen because bad inodes are unhashed. */
1629 BUG_ON(!is_bad_inode(inode));
1630 BUG_ON(!is_bad_inode(found->d_inode));
1631 }
1632 iput(inode);
1633 return found;
1634 }
1635
1636 /*
1637 * We are going to instantiate this dentry, unhash it and clear the
1638 * lookup flag so we can do that.
1639 */
1640 if (unlikely(d_need_lookup(found)))
1641 d_clear_need_lookup(found);
1642
1643 /*
1644 * Negative dentry: instantiate it unless the inode is a directory and
1645 * already has a dentry.
1646 */
1647 new = d_splice_alias(inode, found);
1648 if (new) {
1649 dput(found);
1650 found = new;
1651 }
1652 return found;
1653
1654 err_out:
1655 iput(inode);
1656 return ERR_PTR(error);
1657 }
1658 EXPORT_SYMBOL(d_add_ci);
1659
1660 /**
1661 * __d_lookup_rcu - search for a dentry (racy, store-free)
1662 * @parent: parent dentry
1663 * @name: qstr of name we wish to find
1664 * @seq: returns d_seq value at the point where the dentry was found
1665 * @inode: returns dentry->d_inode when the inode was found valid.
1666 * Returns: dentry, or NULL
1667 *
1668 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1669 * resolution (store-free path walking) design described in
1670 * Documentation/filesystems/path-lookup.txt.
1671 *
1672 * This is not to be used outside core vfs.
1673 *
1674 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1675 * held, and rcu_read_lock held. The returned dentry must not be stored into
1676 * without taking d_lock and checking d_seq sequence count against @seq
1677 * returned here.
1678 *
1679 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1680 * function.
1681 *
1682 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1683 * the returned dentry, so long as its parent's seqlock is checked after the
1684 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1685 * is formed, giving integrity down the path walk.
1686 */
1687 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1688 unsigned *seq, struct inode **inode)
1689 {
1690 unsigned int len = name->len;
1691 unsigned int hash = name->hash;
1692 const unsigned char *str = name->name;
1693 struct hlist_bl_head *b = d_hash(parent, hash);
1694 struct hlist_bl_node *node;
1695 struct dentry *dentry;
1696
1697 /*
1698 * Note: There is significant duplication with __d_lookup_rcu which is
1699 * required to prevent single threaded performance regressions
1700 * especially on architectures where smp_rmb (in seqcounts) are costly.
1701 * Keep the two functions in sync.
1702 */
1703
1704 /*
1705 * The hash list is protected using RCU.
1706 *
1707 * Carefully use d_seq when comparing a candidate dentry, to avoid
1708 * races with d_move().
1709 *
1710 * It is possible that concurrent renames can mess up our list
1711 * walk here and result in missing our dentry, resulting in the
1712 * false-negative result. d_lookup() protects against concurrent
1713 * renames using rename_lock seqlock.
1714 *
1715 * See Documentation/filesystems/path-lookup.txt for more details.
1716 */
1717 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1718 struct inode *i;
1719 const char *tname;
1720 int tlen;
1721
1722 if (dentry->d_name.hash != hash)
1723 continue;
1724
1725 seqretry:
1726 *seq = read_seqcount_begin(&dentry->d_seq);
1727 if (dentry->d_parent != parent)
1728 continue;
1729 if (d_unhashed(dentry))
1730 continue;
1731 tlen = dentry->d_name.len;
1732 tname = dentry->d_name.name;
1733 i = dentry->d_inode;
1734 prefetch(tname);
1735 /*
1736 * This seqcount check is required to ensure name and
1737 * len are loaded atomically, so as not to walk off the
1738 * edge of memory when walking. If we could load this
1739 * atomically some other way, we could drop this check.
1740 */
1741 if (read_seqcount_retry(&dentry->d_seq, *seq))
1742 goto seqretry;
1743 if (parent->d_flags & DCACHE_OP_COMPARE) {
1744 if (parent->d_op->d_compare(parent, *inode,
1745 dentry, i,
1746 tlen, tname, name))
1747 continue;
1748 } else {
1749 if (dentry_cmp(tname, tlen, str, len))
1750 continue;
1751 }
1752 /*
1753 * No extra seqcount check is required after the name
1754 * compare. The caller must perform a seqcount check in
1755 * order to do anything useful with the returned dentry
1756 * anyway.
1757 */
1758 *inode = i;
1759 return dentry;
1760 }
1761 return NULL;
1762 }
1763
1764 /**
1765 * d_lookup - search for a dentry
1766 * @parent: parent dentry
1767 * @name: qstr of name we wish to find
1768 * Returns: dentry, or NULL
1769 *
1770 * d_lookup searches the children of the parent dentry for the name in
1771 * question. If the dentry is found its reference count is incremented and the
1772 * dentry is returned. The caller must use dput to free the entry when it has
1773 * finished using it. %NULL is returned if the dentry does not exist.
1774 */
1775 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1776 {
1777 struct dentry *dentry;
1778 unsigned seq;
1779
1780 do {
1781 seq = read_seqbegin(&rename_lock);
1782 dentry = __d_lookup(parent, name);
1783 if (dentry)
1784 break;
1785 } while (read_seqretry(&rename_lock, seq));
1786 return dentry;
1787 }
1788 EXPORT_SYMBOL(d_lookup);
1789
1790 /**
1791 * __d_lookup - search for a dentry (racy)
1792 * @parent: parent dentry
1793 * @name: qstr of name we wish to find
1794 * Returns: dentry, or NULL
1795 *
1796 * __d_lookup is like d_lookup, however it may (rarely) return a
1797 * false-negative result due to unrelated rename activity.
