Merge commit 'dmaengine-3.13-v2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43
44 /*
45 * Usage:
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
58 * - d_count
59 * - d_unhashed()
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_alias, d_inode
63 *
64 * Ordering:
65 * dentry->d_inode->i_lock
66 * dentry->d_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
69 * s_anon lock
70 *
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /**
92 * read_seqbegin_or_lock - begin a sequence number check or locking block
93 * @lock: sequence lock
94 * @seq : sequence number to be checked
95 *
96 * First try it once optimistically without taking the lock. If that fails,
97 * take the lock. The sequence number is also used as a marker for deciding
98 * whether to be a reader (even) or writer (odd).
99 * N.B. seq must be initialized to an even number to begin with.
100 */
101 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
102 {
103 if (!(*seq & 1)) /* Even */
104 *seq = read_seqbegin(lock);
105 else /* Odd */
106 read_seqlock_excl(lock);
107 }
108
109 static inline int need_seqretry(seqlock_t *lock, int seq)
110 {
111 return !(seq & 1) && read_seqretry(lock, seq);
112 }
113
114 static inline void done_seqretry(seqlock_t *lock, int seq)
115 {
116 if (seq & 1)
117 read_sequnlock_excl(lock);
118 }
119
120 /*
121 * This is the single most critical data structure when it comes
122 * to the dcache: the hashtable for lookups. Somebody should try
123 * to make this good - I've just made it work.
124 *
125 * This hash-function tries to avoid losing too many bits of hash
126 * information, yet avoid using a prime hash-size or similar.
127 */
128 #define D_HASHBITS d_hash_shift
129 #define D_HASHMASK d_hash_mask
130
131 static unsigned int d_hash_mask __read_mostly;
132 static unsigned int d_hash_shift __read_mostly;
133
134 static struct hlist_bl_head *dentry_hashtable __read_mostly;
135
136 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
137 unsigned int hash)
138 {
139 hash += (unsigned long) parent / L1_CACHE_BYTES;
140 hash = hash + (hash >> D_HASHBITS);
141 return dentry_hashtable + (hash & D_HASHMASK);
142 }
143
144 /* Statistics gathering. */
145 struct dentry_stat_t dentry_stat = {
146 .age_limit = 45,
147 };
148
149 static DEFINE_PER_CPU(long, nr_dentry);
150 static DEFINE_PER_CPU(long, nr_dentry_unused);
151
152 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
153
154 /*
155 * Here we resort to our own counters instead of using generic per-cpu counters
156 * for consistency with what the vfs inode code does. We are expected to harvest
157 * better code and performance by having our own specialized counters.
158 *
159 * Please note that the loop is done over all possible CPUs, not over all online
160 * CPUs. The reason for this is that we don't want to play games with CPUs going
161 * on and off. If one of them goes off, we will just keep their counters.
162 *
163 * glommer: See cffbc8a for details, and if you ever intend to change this,
164 * please update all vfs counters to match.
165 */
166 static long get_nr_dentry(void)
167 {
168 int i;
169 long sum = 0;
170 for_each_possible_cpu(i)
171 sum += per_cpu(nr_dentry, i);
172 return sum < 0 ? 0 : sum;
173 }
174
175 static long get_nr_dentry_unused(void)
176 {
177 int i;
178 long sum = 0;
179 for_each_possible_cpu(i)
180 sum += per_cpu(nr_dentry_unused, i);
181 return sum < 0 ? 0 : sum;
182 }
183
184 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
185 size_t *lenp, loff_t *ppos)
186 {
187 dentry_stat.nr_dentry = get_nr_dentry();
188 dentry_stat.nr_unused = get_nr_dentry_unused();
189 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
190 }
191 #endif
192
193 /*
194 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
195 * The strings are both count bytes long, and count is non-zero.
196 */
197 #ifdef CONFIG_DCACHE_WORD_ACCESS
198
199 #include <asm/word-at-a-time.h>
200 /*
201 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
202 * aligned allocation for this particular component. We don't
203 * strictly need the load_unaligned_zeropad() safety, but it
204 * doesn't hurt either.
205 *
206 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
207 * need the careful unaligned handling.
208 */
209 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
210 {
211 unsigned long a,b,mask;
212
213 for (;;) {
214 a = *(unsigned long *)cs;
215 b = load_unaligned_zeropad(ct);
216 if (tcount < sizeof(unsigned long))
217 break;
218 if (unlikely(a != b))
219 return 1;
220 cs += sizeof(unsigned long);
221 ct += sizeof(unsigned long);
222 tcount -= sizeof(unsigned long);
223 if (!tcount)
224 return 0;
225 }
226 mask = ~(~0ul << tcount*8);
227 return unlikely(!!((a ^ b) & mask));
228 }
229
230 #else
231
232 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
233 {
234 do {
235 if (*cs != *ct)
236 return 1;
237 cs++;
238 ct++;
239 tcount--;
240 } while (tcount);
241 return 0;
242 }
243
244 #endif
245
246 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
247 {
248 const unsigned char *cs;
249 /*
250 * Be careful about RCU walk racing with rename:
251 * use ACCESS_ONCE to fetch the name pointer.
252 *
253 * NOTE! Even if a rename will mean that the length
254 * was not loaded atomically, we don't care. The
255 * RCU walk will check the sequence count eventually,
256 * and catch it. And we won't overrun the buffer,
257 * because we're reading the name pointer atomically,
258 * and a dentry name is guaranteed to be properly
259 * terminated with a NUL byte.
260 *
261 * End result: even if 'len' is wrong, we'll exit
262 * early because the data cannot match (there can
263 * be no NUL in the ct/tcount data)
264 */
265 cs = ACCESS_ONCE(dentry->d_name.name);
266 smp_read_barrier_depends();
267 return dentry_string_cmp(cs, ct, tcount);
268 }
269
270 static void __d_free(struct rcu_head *head)
271 {
272 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
273
274 WARN_ON(!hlist_unhashed(&dentry->d_alias));
275 if (dname_external(dentry))
276 kfree(dentry->d_name.name);
277 kmem_cache_free(dentry_cache, dentry);
278 }
279
280 /*
281 * no locks, please.
282 */
283 static void d_free(struct dentry *dentry)
284 {
285 BUG_ON((int)dentry->d_lockref.count > 0);
286 this_cpu_dec(nr_dentry);
287 if (dentry->d_op && dentry->d_op->d_release)
288 dentry->d_op->d_release(dentry);
289
290 /* if dentry was never visible to RCU, immediate free is OK */
291 if (!(dentry->d_flags & DCACHE_RCUACCESS))
292 __d_free(&dentry->d_u.d_rcu);
293 else
294 call_rcu(&dentry->d_u.d_rcu, __d_free);
295 }
296
297 /**
298 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
299 * @dentry: the target dentry
300 * After this call, in-progress rcu-walk path lookup will fail. This
301 * should be called after unhashing, and after changing d_inode (if
302 * the dentry has not already been unhashed).
303 */
304 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
305 {
306 assert_spin_locked(&dentry->d_lock);
307 /* Go through a barrier */
308 write_seqcount_barrier(&dentry->d_seq);
309 }
310
311 /*
312 * Release the dentry's inode, using the filesystem
313 * d_iput() operation if defined. Dentry has no refcount
314 * and is unhashed.
315 */
316 static void dentry_iput(struct dentry * dentry)
317 __releases(dentry->d_lock)
318 __releases(dentry->d_inode->i_lock)
319 {
320 struct inode *inode = dentry->d_inode;
321 if (inode) {
322 dentry->d_inode = NULL;
323 hlist_del_init(&dentry->d_alias);
324 spin_unlock(&dentry->d_lock);
325 spin_unlock(&inode->i_lock);
326 if (!inode->i_nlink)
327 fsnotify_inoderemove(inode);
328 if (dentry->d_op && dentry->d_op->d_iput)
329 dentry->d_op->d_iput(dentry, inode);
330 else
331 iput(inode);
332 } else {
333 spin_unlock(&dentry->d_lock);
334 }
335 }
336
337 /*
338 * Release the dentry's inode, using the filesystem
339 * d_iput() operation if defined. dentry remains in-use.
340 */
341 static void dentry_unlink_inode(struct dentry * dentry)
342 __releases(dentry->d_lock)
343 __releases(dentry->d_inode->i_lock)
344 {
345 struct inode *inode = dentry->d_inode;
346 dentry->d_inode = NULL;
347 hlist_del_init(&dentry->d_alias);
348 dentry_rcuwalk_barrier(dentry);
349 spin_unlock(&dentry->d_lock);
350 spin_unlock(&inode->i_lock);
351 if (!inode->i_nlink)
352 fsnotify_inoderemove(inode);
353 if (dentry->d_op && dentry->d_op->d_iput)
354 dentry->d_op->d_iput(dentry, inode);
355 else
356 iput(inode);
357 }
358
359 /*
360 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
361 * is in use - which includes both the "real" per-superblock
362 * LRU list _and_ the DCACHE_SHRINK_LIST use.
363 *
364 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
365 * on the shrink list (ie not on the superblock LRU list).
366 *
367 * The per-cpu "nr_dentry_unused" counters are updated with
368 * the DCACHE_LRU_LIST bit.
369 *
370 * These helper functions make sure we always follow the
371 * rules. d_lock must be held by the caller.
372 */
373 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
374 static void d_lru_add(struct dentry *dentry)
375 {
376 D_FLAG_VERIFY(dentry, 0);
377 dentry->d_flags |= DCACHE_LRU_LIST;
378 this_cpu_inc(nr_dentry_unused);
379 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
380 }
381
382 static void d_lru_del(struct dentry *dentry)
383 {
384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 dentry->d_flags &= ~DCACHE_LRU_LIST;
386 this_cpu_dec(nr_dentry_unused);
387 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
388 }
389
390 static void d_shrink_del(struct dentry *dentry)
391 {
392 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
393 list_del_init(&dentry->d_lru);
394 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
395 this_cpu_dec(nr_dentry_unused);
396 }
397
398 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
399 {
400 D_FLAG_VERIFY(dentry, 0);
401 list_add(&dentry->d_lru, list);
402 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
403 this_cpu_inc(nr_dentry_unused);
404 }
405
406 /*
407 * These can only be called under the global LRU lock, ie during the
408 * callback for freeing the LRU list. "isolate" removes it from the
409 * LRU lists entirely, while shrink_move moves it to the indicated
410 * private list.
411 */
412 static void d_lru_isolate(struct dentry *dentry)
413 {
414 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
415 dentry->d_flags &= ~DCACHE_LRU_LIST;
416 this_cpu_dec(nr_dentry_unused);
417 list_del_init(&dentry->d_lru);
418 }
419
420 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
421 {
422 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
423 dentry->d_flags |= DCACHE_SHRINK_LIST;
424 list_move_tail(&dentry->d_lru, list);
425 }
426
427 /*
428 * dentry_lru_(add|del)_list) must be called with d_lock held.
429 */
430 static void dentry_lru_add(struct dentry *dentry)
431 {
432 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
433 d_lru_add(dentry);
434 }
435
436 /*
437 * Remove a dentry with references from the LRU.
438 *
439 * If we are on the shrink list, then we can get to try_prune_one_dentry() and
440 * lose our last reference through the parent walk. In this case, we need to
441 * remove ourselves from the shrink list, not the LRU.
442 */
443 static void dentry_lru_del(struct dentry *dentry)
444 {
445 if (dentry->d_flags & DCACHE_LRU_LIST) {
446 if (dentry->d_flags & DCACHE_SHRINK_LIST)
447 return d_shrink_del(dentry);
448 d_lru_del(dentry);
449 }
450 }
451
452 /**
453 * d_kill - kill dentry and return parent
454 * @dentry: dentry to kill
455 * @parent: parent dentry
456 *
457 * The dentry must already be unhashed and removed from the LRU.
458 *
459 * If this is the root of the dentry tree, return NULL.
460 *
461 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
462 * d_kill.
463 */
464 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
465 __releases(dentry->d_lock)
466 __releases(parent->d_lock)
467 __releases(dentry->d_inode->i_lock)
468 {
469 list_del(&dentry->d_u.d_child);
470 /*
471 * Inform try_to_ascend() that we are no longer attached to the
472 * dentry tree
473 */
474 dentry->d_flags |= DCACHE_DENTRY_KILLED;
475 if (parent)
476 spin_unlock(&parent->d_lock);
477 dentry_iput(dentry);
478 /*
479 * dentry_iput drops the locks, at which point nobody (except
480 * transient RCU lookups) can reach this dentry.
481 */
482 d_free(dentry);
483 return parent;
484 }
485
486 /*
487 * Unhash a dentry without inserting an RCU walk barrier or checking that
488 * dentry->d_lock is locked. The caller must take care of that, if
489 * appropriate.
