Merge tag 'fbdev-fixes-for-3.3-2' of git://github.com/schandinat/linux-2.6
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42
43 /*
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_alias, d_inode
62 *
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
69 *
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned long hash)
109 {
110 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
111 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
113 }
114
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118 };
119
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
124 {
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130 }
131
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134 {
135 dentry_stat.nr_dentry = get_nr_dentry();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139
140 static void __d_free(struct rcu_head *head)
141 {
142 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
143
144 WARN_ON(!list_empty(&dentry->d_alias));
145 if (dname_external(dentry))
146 kfree(dentry->d_name.name);
147 kmem_cache_free(dentry_cache, dentry);
148 }
149
150 /*
151 * no locks, please.
152 */
153 static void d_free(struct dentry *dentry)
154 {
155 BUG_ON(dentry->d_count);
156 this_cpu_dec(nr_dentry);
157 if (dentry->d_op && dentry->d_op->d_release)
158 dentry->d_op->d_release(dentry);
159
160 /* if dentry was never visible to RCU, immediate free is OK */
161 if (!(dentry->d_flags & DCACHE_RCUACCESS))
162 __d_free(&dentry->d_u.d_rcu);
163 else
164 call_rcu(&dentry->d_u.d_rcu, __d_free);
165 }
166
167 /**
168 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
169 * @dentry: the target dentry
170 * After this call, in-progress rcu-walk path lookup will fail. This
171 * should be called after unhashing, and after changing d_inode (if
172 * the dentry has not already been unhashed).
173 */
174 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
175 {
176 assert_spin_locked(&dentry->d_lock);
177 /* Go through a barrier */
178 write_seqcount_barrier(&dentry->d_seq);
179 }
180
181 /*
182 * Release the dentry's inode, using the filesystem
183 * d_iput() operation if defined. Dentry has no refcount
184 * and is unhashed.
185 */
186 static void dentry_iput(struct dentry * dentry)
187 __releases(dentry->d_lock)
188 __releases(dentry->d_inode->i_lock)
189 {
190 struct inode *inode = dentry->d_inode;
191 if (inode) {
192 dentry->d_inode = NULL;
193 list_del_init(&dentry->d_alias);
194 spin_unlock(&dentry->d_lock);
195 spin_unlock(&inode->i_lock);
196 if (!inode->i_nlink)
197 fsnotify_inoderemove(inode);
198 if (dentry->d_op && dentry->d_op->d_iput)
199 dentry->d_op->d_iput(dentry, inode);
200 else
201 iput(inode);
202 } else {
203 spin_unlock(&dentry->d_lock);
204 }
205 }
206
207 /*
208 * Release the dentry's inode, using the filesystem
209 * d_iput() operation if defined. dentry remains in-use.
210 */
211 static void dentry_unlink_inode(struct dentry * dentry)
212 __releases(dentry->d_lock)
213 __releases(dentry->d_inode->i_lock)
214 {
215 struct inode *inode = dentry->d_inode;
216 dentry->d_inode = NULL;
217 list_del_init(&dentry->d_alias);
218 dentry_rcuwalk_barrier(dentry);
219 spin_unlock(&dentry->d_lock);
220 spin_unlock(&inode->i_lock);
221 if (!inode->i_nlink)
222 fsnotify_inoderemove(inode);
223 if (dentry->d_op && dentry->d_op->d_iput)
224 dentry->d_op->d_iput(dentry, inode);
225 else
226 iput(inode);
227 }
228
229 /*
230 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
231 */
232 static void dentry_lru_add(struct dentry *dentry)
233 {
234 if (list_empty(&dentry->d_lru)) {
235 spin_lock(&dcache_lru_lock);
236 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
237 dentry->d_sb->s_nr_dentry_unused++;
238 dentry_stat.nr_unused++;
239 spin_unlock(&dcache_lru_lock);
240 }
241 }
242
243 static void __dentry_lru_del(struct dentry *dentry)
244 {
245 list_del_init(&dentry->d_lru);
246 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
247 dentry->d_sb->s_nr_dentry_unused--;
248 dentry_stat.nr_unused--;
249 }
250
251 /*
252 * Remove a dentry with references from the LRU.
253 */
254 static void dentry_lru_del(struct dentry *dentry)
255 {
256 if (!list_empty(&dentry->d_lru)) {
257 spin_lock(&dcache_lru_lock);
258 __dentry_lru_del(dentry);
259 spin_unlock(&dcache_lru_lock);
260 }
261 }
262
263 /*
264 * Remove a dentry that is unreferenced and about to be pruned
265 * (unhashed and destroyed) from the LRU, and inform the file system.
266 * This wrapper should be called _prior_ to unhashing a victim dentry.
267 */
268 static void dentry_lru_prune(struct dentry *dentry)
269 {
270 if (!list_empty(&dentry->d_lru)) {
271 if (dentry->d_flags & DCACHE_OP_PRUNE)
272 dentry->d_op->d_prune(dentry);
273
274 spin_lock(&dcache_lru_lock);
275 __dentry_lru_del(dentry);
276 spin_unlock(&dcache_lru_lock);
277 }
278 }
279
280 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
281 {
282 spin_lock(&dcache_lru_lock);
283 if (list_empty(&dentry->d_lru)) {
284 list_add_tail(&dentry->d_lru, list);
285 dentry->d_sb->s_nr_dentry_unused++;
286 dentry_stat.nr_unused++;
287 } else {
288 list_move_tail(&dentry->d_lru, list);
289 }
290 spin_unlock(&dcache_lru_lock);
291 }
292
293 /**
294 * d_kill - kill dentry and return parent
295 * @dentry: dentry to kill
296 * @parent: parent dentry
297 *
298 * The dentry must already be unhashed and removed from the LRU.
299 *
300 * If this is the root of the dentry tree, return NULL.
301 *
302 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
303 * d_kill.
304 */
305 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
306 __releases(dentry->d_lock)
307 __releases(parent->d_lock)
308 __releases(dentry->d_inode->i_lock)
309 {
310 list_del(&dentry->d_u.d_child);
311 /*
312 * Inform try_to_ascend() that we are no longer attached to the
313 * dentry tree
314 */
315 dentry->d_flags |= DCACHE_DISCONNECTED;
316 if (parent)
317 spin_unlock(&parent->d_lock);
318 dentry_iput(dentry);
319 /*
320 * dentry_iput drops the locks, at which point nobody (except
321 * transient RCU lookups) can reach this dentry.
322 */
323 d_free(dentry);
324 return parent;
325 }
326
327 /*
328 * Unhash a dentry without inserting an RCU walk barrier or checking that
329 * dentry->d_lock is locked. The caller must take care of that, if
330 * appropriate.
331 */
332 static void __d_shrink(struct dentry *dentry)
333 {
334 if (!d_unhashed(dentry)) {
335 struct hlist_bl_head *b;
336 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
337 b = &dentry->d_sb->s_anon;
338 else
339 b = d_hash(dentry->d_parent, dentry->d_name.hash);
340
341 hlist_bl_lock(b);
342 __hlist_bl_del(&dentry->d_hash);
343 dentry->d_hash.pprev = NULL;
344 hlist_bl_unlock(b);
345 }
346 }
347
348 /**
349 * d_drop - drop a dentry
350 * @dentry: dentry to drop
351 *
352 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
353 * be found through a VFS lookup any more. Note that this is different from
354 * deleting the dentry - d_delete will try to mark the dentry negative if
355 * possible, giving a successful _negative_ lookup, while d_drop will
356 * just make the cache lookup fail.
357 *
358 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
359 * reason (NFS timeouts or autofs deletes).
360 *
361 * __d_drop requires dentry->d_lock.
362 */
363 void __d_drop(struct dentry *dentry)
364 {
365 if (!d_unhashed(dentry)) {
366 __d_shrink(dentry);
367 dentry_rcuwalk_barrier(dentry);
368 }
369 }
370 EXPORT_SYMBOL(__d_drop);
371
372 void d_drop(struct dentry *dentry)
373 {
374 spin_lock(&dentry->d_lock);
375 __d_drop(dentry);
376 spin_unlock(&dentry->d_lock);
377 }
378 EXPORT_SYMBOL(d_drop);
379
380 /*
381 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
382 * @dentry: dentry to drop
383 *
384 * This is called when we do a lookup on a placeholder dentry that needed to be
385 * looked up. The dentry should have been hashed in order for it to be found by
386 * the lookup code, but now needs to be unhashed while we do the actual lookup
387 * and clear the DCACHE_NEED_LOOKUP flag.
388 */
389 void d_clear_need_lookup(struct dentry *dentry)
390 {
391 spin_lock(&dentry->d_lock);
392 __d_drop(dentry);
393 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
394 spin_unlock(&dentry->d_lock);
395 }
396 EXPORT_SYMBOL(d_clear_need_lookup);
397
398 /*
399 * Finish off a dentry we've decided to kill.
400 * dentry->d_lock must be held, returns with it unlocked.
401 * If ref is non-zero, then decrement the refcount too.
402 * Returns dentry requiring refcount drop, or NULL if we're done.
403 */
404 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
405 __releases(dentry->d_lock)
406 {
407 struct inode *inode;
408 struct dentry *parent;
409
410 inode = dentry->d_inode;
411 if (inode && !spin_trylock(&inode->i_lock)) {
412 relock:
413 spin_unlock(&dentry->d_lock);
414 cpu_relax();
415 return dentry; /* try again with same dentry */
416 }
417 if (IS_ROOT(dentry))
418 parent = NULL;
419 else
420 parent = dentry->d_parent;
421 if (parent && !spin_trylock(&parent->d_lock)) {
422 if (inode)
423 spin_unlock(&inode->i_lock);
424 goto relock;
425 }
426
427 if (ref)
428 dentry->d_count--;
429 /*
430 * if dentry was on the d_lru list delete it from there.
431 * inform the fs via d_prune that this dentry is about to be
432 * unhashed and destroyed.
433 */
434 dentry_lru_prune(dentry);
435 /* if it was on the hash then remove it */
436 __d_drop(dentry);
437 return d_kill(dentry, parent);
438 }
439
440 /*
441 * This is dput
442 *
443 * This is complicated by the fact that we do not want to put
444 * dentries that are no longer on any hash chain on the unused
445 * list: we'd much rather just get rid of them immediately.
446 *
447 * However, that implies that we have to traverse the dentry
448 * tree upwards to the parents which might _also_ now be
449 * scheduled for deletion (it may have been only waiting for
450 * its last child to go away).
451 *
452 * This tail recursion is done by hand as we don't want to depend
453 * on the compiler to always get this right (gcc generally doesn't).
454 * Real recursion would eat up our stack space.
455 */
456
457 /*
458 * dput - release a dentry
459 * @dentry: dentry to release
460 *
461 * Release a dentry. This will drop the usage count and if appropriate
462 * call the dentry unlink method as well as removing it from the queues and
463 * releasing its resources. If the parent dentries were scheduled for release
464 * they too may now get deleted.
465 */
466 void dput(struct dentry *dentry)
467 {
468 if (!dentry)
469 return;
470
471 repeat:
472 if (dentry->d_count == 1)
473 might_sleep();
474 spin_lock(&dentry->d_lock);
475 BUG_ON(!dentry->d_count);
476 if (dentry->d_count > 1) {
477 dentry->d_count--;
478 spin_unlock(&dentry->d_lock);
479 return;
480 }
481
482 if (dentry->d_flags & DCACHE_OP_DELETE) {
483 if (dentry->d_op->d_delete(dentry))
484 goto kill_it;
485 }
486
487 /* Unreachable? Get rid of it */
488 if (d_unhashed(dentry))
489 goto kill_it;
490
491 /*
492 * If this dentry needs lookup, don't set the referenced flag so that it
493 * is more likely to be cleaned up by the dcache shrinker in case of
494 * memory pressure.