1798 *
1799 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1800 * however it must be used carefully, eg. with a following d_lookup in
1801 * the case of failure.
1802 *
1803 * __d_lookup callers must be commented.
1804 */
1805 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1806 {
1807 unsigned int len = name->len;
1808 unsigned int hash = name->hash;
1809 const unsigned char *str = name->name;
1810 struct hlist_bl_head *b = d_hash(parent, hash);
1811 struct hlist_bl_node *node;
1812 struct dentry *found = NULL;
1813 struct dentry *dentry;
1814
1815 /*
1816 * Note: There is significant duplication with __d_lookup_rcu which is
1817 * required to prevent single threaded performance regressions
1818 * especially on architectures where smp_rmb (in seqcounts) are costly.
1819 * Keep the two functions in sync.
1820 */
1821
1822 /*
1823 * The hash list is protected using RCU.
1824 *
1825 * Take d_lock when comparing a candidate dentry, to avoid races
1826 * with d_move().
1827 *
1828 * It is possible that concurrent renames can mess up our list
1829 * walk here and result in missing our dentry, resulting in the
1830 * false-negative result. d_lookup() protects against concurrent
1831 * renames using rename_lock seqlock.
1832 *
1833 * See Documentation/filesystems/path-lookup.txt for more details.
1834 */
1835 rcu_read_lock();
1836
1837 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1838 const char *tname;
1839 int tlen;
1840
1841 if (dentry->d_name.hash != hash)
1842 continue;
1843
1844 spin_lock(&dentry->d_lock);
1845 if (dentry->d_parent != parent)
1846 goto next;
1847 if (d_unhashed(dentry))
1848 goto next;
1849
1850 /*
1851 * It is safe to compare names since d_move() cannot
1852 * change the qstr (protected by d_lock).
1853 */
1854 tlen = dentry->d_name.len;
1855 tname = dentry->d_name.name;
1856 if (parent->d_flags & DCACHE_OP_COMPARE) {
1857 if (parent->d_op->d_compare(parent, parent->d_inode,
1858 dentry, dentry->d_inode,
1859 tlen, tname, name))
1860 goto next;
1861 } else {
1862 if (dentry_cmp(tname, tlen, str, len))
1863 goto next;
1864 }
1865
1866 dentry->d_count++;
1867 found = dentry;
1868 spin_unlock(&dentry->d_lock);
1869 break;
1870 next:
1871 spin_unlock(&dentry->d_lock);
1872 }
1873 rcu_read_unlock();
1874
1875 return found;
1876 }
1877
1878 /**
1879 * d_hash_and_lookup - hash the qstr then search for a dentry
1880 * @dir: Directory to search in
1881 * @name: qstr of name we wish to find
1882 *
1883 * On hash failure or on lookup failure NULL is returned.
1884 */
1885 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1886 {
1887 struct dentry *dentry = NULL;
1888
1889 /*
1890 * Check for a fs-specific hash function. Note that we must
1891 * calculate the standard hash first, as the d_op->d_hash()
1892 * routine may choose to leave the hash value unchanged.
1893 */
1894 name->hash = full_name_hash(name->name, name->len);
1895 if (dir->d_flags & DCACHE_OP_HASH) {
1896 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1897 goto out;
1898 }
1899 dentry = d_lookup(dir, name);
1900 out:
1901 return dentry;
1902 }
1903
1904 /**
1905 * d_validate - verify dentry provided from insecure source (deprecated)
1906 * @dentry: The dentry alleged to be valid child of @dparent
1907 * @dparent: The parent dentry (known to be valid)
1908 *
1909 * An insecure source has sent us a dentry, here we verify it and dget() it.
1910 * This is used by ncpfs in its readdir implementation.
1911 * Zero is returned in the dentry is invalid.
1912 *
1913 * This function is slow for big directories, and deprecated, do not use it.
1914 */
1915 int d_validate(struct dentry *dentry, struct dentry *dparent)
1916 {
1917 struct dentry *child;
1918
1919 spin_lock(&dparent->d_lock);
1920 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1921 if (dentry == child) {
1922 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1923 __dget_dlock(dentry);
1924 spin_unlock(&dentry->d_lock);
1925 spin_unlock(&dparent->d_lock);
1926 return 1;
1927 }
1928 }
1929 spin_unlock(&dparent->d_lock);
1930
1931 return 0;
1932 }
1933 EXPORT_SYMBOL(d_validate);
1934
1935 /*
1936 * When a file is deleted, we have two options:
1937 * - turn this dentry into a negative dentry
1938 * - unhash this dentry and free it.
1939 *
1940 * Usually, we want to just turn this into
1941 * a negative dentry, but if anybody else is
1942 * currently using the dentry or the inode
1943 * we can't do that and we fall back on removing
1944 * it from the hash queues and waiting for
1945 * it to be deleted later when it has no users
1946 */
1947
1948 /**
1949 * d_delete - delete a dentry
1950 * @dentry: The dentry to delete
1951 *
1952 * Turn the dentry into a negative dentry if possible, otherwise
1953 * remove it from the hash queues so it can be deleted later
1954 */
1955
1956 void d_delete(struct dentry * dentry)
1957 {
1958 struct inode *inode;
1959 int isdir = 0;
1960 /*
1961 * Are we the only user?