490 */
491 static void __d_shrink(struct dentry *dentry)
492 {
493 if (!d_unhashed(dentry)) {
494 struct hlist_bl_head *b;
495 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
496 b = &dentry->d_sb->s_anon;
497 else
498 b = d_hash(dentry->d_parent, dentry->d_name.hash);
499
500 hlist_bl_lock(b);
501 __hlist_bl_del(&dentry->d_hash);
502 dentry->d_hash.pprev = NULL;
503 hlist_bl_unlock(b);
504 }
505 }
506
507 /**
508 * d_drop - drop a dentry
509 * @dentry: dentry to drop
510 *
511 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
512 * be found through a VFS lookup any more. Note that this is different from
513 * deleting the dentry - d_delete will try to mark the dentry negative if
514 * possible, giving a successful _negative_ lookup, while d_drop will
515 * just make the cache lookup fail.
516 *
517 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
518 * reason (NFS timeouts or autofs deletes).
519 *
520 * __d_drop requires dentry->d_lock.
521 */
522 void __d_drop(struct dentry *dentry)
523 {
524 if (!d_unhashed(dentry)) {
525 __d_shrink(dentry);
526 dentry_rcuwalk_barrier(dentry);
527 }
528 }
529 EXPORT_SYMBOL(__d_drop);
530
531 void d_drop(struct dentry *dentry)
532 {
533 spin_lock(&dentry->d_lock);
534 __d_drop(dentry);
535 spin_unlock(&dentry->d_lock);
536 }
537 EXPORT_SYMBOL(d_drop);
538
539 /*
540 * Finish off a dentry we've decided to kill.
541 * dentry->d_lock must be held, returns with it unlocked.
542 * If ref is non-zero, then decrement the refcount too.
543 * Returns dentry requiring refcount drop, or NULL if we're done.
544 */
545 static inline struct dentry *
546 dentry_kill(struct dentry *dentry, int unlock_on_failure)
547 __releases(dentry->d_lock)
548 {
549 struct inode *inode;
550 struct dentry *parent;
551
552 inode = dentry->d_inode;
553 if (inode && !spin_trylock(&inode->i_lock)) {
554 relock:
555 if (unlock_on_failure) {
556 spin_unlock(&dentry->d_lock);
557 cpu_relax();
558 }
559 return dentry; /* try again with same dentry */
560 }
561 if (IS_ROOT(dentry))
562 parent = NULL;
563 else
564 parent = dentry->d_parent;
565 if (parent && !spin_trylock(&parent->d_lock)) {
566 if (inode)
567 spin_unlock(&inode->i_lock);
568 goto relock;
569 }
570
571 /*
572 * The dentry is now unrecoverably dead to the world.
573 */
574 lockref_mark_dead(&dentry->d_lockref);
575
576 /*
577 * inform the fs via d_prune that this dentry is about to be
578 * unhashed and destroyed.
579 */
580 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
581 dentry->d_op->d_prune(dentry);
582
583 dentry_lru_del(dentry);
584 /* if it was on the hash then remove it */
585 __d_drop(dentry);
586 return d_kill(dentry, parent);
587 }
588
589 /*
590 * This is dput
591 *
592 * This is complicated by the fact that we do not want to put
593 * dentries that are no longer on any hash chain on the unused
594 * list: we'd much rather just get rid of them immediately.
595 *
596 * However, that implies that we have to traverse the dentry
597 * tree upwards to the parents which might _also_ now be
598 * scheduled for deletion (it may have been only waiting for
599 * its last child to go away).
600 *
601 * This tail recursion is done by hand as we don't want to depend
602 * on the compiler to always get this right (gcc generally doesn't).
603 * Real recursion would eat up our stack space.
604 */
605
606 /*
607 * dput - release a dentry
608 * @dentry: dentry to release
609 *
610 * Release a dentry. This will drop the usage count and if appropriate
611 * call the dentry unlink method as well as removing it from the queues and
612 * releasing its resources. If the parent dentries were scheduled for release
613 * they too may now get deleted.
614 */
615 void dput(struct dentry *dentry)
616 {
617 if (unlikely(!dentry))
618 return;
619
620 repeat:
621 if (lockref_put_or_lock(&dentry->d_lockref))
622 return;
623
624 /* Unreachable? Get rid of it */
625 if (unlikely(d_unhashed(dentry)))
626 goto kill_it;
627
628 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
629 if (dentry->d_op->d_delete(dentry))
630 goto kill_it;
631 }
632
633 dentry->d_flags |= DCACHE_REFERENCED;
634 dentry_lru_add(dentry);
635
636 dentry->d_lockref.count--;
637 spin_unlock(&dentry->d_lock);
638 return;
639
640 kill_it:
641 dentry = dentry_kill(dentry, 1);
642 if (dentry)
643 goto repeat;
644 }
645 EXPORT_SYMBOL(dput);
646
647 /**
648 * d_invalidate - invalidate a dentry
649 * @dentry: dentry to invalidate
650 *
651 * Try to invalidate the dentry if it turns out to be
652 * possible. If there are other dentries that can be
653 * reached through this one we can't delete it and we
654 * return -EBUSY. On success we return 0.
655 *
656 * no dcache lock.
657 */
658
659 int d_invalidate(struct dentry * dentry)
660 {
661 /*
662 * If it's already been dropped, return OK.
663 */
664 spin_lock(&dentry->d_lock);
665 if (d_unhashed(dentry)) {
666 spin_unlock(&dentry->d_lock);
667 return 0;
668 }
669 /*
670 * Check whether to do a partial shrink_dcache
671 * to get rid of unused child entries.
672 */
673 if (!list_empty(&dentry->d_subdirs)) {
674 spin_unlock(&dentry->d_lock);
675 shrink_dcache_parent(dentry);
676 spin_lock(&dentry->d_lock);
677 }
678
679 /*
680 * Somebody else still using it?
681 *
682 * If it's a directory, we can't drop it
683 * for fear of somebody re-populating it
684 * with children (even though dropping it
685 * would make it unreachable from the root,
686 * we might still populate it if it was a
687 * working directory or similar).
688 * We also need to leave mountpoints alone,
689 * directory or not.
690 */
691 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
692 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
693 spin_unlock(&dentry->d_lock);
694 return -EBUSY;
695 }
696 }
697
698 __d_drop(dentry);
699 spin_unlock(&dentry->d_lock);
700 return 0;
701 }
702 EXPORT_SYMBOL(d_invalidate);
703
704 /* This must be called with d_lock held */
705 static inline void __dget_dlock(struct dentry *dentry)
706 {
707 dentry->d_lockref.count++;
708 }
709
710 static inline void __dget(struct dentry *dentry)
711 {
712 lockref_get(&dentry->d_lockref);
713 }
714
715 struct dentry *dget_parent(struct dentry *dentry)
716 {
717 int gotref;
718 struct dentry *ret;
719
720 /*
721 * Do optimistic parent lookup without any
722 * locking.
723 */
724 rcu_read_lock();
725 ret = ACCESS_ONCE(dentry->d_parent);
726 gotref = lockref_get_not_zero(&ret->d_lockref);
727 rcu_read_unlock();
728 if (likely(gotref)) {
729 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
730 return ret;
731 dput(ret);
732 }
733
734 repeat:
735 /*
736 * Don't need rcu_dereference because we re-check it was correct under
737 * the lock.
738 */
739 rcu_read_lock();
740 ret = dentry->d_parent;
741 spin_lock(&ret->d_lock);
742 if (unlikely(ret != dentry->d_parent)) {
743 spin_unlock(&ret->d_lock);
744 rcu_read_unlock();
745 goto repeat;
746 }
747 rcu_read_unlock();
748 BUG_ON(!ret->d_lockref.count);
749 ret->d_lockref.count++;
750 spin_unlock(&ret->d_lock);
751 return ret;
752 }
753 EXPORT_SYMBOL(dget_parent);
754
755 /**
756 * d_find_alias - grab a hashed alias of inode
757 * @inode: inode in question
758 * @want_discon: flag, used by d_splice_alias, to request
759 * that only a DISCONNECTED alias be returned.
760 *
761 * If inode has a hashed alias, or is a directory and has any alias,
762 * acquire the reference to alias and return it. Otherwise return NULL.
763 * Notice that if inode is a directory there can be only one alias and
764 * it can be unhashed only if it has no children, or if it is the root
765 * of a filesystem.
766 *
767 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
768 * any other hashed alias over that one unless @want_discon is set,
769 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
770 */
771 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
772 {
773 struct dentry *alias, *discon_alias;
774
775 again:
776 discon_alias = NULL;
777 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
778 spin_lock(&alias->d_lock);
779 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
780 if (IS_ROOT(alias) &&
781 (alias->d_flags & DCACHE_DISCONNECTED)) {
782 discon_alias = alias;
783 } else if (!want_discon) {
784 __dget_dlock(alias);
785 spin_unlock(&alias->d_lock);
786 return alias;
787 }
788 }
789 spin_unlock(&alias->d_lock);
790 }
791 if (discon_alias) {
792 alias = discon_alias;
793 spin_lock(&alias->d_lock);
794 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
795 if (IS_ROOT(alias) &&
796 (alias->d_flags & DCACHE_DISCONNECTED)) {
797 __dget_dlock(alias);
798 spin_unlock(&alias->d_lock);
799 return alias;
800 }
801 }
802 spin_unlock(&alias->d_lock);
803 goto again;
804 }
805 return NULL;
806 }
807
808 struct dentry *d_find_alias(struct inode *inode)
809 {
810 struct dentry *de = NULL;
811
812 if (!hlist_empty(&inode->i_dentry)) {
813 spin_lock(&inode->i_lock);
814 de = __d_find_alias(inode, 0);
815 spin_unlock(&inode->i_lock);
816 }
817 return de;
818 }
819 EXPORT_SYMBOL(d_find_alias);
820
821 /*
822 * Try to kill dentries associated with this inode.
823 * WARNING: you must own a reference to inode.
824 */
825 void d_prune_aliases(struct inode *inode)
826 {
827 struct dentry *dentry;
828 restart:
829 spin_lock(&inode->i_lock);
830 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
831 spin_lock(&dentry->d_lock);
832 if (!dentry->d_lockref.count) {
833 /*
834 * inform the fs via d_prune that this dentry
835 * is about to be unhashed and destroyed.
836 */
837 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
838 !d_unhashed(dentry))
839 dentry->d_op->d_prune(dentry);
840
841 __dget_dlock(dentry);
842 __d_drop(dentry);
843 spin_unlock(&dentry->d_lock);
844 spin_unlock(&inode->i_lock);
845 dput(dentry);
846 goto restart;
847 }
848 spin_unlock(&dentry->d_lock);
849 }
850 spin_unlock(&inode->i_lock);
851 }
852 EXPORT_SYMBOL(d_prune_aliases);
853
854 /*
855 * Try to throw away a dentry - free the inode, dput the parent.
856 * Requires dentry->d_lock is held, and dentry->d_count == 0.
857 * Releases dentry->d_lock.
858 *
859 * This may fail if locks cannot be acquired no problem, just try again.
860 */
861 static struct dentry * try_prune_one_dentry(struct dentry *dentry)
862 __releases(dentry->d_lock)
863 {
864 struct dentry *parent;
865
866 parent = dentry_kill(dentry, 0);
867 /*
868 * If dentry_kill returns NULL, we have nothing more to do.
869 * if it returns the same dentry, trylocks failed. In either
870 * case, just loop again.
871 *
872 * Otherwise, we need to prune ancestors too. This is necessary
873 * to prevent quadratic behavior of shrink_dcache_parent(), but
874 * is also expected to be beneficial in reducing dentry cache
875 * fragmentation.
876 */
877 if (!parent)
878 return NULL;
879 if (parent == dentry)
880 return dentry;
881
882 /* Prune ancestors. */
883 dentry = parent;
884 while (dentry) {
885 if (lockref_put_or_lock(&dentry->d_lockref))
886 return NULL;
887 dentry = dentry_kill(dentry, 1);
888 }
889 return NULL;
890 }
891
892 static void shrink_dentry_list(struct list_head *list)
893 {
894 struct dentry *dentry;
895
896 rcu_read_lock();
897 for (;;) {
898 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
899 if (&dentry->d_lru == list)
900 break; /* empty */
901
902 /*
903 * Get the dentry lock, and re-verify that the dentry is
904 * this on the shrinking list. If it is, we know that
905 * DCACHE_SHRINK_LIST and DCACHE_LRU_LIST are set.
906 */
907 spin_lock(&dentry->d_lock);
908 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
909 spin_unlock(&dentry->d_lock);
910 continue;
911 }
912
913 /*
914 * The dispose list is isolated and dentries are not accounted
915 * to the LRU here, so we can simply remove it from the list
916 * here regardless of whether it is referenced or not.
917 */
918 d_shrink_del(dentry);
919
920 /*
921 * We found an inuse dentry which was not removed from
922 * the LRU because of laziness during lookup. Do not free it.
923 */
924 if (dentry->d_lockref.count) {
925 spin_unlock(&dentry->d_lock);
926 continue;
927 }
928 rcu_read_unlock();
929
930 /*
931 * If 'try_to_prune()' returns a dentry, it will
932 * be the same one we passed in, and d_lock will
933 * have been held the whole time, so it will not
934 * have been added to any other lists. We failed
935 * to get the inode lock.
936 *
937 * We just add it back to the shrink list.