495 */
496 if (!d_need_lookup(dentry))
497 dentry->d_flags |= DCACHE_REFERENCED;
498 dentry_lru_add(dentry);
499
500 dentry->d_count--;
501 spin_unlock(&dentry->d_lock);
502 return;
503
504 kill_it:
505 dentry = dentry_kill(dentry, 1);
506 if (dentry)
507 goto repeat;
508 }
509 EXPORT_SYMBOL(dput);
510
511 /**
512 * d_invalidate - invalidate a dentry
513 * @dentry: dentry to invalidate
514 *
515 * Try to invalidate the dentry if it turns out to be
516 * possible. If there are other dentries that can be
517 * reached through this one we can't delete it and we
518 * return -EBUSY. On success we return 0.
519 *
520 * no dcache lock.
521 */
522
523 int d_invalidate(struct dentry * dentry)
524 {
525 /*
526 * If it's already been dropped, return OK.
527 */
528 spin_lock(&dentry->d_lock);
529 if (d_unhashed(dentry)) {
530 spin_unlock(&dentry->d_lock);
531 return 0;
532 }
533 /*
534 * Check whether to do a partial shrink_dcache
535 * to get rid of unused child entries.
536 */
537 if (!list_empty(&dentry->d_subdirs)) {
538 spin_unlock(&dentry->d_lock);
539 shrink_dcache_parent(dentry);
540 spin_lock(&dentry->d_lock);
541 }
542
543 /*
544 * Somebody else still using it?
545 *
546 * If it's a directory, we can't drop it
547 * for fear of somebody re-populating it
548 * with children (even though dropping it
549 * would make it unreachable from the root,
550 * we might still populate it if it was a
551 * working directory or similar).
552 * We also need to leave mountpoints alone,
553 * directory or not.
554 */
555 if (dentry->d_count > 1 && dentry->d_inode) {
556 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
557 spin_unlock(&dentry->d_lock);
558 return -EBUSY;
559 }
560 }
561
562 __d_drop(dentry);
563 spin_unlock(&dentry->d_lock);
564 return 0;
565 }
566 EXPORT_SYMBOL(d_invalidate);
567
568 /* This must be called with d_lock held */
569 static inline void __dget_dlock(struct dentry *dentry)
570 {
571 dentry->d_count++;
572 }
573
574 static inline void __dget(struct dentry *dentry)
575 {
576 spin_lock(&dentry->d_lock);
577 __dget_dlock(dentry);
578 spin_unlock(&dentry->d_lock);
579 }
580
581 struct dentry *dget_parent(struct dentry *dentry)
582 {
583 struct dentry *ret;
584
585 repeat:
586 /*
587 * Don't need rcu_dereference because we re-check it was correct under
588 * the lock.
589 */
590 rcu_read_lock();
591 ret = dentry->d_parent;
592 spin_lock(&ret->d_lock);
593 if (unlikely(ret != dentry->d_parent)) {
594 spin_unlock(&ret->d_lock);
595 rcu_read_unlock();
596 goto repeat;
597 }
598 rcu_read_unlock();
599 BUG_ON(!ret->d_count);
600 ret->d_count++;
601 spin_unlock(&ret->d_lock);
602 return ret;
603 }
604 EXPORT_SYMBOL(dget_parent);
605
606 /**
607 * d_find_alias - grab a hashed alias of inode
608 * @inode: inode in question
609 * @want_discon: flag, used by d_splice_alias, to request
610 * that only a DISCONNECTED alias be returned.
611 *
612 * If inode has a hashed alias, or is a directory and has any alias,
613 * acquire the reference to alias and return it. Otherwise return NULL.
614 * Notice that if inode is a directory there can be only one alias and
615 * it can be unhashed only if it has no children, or if it is the root
616 * of a filesystem.
617 *
618 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
619 * any other hashed alias over that one unless @want_discon is set,
620 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
621 */
622 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
623 {
624 struct dentry *alias, *discon_alias;
625
626 again:
627 discon_alias = NULL;
628 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
629 spin_lock(&alias->d_lock);
630 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
631 if (IS_ROOT(alias) &&
632 (alias->d_flags & DCACHE_DISCONNECTED)) {
633 discon_alias = alias;
634 } else if (!want_discon) {
635 __dget_dlock(alias);
636 spin_unlock(&alias->d_lock);
637 return alias;
638 }
639 }
640 spin_unlock(&alias->d_lock);
641 }
642 if (discon_alias) {
643 alias = discon_alias;
644 spin_lock(&alias->d_lock);
645 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
646 if (IS_ROOT(alias) &&
647 (alias->d_flags & DCACHE_DISCONNECTED)) {
648 __dget_dlock(alias);
649 spin_unlock(&alias->d_lock);
650 return alias;
651 }
652 }
653 spin_unlock(&alias->d_lock);
654 goto again;
655 }
656 return NULL;
657 }
658
659 struct dentry *d_find_alias(struct inode *inode)
660 {
661 struct dentry *de = NULL;
662
663 if (!list_empty(&inode->i_dentry)) {
664 spin_lock(&inode->i_lock);
665 de = __d_find_alias(inode, 0);
666 spin_unlock(&inode->i_lock);
667 }
668 return de;
669 }
670 EXPORT_SYMBOL(d_find_alias);
671
672 /*
673 * Try to kill dentries associated with this inode.
674 * WARNING: you must own a reference to inode.
675 */
676 void d_prune_aliases(struct inode *inode)
677 {
678 struct dentry *dentry;
679 restart:
680 spin_lock(&inode->i_lock);
681 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
682 spin_lock(&dentry->d_lock);
683 if (!dentry->d_count) {
684 __dget_dlock(dentry);
685 __d_drop(dentry);
686 spin_unlock(&dentry->d_lock);
687 spin_unlock(&inode->i_lock);
688 dput(dentry);
689 goto restart;
690 }
691 spin_unlock(&dentry->d_lock);
692 }
693 spin_unlock(&inode->i_lock);
694 }
695 EXPORT_SYMBOL(d_prune_aliases);
696
697 /*
698 * Try to throw away a dentry - free the inode, dput the parent.
699 * Requires dentry->d_lock is held, and dentry->d_count == 0.
700 * Releases dentry->d_lock.
701 *
702 * This may fail if locks cannot be acquired no problem, just try again.
703 */
704 static void try_prune_one_dentry(struct dentry *dentry)
705 __releases(dentry->d_lock)
706 {
707 struct dentry *parent;
708
709 parent = dentry_kill(dentry, 0);
710 /*
711 * If dentry_kill returns NULL, we have nothing more to do.
712 * if it returns the same dentry, trylocks failed. In either
713 * case, just loop again.
714 *
715 * Otherwise, we need to prune ancestors too. This is necessary
716 * to prevent quadratic behavior of shrink_dcache_parent(), but
717 * is also expected to be beneficial in reducing dentry cache
718 * fragmentation.
719 */
720 if (!parent)
721 return;
722 if (parent == dentry)
723 return;
724
725 /* Prune ancestors. */
726 dentry = parent;
727 while (dentry) {
728 spin_lock(&dentry->d_lock);
729 if (dentry->d_count > 1) {
730 dentry->d_count--;
731 spin_unlock(&dentry->d_lock);
732 return;
733 }
734 dentry = dentry_kill(dentry, 1);
735 }
736 }
737
738 static void shrink_dentry_list(struct list_head *list)
739 {
740 struct dentry *dentry;
741
742 rcu_read_lock();
743 for (;;) {
744 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
745 if (&dentry->d_lru == list)
746 break; /* empty */
747 spin_lock(&dentry->d_lock);
748 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
749 spin_unlock(&dentry->d_lock);
750 continue;
751 }
752
753 /*
754 * We found an inuse dentry which was not removed from
755 * the LRU because of laziness during lookup. Do not free
756 * it - just keep it off the LRU list.
757 */
758 if (dentry->d_count) {
759 dentry_lru_del(dentry);
760 spin_unlock(&dentry->d_lock);
761 continue;
762 }
763
764 rcu_read_unlock();
765
766 try_prune_one_dentry(dentry);
767
768 rcu_read_lock();
769 }
770 rcu_read_unlock();
771 }
772
773 /**
774 * prune_dcache_sb - shrink the dcache
775 * @sb: superblock
776 * @count: number of entries to try to free
777 *
778 * Attempt to shrink the superblock dcache LRU by @count entries. This is
779 * done when we need more memory an called from the superblock shrinker
780 * function.
781 *
782 * This function may fail to free any resources if all the dentries are in
783 * use.
784 */
785 void prune_dcache_sb(struct super_block *sb, int count)
786 {
787 struct dentry *dentry;
788 LIST_HEAD(referenced);
789 LIST_HEAD(tmp);
790
791 relock:
792 spin_lock(&dcache_lru_lock);
793 while (!list_empty(&sb->s_dentry_lru)) {
794 dentry = list_entry(sb->s_dentry_lru.prev,
795 struct dentry, d_lru);
796 BUG_ON(dentry->d_sb != sb);
797
798 if (!spin_trylock(&dentry->d_lock)) {
799 spin_unlock(&dcache_lru_lock);
800 cpu_relax();
801 goto relock;
802 }
803
804 if (dentry->d_flags & DCACHE_REFERENCED) {
805 dentry->d_flags &= ~DCACHE_REFERENCED;
806 list_move(&dentry->d_lru, &referenced);
807 spin_unlock(&dentry->d_lock);
808 } else {
809 list_move_tail(&dentry->d_lru, &tmp);
810 dentry->d_flags |= DCACHE_SHRINK_LIST;
811 spin_unlock(&dentry->d_lock);
812 if (!--count)
813 break;
814 }
815 cond_resched_lock(&dcache_lru_lock);
816 }
817 if (!list_empty(&referenced))
818 list_splice(&referenced, &sb->s_dentry_lru);
819 spin_unlock(&dcache_lru_lock);
820
821 shrink_dentry_list(&tmp);
822 }
823
824 /**
825 * shrink_dcache_sb - shrink dcache for a superblock
826 * @sb: superblock
827 *
828 * Shrink the dcache for the specified super block. This is used to free
829 * the dcache before unmounting a file system.
830 */
831 void shrink_dcache_sb(struct super_block *sb)
832 {
833 LIST_HEAD(tmp);
834
835 spin_lock(&dcache_lru_lock);
836 while (!list_empty(&sb->s_dentry_lru)) {
837 list_splice_init(&sb->s_dentry_lru, &tmp);
838 spin_unlock(&dcache_lru_lock);
839 shrink_dentry_list(&tmp);
840 spin_lock(&dcache_lru_lock);
841 }
842 spin_unlock(&dcache_lru_lock);
843 }
844 EXPORT_SYMBOL(shrink_dcache_sb);
845
846 /*
847 * destroy a single subtree of dentries for unmount
848 * - see the comments on shrink_dcache_for_umount() for a description of the
849 * locking
850 */
851 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
852 {
853 struct dentry *parent;
854
855 BUG_ON(!IS_ROOT(dentry));
856
857 for (;;) {
858 /* descend to the first leaf in the current subtree */
859 while (!list_empty(&dentry->d_subdirs))
860 dentry = list_entry(dentry->d_subdirs.next,
861 struct dentry, d_u.d_child);
862
863 /* consume the dentries from this leaf up through its parents
864 * until we find one with children or run out altogether */
865 do {
866 struct inode *inode;
867
868 /*
869 * remove the dentry from the lru, and inform
870 * the fs that this dentry is about to be
871 * unhashed and destroyed.