1962 */
1963 again:
1964 spin_lock(&dentry->d_lock);
1965 inode = dentry->d_inode;
1966 isdir = S_ISDIR(inode->i_mode);
1967 if (dentry->d_count == 1) {
1968 if (inode && !spin_trylock(&inode->i_lock)) {
1969 spin_unlock(&dentry->d_lock);
1970 cpu_relax();
1971 goto again;
1972 }
1973 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1974 dentry_unlink_inode(dentry);
1975 fsnotify_nameremove(dentry, isdir);
1976 return;
1977 }
1978
1979 if (!d_unhashed(dentry))
1980 __d_drop(dentry);
1981
1982 spin_unlock(&dentry->d_lock);
1983
1984 fsnotify_nameremove(dentry, isdir);
1985 }
1986 EXPORT_SYMBOL(d_delete);
1987
1988 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1989 {
1990 BUG_ON(!d_unhashed(entry));
1991 hlist_bl_lock(b);
1992 entry->d_flags |= DCACHE_RCUACCESS;
1993 hlist_bl_add_head_rcu(&entry->d_hash, b);
1994 hlist_bl_unlock(b);
1995 }
1996
1997 static void _d_rehash(struct dentry * entry)
1998 {
1999 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2000 }
2001
2002 /**
2003 * d_rehash - add an entry back to the hash
2004 * @entry: dentry to add to the hash
2005 *
2006 * Adds a dentry to the hash according to its name.
2007 */
2008
2009 void d_rehash(struct dentry * entry)
2010 {
2011 spin_lock(&entry->d_lock);
2012 _d_rehash(entry);
2013 spin_unlock(&entry->d_lock);
2014 }
2015 EXPORT_SYMBOL(d_rehash);
2016
2017 /**
2018 * dentry_update_name_case - update case insensitive dentry with a new name
2019 * @dentry: dentry to be updated
2020 * @name: new name
2021 *
2022 * Update a case insensitive dentry with new case of name.
2023 *
2024 * dentry must have been returned by d_lookup with name @name. Old and new
2025 * name lengths must match (ie. no d_compare which allows mismatched name
2026 * lengths).
2027 *
2028 * Parent inode i_mutex must be held over d_lookup and into this call (to
2029 * keep renames and concurrent inserts, and readdir(2) away).
2030 */
2031 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2032 {
2033 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2034 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2035
2036 spin_lock(&dentry->d_lock);
2037 write_seqcount_begin(&dentry->d_seq);
2038 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2039 write_seqcount_end(&dentry->d_seq);
2040 spin_unlock(&dentry->d_lock);
2041 }
2042 EXPORT_SYMBOL(dentry_update_name_case);
2043
2044 static void switch_names(struct dentry *dentry, struct dentry *target)
2045 {
2046 if (dname_external(target)) {
2047 if (dname_external(dentry)) {
2048 /*
2049 * Both external: swap the pointers
2050 */
2051 swap(target->d_name.name, dentry->d_name.name);
2052 } else {
2053 /*
2054 * dentry:internal, target:external. Steal target's
2055 * storage and make target internal.
2056 */
2057 memcpy(target->d_iname, dentry->d_name.name,
2058 dentry->d_name.len + 1);
2059 dentry->d_name.name = target->d_name.name;
2060 target->d_name.name = target->d_iname;
2061 }
2062 } else {
2063 if (dname_external(dentry)) {
2064 /*
2065 * dentry:external, target:internal. Give dentry's
2066 * storage to target and make dentry internal
2067 */
2068 memcpy(dentry->d_iname, target->d_name.name,
2069 target->d_name.len + 1);
2070 target->d_name.name = dentry->d_name.name;
2071 dentry->d_name.name = dentry->d_iname;
2072 } else {
2073 /*
2074 * Both are internal. Just copy target to dentry
2075 */
2076 memcpy(dentry->d_iname, target->d_name.name,
2077 target->d_name.len + 1);
2078 dentry->d_name.len = target->d_name.len;
2079 return;
2080 }
2081 }
2082 swap(dentry->d_name.len, target->d_name.len);
2083 }
2084
2085 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2086 {
2087 /*
2088 * XXXX: do we really need to take target->d_lock?
2089 */
2090 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2091 spin_lock(&target->d_parent->d_lock);
2092 else {
2093 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2094 spin_lock(&dentry->d_parent->d_lock);
2095 spin_lock_nested(&target->d_parent->d_lock,
2096 DENTRY_D_LOCK_NESTED);
2097 } else {
2098 spin_lock(&target->d_parent->d_lock);
2099 spin_lock_nested(&dentry->d_parent->d_lock,
2100 DENTRY_D_LOCK_NESTED);
2101 }
2102 }
2103 if (target < dentry) {
2104 spin_lock_nested(&target->d_lock, 2);
2105 spin_lock_nested(&dentry->d_lock, 3);
2106 } else {
2107 spin_lock_nested(&dentry->d_lock, 2);
2108 spin_lock_nested(&target->d_lock, 3);
2109 }
2110 }
2111
2112 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2113 struct dentry *target)
2114 {
2115 if (target->d_parent != dentry->d_parent)
2116 spin_unlock(&dentry->d_parent->d_lock);
2117 if (target->d_parent != target)
2118 spin_unlock(&target->d_parent->d_lock);
2119 }
2120
2121 /*
2122 * When switching names, the actual string doesn't strictly have to
2123 * be preserved in the target - because we're dropping the target
2124 * anyway. As such, we can just do a simple memcpy() to copy over
2125 * the new name before we switch.