938 */
939 dentry = try_prune_one_dentry(dentry);
940
941 rcu_read_lock();
942 if (dentry) {
943 d_shrink_add(dentry, list);
944 spin_unlock(&dentry->d_lock);
945 }
946 }
947 rcu_read_unlock();
948 }
949
950 static enum lru_status
951 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
952 {
953 struct list_head *freeable = arg;
954 struct dentry *dentry = container_of(item, struct dentry, d_lru);
955
956
957 /*
958 * we are inverting the lru lock/dentry->d_lock here,
959 * so use a trylock. If we fail to get the lock, just skip
960 * it
961 */
962 if (!spin_trylock(&dentry->d_lock))
963 return LRU_SKIP;
964
965 /*
966 * Referenced dentries are still in use. If they have active
967 * counts, just remove them from the LRU. Otherwise give them
968 * another pass through the LRU.
969 */
970 if (dentry->d_lockref.count) {
971 d_lru_isolate(dentry);
972 spin_unlock(&dentry->d_lock);
973 return LRU_REMOVED;
974 }
975
976 if (dentry->d_flags & DCACHE_REFERENCED) {
977 dentry->d_flags &= ~DCACHE_REFERENCED;
978 spin_unlock(&dentry->d_lock);
979
980 /*
981 * The list move itself will be made by the common LRU code. At
982 * this point, we've dropped the dentry->d_lock but keep the
983 * lru lock. This is safe to do, since every list movement is
984 * protected by the lru lock even if both locks are held.
985 *
986 * This is guaranteed by the fact that all LRU management
987 * functions are intermediated by the LRU API calls like
988 * list_lru_add and list_lru_del. List movement in this file
989 * only ever occur through this functions or through callbacks
990 * like this one, that are called from the LRU API.
991 *
992 * The only exceptions to this are functions like
993 * shrink_dentry_list, and code that first checks for the
994 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
995 * operating only with stack provided lists after they are
996 * properly isolated from the main list. It is thus, always a
997 * local access.
998 */
999 return LRU_ROTATE;
1000 }
1001
1002 d_lru_shrink_move(dentry, freeable);
1003 spin_unlock(&dentry->d_lock);
1004
1005 return LRU_REMOVED;
1006 }
1007
1008 /**
1009 * prune_dcache_sb - shrink the dcache
1010 * @sb: superblock
1011 * @nr_to_scan : number of entries to try to free
1012 * @nid: which node to scan for freeable entities
1013 *
1014 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
1015 * done when we need more memory an called from the superblock shrinker
1016 * function.
1017 *
1018 * This function may fail to free any resources if all the dentries are in
1019 * use.
1020 */
1021 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
1022 int nid)
1023 {
1024 LIST_HEAD(dispose);
1025 long freed;
1026
1027 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
1028 &dispose, &nr_to_scan);
1029 shrink_dentry_list(&dispose);
1030 return freed;
1031 }
1032
1033 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1034 spinlock_t *lru_lock, void *arg)
1035 {
1036 struct list_head *freeable = arg;
1037 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1038
1039 /*
1040 * we are inverting the lru lock/dentry->d_lock here,
1041 * so use a trylock. If we fail to get the lock, just skip
1042 * it
1043 */
1044 if (!spin_trylock(&dentry->d_lock))
1045 return LRU_SKIP;
1046
1047 d_lru_shrink_move(dentry, freeable);
1048 spin_unlock(&dentry->d_lock);
1049
1050 return LRU_REMOVED;
1051 }
1052
1053
1054 /**
1055 * shrink_dcache_sb - shrink dcache for a superblock
1056 * @sb: superblock
1057 *
1058 * Shrink the dcache for the specified super block. This is used to free
1059 * the dcache before unmounting a file system.
1060 */
1061 void shrink_dcache_sb(struct super_block *sb)
1062 {
1063 long freed;
1064
1065 do {
1066 LIST_HEAD(dispose);
1067
1068 freed = list_lru_walk(&sb->s_dentry_lru,
1069 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1070
1071 this_cpu_sub(nr_dentry_unused, freed);
1072 shrink_dentry_list(&dispose);
1073 } while (freed > 0);
1074 }
1075 EXPORT_SYMBOL(shrink_dcache_sb);
1076
1077 /*
1078 * destroy a single subtree of dentries for unmount
1079 * - see the comments on shrink_dcache_for_umount() for a description of the
1080 * locking
1081 */
1082 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
1083 {
1084 struct dentry *parent;
1085
1086 BUG_ON(!IS_ROOT(dentry));
1087
1088 for (;;) {
1089 /* descend to the first leaf in the current subtree */
1090 while (!list_empty(&dentry->d_subdirs))
1091 dentry = list_entry(dentry->d_subdirs.next,
1092 struct dentry, d_u.d_child);
1093
1094 /* consume the dentries from this leaf up through its parents
1095 * until we find one with children or run out altogether */
1096 do {
1097 struct inode *inode;
1098
1099 /*
1100 * inform the fs that this dentry is about to be
1101 * unhashed and destroyed.
1102 */
1103 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
1104 !d_unhashed(dentry))
1105 dentry->d_op->d_prune(dentry);
1106
1107 dentry_lru_del(dentry);
1108 __d_shrink(dentry);
1109
1110 if (dentry->d_lockref.count != 0) {
1111 printk(KERN_ERR
1112 "BUG: Dentry %p{i=%lx,n=%s}"
1113 " still in use (%d)"
1114 " [unmount of %s %s]\n",
1115 dentry,
1116 dentry->d_inode ?
1117 dentry->d_inode->i_ino : 0UL,
1118 dentry->d_name.name,
1119 dentry->d_lockref.count,
1120 dentry->d_sb->s_type->name,
1121 dentry->d_sb->s_id);
1122 BUG();
1123 }
1124
1125 if (IS_ROOT(dentry)) {
1126 parent = NULL;
1127 list_del(&dentry->d_u.d_child);
1128 } else {
1129 parent = dentry->d_parent;
1130 parent->d_lockref.count--;
1131 list_del(&dentry->d_u.d_child);
1132 }
1133
1134 inode = dentry->d_inode;
1135 if (inode) {
1136 dentry->d_inode = NULL;
1137 hlist_del_init(&dentry->d_alias);
1138 if (dentry->d_op && dentry->d_op->d_iput)
1139 dentry->d_op->d_iput(dentry, inode);
1140 else
1141 iput(inode);
1142 }
1143
1144 d_free(dentry);
1145
1146 /* finished when we fall off the top of the tree,
1147 * otherwise we ascend to the parent and move to the
1148 * next sibling if there is one */
1149 if (!parent)
1150 return;
1151 dentry = parent;
1152 } while (list_empty(&dentry->d_subdirs));
1153
1154 dentry = list_entry(dentry->d_subdirs.next,
1155 struct dentry, d_u.d_child);
1156 }
1157 }
1158
1159 /*
1160 * destroy the dentries attached to a superblock on unmounting
1161 * - we don't need to use dentry->d_lock because:
1162 * - the superblock is detached from all mountings and open files, so the
1163 * dentry trees will not be rearranged by the VFS
1164 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1165 * any dentries belonging to this superblock that it comes across
1166 * - the filesystem itself is no longer permitted to rearrange the dentries
1167 * in this superblock
1168 */
1169 void shrink_dcache_for_umount(struct super_block *sb)
1170 {
1171 struct dentry *dentry;
1172
1173 if (down_read_trylock(&sb->s_umount))
1174 BUG();
1175
1176 dentry = sb->s_root;
1177 sb->s_root = NULL;
1178 dentry->d_lockref.count--;
1179 shrink_dcache_for_umount_subtree(dentry);
1180
1181 while (!hlist_bl_empty(&sb->s_anon)) {
1182 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1183 shrink_dcache_for_umount_subtree(dentry);
1184 }
1185 }
1186
1187 /*
1188 * This tries to ascend one level of parenthood, but
1189 * we can race with renaming, so we need to re-check
1190 * the parenthood after dropping the lock and check
1191 * that the sequence number still matches.
1192 */
1193 static struct dentry *try_to_ascend(struct dentry *old, unsigned seq)
1194 {
1195 struct dentry *new = old->d_parent;
1196
1197 rcu_read_lock();
1198 spin_unlock(&old->d_lock);
1199 spin_lock(&new->d_lock);
1200
1201 /*
1202 * might go back up the wrong parent if we have had a rename
1203 * or deletion
1204 */
1205 if (new != old->d_parent ||
1206 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1207 need_seqretry(&rename_lock, seq)) {
1208 spin_unlock(&new->d_lock);
1209 new = NULL;
1210 }
1211 rcu_read_unlock();
1212 return new;
1213 }
1214
1215 /**
1216 * enum d_walk_ret - action to talke during tree walk
1217 * @D_WALK_CONTINUE: contrinue walk
1218 * @D_WALK_QUIT: quit walk
1219 * @D_WALK_NORETRY: quit when retry is needed
1220 * @D_WALK_SKIP: skip this dentry and its children
1221 */
1222 enum d_walk_ret {
1223 D_WALK_CONTINUE,
1224 D_WALK_QUIT,
1225 D_WALK_NORETRY,
1226 D_WALK_SKIP,
1227 };
1228
1229 /**
1230 * d_walk - walk the dentry tree
1231 * @parent: start of walk
1232 * @data: data passed to @enter() and @finish()
1233 * @enter: callback when first entering the dentry
1234 * @finish: callback when successfully finished the walk
1235 *
1236 * The @enter() and @finish() callbacks are called with d_lock held.
1237 */
1238 static void d_walk(struct dentry *parent, void *data,
1239 enum d_walk_ret (*enter)(void *, struct dentry *),
1240 void (*finish)(void *))
1241 {
1242 struct dentry *this_parent;
1243 struct list_head *next;
1244 unsigned seq = 0;
1245 enum d_walk_ret ret;
1246 bool retry = true;
1247
1248 again:
1249 read_seqbegin_or_lock(&rename_lock, &seq);
1250 this_parent = parent;
1251 spin_lock(&this_parent->d_lock);
1252
1253 ret = enter(data, this_parent);
1254 switch (ret) {
1255 case D_WALK_CONTINUE:
1256 break;
1257 case D_WALK_QUIT:
1258 case D_WALK_SKIP:
1259 goto out_unlock;
1260 case D_WALK_NORETRY:
1261 retry = false;
1262 break;
1263 }
1264 repeat:
1265 next = this_parent->d_subdirs.next;
1266 resume:
1267 while (next != &this_parent->d_subdirs) {
1268 struct list_head *tmp = next;
1269 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1270 next = tmp->next;
1271
1272 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1273
1274 ret = enter(data, dentry);
1275 switch (ret) {
1276 case D_WALK_CONTINUE:
1277 break;
1278 case D_WALK_QUIT:
1279 spin_unlock(&dentry->d_lock);
1280 goto out_unlock;
1281 case D_WALK_NORETRY:
1282 retry = false;
1283 break;
1284 case D_WALK_SKIP:
1285 spin_unlock(&dentry->d_lock);
1286 continue;
1287 }
1288
1289 if (!list_empty(&dentry->d_subdirs)) {
1290 spin_unlock(&this_parent->d_lock);
1291 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1292 this_parent = dentry;
1293 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1294 goto repeat;
1295 }
1296 spin_unlock(&dentry->d_lock);
1297 }
1298 /*
1299 * All done at this level ... ascend and resume the search.
1300 */
1301 if (this_parent != parent) {
1302 struct dentry *child = this_parent;
1303 this_parent = try_to_ascend(this_parent, seq);
1304 if (!this_parent)
1305 goto rename_retry;
1306 next = child->d_u.d_child.next;
1307 goto resume;
1308 }
1309 if (need_seqretry(&rename_lock, seq)) {
1310 spin_unlock(&this_parent->d_lock);
1311 goto rename_retry;
1312 }
1313 if (finish)
1314 finish(data);
1315
1316 out_unlock:
1317 spin_unlock(&this_parent->d_lock);
1318 done_seqretry(&rename_lock, seq);
1319 return;
1320
1321 rename_retry:
1322 if (!retry)
1323 return;
1324 seq = 1;
1325 goto again;
1326 }
1327
1328 /*
1329 * Search for at least 1 mount point in the dentry's subdirs.
1330 * We descend to the next level whenever the d_subdirs
1331 * list is non-empty and continue searching.
1332 */
1333
1334 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1335 {
1336 int *ret = data;
1337 if (d_mountpoint(dentry)) {
1338 *ret = 1;
1339 return D_WALK_QUIT;
1340 }
1341 return D_WALK_CONTINUE;
1342 }
1343
1344 /**
1345 * have_submounts - check for mounts over a dentry
1346 * @parent: dentry to check.
1347 *
1348 * Return true if the parent or its subdirectories contain
1349 * a mount point
1350 */
1351 int have_submounts(struct dentry *parent)
1352 {
1353 int ret = 0;
1354
1355 d_walk(parent, &ret, check_mount, NULL);
1356
1357 return ret;
1358 }
1359 EXPORT_SYMBOL(have_submounts);
1360
1361 /*
1362 * Called by mount code to set a mountpoint and check if the mountpoint is
1363 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1364 * subtree can become unreachable).