872 */
873 dentry_lru_prune(dentry);
874 __d_shrink(dentry);
875
876 if (dentry->d_count != 0) {
877 printk(KERN_ERR
878 "BUG: Dentry %p{i=%lx,n=%s}"
879 " still in use (%d)"
880 " [unmount of %s %s]\n",
881 dentry,
882 dentry->d_inode ?
883 dentry->d_inode->i_ino : 0UL,
884 dentry->d_name.name,
885 dentry->d_count,
886 dentry->d_sb->s_type->name,
887 dentry->d_sb->s_id);
888 BUG();
889 }
890
891 if (IS_ROOT(dentry)) {
892 parent = NULL;
893 list_del(&dentry->d_u.d_child);
894 } else {
895 parent = dentry->d_parent;
896 parent->d_count--;
897 list_del(&dentry->d_u.d_child);
898 }
899
900 inode = dentry->d_inode;
901 if (inode) {
902 dentry->d_inode = NULL;
903 list_del_init(&dentry->d_alias);
904 if (dentry->d_op && dentry->d_op->d_iput)
905 dentry->d_op->d_iput(dentry, inode);
906 else
907 iput(inode);
908 }
909
910 d_free(dentry);
911
912 /* finished when we fall off the top of the tree,
913 * otherwise we ascend to the parent and move to the
914 * next sibling if there is one */
915 if (!parent)
916 return;
917 dentry = parent;
918 } while (list_empty(&dentry->d_subdirs));
919
920 dentry = list_entry(dentry->d_subdirs.next,
921 struct dentry, d_u.d_child);
922 }
923 }
924
925 /*
926 * destroy the dentries attached to a superblock on unmounting
927 * - we don't need to use dentry->d_lock because:
928 * - the superblock is detached from all mountings and open files, so the
929 * dentry trees will not be rearranged by the VFS
930 * - s_umount is write-locked, so the memory pressure shrinker will ignore
931 * any dentries belonging to this superblock that it comes across
932 * - the filesystem itself is no longer permitted to rearrange the dentries
933 * in this superblock
934 */
935 void shrink_dcache_for_umount(struct super_block *sb)
936 {
937 struct dentry *dentry;
938
939 if (down_read_trylock(&sb->s_umount))
940 BUG();
941
942 dentry = sb->s_root;
943 sb->s_root = NULL;
944 dentry->d_count--;
945 shrink_dcache_for_umount_subtree(dentry);
946
947 while (!hlist_bl_empty(&sb->s_anon)) {
948 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
949 shrink_dcache_for_umount_subtree(dentry);
950 }
951 }
952
953 /*
954 * This tries to ascend one level of parenthood, but
955 * we can race with renaming, so we need to re-check
956 * the parenthood after dropping the lock and check
957 * that the sequence number still matches.
958 */
959 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
960 {
961 struct dentry *new = old->d_parent;
962
963 rcu_read_lock();
964 spin_unlock(&old->d_lock);
965 spin_lock(&new->d_lock);
966
967 /*
968 * might go back up the wrong parent if we have had a rename
969 * or deletion
970 */
971 if (new != old->d_parent ||
972 (old->d_flags & DCACHE_DISCONNECTED) ||
973 (!locked && read_seqretry(&rename_lock, seq))) {
974 spin_unlock(&new->d_lock);
975 new = NULL;
976 }
977 rcu_read_unlock();
978 return new;
979 }
980
981
982 /*
983 * Search for at least 1 mount point in the dentry's subdirs.
984 * We descend to the next level whenever the d_subdirs
985 * list is non-empty and continue searching.
986 */
987
988 /**
989 * have_submounts - check for mounts over a dentry
990 * @parent: dentry to check.
991 *
992 * Return true if the parent or its subdirectories contain
993 * a mount point
994 */
995 int have_submounts(struct dentry *parent)
996 {
997 struct dentry *this_parent;
998 struct list_head *next;
999 unsigned seq;
1000 int locked = 0;
1001
1002 seq = read_seqbegin(&rename_lock);
1003 again:
1004 this_parent = parent;
1005
1006 if (d_mountpoint(parent))
1007 goto positive;
1008 spin_lock(&this_parent->d_lock);
1009 repeat:
1010 next = this_parent->d_subdirs.next;
1011 resume:
1012 while (next != &this_parent->d_subdirs) {
1013 struct list_head *tmp = next;
1014 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1015 next = tmp->next;
1016
1017 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1018 /* Have we found a mount point ? */
1019 if (d_mountpoint(dentry)) {
1020 spin_unlock(&dentry->d_lock);
1021 spin_unlock(&this_parent->d_lock);
1022 goto positive;
1023 }
1024 if (!list_empty(&dentry->d_subdirs)) {
1025 spin_unlock(&this_parent->d_lock);
1026 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1027 this_parent = dentry;
1028 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1029 goto repeat;
1030 }
1031 spin_unlock(&dentry->d_lock);
1032 }
1033 /*
1034 * All done at this level ... ascend and resume the search.
1035 */
1036 if (this_parent != parent) {
1037 struct dentry *child = this_parent;
1038 this_parent = try_to_ascend(this_parent, locked, seq);
1039 if (!this_parent)
1040 goto rename_retry;
1041 next = child->d_u.d_child.next;
1042 goto resume;
1043 }
1044 spin_unlock(&this_parent->d_lock);
1045 if (!locked && read_seqretry(&rename_lock, seq))
1046 goto rename_retry;
1047 if (locked)
1048 write_sequnlock(&rename_lock);
1049 return 0; /* No mount points found in tree */
1050 positive:
1051 if (!locked && read_seqretry(&rename_lock, seq))
1052 goto rename_retry;
1053 if (locked)
1054 write_sequnlock(&rename_lock);
1055 return 1;
1056
1057 rename_retry:
1058 locked = 1;
1059 write_seqlock(&rename_lock);
1060 goto again;
1061 }
1062 EXPORT_SYMBOL(have_submounts);
1063
1064 /*
1065 * Search the dentry child list for the specified parent,
1066 * and move any unused dentries to the end of the unused
1067 * list for prune_dcache(). We descend to the next level
1068 * whenever the d_subdirs list is non-empty and continue
1069 * searching.
1070 *
1071 * It returns zero iff there are no unused children,
1072 * otherwise it returns the number of children moved to
1073 * the end of the unused list. This may not be the total
1074 * number of unused children, because select_parent can
1075 * drop the lock and return early due to latency
1076 * constraints.
1077 */
1078 static int select_parent(struct dentry *parent, struct list_head *dispose)
1079 {
1080 struct dentry *this_parent;
1081 struct list_head *next;
1082 unsigned seq;
1083 int found = 0;
1084 int locked = 0;
1085
1086 seq = read_seqbegin(&rename_lock);
1087 again:
1088 this_parent = parent;
1089 spin_lock(&this_parent->d_lock);
1090 repeat:
1091 next = this_parent->d_subdirs.next;
1092 resume:
1093 while (next != &this_parent->d_subdirs) {
1094 struct list_head *tmp = next;
1095 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1096 next = tmp->next;
1097
1098 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1099
1100 /*
1101 * move only zero ref count dentries to the dispose list.
1102 *
1103 * Those which are presently on the shrink list, being processed
1104 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1105 * loop in shrink_dcache_parent() might not make any progress
1106 * and loop forever.
1107 */
1108 if (dentry->d_count) {
1109 dentry_lru_del(dentry);
1110 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1111 dentry_lru_move_list(dentry, dispose);
1112 dentry->d_flags |= DCACHE_SHRINK_LIST;
1113 found++;
1114 }
1115 /*
1116 * We can return to the caller if we have found some (this
1117 * ensures forward progress). We'll be coming back to find
1118 * the rest.
1119 */
1120 if (found && need_resched()) {
1121 spin_unlock(&dentry->d_lock);
1122 goto out;
1123 }
1124
1125 /*
1126 * Descend a level if the d_subdirs list is non-empty.
1127 */
1128 if (!list_empty(&dentry->d_subdirs)) {
1129 spin_unlock(&this_parent->d_lock);
1130 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1131 this_parent = dentry;
1132 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1133 goto repeat;
1134 }
1135
1136 spin_unlock(&dentry->d_lock);
1137 }
1138 /*
1139 * All done at this level ... ascend and resume the search.
1140 */
1141 if (this_parent != parent) {
1142 struct dentry *child = this_parent;
1143 this_parent = try_to_ascend(this_parent, locked, seq);
1144 if (!this_parent)
1145 goto rename_retry;
1146 next = child->d_u.d_child.next;
1147 goto resume;
1148 }
1149 out:
1150 spin_unlock(&this_parent->d_lock);
1151 if (!locked && read_seqretry(&rename_lock, seq))
1152 goto rename_retry;
1153 if (locked)
1154 write_sequnlock(&rename_lock);
1155 return found;
1156
1157 rename_retry:
1158 if (found)
1159 return found;
1160 locked = 1;
1161 write_seqlock(&rename_lock);
1162 goto again;
1163 }
1164
1165 /**
1166 * shrink_dcache_parent - prune dcache
1167 * @parent: parent of entries to prune
1168 *
1169 * Prune the dcache to remove unused children of the parent dentry.
1170 */
1171 void shrink_dcache_parent(struct dentry * parent)
1172 {
1173 LIST_HEAD(dispose);
1174 int found;
1175
1176 while ((found = select_parent(parent, &dispose)) != 0)
1177 shrink_dentry_list(&dispose);
1178 }
1179 EXPORT_SYMBOL(shrink_dcache_parent);
1180
1181 /**
1182 * __d_alloc - allocate a dcache entry
1183 * @sb: filesystem it will belong to
1184 * @name: qstr of the name
1185 *
1186 * Allocates a dentry. It returns %NULL if there is insufficient memory
1187 * available. On a success the dentry is returned. The name passed in is
1188 * copied and the copy passed in may be reused after this call.
1189 */
1190
1191 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1192 {
1193 struct dentry *dentry;
1194 char *dname;
1195
1196 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1197 if (!dentry)
1198 return NULL;
1199
1200 if (name->len > DNAME_INLINE_LEN-1) {
1201 dname = kmalloc(name->len + 1, GFP_KERNEL);
1202 if (!dname) {
1203 kmem_cache_free(dentry_cache, dentry);
1204 return NULL;
1205 }
1206 } else {
1207 dname = dentry->d_iname;
1208 }
1209 dentry->d_name.name = dname;
1210
1211 dentry->d_name.len = name->len;
1212 dentry->d_name.hash = name->hash;
1213 memcpy(dname, name->name, name->len);
1214 dname[name->len] = 0;
1215
1216 dentry->d_count = 1;
1217 dentry->d_flags = 0;
1218 spin_lock_init(&dentry->d_lock);
1219 seqcount_init(&dentry->d_seq);
1220 dentry->d_inode = NULL;
1221 dentry->d_parent = dentry;
1222 dentry->d_sb = sb;
1223 dentry->d_op = NULL;
1224 dentry->d_fsdata = NULL;
1225 INIT_HLIST_BL_NODE(&dentry->d_hash);
1226 INIT_LIST_HEAD(&dentry->d_lru);
1227 INIT_LIST_HEAD(&dentry->d_subdirs);
1228 INIT_LIST_HEAD(&dentry->d_alias);
1229 INIT_LIST_HEAD(&dentry->d_u.d_child);
1230 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1231
1232 this_cpu_inc(nr_dentry);
1233
1234 return dentry;
1235 }
1236
1237 /**
1238 * d_alloc - allocate a dcache entry
1239 * @parent: parent of entry to allocate
1240 * @name: qstr of the name
1241 *
1242 * Allocates a dentry. It returns %NULL if there is insufficient memory
1243 * available. On a success the dentry is returned. The name passed in is
1244 * copied and the copy passed in may be reused after this call.