2126 *
2127 * Note that we have to be a lot more careful about getting the hash
2128 * switched - we have to switch the hash value properly even if it
2129 * then no longer matches the actual (corrupted) string of the target.
2130 * The hash value has to match the hash queue that the dentry is on..
2131 */
2132 /*
2133 * __d_move - move a dentry
2134 * @dentry: entry to move
2135 * @target: new dentry
2136 *
2137 * Update the dcache to reflect the move of a file name. Negative
2138 * dcache entries should not be moved in this way. Caller must hold
2139 * rename_lock, the i_mutex of the source and target directories,
2140 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2141 */
2142 static void __d_move(struct dentry * dentry, struct dentry * target)
2143 {
2144 if (!dentry->d_inode)
2145 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2146
2147 BUG_ON(d_ancestor(dentry, target));
2148 BUG_ON(d_ancestor(target, dentry));
2149
2150 dentry_lock_for_move(dentry, target);
2151
2152 write_seqcount_begin(&dentry->d_seq);
2153 write_seqcount_begin(&target->d_seq);
2154
2155 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2156
2157 /*
2158 * Move the dentry to the target hash queue. Don't bother checking
2159 * for the same hash queue because of how unlikely it is.
2160 */
2161 __d_drop(dentry);
2162 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2163
2164 /* Unhash the target: dput() will then get rid of it */
2165 __d_drop(target);
2166
2167 list_del(&dentry->d_u.d_child);
2168 list_del(&target->d_u.d_child);
2169
2170 /* Switch the names.. */
2171 switch_names(dentry, target);
2172 swap(dentry->d_name.hash, target->d_name.hash);
2173
2174 /* ... and switch the parents */
2175 if (IS_ROOT(dentry)) {
2176 dentry->d_parent = target->d_parent;
2177 target->d_parent = target;
2178 INIT_LIST_HEAD(&target->d_u.d_child);
2179 } else {
2180 swap(dentry->d_parent, target->d_parent);
2181
2182 /* And add them back to the (new) parent lists */
2183 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2184 }
2185
2186 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2187
2188 write_seqcount_end(&target->d_seq);
2189 write_seqcount_end(&dentry->d_seq);
2190
2191 dentry_unlock_parents_for_move(dentry, target);
2192 spin_unlock(&target->d_lock);
2193 fsnotify_d_move(dentry);
2194 spin_unlock(&dentry->d_lock);
2195 }
2196
2197 /*
2198 * d_move - move a dentry
2199 * @dentry: entry to move
2200 * @target: new dentry
2201 *
2202 * Update the dcache to reflect the move of a file name. Negative
2203 * dcache entries should not be moved in this way. See the locking
2204 * requirements for __d_move.
2205 */
2206 void d_move(struct dentry *dentry, struct dentry *target)
2207 {
2208 write_seqlock(&rename_lock);
2209 __d_move(dentry, target);
2210 write_sequnlock(&rename_lock);
2211 }
2212 EXPORT_SYMBOL(d_move);
2213
2214 /**
2215 * d_ancestor - search for an ancestor
2216 * @p1: ancestor dentry
2217 * @p2: child dentry
2218 *
2219 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2220 * an ancestor of p2, else NULL.
2221 */
2222 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2223 {
2224 struct dentry *p;
2225
2226 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2227 if (p->d_parent == p1)
2228 return p;
2229 }
2230 return NULL;
2231 }
2232
2233 /*
2234 * This helper attempts to cope with remotely renamed directories
2235 *
2236 * It assumes that the caller is already holding
2237 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2238 *
2239 * Note: If ever the locking in lock_rename() changes, then please
2240 * remember to update this too...
2241 */
2242 static struct dentry *__d_unalias(struct inode *inode,
2243 struct dentry *dentry, struct dentry *alias)
2244 {
2245 struct mutex *m1 = NULL, *m2 = NULL;
2246 struct dentry *ret;
2247
2248 /* If alias and dentry share a parent, then no extra locks required */
2249 if (alias->d_parent == dentry->d_parent)
2250 goto out_unalias;
2251
2252 /* See lock_rename() */
2253 ret = ERR_PTR(-EBUSY);
2254 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2255 goto out_err;
2256 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2257 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2258 goto out_err;
2259 m2 = &alias->d_parent->d_inode->i_mutex;
2260 out_unalias:
2261 __d_move(alias, dentry);
2262 ret = alias;
2263 out_err:
2264 spin_unlock(&inode->i_lock);
2265 if (m2)
2266 mutex_unlock(m2);
2267 if (m1)
2268 mutex_unlock(m1);
2269 return ret;
2270 }
2271
2272 /*
2273 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2274 * named dentry in place of the dentry to be replaced.
2275 * returns with anon->d_lock held!