1365 *
1366 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1367 * this reason take rename_lock and d_lock on dentry and ancestors.
1368 */
1369 int d_set_mounted(struct dentry *dentry)
1370 {
1371 struct dentry *p;
1372 int ret = -ENOENT;
1373 write_seqlock(&rename_lock);
1374 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1375 /* Need exclusion wrt. check_submounts_and_drop() */
1376 spin_lock(&p->d_lock);
1377 if (unlikely(d_unhashed(p))) {
1378 spin_unlock(&p->d_lock);
1379 goto out;
1380 }
1381 spin_unlock(&p->d_lock);
1382 }
1383 spin_lock(&dentry->d_lock);
1384 if (!d_unlinked(dentry)) {
1385 dentry->d_flags |= DCACHE_MOUNTED;
1386 ret = 0;
1387 }
1388 spin_unlock(&dentry->d_lock);
1389 out:
1390 write_sequnlock(&rename_lock);
1391 return ret;
1392 }
1393
1394 /*
1395 * Search the dentry child list of the specified parent,
1396 * and move any unused dentries to the end of the unused
1397 * list for prune_dcache(). We descend to the next level
1398 * whenever the d_subdirs list is non-empty and continue
1399 * searching.
1400 *
1401 * It returns zero iff there are no unused children,
1402 * otherwise it returns the number of children moved to
1403 * the end of the unused list. This may not be the total
1404 * number of unused children, because select_parent can
1405 * drop the lock and return early due to latency
1406 * constraints.
1407 */
1408
1409 struct select_data {
1410 struct dentry *start;
1411 struct list_head dispose;
1412 int found;
1413 };
1414
1415 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1416 {
1417 struct select_data *data = _data;
1418 enum d_walk_ret ret = D_WALK_CONTINUE;
1419
1420 if (data->start == dentry)
1421 goto out;
1422
1423 /*
1424 * move only zero ref count dentries to the dispose list.
1425 *
1426 * Those which are presently on the shrink list, being processed
1427 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1428 * loop in shrink_dcache_parent() might not make any progress
1429 * and loop forever.
1430 */
1431 if (dentry->d_lockref.count) {
1432 dentry_lru_del(dentry);
1433 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1434 /*
1435 * We can't use d_lru_shrink_move() because we
1436 * need to get the global LRU lock and do the
1437 * LRU accounting.
1438 */
1439 d_lru_del(dentry);
1440 d_shrink_add(dentry, &data->dispose);
1441 data->found++;
1442 ret = D_WALK_NORETRY;
1443 }
1444 /*
1445 * We can return to the caller if we have found some (this
1446 * ensures forward progress). We'll be coming back to find
1447 * the rest.
1448 */
1449 if (data->found && need_resched())
1450 ret = D_WALK_QUIT;
1451 out:
1452 return ret;
1453 }
1454
1455 /**
1456 * shrink_dcache_parent - prune dcache
1457 * @parent: parent of entries to prune
1458 *
1459 * Prune the dcache to remove unused children of the parent dentry.
1460 */
1461 void shrink_dcache_parent(struct dentry *parent)
1462 {
1463 for (;;) {
1464 struct select_data data;
1465
1466 INIT_LIST_HEAD(&data.dispose);
1467 data.start = parent;
1468 data.found = 0;
1469
1470 d_walk(parent, &data, select_collect, NULL);
1471 if (!data.found)
1472 break;
1473
1474 shrink_dentry_list(&data.dispose);
1475 cond_resched();
1476 }
1477 }
1478 EXPORT_SYMBOL(shrink_dcache_parent);
1479
1480 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1481 {
1482 struct select_data *data = _data;
1483
1484 if (d_mountpoint(dentry)) {
1485 data->found = -EBUSY;
1486 return D_WALK_QUIT;
1487 }
1488
1489 return select_collect(_data, dentry);
1490 }
1491
1492 static void check_and_drop(void *_data)
1493 {
1494 struct select_data *data = _data;
1495
1496 if (d_mountpoint(data->start))
1497 data->found = -EBUSY;
1498 if (!data->found)
1499 __d_drop(data->start);
1500 }
1501
1502 /**
1503 * check_submounts_and_drop - prune dcache, check for submounts and drop
1504 *
1505 * All done as a single atomic operation relative to has_unlinked_ancestor().
1506 * Returns 0 if successfully unhashed @parent. If there were submounts then
1507 * return -EBUSY.
1508 *
1509 * @dentry: dentry to prune and drop
1510 */
1511 int check_submounts_and_drop(struct dentry *dentry)
1512 {
1513 int ret = 0;
1514
1515 /* Negative dentries can be dropped without further checks */
1516 if (!dentry->d_inode) {
1517 d_drop(dentry);
1518 goto out;
1519 }
1520
1521 for (;;) {
1522 struct select_data data;
1523
1524 INIT_LIST_HEAD(&data.dispose);
1525 data.start = dentry;
1526 data.found = 0;
1527
1528 d_walk(dentry, &data, check_and_collect, check_and_drop);
1529 ret = data.found;
1530
1531 if (!list_empty(&data.dispose))
1532 shrink_dentry_list(&data.dispose);
1533
1534 if (ret <= 0)
1535 break;
1536
1537 cond_resched();
1538 }
1539
1540 out:
1541 return ret;
1542 }
1543 EXPORT_SYMBOL(check_submounts_and_drop);
1544
1545 /**
1546 * __d_alloc - allocate a dcache entry
1547 * @sb: filesystem it will belong to
1548 * @name: qstr of the name
1549 *
1550 * Allocates a dentry. It returns %NULL if there is insufficient memory
1551 * available. On a success the dentry is returned. The name passed in is
1552 * copied and the copy passed in may be reused after this call.
1553 */
1554
1555 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1556 {
1557 struct dentry *dentry;
1558 char *dname;
1559
1560 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1561 if (!dentry)
1562 return NULL;
1563
1564 /*
1565 * We guarantee that the inline name is always NUL-terminated.
1566 * This way the memcpy() done by the name switching in rename
1567 * will still always have a NUL at the end, even if we might
1568 * be overwriting an internal NUL character
1569 */
1570 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1571 if (name->len > DNAME_INLINE_LEN-1) {
1572 dname = kmalloc(name->len + 1, GFP_KERNEL);
1573 if (!dname) {
1574 kmem_cache_free(dentry_cache, dentry);
1575 return NULL;
1576 }
1577 } else {
1578 dname = dentry->d_iname;
1579 }
1580
1581 dentry->d_name.len = name->len;
1582 dentry->d_name.hash = name->hash;
1583 memcpy(dname, name->name, name->len);
1584 dname[name->len] = 0;
1585
1586 /* Make sure we always see the terminating NUL character */
1587 smp_wmb();
1588 dentry->d_name.name = dname;
1589
1590 dentry->d_lockref.count = 1;
1591 dentry->d_flags = 0;
1592 spin_lock_init(&dentry->d_lock);
1593 seqcount_init(&dentry->d_seq);
1594 dentry->d_inode = NULL;
1595 dentry->d_parent = dentry;
1596 dentry->d_sb = sb;
1597 dentry->d_op = NULL;
1598 dentry->d_fsdata = NULL;
1599 INIT_HLIST_BL_NODE(&dentry->d_hash);
1600 INIT_LIST_HEAD(&dentry->d_lru);
1601 INIT_LIST_HEAD(&dentry->d_subdirs);
1602 INIT_HLIST_NODE(&dentry->d_alias);
1603 INIT_LIST_HEAD(&dentry->d_u.d_child);
1604 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1605
1606 this_cpu_inc(nr_dentry);
1607
1608 return dentry;
1609 }
1610
1611 /**
1612 * d_alloc - allocate a dcache entry
1613 * @parent: parent of entry to allocate
1614 * @name: qstr of the name
1615 *
1616 * Allocates a dentry. It returns %NULL if there is insufficient memory
1617 * available. On a success the dentry is returned. The name passed in is
1618 * copied and the copy passed in may be reused after this call.
1619 */
1620 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1621 {
1622 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1623 if (!dentry)
1624 return NULL;
1625
1626 spin_lock(&parent->d_lock);
1627 /*
1628 * don't need child lock because it is not subject
1629 * to concurrency here
1630 */
1631 __dget_dlock(parent);
1632 dentry->d_parent = parent;
1633 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1634 spin_unlock(&parent->d_lock);
1635
1636 return dentry;
1637 }
1638 EXPORT_SYMBOL(d_alloc);
1639
1640 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1641 {
1642 struct dentry *dentry = __d_alloc(sb, name);
1643 if (dentry)
1644 dentry->d_flags |= DCACHE_DISCONNECTED;
1645 return dentry;
1646 }
1647 EXPORT_SYMBOL(d_alloc_pseudo);
1648
1649 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1650 {
1651 struct qstr q;
1652
1653 q.name = name;
1654 q.len = strlen(name);
1655 q.hash = full_name_hash(q.name, q.len);
1656 return d_alloc(parent, &q);
1657 }
1658 EXPORT_SYMBOL(d_alloc_name);
1659
1660 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1661 {
1662 WARN_ON_ONCE(dentry->d_op);
1663 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1664 DCACHE_OP_COMPARE |
1665 DCACHE_OP_REVALIDATE |
1666 DCACHE_OP_WEAK_REVALIDATE |
1667 DCACHE_OP_DELETE ));
1668 dentry->d_op = op;
1669 if (!op)
1670 return;
1671 if (op->d_hash)
1672 dentry->d_flags |= DCACHE_OP_HASH;
1673 if (op->d_compare)
1674 dentry->d_flags |= DCACHE_OP_COMPARE;
1675 if (op->d_revalidate)
1676 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1677 if (op->d_weak_revalidate)
1678 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1679 if (op->d_delete)
1680 dentry->d_flags |= DCACHE_OP_DELETE;
1681 if (op->d_prune)
1682 dentry->d_flags |= DCACHE_OP_PRUNE;
1683
1684 }
1685 EXPORT_SYMBOL(d_set_d_op);
1686
1687 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1688 {
1689 spin_lock(&dentry->d_lock);
1690 if (inode) {
1691 if (unlikely(IS_AUTOMOUNT(inode)))
1692 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1693 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1694 }
1695 dentry->d_inode = inode;
1696 dentry_rcuwalk_barrier(dentry);
1697 spin_unlock(&dentry->d_lock);
1698 fsnotify_d_instantiate(dentry, inode);
1699 }
1700
1701 /**
1702 * d_instantiate - fill in inode information for a dentry
1703 * @entry: dentry to complete
1704 * @inode: inode to attach to this dentry
1705 *
1706 * Fill in inode information in the entry.
1707 *
1708 * This turns negative dentries into productive full members
1709 * of society.
1710 *
1711 * NOTE! This assumes that the inode count has been incremented
1712 * (or otherwise set) by the caller to indicate that it is now
1713 * in use by the dcache.
1714 */
1715
1716 void d_instantiate(struct dentry *entry, struct inode * inode)
1717 {
1718 BUG_ON(!hlist_unhashed(&entry->d_alias));
1719 if (inode)
1720 spin_lock(&inode->i_lock);
1721 __d_instantiate(entry, inode);
1722 if (inode)
1723 spin_unlock(&inode->i_lock);
1724 security_d_instantiate(entry, inode);
1725 }
1726 EXPORT_SYMBOL(d_instantiate);
1727
1728 /**
1729 * d_instantiate_unique - instantiate a non-aliased dentry
1730 * @entry: dentry to instantiate
1731 * @inode: inode to attach to this dentry
1732 *
1733 * Fill in inode information in the entry. On success, it returns NULL.
1734 * If an unhashed alias of "entry" already exists, then we return the
1735 * aliased dentry instead and drop one reference to inode.
1736 *
1737 * Note that in order to avoid conflicts with rename() etc, the caller
1738 * had better be holding the parent directory semaphore.
1739 *
1740 * This also assumes that the inode count has been incremented
1741 * (or otherwise set) by the caller to indicate that it is now
1742 * in use by the dcache.
1743 */
1744 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1745 struct inode *inode)
1746 {
1747 struct dentry *alias;
1748 int len = entry->d_name.len;
1749 const char *name = entry->d_name.name;
1750 unsigned int hash = entry->d_name.hash;
1751
1752 if (!inode) {
1753 __d_instantiate(entry, NULL);
1754 return NULL;
1755 }
1756
1757 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1758 /*
1759 * Don't need alias->d_lock here, because aliases with
1760 * d_parent == entry->d_parent are not subject to name or
1761 * parent changes, because the parent inode i_mutex is held.