1245 */
1246 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1247 {
1248 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1249 if (!dentry)
1250 return NULL;
1251
1252 spin_lock(&parent->d_lock);
1253 /*
1254 * don't need child lock because it is not subject
1255 * to concurrency here
1256 */
1257 __dget_dlock(parent);
1258 dentry->d_parent = parent;
1259 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1260 spin_unlock(&parent->d_lock);
1261
1262 return dentry;
1263 }
1264 EXPORT_SYMBOL(d_alloc);
1265
1266 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1267 {
1268 struct dentry *dentry = __d_alloc(sb, name);
1269 if (dentry)
1270 dentry->d_flags |= DCACHE_DISCONNECTED;
1271 return dentry;
1272 }
1273 EXPORT_SYMBOL(d_alloc_pseudo);
1274
1275 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1276 {
1277 struct qstr q;
1278
1279 q.name = name;
1280 q.len = strlen(name);
1281 q.hash = full_name_hash(q.name, q.len);
1282 return d_alloc(parent, &q);
1283 }
1284 EXPORT_SYMBOL(d_alloc_name);
1285
1286 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1287 {
1288 WARN_ON_ONCE(dentry->d_op);
1289 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1290 DCACHE_OP_COMPARE |
1291 DCACHE_OP_REVALIDATE |
1292 DCACHE_OP_DELETE ));
1293 dentry->d_op = op;
1294 if (!op)
1295 return;
1296 if (op->d_hash)
1297 dentry->d_flags |= DCACHE_OP_HASH;
1298 if (op->d_compare)
1299 dentry->d_flags |= DCACHE_OP_COMPARE;
1300 if (op->d_revalidate)
1301 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1302 if (op->d_delete)
1303 dentry->d_flags |= DCACHE_OP_DELETE;
1304 if (op->d_prune)
1305 dentry->d_flags |= DCACHE_OP_PRUNE;
1306
1307 }
1308 EXPORT_SYMBOL(d_set_d_op);
1309
1310 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1311 {
1312 spin_lock(&dentry->d_lock);
1313 if (inode) {
1314 if (unlikely(IS_AUTOMOUNT(inode)))
1315 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1316 list_add(&dentry->d_alias, &inode->i_dentry);
1317 }
1318 dentry->d_inode = inode;
1319 dentry_rcuwalk_barrier(dentry);
1320 spin_unlock(&dentry->d_lock);
1321 fsnotify_d_instantiate(dentry, inode);
1322 }
1323
1324 /**
1325 * d_instantiate - fill in inode information for a dentry
1326 * @entry: dentry to complete
1327 * @inode: inode to attach to this dentry
1328 *
1329 * Fill in inode information in the entry.
1330 *
1331 * This turns negative dentries into productive full members
1332 * of society.
1333 *
1334 * NOTE! This assumes that the inode count has been incremented
1335 * (or otherwise set) by the caller to indicate that it is now
1336 * in use by the dcache.
1337 */
1338
1339 void d_instantiate(struct dentry *entry, struct inode * inode)
1340 {
1341 BUG_ON(!list_empty(&entry->d_alias));
1342 if (inode)
1343 spin_lock(&inode->i_lock);
1344 __d_instantiate(entry, inode);
1345 if (inode)
1346 spin_unlock(&inode->i_lock);
1347 security_d_instantiate(entry, inode);
1348 }
1349 EXPORT_SYMBOL(d_instantiate);
1350
1351 /**
1352 * d_instantiate_unique - instantiate a non-aliased dentry
1353 * @entry: dentry to instantiate
1354 * @inode: inode to attach to this dentry
1355 *
1356 * Fill in inode information in the entry. On success, it returns NULL.
1357 * If an unhashed alias of "entry" already exists, then we return the
1358 * aliased dentry instead and drop one reference to inode.
1359 *
1360 * Note that in order to avoid conflicts with rename() etc, the caller
1361 * had better be holding the parent directory semaphore.
1362 *
1363 * This also assumes that the inode count has been incremented
1364 * (or otherwise set) by the caller to indicate that it is now
1365 * in use by the dcache.
1366 */
1367 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1368 struct inode *inode)
1369 {
1370 struct dentry *alias;
1371 int len = entry->d_name.len;
1372 const char *name = entry->d_name.name;
1373 unsigned int hash = entry->d_name.hash;
1374
1375 if (!inode) {
1376 __d_instantiate(entry, NULL);
1377 return NULL;
1378 }
1379
1380 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1381 struct qstr *qstr = &alias->d_name;
1382
1383 /*
1384 * Don't need alias->d_lock here, because aliases with
1385 * d_parent == entry->d_parent are not subject to name or
1386 * parent changes, because the parent inode i_mutex is held.
1387 */
1388 if (qstr->hash != hash)
1389 continue;
1390 if (alias->d_parent != entry->d_parent)
1391 continue;
1392 if (dentry_cmp(qstr->name, qstr->len, name, len))
1393 continue;
1394 __dget(alias);
1395 return alias;
1396 }
1397
1398 __d_instantiate(entry, inode);
1399 return NULL;
1400 }
1401
1402 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1403 {
1404 struct dentry *result;
1405
1406 BUG_ON(!list_empty(&entry->d_alias));
1407
1408 if (inode)
1409 spin_lock(&inode->i_lock);
1410 result = __d_instantiate_unique(entry, inode);
1411 if (inode)
1412 spin_unlock(&inode->i_lock);
1413
1414 if (!result) {
1415 security_d_instantiate(entry, inode);
1416 return NULL;
1417 }
1418
1419 BUG_ON(!d_unhashed(result));
1420 iput(inode);
1421 return result;
1422 }
1423
1424 EXPORT_SYMBOL(d_instantiate_unique);
1425
1426 /**
1427 * d_alloc_root - allocate root dentry
1428 * @root_inode: inode to allocate the root for
1429 *
1430 * Allocate a root ("/") dentry for the inode given. The inode is
1431 * instantiated and returned. %NULL is returned if there is insufficient
1432 * memory or the inode passed is %NULL.
1433 */
1434
1435 struct dentry * d_alloc_root(struct inode * root_inode)
1436 {
1437 struct dentry *res = NULL;
1438
1439 if (root_inode) {
1440 static const struct qstr name = { .name = "/", .len = 1 };
1441
1442 res = __d_alloc(root_inode->i_sb, &name);
1443 if (res)
1444 d_instantiate(res, root_inode);
1445 }
1446 return res;
1447 }
1448 EXPORT_SYMBOL(d_alloc_root);
1449
1450 struct dentry *d_make_root(struct inode *root_inode)
1451 {
1452 struct dentry *res = NULL;
1453
1454 if (root_inode) {
1455 static const struct qstr name = { .name = "/", .len = 1 };
1456
1457 res = __d_alloc(root_inode->i_sb, &name);
1458 if (res)
1459 d_instantiate(res, root_inode);
1460 else
1461 iput(root_inode);
1462 }
1463 return res;
1464 }
1465 EXPORT_SYMBOL(d_make_root);
1466
1467 static struct dentry * __d_find_any_alias(struct inode *inode)
1468 {
1469 struct dentry *alias;
1470
1471 if (list_empty(&inode->i_dentry))
1472 return NULL;
1473 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1474 __dget(alias);
1475 return alias;
1476 }
1477
1478 /**
1479 * d_find_any_alias - find any alias for a given inode
1480 * @inode: inode to find an alias for
1481 *
1482 * If any aliases exist for the given inode, take and return a
1483 * reference for one of them. If no aliases exist, return %NULL.
1484 */
1485 struct dentry *d_find_any_alias(struct inode *inode)
1486 {
1487 struct dentry *de;
1488
1489 spin_lock(&inode->i_lock);
1490 de = __d_find_any_alias(inode);
1491 spin_unlock(&inode->i_lock);
1492 return de;
1493 }
1494 EXPORT_SYMBOL(d_find_any_alias);
1495
1496 /**
1497 * d_obtain_alias - find or allocate a dentry for a given inode
1498 * @inode: inode to allocate the dentry for
1499 *
1500 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1501 * similar open by handle operations. The returned dentry may be anonymous,
1502 * or may have a full name (if the inode was already in the cache).
1503 *
1504 * When called on a directory inode, we must ensure that the inode only ever
1505 * has one dentry. If a dentry is found, that is returned instead of
1506 * allocating a new one.
1507 *
1508 * On successful return, the reference to the inode has been transferred
1509 * to the dentry. In case of an error the reference on the inode is released.
1510 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1511 * be passed in and will be the error will be propagate to the return value,
1512 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1513 */
1514 struct dentry *d_obtain_alias(struct inode *inode)
1515 {
1516 static const struct qstr anonstring = { .name = "" };
1517 struct dentry *tmp;
1518 struct dentry *res;
1519
1520 if (!inode)
1521 return ERR_PTR(-ESTALE);
1522 if (IS_ERR(inode))
1523 return ERR_CAST(inode);
1524
1525 res = d_find_any_alias(inode);
1526 if (res)
1527 goto out_iput;
1528
1529 tmp = __d_alloc(inode->i_sb, &anonstring);
1530 if (!tmp) {
1531 res = ERR_PTR(-ENOMEM);
1532 goto out_iput;
1533 }
1534
1535 spin_lock(&inode->i_lock);
1536 res = __d_find_any_alias(inode);
1537 if (res) {
1538 spin_unlock(&inode->i_lock);
1539 dput(tmp);
1540 goto out_iput;
1541 }
1542
1543 /* attach a disconnected dentry */
1544 spin_lock(&tmp->d_lock);
1545 tmp->d_inode = inode;
1546 tmp->d_flags |= DCACHE_DISCONNECTED;
1547 list_add(&tmp->d_alias, &inode->i_dentry);
1548 hlist_bl_lock(&tmp->d_sb->s_anon);
1549 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1550 hlist_bl_unlock(&tmp->d_sb->s_anon);
1551 spin_unlock(&tmp->d_lock);
1552 spin_unlock(&inode->i_lock);
1553 security_d_instantiate(tmp, inode);
1554
1555 return tmp;
1556
1557 out_iput:
1558 if (res && !IS_ERR(res))
1559 security_d_instantiate(res, inode);
1560 iput(inode);
1561 return res;
1562 }
1563 EXPORT_SYMBOL(d_obtain_alias);
1564
1565 /**
1566 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1567 * @inode: the inode which may have a disconnected dentry
1568 * @dentry: a negative dentry which we want to point to the inode.
1569 *
1570 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1571 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1572 * and return it, else simply d_add the inode to the dentry and return NULL.
1573 *
1574 * This is needed in the lookup routine of any filesystem that is exportable
1575 * (via knfsd) so that we can build dcache paths to directories effectively.
1576 *
1577 * If a dentry was found and moved, then it is returned. Otherwise NULL
1578 * is returned. This matches the expected return value of ->lookup.