2276 */
2277 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2278 {
2279 struct dentry *dparent, *aparent;
2280
2281 dentry_lock_for_move(anon, dentry);
2282
2283 write_seqcount_begin(&dentry->d_seq);
2284 write_seqcount_begin(&anon->d_seq);
2285
2286 dparent = dentry->d_parent;
2287 aparent = anon->d_parent;
2288
2289 switch_names(dentry, anon);
2290 swap(dentry->d_name.hash, anon->d_name.hash);
2291
2292 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2293 list_del(&dentry->d_u.d_child);
2294 if (!IS_ROOT(dentry))
2295 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2296 else
2297 INIT_LIST_HEAD(&dentry->d_u.d_child);
2298
2299 anon->d_parent = (dparent == dentry) ? anon : dparent;
2300 list_del(&anon->d_u.d_child);
2301 if (!IS_ROOT(anon))
2302 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2303 else
2304 INIT_LIST_HEAD(&anon->d_u.d_child);
2305
2306 write_seqcount_end(&dentry->d_seq);
2307 write_seqcount_end(&anon->d_seq);
2308
2309 dentry_unlock_parents_for_move(anon, dentry);
2310 spin_unlock(&dentry->d_lock);
2311
2312 /* anon->d_lock still locked, returns locked */
2313 anon->d_flags &= ~DCACHE_DISCONNECTED;
2314 }
2315
2316 /**
2317 * d_materialise_unique - introduce an inode into the tree
2318 * @dentry: candidate dentry
2319 * @inode: inode to bind to the dentry, to which aliases may be attached
2320 *
2321 * Introduces an dentry into the tree, substituting an extant disconnected
2322 * root directory alias in its place if there is one. Caller must hold the
2323 * i_mutex of the parent directory.
2324 */
2325 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2326 {
2327 struct dentry *actual;
2328
2329 BUG_ON(!d_unhashed(dentry));
2330
2331 if (!inode) {
2332 actual = dentry;
2333 __d_instantiate(dentry, NULL);
2334 d_rehash(actual);
2335 goto out_nolock;
2336 }
2337
2338 spin_lock(&inode->i_lock);
2339
2340 if (S_ISDIR(inode->i_mode)) {
2341 struct dentry *alias;
2342
2343 /* Does an aliased dentry already exist? */
2344 alias = __d_find_alias(inode, 0);
2345 if (alias) {
2346 actual = alias;
2347 write_seqlock(&rename_lock);
2348
2349 if (d_ancestor(alias, dentry)) {
2350 /* Check for loops */
2351 actual = ERR_PTR(-ELOOP);
2352 } else if (IS_ROOT(alias)) {
2353 /* Is this an anonymous mountpoint that we
2354 * could splice into our tree? */
2355 __d_materialise_dentry(dentry, alias);
2356 write_sequnlock(&rename_lock);
2357 __d_drop(alias);
2358 goto found;
2359 } else {
2360 /* Nope, but we must(!) avoid directory
2361 * aliasing */
2362 actual = __d_unalias(inode, dentry, alias);
2363 }
2364 write_sequnlock(&rename_lock);
2365 if (IS_ERR(actual))
2366 dput(alias);
2367 goto out_nolock;
2368 }
2369 }
2370
2371 /* Add a unique reference */
2372 actual = __d_instantiate_unique(dentry, inode);
2373 if (!actual)
2374 actual = dentry;
2375 else
2376 BUG_ON(!d_unhashed(actual));
2377
2378 spin_lock(&actual->d_lock);
2379 found:
2380 _d_rehash(actual);
2381 spin_unlock(&actual->d_lock);
2382 spin_unlock(&inode->i_lock);
2383 out_nolock:
2384 if (actual == dentry) {
2385 security_d_instantiate(dentry, inode);
2386 return NULL;
2387 }
2388
2389 iput(inode);
2390 return actual;
2391 }
2392 EXPORT_SYMBOL_GPL(d_materialise_unique);
2393
2394 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2395 {
2396 *buflen -= namelen;
2397 if (*buflen < 0)
2398 return -ENAMETOOLONG;
2399 *buffer -= namelen;
2400 memcpy(*buffer, str, namelen);
2401 return 0;
2402 }
2403
2404 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2405 {
2406 return prepend(buffer, buflen, name->name, name->len);
2407 }
2408
2409 /**
2410 * prepend_path - Prepend path string to a buffer
2411 * @path: the dentry/vfsmount to report
2412 * @root: root vfsmnt/dentry (may be modified by this function)
2413 * @buffer: pointer to the end of the buffer
2414 * @buflen: pointer to buffer length
2415 *
2416 * Caller holds the rename_lock.
2417 *
2418 * If path is not reachable from the supplied root, then the value of
2419 * root is changed (without modifying refcounts).
2420 */
2421 static int prepend_path(const struct path *path, struct path *root,
2422 char **buffer, int *buflen)
2423 {
2424 struct dentry *dentry = path->dentry;
2425 struct vfsmount *vfsmnt = path->mnt;
2426 bool slash = false;
2427 int error = 0;
2428
2429 br_read_lock(vfsmount_lock);
2430 while (dentry != root->dentry || vfsmnt != root->mnt) {
2431 struct dentry * parent;
2432
2433 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2434 /* Global root? */
2435 if (vfsmnt->mnt_parent == vfsmnt) {
2436 goto global_root;
2437 }
2438 dentry = vfsmnt->mnt_mountpoint;
2439 vfsmnt = vfsmnt->mnt_parent;
2440 continue;
2441 }
2442 parent = dentry->d_parent;
2443 prefetch(parent);
2444 spin_lock(&dentry->d_lock);
2445 error = prepend_name(buffer, buflen, &dentry->d_name);
2446 spin_unlock(&dentry->d_lock);
2447 if (!error)
2448 error = prepend(buffer, buflen, "/", 1);
2449 if (error)
2450 break;
2451
2452 slash = true;
2453 dentry = parent;
2454 }
2455
2456 out:
2457 if (!error && !slash)
2458 error = prepend(buffer, buflen, "/", 1);
2459
2460 br_read_unlock(vfsmount_lock);
2461 return error;
2462
2463 global_root:
2464 /*
2465 * Filesystems needing to implement special "root names"
2466 * should do so with ->d_dname()
2467 */
2468 if (IS_ROOT(dentry) &&
2469 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2470 WARN(1, "Root dentry has weird name <%.*s>\n",
2471 (int) dentry->d_name.len, dentry->d_name.name);
2472 }
2473 root->mnt = vfsmnt;
2474 root->dentry = dentry;
2475 goto out;
2476 }
2477
2478 /**
2479 * __d_path - return the path of a dentry
2480 * @path: the dentry/vfsmount to report
2481 * @root: root vfsmnt/dentry (may be modified by this function)
2482 * @buf: buffer to return value in
2483 * @buflen: buffer length
2484 *
2485 * Convert a dentry into an ASCII path name.