1762 */
1763 if (alias->d_name.hash != hash)
1764 continue;
1765 if (alias->d_parent != entry->d_parent)
1766 continue;
1767 if (alias->d_name.len != len)
1768 continue;
1769 if (dentry_cmp(alias, name, len))
1770 continue;
1771 __dget(alias);
1772 return alias;
1773 }
1774
1775 __d_instantiate(entry, inode);
1776 return NULL;
1777 }
1778
1779 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1780 {
1781 struct dentry *result;
1782
1783 BUG_ON(!hlist_unhashed(&entry->d_alias));
1784
1785 if (inode)
1786 spin_lock(&inode->i_lock);
1787 result = __d_instantiate_unique(entry, inode);
1788 if (inode)
1789 spin_unlock(&inode->i_lock);
1790
1791 if (!result) {
1792 security_d_instantiate(entry, inode);
1793 return NULL;
1794 }
1795
1796 BUG_ON(!d_unhashed(result));
1797 iput(inode);
1798 return result;
1799 }
1800
1801 EXPORT_SYMBOL(d_instantiate_unique);
1802
1803 struct dentry *d_make_root(struct inode *root_inode)
1804 {
1805 struct dentry *res = NULL;
1806
1807 if (root_inode) {
1808 static const struct qstr name = QSTR_INIT("/", 1);
1809
1810 res = __d_alloc(root_inode->i_sb, &name);
1811 if (res)
1812 d_instantiate(res, root_inode);
1813 else
1814 iput(root_inode);
1815 }
1816 return res;
1817 }
1818 EXPORT_SYMBOL(d_make_root);
1819
1820 static struct dentry * __d_find_any_alias(struct inode *inode)
1821 {
1822 struct dentry *alias;
1823
1824 if (hlist_empty(&inode->i_dentry))
1825 return NULL;
1826 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1827 __dget(alias);
1828 return alias;
1829 }
1830
1831 /**
1832 * d_find_any_alias - find any alias for a given inode
1833 * @inode: inode to find an alias for
1834 *
1835 * If any aliases exist for the given inode, take and return a
1836 * reference for one of them. If no aliases exist, return %NULL.
1837 */
1838 struct dentry *d_find_any_alias(struct inode *inode)
1839 {
1840 struct dentry *de;
1841
1842 spin_lock(&inode->i_lock);
1843 de = __d_find_any_alias(inode);
1844 spin_unlock(&inode->i_lock);
1845 return de;
1846 }
1847 EXPORT_SYMBOL(d_find_any_alias);
1848
1849 /**
1850 * d_obtain_alias - find or allocate a dentry for a given inode
1851 * @inode: inode to allocate the dentry for
1852 *
1853 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1854 * similar open by handle operations. The returned dentry may be anonymous,
1855 * or may have a full name (if the inode was already in the cache).
1856 *
1857 * When called on a directory inode, we must ensure that the inode only ever
1858 * has one dentry. If a dentry is found, that is returned instead of
1859 * allocating a new one.
1860 *
1861 * On successful return, the reference to the inode has been transferred
1862 * to the dentry. In case of an error the reference on the inode is released.
1863 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1864 * be passed in and will be the error will be propagate to the return value,
1865 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1866 */
1867 struct dentry *d_obtain_alias(struct inode *inode)
1868 {
1869 static const struct qstr anonstring = QSTR_INIT("/", 1);
1870 struct dentry *tmp;
1871 struct dentry *res;
1872
1873 if (!inode)
1874 return ERR_PTR(-ESTALE);
1875 if (IS_ERR(inode))
1876 return ERR_CAST(inode);
1877
1878 res = d_find_any_alias(inode);
1879 if (res)
1880 goto out_iput;
1881
1882 tmp = __d_alloc(inode->i_sb, &anonstring);
1883 if (!tmp) {
1884 res = ERR_PTR(-ENOMEM);
1885 goto out_iput;
1886 }
1887
1888 spin_lock(&inode->i_lock);
1889 res = __d_find_any_alias(inode);
1890 if (res) {
1891 spin_unlock(&inode->i_lock);
1892 dput(tmp);
1893 goto out_iput;
1894 }
1895
1896 /* attach a disconnected dentry */
1897 spin_lock(&tmp->d_lock);
1898 tmp->d_inode = inode;
1899 tmp->d_flags |= DCACHE_DISCONNECTED;
1900 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1901 hlist_bl_lock(&tmp->d_sb->s_anon);
1902 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1903 hlist_bl_unlock(&tmp->d_sb->s_anon);
1904 spin_unlock(&tmp->d_lock);
1905 spin_unlock(&inode->i_lock);
1906 security_d_instantiate(tmp, inode);
1907
1908 return tmp;
1909
1910 out_iput:
1911 if (res && !IS_ERR(res))
1912 security_d_instantiate(res, inode);
1913 iput(inode);
1914 return res;
1915 }
1916 EXPORT_SYMBOL(d_obtain_alias);
1917
1918 /**
1919 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1920 * @inode: the inode which may have a disconnected dentry
1921 * @dentry: a negative dentry which we want to point to the inode.
1922 *
1923 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1924 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1925 * and return it, else simply d_add the inode to the dentry and return NULL.
1926 *
1927 * This is needed in the lookup routine of any filesystem that is exportable
1928 * (via knfsd) so that we can build dcache paths to directories effectively.
1929 *
1930 * If a dentry was found and moved, then it is returned. Otherwise NULL
1931 * is returned. This matches the expected return value of ->lookup.
1932 *
1933 * Cluster filesystems may call this function with a negative, hashed dentry.
1934 * In that case, we know that the inode will be a regular file, and also this
1935 * will only occur during atomic_open. So we need to check for the dentry
1936 * being already hashed only in the final case.
1937 */
1938 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1939 {
1940 struct dentry *new = NULL;
1941
1942 if (IS_ERR(inode))
1943 return ERR_CAST(inode);
1944
1945 if (inode && S_ISDIR(inode->i_mode)) {
1946 spin_lock(&inode->i_lock);
1947 new = __d_find_alias(inode, 1);
1948 if (new) {
1949 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1950 spin_unlock(&inode->i_lock);
1951 security_d_instantiate(new, inode);
1952 d_move(new, dentry);
1953 iput(inode);
1954 } else {
1955 /* already taking inode->i_lock, so d_add() by hand */
1956 __d_instantiate(dentry, inode);
1957 spin_unlock(&inode->i_lock);
1958 security_d_instantiate(dentry, inode);
1959 d_rehash(dentry);
1960 }
1961 } else {
1962 d_instantiate(dentry, inode);
1963 if (d_unhashed(dentry))
1964 d_rehash(dentry);
1965 }
1966 return new;
1967 }
1968 EXPORT_SYMBOL(d_splice_alias);
1969
1970 /**
1971 * d_add_ci - lookup or allocate new dentry with case-exact name
1972 * @inode: the inode case-insensitive lookup has found
1973 * @dentry: the negative dentry that was passed to the parent's lookup func
1974 * @name: the case-exact name to be associated with the returned dentry
1975 *
1976 * This is to avoid filling the dcache with case-insensitive names to the
1977 * same inode, only the actual correct case is stored in the dcache for
1978 * case-insensitive filesystems.
1979 *
1980 * For a case-insensitive lookup match and if the the case-exact dentry
1981 * already exists in in the dcache, use it and return it.
1982 *
1983 * If no entry exists with the exact case name, allocate new dentry with
1984 * the exact case, and return the spliced entry.
1985 */
1986 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1987 struct qstr *name)
1988 {
1989 struct dentry *found;
1990 struct dentry *new;
1991
1992 /*
1993 * First check if a dentry matching the name already exists,
1994 * if not go ahead and create it now.
1995 */
1996 found = d_hash_and_lookup(dentry->d_parent, name);
1997 if (unlikely(IS_ERR(found)))
1998 goto err_out;
1999 if (!found) {
2000 new = d_alloc(dentry->d_parent, name);
2001 if (!new) {
2002 found = ERR_PTR(-ENOMEM);
2003 goto err_out;
2004 }
2005
2006 found = d_splice_alias(inode, new);
2007 if (found) {
2008 dput(new);
2009 return found;
2010 }
2011 return new;
2012 }
2013
2014 /*
2015 * If a matching dentry exists, and it's not negative use it.
2016 *
2017 * Decrement the reference count to balance the iget() done
2018 * earlier on.
2019 */
2020 if (found->d_inode) {
2021 if (unlikely(found->d_inode != inode)) {
2022 /* This can't happen because bad inodes are unhashed. */
2023 BUG_ON(!is_bad_inode(inode));
2024 BUG_ON(!is_bad_inode(found->d_inode));
2025 }
2026 iput(inode);
2027 return found;
2028 }
2029
2030 /*
2031 * Negative dentry: instantiate it unless the inode is a directory and
2032 * already has a dentry.
2033 */
2034 new = d_splice_alias(inode, found);
2035 if (new) {
2036 dput(found);
2037 found = new;
2038 }
2039 return found;
2040
2041 err_out:
2042 iput(inode);
2043 return found;
2044 }
2045 EXPORT_SYMBOL(d_add_ci);
2046
2047 /*
2048 * Do the slow-case of the dentry name compare.
2049 *
2050 * Unlike the dentry_cmp() function, we need to atomically
2051 * load the name and length information, so that the
2052 * filesystem can rely on them, and can use the 'name' and
2053 * 'len' information without worrying about walking off the
2054 * end of memory etc.
2055 *
2056 * Thus the read_seqcount_retry() and the "duplicate" info
2057 * in arguments (the low-level filesystem should not look
2058 * at the dentry inode or name contents directly, since
2059 * rename can change them while we're in RCU mode).
2060 */
2061 enum slow_d_compare {
2062 D_COMP_OK,
2063 D_COMP_NOMATCH,
2064 D_COMP_SEQRETRY,
2065 };
2066
2067 static noinline enum slow_d_compare slow_dentry_cmp(
2068 const struct dentry *parent,
2069 struct dentry *dentry,
2070 unsigned int seq,
2071 const struct qstr *name)
2072 {
2073 int tlen = dentry->d_name.len;
2074 const char *tname = dentry->d_name.name;
2075
2076 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2077 cpu_relax();
2078 return D_COMP_SEQRETRY;
2079 }
2080 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2081 return D_COMP_NOMATCH;
2082 return D_COMP_OK;
2083 }
2084
2085 /**
2086 * __d_lookup_rcu - search for a dentry (racy, store-free)
2087 * @parent: parent dentry
2088 * @name: qstr of name we wish to find
2089 * @seqp: returns d_seq value at the point where the dentry was found
2090 * Returns: dentry, or NULL
2091 *
2092 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2093 * resolution (store-free path walking) design described in
2094 * Documentation/filesystems/path-lookup.txt.
2095 *
2096 * This is not to be used outside core vfs.
2097 *
2098 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2099 * held, and rcu_read_lock held. The returned dentry must not be stored into
2100 * without taking d_lock and checking d_seq sequence count against @seq
2101 * returned here.
2102 *
2103 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2104 * function.
2105 *
2106 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2107 * the returned dentry, so long as its parent's seqlock is checked after the
2108 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2109 * is formed, giving integrity down the path walk.
2110 *
2111 * NOTE! The caller *has* to check the resulting dentry against the sequence
2112 * number we've returned before using any of the resulting dentry state!
2113 */
2114 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2115 const struct qstr *name,
2116 unsigned *seqp)
2117 {
2118 u64 hashlen = name->hash_len;
2119 const unsigned char *str = name->name;
2120 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2121 struct hlist_bl_node *node;
2122 struct dentry *dentry;
2123
2124 /*
2125 * Note: There is significant duplication with __d_lookup_rcu which is
2126 * required to prevent single threaded performance regressions
2127 * especially on architectures where smp_rmb (in seqcounts) are costly.
2128 * Keep the two functions in sync.
2129 */
2130
2131 /*
2132 * The hash list is protected using RCU.
2133 *
2134 * Carefully use d_seq when comparing a candidate dentry, to avoid
2135 * races with d_move().
2136 *
2137 * It is possible that concurrent renames can mess up our list
2138 * walk here and result in missing our dentry, resulting in the
2139 * false-negative result. d_lookup() protects against concurrent
2140 * renames using rename_lock seqlock.
2141 *
2142 * See Documentation/filesystems/path-lookup.txt for more details.
2143 */
2144 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2145 unsigned seq;
2146
2147 seqretry:
2148 /*
2149 * The dentry sequence count protects us from concurrent
2150 * renames, and thus protects parent and name fields.
2151 *
2152 * The caller must perform a seqcount check in order
2153 * to do anything useful with the returned dentry.
2154 *
2155 * NOTE! We do a "raw" seqcount_begin here. That means that
2156 * we don't wait for the sequence count to stabilize if it
2157 * is in the middle of a sequence change. If we do the slow
2158 * dentry compare, we will do seqretries until it is stable,
2159 * and if we end up with a successful lookup, we actually
2160 * want to exit RCU lookup anyway.
2161 */
2162 seq = raw_seqcount_begin(&dentry->d_seq);
2163 if (dentry->d_parent != parent)
2164 continue;
2165 if (d_unhashed(dentry))
2166 continue;
2167
2168 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2169 if (dentry->d_name.hash != hashlen_hash(hashlen))
2170 continue;
2171 *seqp = seq;
2172 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2173 case D_COMP_OK:
2174 return dentry;
2175 case D_COMP_NOMATCH:
2176 continue;
2177 default:
2178 goto seqretry;
2179 }
2180 }
2181
2182 if (dentry->d_name.hash_len != hashlen)
2183 continue;
2184 *seqp = seq;
2185 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2186 return dentry;
2187 }
2188 return NULL;
2189 }
2190
2191 /**
2192 * d_lookup - search for a dentry
2193 * @parent: parent dentry
2194 * @name: qstr of name we wish to find
2195 * Returns: dentry, or NULL
2196 *
2197 * d_lookup searches the children of the parent dentry for the name in
2198 * question. If the dentry is found its reference count is incremented and the
2199 * dentry is returned. The caller must use dput to free the entry when it has
2200 * finished using it. %NULL is returned if the dentry does not exist.