1579 *
1580 */
1581 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1582 {
1583 struct dentry *new = NULL;
1584
1585 if (IS_ERR(inode))
1586 return ERR_CAST(inode);
1587
1588 if (inode && S_ISDIR(inode->i_mode)) {
1589 spin_lock(&inode->i_lock);
1590 new = __d_find_alias(inode, 1);
1591 if (new) {
1592 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1593 spin_unlock(&inode->i_lock);
1594 security_d_instantiate(new, inode);
1595 d_move(new, dentry);
1596 iput(inode);
1597 } else {
1598 /* already taking inode->i_lock, so d_add() by hand */
1599 __d_instantiate(dentry, inode);
1600 spin_unlock(&inode->i_lock);
1601 security_d_instantiate(dentry, inode);
1602 d_rehash(dentry);
1603 }
1604 } else
1605 d_add(dentry, inode);
1606 return new;
1607 }
1608 EXPORT_SYMBOL(d_splice_alias);
1609
1610 /**
1611 * d_add_ci - lookup or allocate new dentry with case-exact name
1612 * @inode: the inode case-insensitive lookup has found
1613 * @dentry: the negative dentry that was passed to the parent's lookup func
1614 * @name: the case-exact name to be associated with the returned dentry
1615 *
1616 * This is to avoid filling the dcache with case-insensitive names to the
1617 * same inode, only the actual correct case is stored in the dcache for
1618 * case-insensitive filesystems.
1619 *
1620 * For a case-insensitive lookup match and if the the case-exact dentry
1621 * already exists in in the dcache, use it and return it.
1622 *
1623 * If no entry exists with the exact case name, allocate new dentry with
1624 * the exact case, and return the spliced entry.
1625 */
1626 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1627 struct qstr *name)
1628 {
1629 int error;
1630 struct dentry *found;
1631 struct dentry *new;
1632
1633 /*
1634 * First check if a dentry matching the name already exists,
1635 * if not go ahead and create it now.
1636 */
1637 found = d_hash_and_lookup(dentry->d_parent, name);
1638 if (!found) {
1639 new = d_alloc(dentry->d_parent, name);
1640 if (!new) {
1641 error = -ENOMEM;
1642 goto err_out;
1643 }
1644
1645 found = d_splice_alias(inode, new);
1646 if (found) {
1647 dput(new);
1648 return found;
1649 }
1650 return new;
1651 }
1652
1653 /*
1654 * If a matching dentry exists, and it's not negative use it.
1655 *
1656 * Decrement the reference count to balance the iget() done
1657 * earlier on.
1658 */
1659 if (found->d_inode) {
1660 if (unlikely(found->d_inode != inode)) {
1661 /* This can't happen because bad inodes are unhashed. */
1662 BUG_ON(!is_bad_inode(inode));
1663 BUG_ON(!is_bad_inode(found->d_inode));
1664 }
1665 iput(inode);
1666 return found;
1667 }
1668
1669 /*
1670 * We are going to instantiate this dentry, unhash it and clear the
1671 * lookup flag so we can do that.
1672 */
1673 if (unlikely(d_need_lookup(found)))
1674 d_clear_need_lookup(found);
1675
1676 /*
1677 * Negative dentry: instantiate it unless the inode is a directory and
1678 * already has a dentry.
1679 */
1680 new = d_splice_alias(inode, found);
1681 if (new) {
1682 dput(found);
1683 found = new;
1684 }
1685 return found;
1686
1687 err_out:
1688 iput(inode);
1689 return ERR_PTR(error);
1690 }
1691 EXPORT_SYMBOL(d_add_ci);
1692
1693 /**
1694 * __d_lookup_rcu - search for a dentry (racy, store-free)
1695 * @parent: parent dentry
1696 * @name: qstr of name we wish to find
1697 * @seq: returns d_seq value at the point where the dentry was found
1698 * @inode: returns dentry->d_inode when the inode was found valid.
1699 * Returns: dentry, or NULL
1700 *
1701 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1702 * resolution (store-free path walking) design described in
1703 * Documentation/filesystems/path-lookup.txt.
1704 *
1705 * This is not to be used outside core vfs.
1706 *
1707 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1708 * held, and rcu_read_lock held. The returned dentry must not be stored into
1709 * without taking d_lock and checking d_seq sequence count against @seq
1710 * returned here.
1711 *
1712 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1713 * function.
1714 *
1715 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1716 * the returned dentry, so long as its parent's seqlock is checked after the
1717 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1718 * is formed, giving integrity down the path walk.
1719 */
1720 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1721 const struct qstr *name,
1722 unsigned *seqp, struct inode **inode)
1723 {
1724 unsigned int len = name->len;
1725 unsigned int hash = name->hash;
1726 const unsigned char *str = name->name;
1727 struct hlist_bl_head *b = d_hash(parent, hash);
1728 struct hlist_bl_node *node;
1729 struct dentry *dentry;
1730
1731 /*
1732 * Note: There is significant duplication with __d_lookup_rcu which is
1733 * required to prevent single threaded performance regressions
1734 * especially on architectures where smp_rmb (in seqcounts) are costly.
1735 * Keep the two functions in sync.
1736 */
1737
1738 /*
1739 * The hash list is protected using RCU.
1740 *
1741 * Carefully use d_seq when comparing a candidate dentry, to avoid
1742 * races with d_move().
1743 *
1744 * It is possible that concurrent renames can mess up our list
1745 * walk here and result in missing our dentry, resulting in the
1746 * false-negative result. d_lookup() protects against concurrent
1747 * renames using rename_lock seqlock.
1748 *
1749 * See Documentation/filesystems/path-lookup.txt for more details.
1750 */
1751 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1752 unsigned seq;
1753 struct inode *i;
1754 const char *tname;
1755 int tlen;
1756
1757 if (dentry->d_name.hash != hash)
1758 continue;
1759
1760 seqretry:
1761 seq = read_seqcount_begin(&dentry->d_seq);
1762 if (dentry->d_parent != parent)
1763 continue;
1764 if (d_unhashed(dentry))
1765 continue;
1766 tlen = dentry->d_name.len;
1767 tname = dentry->d_name.name;
1768 i = dentry->d_inode;
1769 prefetch(tname);
1770 /*
1771 * This seqcount check is required to ensure name and
1772 * len are loaded atomically, so as not to walk off the
1773 * edge of memory when walking. If we could load this
1774 * atomically some other way, we could drop this check.
1775 */
1776 if (read_seqcount_retry(&dentry->d_seq, seq))
1777 goto seqretry;
1778 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1779 if (parent->d_op->d_compare(parent, *inode,
1780 dentry, i,
1781 tlen, tname, name))
1782 continue;
1783 } else {
1784 if (dentry_cmp(tname, tlen, str, len))
1785 continue;
1786 }
1787 /*
1788 * No extra seqcount check is required after the name
1789 * compare. The caller must perform a seqcount check in
1790 * order to do anything useful with the returned dentry
1791 * anyway.
1792 */
1793 *seqp = seq;
1794 *inode = i;
1795 return dentry;
1796 }
1797 return NULL;
1798 }
1799
1800 /**
1801 * d_lookup - search for a dentry
1802 * @parent: parent dentry
1803 * @name: qstr of name we wish to find
1804 * Returns: dentry, or NULL
1805 *
1806 * d_lookup searches the children of the parent dentry for the name in
1807 * question. If the dentry is found its reference count is incremented and the
1808 * dentry is returned. The caller must use dput to free the entry when it has
1809 * finished using it. %NULL is returned if the dentry does not exist.
1810 */
1811 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1812 {
1813 struct dentry *dentry;
1814 unsigned seq;
1815
1816 do {
1817 seq = read_seqbegin(&rename_lock);
1818 dentry = __d_lookup(parent, name);
1819 if (dentry)
1820 break;
1821 } while (read_seqretry(&rename_lock, seq));
1822 return dentry;
1823 }
1824 EXPORT_SYMBOL(d_lookup);
1825
1826 /**
1827 * __d_lookup - search for a dentry (racy)
1828 * @parent: parent dentry
1829 * @name: qstr of name we wish to find
1830 * Returns: dentry, or NULL
1831 *
1832 * __d_lookup is like d_lookup, however it may (rarely) return a
1833 * false-negative result due to unrelated rename activity.
1834 *
1835 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1836 * however it must be used carefully, eg. with a following d_lookup in
1837 * the case of failure.
1838 *
1839 * __d_lookup callers must be commented.
1840 */
1841 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1842 {
1843 unsigned int len = name->len;
1844 unsigned int hash = name->hash;
1845 const unsigned char *str = name->name;
1846 struct hlist_bl_head *b = d_hash(parent, hash);
1847 struct hlist_bl_node *node;
1848 struct dentry *found = NULL;
1849 struct dentry *dentry;
1850
1851 /*
1852 * Note: There is significant duplication with __d_lookup_rcu which is
1853 * required to prevent single threaded performance regressions
1854 * especially on architectures where smp_rmb (in seqcounts) are costly.
1855 * Keep the two functions in sync.
1856 */
1857
1858 /*
1859 * The hash list is protected using RCU.
1860 *
1861 * Take d_lock when comparing a candidate dentry, to avoid races
1862 * with d_move().
1863 *
1864 * It is possible that concurrent renames can mess up our list
1865 * walk here and result in missing our dentry, resulting in the
1866 * false-negative result. d_lookup() protects against concurrent
1867 * renames using rename_lock seqlock.
1868 *
1869 * See Documentation/filesystems/path-lookup.txt for more details.
1870 */
1871 rcu_read_lock();
1872
1873 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1874 const char *tname;
1875 int tlen;
1876
1877 if (dentry->d_name.hash != hash)
1878 continue;
1879
1880 spin_lock(&dentry->d_lock);
1881 if (dentry->d_parent != parent)
1882 goto next;
1883 if (d_unhashed(dentry))
1884 goto next;
1885
1886 /*
1887 * It is safe to compare names since d_move() cannot
1888 * change the qstr (protected by d_lock).
1889 */
1890 tlen = dentry->d_name.len;
1891 tname = dentry->d_name.name;
1892 if (parent->d_flags & DCACHE_OP_COMPARE) {
1893 if (parent->d_op->d_compare(parent, parent->d_inode,
1894 dentry, dentry->d_inode,
1895 tlen, tname, name))
1896 goto next;
1897 } else {
1898 if (dentry_cmp(tname, tlen, str, len))
1899 goto next;
1900 }
1901
1902 dentry->d_count++;
1903 found = dentry;
1904 spin_unlock(&dentry->d_lock);
1905 break;
1906 next:
1907 spin_unlock(&dentry->d_lock);
1908 }
1909 rcu_read_unlock();
1910
1911 return found;
1912 }
1913
1914 /**
1915 * d_hash_and_lookup - hash the qstr then search for a dentry
1916 * @dir: Directory to search in
1917 * @name: qstr of name we wish to find
1918 *
1919 * On hash failure or on lookup failure NULL is returned.
1920 */
1921 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1922 {
1923 struct dentry *dentry = NULL;
1924
1925 /*
1926 * Check for a fs-specific hash function. Note that we must
1927 * calculate the standard hash first, as the d_op->d_hash()
1928 * routine may choose to leave the hash value unchanged.
1929 */
1930 name->hash = full_name_hash(name->name, name->len);
1931 if (dir->d_flags & DCACHE_OP_HASH) {
1932 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1933 goto out;
1934 }
1935 dentry = d_lookup(dir, name);
1936 out:
1937 return dentry;
1938 }
1939
1940 /**
1941 * d_validate - verify dentry provided from insecure source (deprecated)
1942 * @dentry: The dentry alleged to be valid child of @dparent
1943 * @dparent: The parent dentry (known to be valid)
1944 *
1945 * An insecure source has sent us a dentry, here we verify it and dget() it.