2486 *
2487 * Returns a pointer into the buffer or an error code if the
2488 * path was too long.
2489 *
2490 * "buflen" should be positive.
2491 *
2492 * If path is not reachable from the supplied root, then the value of
2493 * root is changed (without modifying refcounts).
2494 */
2495 char *__d_path(const struct path *path, struct path *root,
2496 char *buf, int buflen)
2497 {
2498 char *res = buf + buflen;
2499 int error;
2500
2501 prepend(&res, &buflen, "\0", 1);
2502 write_seqlock(&rename_lock);
2503 error = prepend_path(path, root, &res, &buflen);
2504 write_sequnlock(&rename_lock);
2505
2506 if (error)
2507 return ERR_PTR(error);
2508 return res;
2509 }
2510
2511 /*
2512 * same as __d_path but appends "(deleted)" for unlinked files.
2513 */
2514 static int path_with_deleted(const struct path *path, struct path *root,
2515 char **buf, int *buflen)
2516 {
2517 prepend(buf, buflen, "\0", 1);
2518 if (d_unlinked(path->dentry)) {
2519 int error = prepend(buf, buflen, " (deleted)", 10);
2520 if (error)
2521 return error;
2522 }
2523
2524 return prepend_path(path, root, buf, buflen);
2525 }
2526
2527 static int prepend_unreachable(char **buffer, int *buflen)
2528 {
2529 return prepend(buffer, buflen, "(unreachable)", 13);
2530 }
2531
2532 /**
2533 * d_path - return the path of a dentry
2534 * @path: path to report
2535 * @buf: buffer to return value in
2536 * @buflen: buffer length
2537 *
2538 * Convert a dentry into an ASCII path name. If the entry has been deleted
2539 * the string " (deleted)" is appended. Note that this is ambiguous.
2540 *
2541 * Returns a pointer into the buffer or an error code if the path was
2542 * too long. Note: Callers should use the returned pointer, not the passed
2543 * in buffer, to use the name! The implementation often starts at an offset
2544 * into the buffer, and may leave 0 bytes at the start.
2545 *
2546 * "buflen" should be positive.
2547 */
2548 char *d_path(const struct path *path, char *buf, int buflen)
2549 {
2550 char *res = buf + buflen;
2551 struct path root;
2552 struct path tmp;
2553 int error;
2554
2555 /*
2556 * We have various synthetic filesystems that never get mounted. On
2557 * these filesystems dentries are never used for lookup purposes, and
2558 * thus don't need to be hashed. They also don't need a name until a
2559 * user wants to identify the object in /proc/pid/fd/. The little hack
2560 * below allows us to generate a name for these objects on demand:
2561 */
2562 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2563 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2564
2565 get_fs_root(current->fs, &root);
2566 write_seqlock(&rename_lock);
2567 tmp = root;
2568 error = path_with_deleted(path, &tmp, &res, &buflen);
2569 if (error)
2570 res = ERR_PTR(error);
2571 write_sequnlock(&rename_lock);
2572 path_put(&root);
2573 return res;
2574 }
2575 EXPORT_SYMBOL(d_path);
2576
2577 /**
2578 * d_path_with_unreachable - return the path of a dentry
2579 * @path: path to report
2580 * @buf: buffer to return value in
2581 * @buflen: buffer length
2582 *
2583 * The difference from d_path() is that this prepends "(unreachable)"
2584 * to paths which are unreachable from the current process' root.
2585 */
2586 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2587 {
2588 char *res = buf + buflen;
2589 struct path root;
2590 struct path tmp;
2591 int error;
2592
2593 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2594 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2595
2596 get_fs_root(current->fs, &root);
2597 write_seqlock(&rename_lock);
2598 tmp = root;
2599 error = path_with_deleted(path, &tmp, &res, &buflen);
2600 if (!error && !path_equal(&tmp, &root))
2601 error = prepend_unreachable(&res, &buflen);
2602 write_sequnlock(&rename_lock);
2603 path_put(&root);
2604 if (error)
2605 res = ERR_PTR(error);
2606
2607 return res;
2608 }
2609
2610 /*
2611 * Helper function for dentry_operations.d_dname() members
2612 */
2613 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2614 const char *fmt, ...)
2615 {
2616 va_list args;
2617 char temp[64];
2618 int sz;
2619
2620 va_start(args, fmt);
2621 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2622 va_end(args);
2623
2624 if (sz > sizeof(temp) || sz > buflen)
2625 return ERR_PTR(-ENAMETOOLONG);
2626
2627 buffer += buflen - sz;
2628 return memcpy(buffer, temp, sz);
2629 }
2630
2631 /*
2632 * Write full pathname from the root of the filesystem into the buffer.