2201 */
2202 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2203 {
2204 struct dentry *dentry;
2205 unsigned seq;
2206
2207 do {
2208 seq = read_seqbegin(&rename_lock);
2209 dentry = __d_lookup(parent, name);
2210 if (dentry)
2211 break;
2212 } while (read_seqretry(&rename_lock, seq));
2213 return dentry;
2214 }
2215 EXPORT_SYMBOL(d_lookup);
2216
2217 /**
2218 * __d_lookup - search for a dentry (racy)
2219 * @parent: parent dentry
2220 * @name: qstr of name we wish to find
2221 * Returns: dentry, or NULL
2222 *
2223 * __d_lookup is like d_lookup, however it may (rarely) return a
2224 * false-negative result due to unrelated rename activity.
2225 *
2226 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2227 * however it must be used carefully, eg. with a following d_lookup in
2228 * the case of failure.
2229 *
2230 * __d_lookup callers must be commented.
2231 */
2232 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2233 {
2234 unsigned int len = name->len;
2235 unsigned int hash = name->hash;
2236 const unsigned char *str = name->name;
2237 struct hlist_bl_head *b = d_hash(parent, hash);
2238 struct hlist_bl_node *node;
2239 struct dentry *found = NULL;
2240 struct dentry *dentry;
2241
2242 /*
2243 * Note: There is significant duplication with __d_lookup_rcu which is
2244 * required to prevent single threaded performance regressions
2245 * especially on architectures where smp_rmb (in seqcounts) are costly.
2246 * Keep the two functions in sync.
2247 */
2248
2249 /*
2250 * The hash list is protected using RCU.
2251 *
2252 * Take d_lock when comparing a candidate dentry, to avoid races
2253 * with d_move().
2254 *
2255 * It is possible that concurrent renames can mess up our list
2256 * walk here and result in missing our dentry, resulting in the
2257 * false-negative result. d_lookup() protects against concurrent
2258 * renames using rename_lock seqlock.
2259 *
2260 * See Documentation/filesystems/path-lookup.txt for more details.
2261 */
2262 rcu_read_lock();
2263
2264 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2265
2266 if (dentry->d_name.hash != hash)
2267 continue;
2268
2269 spin_lock(&dentry->d_lock);
2270 if (dentry->d_parent != parent)
2271 goto next;
2272 if (d_unhashed(dentry))
2273 goto next;
2274
2275 /*
2276 * It is safe to compare names since d_move() cannot
2277 * change the qstr (protected by d_lock).
2278 */
2279 if (parent->d_flags & DCACHE_OP_COMPARE) {
2280 int tlen = dentry->d_name.len;
2281 const char *tname = dentry->d_name.name;
2282 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2283 goto next;
2284 } else {
2285 if (dentry->d_name.len != len)
2286 goto next;
2287 if (dentry_cmp(dentry, str, len))
2288 goto next;
2289 }
2290
2291 dentry->d_lockref.count++;
2292 found = dentry;
2293 spin_unlock(&dentry->d_lock);
2294 break;
2295 next:
2296 spin_unlock(&dentry->d_lock);
2297 }
2298 rcu_read_unlock();
2299
2300 return found;
2301 }
2302
2303 /**
2304 * d_hash_and_lookup - hash the qstr then search for a dentry
2305 * @dir: Directory to search in
2306 * @name: qstr of name we wish to find
2307 *
2308 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2309 */
2310 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2311 {
2312 /*
2313 * Check for a fs-specific hash function. Note that we must
2314 * calculate the standard hash first, as the d_op->d_hash()
2315 * routine may choose to leave the hash value unchanged.
2316 */
2317 name->hash = full_name_hash(name->name, name->len);
2318 if (dir->d_flags & DCACHE_OP_HASH) {
2319 int err = dir->d_op->d_hash(dir, name);
2320 if (unlikely(err < 0))
2321 return ERR_PTR(err);
2322 }
2323 return d_lookup(dir, name);
2324 }
2325 EXPORT_SYMBOL(d_hash_and_lookup);
2326
2327 /**
2328 * d_validate - verify dentry provided from insecure source (deprecated)
2329 * @dentry: The dentry alleged to be valid child of @dparent
2330 * @dparent: The parent dentry (known to be valid)
2331 *
2332 * An insecure source has sent us a dentry, here we verify it and dget() it.
2333 * This is used by ncpfs in its readdir implementation.
2334 * Zero is returned in the dentry is invalid.
2335 *
2336 * This function is slow for big directories, and deprecated, do not use it.
2337 */
2338 int d_validate(struct dentry *dentry, struct dentry *dparent)
2339 {
2340 struct dentry *child;
2341
2342 spin_lock(&dparent->d_lock);
2343 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2344 if (dentry == child) {
2345 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2346 __dget_dlock(dentry);
2347 spin_unlock(&dentry->d_lock);
2348 spin_unlock(&dparent->d_lock);
2349 return 1;
2350 }
2351 }
2352 spin_unlock(&dparent->d_lock);
2353
2354 return 0;
2355 }
2356 EXPORT_SYMBOL(d_validate);
2357
2358 /*
2359 * When a file is deleted, we have two options:
2360 * - turn this dentry into a negative dentry
2361 * - unhash this dentry and free it.
2362 *
2363 * Usually, we want to just turn this into
2364 * a negative dentry, but if anybody else is
2365 * currently using the dentry or the inode
2366 * we can't do that and we fall back on removing
2367 * it from the hash queues and waiting for
2368 * it to be deleted later when it has no users
2369 */
2370
2371 /**
2372 * d_delete - delete a dentry
2373 * @dentry: The dentry to delete
2374 *
2375 * Turn the dentry into a negative dentry if possible, otherwise
2376 * remove it from the hash queues so it can be deleted later
2377 */
2378
2379 void d_delete(struct dentry * dentry)
2380 {
2381 struct inode *inode;
2382 int isdir = 0;
2383 /*
2384 * Are we the only user?
2385 */
2386 again:
2387 spin_lock(&dentry->d_lock);
2388 inode = dentry->d_inode;
2389 isdir = S_ISDIR(inode->i_mode);
2390 if (dentry->d_lockref.count == 1) {
2391 if (!spin_trylock(&inode->i_lock)) {
2392 spin_unlock(&dentry->d_lock);
2393 cpu_relax();
2394 goto again;
2395 }
2396 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2397 dentry_unlink_inode(dentry);
2398 fsnotify_nameremove(dentry, isdir);
2399 return;
2400 }
2401
2402 if (!d_unhashed(dentry))
2403 __d_drop(dentry);
2404
2405 spin_unlock(&dentry->d_lock);
2406
2407 fsnotify_nameremove(dentry, isdir);
2408 }
2409 EXPORT_SYMBOL(d_delete);
2410
2411 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2412 {
2413 BUG_ON(!d_unhashed(entry));
2414 hlist_bl_lock(b);
2415 entry->d_flags |= DCACHE_RCUACCESS;
2416 hlist_bl_add_head_rcu(&entry->d_hash, b);
2417 hlist_bl_unlock(b);
2418 }
2419
2420 static void _d_rehash(struct dentry * entry)
2421 {
2422 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2423 }
2424
2425 /**
2426 * d_rehash - add an entry back to the hash
2427 * @entry: dentry to add to the hash
2428 *
2429 * Adds a dentry to the hash according to its name.
2430 */
2431
2432 void d_rehash(struct dentry * entry)
2433 {
2434 spin_lock(&entry->d_lock);
2435 _d_rehash(entry);
2436 spin_unlock(&entry->d_lock);
2437 }
2438 EXPORT_SYMBOL(d_rehash);
2439
2440 /**
2441 * dentry_update_name_case - update case insensitive dentry with a new name
2442 * @dentry: dentry to be updated
2443 * @name: new name
2444 *
2445 * Update a case insensitive dentry with new case of name.
2446 *
2447 * dentry must have been returned by d_lookup with name @name. Old and new
2448 * name lengths must match (ie. no d_compare which allows mismatched name
2449 * lengths).
2450 *
2451 * Parent inode i_mutex must be held over d_lookup and into this call (to
2452 * keep renames and concurrent inserts, and readdir(2) away).
2453 */
2454 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2455 {
2456 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2457 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2458
2459 spin_lock(&dentry->d_lock);
2460 write_seqcount_begin(&dentry->d_seq);
2461 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2462 write_seqcount_end(&dentry->d_seq);
2463 spin_unlock(&dentry->d_lock);
2464 }
2465 EXPORT_SYMBOL(dentry_update_name_case);
2466
2467 static void switch_names(struct dentry *dentry, struct dentry *target)
2468 {
2469 if (dname_external(target)) {
2470 if (dname_external(dentry)) {
2471 /*
2472 * Both external: swap the pointers
2473 */
2474 swap(target->d_name.name, dentry->d_name.name);
2475 } else {
2476 /*
2477 * dentry:internal, target:external. Steal target's
2478 * storage and make target internal.
2479 */
2480 memcpy(target->d_iname, dentry->d_name.name,
2481 dentry->d_name.len + 1);
2482 dentry->d_name.name = target->d_name.name;
2483 target->d_name.name = target->d_iname;
2484 }
2485 } else {
2486 if (dname_external(dentry)) {
2487 /*
2488 * dentry:external, target:internal. Give dentry's
2489 * storage to target and make dentry internal
2490 */
2491 memcpy(dentry->d_iname, target->d_name.name,
2492 target->d_name.len + 1);
2493 target->d_name.name = dentry->d_name.name;
2494 dentry->d_name.name = dentry->d_iname;
2495 } else {
2496 /*
2497 * Both are internal. Just copy target to dentry
2498 */
2499 memcpy(dentry->d_iname, target->d_name.name,
2500 target->d_name.len + 1);
2501 dentry->d_name.len = target->d_name.len;
2502 return;
2503 }
2504 }
2505 swap(dentry->d_name.len, target->d_name.len);
2506 }
2507
2508 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2509 {
2510 /*
2511 * XXXX: do we really need to take target->d_lock?
2512 */
2513 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2514 spin_lock(&target->d_parent->d_lock);
2515 else {
2516 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2517 spin_lock(&dentry->d_parent->d_lock);
2518 spin_lock_nested(&target->d_parent->d_lock,
2519 DENTRY_D_LOCK_NESTED);
2520 } else {
2521 spin_lock(&target->d_parent->d_lock);
2522 spin_lock_nested(&dentry->d_parent->d_lock,
2523 DENTRY_D_LOCK_NESTED);
2524 }
2525 }
2526 if (target < dentry) {
2527 spin_lock_nested(&target->d_lock, 2);
2528 spin_lock_nested(&dentry->d_lock, 3);
2529 } else {
2530 spin_lock_nested(&dentry->d_lock, 2);
2531 spin_lock_nested(&target->d_lock, 3);
2532 }
2533 }
2534
2535 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2536 struct dentry *target)
2537 {
2538 if (target->d_parent != dentry->d_parent)
2539 spin_unlock(&dentry->d_parent->d_lock);
2540 if (target->d_parent != target)
2541 spin_unlock(&target->d_parent->d_lock);
2542 }
2543
2544 /*
2545 * When switching names, the actual string doesn't strictly have to
2546 * be preserved in the target - because we're dropping the target
2547 * anyway. As such, we can just do a simple memcpy() to copy over
2548 * the new name before we switch.
2549 *
2550 * Note that we have to be a lot more careful about getting the hash
2551 * switched - we have to switch the hash value properly even if it
2552 * then no longer matches the actual (corrupted) string of the target.
2553 * The hash value has to match the hash queue that the dentry is on..
2554 */
2555 /*
2556 * __d_move - move a dentry
2557 * @dentry: entry to move
2558 * @target: new dentry
2559 *
2560 * Update the dcache to reflect the move of a file name. Negative
2561 * dcache entries should not be moved in this way. Caller must hold
2562 * rename_lock, the i_mutex of the source and target directories,
2563 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2564 */
2565 static void __d_move(struct dentry * dentry, struct dentry * target)
2566 {
2567 if (!dentry->d_inode)
2568 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2569
2570 BUG_ON(d_ancestor(dentry, target));
2571 BUG_ON(d_ancestor(target, dentry));
2572
2573 dentry_lock_for_move(dentry, target);
2574
2575 write_seqcount_begin(&dentry->d_seq);
2576 write_seqcount_begin(&target->d_seq);
2577
2578 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2579
2580 /*
2581 * Move the dentry to the target hash queue. Don't bother checking
2582 * for the same hash queue because of how unlikely it is.