1946 * This is used by ncpfs in its readdir implementation.
1947 * Zero is returned in the dentry is invalid.
1948 *
1949 * This function is slow for big directories, and deprecated, do not use it.
1950 */
1951 int d_validate(struct dentry *dentry, struct dentry *dparent)
1952 {
1953 struct dentry *child;
1954
1955 spin_lock(&dparent->d_lock);
1956 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1957 if (dentry == child) {
1958 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1959 __dget_dlock(dentry);
1960 spin_unlock(&dentry->d_lock);
1961 spin_unlock(&dparent->d_lock);
1962 return 1;
1963 }
1964 }
1965 spin_unlock(&dparent->d_lock);
1966
1967 return 0;
1968 }
1969 EXPORT_SYMBOL(d_validate);
1970
1971 /*
1972 * When a file is deleted, we have two options:
1973 * - turn this dentry into a negative dentry
1974 * - unhash this dentry and free it.
1975 *
1976 * Usually, we want to just turn this into
1977 * a negative dentry, but if anybody else is
1978 * currently using the dentry or the inode
1979 * we can't do that and we fall back on removing
1980 * it from the hash queues and waiting for
1981 * it to be deleted later when it has no users
1982 */
1983
1984 /**
1985 * d_delete - delete a dentry
1986 * @dentry: The dentry to delete
1987 *
1988 * Turn the dentry into a negative dentry if possible, otherwise
1989 * remove it from the hash queues so it can be deleted later
1990 */
1991
1992 void d_delete(struct dentry * dentry)
1993 {
1994 struct inode *inode;
1995 int isdir = 0;
1996 /*
1997 * Are we the only user?
1998 */
1999 again:
2000 spin_lock(&dentry->d_lock);
2001 inode = dentry->d_inode;
2002 isdir = S_ISDIR(inode->i_mode);
2003 if (dentry->d_count == 1) {
2004 if (inode && !spin_trylock(&inode->i_lock)) {
2005 spin_unlock(&dentry->d_lock);
2006 cpu_relax();
2007 goto again;
2008 }
2009 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2010 dentry_unlink_inode(dentry);
2011 fsnotify_nameremove(dentry, isdir);
2012 return;
2013 }
2014
2015 if (!d_unhashed(dentry))
2016 __d_drop(dentry);
2017
2018 spin_unlock(&dentry->d_lock);
2019
2020 fsnotify_nameremove(dentry, isdir);
2021 }
2022 EXPORT_SYMBOL(d_delete);
2023
2024 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2025 {
2026 BUG_ON(!d_unhashed(entry));
2027 hlist_bl_lock(b);
2028 entry->d_flags |= DCACHE_RCUACCESS;
2029 hlist_bl_add_head_rcu(&entry->d_hash, b);
2030 hlist_bl_unlock(b);
2031 }
2032
2033 static void _d_rehash(struct dentry * entry)
2034 {
2035 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2036 }
2037
2038 /**
2039 * d_rehash - add an entry back to the hash
2040 * @entry: dentry to add to the hash
2041 *
2042 * Adds a dentry to the hash according to its name.
2043 */
2044
2045 void d_rehash(struct dentry * entry)
2046 {
2047 spin_lock(&entry->d_lock);
2048 _d_rehash(entry);
2049 spin_unlock(&entry->d_lock);
2050 }
2051 EXPORT_SYMBOL(d_rehash);
2052
2053 /**
2054 * dentry_update_name_case - update case insensitive dentry with a new name
2055 * @dentry: dentry to be updated
2056 * @name: new name
2057 *
2058 * Update a case insensitive dentry with new case of name.
2059 *
2060 * dentry must have been returned by d_lookup with name @name. Old and new
2061 * name lengths must match (ie. no d_compare which allows mismatched name
2062 * lengths).
2063 *
2064 * Parent inode i_mutex must be held over d_lookup and into this call (to
2065 * keep renames and concurrent inserts, and readdir(2) away).
2066 */
2067 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2068 {
2069 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2070 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2071
2072 spin_lock(&dentry->d_lock);
2073 write_seqcount_begin(&dentry->d_seq);
2074 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2075 write_seqcount_end(&dentry->d_seq);
2076 spin_unlock(&dentry->d_lock);
2077 }
2078 EXPORT_SYMBOL(dentry_update_name_case);
2079
2080 static void switch_names(struct dentry *dentry, struct dentry *target)
2081 {
2082 if (dname_external(target)) {
2083 if (dname_external(dentry)) {
2084 /*
2085 * Both external: swap the pointers
2086 */
2087 swap(target->d_name.name, dentry->d_name.name);
2088 } else {
2089 /*
2090 * dentry:internal, target:external. Steal target's
2091 * storage and make target internal.
2092 */
2093 memcpy(target->d_iname, dentry->d_name.name,
2094 dentry->d_name.len + 1);
2095 dentry->d_name.name = target->d_name.name;
2096 target->d_name.name = target->d_iname;
2097 }
2098 } else {
2099 if (dname_external(dentry)) {
2100 /*
2101 * dentry:external, target:internal. Give dentry's
2102 * storage to target and make dentry internal
2103 */
2104 memcpy(dentry->d_iname, target->d_name.name,
2105 target->d_name.len + 1);
2106 target->d_name.name = dentry->d_name.name;
2107 dentry->d_name.name = dentry->d_iname;
2108 } else {
2109 /*
2110 * Both are internal. Just copy target to dentry
2111 */
2112 memcpy(dentry->d_iname, target->d_name.name,
2113 target->d_name.len + 1);
2114 dentry->d_name.len = target->d_name.len;
2115 return;
2116 }
2117 }
2118 swap(dentry->d_name.len, target->d_name.len);
2119 }
2120
2121 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2122 {
2123 /*
2124 * XXXX: do we really need to take target->d_lock?
2125 */
2126 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2127 spin_lock(&target->d_parent->d_lock);
2128 else {
2129 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2130 spin_lock(&dentry->d_parent->d_lock);
2131 spin_lock_nested(&target->d_parent->d_lock,
2132 DENTRY_D_LOCK_NESTED);
2133 } else {
2134 spin_lock(&target->d_parent->d_lock);
2135 spin_lock_nested(&dentry->d_parent->d_lock,
2136 DENTRY_D_LOCK_NESTED);
2137 }
2138 }
2139 if (target < dentry) {
2140 spin_lock_nested(&target->d_lock, 2);
2141 spin_lock_nested(&dentry->d_lock, 3);
2142 } else {
2143 spin_lock_nested(&dentry->d_lock, 2);
2144 spin_lock_nested(&target->d_lock, 3);
2145 }
2146 }
2147
2148 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2149 struct dentry *target)
2150 {
2151 if (target->d_parent != dentry->d_parent)
2152 spin_unlock(&dentry->d_parent->d_lock);
2153 if (target->d_parent != target)
2154 spin_unlock(&target->d_parent->d_lock);
2155 }
2156
2157 /*
2158 * When switching names, the actual string doesn't strictly have to
2159 * be preserved in the target - because we're dropping the target
2160 * anyway. As such, we can just do a simple memcpy() to copy over
2161 * the new name before we switch.
2162 *
2163 * Note that we have to be a lot more careful about getting the hash
2164 * switched - we have to switch the hash value properly even if it
2165 * then no longer matches the actual (corrupted) string of the target.
2166 * The hash value has to match the hash queue that the dentry is on..
2167 */
2168 /*
2169 * __d_move - move a dentry
2170 * @dentry: entry to move
2171 * @target: new dentry
2172 *
2173 * Update the dcache to reflect the move of a file name. Negative
2174 * dcache entries should not be moved in this way. Caller must hold
2175 * rename_lock, the i_mutex of the source and target directories,
2176 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2177 */
2178 static void __d_move(struct dentry * dentry, struct dentry * target)
2179 {
2180 if (!dentry->d_inode)
2181 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2182
2183 BUG_ON(d_ancestor(dentry, target));
2184 BUG_ON(d_ancestor(target, dentry));
2185
2186 dentry_lock_for_move(dentry, target);
2187
2188 write_seqcount_begin(&dentry->d_seq);
2189 write_seqcount_begin(&target->d_seq);
2190
2191 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2192
2193 /*
2194 * Move the dentry to the target hash queue. Don't bother checking
2195 * for the same hash queue because of how unlikely it is.
2196 */
2197 __d_drop(dentry);
2198 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2199
2200 /* Unhash the target: dput() will then get rid of it */
2201 __d_drop(target);
2202
2203 list_del(&dentry->d_u.d_child);
2204 list_del(&target->d_u.d_child);
2205
2206 /* Switch the names.. */
2207 switch_names(dentry, target);
2208 swap(dentry->d_name.hash, target->d_name.hash);
2209
2210 /* ... and switch the parents */
2211 if (IS_ROOT(dentry)) {
2212 dentry->d_parent = target->d_parent;
2213 target->d_parent = target;
2214 INIT_LIST_HEAD(&target->d_u.d_child);
2215 } else {
2216 swap(dentry->d_parent, target->d_parent);
2217
2218 /* And add them back to the (new) parent lists */
2219 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2220 }
2221
2222 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2223
2224 write_seqcount_end(&target->d_seq);
2225 write_seqcount_end(&dentry->d_seq);
2226
2227 dentry_unlock_parents_for_move(dentry, target);
2228 spin_unlock(&target->d_lock);
2229 fsnotify_d_move(dentry);
2230 spin_unlock(&dentry->d_lock);
2231 }
2232
2233 /*
2234 * d_move - move a dentry
2235 * @dentry: entry to move
2236 * @target: new dentry
2237 *
2238 * Update the dcache to reflect the move of a file name. Negative
2239 * dcache entries should not be moved in this way. See the locking
2240 * requirements for __d_move.
2241 */
2242 void d_move(struct dentry *dentry, struct dentry *target)
2243 {
2244 write_seqlock(&rename_lock);
2245 __d_move(dentry, target);
2246 write_sequnlock(&rename_lock);
2247 }
2248 EXPORT_SYMBOL(d_move);
2249
2250 /**
2251 * d_ancestor - search for an ancestor
2252 * @p1: ancestor dentry
2253 * @p2: child dentry
2254 *
2255 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2256 * an ancestor of p2, else NULL.
2257 */
2258 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2259 {
2260 struct dentry *p;
2261
2262 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2263 if (p->d_parent == p1)
2264 return p;
2265 }
2266 return NULL;
2267 }
2268
2269 /*
2270 * This helper attempts to cope with remotely renamed directories
2271 *
2272 * It assumes that the caller is already holding
2273 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2274 *
2275 * Note: If ever the locking in lock_rename() changes, then please
2276 * remember to update this too...
2277 */
2278 static struct dentry *__d_unalias(struct inode *inode,
2279 struct dentry *dentry, struct dentry *alias)
2280 {
2281 struct mutex *m1 = NULL, *m2 = NULL;
2282 struct dentry *ret;
2283
2284 /* If alias and dentry share a parent, then no extra locks required */
2285 if (alias->d_parent == dentry->d_parent)
2286 goto out_unalias;
2287
2288 /* See lock_rename() */
2289 ret = ERR_PTR(-EBUSY);
2290 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2291 goto out_err;
2292 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2293 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2294 goto out_err;
2295 m2 = &alias->d_parent->d_inode->i_mutex;
2296 out_unalias:
2297 __d_move(alias, dentry);
2298 ret = alias;
2299 out_err:
2300 spin_unlock(&inode->i_lock);
2301 if (m2)
2302 mutex_unlock(m2);
2303 if (m1)
2304 mutex_unlock(m1);
2305 return ret;
2306 }
2307
2308 /*
2309 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2310 * named dentry in place of the dentry to be replaced.