2633 */
2634 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2635 {
2636 char *end = buf + buflen;
2637 char *retval;
2638
2639 prepend(&end, &buflen, "\0", 1);
2640 if (buflen < 1)
2641 goto Elong;
2642 /* Get '/' right */
2643 retval = end-1;
2644 *retval = '/';
2645
2646 while (!IS_ROOT(dentry)) {
2647 struct dentry *parent = dentry->d_parent;
2648 int error;
2649
2650 prefetch(parent);
2651 spin_lock(&dentry->d_lock);
2652 error = prepend_name(&end, &buflen, &dentry->d_name);
2653 spin_unlock(&dentry->d_lock);
2654 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2655 goto Elong;
2656
2657 retval = end;
2658 dentry = parent;
2659 }
2660 return retval;
2661 Elong:
2662 return ERR_PTR(-ENAMETOOLONG);
2663 }
2664
2665 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2666 {
2667 char *retval;
2668
2669 write_seqlock(&rename_lock);
2670 retval = __dentry_path(dentry, buf, buflen);
2671 write_sequnlock(&rename_lock);
2672
2673 return retval;
2674 }
2675 EXPORT_SYMBOL(dentry_path_raw);
2676
2677 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2678 {
2679 char *p = NULL;
2680 char *retval;
2681
2682 write_seqlock(&rename_lock);
2683 if (d_unlinked(dentry)) {
2684 p = buf + buflen;
2685 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2686 goto Elong;
2687 buflen++;
2688 }
2689 retval = __dentry_path(dentry, buf, buflen);
2690 write_sequnlock(&rename_lock);
2691 if (!IS_ERR(retval) && p)
2692 *p = '/'; /* restore '/' overriden with '\0' */
2693 return retval;
2694 Elong:
2695 return ERR_PTR(-ENAMETOOLONG);
2696 }
2697
2698 /*
2699 * NOTE! The user-level library version returns a
2700 * character pointer. The kernel system call just
2701 * returns the length of the buffer filled (which
2702 * includes the ending '\0' character), or a negative
2703 * error value. So libc would do something like
2704 *
2705 * char *getcwd(char * buf, size_t size)
2706 * {
2707 * int retval;
2708 *
2709 * retval = sys_getcwd(buf, size);
2710 * if (retval >= 0)
2711 * return buf;
2712 * errno = -retval;
2713 * return NULL;
2714 * }
2715 */
2716 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2717 {
2718 int error;
2719 struct path pwd, root;
2720 char *page = (char *) __get_free_page(GFP_USER);
2721
2722 if (!page)
2723 return -ENOMEM;
2724
2725 get_fs_root_and_pwd(current->fs, &root, &pwd);
2726
2727 error = -ENOENT;
2728 write_seqlock(&rename_lock);
2729 if (!d_unlinked(pwd.dentry)) {
2730 unsigned long len;
2731 struct path tmp = root;
2732 char *cwd = page + PAGE_SIZE;
2733 int buflen = PAGE_SIZE;
2734
2735 prepend(&cwd, &buflen, "\0", 1);
2736 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2737 write_sequnlock(&rename_lock);
2738
2739 if (error)
2740 goto out;
2741
2742 /* Unreachable from current root */
2743 if (!path_equal(&tmp, &root)) {
2744 error = prepend_unreachable(&cwd, &buflen);
2745 if (error)
2746 goto out;
2747 }
2748
2749 error = -ERANGE;
2750 len = PAGE_SIZE + page - cwd;
2751 if (len <= size) {
2752 error = len;
2753 if (copy_to_user(buf, cwd, len))
2754 error = -EFAULT;
2755 }
2756 } else {
2757 write_sequnlock(&rename_lock);
2758 }
2759
2760 out:
2761 path_put(&pwd);
2762 path_put(&root);
2763 free_page((unsigned long) page);
2764 return error;
2765 }
2766
2767 /*
2768 * Test whether new_dentry is a subdirectory of old_dentry.
2769 *
2770 * Trivially implemented using the dcache structure
2771 */
2772
2773 /**
2774 * is_subdir - is new dentry a subdirectory of old_dentry
2775 * @new_dentry: new dentry
2776 * @old_dentry: old dentry
2777 *
2778 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2779 * Returns 0 otherwise.