2583 */
2584 __d_drop(dentry);
2585 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2586
2587 /* Unhash the target: dput() will then get rid of it */
2588 __d_drop(target);
2589
2590 list_del(&dentry->d_u.d_child);
2591 list_del(&target->d_u.d_child);
2592
2593 /* Switch the names.. */
2594 switch_names(dentry, target);
2595 swap(dentry->d_name.hash, target->d_name.hash);
2596
2597 /* ... and switch the parents */
2598 if (IS_ROOT(dentry)) {
2599 dentry->d_parent = target->d_parent;
2600 target->d_parent = target;
2601 INIT_LIST_HEAD(&target->d_u.d_child);
2602 } else {
2603 swap(dentry->d_parent, target->d_parent);
2604
2605 /* And add them back to the (new) parent lists */
2606 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2607 }
2608
2609 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2610
2611 write_seqcount_end(&target->d_seq);
2612 write_seqcount_end(&dentry->d_seq);
2613
2614 dentry_unlock_parents_for_move(dentry, target);
2615 spin_unlock(&target->d_lock);
2616 fsnotify_d_move(dentry);
2617 spin_unlock(&dentry->d_lock);
2618 }
2619
2620 /*
2621 * d_move - move a dentry
2622 * @dentry: entry to move
2623 * @target: new dentry
2624 *
2625 * Update the dcache to reflect the move of a file name. Negative
2626 * dcache entries should not be moved in this way. See the locking
2627 * requirements for __d_move.
2628 */
2629 void d_move(struct dentry *dentry, struct dentry *target)
2630 {
2631 write_seqlock(&rename_lock);
2632 __d_move(dentry, target);
2633 write_sequnlock(&rename_lock);
2634 }
2635 EXPORT_SYMBOL(d_move);
2636
2637 /**
2638 * d_ancestor - search for an ancestor
2639 * @p1: ancestor dentry
2640 * @p2: child dentry
2641 *
2642 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2643 * an ancestor of p2, else NULL.
2644 */
2645 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2646 {
2647 struct dentry *p;
2648
2649 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2650 if (p->d_parent == p1)
2651 return p;
2652 }
2653 return NULL;
2654 }
2655
2656 /*
2657 * This helper attempts to cope with remotely renamed directories
2658 *
2659 * It assumes that the caller is already holding
2660 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2661 *
2662 * Note: If ever the locking in lock_rename() changes, then please
2663 * remember to update this too...
2664 */
2665 static struct dentry *__d_unalias(struct inode *inode,
2666 struct dentry *dentry, struct dentry *alias)
2667 {
2668 struct mutex *m1 = NULL, *m2 = NULL;
2669 struct dentry *ret = ERR_PTR(-EBUSY);
2670
2671 /* If alias and dentry share a parent, then no extra locks required */
2672 if (alias->d_parent == dentry->d_parent)
2673 goto out_unalias;
2674
2675 /* See lock_rename() */
2676 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2677 goto out_err;
2678 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2679 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2680 goto out_err;
2681 m2 = &alias->d_parent->d_inode->i_mutex;
2682 out_unalias:
2683 if (likely(!d_mountpoint(alias))) {
2684 __d_move(alias, dentry);
2685 ret = alias;
2686 }
2687 out_err:
2688 spin_unlock(&inode->i_lock);
2689 if (m2)
2690 mutex_unlock(m2);
2691 if (m1)
2692 mutex_unlock(m1);
2693 return ret;
2694 }
2695
2696 /*
2697 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2698 * named dentry in place of the dentry to be replaced.
2699 * returns with anon->d_lock held!
2700 */
2701 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2702 {
2703 struct dentry *dparent;
2704
2705 dentry_lock_for_move(anon, dentry);
2706
2707 write_seqcount_begin(&dentry->d_seq);
2708 write_seqcount_begin(&anon->d_seq);
2709
2710 dparent = dentry->d_parent;
2711
2712 switch_names(dentry, anon);
2713 swap(dentry->d_name.hash, anon->d_name.hash);
2714
2715 dentry->d_parent = dentry;
2716 list_del_init(&dentry->d_u.d_child);
2717 anon->d_parent = dparent;
2718 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2719
2720 write_seqcount_end(&dentry->d_seq);
2721 write_seqcount_end(&anon->d_seq);
2722
2723 dentry_unlock_parents_for_move(anon, dentry);
2724 spin_unlock(&dentry->d_lock);
2725
2726 /* anon->d_lock still locked, returns locked */
2727 anon->d_flags &= ~DCACHE_DISCONNECTED;
2728 }
2729
2730 /**
2731 * d_materialise_unique - introduce an inode into the tree
2732 * @dentry: candidate dentry
2733 * @inode: inode to bind to the dentry, to which aliases may be attached
2734 *
2735 * Introduces an dentry into the tree, substituting an extant disconnected
2736 * root directory alias in its place if there is one. Caller must hold the
2737 * i_mutex of the parent directory.
2738 */
2739 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2740 {
2741 struct dentry *actual;
2742
2743 BUG_ON(!d_unhashed(dentry));
2744
2745 if (!inode) {
2746 actual = dentry;
2747 __d_instantiate(dentry, NULL);
2748 d_rehash(actual);
2749 goto out_nolock;
2750 }
2751
2752 spin_lock(&inode->i_lock);
2753
2754 if (S_ISDIR(inode->i_mode)) {
2755 struct dentry *alias;
2756
2757 /* Does an aliased dentry already exist? */
2758 alias = __d_find_alias(inode, 0);
2759 if (alias) {
2760 actual = alias;
2761 write_seqlock(&rename_lock);
2762
2763 if (d_ancestor(alias, dentry)) {
2764 /* Check for loops */
2765 actual = ERR_PTR(-ELOOP);
2766 spin_unlock(&inode->i_lock);
2767 } else if (IS_ROOT(alias)) {
2768 /* Is this an anonymous mountpoint that we
2769 * could splice into our tree? */
2770 __d_materialise_dentry(dentry, alias);
2771 write_sequnlock(&rename_lock);
2772 __d_drop(alias);
2773 goto found;
2774 } else {
2775 /* Nope, but we must(!) avoid directory
2776 * aliasing. This drops inode->i_lock */
2777 actual = __d_unalias(inode, dentry, alias);
2778 }
2779 write_sequnlock(&rename_lock);
2780 if (IS_ERR(actual)) {
2781 if (PTR_ERR(actual) == -ELOOP)
2782 pr_warn_ratelimited(
2783 "VFS: Lookup of '%s' in %s %s"
2784 " would have caused loop\n",
2785 dentry->d_name.name,
2786 inode->i_sb->s_type->name,
2787 inode->i_sb->s_id);
2788 dput(alias);
2789 }
2790 goto out_nolock;
2791 }
2792 }
2793
2794 /* Add a unique reference */
2795 actual = __d_instantiate_unique(dentry, inode);
2796 if (!actual)
2797 actual = dentry;
2798 else
2799 BUG_ON(!d_unhashed(actual));
2800
2801 spin_lock(&actual->d_lock);
2802 found:
2803 _d_rehash(actual);
2804 spin_unlock(&actual->d_lock);
2805 spin_unlock(&inode->i_lock);
2806 out_nolock:
2807 if (actual == dentry) {
2808 security_d_instantiate(dentry, inode);
2809 return NULL;
2810 }
2811
2812 iput(inode);
2813 return actual;
2814 }
2815 EXPORT_SYMBOL_GPL(d_materialise_unique);
2816
2817 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2818 {
2819 *buflen -= namelen;
2820 if (*buflen < 0)
2821 return -ENAMETOOLONG;
2822 *buffer -= namelen;
2823 memcpy(*buffer, str, namelen);
2824 return 0;
2825 }
2826
2827 /**
2828 * prepend_name - prepend a pathname in front of current buffer pointer
2829 * @buffer: buffer pointer
2830 * @buflen: allocated length of the buffer
2831 * @name: name string and length qstr structure
2832 *
2833 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2834 * make sure that either the old or the new name pointer and length are
2835 * fetched. However, there may be mismatch between length and pointer.
2836 * The length cannot be trusted, we need to copy it byte-by-byte until
2837 * the length is reached or a null byte is found. It also prepends "/" at
2838 * the beginning of the name. The sequence number check at the caller will
2839 * retry it again when a d_move() does happen. So any garbage in the buffer
2840 * due to mismatched pointer and length will be discarded.
2841 */
2842 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2843 {
2844 const char *dname = ACCESS_ONCE(name->name);
2845 u32 dlen = ACCESS_ONCE(name->len);
2846 char *p;
2847
2848 if (*buflen < dlen + 1)
2849 return -ENAMETOOLONG;
2850 *buflen -= dlen + 1;
2851 p = *buffer -= dlen + 1;
2852 *p++ = '/';
2853 while (dlen--) {
2854 char c = *dname++;
2855 if (!c)
2856 break;
2857 *p++ = c;
2858 }
2859 return 0;
2860 }
2861
2862 /**
2863 * prepend_path - Prepend path string to a buffer
2864 * @path: the dentry/vfsmount to report
2865 * @root: root vfsmnt/dentry
2866 * @buffer: pointer to the end of the buffer
2867 * @buflen: pointer to buffer length
2868 *
2869 * The function will first try to write out the pathname without taking any
2870 * lock other than the RCU read lock to make sure that dentries won't go away.
2871 * It only checks the sequence number of the global rename_lock as any change
2872 * in the dentry's d_seq will be preceded by changes in the rename_lock
2873 * sequence number. If the sequence number had been changed, it will restart
2874 * the whole pathname back-tracing sequence again by taking the rename_lock.
2875 * In this case, there is no need to take the RCU read lock as the recursive
2876 * parent pointer references will keep the dentry chain alive as long as no
2877 * rename operation is performed.
2878 */
2879 static int prepend_path(const struct path *path,
2880 const struct path *root,
2881 char **buffer, int *buflen)
2882 {
2883 struct dentry *dentry = path->dentry;
2884 struct vfsmount *vfsmnt = path->mnt;
2885 struct mount *mnt = real_mount(vfsmnt);
2886 int error = 0;
2887 unsigned seq = 0;
2888 char *bptr;
2889 int blen;
2890
2891 rcu_read_lock();
2892 restart:
2893 bptr = *buffer;
2894 blen = *buflen;
2895 read_seqbegin_or_lock(&rename_lock, &seq);
2896 while (dentry != root->dentry || vfsmnt != root->mnt) {
2897 struct dentry * parent;
2898
2899 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2900 /* Global root? */
2901 if (mnt_has_parent(mnt)) {
2902 dentry = mnt->mnt_mountpoint;
2903 mnt = mnt->mnt_parent;
2904 vfsmnt = &mnt->mnt;
2905 continue;
2906 }
2907 /*
2908 * Filesystems needing to implement special "root names"
2909 * should do so with ->d_dname()
2910 */
2911 if (IS_ROOT(dentry) &&
2912 (dentry->d_name.len != 1 ||
2913 dentry->d_name.name[0] != '/')) {
2914 WARN(1, "Root dentry has weird name <%.*s>\n",
2915 (int) dentry->d_name.len,
2916 dentry->d_name.name);
2917 }
2918 if (!error)
2919 error = is_mounted(vfsmnt) ? 1 : 2;
2920 break;
2921 }
2922 parent = dentry->d_parent;
2923 prefetch(parent);
2924 error = prepend_name(&bptr, &blen, &dentry->d_name);
2925 if (error)
2926 break;
2927
2928 dentry = parent;
2929 }
2930 if (!(seq & 1))
2931 rcu_read_unlock();
2932 if (need_seqretry(&rename_lock, seq)) {
2933 seq = 1;
2934 goto restart;
2935 }
2936 done_seqretry(&rename_lock, seq);
2937
2938 if (error >= 0 && bptr == *buffer) {
2939 if (--blen < 0)
2940 error = -ENAMETOOLONG;
2941 else
2942 *--bptr = '/';
2943 }
2944 *buffer = bptr;
2945 *buflen = blen;
2946 return error;
2947 }
2948
2949 /**
2950 * __d_path - return the path of a dentry
2951 * @path: the dentry/vfsmount to report
2952 * @root: root vfsmnt/dentry
2953 * @buf: buffer to return value in
2954 * @buflen: buffer length
2955 *
2956 * Convert a dentry into an ASCII path name.
2957 *
2958 * Returns a pointer into the buffer or an error code if the
2959 * path was too long.
2960 *
2961 * "buflen" should be positive.
2962 *
2963 * If the path is not reachable from the supplied root, return %NULL.
2964 */
2965 char *__d_path(const struct path *path,
2966 const struct path *root,
2967 char *buf, int buflen)
2968 {
2969 char *res = buf + buflen;
2970 int error;
2971
2972 prepend(&res, &buflen, "\0", 1);
2973 br_read_lock(&vfsmount_lock);
2974 error = prepend_path(path, root, &res, &buflen);
2975 br_read_unlock(&vfsmount_lock);
2976
2977 if (error < 0)
2978 return ERR_PTR(error);
2979 if (error > 0)
2980 return NULL;
2981 return res;
2982 }
2983
2984 char *d_absolute_path(const struct path *path,
2985 char *buf, int buflen)
2986 {
2987 struct path root = {};
2988 char *res = buf + buflen;
2989 int error;
2990
2991 prepend(&res, &buflen, "\0", 1);
2992 br_read_lock(&vfsmount_lock);
2993 error = prepend_path(path, &root, &res, &buflen);
2994 br_read_unlock(&vfsmount_lock);
2995
2996 if (error > 1)
2997 error = -EINVAL;
2998 if (error < 0)
2999 return ERR_PTR(error);
3000 return res;
3001 }
3002
3003 /*
3004 * same as __d_path but appends "(deleted)" for unlinked files.