2311 * returns with anon->d_lock held!
2312 */
2313 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2314 {
2315 struct dentry *dparent, *aparent;
2316
2317 dentry_lock_for_move(anon, dentry);
2318
2319 write_seqcount_begin(&dentry->d_seq);
2320 write_seqcount_begin(&anon->d_seq);
2321
2322 dparent = dentry->d_parent;
2323 aparent = anon->d_parent;
2324
2325 switch_names(dentry, anon);
2326 swap(dentry->d_name.hash, anon->d_name.hash);
2327
2328 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2329 list_del(&dentry->d_u.d_child);
2330 if (!IS_ROOT(dentry))
2331 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2332 else
2333 INIT_LIST_HEAD(&dentry->d_u.d_child);
2334
2335 anon->d_parent = (dparent == dentry) ? anon : dparent;
2336 list_del(&anon->d_u.d_child);
2337 if (!IS_ROOT(anon))
2338 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2339 else
2340 INIT_LIST_HEAD(&anon->d_u.d_child);
2341
2342 write_seqcount_end(&dentry->d_seq);
2343 write_seqcount_end(&anon->d_seq);
2344
2345 dentry_unlock_parents_for_move(anon, dentry);
2346 spin_unlock(&dentry->d_lock);
2347
2348 /* anon->d_lock still locked, returns locked */
2349 anon->d_flags &= ~DCACHE_DISCONNECTED;
2350 }
2351
2352 /**
2353 * d_materialise_unique - introduce an inode into the tree
2354 * @dentry: candidate dentry
2355 * @inode: inode to bind to the dentry, to which aliases may be attached
2356 *
2357 * Introduces an dentry into the tree, substituting an extant disconnected
2358 * root directory alias in its place if there is one. Caller must hold the
2359 * i_mutex of the parent directory.
2360 */
2361 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2362 {
2363 struct dentry *actual;
2364
2365 BUG_ON(!d_unhashed(dentry));
2366
2367 if (!inode) {
2368 actual = dentry;
2369 __d_instantiate(dentry, NULL);
2370 d_rehash(actual);
2371 goto out_nolock;
2372 }
2373
2374 spin_lock(&inode->i_lock);
2375
2376 if (S_ISDIR(inode->i_mode)) {
2377 struct dentry *alias;
2378
2379 /* Does an aliased dentry already exist? */
2380 alias = __d_find_alias(inode, 0);
2381 if (alias) {
2382 actual = alias;
2383 write_seqlock(&rename_lock);
2384
2385 if (d_ancestor(alias, dentry)) {
2386 /* Check for loops */
2387 actual = ERR_PTR(-ELOOP);
2388 } else if (IS_ROOT(alias)) {
2389 /* Is this an anonymous mountpoint that we
2390 * could splice into our tree? */
2391 __d_materialise_dentry(dentry, alias);
2392 write_sequnlock(&rename_lock);
2393 __d_drop(alias);
2394 goto found;
2395 } else {
2396 /* Nope, but we must(!) avoid directory
2397 * aliasing */
2398 actual = __d_unalias(inode, dentry, alias);
2399 }
2400 write_sequnlock(&rename_lock);
2401 if (IS_ERR(actual)) {
2402 if (PTR_ERR(actual) == -ELOOP)
2403 pr_warn_ratelimited(
2404 "VFS: Lookup of '%s' in %s %s"
2405 " would have caused loop\n",
2406 dentry->d_name.name,
2407 inode->i_sb->s_type->name,
2408 inode->i_sb->s_id);
2409 dput(alias);
2410 }
2411 goto out_nolock;
2412 }
2413 }
2414
2415 /* Add a unique reference */
2416 actual = __d_instantiate_unique(dentry, inode);
2417 if (!actual)
2418 actual = dentry;
2419 else
2420 BUG_ON(!d_unhashed(actual));
2421
2422 spin_lock(&actual->d_lock);
2423 found:
2424 _d_rehash(actual);
2425 spin_unlock(&actual->d_lock);
2426 spin_unlock(&inode->i_lock);
2427 out_nolock:
2428 if (actual == dentry) {
2429 security_d_instantiate(dentry, inode);
2430 return NULL;
2431 }
2432
2433 iput(inode);
2434 return actual;
2435 }
2436 EXPORT_SYMBOL_GPL(d_materialise_unique);
2437
2438 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2439 {
2440 *buflen -= namelen;
2441 if (*buflen < 0)
2442 return -ENAMETOOLONG;
2443 *buffer -= namelen;
2444 memcpy(*buffer, str, namelen);
2445 return 0;
2446 }
2447
2448 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2449 {
2450 return prepend(buffer, buflen, name->name, name->len);
2451 }
2452
2453 /**
2454 * prepend_path - Prepend path string to a buffer
2455 * @path: the dentry/vfsmount to report
2456 * @root: root vfsmnt/dentry
2457 * @buffer: pointer to the end of the buffer
2458 * @buflen: pointer to buffer length
2459 *
2460 * Caller holds the rename_lock.
2461 */
2462 static int prepend_path(const struct path *path,
2463 const struct path *root,
2464 char **buffer, int *buflen)
2465 {
2466 struct dentry *dentry = path->dentry;
2467 struct vfsmount *vfsmnt = path->mnt;
2468 struct mount *mnt = real_mount(vfsmnt);
2469 bool slash = false;
2470 int error = 0;
2471
2472 br_read_lock(vfsmount_lock);
2473 while (dentry != root->dentry || vfsmnt != root->mnt) {
2474 struct dentry * parent;
2475
2476 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2477 /* Global root? */
2478 if (!mnt_has_parent(mnt))
2479 goto global_root;
2480 dentry = mnt->mnt_mountpoint;
2481 mnt = mnt->mnt_parent;
2482 vfsmnt = &mnt->mnt;
2483 continue;
2484 }
2485 parent = dentry->d_parent;
2486 prefetch(parent);
2487 spin_lock(&dentry->d_lock);
2488 error = prepend_name(buffer, buflen, &dentry->d_name);
2489 spin_unlock(&dentry->d_lock);
2490 if (!error)
2491 error = prepend(buffer, buflen, "/", 1);
2492 if (error)
2493 break;
2494
2495 slash = true;
2496 dentry = parent;
2497 }
2498
2499 if (!error && !slash)
2500 error = prepend(buffer, buflen, "/", 1);
2501
2502 out:
2503 br_read_unlock(vfsmount_lock);
2504 return error;
2505
2506 global_root:
2507 /*
2508 * Filesystems needing to implement special "root names"
2509 * should do so with ->d_dname()
2510 */
2511 if (IS_ROOT(dentry) &&
2512 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2513 WARN(1, "Root dentry has weird name <%.*s>\n",
2514 (int) dentry->d_name.len, dentry->d_name.name);
2515 }
2516 if (!slash)
2517 error = prepend(buffer, buflen, "/", 1);
2518 if (!error)
2519 error = real_mount(vfsmnt)->mnt_ns ? 1 : 2;
2520 goto out;
2521 }
2522
2523 /**
2524 * __d_path - return the path of a dentry
2525 * @path: the dentry/vfsmount to report
2526 * @root: root vfsmnt/dentry
2527 * @buf: buffer to return value in
2528 * @buflen: buffer length
2529 *
2530 * Convert a dentry into an ASCII path name.
2531 *
2532 * Returns a pointer into the buffer or an error code if the
2533 * path was too long.
2534 *
2535 * "buflen" should be positive.
2536 *
2537 * If the path is not reachable from the supplied root, return %NULL.
2538 */
2539 char *__d_path(const struct path *path,
2540 const struct path *root,
2541 char *buf, int buflen)
2542 {
2543 char *res = buf + buflen;
2544 int error;
2545
2546 prepend(&res, &buflen, "\0", 1);
2547 write_seqlock(&rename_lock);
2548 error = prepend_path(path, root, &res, &buflen);
2549 write_sequnlock(&rename_lock);
2550
2551 if (error < 0)
2552 return ERR_PTR(error);
2553 if (error > 0)
2554 return NULL;
2555 return res;
2556 }
2557
2558 char *d_absolute_path(const struct path *path,
2559 char *buf, int buflen)
2560 {
2561 struct path root = {};
2562 char *res = buf + buflen;
2563 int error;
2564
2565 prepend(&res, &buflen, "\0", 1);
2566 write_seqlock(&rename_lock);
2567 error = prepend_path(path, &root, &res, &buflen);
2568 write_sequnlock(&rename_lock);
2569
2570 if (error > 1)
2571 error = -EINVAL;
2572 if (error < 0)
2573 return ERR_PTR(error);
2574 return res;
2575 }
2576
2577 /*
2578 * same as __d_path but appends "(deleted)" for unlinked files.
2579 */
2580 static int path_with_deleted(const struct path *path,
2581 const struct path *root,
2582 char **buf, int *buflen)
2583 {
2584 prepend(buf, buflen, "\0", 1);
2585 if (d_unlinked(path->dentry)) {
2586 int error = prepend(buf, buflen, " (deleted)", 10);
2587 if (error)
2588 return error;
2589 }
2590
2591 return prepend_path(path, root, buf, buflen);
2592 }
2593
2594 static int prepend_unreachable(char **buffer, int *buflen)
2595 {
2596 return prepend(buffer, buflen, "(unreachable)", 13);
2597 }
2598
2599 /**
2600 * d_path - return the path of a dentry
2601 * @path: path to report
2602 * @buf: buffer to return value in
2603 * @buflen: buffer length
2604 *
2605 * Convert a dentry into an ASCII path name. If the entry has been deleted
2606 * the string " (deleted)" is appended. Note that this is ambiguous.
2607 *
2608 * Returns a pointer into the buffer or an error code if the path was
2609 * too long. Note: Callers should use the returned pointer, not the passed
2610 * in buffer, to use the name! The implementation often starts at an offset
2611 * into the buffer, and may leave 0 bytes at the start.
2612 *
2613 * "buflen" should be positive.
2614 */
2615 char *d_path(const struct path *path, char *buf, int buflen)
2616 {
2617 char *res = buf + buflen;
2618 struct path root;
2619 int error;
2620
2621 /*
2622 * We have various synthetic filesystems that never get mounted. On
2623 * these filesystems dentries are never used for lookup purposes, and
2624 * thus don't need to be hashed. They also don't need a name until a
2625 * user wants to identify the object in /proc/pid/fd/. The little hack
2626 * below allows us to generate a name for these objects on demand:
2627 */
2628 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2629 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2630
2631 get_fs_root(current->fs, &root);
2632 write_seqlock(&rename_lock);
2633 error = path_with_deleted(path, &root, &res, &buflen);
2634 if (error < 0)
2635 res = ERR_PTR(error);
2636 write_sequnlock(&rename_lock);
2637 path_put(&root);
2638 return res;
2639 }
2640 EXPORT_SYMBOL(d_path);
2641
2642 /**
2643 * d_path_with_unreachable - return the path of a dentry
2644 * @path: path to report
2645 * @buf: buffer to return value in
2646 * @buflen: buffer length
2647 *
2648 * The difference from d_path() is that this prepends "(unreachable)"
2649 * to paths which are unreachable from the current process' root.