2780 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2781 */
2782
2783 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2784 {
2785 int result;
2786 unsigned seq;
2787
2788 if (new_dentry == old_dentry)
2789 return 1;
2790
2791 do {
2792 /* for restarting inner loop in case of seq retry */
2793 seq = read_seqbegin(&rename_lock);
2794 /*
2795 * Need rcu_readlock to protect against the d_parent trashing
2796 * due to d_move
2797 */
2798 rcu_read_lock();
2799 if (d_ancestor(old_dentry, new_dentry))
2800 result = 1;
2801 else
2802 result = 0;
2803 rcu_read_unlock();
2804 } while (read_seqretry(&rename_lock, seq));
2805
2806 return result;
2807 }
2808
2809 int path_is_under(struct path *path1, struct path *path2)
2810 {
2811 struct vfsmount *mnt = path1->mnt;
2812 struct dentry *dentry = path1->dentry;
2813 int res;
2814
2815 br_read_lock(vfsmount_lock);
2816 if (mnt != path2->mnt) {
2817 for (;;) {
2818 if (mnt->mnt_parent == mnt) {
2819 br_read_unlock(vfsmount_lock);
2820 return 0;
2821 }
2822 if (mnt->mnt_parent == path2->mnt)
2823 break;
2824 mnt = mnt->mnt_parent;
2825 }
2826 dentry = mnt->mnt_mountpoint;
2827 }
2828 res = is_subdir(dentry, path2->dentry);
2829 br_read_unlock(vfsmount_lock);
2830 return res;
2831 }
2832 EXPORT_SYMBOL(path_is_under);
2833
2834 void d_genocide(struct dentry *root)
2835 {
2836 struct dentry *this_parent;
2837 struct list_head *next;
2838 unsigned seq;
2839 int locked = 0;
2840
2841 seq = read_seqbegin(&rename_lock);
2842 again:
2843 this_parent = root;
2844 spin_lock(&this_parent->d_lock);
2845 repeat:
2846 next = this_parent->d_subdirs.next;
2847 resume:
2848 while (next != &this_parent->d_subdirs) {
2849 struct list_head *tmp = next;
2850 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2851 next = tmp->next;
2852
2853 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2854 if (d_unhashed(dentry) || !dentry->d_inode) {
2855 spin_unlock(&dentry->d_lock);
2856 continue;
2857 }
2858 if (!list_empty(&dentry->d_subdirs)) {
2859 spin_unlock(&this_parent->d_lock);
2860 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2861 this_parent = dentry;
2862 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2863 goto repeat;
2864 }
2865 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2866 dentry->d_flags |= DCACHE_GENOCIDE;
2867 dentry->d_count--;
2868 }
2869 spin_unlock(&dentry->d_lock);
2870 }
2871 if (this_parent != root) {
2872 struct dentry *child = this_parent;
2873 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2874 this_parent->d_flags |= DCACHE_GENOCIDE;
2875 this_parent->d_count--;
2876 }
2877 this_parent = try_to_ascend(this_parent, locked, seq);
2878 if (!this_parent)
2879 goto rename_retry;
2880 next = child->d_u.d_child.next;
2881 goto resume;
2882 }
2883 spin_unlock(&this_parent->d_lock);
2884 if (!locked && read_seqretry(&rename_lock, seq))
2885 goto rename_retry;
2886 if (locked)
2887 write_sequnlock(&rename_lock);
2888 return;
2889
2890 rename_retry:
2891 locked = 1;
2892 write_seqlock(&rename_lock);
2893 goto again;
2894 }
2895
2896 /**
2897 * find_inode_number - check for dentry with name
2898 * @dir: directory to check
2899 * @name: Name to find.
2900 *
2901 * Check whether a dentry already exists for the given name,
2902 * and return the inode number if it has an inode. Otherwise
2903 * 0 is returned.
2904 *
2905 * This routine is used to post-process directory listings for
2906 * filesystems using synthetic inode numbers, and is necessary
2907 * to keep getcwd() working.
2908 */
2909
2910 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2911 {
2912 struct dentry * dentry;
2913 ino_t ino = 0;
2914
2915 dentry = d_hash_and_lookup(dir, name);
2916 if (dentry) {
2917 if (dentry->d_inode)
2918 ino = dentry->d_inode->i_ino;
2919 dput(dentry);
2920 }
2921 return ino;
2922 }
2923 EXPORT_SYMBOL(find_inode_number);
2924
2925 static __initdata unsigned long dhash_entries;
2926 static int __init set_dhash_entries(char *str)
2927 {
2928 if (!str)
2929 return 0;
2930 dhash_entries = simple_strtoul(str, &str, 0);
2931 return 1;
2932 }
2933 __setup("dhash_entries=", set_dhash_entries);
2934
2935 static void __init dcache_init_early(void)
2936 {
2937 int loop;
2938
2939 /* If hashes are distributed across NUMA nodes, defer
2940 * hash allocation until vmalloc space is available.
2941 */
2942 if (hashdist)
2943 return;
2944
2945 dentry_hashtable =
2946 alloc_large_system_hash("Dentry cache",
2947 sizeof(struct hlist_bl_head),
2948 dhash_entries,
2949 13,
2950 HASH_EARLY,
2951 &d_hash_shift,
2952 &d_hash_mask,
2953 0);
2954
2955 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2956 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
2957 }
2958
2959 static void __init dcache_init(void)
2960 {
2961 int loop;
2962
2963 /*
2964 * A constructor could be added for stable state like the lists,
2965 * but it is probably not worth it because of the cache nature
2966 * of the dcache.
2967 */
2968 dentry_cache = KMEM_CACHE(dentry,
2969 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2970
2971 /* Hash may have been set up in dcache_init_early */
2972 if (!hashdist)
2973 return;
2974
2975 dentry_hashtable =
2976 alloc_large_system_hash("Dentry cache",
2977 sizeof(struct hlist_bl_head),
2978 dhash_entries,
2979 13,
2980 0,
2981 &d_hash_shift,
2982 &d_hash_mask,
2983 0);
2984
2985 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2986 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
2987 }
2988
2989 /* SLAB cache for __getname() consumers */
2990 struct kmem_cache *names_cachep __read_mostly;
2991 EXPORT_SYMBOL(names_cachep);
2992
2993 EXPORT_SYMBOL(d_genocide);
2994
2995 void __init vfs_caches_init_early(void)
2996 {
2997 dcache_init_early();
2998 inode_init_early();
2999 }
3000
3001 void __init vfs_caches_init(unsigned long mempages)
3002 {
3003 unsigned long reserve;
3004
3005 /* Base hash sizes on available memory, with a reserve equal to
3006 150% of current kernel size */
3007
3008 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3009 mempages -= reserve;
3010
3011 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3012 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3013
3014 dcache_init();
3015 inode_init();
3016 files_init(mempages);
3017 mnt_init();
3018 bdev_cache_init();
3019 chrdev_init();
3020 }
This page took 0.104078 seconds and 6 git commands to generate.