3005 */
3006 static int path_with_deleted(const struct path *path,
3007 const struct path *root,
3008 char **buf, int *buflen)
3009 {
3010 prepend(buf, buflen, "\0", 1);
3011 if (d_unlinked(path->dentry)) {
3012 int error = prepend(buf, buflen, " (deleted)", 10);
3013 if (error)
3014 return error;
3015 }
3016
3017 return prepend_path(path, root, buf, buflen);
3018 }
3019
3020 static int prepend_unreachable(char **buffer, int *buflen)
3021 {
3022 return prepend(buffer, buflen, "(unreachable)", 13);
3023 }
3024
3025 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3026 {
3027 unsigned seq;
3028
3029 do {
3030 seq = read_seqcount_begin(&fs->seq);
3031 *root = fs->root;
3032 } while (read_seqcount_retry(&fs->seq, seq));
3033 }
3034
3035 /**
3036 * d_path - return the path of a dentry
3037 * @path: path to report
3038 * @buf: buffer to return value in
3039 * @buflen: buffer length
3040 *
3041 * Convert a dentry into an ASCII path name. If the entry has been deleted
3042 * the string " (deleted)" is appended. Note that this is ambiguous.
3043 *
3044 * Returns a pointer into the buffer or an error code if the path was
3045 * too long. Note: Callers should use the returned pointer, not the passed
3046 * in buffer, to use the name! The implementation often starts at an offset
3047 * into the buffer, and may leave 0 bytes at the start.
3048 *
3049 * "buflen" should be positive.
3050 */
3051 char *d_path(const struct path *path, char *buf, int buflen)
3052 {
3053 char *res = buf + buflen;
3054 struct path root;
3055 int error;
3056
3057 /*
3058 * We have various synthetic filesystems that never get mounted. On
3059 * these filesystems dentries are never used for lookup purposes, and
3060 * thus don't need to be hashed. They also don't need a name until a
3061 * user wants to identify the object in /proc/pid/fd/. The little hack
3062 * below allows us to generate a name for these objects on demand:
3063 */
3064 if (path->dentry->d_op && path->dentry->d_op->d_dname)
3065 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3066
3067 rcu_read_lock();
3068 get_fs_root_rcu(current->fs, &root);
3069 br_read_lock(&vfsmount_lock);
3070 error = path_with_deleted(path, &root, &res, &buflen);
3071 br_read_unlock(&vfsmount_lock);
3072 rcu_read_unlock();
3073
3074 if (error < 0)
3075 res = ERR_PTR(error);
3076 return res;
3077 }
3078 EXPORT_SYMBOL(d_path);
3079
3080 /*
3081 * Helper function for dentry_operations.d_dname() members
3082 */
3083 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3084 const char *fmt, ...)
3085 {
3086 va_list args;
3087 char temp[64];
3088 int sz;
3089
3090 va_start(args, fmt);
3091 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3092 va_end(args);
3093
3094 if (sz > sizeof(temp) || sz > buflen)
3095 return ERR_PTR(-ENAMETOOLONG);
3096
3097 buffer += buflen - sz;
3098 return memcpy(buffer, temp, sz);
3099 }
3100
3101 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3102 {
3103 char *end = buffer + buflen;
3104 /* these dentries are never renamed, so d_lock is not needed */
3105 if (prepend(&end, &buflen, " (deleted)", 11) ||
3106 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3107 prepend(&end, &buflen, "/", 1))
3108 end = ERR_PTR(-ENAMETOOLONG);
3109 return end;
3110 }
3111
3112 /*
3113 * Write full pathname from the root of the filesystem into the buffer.
3114 */
3115 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
3116 {
3117 char *end, *retval;
3118 int len, seq = 0;
3119 int error = 0;
3120
3121 rcu_read_lock();
3122 restart:
3123 end = buf + buflen;
3124 len = buflen;
3125 prepend(&end, &len, "\0", 1);
3126 if (buflen < 1)
3127 goto Elong;
3128 /* Get '/' right */
3129 retval = end-1;
3130 *retval = '/';
3131 read_seqbegin_or_lock(&rename_lock, &seq);
3132 while (!IS_ROOT(dentry)) {
3133 struct dentry *parent = dentry->d_parent;
3134 int error;
3135
3136 prefetch(parent);
3137 error = prepend_name(&end, &len, &dentry->d_name);
3138 if (error)
3139 break;
3140
3141 retval = end;
3142 dentry = parent;
3143 }
3144 if (!(seq & 1))
3145 rcu_read_unlock();
3146 if (need_seqretry(&rename_lock, seq)) {
3147 seq = 1;
3148 goto restart;
3149 }
3150 done_seqretry(&rename_lock, seq);
3151 if (error)
3152 goto Elong;
3153 return retval;
3154 Elong:
3155 return ERR_PTR(-ENAMETOOLONG);
3156 }
3157
3158 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3159 {
3160 return __dentry_path(dentry, buf, buflen);
3161 }
3162 EXPORT_SYMBOL(dentry_path_raw);
3163
3164 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3165 {
3166 char *p = NULL;
3167 char *retval;
3168
3169 if (d_unlinked(dentry)) {
3170 p = buf + buflen;
3171 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3172 goto Elong;
3173 buflen++;
3174 }
3175 retval = __dentry_path(dentry, buf, buflen);
3176 if (!IS_ERR(retval) && p)
3177 *p = '/'; /* restore '/' overriden with '\0' */
3178 return retval;
3179 Elong:
3180 return ERR_PTR(-ENAMETOOLONG);
3181 }
3182
3183 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3184 struct path *pwd)
3185 {
3186 unsigned seq;
3187
3188 do {
3189 seq = read_seqcount_begin(&fs->seq);
3190 *root = fs->root;
3191 *pwd = fs->pwd;
3192 } while (read_seqcount_retry(&fs->seq, seq));
3193 }
3194
3195 /*
3196 * NOTE! The user-level library version returns a
3197 * character pointer. The kernel system call just
3198 * returns the length of the buffer filled (which
3199 * includes the ending '\0' character), or a negative
3200 * error value. So libc would do something like
3201 *
3202 * char *getcwd(char * buf, size_t size)
3203 * {
3204 * int retval;
3205 *
3206 * retval = sys_getcwd(buf, size);
3207 * if (retval >= 0)
3208 * return buf;
3209 * errno = -retval;
3210 * return NULL;
3211 * }
3212 */
3213 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3214 {
3215 int error;
3216 struct path pwd, root;
3217 char *page = __getname();
3218
3219 if (!page)
3220 return -ENOMEM;
3221
3222 rcu_read_lock();
3223 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3224
3225 error = -ENOENT;
3226 br_read_lock(&vfsmount_lock);
3227 if (!d_unlinked(pwd.dentry)) {
3228 unsigned long len;
3229 char *cwd = page + PATH_MAX;
3230 int buflen = PATH_MAX;
3231
3232 prepend(&cwd, &buflen, "\0", 1);
3233 error = prepend_path(&pwd, &root, &cwd, &buflen);
3234 br_read_unlock(&vfsmount_lock);
3235 rcu_read_unlock();
3236
3237 if (error < 0)
3238 goto out;
3239
3240 /* Unreachable from current root */
3241 if (error > 0) {
3242 error = prepend_unreachable(&cwd, &buflen);
3243 if (error)
3244 goto out;
3245 }
3246
3247 error = -ERANGE;
3248 len = PATH_MAX + page - cwd;
3249 if (len <= size) {
3250 error = len;
3251 if (copy_to_user(buf, cwd, len))
3252 error = -EFAULT;
3253 }
3254 } else {
3255 br_read_unlock(&vfsmount_lock);
3256 rcu_read_unlock();
3257 }
3258
3259 out:
3260 __putname(page);
3261 return error;
3262 }
3263
3264 /*
3265 * Test whether new_dentry is a subdirectory of old_dentry.
3266 *
3267 * Trivially implemented using the dcache structure
3268 */
3269
3270 /**
3271 * is_subdir - is new dentry a subdirectory of old_dentry
3272 * @new_dentry: new dentry
3273 * @old_dentry: old dentry
3274 *
3275 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3276 * Returns 0 otherwise.
3277 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3278 */
3279
3280 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3281 {
3282 int result;
3283 unsigned seq;
3284
3285 if (new_dentry == old_dentry)
3286 return 1;
3287
3288 do {
3289 /* for restarting inner loop in case of seq retry */
3290 seq = read_seqbegin(&rename_lock);
3291 /*
3292 * Need rcu_readlock to protect against the d_parent trashing
3293 * due to d_move
3294 */
3295 rcu_read_lock();
3296 if (d_ancestor(old_dentry, new_dentry))
3297 result = 1;
3298 else
3299 result = 0;
3300 rcu_read_unlock();
3301 } while (read_seqretry(&rename_lock, seq));
3302
3303 return result;
3304 }
3305
3306 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3307 {
3308 struct dentry *root = data;
3309 if (dentry != root) {
3310 if (d_unhashed(dentry) || !dentry->d_inode)
3311 return D_WALK_SKIP;
3312
3313 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3314 dentry->d_flags |= DCACHE_GENOCIDE;
3315 dentry->d_lockref.count--;
3316 }
3317 }
3318 return D_WALK_CONTINUE;
3319 }
3320
3321 void d_genocide(struct dentry *parent)
3322 {
3323 d_walk(parent, parent, d_genocide_kill, NULL);
3324 }
3325
3326 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3327 {
3328 inode_dec_link_count(inode);
3329 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3330 !hlist_unhashed(&dentry->d_alias) ||
3331 !d_unlinked(dentry));
3332 spin_lock(&dentry->d_parent->d_lock);
3333 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3334 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3335 (unsigned long long)inode->i_ino);
3336 spin_unlock(&dentry->d_lock);
3337 spin_unlock(&dentry->d_parent->d_lock);
3338 d_instantiate(dentry, inode);
3339 }
3340 EXPORT_SYMBOL(d_tmpfile);
3341
3342 static __initdata unsigned long dhash_entries;
3343 static int __init set_dhash_entries(char *str)
3344 {
3345 if (!str)
3346 return 0;
3347 dhash_entries = simple_strtoul(str, &str, 0);
3348 return 1;
3349 }
3350 __setup("dhash_entries=", set_dhash_entries);
3351
3352 static void __init dcache_init_early(void)
3353 {
3354 unsigned int loop;
3355
3356 /* If hashes are distributed across NUMA nodes, defer
3357 * hash allocation until vmalloc space is available.
3358 */
3359 if (hashdist)
3360 return;
3361
3362 dentry_hashtable =
3363 alloc_large_system_hash("Dentry cache",
3364 sizeof(struct hlist_bl_head),
3365 dhash_entries,
3366 13,
3367 HASH_EARLY,
3368 &d_hash_shift,
3369 &d_hash_mask,
3370 0,
3371 0);
3372
3373 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3374 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3375 }
3376
3377 static void __init dcache_init(void)
3378 {
3379 unsigned int loop;
3380
3381 /*
3382 * A constructor could be added for stable state like the lists,
3383 * but it is probably not worth it because of the cache nature
3384 * of the dcache.
3385 */
3386 dentry_cache = KMEM_CACHE(dentry,
3387 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3388
3389 /* Hash may have been set up in dcache_init_early */
3390 if (!hashdist)
3391 return;
3392
3393 dentry_hashtable =
3394 alloc_large_system_hash("Dentry cache",
3395 sizeof(struct hlist_bl_head),
3396 dhash_entries,
3397 13,
3398 0,
3399 &d_hash_shift,
3400 &d_hash_mask,
3401 0,
3402 0);
3403
3404 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3405 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3406 }
3407
3408 /* SLAB cache for __getname() consumers */
3409 struct kmem_cache *names_cachep __read_mostly;
3410 EXPORT_SYMBOL(names_cachep);
3411
3412 EXPORT_SYMBOL(d_genocide);
3413
3414 void __init vfs_caches_init_early(void)
3415 {
3416 dcache_init_early();
3417 inode_init_early();
3418 }
3419
3420 void __init vfs_caches_init(unsigned long mempages)
3421 {
3422 unsigned long reserve;
3423
3424 /* Base hash sizes on available memory, with a reserve equal to
3425 150% of current kernel size */
3426
3427 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3428 mempages -= reserve;
3429
3430 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3431 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3432
3433 dcache_init();
3434 inode_init();
3435 files_init(mempages);
3436 mnt_init();
3437 bdev_cache_init();
3438 chrdev_init();
3439 }
This page took 0.099547 seconds and 6 git commands to generate.