2650 */
2651 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2652 {
2653 char *res = buf + buflen;
2654 struct path root;
2655 int error;
2656
2657 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2658 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2659
2660 get_fs_root(current->fs, &root);
2661 write_seqlock(&rename_lock);
2662 error = path_with_deleted(path, &root, &res, &buflen);
2663 if (error > 0)
2664 error = prepend_unreachable(&res, &buflen);
2665 write_sequnlock(&rename_lock);
2666 path_put(&root);
2667 if (error)
2668 res = ERR_PTR(error);
2669
2670 return res;
2671 }
2672
2673 /*
2674 * Helper function for dentry_operations.d_dname() members
2675 */
2676 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2677 const char *fmt, ...)
2678 {
2679 va_list args;
2680 char temp[64];
2681 int sz;
2682
2683 va_start(args, fmt);
2684 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2685 va_end(args);
2686
2687 if (sz > sizeof(temp) || sz > buflen)
2688 return ERR_PTR(-ENAMETOOLONG);
2689
2690 buffer += buflen - sz;
2691 return memcpy(buffer, temp, sz);
2692 }
2693
2694 /*
2695 * Write full pathname from the root of the filesystem into the buffer.
2696 */
2697 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2698 {
2699 char *end = buf + buflen;
2700 char *retval;
2701
2702 prepend(&end, &buflen, "\0", 1);
2703 if (buflen < 1)
2704 goto Elong;
2705 /* Get '/' right */
2706 retval = end-1;
2707 *retval = '/';
2708
2709 while (!IS_ROOT(dentry)) {
2710 struct dentry *parent = dentry->d_parent;
2711 int error;
2712
2713 prefetch(parent);
2714 spin_lock(&dentry->d_lock);
2715 error = prepend_name(&end, &buflen, &dentry->d_name);
2716 spin_unlock(&dentry->d_lock);
2717 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2718 goto Elong;
2719
2720 retval = end;
2721 dentry = parent;
2722 }
2723 return retval;
2724 Elong:
2725 return ERR_PTR(-ENAMETOOLONG);
2726 }
2727
2728 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2729 {
2730 char *retval;
2731
2732 write_seqlock(&rename_lock);
2733 retval = __dentry_path(dentry, buf, buflen);
2734 write_sequnlock(&rename_lock);
2735
2736 return retval;
2737 }
2738 EXPORT_SYMBOL(dentry_path_raw);
2739
2740 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2741 {
2742 char *p = NULL;
2743 char *retval;
2744
2745 write_seqlock(&rename_lock);
2746 if (d_unlinked(dentry)) {
2747 p = buf + buflen;
2748 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2749 goto Elong;
2750 buflen++;
2751 }
2752 retval = __dentry_path(dentry, buf, buflen);
2753 write_sequnlock(&rename_lock);
2754 if (!IS_ERR(retval) && p)
2755 *p = '/'; /* restore '/' overriden with '\0' */
2756 return retval;
2757 Elong:
2758 return ERR_PTR(-ENAMETOOLONG);
2759 }
2760
2761 /*
2762 * NOTE! The user-level library version returns a
2763 * character pointer. The kernel system call just
2764 * returns the length of the buffer filled (which
2765 * includes the ending '\0' character), or a negative
2766 * error value. So libc would do something like
2767 *
2768 * char *getcwd(char * buf, size_t size)
2769 * {
2770 * int retval;
2771 *
2772 * retval = sys_getcwd(buf, size);
2773 * if (retval >= 0)
2774 * return buf;
2775 * errno = -retval;
2776 * return NULL;
2777 * }
2778 */
2779 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2780 {
2781 int error;
2782 struct path pwd, root;
2783 char *page = (char *) __get_free_page(GFP_USER);
2784
2785 if (!page)
2786 return -ENOMEM;
2787
2788 get_fs_root_and_pwd(current->fs, &root, &pwd);
2789
2790 error = -ENOENT;
2791 write_seqlock(&rename_lock);
2792 if (!d_unlinked(pwd.dentry)) {
2793 unsigned long len;
2794 char *cwd = page + PAGE_SIZE;
2795 int buflen = PAGE_SIZE;
2796
2797 prepend(&cwd, &buflen, "\0", 1);
2798 error = prepend_path(&pwd, &root, &cwd, &buflen);
2799 write_sequnlock(&rename_lock);
2800
2801 if (error < 0)
2802 goto out;
2803
2804 /* Unreachable from current root */
2805 if (error > 0) {
2806 error = prepend_unreachable(&cwd, &buflen);
2807 if (error)
2808 goto out;
2809 }
2810
2811 error = -ERANGE;
2812 len = PAGE_SIZE + page - cwd;
2813 if (len <= size) {
2814 error = len;
2815 if (copy_to_user(buf, cwd, len))
2816 error = -EFAULT;
2817 }
2818 } else {
2819 write_sequnlock(&rename_lock);
2820 }
2821
2822 out:
2823 path_put(&pwd);
2824 path_put(&root);
2825 free_page((unsigned long) page);
2826 return error;
2827 }
2828
2829 /*
2830 * Test whether new_dentry is a subdirectory of old_dentry.
2831 *
2832 * Trivially implemented using the dcache structure
2833 */
2834
2835 /**
2836 * is_subdir - is new dentry a subdirectory of old_dentry
2837 * @new_dentry: new dentry
2838 * @old_dentry: old dentry
2839 *
2840 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2841 * Returns 0 otherwise.
2842 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2843 */
2844
2845 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2846 {
2847 int result;
2848 unsigned seq;
2849
2850 if (new_dentry == old_dentry)
2851 return 1;
2852
2853 do {
2854 /* for restarting inner loop in case of seq retry */
2855 seq = read_seqbegin(&rename_lock);
2856 /*
2857 * Need rcu_readlock to protect against the d_parent trashing
2858 * due to d_move
2859 */
2860 rcu_read_lock();
2861 if (d_ancestor(old_dentry, new_dentry))
2862 result = 1;
2863 else
2864 result = 0;
2865 rcu_read_unlock();
2866 } while (read_seqretry(&rename_lock, seq));
2867
2868 return result;
2869 }
2870
2871 void d_genocide(struct dentry *root)
2872 {
2873 struct dentry *this_parent;
2874 struct list_head *next;
2875 unsigned seq;
2876 int locked = 0;
2877
2878 seq = read_seqbegin(&rename_lock);
2879 again:
2880 this_parent = root;
2881 spin_lock(&this_parent->d_lock);
2882 repeat:
2883 next = this_parent->d_subdirs.next;
2884 resume:
2885 while (next != &this_parent->d_subdirs) {
2886 struct list_head *tmp = next;
2887 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2888 next = tmp->next;
2889
2890 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2891 if (d_unhashed(dentry) || !dentry->d_inode) {
2892 spin_unlock(&dentry->d_lock);
2893 continue;
2894 }
2895 if (!list_empty(&dentry->d_subdirs)) {
2896 spin_unlock(&this_parent->d_lock);
2897 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2898 this_parent = dentry;
2899 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2900 goto repeat;
2901 }
2902 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2903 dentry->d_flags |= DCACHE_GENOCIDE;
2904 dentry->d_count--;
2905 }
2906 spin_unlock(&dentry->d_lock);
2907 }
2908 if (this_parent != root) {
2909 struct dentry *child = this_parent;
2910 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2911 this_parent->d_flags |= DCACHE_GENOCIDE;
2912 this_parent->d_count--;
2913 }
2914 this_parent = try_to_ascend(this_parent, locked, seq);
2915 if (!this_parent)
2916 goto rename_retry;
2917 next = child->d_u.d_child.next;
2918 goto resume;
2919 }
2920 spin_unlock(&this_parent->d_lock);
2921 if (!locked && read_seqretry(&rename_lock, seq))
2922 goto rename_retry;
2923 if (locked)
2924 write_sequnlock(&rename_lock);
2925 return;
2926
2927 rename_retry:
2928 locked = 1;
2929 write_seqlock(&rename_lock);
2930 goto again;
2931 }
2932
2933 /**
2934 * find_inode_number - check for dentry with name
2935 * @dir: directory to check
2936 * @name: Name to find.
2937 *
2938 * Check whether a dentry already exists for the given name,
2939 * and return the inode number if it has an inode. Otherwise
2940 * 0 is returned.
2941 *
2942 * This routine is used to post-process directory listings for
2943 * filesystems using synthetic inode numbers, and is necessary
2944 * to keep getcwd() working.
2945 */
2946
2947 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2948 {
2949 struct dentry * dentry;
2950 ino_t ino = 0;
2951
2952 dentry = d_hash_and_lookup(dir, name);
2953 if (dentry) {
2954 if (dentry->d_inode)
2955 ino = dentry->d_inode->i_ino;
2956 dput(dentry);
2957 }
2958 return ino;
2959 }
2960 EXPORT_SYMBOL(find_inode_number);
2961
2962 static __initdata unsigned long dhash_entries;
2963 static int __init set_dhash_entries(char *str)
2964 {
2965 if (!str)
2966 return 0;
2967 dhash_entries = simple_strtoul(str, &str, 0);
2968 return 1;
2969 }
2970 __setup("dhash_entries=", set_dhash_entries);
2971
2972 static void __init dcache_init_early(void)
2973 {
2974 unsigned int loop;
2975
2976 /* If hashes are distributed across NUMA nodes, defer
2977 * hash allocation until vmalloc space is available.
2978 */
2979 if (hashdist)
2980 return;
2981
2982 dentry_hashtable =
2983 alloc_large_system_hash("Dentry cache",
2984 sizeof(struct hlist_bl_head),
2985 dhash_entries,
2986 13,
2987 HASH_EARLY,
2988 &d_hash_shift,
2989 &d_hash_mask,
2990 0);
2991
2992 for (loop = 0; loop < (1U << d_hash_shift); loop++)
2993 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
2994 }
2995
2996 static void __init dcache_init(void)
2997 {
2998 unsigned int loop;
2999
3000 /*
3001 * A constructor could be added for stable state like the lists,
3002 * but it is probably not worth it because of the cache nature
3003 * of the dcache.
3004 */
3005 dentry_cache = KMEM_CACHE(dentry,
3006 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3007
3008 /* Hash may have been set up in dcache_init_early */
3009 if (!hashdist)
3010 return;
3011
3012 dentry_hashtable =
3013 alloc_large_system_hash("Dentry cache",
3014 sizeof(struct hlist_bl_head),
3015 dhash_entries,
3016 13,
3017 0,
3018 &d_hash_shift,
3019 &d_hash_mask,
3020 0);
3021
3022 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3023 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3024 }
3025
3026 /* SLAB cache for __getname() consumers */
3027 struct kmem_cache *names_cachep __read_mostly;
3028 EXPORT_SYMBOL(names_cachep);
3029
3030 EXPORT_SYMBOL(d_genocide);
3031
3032 void __init vfs_caches_init_early(void)
3033 {
3034 dcache_init_early();
3035 inode_init_early();
3036 }
3037
3038 void __init vfs_caches_init(unsigned long mempages)
3039 {
3040 unsigned long reserve;
3041
3042 /* Base hash sizes on available memory, with a reserve equal to
3043 150% of current kernel size */
3044
3045 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3046 mempages -= reserve;
3047
3048 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3049 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3050
3051 dcache_init();
3052 inode_init();
3053 files_init(mempages);
3054 mnt_init();
3055 bdev_cache_init();
3056 chrdev_init();
3057 }
This page took 0.100057 seconds and 6 git commands to generate.